
Users Guide

Appeon PowerBuilder® 2019 R3

Contents
1 The PowerBuilder Environment ... 20

1.1 Working with PowerBuilder .. 20
1.1.1 About PowerBuilder ... 20
1.1.2 Concepts and terms .. 20

1.1.2.1 Workspaces and targets .. 20
1.1.2.2 Objects ... 21
1.1.2.3 DataWindow objects .. 22
1.1.2.4 PowerBuilder libraries .. 22
1.1.2.5 Painters and editors .. 22
1.1.2.6 Events and scripts ... 22
1.1.2.7 Functions ... 23
1.1.2.8 Properties .. 23
1.1.2.9 Source control ... 23
1.1.2.10 PowerBuilder extensions ... 23

1.1.3 The PowerBuilder environment ... 23
1.1.3.1 The System Tree ... 25
1.1.3.2 The PowerBar .. 27
1.1.3.3 The Clip window .. 29
1.1.3.4 The Output window ... 30

1.1.4 Creating and opening workspaces .. 31
1.1.4.1 Creating a workspace .. 31
1.1.4.2 Opening a workspace .. 32

1.1.5 Using wizards .. 33
1.1.5.1 About wizards .. 33

1.1.6 Creating a target .. 33
1.1.7 Target types ... 35

1.1.7.1 Application targets ... 35
1.1.7.2 C# targets .. 37
1.1.7.3 .NET targets (Obsolete) ... 37

1.1.8 Managing workspaces ... 37
1.1.8.1 Adding an existing target to a workspace 37
1.1.8.2 Removing a target from a workspace 38
1.1.8.3 Specifying workspace properties ... 38

1.1.9 Building workspaces .. 39
1.1.9.1 In the development environment ... 39
1.1.9.2 From a command line ... 39

1.1.10 Working with tools ... 40
1.1.10.1 Using the To-Do List ... 41
1.1.10.2 Using the file editor ... 43

1.1.11 Using online help ... 44
1.1.12 Building an application ... 44

1.2 Customizing PowerBuilder ... 46
1.2.1 Starting PowerBuilder with an open workspace 46

1.2.1.1 Using options in the development environment 46
1.2.1.2 Using a workspace file .. 47
1.2.1.3 Using command line arguments .. 47

1.2.2 Changing default layouts ... 49
1.2.2.1 Arranging the System Tree, Output, and Clip windows 50
1.2.2.2 Using views in painters ... 51

1.2.3 Using toolbars .. 55
1.2.3.1 Toolbar basics ... 55
1.2.3.2 Drop-down toolbars ... 55
1.2.3.3 Controlling the display of toolbars ... 56
1.2.3.4 Moving toolbars using the mouse ... 57
1.2.3.5 Customizing toolbars ... 57
1.2.3.6 Creating new toolbars ... 61

1.2.4 Customizing keyboard shortcuts .. 62
1.2.5 Changing fonts .. 63
1.2.6 Defining colors ... 64
1.2.7 How the PowerBuilder environment is managed 65

1.2.7.1 About the registry .. 65
1.2.7.2 About the initialization file .. 65

1.3 Using Source Control .. 66
1.3.1 About source control systems ... 67

1.3.1.1 Using SVN or Git ... 67
1.3.1.2 Using source control manager via SCC API 71
1.3.1.3 Using PBNative ... 72
1.3.1.4 Constraints of a multi-user environment 72
1.3.1.5 Extension to the SCC API ... 74

1.3.2 Using SVN source control system ... 76
1.3.2.1 Add a workspace to SVN .. 76
1.3.2.2 Get a workspace from SVN .. 79
1.3.2.3 Commit objects to SVN ... 80
1.3.2.4 Get objects from SVN ... 81
1.3.2.5 Resolve conflicts .. 82
1.3.2.6 Revert changes ... 83
1.3.2.7 Refresh objects .. 84
1.3.2.8 Upload PBL ... 84
1.3.2.9 Lock objects ... 84
1.3.2.10 Tools for Show Log\Edit Conflicts 86
1.3.2.11 Compare objects ... 88
1.3.2.12 View/Edit the connection settings .. 90
1.3.2.13 View the status of source-controlled objects 92

1.3.3 Using Git source control system ... 92
1.3.3.1 Add a workspace to Git ... 92
1.3.3.2 Get a workspace from Git ... 97
1.3.3.3 Commit objects to Git .. 100
1.3.3.4 Get objects from Git .. 100
1.3.3.5 Resolve conflicts .. 101
1.3.3.6 Revert changes ... 102
1.3.3.7 Refresh objects .. 102
1.3.3.8 Upload PBL ... 103
1.3.3.9 Tools for Show Log\Edit Conflicts 103
1.3.3.10 Compare objects ... 105

1.3.3.11 Use branches .. 107
1.3.3.12 View/Edit the connection settings 107
1.3.3.13 View the status of source-controlled objects 109

1.3.4 Using source control systems via SCC API 109
1.3.4.1 Using a source control system with PowerBuilder 109
1.3.4.2 Source control operations via SCC API in PowerBuilder 117
1.3.4.3 Initialization settings that affect source control 128
1.3.4.4 Modifying source-controlled targets and objects 133
1.3.4.5 Upgrading existing projects under source control 135

2 Working with Targets ... 139
2.1 Working with Targets ... 139

2.1.1 About targets ... 139
2.1.2 Working in painters .. 139

2.1.2.1 Opening painters ... 140
2.1.2.2 Painter summary ... 140
2.1.2.3 Painter features ... 141
2.1.2.4 Views in painters that edit objects 142

2.1.3 About the Application painter .. 147
2.1.4 Specifying application properties ... 148

2.1.4.1 Specifying default text properties .. 149
2.1.4.2 Specifying an icon ... 150
2.1.4.3 Specifying default global objects ... 150
2.1.4.4 Specifying a rich text editor ... 152
2.1.4.5 Specifying a theme for the application UI 152

2.1.5 Writing application-level scripts ... 168
2.1.5.1 Setting application properties in scripts 169

2.1.6 Specifying target properties ... 169
2.1.6.1 Specifying the target's library search path 170
2.1.6.2 Importing .NET assemblies .. 171

2.1.7 Looking at an application's structure ... 172
2.1.7.1 Which objects are displayed .. 172

2.1.8 Working with objects ... 174
2.1.8.1 Creating new objects ... 174
2.1.8.2 Creating new objects using inheritance 175
2.1.8.3 Naming conventions .. 176
2.1.8.4 Opening existing objects ... 178
2.1.8.5 Running or previewing objects .. 179

2.1.9 Using the Source editor ... 180
2.2 Working with Libraries ... 181

2.2.1 About libraries .. 181
2.2.1.1 Using libraries .. 181
2.2.1.2 Organizing libraries .. 182

2.2.2 Opening the Library painter ... 182
2.2.3 About the Library painter ... 183
2.2.4 Working with libraries .. 185

2.2.4.1 Displaying libraries and objects ... 185
2.2.4.2 Using the pop-up menu ... 186
2.2.4.3 Controlling columns that display in the List view 186

2.2.4.4 Selecting objects ... 187
2.2.4.5 Filtering the display of objects ... 187
2.2.4.6 Creating and deleting libraries ... 188
2.2.4.7 Filtering the display of libraries and folders 189
2.2.4.8 Working in the current library .. 189
2.2.4.9 Opening and previewing objects ... 189
2.2.4.10 Copying, moving, and deleting objects 190
2.2.4.11 Setting the root .. 191
2.2.4.12 Moving back, forward, and up one level 192
2.2.4.13 Modifying comments .. 192

2.2.5 Searching targets, libraries, and objects 193
2.2.6 Optimizing libraries .. 195
2.2.7 Regenerating library entries .. 195
2.2.8 Rebuilding workspaces and targets ... 197
2.2.9 Upgrading targets .. 198
2.2.10 Exporting and importing entries ... 201
2.2.11 Creating runtime libraries .. 203

2.2.11.1 Including additional resources ... 204
2.2.12 Creating reports on library contents .. 205

2.2.12.1 Creating library entry reports ... 205
2.2.12.2 Creating the library directory report 206

3 Coding Fundamentals .. 208
3.1 Writing Scripts .. 208

3.1.1 About the Script view .. 208
3.1.2 Opening Script views ... 210
3.1.3 Modifying Script view properties .. 210
3.1.4 Editing scripts .. 211

3.1.4.1 Limiting size of scripts ... 211
3.1.4.2 Printing scripts ... 212
3.1.4.3 Pasting information into scripts ... 212
3.1.4.4 Reverting to the unedited version of a script 216

3.1.5 Using AutoScript .. 216
3.1.5.1 Using the AutoScript pop-up window 217
3.1.5.2 Customizing AutoScript ... 218
3.1.5.3 Example ... 220

3.1.6 Getting context-sensitive Help ... 221
3.1.7 Compiling the script ... 222

3.1.7.1 Handling problems ... 222
3.1.7.2 Compiler Errors ... 224

3.1.8 Declaring variables and external functions 281
3.2 Working with User-Defined Functions ... 281

3.2.1 About user-defined functions ... 282
3.2.1.1 Deciding which kind you want ... 282

3.2.2 Defining user-defined functions ... 283
3.2.2.1 Opening a Prototype window to add a new function 284
3.2.2.2 Defining the access level .. 284
3.2.2.3 Defining a return type .. 285
3.2.2.4 Naming the function .. 286

3.2.2.5 Defining arguments ... 286
3.2.2.6 Defining a THROWS clause .. 287
3.2.2.7 Coding the function ... 288
3.2.2.8 Compiling and saving the function 288

3.2.3 Modifying user-defined functions ... 289
3.2.4 Using your functions .. 290

3.3 Working with User Events ... 291
3.3.1 About user events ... 291

3.3.1.1 User events and event IDs .. 292
3.3.2 Defining user events .. 293
3.3.3 Using a user event .. 296

3.3.3.1 Examples of user event scripts ... 296
3.4 Working with Structures ... 298

3.4.1 About structures ... 298
3.4.1.1 Deciding which kind you want ... 299

3.4.2 Defining structures ... 299
3.4.3 Modifying structures ... 301
3.4.4 Using structures ... 302

3.4.4.1 Referencing structures .. 302
3.4.4.2 Copying structures ... 303
3.4.4.3 Using structures with functions .. 303
3.4.4.4 Displaying and pasting structure information 304

4 Working with Windows ... 305
4.1 Working with Windows .. 305

4.1.1 About windows ... 305
4.1.1.1 Designing windows .. 305
4.1.1.2 Building windows ... 306

4.1.2 Types of windows .. 306
4.1.2.1 Main windows .. 306
4.1.2.2 Pop-up windows .. 307
4.1.2.3 Child windows .. 307
4.1.2.4 Response windows .. 308
4.1.2.5 MDI frames .. 308

4.1.3 About the Window painter ... 308
4.1.4 Building a new window .. 309

4.1.4.1 Creating a new window ... 309
4.1.4.2 Defining the window's properties ... 310
4.1.4.3 Adding controls .. 316
4.1.4.4 Adding nonvisual objects ... 316
4.1.4.5 Saving the window .. 316

4.1.5 Viewing your work ... 317
4.1.5.1 Previewing a window ... 317
4.1.5.2 Printing a window's definition .. 318

4.1.6 Writing scripts in windows ... 319
4.1.6.1 About events for windows and controls 319
4.1.6.2 About functions for windows and controls 319
4.1.6.3 About properties of windows and controls 319
4.1.6.4 Declaring instance variables .. 320

4.1.6.5 Examples of statements .. 320
4.1.7 Running a window ... 321
4.1.8 Using inheritance to build a window .. 321

4.1.8.1 Building two windows with similar definitions 322
4.1.8.2 Advantages of using inheritance ... 323
4.1.8.3 Instance variables in descendants 324
4.1.8.4 Control names in descendants .. 324

4.2 Working with Controls .. 325
4.2.1 About controls .. 325
4.2.2 Inserting controls in a window ... 325
4.2.3 Selecting controls .. 326
4.2.4 Defining a control's properties ... 327
4.2.5 Naming controls ... 327

4.2.5.1 About the default prefixes ... 328
4.2.5.2 Changing the name ... 329

4.2.6 Changing text .. 329
4.2.6.1 How text size is stored .. 330

4.2.7 Moving and resizing controls ... 330
4.2.7.1 Moving and resizing controls using the mouse 330
4.2.7.2 Moving and resizing controls using the keyboard 330
4.2.7.3 Aligning controls using the grid ... 331
4.2.7.4 Aligning controls with each other ... 331
4.2.7.5 Equalizing the space between controls 332
4.2.7.6 Equalizing the size of controls ... 332

4.2.8 Copying controls .. 333
4.2.9 Defining the tab order .. 333

4.2.9.1 Establishing the default tab order .. 333
4.2.9.2 Changing the window's tab order .. 334

4.2.10 Defining accelerator keys .. 335
4.2.11 Specifying accessibility of controls .. 336

4.2.11.1 Using the Visible property ... 336
4.2.11.2 Using the Enabled property ... 336

4.2.12 Choosing colors ... 337
4.2.13 Using the 3D look .. 339
4.2.14 Using the individual controls .. 339

4.2.14.1 CommandButton .. 341
4.2.14.2 PictureButton ... 342
4.2.14.3 CheckBox .. 343
4.2.14.4 RadioButton ... 343
4.2.14.5 StaticText ... 344
4.2.14.6 StaticHyperLink .. 345
4.2.14.7 Picture .. 345
4.2.14.8 PictureHyperLink .. 346
4.2.14.9 GroupBox ... 347
4.2.14.10 Drawing controls .. 347
4.2.14.11 SingleLineEdit and MultiLineEdit 348
4.2.14.12 EditMask .. 348
4.2.14.13 HScrollBar and VScrollBar .. 350

4.2.14.14 HTrackBar and VTrackBar .. 350
4.2.14.15 HProgressBar and VProgressBar 351
4.2.14.16 DropDownListBox .. 351
4.2.14.17 DropDownPictureListBox ... 352
4.2.14.18 ListBox ... 353
4.2.14.19 PictureListBox .. 354
4.2.14.20 ListView ... 357
4.2.14.21 TreeView .. 359
4.2.14.22 Tab ... 362
4.2.14.23 MonthCalendar .. 366
4.2.14.24 DatePicker ... 367
4.2.14.25 Animation ... 370
4.2.14.26 InkEdit and InkPicture ... 370

4.3 Understanding Inheritance ... 371
4.3.1 About inheritance ... 371
4.3.2 Creating new objects using inheritance ... 372
4.3.3 The inheritance hierarchy .. 372
4.3.4 Browsing the class hierarchy ... 373
4.3.5 Working with inherited objects ... 374
4.3.6 Using inherited scripts ... 375

4.3.6.1 Viewing inherited scripts .. 376
4.3.6.2 Extending a script .. 377
4.3.6.3 Overriding a script ... 378
4.3.6.4 Calling an ancestor script .. 378
4.3.6.5 Calling an ancestor function .. 378

4.4 Working with RibbonBar .. 379
4.4.1 Introduction to RibbonBar items .. 379
4.4.2 Creating a RibbonBar using RibbonBar Builder 385

4.4.2.1 Using the RibbonBar Builder ... 386
4.4.2.2 Creating a valid structure .. 389

4.4.3 Accessing the RibbonBar items in the hierarchy 391
4.4.4 Tutorial: How to Replace an Application Menu with a
RibbonBar ... 394

4.4.4.1 Overview .. 394
4.4.4.2 Prerequisites .. 395
4.4.4.3 Design and create a RibbonBar .. 397
4.4.4.4 Add the RibbonBar to the application 398
4.4.4.5 Initiate the RibbonBar .. 399
4.4.4.6 Define and bind user events with RibbonBar items 400
4.4.4.7 Associate functions with RibbonBar items 401
4.4.4.8 Summary notes ... 407

4.5 Working with WebBrowser ... 408
4.5.1 What can WebBrowser support? ... 408
4.5.2 Configuring WebBrowser ... 409
4.5.3 Defining user events for WebBrowser ... 410
4.5.4 Packaging WebBrowser .. 410
4.5.5 WebBrowser control vs. Microsoft Web Browser OLE control 410

4.6 Working with Menus and Toolbars .. 411

4.6.1 Menus and menu items ... 411
4.6.2 Using the Menu painter ... 412

4.6.2.1 Menu painter views ... 412
4.6.2.2 Menu styles ... 414

4.6.3 Building a new menu ... 416
4.6.3.1 Creating a new menu .. 416
4.6.3.2 Working with menu items .. 416
4.6.3.3 Saving the menu ... 422

4.6.4 Defining the appearance and behavior of menu items 423
4.6.4.1 Setting General properties for menu items 423
4.6.4.2 Setting menu style properties for contemporary menus 425
4.6.4.3 Setting menu item style properties 426

4.6.5 Providing toolbars .. 427
4.6.5.1 How toolbars work ... 428
4.6.5.2 Adding toolbars to a window ... 430
4.6.5.3 Selecting a toolbar style .. 430
4.6.5.4 Setting toolbar properties .. 431
4.6.5.5 Setting toolbar properties in the Window painter 434
4.6.5.6 Setting toolbar properties in the Application painter 434

4.6.6 Writing scripts for menu items ... 435
4.6.6.1 Menu item events .. 435
4.6.6.2 Using functions and variables ... 437
4.6.6.3 Referring to objects in your application 437

4.6.7 Using inheritance to build a menu ... 439
4.6.7.1 Using the inherited information .. 439
4.6.7.2 Inserting menu items in a descendant menu 440

4.6.8 Using menus in your applications .. 444
4.6.8.1 Adding a menu bar to a window .. 444
4.6.8.2 Displaying pop-up menus .. 445

4.7 Working with User Objects .. 445
4.7.1 About user objects ... 445

4.7.1.1 Class user objects ... 446
4.7.1.2 Visual user objects .. 447
4.7.1.3 Building user objects ... 447

4.7.2 About the User Object painter ... 448
4.7.3 Building a new user object .. 449

4.7.3.1 Creating a new user object ... 449
4.7.3.2 Building a custom class user object 449
4.7.3.3 Building a standard class user object 450
4.7.3.4 Building a custom visual user object 451
4.7.3.5 Building an external visual user object 451
4.7.3.6 Building a standard visual user object 452
4.7.3.7 Events in user objects ... 453
4.7.3.8 Saving a user object .. 454

4.7.4 Using inheritance to build user objects .. 455
4.7.4.1 Using the inherited information .. 456

4.7.5 Using user objects ... 457
4.7.5.1 Using visual user objects .. 457

4.7.5.2 Using class user objects ... 458
4.7.5.3 Using global standard class user objects 459

4.7.6 Communicating between a window and a user object 461
4.7.6.1 Examples of user object controls affecting a window 463

5 Working with Databases .. 466
5.1 Managing the Database .. 466

5.1.1 Working with database components .. 466
5.1.2 Managing databases ... 469
5.1.3 Using the Database painter ... 470

5.1.3.1 Modifying database preferences ... 472
5.1.3.2 Logging your work ... 473

5.1.4 Creating and deleting a SQL Anywhere database 474
5.1.5 Working with tables ... 475

5.1.5.1 Creating a new table from scratch 475
5.1.5.2 Creating a new table from an existing table 476
5.1.5.3 Specifying column definitions .. 477
5.1.5.4 Specifying table and column properties 477
5.1.5.5 Altering a table .. 480
5.1.5.6 Cutting, copying, and pasting columns 482
5.1.5.7 Closing a table .. 482
5.1.5.8 Dropping a table .. 482
5.1.5.9 Viewing pending SQL changes ... 483
5.1.5.10 Printing the table definition .. 484
5.1.5.11 Exporting table syntax ... 484
5.1.5.12 About system tables .. 485
5.1.5.13 Creating and editing temporary tables 486

5.1.6 Working with keys ... 487
5.1.7 Working with indexes ... 491
5.1.8 Working with database views .. 492
5.1.9 Manipulating data .. 497

5.1.9.1 Retrieving data .. 497
5.1.9.2 Modifying data ... 498
5.1.9.3 Sorting rows ... 499
5.1.9.4 Filtering rows ... 500
5.1.9.5 Viewing row information .. 501
5.1.9.6 Importing data .. 501
5.1.9.7 Printing data .. 502
5.1.9.8 Saving data .. 502

5.1.10 Creating and executing SQL statements 502
5.1.10.1 Building and executing SQL statements 503
5.1.10.2 Customizing the editor ... 505

5.1.11 Controlling access to the current database 506
5.1.12 Using the ASA MobiLink synchronization wizard 506

5.1.12.1 What the wizard generates .. 507
5.1.12.2 Wizard options ... 508
5.1.12.3 Trying out MobiLink synchronization 509

5.1.13 Managing MobiLink synchronization on the server 511
5.1.13.1 Starting the MobiLink synchronization server 511

5.1.13.2 Using SQL Central .. 511
5.2 Working with Data Pipelines .. 512

5.2.1 About data pipelines .. 512
5.2.1.1 Defining a data pipeline ... 513
5.2.1.2 Piping extended attributes ... 513

5.2.2 Creating a data pipeline .. 515
5.2.3 Modifying the data pipeline definition .. 517

5.2.3.1 Choosing a pipeline operation ... 519
5.2.3.2 Dependency of modifications on pipeline operation 520
5.2.3.3 When execution stops ... 521
5.2.3.4 Piping blob data .. 523
5.2.3.5 Changing the destination and source databases 524

5.2.4 Correcting pipeline errors .. 525
5.2.5 Saving a pipeline ... 526
5.2.6 Using an existing pipeline .. 526
5.2.7 Pipeline examples .. 527

6 Working with DataWindows ... 529
6.1 Defining DataWindow Objects ... 529

6.1.1 About DataWindow objects ... 529
6.1.1.1 DataWindow object examples ... 529
6.1.1.2 How to use DataWindow objects ... 530

6.1.2 Choosing a presentation style ... 531
6.1.2.1 Using the Tabular style ... 532
6.1.2.2 Using the Freeform style ... 532
6.1.2.3 Using the Grid style ... 533
6.1.2.4 Using the Label style ... 534
6.1.2.5 Using the N-Up style ... 536
6.1.2.6 Using the Group style .. 537
6.1.2.7 Using the Composite style .. 538
6.1.2.8 Using the Graph and Crosstab styles 539
6.1.2.9 Using the OLE 2.0 style .. 540
6.1.2.10 Using the RichText style ... 540
6.1.2.11 Using the TreeView style .. 540

6.1.3 Building a DataWindow object ... 541
6.1.4 Selecting a data source ... 542
6.1.5 Using Quick Select .. 543

6.1.5.1 Selecting a table .. 544
6.1.5.2 Selecting columns ... 546
6.1.5.3 Specifying sorting criteria .. 547
6.1.5.4 Specifying selection criteria ... 547

6.1.6 Using SQL Select .. 553
6.1.6.1 Selecting tables and views .. 554
6.1.6.2 Selecting columns ... 555
6.1.6.3 Displaying the underlying SQL statement 556
6.1.6.4 Joining tables ... 557
6.1.6.5 Using retrieval arguments .. 560
6.1.6.6 Specifying selection, sorting, and grouping criteria 561

6.1.7 Using Query ... 566

6.1.8 Using External ... 566
6.1.9 Using Stored Procedure .. 567
6.1.10 Using a Web service data source (Obsolete) 569
6.1.11 Using the OData Service (Obsolete) ... 572
6.1.12 Choosing DataWindow object-wide options 573
6.1.13 Generating and saving a DataWindow object 574

6.1.13.1 About the extended attribute system tables and
DataWindow objects .. 574
6.1.13.2 Saving the DataWindow object ... 575
6.1.13.3 Modifying an existing DataWindow object 575

6.1.14 Defining queries ... 575
6.1.14.1 Previewing the query ... 576
6.1.14.2 Saving the query ... 576
6.1.14.3 Modifying a query .. 577

6.1.15 What's next .. 577
6.2 Enhancing DataWindow Objects ... 577

6.2.1 Working in the DataWindow painter .. 578
6.2.1.1 Understanding the DataWindow painter Design view 579
6.2.1.2 Using the DataWindow painter toolbars 581
6.2.1.3 Using the Properties view in the DataWindow painter 582
6.2.1.4 Selecting controls in the DataWindow painter 583
6.2.1.5 Resizing bands in the DataWindow painter Design view 584
6.2.1.6 Using zoom in the DataWindow painter 584
6.2.1.7 Undoing changes in the DataWindow painter 585

6.2.2 Using the Preview view of a DataWindow object 585
6.2.2.1 Retrieving data .. 585
6.2.2.2 Modifying data ... 587
6.2.2.3 Viewing row information .. 588
6.2.2.4 Importing data into a DataWindow object 589
6.2.2.5 Using print preview .. 589
6.2.2.6 Printing data .. 591
6.2.2.7 Working in a grid DataWindow object 592

6.2.3 Saving data in an external file ... 594
6.2.3.1 Saving the data as PDF .. 594
6.2.3.2 Saving the data in HTML Table format 602
6.2.3.3 Working with PSR files .. 603

6.2.4 Modifying general DataWindow object properties 604
6.2.4.1 Changing the DataWindow object style 604
6.2.4.2 Setting colors in a DataWindow object 605
6.2.4.3 Setting gradients and background pictures in a
DataWindow object .. 605
6.2.4.4 Setting transparency properties for a DataWindow object ... 606
6.2.4.5 Specifying properties of a grid DataWindow object 607
6.2.4.6 Specifying pointers for a DataWindow object 608
6.2.4.7 Defining print specifications for a DataWindow object 609
6.2.4.8 Modifying text in a DataWindow object 612
6.2.4.9 Defining the tab order in a DataWindow object 613
6.2.4.10 Naming controls in a DataWindow object 614

6.2.4.11 Using borders in a DataWindow object 614
6.2.4.12 Specifying variable-height bands in a DataWindow
object .. 615
6.2.4.13 Modifying the data source of a DataWindow object 616

6.2.5 Storing data in a DataWindow object using the Data view 617
6.2.5.1 What happens at runtime .. 619

6.2.6 Retrieving data ... 619
6.2.6.1 Prompting for retrieval criteria in a DataWindow object 619
6.2.6.2 Retrieving rows as needed .. 620
6.2.6.3 Saving retrieved rows to disk .. 621

6.3 Working with Controls in DataWindow Objects 621
6.3.1 Adding controls to a DataWindow object 621

6.3.1.1 Adding columns to a DataWindow object 621
6.3.1.2 Adding text to a DataWindow object 622
6.3.1.3 Adding drawing controls to a DataWindow object 622
6.3.1.4 Adding a group box to a DataWindow object 623
6.3.1.5 Adding pictures to a DataWindow object 624
6.3.1.6 Adding computed fields to a DataWindow object 624
6.3.1.7 Adding buttons to a DataWindow object 629
6.3.1.8 Adding graphs to a DataWindow object 632
6.3.1.9 Adding InkPicture controls to a DataWindow object 633
6.3.1.10 Adding OLE controls to a DataWindow object 633
6.3.1.11 Adding reports to a DataWindow object 633
6.3.1.12 Adding table blob controls to a DataWindow object 633
6.3.1.13 Adding tooltips to a DataWindow control 634

6.3.2 Reorganizing controls in a DataWindow object 634
6.3.2.1 Displaying boundaries for controls in a DataWindow
object .. 634
6.3.2.2 Using the grid and the ruler in a DataWindow object 635
6.3.2.3 Deleting controls in a DataWindow object 635
6.3.2.4 Moving controls in a DataWindow object 635
6.3.2.5 Copying controls in a DataWindow object 636
6.3.2.6 Resizing controls in a DataWindow object 636
6.3.2.7 Aligning controls in a DataWindow object 637
6.3.2.8 Equalizing the space between controls in a DataWindow
object .. 637
6.3.2.9 Equalizing the size of controls in a DataWindow object 638
6.3.2.10 Sliding controls to remove blank space in a DataWindow
object .. 638

6.3.3 Positioning controls in a DataWindow object 639
6.3.4 Rotating controls in a DataWindow object 640

6.4 Controlling Updates in DataWindow objects .. 642
6.4.1 About controlling updates .. 642

6.4.1.1 What you can do ... 643
6.4.2 Specifying the table to update ... 644
6.4.3 Specifying the unique key columns ... 644
6.4.4 Specifying an identity column .. 644
6.4.5 Specifying updatable columns ... 645

6.4.6 Specifying the WHERE clause for update/delete 645
6.4.7 Specifying update when key is modified 647
6.4.8 Using stored procedures to update the database 647
6.4.9 Using a Web service to update the database (Obsolete) 649

6.5 Displaying and Validating Data .. 653
6.5.1 About displaying and validating data ... 653

6.5.1.1 Presenting the data ... 653
6.5.1.2 Validating data ... 654

6.5.2 About display formats .. 655
6.5.3 Working with display formats ... 655

6.5.3.1 Working with display formats in the Database painter 656
6.5.3.2 Working with display formats in the DataWindow painter 657

6.5.4 Defining display formats .. 658
6.5.4.1 Number display formats .. 660
6.5.4.2 String display formats .. 662
6.5.4.3 Date display formats .. 662
6.5.4.4 Time display formats ... 663

6.5.5 About edit styles .. 665
6.5.6 Working with edit styles ... 666

6.5.6.1 Working with edit styles in the Database painter 667
6.5.6.2 Working with edit styles in the DataWindow painter 668

6.5.7 Defining edit styles .. 668
6.5.7.1 The Edit edit style ... 668
6.5.7.2 The DropDownListBox edit style ... 669
6.5.7.3 The CheckBox edit style ... 670
6.5.7.4 The RadioButtons edit style .. 671
6.5.7.5 The EditMask edit style ... 671
6.5.7.6 The DropDownDataWindow edit style 675
6.5.7.7 The RichText edit style .. 677
6.5.7.8 The InkEdit edit style ... 678

6.5.8 Defining a code table .. 678
6.5.8.1 How code tables are implemented 679
6.5.8.2 How code tables are processed .. 680
6.5.8.3 Validating user input .. 680

6.5.9 About validation rules .. 681
6.5.9.1 Understanding validation rules .. 681

6.5.10 Working with validation rules ... 682
6.5.11 Defining validation rules .. 682

6.5.11.1 Defining a validation rule in the Database painter 683
6.5.11.2 Defining a validation rule in the DataWindow painter 686

6.5.12 How to maintain extended attributes ... 687
6.6 Filtering, Sorting, and Grouping Rows ... 688

6.6.1 Filtering rows ... 688
6.6.2 Sorting rows ... 690

6.6.2.1 Suppressing repeating values ... 691
6.6.3 Grouping rows ... 693

6.6.3.1 Using the Group presentation style 695
6.6.3.2 Defining groups in an existing DataWindow object 699

6.7 Highlighting Information in DataWindow Objects 706
6.7.1 Highlighting information ... 706

6.7.1.1 Modifying properties when designing 707
6.7.1.2 Modifying properties at runtime ... 707

6.7.2 Modifying properties conditionally at runtime 710
6.7.2.1 Example 1: creating a gray bar effect 712
6.7.2.2 Example 2: rotating controls .. 713
6.7.2.3 Example 3: highlighting rows of data 714
6.7.2.4 Example 4: changing the size and location of controls 715

6.7.3 Supplying property values ... 717
6.7.3.1 Background.Color .. 718
6.7.3.2 Border .. 719
6.7.3.3 Brush.Color .. 720
6.7.3.4 Brush.Hatch ... 721
6.7.3.5 Color .. 722
6.7.3.6 Font.Escapement (for rotating controls) 723
6.7.3.7 Font.Height .. 724
6.7.3.8 Font.Italic ... 725
6.7.3.9 Font.Strikethrough ... 726
6.7.3.10 Font.Underline ... 727
6.7.3.11 Font.Weight ... 727
6.7.3.12 Format ... 728
6.7.3.13 Height .. 729
6.7.3.14 Pen.Color ... 729
6.7.3.15 Pen.Style ... 729
6.7.3.16 Pen.Width .. 731
6.7.3.17 Pointer ... 732
6.7.3.18 Protect ... 732
6.7.3.19 Timer_Interval .. 733
6.7.3.20 Visible .. 733
6.7.3.21 Width .. 734
6.7.3.22 X .. 734
6.7.3.23 X1, X2 .. 734
6.7.3.24 Y .. 735
6.7.3.25 Y1, Y2 .. 735

6.7.4 Specifying colors .. 736
6.8 Using Nested Reports ... 737

6.8.1 About nested reports ... 737
6.8.2 Creating a report using the Composite presentation style 741
6.8.3 Placing a nested report in another report 742

6.8.3.1 Placing a related nested report in another report 743
6.8.3.2 Placing an unrelated nested report in another report 746

6.8.4 Working with nested reports .. 746
6.8.4.1 Adjusting nested report width and height 746
6.8.4.2 Changing a nested report from one report to another 747
6.8.4.3 Modifying the definition of a nested report 747
6.8.4.4 Adding another nested report to a composite report 748

6.8.4.5 Supplying retrieval arguments to relate a nested report to
its base report .. 748
6.8.4.6 Specifying criteria to relate a nested report to its base
report .. 750
6.8.4.7 Using options for nested reports ... 751

6.9 Working with Graphs ... 752
6.9.1 About graphs ... 752

6.9.1.1 Parts of a graph .. 752
6.9.1.2 Types of graphs .. 754
6.9.1.3 Using graphs in applications ... 758

6.9.2 Using graphs in DataWindow objects .. 759
6.9.2.1 Placing a graph in a DataWindow object 759
6.9.2.2 Using the graph's Properties view 760
6.9.2.3 Changing a graph's position and size 761
6.9.2.4 Associating data with a graph ... 762

6.9.3 Using the Graph presentation style ... 772
6.9.4 Defining a graph's properties ... 773

6.9.4.1 Using the General page in the graph's Properties view 773
6.9.4.2 Sorting data for series and categories 775
6.9.4.3 Specifying text properties for titles, labels, axes, and
legends ... 775
6.9.4.4 Specifying overlap and spacing ... 779
6.9.4.5 Specifying axis properties .. 779
6.9.4.6 Specifying a pointer ... 782

6.9.5 Using graphs in windows ... 782
6.10 Working with Crosstabs ... 783

6.10.1 About crosstabs ... 783
6.10.1.1 Two types of crosstabs ... 785

6.10.2 Creating crosstabs ... 786
6.10.3 Associating data with a crosstab ... 787

6.10.3.1 Specifying the information ... 788
6.10.3.2 Viewing the crosstab ... 790
6.10.3.3 Specifying more than one row or column 792

6.10.4 Previewing crosstabs ... 792
6.10.5 Enhancing crosstabs ... 793

6.10.5.1 Specifying basic properties .. 793
6.10.5.2 Modifying the data associated with the crosstab 794
6.10.5.3 Changing the names used for the columns and rows 794
6.10.5.4 Defining summary statistics ... 795
6.10.5.5 Cross-tabulating ranges of values 798
6.10.5.6 Creating static crosstabs ... 800
6.10.5.7 Using property conditional expressions 802

6.11 Working with TreeViews .. 803
6.11.1 TreeView presentation style .. 803
6.11.2 Creating a new TreeView DataWindow 804

6.11.2.1 TreeView creation process .. 804
6.11.2.2 Creating a TreeView DataWindow 805

6.11.3 Adding and deleting TreeView levels .. 809

6.11.4 Selecting a tree node and navigating the tree 810
6.11.5 Sorting rows in a TreeView DataWindow 811
6.11.6 TreeView DataWindow Design view .. 812
6.11.7 Setting properties for the TreeView DataWindow 813

6.11.7.1 Setting general TreeView properties 813
6.11.7.2 Setting TreeView level properties 815
6.11.7.3 Setting detail band properties .. 817

6.11.8 TreeView DataWindow examples .. 817
6.11.8.1 Data Explorer sample .. 818
6.11.8.2 Data Linker sample ... 820

6.12 Exporting and Importing XML Data ... 823
6.12.1 About XML ... 824

6.12.1.1 Valid and well-formed XML documents 824
6.12.1.2 XML syntax .. 825
6.12.1.3 XML parsing .. 826

6.12.2 XML support in the DataWindow painter 826
6.12.3 The Export/Import Template view for XML 827

6.12.3.1 Creating templates .. 830
6.12.3.2 Saving templates ... 831
6.12.3.3 Header and Detail sections ... 832

6.12.4 Editing XML templates ... 835
6.12.4.1 XML declaration ... 836
6.12.4.2 Document type declaration .. 836
6.12.4.3 Root element ... 837
6.12.4.4 Controls ... 838
6.12.4.5 DataWindow expressions .. 838
6.12.4.6 Attributes .. 838
6.12.4.7 Composite and nested reports .. 839
6.12.4.8 CDATA sections .. 840
6.12.4.9 Comments ... 841
6.12.4.10 Processing instructions .. 841

6.12.5 Exporting to XML ... 841
6.12.5.1 Setting data export properties ... 842
6.12.5.2 Selecting templates at runtime .. 849

6.12.6 Importing XML ... 849
6.12.6.1 Importing with a template .. 850
6.12.6.2 Default data import .. 854
6.12.6.3 Tracing import .. 857

6.13 Working with Rich Text .. 859
6.13.1 About rich text ... 859
6.13.2 Using the RichText presentation style ... 859

6.13.2.1 Creating the DataWindow object 860
6.13.2.2 Formatting for RichText objects within the DataWindow
object .. 864
6.13.2.3 Previewing and printing ... 868

6.13.3 Using the RichTextEdit control .. 869
6.13.4 Formatting keys and toolbars .. 871

6.14 Using OLE in a DataWindow Object ... 873

6.14.1 About using OLE in DataWindow objects 873
6.14.2 OLE objects and the OLE presentation style 875

6.14.2.1 Adding an OLE object to a DataWindow object 876
6.14.2.2 Using the OLE presentation style 876
6.14.2.3 Defining the OLE object .. 877
6.14.2.4 Specifying data for the OLE object 880
6.14.2.5 Previewing the DataWindow object 883
6.14.2.6 Activating and editing the OLE object 884
6.14.2.7 Changing the object in the control 884

6.14.3 Using OLE columns in a DataWindow object 885
6.14.3.1 Creating an OLE column ... 885

7 Running Your Application .. 891
7.1 Debugging and Running Applications .. 891

7.1.1 Overview of debugging and running applications 891
7.1.2 Debugging an application .. 891

7.1.2.1 Starting the debugger .. 892
7.1.2.2 Setting breakpoints .. 894
7.1.2.3 Running in debug mode .. 897
7.1.2.4 Examining an application at a breakpoint 898
7.1.2.5 Stepping through an application .. 905
7.1.2.6 Debugging windows opened as local variables 907
7.1.2.7 Just-in-time debugging .. 907
7.1.2.8 Using the DEBUG preprocessor symbol 908
7.1.2.9 Breaking into the debugger when an exception is thrown 910

7.1.3 Running an application .. 911
7.1.3.1 Running the application ... 911
7.1.3.2 Handling errors at runtime ... 911

7.2 Tracing and Profiling Applications ... 917
7.2.1 About tracing and profiling an application 917
7.2.2 Collecting trace information ... 918

7.2.2.1 Tracing an entire application in PowerBuilder 920
7.2.2.2 Using a window ... 920
7.2.2.3 Collecting trace information using PowerScript functions 925

7.2.3 Analyzing trace information using profiling tools 927
7.2.3.1 Profiling Class View ... 927
7.2.3.2 Profiling Routine View ... 929
7.2.3.3 Profiling Trace View .. 931
7.2.3.4 Setting call aggregation preferences 932

7.2.4 Analyzing trace information programmatically 933
7.2.4.1 Analyzing performance with a call graph model 933
7.2.4.2 Analyzing structure and flow using a trace tree model 936
7.2.4.3 Accessing trace data directly ... 938

7.2.5 Generating a trace file without timing information 941
7.3 Creating Executables and Components .. 941

7.3.1 About building PowerBuilder targets ... 942
7.3.2 Using the Project painter ... 942

7.3.2.1 Creating a project .. 943
7.3.3 Using dynamic libraries ... 944

7.3.4 Attaching or embedding manifest files ... 946
7.3.5 Distributing resources .. 946

7.3.5.1 Distributing resources separately .. 947
7.3.5.2 Using PowerBuilder resource files 947
7.3.5.3 What happens at runtime .. 948

7.3.6 Creating an executable application ... 948
7.3.6.1 Creating an executable app project 948
7.3.6.2 Defining an executable app project 948
7.3.6.3 Tracing execution .. 952
7.3.6.4 Building an executable file and dynamic libraries 953

7.3.7 Creating a PowerClient project .. 957
7.3.7.1 Configuring a deployment server .. 957
7.3.7.2 Uploading the app launcher and runtime files 959
7.3.7.3 Creating a PowerClient project .. 966
7.3.7.4 Defining a PowerClient project .. 966
7.3.7.5 Building and deploying a PowerClient project 976
7.3.7.6 Running the PowerClient project ... 976
7.3.7.7 Packaging the PowerClient project 979
7.3.7.8 Undeploying the PowerClient project 980
7.3.7.9 Uninstalling the PowerClient project 981
7.3.7.10 Tutorial: deploying your first PowerClient project 983

7.3.8 Building proxies and .NET targets ... 988
8 Appendixes ... 989

8.1 Appendix A. The Extended Attribute System Tables 989
8.1.1 About the extended attribute system tables 989
8.1.2 The extended attribute system tables ... 989
8.1.3 Edit style types for the PBCatEdt table ... 992

8.1.3.1 CheckBox edit style (code 85) .. 992
8.1.3.2 RadioButton edit style (code 86) ... 993
8.1.3.3 DropDownListBox edit style (code 87) 994
8.1.3.4 DropDownDataWindow edit style (code 88) 995
8.1.3.5 Edit edit style (code 89) .. 996
8.1.3.6 Edit Mask edit style (code 90) ... 998

8.2 Appendix B. PowerBuilder Compiler .. 1000
8.2.1 Installing PowerBuilder Compiler ... 1000

8.2.1.1 Software requirements ... 1000
8.2.1.2 System requirements ... 1000

8.2.2 About PBC190.exe .. 1001
8.2.2.1 What is PBC190.exe ... 1001
8.2.2.2 Compiling/Deploying PowerBuilder Projects Using
PBC190.exe ... 1001
8.2.2.3 PBC190.exe supported parameters 1001

8.3 Appendix C. The OrcaScript Language ... 1005
8.3.1 About OrcaScript ... 1005
8.3.2 OrcaScript Commands .. 1008
8.3.3 Usage notes for OrcaScript commands and parameters 1013
8.3.4 Usage notes for OrcaScript commands with SVN/Git 1019

Index .. 1021

The PowerBuilder Environment

Page 20

1 The PowerBuilder Environment
This part describes the basics of using PowerBuilder: understanding and customizing the
development environment, creating workspaces and targets, and using source control.

1.1 Working with PowerBuilder
About this chapter

This chapter describes the basics of working in the PowerBuilder development environment.

Before you begin

If you are new to PowerBuilder, doing the tutorial in Getting Started will help you become
familiar with the development environment. The tutorial guides you through the process of
building a PowerBuilder application.

1.1.1 About PowerBuilder

PowerBuilder is an object-centric graphical application development environment. Using
PowerBuilder, you can easily develop many types of applications and components.
PowerBuilder provides all the tools you need to build enterprise systems, such as order entry,
accounting, and manufacturing systems.

Two-tier applications

PowerBuilder applications can be traditional graphical client/server two-tier applications that
access server databases. A traditional client/server application is a collection of windows that
contain controls that users can interact with. You can use standard controls such as buttons,
check boxes, drop-down lists, and edit controls as well as special PowerBuilder controls that
make your applications easy to develop and easy to use.

Multitier applications

You can also build multitier applications with PowerBuilder. A multitier application usually
has a client application that requests services from a server application or component. For
example, your client application could request services from a PowerBuilder component on
an application server. The server component often requests services from a server database
and/or other server components.

Web applications

PowerBuilder applications can also be Web based. You can create a new Web-based
application for the Internet or Intranet, or adapt or extend an existing PowerBuilder
application for the Web.

1.1.2 Concepts and terms

This section discusses some basic concepts and terms you need to be familiar with before you
start using PowerBuilder to develop applications and components.

1.1.2.1 Workspaces and targets

In PowerBuilder, you work with one or more targets in a workspace. You can add as many
targets to the workspace as you want, open and edit objects in multiple targets, and build and
deploy multiple targets at once.

The PowerBuilder Environment

Page 21

A PowerBuilder target can be one of several types:

• Application target

A client/server or multitier executable application. Most of this book is concerned with
building application targets. See Working with Targets.

• .NET target (obsolete)

.NET assembly and .NET Web service is considered to be obsolete. The ability to use this
technique has been retained for backward compatibility.

You may consider using the Section 2.41, “HTTPClient object” object as a replacement.

All of these targets can use PowerBuilder's built-in language, PowerScript.

You choose targets in the New dialog box. Here are the Target types that are available in
PowerBuilder:

Figure 1.1:

For more information about creating a workspace and targets, see Creating and opening
workspaces and Creating a target.

1.1.2.2 Objects

Your application is a collection of objects.For most targets, PowerBuilder provides many
types of objects, including graphical objects such as windows, menus, and buttons, and
nonvisual objects such as datastore, exception, and timing objects.

The PowerBuilder Environment

Page 22

As you work in your application, you create new objects and open existing objects to
continue work on their development.

For more information about creating, opening, and editing objects, see Working with objects.

1.1.2.3 DataWindow objects

The applications you build are often centered around your organization's data. With
PowerBuilder you can define DataWindow objects to retrieve, display, and manipulate data.
For more information about DataWindow objects, see Defining DataWindow Objects.

1.1.2.4 PowerBuilder libraries

As you work in an application, component, or .NET target, the objects you create are stored
in one or more libraries (PBL files) associated with the application. When you run your
application, PowerBuilder retrieves the objects from the library.

PowerBuilder provides a Library painter for managing your libraries. For information about
creating a new library and working with libraries in the Library painter, see Working with
Libraries.

1.1.2.5 Painters and editors

Some of the editors you use to edit objects are called painters. For example, you build a
window in the Window painter. There you define the properties of the window, add controls
such as buttons and labels, and code the window and its controls to work as your application
requires.

PowerBuilder provides painters for windows, menus, DataWindow objects, visual and
nonvisual user-defined objects, functions, structures, databases, data pipelines, and the
application itself. For each of these object types, there is also a Source editor in which you
can modify code directly. See Working in painters and Using the Source editor.

There is also a file editor you can use to edit any file without leaving the development
environment. See Using the file editor.

1.1.2.6 Events and scripts

Applications are event-driven: users control the flow of the application by the actions they
take. When a user clicks a button, chooses an item from a menu, or enters data into a text
box, an event is triggered. You write scripts that specify the processing that should happen
when the event is triggered.

For example, buttons have a Clicked event. You write a script for a button's Clicked event
that specifies what happens when the user clicks the button. Similarly, edit controls have a
Modified event that is triggered each time the user changes a value in the control.

You write scripts using PowerScript, the PowerBuilder language, in a Script view in
the painter for the object you are working on. Scripts consist of PowerScript functions,
expressions, and statements that perform processing in response to an event. The script for a
button's Clicked event might retrieve and display information from the database; the script for
an edit control's Modified event might evaluate the data and perform processing based on the
data.

The PowerBuilder Environment

Page 23

Scripts can also trigger events. For example, the script for a button's Clicked event might
open another window, which triggers the Open event in that window.

1.1.2.7 Functions

PowerScript provides a rich assortment of built-in functions you use to act upon the objects
and controls in your application. There are functions to open a window, close a window,
enable a button, retrieve data, update a database, and so on.

You can also build your own functions to define processing unique to your application.

1.1.2.8 Properties

All the objects and controls in an application or component have properties, many of which
you set as you develop your application. For example, you specify a label for a button by
setting its text property. You can set these properties in painters or set them and modify them
dynamically in scripts.

1.1.2.9 Source control

If you are working with other developers on a large application, you can make sure you
are working with the latest version of a component or object by synchronizing the copy
of the object you are working on with the last version of the object checked into a source
control system. PowerBuilder provides native interface options of SVN and Git for directly
performing source control operations and functions in the PowerBuilder IDE. For more
information, see Using Source Control.

1.1.2.10 PowerBuilder extensions

You can use PowerBuilder extension objects in an application in the same way as you would
built-in PowerBuilder objects, with one difference -- you must import the file that contains
the definition of the extension into a library in the target. Some extensions are provided with
PowerBuilder, but you can also obtain them from third parties or build your own.

For more information about the extensions provided with PowerBuilder, see Part I,
“PowerBuilder Extension Reference”. For how to build your own extensions, see Part I,
“PowerBuilder Native Interface Programmers Guide and Reference”.

1.1.3 The PowerBuilder environment

When you start PowerBuilder for the first time, the Welcome to PowerBuilder dialog box lets
you create a new workspace with or without targets:

The PowerBuilder Environment

Page 24

Figure 1.2:

When PowerBuilder starts, it opens in a window that contains a menu bar and the PowerBar
at the top and the System Tree and Clip window on the left. The remaining area will display
the painters and editors you open when you start working with objects.

The PowerBuilder Environment

Page 25

Figure 1.3:

1.1.3.1 The System Tree

The System Tree provides an active resource of programming information you use while
developing targets. It lets you not only get information, but also drag objects into painter
views (such as the Script view or Layout view) for immediate use.

The System Tree displays by default when you start PowerBuilder for the first time. You
can hide or display the System Tree using the System Tree button on the PowerBar or by
selecting Window>System Tree.

Using the Workspace tab page

The System Tree has a single tab page that provides a view of the current workspace. The
Workspace tab page displays the current workspace and all its targets. Most targets display
the library list for the target and all the objects in each PBL. The Workspace tab page in the
System Tree works like a tree view in the Library painter, but you can keep it open all the
time to serve as the control center of the development environment.

You can set the root of the Workspace page to your computer's root directory, the current
selection, or any directory or library, as well as to the current workspace.

Working with targets

To see the pop-up menu that lets you perform operations on a target such as search,
build, and migrate, you must set the root of the System Tree to the current workspace.

The PowerBuilder Environment

Page 26

The following illustration shows a workspace with two targets.

Figure 1.4:

Current target

The orders target is bold, indicating it is the current target, which means that it is the default
target used in the New dialog box and for Run and Debug. The current target is set whenever
you:

• Invoke an action in the System Tree, Library painter, or main menu that affects a target or
a child of a target, such as Build, Migrate, Run, or Debug. Some actions, such as Search
and Migrate, display a dialog box. If you cancel the action by clicking the Cancel button in
the dialog box, the current target is not changed.

• Open an object painter.

• Change the active object painter.

If you prefer to set the current target explicitly using the Set as Current Target pop-up menu
item for the target in the System Tree or the File>Set Current Target menu item, clear the
Automatically Set Current Target check box on the Workspaces tab page in the System
Options dialog box. To open the System Options dialog box, select Tools>System Options
from the main menu.

Actions in the System Tree

You can use the Workspace page as the hub of your PowerBuilder session. Pop-up menus
let you build and deploy targets and open and edit any object. Double-clicking an event or
function in the System Tree opens its script in the Script view. Events with scripts have a
different icon and are listed before events without scripts.

The PowerBuilder Environment

Page 27

The following table lists the actions you can take on each item that displays on the
Workspace page. You can also set properties for each item, choose which object types
display in the tree view, change the root of the Workspace page, and reset the root to the
current workspace.

Table 1.1: Action items for objects in the System Tree

Item Menu action items

Workspace New (opens New dialog box), Add Target, Open Workspace, Close,
Incremental Build, Full Build, Deploy, Run, Debug, Add to Source
Control, Show, Open Containing Folder, Properties.

Target New, Search, Set as Current Target, Remove Target, Library List,
Migrate, Incremental Build, Full Build, Deploy, Run, Debug, Show, Open
Containing Folder, Properties.

PBL Search, Delete, Remove Library, Import, Import PB Extension, Optimize,
Build Runtime Library, Print Directory, Show, Open Containing Folder,
Properties.

PBD Search, Delete, Remove Library, Print Directory, Show, Open Containing
Folder, Properties

PowerBuilder
object

Edit, Edit Source, Search, Inherit from, Run/Preview, Copy, Move, Delete,
Regenerate, Export, Print, Properties.

Edit Source is not available for project and proxy objects. Inherit from
and Run/Preview are available only for some object types. Source control
items are available only if source control information is associated with the
target.

Functions and
events

Edit, Properties.

The Properties dialog box shows the prototype of the function or event and
its "signature." The signature is a string that represents the argument types,
return types, and passing style. You use this string when you write a PBNI
extension that calls the function or event. For more information, see Part I,
“PowerBuilder Native Interface Programmers Guide and Reference”.

1.1.3.2 The PowerBar

Like the System Tree, the PowerBar provides a main control point for building PowerBuilder
applications and deploying the application to Web/Mobile. From the PowerBar1 you can
create new objects and applications, open existing objects, and debug and run the current
application; and from the PowerBar4 you can configure the application and servers, and
deploy the application to Web/Mobile.

PowerBar4 (also called PowerServer Toolkit) is provided only in the CloudPro edition of
PowerBuilder 2017 or later. For more information about PowerBar4 (PowerServer Toolkit),
refer to the PowerServer Help.

Figure 1.5:

The PowerBuilder Environment

Page 28

While you are getting used to using PowerBuilder, you can display a label on each button in a
toolbar to remind you of its purpose. To do so, right-click any toolbar button and select Show
Text from the pop-up menu.

The following table lists the buttons from left to right on the PowerBar1.

Figure 1.6:

Table 1.2: PowerBar1 buttons and their uses

PowerBar1
button

What you can use it for

New Create new objects.

Inherit Create new windows, user objects, and menus by inheriting from an
existing object.

Open Open existing objects.

Run/Preview Run windows or preview DataWindows.

System Tree Work in the System Tree window, which can serve as the hub of your
development session. For more information see The System Tree.

Output Window Examine the output of a variety of operations (migration, builds,
deployment, project execution, object saves, and searches). See The
Output window.

Next Error,
Previous Error

Navigate through the Output window.

To-Do List Keep track of development tasks you need to do for the current
application and use links to get you quickly to the place where you
complete the tasks.

Browser View information about system objects and objects in your application,
such as their properties, events, functions, and global variables, and
copy, export, or print the information.

Clip Window Store objects or code you use frequently. You can drag or copy items
to the Clip window to be saved and then drag or copy these items to
the appropriate painter view when you want to use them. See The Clip
window.

Library Manage your libraries using the Library painter.

DB Profile Define and use named sets of parameters to connect to a particular
database.

Database Maintain databases and database tables, control user access to databases,
and manipulate data in databases using the Database painter.

Edit Edit text files (such as source, resource, and initialization files) in the
file editor.

Incremental Build
Workspace

Update all the targets and objects in the workspace that have changed
since the last build.

The PowerBuilder Environment

Page 29

PowerBar1
button

What you can use it for

Full Build
Workspace

Update all the targets and objects in the workspace.

Deploy
Workspace

Deploy all the targets in the workspace.

Skip, Stop Interrupt a build, deploy, or search operation. When a series of
operations is in progress, such as a full deploy of the workspace, the
Skip button lets you jump to the next operation. The Stop button cancels
all operations.

Debug Debug the current target. You can set breakpoints and watch
expressions, step through your code, examine and change variables
during execution, and view the call stack and objects in memory.

Select & Debug Select a target and open the Debugger.

Run Run the current target just as your users would run it. For standard
PowerBuilder application targets, the application runs in the
development environment.

For .NET targets, you must deploy the target before you can run it for
the first time. If you have made changes since you last deployed, you
must redeploy to see those changes when you click the Run button.

Select & Run Select a target and run it.

Exit Close PowerBuilder.

Customizing the PowerBar

You can customize the PowerBar. For example, you can choose whether to move the
PowerBar around, add buttons for operations you perform frequently, and display text in the
buttons.

For more information, see Using toolbars.

About PowerTips

In the PowerBar, when you leave the mouse pointer over a button for a second or two,
PowerBuilder displays a brief description of the button, called a PowerTip.PowerTips display
in PowerBuilder wherever there are toolbar buttons.

1.1.3.3 The Clip window

You can store code fragments you use frequently in the Clip window. You copy text to the
Clip window to save it and then drag or copy this text to the appropriate Script view or editor
when you want to use it.

Using the Clip window

The Clip window displays a list of named clips, a preview of the information contained in the
clip, and a description. It provides buttons to move Clip window contents to the clipboard,
copy clipboard contents to the Clip window, rename a clip, delete a clip, and modify the clip's
description. Clips you save in one workspace are available in all your workspaces; you might
want to use a naming convention that reflects this.

The PowerBuilder Environment

Page 30

For example, you might use standard error-checking code when you use the
ConnectToServer function to connect to a server. To copy it to the clipboard, highlight the
code in a Script view and select Copy from the pop-up menu. In the Clip window, click the
Paste icon, and name the clip. The Clip Description dialog box opens so that you can enter
a description. To change the description later, select the clip's name and click the Modify
button.

You can drag the clip from the Clip window to any script in which you want to connect to a
server. You can also use the Copy icon to copy the clip to the clipboard.

You can hide or display the Clip window using the Clip Window button on the PowerBar or
by selecting Window>Clip.

Figure 1.7:

1.1.3.4 The Output window

The output of a variety of operations (migration, builds, deployment, project execution,
object saves, and searches) displays in the Output window.

When you start a new PowerBuilder session, the Output window has a single tab, Default.
New tabs are added as you perform operations.

Table 1.3:

Tab Contents

Default General information about the progress of full or incremental builds and
project deployment

Debug Debugger output, including the paths of assemblies loaded to
support .NET debugging

Errors Messages that indicate problems that prevent the build or deploy
process from completing successfully

Warnings Warning and informational messages

Search Output from search operations

Unsupported
features

For .NET targets, names and locations of features are not supported in
the target type

Using the Output window

The PowerBuilder Environment

Page 31

You can hide or display the Output window with the Output button on the PowerBar or by
selecting Window>Output.

You control operations in the window using the Skip, Stop, Next Error, and Previous Error
buttons or menu options.

Tabs display in the order in which they are created and remain in the Output window for the
rest of the PowerBuilder session. To clear the output from the tabs automatically when you
start a new build, make sure that the Automatically Clear Output Window check box on the
General page of the System Options dialog box is selected. You can also clear and close tabs
manually from the pop-up menu.

When appropriate, lines in the Output window provide links that invoke the correct painter
when you double-click on that line. The pop-up menu also provides the options Edit and Edit
Source to open an object in a painter or the Source editor. You can copy the contents of the
current tab to the Windows clipboard, save its contents to a text file, or print its contents to
your default printer.

Figure 1.8:

1.1.4 Creating and opening workspaces

Before you can begin any development in PowerBuilder, you need to create or open a
workspace.

1.1.4.1 Creating a workspace

To create a new workspace

1. Do one of the following:

• Click the New button in the PowerBar.

The PowerBuilder Environment

Page 32

• Select File>New from the menu bar.

• In the Workspace tab of the System Tree, right-click the workspace name and select
New from the pop-up menu.

The New dialog box opens.

2. On the Workspace tab, select Workspace.

The New Workspace dialog box displays.

3. Enter a name for the workspace (.pbw) you want to create and click Save.

The workspace is created and the name of the new workspace displays in the
PowerBuilder title bar.

1.1.4.2 Opening a workspace

The next time you start PowerBuilder, it opens without opening a workspace. You can
change this behavior by modifying options on the Workspaces page of the System Options
dialog box or on the Welcome to PowerBuilder screen. For example, you can have
PowerBuilder open not only the workspace you used most recently, but also the objects and
scripts you worked on last. See Starting PowerBuilder with an open workspace.

When PowerBuilder opens with an open workspace, it displays the name of the current
workspace in the title bar. The current workspace is also displayed in the Workspace tab page
in the System Tree. Although you can create multiple workspaces, you can have only one
workspace open at a time. You can change workspaces at any time.

To change workspaces

1. Do one of the following:

• Select File>Open Workspace from the menu bar.

• In the Workspace tab of the System Tree, right-click on the workspace name and
select Open Workspace from the pop-up menu.

The Open Workspace dialog box displays.

2. From the list, select the workspace you want to open.

The workspace is changed and the name of the new workspace displays in the
PowerBuilder title bar.

To change the workspace to a recent workspace

1. Select File>Recent Workspaces from the menu bar and select the workspace.

2. The workspace list includes the eight most recently accessed workspaces. You can
include up to 36 workspaces on the list by selecting Tools>System Options and
modifying the number of items.

The PowerBuilder Environment

Page 33

1.1.5 Using wizards

After you have created a workspace, you can add new or existing targets to it. The first step
in building a new PowerBuilder target is to use a Target wizard to create the new target and
name it.

1.1.5.1 About wizards

Wizards simplify the initial creation of applications and components. Using your
specifications, wizards can create multiple objects and in some cases automatically generate
complex code that you can modify as needed. The first page in most wizards explains what
the wizard builds. If you need help with the information you need to give the wizard, click
the Help [?] button in the upper right corner of the window and then click the field you need
help with, or click the field and press F1.

You start wizards from the New dialog box, but not all the icons in the New dialog box
represent wizards. On the Project tab page, there are two versions of some icons: one that
starts a wizard, and one that takes you straight to the Project painter.

Many wizards generate To-Do List entries to guide you through the rest of the development
of the application, object, or component. See Using the To-Do List.

1.1.6 Creating a target

When you create a target, you are prompted for the name and location of a Target (.pbt) file
and one or more other objects. Target files are text files that contain information about the
target.

To create a new target:

1. Do one of the following:

• Click the New button in the PowerBar.

• Select File>New from the menu bar.

• In the Workspace tab of the System Tree, highlight the workspace name and select
New from the pop-up menu.

The New dialog box opens.

2. On the Target tab page, select one of the Target wizards.

The PowerBuilder Environment

Page 34

Figure 1.9:

For more information about each type of Target wizard, see the sections following these
instructions.

3. Follow the instructions in the wizard, providing the information the wizard needs.

In most wizards, you can review your choices on the summary page that displays when
you have finished entering information. This is a summary page from the Template
Application wizard:

The PowerBuilder Environment

Page 35

Figure 1.10:

Be sure the Generate To-Do List check box is checked if you want the wizard to add
items to the To-Do List to guide and facilitate your development work.

4. When you are satisfied with your choices in the wizard, click Finish.

The objects are created in the target you specified. If you specified that items were to be
added to the To-Do List, you can see the items by clicking the To-Do List button in the
PowerBar.

As you develop the application, you can use linked items on the To-Do list to open an object
in the specific painter and view where you need to work. See Using the To-Do List.

1.1.7 Target types

This section describes each of the targets you can build.

1.1.7.1 Application targets

There are three wizards for creating application targets:

• Application Target wizard [35]

• Template Application Target wizard [36]

• Existing Application Target wizard [36]

Application Target wizard

The PowerBuilder Environment

Page 36

You use the Application Target wizard to create a new PowerScript-based Application object
and the library containing it. You must create any other objects you need from scratch.

Template Application Target wizard

You use the Template Application Target wizard to create a PowerScript-based application,
the library containing it, and a set of basic objects and scripts. If the application requires a
connection to a SQL database, the wizard automatically creates a Connection object.

In the Template Application wizard, you can choose one of two application types: MDI
Application and SDI Application.

MDI Application. The wizard automatically generates the shell and scripts for a basic
Multiple Document Interface (MDI) application that includes these objects:

• Application object

• Frame window

• Frame menu

• Base sheet window

• Sheet menu

• Sheet menu service object

• Sheet windows

• About window

• Toolbar window

• Connection service object (if database connection is needed)

• Project object (optional; can build later using a Project wizard)

You can run the MDI application immediately by clicking the Run button on the PowerBar.
You can open sheets, display an About box, and select items from menus. The To-Do List
can help you use the application as a starting point for continuing development of an MDI
application.

SDI Application. In the Template Application wizard, you can also choose to create
a Single Document Interface (SDI) application. An SDI application has only one main
window with a menu and an about window. If the application requires a connection to a SQL
database, the wizard automatically creates a Connection object.

For information about building MDI and SDI applications, see Section 3.1, “Building an
MDI Application” in Application Techniques.

Existing Application Target wizard

You use the Existing Application Target wizard to add a target to your workspace that uses
an application you built in an earlier version of PowerBuilder. After you complete the wizard,
the Migrate Application dialog box opens so you can migrate the application to this version.

The PowerBuilder Environment

Page 37

Before you upgrade. Always make a backup copy of all the PBLs used in an application
before you upgrade it to a new version of PowerBuilder.

You can use the Migration Assistant to check for obsolete syntax in your application before
you upgrade; then you can make changes in the earlier version of PowerBuilder and avoid
some migration errors. The Migration Assistant is particularly useful if you are upgrading
from PowerBuilder 6 or earlier. Open the Migration Assistant from the Tool tab of the New
dialog box, and press F1 if you need help in the wizard.

You should also check the release notes for the version of PowerBuilder that you are using to
find out if there are any migration issues that might affect you.

For more information about upgrading targets, see Upgrading targets.

For information about building standard PowerBuilder applications, see the rest of this book
and Part I, “Application Techniques”.

1.1.7.2 C# targets

In the PowerBuilder CloudPro Edition and Professional Edition, if you have installed and
activated PowerBuilder as well as SnapDevelop successfully, you can select the C# Projects
target in the PowerBuilder IDE; which will launch SnapDevelop IDE for you to create a C#
project.

For more information about these target wizards, refer to the SnapDevelop user guide.

1.1.7.3 .NET targets (Obsolete)

.NET Web Service target and .NET Assembly target are considered to be obsolete. The
ability to use these techniques have been retained for backward compatibility.

The .NET Web service and .NET assembly components do not support PowerScript
features added since version PowerBuilder 2017, including but not limited to CoderObject,
CrypterObject, CompressorObject, ExtractorObject, DotNetAssembly, DotNetObject,
HTTPClient, JSONGenerator, JSONPackage, JSONParser, OAuthClient, OAuthRequest,
ResourceResponse, RESTClient, RibbonBar, TokenRequest, TokenResponse, WebBrowser
etc.

You may consider using the Section 2.41, “HTTPClient object” object as a replacement for
the .NET Web service and .NET assembly components.

1.1.8 Managing workspaces

This section describes how to add and remove targets, and to specify properties in a
workspace.

1.1.8.1 Adding an existing target to a workspace

Although you can have only one workspace open at a time, you can add as many targets to
the workspace as you want and open and edit objects in multiple targets.

Working with targets that share PBLs

If a target shares PBLs with another target in the same workspace, as is the case when
you create a .NET target based on an existing application target, you should work on

The PowerBuilder Environment

Page 38

only one target at a time. Objects are always opened in the context of a specific target.
When you open an object in a PBL that is used in multiple targets, PowerBuilder
needs to set global properties for the specific target you are working on.

To add an existing target to a workspace

1. Right-click on the workspace displayed in the System Tree and select Add Target from
the pop-up menu.

The Add Target to Workspace dialog box displays.

2. Navigate to the directory containing the target you want to add and select the target
(.pbt) file.

3. Click Open.

The target is added to your current workspace.

1.1.8.2 Removing a target from a workspace

When you remove a target from the workspace, the .pbt file is not deleted.

To remove a target from a workspace

• Right-click on the target displayed in the System Tree and select Remove Target from
the pop-up menu.

1.1.8.3 Specifying workspace properties

You specify workspace properties in the Properties of Workspace dialog box.

To specify workspace properties

1. In the Workspace tab of the System Tree, select Properties from the pop-up menu for the
workspace.

2. Select the Targets, Deploy Preview, or Source Control tab page.

3. Specify the properties as described in the following sections.

Specifying target order. You can specify the targets and the order in which those
targets are built or deployed on the Targets tab page. All the targets identified with the
workspace are listed. Check the targets you want to include in the workspace build or
deploy. Use the arrows to change a target's position in the target order list.

Previewing deployment. You can verify the targets and the order in which those
targets' projects are built or deployed on the Deploy Preview tab page. To make
changes, you need to use the Targets page of the Workspace dialog box.

Specifying source control properties. You can specify which source control system,
if any, is used for this workspace, as well as other source control properties. For more
information, see Using Source Control.

The PowerBuilder Environment

Page 39

1.1.9 Building workspaces

You can build and deploy workspaces while you are working in PowerBuilder, and from a
command line.

1.1.9.1 In the development environment

In the development environment, you can specify how you want the targets in your
workspace to be built and deployed. Then you can build individual targets or all the targets in
the workspace. The following table summarizes where you set up build and deploy options,
and how you start builds.

Table 1.4: Building and deploying targets and workspaces

To do this Do this

Set deploy options for
most targets

Select Properties from the pop-up menu for the target and select
the Deploy tab. Check the box next to a project to build it when
you select Deploy from the target's pop-up menu. Use the arrows
to set the order in which projects are built.

Set options for each project in the target in the Project painter.

Set build and deploy
options for the workspace

Select Properties from the pop-up menu for the workspace and
select the order in which targets should be built. You can check
which projects and deploy configurations are currently selected
on the Deploy Preview page.

Build, migrate, or deploy
a selected target

Select Incremental Build, Full Build, Migrate, or Deploy from
the pop-up menu for the target. Deploy builds the projects in
the target in the order listed on the Deploy page of the target's
properties dialog box.

Build or deploy all the
targets in the workspace

Select Incremental Build, Full Build, or Deploy from the pop-
up menu for the workspace, from the Run menu, or from the
PowerBar.

1.1.9.2 From a command line

When you deploy or build a workspace from a command line, PowerBuilder starts, completes
the build, and exits as soon as the operation is completed. To retain a log file for the session,
you can send the contents of the Output window to a file. The following table shows
command-line options for building and deploying targets and workspaces.

Table 1.5: Command-line options for building and deploying

Option Description

/workspace workspacepath Open the workspace workspacepath

/target targetpath Open the target targetpath

/deploy Deploy the workspace and exit

/fullbuild Fully build the workspace and exit

/incrementalbuild Incrementally build the workspace and exit

The PowerBuilder Environment

Page 40

Option Description

/output outputpath Log the contents of the Output window to
outputpath

As with other command-line options, you need only use the initial letter or letters of
the option name as long as the option is uniquely identified. The deploy, fullbuild, and
incrementalbuild options can be used only with the workspace option. You need to create
projects and specify build and deploy options for the workspace in PowerBuilder before you
start a build from the command line. Deploy builds the projects in the target in the order
listed on the Deploy page of the target's properties dialog box.

Example

This example assumes that the location of the PowerBuilder executable file is in your system
path. It opens the workspace called CDShop, builds and deploys the targets in the workspace
according to your specifications in the workspace and target properties, records the content of
the Output window in the file D:\tmp\cdshop.out, and exits PowerBuilder:

pb190 /w D:\CDShop\CDShop.pbw /d /out D:\tmp\cdshop.out

The output from all the tab pages in the Output window and from all the projects is included
in the output file.

There are additional command-line options you can use to start PowerBuilder. See Using
command line arguments.

1.1.10 Working with tools

PowerBuilder provides a variety of tools to help you with your development work. There are
several ways to open tools:

• Click a button in the PowerBar for the tool you want

• Select the tool from the Tools menu

• Open the New dialog box and select the tool you want on the Tool tab page

The following table lists the tools available in the PowerBar. Some of these tools are also
listed on the Tools menu.

Table 1.6: Tools available in the PowerBar

Tool What you use the tool for

To-Do List Keep track of development tasks you need to do for the current target
and create links to get you quickly to the place where you need to
complete the tasks. For information, see Using the To-Do List.

Browser View information about system objects and objects in your target,
such as properties, events, functions, and global variables, and copy,
export, or print the information. For information, see Browsing the
class hierarchy.

Library painter Manage libraries, create a new library, build dynamic libraries, and
use source control.

The PowerBuilder Environment

Page 41

Tool What you use the tool for

Database profiles Define and use named sets of parameters to connect to a particular
database. For information, see Section 1.1.4, “Using database
profiles” in Connecting to Your Database.

Database painter For information, see Managing the Database.

File Editor Edit text files such as source, resource, and initialization files. For
information, see Using the file editor.

Debugger Set breakpoints and watch expressions, step through your application,
examine and change variables during execution, and view the call
stack and objects in memory. For information, see Debugging and
Running Applications.

The following table lists the tools you can launch from the Tool tab page in the New dialog
box. You can also launch the Library painter and File Editor from this dialog box.

Table 1.7: Additional tools available in the New dialog box

Tool What you use the tool for

Migration Assistant Scans PowerBuilder libraries and highlights usage of obsolete
functions and events. For information, see Section 2.2.9,
“Upgrading targets”.

DataWindow Syntax Helps construct the syntax required by Modify, Describe,
and SyntaxFromSQL functions. For information, see
Section 1.3.7, “Using DWSyntax” in DataWindow
Programmers Guide.

Profiling Class View,
Profiling Routine View, and
Profiling Trace View

Use trace information to create a profile of your application.
For information, see Tracing and Profiling Applications.

1.1.10.1 Using the To-Do List

The To-Do List displays a list of development tasks you need to do. You can create tasks for
any target in the workspace or for the workspace itself. A drop-down list at the top of the To-
Do List lets you choose which tasks to display. To open the To-Do List, click the To-Do List
button in the PowerBar or select Tools>To-Do List from the menu bar.

To-Do List entries

The entries on the To-Do list are created:

• Automatically by most PowerBuilder wizards to guide you through the continued
development of objects of different types that you will need to build the application or
component specified by the wizard

• At any time by you when you are working in a painter and want a link to a task that you
want to remember to complete

Some To-Do List entries created by wizards are hot-linked to get you quickly to the painter
(and the specific object you need) or to a wizard. You can also create an entry yourself that
links to the PowerBuilder painter where you are working so you can return to the object or

The PowerBuilder Environment

Page 42

script (event/function and line) you were working on when you made the entry. When you
move the pointer over entries on the To-Do list, the pointer changes to a hand when it is over
a linked entry.

For example, if you generate an MDI application with the Template Application wizard, one
of the linked entries on the To-Do List reminds you to register new sheets with the sheet
manager service, which is a nonvisual user object created by the wizard. Double-clicking this
entry automatically opens the Window painter and the Script view where you register new
sheets.

Figure 1.11:

Exporting and importing lists

You can export or import a To-Do List by selecting Export or Import from the pop-up menu.
Doing this is useful if you want to move from one computer to another or you need to work
with To-Do Lists as part of some other system such as a project management system.

Linked entries

If you import a list from another workspace or target, or from a previous version of
PowerBuilder, linked entries will display in the list but the links will not be active.

Working with entries on the To-Do List

The following table tells you how to work with entries on the To-Do List.

Table 1.8: Using the To-Do List

To Do this

See linked entries Move the pointer over the entries. A hand displays when the
entry you are over is linked.

Use a linked entry to get to
a painter or wizard

Double-click the linked entry or select it and then select Go To
Link from the pop-up menu.

The PowerBuilder Environment

Page 43

To Do this

Add an entry with no link Select Add from the pop-up menu.

Add a linked entry to a
painter that edits objects

With the painter open, select Add Linked from the pop-up
menu.

Add an entry for a specific
target

If the To-Do List is open, select the target from the drop-down
list at the top of the To-Do List and add the entry.

If the To-Do List is closed, select a target in the System Tree,
open the To-Do List, and add the entry.

Add an entry for the
workspace

Select Current Workspace from the drop-down list at the top
of the To-Do List and add the entry.

Change the list that displays Select a specific target or Current Workspace from the drop-
down list at the top of the To-Do List. To display tasks for all
targets and the workspace, select All Items.

Change an entry's position
on the list

Drag the entry to the position you want.

Edit or delete an entry Select Edit or Delete from the pop-up menu.

Delete checked entries or all
entries

Select Delete Checked or Delete All from the pop-up menu.

Check or uncheck an entry Click in the margin to the left of the entry or select an entry
and then select Check/Uncheck from the pop-up menu.

Export a To-Do List Select Export from the pop-up menu, name the To-Do List
text file, and click Save.

Import a To-Do List Select Import from the pop-up menu, navigate to an exported
To-Do List text file, and click Open.

1.1.10.2 Using the file editor

One of the tools on the PowerBar and Tools menu is a text editor that is always available.
Using the editor, you can view and modify text files (such as initialization files and tab-
separated files with data) without leaving PowerBuilder. Among the features the file editor
provides are find and replace, undo, importing and exporting text files, and dragging and
dropping text.

Setting file editing properties

The file editor has font properties and an indentation property that you can change to make
files easier to read. If you do not change any properties, files have black text on a white
background and a tab stop setting of 3 for indentation. Select Design>Options from the menu
bar to change the tab stop and font settings.

Editor properties apply elsewhere

When you set properties for the file editor, the settings also apply to the Function
painter, the Script view, the Source editor, the Interactive SQL view in the Database
painter, and the Debug window.

Dragging and dropping text

The PowerBuilder Environment

Page 44

To move text, simply select it, drag it to its new location, and drop it. To copy text, press the
Ctrl key while you drag and drop the text.

1.1.11 Using online help

PowerBuilder help contains the core PowerBuilder documents.

Accessing help

The following table lists the ways you can access help.

Table 1.9: Accessing online help

Approach What it does

Use the help menu on the
menu bar

Displays the help contents, the What's New in PowerBuilder
help, or help for the current painter.

In a wizard, click the help
button [?] in the upper right
corner of the window

The pointer displays with a question mark so you can get
context-sensitive help. Point and click in a field you need
help on.

In the Properties view in a
painter, select help from the
pop-up menu on any tab page

Displays a help topic from which you can get help on the
properties, events, and functions for the object or control
whose properties are displaying in the Properties view.

Add a help button to the
PowerBar and use it

Displays the help contents.

Press F1 Displays the help contents.

Press Shift+F1 in the Script
view or Function painter

Displays context-sensitive help about the function, event, or
keyword under the cursor.

Select Help from the pop-up
menu in the Browser

Displays help for the Browser or for the selected object,
control, or function.

Click the Help button in a
dialog box

Displays information about that dialog box.

1.1.12 Building an application

This section describes the basic steps you follow when building a traditional client/server
application. After completing step 1, you can define the objects used in your application in
any order as you need them.

To build a traditional client/server application:

1. Create the application (using a New wizard) and specify the library list for the
application.

When you use a Start wizard, you create the Application object, which is the entry point
into the application. The Application object contains the name of the application and
specifies the application-level scripts.

See Working with Targets and Part 3, "Coding Fundamentals."

2. Create windows.

The PowerBuilder Environment

Page 45

3. Place controls in the window and build scripts that specify the processing that will occur
when events are triggered.

See Working with Windows.

4. Create menus.

Menus in your windows can include a menu bar, drop-down menus, cascading menus,
and pop-up menus. You define the menu items and write scripts that execute when the
items are selected.

See Working with Menus and Toolbars.

5. Create user objects.

If you want to be able to reuse components that are placed in windows, define them as
user objects and save them in a library. Later, when you build a window, you can simply
place the user object on the window instead of having to redefine the components.

See Working with User Objects.

6. Create functions, structures, and events.

To support your scripts, you define functions to perform processing unique to your
application and structures to hold related pieces of data. You can also define your own
user events.

See Working with User-Defined Functions, Working with User Events, and Working
with Structures.

7. Create DataWindow objects.

Use these objects to retrieve data from the database, format and validate data, analyze
data through graphs and crosstabs, and update the database.

See Defining DataWindow Objects and the Part I, “DataWindow Programmers Guide”.

8. Test and debug your application.

You can run your application at any time. If you discover problems, you can debug your
application by setting breakpoints, stepping through your code, and looking at variable
values during execution. You can also create a trace file when you run your application
and use PowerBuilder's profiling tools to analyze the application's performance and
logical flow.

See Debugging and Running Applications, and Tracing and Profiling Applications.

9. Prepare an executable.

When your application is complete, you prepare an executable version to distribute to
your users.

See Creating Executables and Components.

Using other books

This book tells you how to use PowerBuilder painters and tools.

The PowerBuilder Environment

Page 46

For programming techniques for building applications and building clients and components
for application servers, see Part I, “Application Techniques”.

For programming techniques related to DataWindows, see the Part I, “DataWindow
Programmers Guide”.

1.2 Customizing PowerBuilder

About this chapter

This chapter describes how you can customize the PowerBuilder development environment
to suit your needs and get the most out of PowerBuilder's productivity features.

1.2.1 Starting PowerBuilder with an open workspace

When you start PowerBuilder, you might want to resume work on an existing project. You
can have PowerBuilder open the workspace that you used last, and even open the painters
you had open, with the last Script view you touched open at the code you were working on.

1.2.1.1 Using options in the development environment

There are three options on the Workspaces page of the System Options dialog box that you
can use to determine what displays when you start PowerBuilder.

To open the System Options dialog box

• Select Tools>System Options from the menu bar.

Opening just the workspace

If you want PowerBuilder to open the last workspace you used at startup, select the
Workspaces page and then check Reopen Workspace on Startup.

Opening the workspace, painters, and scripts

If you want PowerBuilder to open the last workspace you used and the painters and editors
you were using, check Reopen Workspace on Startup and Reload Painters When Opening
Workspace. When you open PowerBuilder, any painters and editors that were open when you
closed PowerBuilder are reloaded. If you edited a script before closing PowerBuilder, the
Script view is scrolled to show the last line you edited.

Opening with no workspace

If you want PowerBuilder to open without loading a workspace, clear Reopen Workspace on
Startup. If you want the painters and editors that were open when you last used a workspace
to be reloaded when you reopen it, clear Reopen Workspace on Startup and check Reload
Painters When Opening Workspace.

Displaying the Welcome dialog box

If you want to see the Welcome to PowerBuilder dialog box when you start PowerBuilder,
check Show Start Dialog at Startup with no Workspace and clear Reopen Workspace
on Startup. The Welcome to PowerBuilder dialog box is shown in The PowerBuilder
environment.

The PowerBuilder Environment

Page 47

1.2.1.2 Using a workspace file

Double-click a workspace file in Windows Explorer. Workspaces have a .pbw extension.
PowerBuilder starts with the workspace open.

1.2.1.3 Using command line arguments

You can log in PowerBuilder from a command line (or the Windows Run dialog box) if you
have an online license for PowerBuilder.

The syntax is:

directory\pb190.exe {/AC useraccount} {/PW password} {/RC value} {/ALS value} {/SOE
 value}

or

directory\pb190.exe {/LIF loginfile}

where directory is the fully qualified name of the directory containing PowerBuilder.

For example,

pb190 /AC test@appeon.com /PW xxxxxxx /RC N /ALS N /SOE Y

or

pb190 /LIF c:\test.ini

Table 1.10: Command-line options for logging in PowerBuilder

Option Description

/AC User Account.

/PW User Password.

/RC Remember Credentials (Y or N), default is Y. /RC is always Y
when /ALS is Y. Therefore, the /RC value will be ignored, if /ALS
is set to Y. This parameter takes effect only when both /AC and /PW
are set.

/ALS Auto Login at Startup (Y or N), default is Y. This parameter takes
effect only when both /AC and /PW are set.

/SOE Sign Out on Exit (Y or N), default is Y. This parameter takes effect
only when both /AC and /PW are set.

/LIF The full path to the license login initialization file which contains
your encrypted password and other login settings. The file is created
by an independent tool (%AppeonInstallPath%\PowerBuilder
[version]\Tools\LoginIniFileCreator.exe). You can specify the user
account, the password, the login settings, and the file path in this
tool. The password will be encrypted in the generated file to protect
your login credentials. (If you want to copy the tool to other places,
make sure to copy the executable file as well as the msvcp100.dll
and msvcr100.dll files under the same folder).

You can also start PowerBuilder from a command line and optionally open a workspace,
target, and/or painter. These are the painters and tools you can open:

The PowerBuilder Environment

Page 48

• Application painter

• Database painter

• Data Pipeline painter

• DataWindow painter

• Debugger

• File Editor

• Function painter

• Library painter

• Menu painter

• Query painter

• Structure painter

• User Object painter

• Window painter

The syntax is:

directory\pb190.exe {/workspace workspacepath} {/target targetpath} {/painter
 paintername} {/output outputpath}

where directory is the fully qualified name of the directory containing PowerBuilder.

You can also add one or more of the following options to the command line after /painter
paintername to open a specific object or create a new one:

{/library libraryname} {/object objectname} {/inherit objectname} {/new} {/run} {/
runonly} {/argument arguments}

The syntax statements show the long form of option names. You need only use the initial
letter or letters of the option name as long as the option is uniquely identified, as shown in the
following table.

Table 1.11: Command-line options for opening PowerBuilder

Option Description

/W workspacepath Opens the workspace workspacepath. The default is the most
recently used workspace if you have selected the Reopen Workspace
on Startup check box in the System Options dialog box. If you have
not selected this check box, you must specify the /W option before
specifying any other options.

/T targetpath Opens the target targetpath.

/P paintername Opens the painter paintername. The default is the window that
displays when you begin a new PowerBuilder session.

The PowerBuilder Environment

Page 49

Option Description
The painter name must uniquely identify the painter. You do not
have to enter the entire name. For example, you can enter q to open
the Query painter and datab to open the Database painter. If you
enter the full name, omit any spaces in the name (enter UserObject
and DataPipeline, for example).

The painter name is not case sensitive. To open the file editor, you
could set paintername to FI or fileeditor.

Except for the /W, /T, and /L switches, other switches must follow /
P paintername on the command line, as shown in the examples after
the table.

/OU outputpath Logs the contents of the Output window to outputpath.

/L libraryname Identifies the library that contains the object you want to open.

/O objectname Identifies the object, such as a DataWindow object or window, you
want to open.

/I objectname Identifies the object you want to inherit from.

/N Creates a new DataWindow object.

/R Runs the DataWindow object specified with /O and allows
designing.

/RO Runs the DataWindow object specified with /O but does not allow
designing.

/A arguments Provides arguments for the specified DataWindow object.

Examples

The following examples assume that the location of the PowerBuilder executable file is in
your system path.

This example starts a PowerBuilder session by opening the Window painter in the Client
PBL in the Math workspace. The output of the session is sent to a file called math.log. The
workspace file, the PBL, and the log file are all in the current directory:

pb190 /w Math.pbw /l Client.pbl /p window /out math.log

Enter this command to start PowerBuilder and open the DataWindow object called
d_emp_report in the workspace Emp.pbw:

pb190 /w D:\pbws\Emp.pbw /P dataw /O d_emp_report

Building from the command line

You can also build and deploy a workspace from the command line. For more
information, see Building workspaces.

1.2.2 Changing default layouts

You can change the layout of the PowerBuilder main window in several ways. This section
describes:

The PowerBuilder Environment

Page 50

• Showing or hiding the System Tree, Output, and Clip windows and changing their
locations

• Showing or hiding views in painters and changing their locations

You can also show or hide toolbars, change their locations, and add custom buttons. See
Using toolbars.

1.2.2.1 Arranging the System Tree, Output, and Clip windows

Hiding windows

The System Tree, Output, and Clip windows can all be hidden at any time by clicking their
buttons on the PowerBar.

Moving windows

You can dock the System Tree, Output, and Clip windows at the top, bottom, left, or right of
the PowerBuilder main window by dragging the double bar at the top or side of the windows.

Using the full width or height of the main window

Windows docked at the top or bottom of the main window occupy the full width of the frame.
You can change this default by clearing the Horizontal Dock Windows Dominate check box
on the General page System Options dialog box. The following screen shows the Output
window docked at the bottom of the window. The Horizontal Dock Windows Dominate
check box has been cleared so that the System Tree occupies the full height of the window:

Figure 1.12:

The PowerBuilder Environment

Page 51

1.2.2.2 Using views in painters

Most of the PowerBuilder painters have views. Each view provides a specific way of viewing
or modifying the object you are creating or a specific kind of information related to that
object. Having multiple views available in a painter window means you can work on more
than one task at a time. In the Window painter, for example, you can select a control in the
Layout view to modify its properties, and double-click the control to edit its scripts.

Views are displayed in panes in the painter window. Some views are stacked in a single pane.
At the bottom of the pane there is a tab for each view in the stack. Clicking the tab for a view
pops that view to the top of the stack.

Each painter has a default layout, but you can display the views you choose in as many panes
as you want to and save the layouts you like to work with. For some painters, all available
views are included in the default layout; for others, only a few views are included.

Each pane has:

• A title bar you can display temporarily or permanently

• A handle in the top-left corner you can use to drag the pane to a new location

• Splitter bars between the pane and each adjacent pane

1.2.2.2.1 Displaying the title bar

For most views, a title bar does not permanently display at the top of a pane because it
is often unnecessary, but you can display a title bar for any pane either temporarily or
permanently.

To display a title bar

1. Place the pointer on the splitter bar at the top of the pane.

The title bar displays.

To display the title bar permanently, click the pushpin at the left of the title bar or select
Pinned from its pop-up menu.

2. Click the pushpin again or select Pinned again on the pop-up menu to hide the title bar.

After you display a title bar either temporarily or permanently, you can use the title bar's
pop-up menu.

To maximize a pane to fill the workspace

• Select Maximize from the title bar's pop-up menu or click the Maximize button on
the title bar

To restore a pane to its original size

• Select Restore from the title bar's pop-up menu or click the Restore button on the
title bar

The PowerBuilder Environment

Page 52

1.2.2.2.2 Moving and resizing panes and views

You can move a pane or a view to any location in the painter window. You might find it takes
a while to get used to moving panes and views around, but if you do not like a layout, you
can always revert to the default layout and start again. To restore the default layout, select
View>Layouts>Default.

To move a pane, select and drag the title bar of the view that is at the top of the stack. If the
pane contains stacked views, all views in the stack move together. To move one of the views
out of the stack, drag the tab for the view you want to move.

To move a pane

1. Place the pointer anywhere on the title bar of the view at the top of the stack, hold down
the left mouse button, and start moving the pane.

A gray outline appears around the pane:

Figure 1.13:

2. Drag the outline to the new location.

The outline changes size as you drag it. When the pointer is over the middle of a
pane, the outline fills the pane. As you drag the pointer toward any border, the outline
becomes a narrow rectangle adjacent to that border. When the pointer is over a splitter
bar between two panes, rows, or columns, the outline straddles the splitter bar:

Figure 1.14:

The PowerBuilder Environment

Page 53

When you move the pointer to a corner

When you move the pointer to a corner, you will find that you have many places
where you can drop the outline. To see your options, move the pointer around in all
directions in the corner and see where the outline displays as you move it.

3. Release the mouse button to drop the outline in the new location:

Table 1.12:

To move a pane here Drop the outline here

Between two panes On the splitter bar between the panes

Between a border and a pane At the side of the pane nearest the border

Into a new row On the splitter bar between two rows or at
the top or bottom of the painter window

Into a new column On the splitter bar between two columns
or at the left or right edge of the painter
window

Onto a stack of panes On the middle of the pane (if the pane was
not already tabbed, tabs are created)

To move a view in a stacked pane

• Place the pointer anywhere on the view's tab, hold down the left mouse button, and start
moving the view.

You can now move the view as in the previous procedure. If you want to rearrange the
views in a pane, you can drag the view to the left or right within the same pane.

To resize a pane

• Drag the splitter bars between panes.

1.2.2.2.3 Floating and docking views

Panes are docked by default within a painter window, but some tasks may be easier if you
float a pane. A floating pane can be moved outside the painter's window or even outside the
PowerBuilder window.

When you open another painter

If you have a floating pane in a painter and then open another painter, the floating
pane temporarily disappears. It reappears when the original painter is selected.

To float a view in its own pane

• Select Float from the title bar's pop-up menu.

To float a view in a stacked pane

• Select Float from the tab's pop-up menu.

The PowerBuilder Environment

Page 54

To dock a floating view

• Select Dock from the title bar's pop-up menu.

1.2.2.2.4 Adding and removing views

You may want to add additional views to the painter window. You can open only one
instance of some views, but you can open as many instances as you need of others, such as
the Script view. If there are some views you rarely use, you can move them into a stacked
pane or remove them. When removing a view in a stacked pane, make sure you remove the
view and not the pane.

To add a new view to the painter window

1. Select View from the menu bar and then select the view you want to add.

The view displays in a new pane in a new row.

2. Move the pane where you want it.

For how to move panes, see Moving and resizing panes and views.

To remove a view in its own pane from the painter window

1. If the view's title bar is not displayed, display it by placing the pointer on the splitter bar
at the top of the pane.

2. Click the Close button on the title bar.

To remove a view in a stacked pane from the painter window

• Select the tab for the view and select Close from its pop-up menu.

To remove a stacked pane from the painter window

1. If the title bar of the top view in the stack is not displayed, display it by placing the
pointer on the splitter bar at the top of the pane.

2. Click the Close button on the title bar.

1.2.2.2.5 Saving a layout

When you have rearranged panes in the painter window, PowerBuilder saves the layout in
the registry. The next time you open the painter window, your last layout displays. You can
also save customized layouts so that you can switch from one to another for different kinds of
activities.

To save customized layouts for a painter window

1. Select View>Layouts>Manage from the menu bar.

The PowerBuilder Environment

Page 55

2. Click the New Layout button (second from the left at the top of the dialog box).

Figure 1.15:

3. Type an appropriate name in the text box and click OK.

You can restore the default layout at any time by selecting View>Layout>Default.

1.2.3 Using toolbars

Toolbars provide buttons for the most common tasks in PowerBuilder. You can move (dock)
toolbars, customize them, and create your own.

1.2.3.1 Toolbar basics

PowerBuilder uses three toolbars: the PowerBar, PainterBar, and StyleBar:

Table 1.13:

This toolbar Has buttons for And (unless hidden)
displays

PowerBar Opening painters and tools Always

PainterBar Performing tasks in the
current painter

In each painter or editor;
some painters have more than
one PainterBar

StyleBar Changing properties of text,
such as font and alignment

In appropriate painters

1.2.3.2 Drop-down toolbars

To reduce the size of toolbars, some toolbar buttons have a down arrow on the right that you
can click to display a drop-down toolbar containing related buttons.

The PowerBuilder Environment

Page 56

For example, the down arrow next to the Text button in the DataWindow painter displays
the Controls drop-down toolbar, which has a button for each control you can place on a
DataWindow object.

Figure 1.16:

Default button replaced

The button you select from a drop-down toolbar replaces the default button on the
main toolbar. For example, if you select the Picture button from the Controls drop-
down toolbar, it replaces the Text button in the PainterBar.

1.2.3.3 Controlling the display of toolbars

You can control:

• Whether to display individual toolbars and where

• Whether to display text on the buttons

• Whether to display PowerTips

Choosing to display text and PowerTips affects all toolbars.

To control a toolbar using the pop-up menu

1. Position the pointer on a toolbar and display the pop-up menu.

2. Click the items you want.

A check mark means the item is currently selected.

To control a toolbar using the Toolbars dialog box

1. Select Tools > Toolbars from the menu bar.

The Toolbars dialog box displays.

2. Click the toolbar you want to work with (the current toolbar is highlighted) and the
options you want.

The PowerBuilder Environment

Page 57

PowerBuilder saves your toolbar preferences in the registry and the PowerBuilder
initialization file.

1.2.3.4 Moving toolbars using the mouse

You can use the mouse to move a toolbar.

To move a toolbar with the mouse

1. Position the pointer on the grab bar at the left of the toolbar or on any vertical line
separating groups of buttons.

2. Press and hold the left mouse button.

3. Drag the toolbar and drop it where you want it.

As you move the mouse, an outlined box shows how the toolbar will display when you
drop it. You can line it up along any frame edge or float it in the middle of the frame.

1.2.3.4.1 Docking toolbars

When you first start PowerBuilder, all the toolbars display one above another at the top left of
the workspace. When you move a toolbar, you can dock (position) it:

• At the top or bottom of the workspace, at any point from the left edge to the right edge

• At the left or right of the workspace, at any point from the top edge to the bottom edge

• To the left or right of, or above or below, another toolbar

1.2.3.5 Customizing toolbars

You can customize toolbars with PowerBuilder buttons and with buttons that invoke other
applications, such as a clock or text processor.

Adding, moving, and deleting buttons

You can add, move, and delete buttons in any toolbar.

To add a button to a toolbar

1. Position the pointer on the toolbar and display the pop-up menu.

2. Select Customize.

The Customize dialog box displays. The icons that display in the selected palette and
current toolbar panes depend on the palette and toolbar you select.

The PowerBuilder Environment

Page 58

Figure 1.17:

3. Click the palette of buttons you want to use in the Select Palette group box.

4. Choose a button from the Selected Palette box and drag it to the position you want in the
Current Toolbar box.

The function of the button you selected displays in the Description at the bottom of the
dialog box. If you choose a button from the Custom palette, another dialog box displays
so you can define the button.

For more information, see Adding a custom button [59].

To move a button on a toolbar

1. Position the pointer on the toolbar, display the pop-up menu, and select Customize.

2. In the Current toolbar box, select the button and drag it to its new position.

To delete a button from a toolbar

1. Position the pointer on the toolbar, display the pop-up menu, and select Customize.

2. In the Current toolbar box, select the button and drag it outside the Current toolbar box.

Resetting a toolbar

You can restore the original setup of buttons on a toolbar at any time.

To reset a toolbar

1. Position the pointer on the toolbar, display the pop-up menu, and select Customize.

The PowerBuilder Environment

Page 59

2. Click the Reset button, then Yes to confirm, then OK.

Clearing or deleting a toolbar

Whenever you want, you can remove all buttons from a toolbar. If you do not add new
buttons to the empty toolbar, the toolbar is deleted. You can delete both built-in toolbars and
toolbars you have created.

To recreate a toolbar

If you delete one of PowerBuilder's built-in toolbars, you can recreate it easily. For
example, to recreate the PowerBar, display the pop-up menu, select New, and then
select PowerBar1 in the New Toolbar dialog box.

For information about creating new toolbars and about the meaning of PowerBar1,
see Creating new toolbars.

To clear or delete a toolbar

1. Position the pointer on the toolbar, display the pop-up menu, and select Customize.

2. Click the Clear button, then Yes to confirm.

The Current toolbar box in the Customize dialog box is emptied.

3. If you want to add new buttons, select them.

4. Click OK to save the toolbar if you added new buttons, or delete the toolbar if you did
not.

Adding a custom button

You can add a custom button to a toolbar. A custom button can:

• Invoke a PowerBuilder menu item

• Run an executable (application) outside PowerBuilder

• Run a query or preview a DataWindow object

• Place a user object in a window or in a custom user object

• Assign a display format or create a computed field in a DataWindow object

To add a custom button

1. Position the pointer on the toolbar, display the pop-up menu, and select Customize.

2. Select Custom in the Select Palette group box.

The custom buttons display in the Selected Palette box.

3. Select a custom button and drag it to where you want it in the Current Toolbar box.

The PowerBuilder Environment

Page 60

The Toolbar Item Command dialog box displays. Different buttons display in the dialog
box depending on which toolbar you are customizing:

Figure 1.18:

4. Fill in the Command Line box using the following table.

In the Item Text box, specify the text associated with the button in two parts separated
by a comma: the text that displays on the button and text for the button's PowerTip:

ButtonText, PowerTip

For example:

Save, Save File

If you specify only one piece of text, it is used for both the button text and the
PowerTip.

5. In the Item MicroHelp box, specify the text to appear as MicroHelp when the pointer is
on the button.

Table 1.14: Defining custom buttons

Button action Toolbar Item Command dialog box entry

Invoke a PowerBuilder
menu item

Type @MenuBarItem.MenuItem in the Command Line box.
For example, to make the button mimic the Open item on the
File menu, type:

@File.Open

If a menu label contains a dot ("."), you must include the tilde
("~") as an escape character to indicate the dot is part of the
label and does not invoke a submenu item. For example:

The PowerBuilder Environment

Page 61

Button action Toolbar Item Command dialog box entry
@Tools.Toolbars~.~.~.

You can also use a number to refer to a menu item. The first
item in a drop-down or cascading menu is 1, the second item is
2, and so on. Separator lines in the menu count as items. This
example creates a button that pastes a FOR...NEXT statement
into a script:

@Edit.Paste Special.Statement.6

Run an executable file
outside PowerBuilder

Type the name of the executable file in the Command Line
box. Specify the full path name if the executable is not in the
current search path.

To search for the file name, click the Browse button.

Run a query Click the Query button and select the query from the displayed
list.

Preview a
DataWindow object

Click the Report button and select a DataWindow object from
the displayed list. You can then modify the command-line
arguments in the Command Line box.

Select a user object for
placement in a window
or custom user object

(Window and User Object painters only) Click the UserObject
button and select the user object from the displayed list.

Assign a display
format to a column in
a DataWindow object

(DataWindow painter only) Click the Format button to display
the Display Formats dialog box. Select a data type, then
choose an existing display format from the list or define your
own in the Format box.

For more about specifying display formats, see Displaying and
Validating Data.

Create a computed
field in a DataWindow
object

(DataWindow painter only) Click the Function button to
display the Function for Toolbar dialog box. Select the
function from the list.

1.2.3.5.1 Modifying a custom button

To modify a custom button

1. Position the pointer on the toolbar, display the pop-up menu, and select Customize.

2. Double-click the button in the Current toolbar box.

The Toolbar Item Command dialog box displays.

3. Make your changes, as described in Adding a custom button [59].

1.2.3.6 Creating new toolbars

PowerBuilder has built-in toolbars. When you start PowerBuilder, you see what is called
the PowerBar. In each painter, you also see one or more PainterBars. But PowerBar

The PowerBuilder Environment

Page 62

and PainterBar are actually types of toolbars you can create to make it easier to work in
PowerBuilder.

PowerBars and PainterBars

A PowerBar is a toolbar that always displays in PowerBuilder, unless you hide it. A
PainterBar is a toolbar that always displays in the specific painter for which it was defined,
unless you hide it:

Table 1.15:

For this toolbar type The default is named And you can have up to

PowerBar PowerBar1 Four PowerBars

PainterBar PainterBar1PainterBar2and
so on

Eight PainterBars in each
painter

Where you create them

You can create a new PowerBar anywhere in PowerBuilder, but to create a new PainterBar,
you must be in the workspace of the painter for which you want to define the PainterBar.

To create a new toolbar

1. Position the pointer on any toolbar, display the pop-up menu, and select New.

The New Toolbar dialog box displays.

About the StyleBar

In painters that do not have a StyleBar, StyleBar is on the list in the New Toolbar
dialog box. You can define a toolbar with the name StyleBar, but you can add only
painter-specific buttons, not style buttons, to it.

2. Select a PowerBar name or a PainterBar name and click OK.

The Customize dialog box displays with the Current toolbar box empty.

3. One at a time, drag the toolbar buttons you want from the Selected palette box to the
Current toolbar box and then click OK.

1.2.4 Customizing keyboard shortcuts

You can associate your own keyboard shortcuts with PowerBuilder menu items. For example,
if you have used another debugger, you may be accustomed to using specific function keys
or key combinations to step into and over functions. You can change the default keyboard
shortcuts to associate actions in PowerBuilder's Debugger with the keystrokes you are used
to.

Tip

Creating keyboard shortcuts means you can use the keyboard instead of the mouse in
many common situations, including changing workspaces, objects, or connections. To
do this, create shortcuts for the File>Recent menu items.

The PowerBuilder Environment

Page 63

To associate a keyboard shortcut with a menu item:

1. Select Tools>Keyboard Shortcuts from the menu bar.

The keyboard shortcuts for the current menu bar display.

2. Select a menu item with no shortcut or a menu item with a default shortcut that you want
to change and then put the cursor in the Press Keys For Shortcut box.

3. Press the keys you want to use for the shortcut.

The new shortcut displays in the text box. If you type a shortcut that is already being
used, a message notifies you so you can type a different shortcut or change the existing
shortcut.

Figure 1.19:

To remove a keyboard shortcut associated with a menu item:

1. Select Tools>Keyboard Shortcuts from the menu bar.

2. Select the menu item with the shortcut you want to remove.

3. Click Remove.

You can reset keyboard shortcuts to the default shortcuts globally or for the current
painter only.

To reset keyboard shortcuts to the default:

• Click the Reset button and respond to the prompt.

1.2.5 Changing fonts

The following table summarizes the various ways you can change the fonts used in
PowerBuilder.

Table 1.16: Changing the fonts used in PowerBuilder

Object, painter, or tool How to change fonts

A table's data, headings, and labels In the Database painter, display the Properties view for
the table, and change the font properties on the Data,
Heading, and Label Font tabs.

Objects in the User Object,
Window, and DataWindow
painters

Select objects and then modify settings in the StyleBar,
or, in the Properties view for one or more objects,
change the font properties on Font tab page.

The PowerBuilder Environment

Page 64

Object, painter, or tool How to change fonts

Application, Menu, and Library
painters, System Tree, Output
window, Browser, and MicroHelp

Select Tools>System Options from the menu bar and
change the font properties on the Editor Font and
Printer font tab pages.

Function painter, Script view,
Interactive SQL view in the
Database painter, Source editor,
file editor, and Debug window
(changes made for one of these
apply to all)

Select Design>Options from the menu bar and change
the font properties on the System Font and Printer Font
tab pages of the dialog box that displays. In the Debug
window, select Debug>Options.

Use the Printer font tab to set fonts specifically for printing. If you need to print
multilanguage characters, make sure you use a font that is installed on your printer.

Changes you make in the Tools>System Options dialog box and from the Design>Options
menu selection are used the next time you open PowerBuilder.

1.2.6 Defining colors

You can define custom colors to use in most painters and in objects you create.

To define custom colors:

1. In a painter that uses custom colors, select Design>Custom Colors from the menu bar.

Figure 1.20:

2. Define your custom colors:

The PowerBuilder Environment

Page 65

Table 1.17:

Area of the Color
dialog box

What you do

Basic colors Click the basic color closest to the color you want to define to
move the pointer in the color matrix and slider on the right.

Custom colors
palette

Modify an existing color -- click a custom color, then modify the
color matrix and slider. Define a new color -- click an empty box,
define the color, and click Add to Custom Colors.

Color matrix Click in the color matrix to pick a color.

Color slider Move the slider on the right to adjust the color's attributes.

Add to Custom
Colors button

After you have designed the color, click this button to add the
custom color to the Custom colors palette on the left.

1.2.7 How the PowerBuilder environment is managed

PowerBuilder configuration information is stored in both the PowerBuilder initialization file
(PB.INI) and the registry. When you start PowerBuilder, it looks in the registry and PB.INI to
set up your environment.

1.2.7.1 About the registry

Some PowerBuilder features require the use of the PB.INI file, but many features use the
registry for getting and storing configuration information. Normally, you should not need to
access or modify items in the registry directly.

Information related to your preferences (such as the applications you have created, the
way you have arranged your views in the painters, and the shortcut keys you have defined
for PowerBuilder menu items) is stored in HKEY_CURRENT_USER/Software/Sybase/
PowerBuilder/19.0.

Installation-related information is stored in HKEY_LOCAL_MACHINE/Software/Sybase/
PowerBuilder/19.0.

1.2.7.2 About the initialization file

PB.INI is a text file that contains variables that specify your PowerBuilder preferences.
These preferences include information such as the last workspace you used and your startup
preferences. When you perform certain actions in PowerBuilder, PowerBuilder writes your
preferences to PB.INI automatically.

Format of INI files

PB.INI uses the Windows INI file format. It has three types of elements:

• Section names, which are enclosed in square brackets

• Keywords, which are the names of preference settings

• Values, which are numeric or text strings, assigned as the value of the associated keyword

A variable can be listed with no value specified, in which case the default is used.

The PowerBuilder Environment

Page 66

Some sections are always present by default, but others are created only when you specify
different preferences. If you specify preferences for another painter or tool, PowerBuilder
creates a new section for it at the end of the file.

Specifying preferences

Normally, you do not need to edit PB.INI. You can specify all your preferences by
taking an action, such as resizing a window or opening a new application, or by selecting
Design>Options from one of the painters. If a variable does not appear by default in
the options sheet for the painter, you can use a text editor to modify the variable in the
appropriate section of PB.INI.

Editing the initialization file

Do not use a text editor to edit PB.INI or any preferences file accessed by Profile
functions while PowerBuilder or your application is running. PowerBuilder caches the
contents of initialization files in memory and overwrites your edited PB.INI when it
exits, ignoring changes.

Where the initialization file is kept

PB.INI is installed in the same directory as the PowerBuilder executable file, but is copied to
the C:\Users\[username]\AppData\Local\Appeon\PowerBuilder 19.0 for each PowerBuilder
user the first time the user opens PowerBuilder. PowerBuilder subsequently uses the PB.INI
copy each time the same user starts an instance of PowerBuilder IDE.

Telling PowerBuilder where your initialization file is

You can keep PB.INI in another location and tell PowerBuilder where to find it by specifying
the location in the System Options dialog box. You may want to do this if you use more than
one version of PowerBuilder or if you are running PowerBuilder over a network.

To record your initialization path

1. Select Tools>System Options from the menu bar.

2. On the General tab page, enter the path of your initialization file in the Initialization Path
text box.

PowerBuilder records the path in the Windows registry.

How PowerBuilder finds the initialization file

PowerBuilder looks in the Windows Registry for a path to the initialization file, and then
looks for the file in the directory where PowerBuilder is installed. If PowerBuilder cannot
find PB.INI using the path in the Registry, it clears the path value.

If the initialization file is missing

If PowerBuilder does not find PB.INI when it starts up, it recreates it. However, if you want
to retain any preferences you have set, such as database profiles, keep a backup copy of
PB.INI. The recreated file has the default preferences.

1.3 Using Source Control
About this chapter

The PowerBuilder Environment

Page 67

PowerBuilder provides native interfaces to Subversion (SVN) and Git source control systems,
and a direct connection to the PowerBuilder native (PBNative) check in/check out utility and
external SCC-compliant source control systems. This chapter describes how to work with
source control.

1.3.1 About source control systems

This section provides an overview of source control systems and describes how PowerBuilder
integrates with these systems' interfaces.

What source control systems do

Source control systems (version control systems) track and store the evolutionary history of
software components. They are particularly useful if you are working with other developers
on a large application, in that they can prevent multiple developers from modifying the same
component at the same time. You can make sure you are working with the latest version of a
component or object by synchronizing the copy of the object you are working on with the last
version of the object checked into the source control system.

Why use a source control system

Most source control systems provide disaster recovery protection and functions to help
manage complex development processes. With a source control system, you can track the
development history of objects in your PowerBuilder workspace, maintain archives, and
restore previous revisions of objects if necessary.

Source control interfaces

You work with a source control system through a source control interface in the following
ways.

• PowerBuilder supports working with Subversion (SVN) and Git source control systems
through proprietary interfaces provided by source control vendors in the PowerBuilder
IDE.

• PowerBuilder also provides a standard application programming interface to any source
control interfaces based on the Microsoft Common Source Code Control Interface
Specification, Version 0.99.0823, which means, you can use the PowerBuilder SCC
API with any source control system that implements features defined in the Microsoft
specification.

• PowerBuilder also provides a basic check in/check out utility (PBNative) that installs with
the product.

PowerBuilder institutes source control at the object level. This gives you a finer grain of
control than if you copied your PBLs directly to source control outside of the PowerBuilder
SCC API.

1.3.1.1 Using SVN or Git

PowerBuilder provides native interface options of SVN and Git for directly performing
source control operations and functions in the PowerBuilder IDE. After you have configured
the connection settings for SVN or Git in your PowerBuilder workspace, you can directly

The PowerBuilder Environment

Page 68

perform the following source control functions by right-clicking the objects in the system
tree. The menu item name varies depending on the source control system (SVN or Git) you
selected for your current workspace.

Supported SVN and Git version and protocol

The SVN feature has been fully tested against SVN server 1.7.1 and later.

The Git feature has been fully tested against GitHub, and also tested with GitLab,
Bitbucket, Bonobo, Perforce, and Team Foundation Server (TFS).

The SVN/Git client that has been fully tested to work is: SVN client 1.9.7 and later,
and Git client 2.0 and later.

The protocol of SVN/Git that has been fully tested to work is: HTTP and HTTPS.

PowerBuilder supports TLS 1.1/1.2 for the Git server handshake.

Note

If you use Git repositories to host and collaborate on your code using Team
Foundation Server (TFS) or Azure DevOps Server, it is unsupported to connect to
your Git repositories through SSH. Please use the recommended Personal Access
Token (PAT) approach, where you use your PAT as both your username and
password in PowerBuilder for Git connection.

Table 1.18: Source control operations in PowerBuilder IDE

Source
control
system

Menus
available
in
PowerBuilder
IDE

Used in operations

Connect to
Workspace

Connects with the SVN source control server and the project, and
downloads the project to the workspace.

See Section 1.3.2.2, “Get a workspace from SVN” for details.

Add to
Source
Control

Connects with the SVN source control server and uploads the
workspace to the source control server.

See Section 1.3.2.1, “Add a workspace to SVN” for details.

SVN
Commit

Adds an object to the SVN source control server if the object
does not exist on the server, or commit the changes to the server
if the object has already been added to the server, or delete the
object from the server if the local copy has already been deleted.

See Section 1.3.2.3, “Commit objects to SVN” for details.

SVN

SVN
Update

Gets the object from the SVN source control server if the object
does not exist on the local machine, or update the local copy if
the object already exists on the local machine.

See Section 1.3.2.4, “Get objects from SVN” for details.

The PowerBuilder Environment

Page 69

Source
control
system

Menus
available
in
PowerBuilder
IDE

Used in operations

SVN
Resolve

Removes the conflicted state of the local copy and commit it
again. You will have to manually resolve the conflicts before
using this menu.

See Section 1.3.2.5, “Resolve conflicts” for details.

SVN
Revert

Undoes any changes to the local copy and restores to the version
on the source control server.

See Section 1.3.2.6, “Revert changes” for details.

SVN Get/
Release
Lock

Locks the object in the SVN source control server so that other
users cannot commit changes to the object.

See Section 1.3.2.9, “Lock objects” for details.

SVN Diff Compare an object in your local directory with the version of the
object that was last synchronized with the source control server.

See Section 1.3.2.11, “Compare objects” for details.

SVN Show
Log

Displays the revision logs that are input during commit.

See Section 1.3.2.10, “Tools for Show Log\Edit Conflicts” for
details.

Refresh Reloads the object if it is changed outside of IDE or after the
PBL is downloaded.

See Section 1.3.2.7, “Refresh objects” for details.

Upload
PBL

Upload PBL is only necessary in the scenarios described in
Section 1.3.2.8, “Upload PBL”.

Open
Containing
Folder

Opens the folder that contains the object.

Connect to
Workspace

Connects with the Git source control server and the project, and
downloads the project to the workspace.

See Section 1.3.3.2, “Get a workspace from Git” for details.

Add to
Source
Control

Connects with the Git source control server and uploads the
workspace to the source control server.

See Section 1.3.3.1, “Add a workspace to Git” for details.

Git

Git Commit Adds an object to the local repository if the object does not
exist on the local repository, or commit the changes to the local
repository if the object has already been added to the local
repository, or delete the object from the local repository if the
local copy has already been deleted.

The PowerBuilder Environment

Page 70

Source
control
system

Menus
available
in
PowerBuilder
IDE

Used in operations

See Section 1.3.3.3, “Commit objects to Git” for details.

Git Push Commits the objects from the local repository to the remote
repository on the source control server.

See Section 1.3.3.3, “Commit objects to Git” for details.

Git Pull Gets the object from the Git source control server if the object
does not exist on the local repository, or update the local copy if
the object already exists on the local repository.

See Section 1.3.3.4, “Get objects from Git” for details.

Git Revert Undoes any changes to the local copy and restores to the version
on the source control server.

See Section 1.3.3.6, “Revert changes” for details.

Git Resolve Removes the conflicted state of the local copy and commit it
again. You will have to manually resolve the conflicts before
using this menu.

See Section 1.3.3.5, “Resolve conflicts” for details.

Git Diff Compare an object in your local directory with the version of the
object that was last synchronized with the source control server.

See Section 1.3.3.10, “Compare objects” for details.

Git Show
Log

Displays the revision logs that are input during commit.

See Section 1.3.3.9, “Tools for Show Log\Edit Conflicts” for
details.

Refresh Reloads the object if it is changed outside of IDE or after the
PBL is downloaded.

See Section 1.3.3.7, “Refresh objects” for details.

Git Create
Branch

Creates a branch after the workspace is added to the source
control server.

See Section 1.3.3.11, “Use branches” for details.

Git Switch
Branch

Switches to a branch.

See Section 1.3.3.11, “Use branches” for details.

Upload
PBL

Upload PBL is only necessary in the scenarios described in
Section 1.3.3.8, “Upload PBL”.

Open
Containing
Folder

Opens the folder that contains the object.

The PowerBuilder Environment

Page 71

1.3.1.2 Using source control manager via SCC API

The PowerBuilder SCC API works with the source control system to perform certain source
control operations and functions. Other source control operations must be performed directly
from the source control management tool. After you have defined a source control connection
profile for your PowerBuilder workspace, you can open the source control manager from the
Library painter.

To start the source control manager from PowerBuilder

• Select Entry>Source Control>Run Source Control Manager from the Library painter
menu bar.

The menu item name varies depending on the source control system you selected in the
source control connection profile for your current workspace. There is no manager tool
for the PBNative check in/check out utility.

For information on configuring a source control connection profile, see Setting up a
connection profile.

Which tool to use

The following table shows which source control functions you should perform from the
source control manager and which you can perform from PowerBuilder:

Table 1.19: Where to perform source control operations

Tool or interface Use for this source control functionality

Source control manager Setting up a project*

Assigning access permissions

Retrieving earlier revisions of objects*

Assigning revision labels*

Running reports*

Editing the PBG file for a source-controlled target*

PowerBuilder SCC API Setting up a connection profile

Viewing the status of source-controlled objects

Adding objects to source control

Checking objects out from source control

Checking objects in to source control

Clearing the checked-out status of objects

Synchronizing objects with the source control server

Refreshing the status of objects

Comparing local objects with source control versions

Displaying the source control version history

Removing objects from source control

The PowerBuilder Environment

Page 72

* You can perform these source control operations from PowerBuilder for some source
control systems.

1.3.1.3 Using PBNative

PowerBuilder also provides minimal in-the-box source control through the PBNative check
in/check out utility. PBNative allows you to lock the current version of PowerBuilder objects
and prevents others from checking out these objects while you are working on them. It
provides minimal versioning functionality, and does not allow you to add comments or labels
to objects that you add or check in to the PBNative project directory.

Connecting to PBNative

You connect to PBNative from PowerBuilder through the PowerBuilder SCC API. You use
the pop-up menu items to add, check out, check in, or get the latest version of objects on the
source control server. However, any menu item that calls a source control management tool is
unavailable when you select PBNative as your source control system.

Because there is no separate management tool for PBNative, if you need to edit project PBG
files that get out of sync, you can open them directly on the server without checking them out
of source control.

For more information about PBG files, see Editing the PBG file for a source-controlled
target.

PRP files

PBNative creates files with an extra PRP extension for every object registered in the server
storage location. If an object with the same file name (minus the additional extension) has
been checked out, a PRP file provides the user name of the person who has placed a lock on
the object. PRP files are created on the server, not in the local path.

PowerBuilder also adds a version number to the PRP file for an object in the PBNative
archive directory when you register that object with PBNative source control. PowerBuilder
increments the version number when you check in a new revision. The version number is
visible in the Show History dialog box that you open from the pop-up menu for the object, or
in the Library painter when you display the object version numbers.

For more information on the Show History dialog box, see Displaying the source control
version history. For information on displaying the version number in the Library painter, see
Controlling columns that display in the List view.

Using Show Differences functionality with PBNative

PBNative has an option that allows you to see differences between an object on the
server and an object on the local computer using a 32-bit visual difference utility that
you must install separately. For information on setting up a visual difference utility
for use with PBNative, see Comparing local objects with source control versions.

1.3.1.4 Constraints of a multi-user environment

Any object added or checked into source control should be usable by all developers who
have access permissions to that object in source control. This requires that the local paths for

The PowerBuilder Environment

Page 73

objects on different computers be the same in relation to the local root directory where the
PowerBuilder workspace resides.

Best practices

The source control administrator should decide on a directory hierarchy before creating a
source-controlled workspace. The following practices are highly recommended for each
target under source control:

• Create a top-level root directory for the local project path on each developer workstation.

This directory becomes the project path in the SCC repository. The local workspace object
(PBW), the offline status cache file (PBC), the source control log file, and any Orcascript
files used to rebuild and refresh the source-controlled targets should be saved to this top-
level directory on local workstations

• Create a unique subdirectory under the project path for each PBL in the source-controlled
targets

This practice avoids issues that can arise if you copy or move objects from one PBL to
another in the same target.

• Instruct each developer on the team to create a workspace object in the top-level directory
and, on the Source Control tab of the Properties of Workspace dialog box, assign this
directory as the "Local Project Path". Each developer must also assign the corresponding
top-level directory in the SCC repository in the "Project" text box of the Source Control
tab for the workspace

• Add target files (PBT) to the project path directory or create unique subdirectories under
the project path for each target file

Project manager's tasks

Before developers can start work on PowerBuilder objects in a workspace under source
control, a project manager usually performs the following tasks:

• Sets up source control projects (and archive databases)

• Assigns each developer permission to access the new project

• Sets up the directory structure for all targets in a project

Ideally, the project manager should create a subdirectory for each target. Whatever
directory structure is used, it should be copied to all computers used to check out source-
controlled objects.

• Distributes the initial set of PBLs and target (PBT) files to all developers working on the
project or provides a network location from which these files and their directory structure
can be copied.

PowerScript and .NET targets require that all PBLs listed in a target library list be present on
the local computer. For source control purposes, all PBLs in a target should be in the same
local root path, although they could be saved in separate subdirectories. PBWs and PBLs are
not stored in source control unless they are added from outside the PowerBuilder SCC API.
They cannot be checked into or out of source control using the PowerBuilder SCC API.

The PowerBuilder Environment

Page 74

If you are sharing PBLs in multiple targets, you can include the shared PBLs in a workspace
and in targets of their own, and create a separate source control project for the shared
objects. After adding (registering) the shared PBL objects to this project, you can copy the
shared targets to other workspaces, but the shared targets should not be registered with the
corresponding projects for these other workspaces. In this case, the icons indicating source
control status for the shared objects should be different depending on which workspace is the
current workspace.

For small projects, instead of requiring the project manager to distribute PBLs and target
files, developers can create targets in their local workspaces having the same name as targets
under source control. After creating a source control connection profile for the workspace, a
developer can get the latest version of all objects in the workspace targets from the associated
project on the source control server, overwriting any target and object files in the local root
path. (Unfortunately, this does not work well for large PowerScript or .NET projects with
multiple PBLs and complicated inheritance schemes.)

Ongoing maintenance tasks of a project manager typically include:

• Distributing any target (PBT) files and PBLs that are added to the workspace during the
course of development, or maintaining them on a network directory in an appropriate
hierarchical file structure

• Making sure the PBL mapping files (PBGs) do not get out of sync

For information about the PBG files, see Editing the PBG file for a source-controlled
target.

Connections from each development computer to the source control project can be defined on
the workspace after the initial setup tasks are performed.

Developers' tasks

Each user can define a local root directory in a workspace connection profile. Although
the local root directory can be anywhere on a local computer, the directory structure below
the root directory must be the same on all computers that are used to connect to the source
control repository. Only relative path names are used to describe the location of objects in the
workspace below the root directory level.

After copying the directory structure for source-controlled PowerScript or .NET targets to the
local root path, developers can add these targets to their local workspaces. The target objects
can be synchronized in PowerBuilder, although for certain complex targets, it might be better
to do the initial synchronization through the source control client tool or on a nightly build
computer before adding the targets to PowerBuilder. (Otherwise, the target PBLs may need to
be manually rebuilt and regenerated.)

For more information about getting the latest version of objects in source control, see
Synchronizing objects with the source control server.

1.3.1.5 Extension to the SCC API

Status determination by version number

PowerBuilder provides third-party SCC providers with an extension to the SCC API that
allows them to enhance the integration of their products with PowerBuilder. Typically, calls

The PowerBuilder Environment

Page 75

to the SccDiff method are required to determine if an object is out of sync with the SCC
repository. (This is not appropriate for Perforce or ClearCase.)

However, SCC providers can implement SccQueryInfoEx as a primary file comparison
method instead of SccDiff. The SccQueryInfoEx method returns the most recent version
number for each object requested. This allows PowerBuilder to compare the version number
associated with the object in the PBL with the version number of the tip revision in the SCC
repository in order to determine whether an object is in sync.

Since SccQueryInfoEx is a much simpler request than SccDiff, the performance of the
PowerBuilder IDE improves noticeably when this feature is implemented by the SCC
provider. For these providers, the SccDiff call is used as a backup strategy only when a
version number is not returned on an object in the repository. Also for these providers, the
version number for registered files can be displayed in the Library painter.

For more information on viewing the version number, see Controlling columns that display in
the List view.

Once the new API method is implemented in an SCC provider DLL and exported,
PowerBuilder automatically begins to use the SCCQueryInfoEx call with that provider. The
SccQueryInfoEx method is currently used by PBNative.

Overriding the version number

For source control systems that support the SccQueryInfoEx method, you can manually
override the version number of local files, but only for PowerScript objects, and only when
you are connected to source control.

This can be useful with source control systems that allow you to check out a version of
an object that is not the tip revision. However, the source control system alone decides
the version number of the tip revision when you check a file back into source control. It
is the version returned by the source control system that gets added to the PBC file for the
workspace and to the PBLs in the local directory.

For more information about the PBC file, see Working in offline mode.

You change the local version number for a source-controlled PowerScript object in its
Properties dialog box, which you access from the object's pop-up menu in the System
Tree or the Library painter. If the source control system for the workspace supports the
SccQueryInfoEx method and you are connected to source control, the Properties dialog box
for a source-controlled PowerScript object (other than a PBT) has an editable SCC Version
text box. The SCC Version text box is grayed if the source control system does not support
the SccQueryInfoEx method or if you are not connected to source control.

Local change only

The version number that you manually enter for an object is discarded on check-in.
Only the source control provider decides what number the tip revision is assigned.

The PowerBuilder Environment

Page 76

1.3.2 Using SVN source control system

1.3.2.1 Add a workspace to SVN

You can add a PowerBuilder workspace to the SVN source control system from the
PowerBuilder IDE. Make sure all of your source code for the workspace is located under the
same directory as the workspace (*.pbw) file or under its sub-directory.

To add a PowerBuilder workspace to the SVN source control system:

1. Right-click the workspace in the System Tree and select Add to Source Control from the
pop-up menu.

2. In the Add to Source Control dialog box, select Subversion (SVN) as the source control
provider for the current workspace and click OK.

Figure 1.21: Select Source Control Provider

3. In the SVN Login dialog box, input the information required by the source control
system. If the login information has been input before, they will be filled in
automatically.

Input the URL of the SVN source control repository. The name of the current workspace
is automatically displayed and a folder will be created with this name for storing
this workspace on the server. Notice that the URL for the workspace will be the
server repository URL + the workspace folder name. Use this complete URL when
downloading the workspace.

Select an authentication type. Token is not supported for SVN currently.

Type in your user name and password for the SVN source control system.

Click Test Connection to make sure connection is successful and then click OK.

Specify the encoding format for the source code files in "ws_objects". You can select
from: ANSI/DBCS, HEXASCII, and UTF8.

The PowerBuilder Environment

Page 77

Figure 1.22: SVN Login

After connecting with the source control system successfully, the Add to Source Control
dialog box displays listing all the files for the workspace that are not currently under
source control. You cannot add files that are already under source control.

A "ws_objects" folder is automatically created under the workspace, for managing the
source code file of the PowerBuilder objects including .srw (for window), .srm (for
menu), .sru (for user object), .srd (for DataWindow), etc. The "ws_objects" folder must
be added to source code, in order to manage the source code at object level.

All of the source code for the workspace must be located under the same directory as the
workspace (*.pbw) file or under its sub-directory.

The PowerBuilder Environment

Page 78

Figure 1.23: Add to Source Control

4. In the Add to Source Control dialog box, select the files and folders (especially
"ws_objects") and click OK.

PowerBuilder starts uploading the selected files and folders to the source control system.
After the file or folder is added to source control, the object in the PowerBuilder System

The PowerBuilder Environment

Page 79

Tree will be marked with a green dot () in front of it, indicating that its source code
file on the local computer is in sync with the file on the server.

If using proxy server

If using the proxy server, configure the proxy server IP address and port number in
the PB.ini file (by default, the INI file is located in C:\Users\[username]\appdata\local
\appeon\powerbuilder [version]\ in Windows 8.1 or later). Copy the following section
to the INI file and set the appropriate value for the proxy server:

[SourceControlProxy]

Url=192.0.0.88

Port=80

Username=

Password=

Timeout=10

1.3.2.2 Get a workspace from SVN

When PowerBuilder IDE opens without loading any workspace, you can get a PowerBuilder
workspace from the source control system and open the workspace in the PowerBuilder IDE
directly.

To get a PowerBuilder workspace from the SVN source control system:

1. Right-click "No Workspace" in the System Tree and select Connect to Workspace from
the pop-up menu

or

Select Connect to Workspace from the File menu.

The Connect to Workspace dialog box displays. If the login information has been input
before, they will be filled in automatically.

2. Select Subversion (SVN) from the Source Control System list.

Input the repository URL of the workspace. Notice that the complete URL should be the
server repository URL + the workspace folder name.

Type in the name of the workspace file to be downloaded.

Select an authentication type. Token is not supported for SVN currently.

Type in your user name and password for the SVN source control system.

Type or select a path for the local root directory in the "Checkout Directory" box.
All the files that you add to or get from source control must reside in this path or in a
subdirectory of this path.

Select the "Refresh all PBLs with the source code after download" option to refresh all
PBLs after downloading the source code from workspace if you are unsure whether the
PBLs are updated with the latest source code.

The PowerBuilder Environment

Page 80

Figure 1.24: Connect to Workspace

3. Click Test Connection, and click OK when connection is successful.

PowerBuilder starts downloading the workspace from the SVN source control
system, and after the workspace is successfully downloaded, it will be loaded in the
PowerBuilder IDE automatically.

Note

After you get a workspace which was added to SVN using a third-party tool such as
TortoiseSVN (not by PowerBuilder IDE), the objects will be marked with this icon

 which means the objects are not yet under source control in PowerBuilder IDE, so
you should commit the entire workspace from the PowerBuilder IDE to SVN to add it
under source control.

1.3.2.3 Commit objects to SVN

After you create a new object or change an existing object on your local workspace, you can
commit the object to the SVN source control system so that other developers can reach it.

The PowerBuilder Environment

Page 81

To commit an object to the SVN source control system:

1. Right-click the object (or the library that contains the object) in the System Tree and
select SVN Commit from the pop-up menu.

2. In the commit dialog box that displays, input a comment and click OK to confirm
committing the object.

PowerBuilder starts uploading the object to the SVN source control system. After the
object is uploaded successfully, the icon in front of the object will change from a plus
sign () to a green dot (), indicating that the object on the local computer is in sync
with the object on the server.

If conflicts are detected, you will be prompted in the output view and will have to
resolve the conflict manually. See Section 1.3.2.5, “Resolve conflicts” for details.

If you remove an object from your local workspace, you use the same instructions as above to
commit the change and remove the object from the SVN source control server.

Note

If you are prompted for conflicts when committing a removed object, you should first
restore the object using the Revert feature of an SVN client (such as TortoiseSVN),
and then remove the local object and execute SVN Commit again.

The output (including error and warning) of a variety of operations (SVN Commit, SVN
Update, SVN Revert, Refresh etc.) displays in the Output window. Currently, lines in the
Output window provide no links to open the object when you double-click on that line, and
although the pop-up menu provides the options Edit and Edit Source, they will not open an
object in a painter or the Source editor.

1.3.2.4 Get objects from SVN

For objects that are changed or added by other developers to the SVN source control server
but not yet synchronized to your local workspace, you can get these objects from the SVN
source control system.

To get objects from the SVN source control system:

• Right-click the library (or the workspace or the target that contains the object to be
downloaded) in the System Tree and select SVN Update from the pop-up menu.

PowerBuilder starts downloading the new objects or changed objects from the
SVN source control system to the local workspace. After the object is downloaded
successfully, the object will be marked with a green dot () in front of it, indicating that
the object on the local computer is in sync with the object on the server.

If conflicts are detected, you will be prompted in the output view and will have to
resolve the conflict using an SVN client. See Section 1.3.2.5, “Resolve conflicts” for
details.

The PowerBuilder Environment

Page 82

When "Compile failure" error occurs

When "Compile failure" error occurs during the download process, clicking OK will
still download and import the object with the error (and you will need to fix the error
later), or clicking Cancel will terminate the download process of all objects and revert
back to the object on the local computer.

When to do a full build

When the following problems happen, a full build may help to fix them:

• If both the parent object and the child object have been changed on the source
control server, the parent object or the child object may not display correctly after
downloaded from the server to the local computer.

• After the object is downloaded from the server to the local computer, PowerBuilder
IDE crashed when trying to open the object.

• After the object is downloaded from the server to the local computer, the
application crashed when running from the PowerBuilder IDE.

• When the following error occurs: "Open of User Object xxx failed. It has been
migrated to current version format, but must also be successfully regenerated.",
perform a full build can resolve the error.

1.3.2.5 Resolve conflicts

If more than one developer are making changes to the same object and committing the
object at the same time, conflicts will occur when synchronizing the object. When conflicts

are detected, the object in the library tree will be marked by a "!" sign () and you will be
prompted in the output view and will have to resolve the conflict manually.

Note

If the workspace has already been added to the SVN source code system in
PowerBuilder 2017 R2, please remove its binary property first before resolving
conflicts in PowerBuilder 2017 R3 and later. See Remove the binary property from a
R3 source-controlled workspace for details.

The following steps walk you through how to resolve the conflicts and merge the changes
(Suppose developer A and B make changes to the same PowerBuilder object at the same
time):

Step 1: Developer A commits the object to the source control server successfully.

Step 2: When developer B tries to commit the object, he receives a message requiring him to
update the object first, so developer B performs SVN Update, then the object in the library

tree will be marked by a "!" sign () which means there is a conflict, and the changes made

The PowerBuilder Environment

Page 83

by Developer B, the original code, and the changes made by Developer A will be listed
together in the object's source code.

Step 3: Developer B right-clicks the object and selects Edit Conflicts; the object's source code
will be displayed in TortoiseSVN. Developer B looks into the source code and decides which
changes to keep (the changes made by Developer B, the original code, or the changes made
by Developer A). He manually removes the unwanted changes from the object's source code.

In order for the "Edit Conflicts" option to work, developers will need to specify the
executable program of TortoiseSVN in the Properties of Workspace dialog box first. See
Tools for Show Log\Edit Conflicts for details.

Note

After you merge the changes, make sure to refresh and then compile the object
in PowerBuilder, otherwise, the object may be missing or fail to open in the
PowerBuilder IDE, or may cause the PowerBuilder IDE to crash.

Step 4: Developer B performs SVN Resolve for the object to refresh the object status (clears
the conflict sign) and commit the object to the server.

1.3.2.5.1 Remove the binary property from a R3 source-controlled workspace

A workspace that has already been added to the SVN source code system from PowerBuilder
2017 R2 must have its (as well as all files') binary property removed, in order to correctly
resolve conflicts and merge changes in PowerBuilder 2017 R3 and later.

To remove the binary property of the files for a workspace:

1. In PowerBuilder 2019 R3 IDE, get the workspace from the SVN source control system.

2. Download the SccAuxiliaryTool.exe tool from the Appeon website.

3. Execute the following command to remove the binary property of the files for this
workspace:

SccAuxiliaryTool.exe /command:svn_prop_del /path:C:\check_out\svn\workspace_1

The /path parameter should point to the directory where the workspace is located.

4. Commit the changed files to the source control system.

1.3.2.6 Revert changes

For objects that are changed locally but not yet synchronized to the SVN source control
system, you can give up the local changes and restore to the version in the source control
system.

To revert objects from the SVN source control system:

1. Right-click the workspace, target, library, or object in the System Tree and select SVN
Revert from the pop-up menu.

https://www.appeon.com/developers/get-help/knowledgebase/upgrade-source-control-workspace-powerbuilder-2017-r2-powerbuilder-2017-r3.html

The PowerBuilder Environment

Page 84

2. Select the objects you want to revert and then click OK.

PowerBuilder downloads the object from the SVN source control system and replaces
the copy in the local workspace.

1.3.2.7 Refresh objects

After the object is loaded into the PowerBuilder IDE, it might be changed outside of the
PowerBuilder IDE, for example, the developer merges the changes from the other version
using an SVN client, and such changes will not be detected by the PowerBuilder IDE, you
will need to right click the object and select Refresh from the pop-up menu to reload the
object in the PowerBuilder IDE.

The "Refresh" menu is also used when the PBL file on the source control server is not the
latest when you first download the entire workspace from the source control server. In such
case, after you download the PBL file, you will need to select the Refresh menu to refresh the
objects and reload the latest objects in the PowerBuilder IDE.

1.3.2.8 Upload PBL

The "Upload PBL" menu should be used with caution.

The PBL file will be automatically uploaded to the source code server when the workspace
is first added to source control, and the PBL file will be automatically downloaded when
the workspace is first downloaded from source control to a local machine. After that, it
will not be uploaded or downloaded again whenever new or changed objects are uploaded
or downloaded. Instead, the PBL file on the local machine will be automatically updated
whenever objects are created or changed.

The "Upload PBL" menu should be used only when you need to separately upload the PBL
file to the source control server, in scenarios like you add a new PBL to the workspace
and the PBL has not been uploaded to the source control server before, or the PBL file
is removed from the workspace, or the PBL file has been changed dramatically since it
is first uploaded, or the PBL file has been set with the "svn:needs-lock" property, or the
workspace is compiled with related errors. In any other circumstances, it is not recommended
to manipulate (including get, commit, lock etc.) the PBL file in the source control system
using any tool.

The Upload PBL dialog will list and select the newly added PBL file, but will not select the
modified PBL file.

1.3.2.9 Lock objects

When you lock the local object, the object on the source control server will be locked
correspondingly. Locking the object can prevent the other users committing changes to them.

You can lock PBW, PBT, and source files of PBLs; but cannot lock PBD, or PBX files.

To lock objects in the SVN source control system:

1. Right-click the workspace, target, library, or object in the System Tree and select SVN
Get Lock from the pop-up menu.

2. Select the files or objects you want to lock and then click OK.

The PowerBuilder Environment

Page 85

If newer version of the file/object exists on the source code server, you will be prompted
to update the file/object first before locking it. You can select to update the selected
files/objects to the latest version and then lock the file, or cancel the update and lock
procedure.

When PowerBuilder locks the file or object in the SVN source control system
successfully, it adds the "SVN Release Lock" option to the pop-up menu.

Note

When the PBL file is made read-only by setting the "svn:needs-lock" property via
a third-party tool, the PBL file will be available for selection in the SVN Get Lock
dialog; and when you select to lock the PBL file, the local copy of the PBL file is
made editable; and when you release the lock for the PBL file, the local copy of the
PBL file is made read-only again. The server copy of the PBL file will remain intact
during Get/Release Lock, because the PBL file should never be manipulated in the
source control server except for scenarios in Upload PBL.

To unlock objects in the SVN source control system:

1. Right-click the workspace, target, library, or object in the System Tree and select SVN
Release Lock from the pop-up menu.

2. Select the files or objects you want to unlock and then click OK.

PowerBuilder unlocks the file or object in the SVN source control system so that other
users can commit changes to them.

The file or object will be automatically unlocked when you commit the file or object to the
server by performing SVN Commit, unless you select the "Keep locks" option in the SVN
Commit dialog box.

svn:needs-lock property

To make it easier to manage locks, there is a new property called "svn:needs-lock".
PowerBuilder IDE provides no direct option for setting this property; you can set this
property using an SVN client (such as TortoiseSVN). After that, you can manipulate (such as
lock, commit etc.) the object which has the svn:needs-lock property using the SVN options
provided in the PowerBuilder IDE.

If you set "svn:needs-lock" to an object, you should also set "svn:needs-lock" to the PBL file
that contains this object, otherwise changes made to the object may not be properly saved and
synchronized between the object source and the PBL file. For example, if you set "svn:needs-
lock" to the object only but not to the PBL file, and then if you edit the object without locking
the object first, the changes you made to the object will not be saved to the object source
(which is expected), but will be saved in the object painter (which is not expected); in such
case, you should refresh the object (using the SVN Refresh option) to discard the changes
from the object painter.

Note

After you set the "svn:needs-lock" property to an object, you should commit the
object (using the Commit option in the SVN client, or using the SVN Commit option

The PowerBuilder Environment

Page 86

in PowerBuilder) to make the property effective; so after that any user who wants to
edit the object will need to lock the object first.

However, it is a different case for the PBL file. After you set the "svn:needs-
lock" property to the PBL file, you should commit the PBL file (using the Commit
option in the SVN client) or upload the PBL file (using the Upload PBL option in
PowerBuilder) to make the property effective; and after that when the user tries to
"lock" or "unlock" the PBL file, only the local copy is locked or unlocked (the local
copy is changed from read-only to editable when locked; and changed from editable
to read-only when unlocked), the server copy of the PBL file has no change (it cannot
be locked or unlocked); therefore, unlike the object which can be locked by one user
at a time, the PBL file can be "locked" by multiple users at the same time.

1.3.2.10 Tools for Show Log\Edit Conflicts

PowerBuilder IDE provides no utilities to view logs or edit conflicts, but it allows you to
specify the executable file of TortoiseSVN and use it to view logs and edit conflicts.

To specify the executable file of TortoiseSVN:

1. Right-click the workspace in the System Tree and select Properties from the pop-up
menu.

2. In the Properties of Workspace dialog box, select the Source Control tab, and then click
the Advanced button.

3. In the Source Control Advanced Settings dialog box, select Show Log/Edit Conflicts in
the left panel, and then specify the executable program of TortoiseSVN.

4. Click OK.

The PowerBuilder Environment

Page 87

Figure 1.25: Source Control Advanced Settings

To show the revision log:

• Right-click the workspace, target, library, or object in the System Tree and select SVN
Show Log from the pop-up menu.

The TortoiseSVN tool displays the revision logs directly.

To edit conflicts:

•
Right-click the object with the conflict sign () in the System Tree and select SVN Edit
Conflicts from the pop-up menu.

The TortoiseSVN tool displays the source control with the conflicts. For more details,
see Resolve conflicts.

The PowerBuilder Environment

Page 88

1.3.2.11 Compare objects

You can compare an object in your local directory with the version of the object that was last
synchronized with the source control server. If the object you want to compare has not been
added to the source control server, or the local object is not changed since last sync, the SVN
Diff menu item is not available.

PowerBuilder IDE provides no difference utility, but it allows you to select one that you have
already installed. Please make sure the utility itself is compatible with SVN client 1.9.7 or
later. The recommended utilities and versions are:

• TortoiseSVN 1.9.7

• Araxis Merge 2018.4988

• Beyond Compare 4.2.4

• DiffMerge 4.2.0

• ExamDiff Pro 9.0.1.8

• KDiff3 0.9.98

• SemanticMerge 2.0.120.0

• UltraCompare 18.00.0.47

• WinMerge 2.14.0.0

To select a utility for object comparison:

1. Right-click the workspace in the System Tree and select Properties from the pop-up
menu.

2. In the Properties of Workspace dialog box, select the Source Control tab, and then click
the Advanced button.

3. In the Source Control Advanced Settings dialog box, select Diff Viewer in the left panel,
then select the tool name from the list, specify the executable program of the tool, and
change the arguments if necessary.

4. Click OK.

The PowerBuilder Environment

Page 89

Figure 1.26: Source Control Advanced Settings

Method 1: To compare the local object with the version last sync with source control:

• Right-click the object in the System Tree and select SVN Diff from the pop-up menu.

The difference utility displays the objects and highlights the differences directly.

Method 2: To compare the local object with the version last sync with source control:

1. Right-click the object in the System Tree and select SVN Commit (Release Lock,
Revert, or Resolve) from the pop-up menu.

2. In the SVN Commit (Release Lock, Revert, or Resolve) dialog, double click an item
from the object list to view the differences.

You can view the differences of the item which is added, modified, locked, conflicted,
or deleted.

The PowerBuilder Environment

Page 90

The difference utility displays the objects and highlights the differences directly.

You can also compare the workspace file (.pbw) or the target file (.pbt), but you cannot
compare the binary file such as the library file (.pbl).

1.3.2.12 View/Edit the connection settings

After you add the workspace to SVN using the Add to Source Control menu or get the
workspace from SVN using the Connect to Workspace menu, you can view and edit the SVN
connection settings in the Properties of Workspace dialog box; you can also remove and
restore the connection between the workspace and the source control server.

To view/edit the connection settings of the SVN source control system:

1. Right-click the workspace in the System Tree and select Properties from the pop-up
menu.

2. Select the Source Control tab in the Properties of Workspace dialog box.

3. Select Subversion (SVN) from the Source Control System list.

Subversion (SVN) is available from the list when the current workspace is under the
SVN source control, for example, after the workspace is uploaded to SVN using the
Add to Source Control menu (see Section 1.3.2.1, “Add a workspace to SVN”), or after
the workspace is downloaded from SVN using the Connect to Workspace menu (see
Section 1.3.2.2, “Get a workspace from SVN”), or when PowerBuilder IDE detects that
an .svn sub-folder exists.

The PowerBuilder Environment

Page 91

Figure 1.27: Source Control

4. View or edit the connection settings for the selected source control system. Note that
User ID and Password are used by all workspaces, but the other settings are not.

User ID and Password: User credentials for logging into the source control system.
These settings can be changed here.

Repository URL: A URL that points to the repository on the source control server. This
setting is read-only and cannot be changed here.

Local Root Directory: A local path where all the files that you add to or get from source
control must reside. This setting is read-only and cannot be changed here.

5. Click OK.

The PowerBuilder Environment

Page 92

To remove/restore the connection settings from the SVN source control system:

1. If you select None from the Source Control System list and click OK, PowerBuilder will
remove the connection between the workspace and the source control server.

2. If you move the workspace to a new location and then select SVN from the Source
Control System list and click OK, PowerBuilder will restore connections between the
workspace and the source control server.

Besides that, if a workspace is under source control using a third-party tool such as
TortoiseSVN, you can open the workspace (make sure the .svn sub-folder exists) and
then select SVN from the Source Control System list to establish connections between
the workspace and the source control server in the PowerBuilder IDE. Notice that the
objects are marked with this icon which means the objects are not yet under source
control in PowerBuilder IDE, so you should commit the entire workspace to add it under
source control, and so the "ws_objects" folder is successfully created and uploaded to
SVN. The "ws_objects" folder is essential for correctly identifying the status of the
PowerBuilder objects during the source control management process.

1.3.2.13 View the status of source-controlled objects

After a workspace is successfully added to the SVN source control, icons in the
PowerBuilder System Tree display the source control status of all objects in the workspace.

The icons and their meanings are described in the following tables.

Table 1.20: SVN source control status icons in PowerBuilder

Icon SVN source control status of object displaying icon

The object resides only locally and is not under source control.

The object is under source control. The object on the local computer is in
sync with the object on the server.

The object is under source control. The object on the local computer is
changed, and is not committed to the server.

The object is under source control. The object on the local computer conflicts
with the object on the server.

The object is under source control, and the object is locked.

1.3.3 Using Git source control system

1.3.3.1 Add a workspace to Git

If your local PowerBuilder workspace has not been added to the Git source control system
before, you can add the entire workspace to Git from the PowerBuilder IDE. To add a
workspace to Git, you do it in two steps:

Step 1: You upload the workspace to the repository on your local computer.

Step 2: You push the workspace from the local repository to the remote repository on the Git
source control server.

The PowerBuilder Environment

Page 93

Below are the complete steps.

To add a PowerBuilder workspace to the Git source control system:

1. Right-click the workspace in the System Tree and select Add to Source Control from the
pop-up menu.

2. In the Add to Source Control dialog box, select Git as the source control provider for the
current workspace and click OK.

Figure 1.28: Select Source Control Provider

3. In the Author Information dialog box, input the author name and author email.

Specify the encoding format for the source code files in "ws_objects". You can select
from: ANSI/DBCS, HEXASCII, and UTF8.

Figure 1.29: Input author information

The PowerBuilder Environment

Page 94

After clicking OK, the Add to Source Control dialog box displays listing all the files for
the workspace that are not currently under source control. You cannot add files that are
already under source control.

A "ws_objects" sub-folder is automatically created under the workspace, for managing
the source code file of the PowerBuilder objects including .srw (for window), .srm (for
menu), .sru (for user object), .srd (for DataWindow), etc. The "ws_objects" folder must
be added to the source code, in order to manage the source code at object level.

The PowerBuilder Environment

Page 95

Figure 1.30: Add to Source Control

4. In the Add to Source Control dialog box, select the files and folders (especially
ws_objects) and click OK.

PowerBuilder adds the selected files and folders to the repository on your local
computer. After the file or folder is added to the local repository, the object in the
PowerBuilder System Tree will be marked with a green dot () in front of it, indicating

The PowerBuilder Environment

Page 96

that its source code file on the local computer is in sync with the file on the local
repository. Now you can proceed to push the objects from the local repository to the
remote repository on the Git source control server.

5. Right-click the workspace in the System Tree and select Git Push from the pop-up
menu.

6. In the Git Login dialog box, input the information required by the source control system.
If the login information has been input before, they will be filled in automatically.

Input the URL of the Git server and the repository for the workspace. Make sure the
repository with the same name exists on the server and the repository is empty before
you push the files.

The name of the current workspace is automatically displayed.

Select an authentication type: basic or token.

Type in your user name and password (or token) for the Git source control system.

Click Test Connection to make sure connection is successful and then click OK.

If using proxy server

If using the proxy server, configure the proxy server IP address and port number in
the PB.ini file (by default, the INI file is located in C:\Users\[username]\appdata\local
\appeon\powerbuilder [version]\ in Windows 8.1 or later). Copy the following section
to the INI file and set the appropriate value for the proxy server:

[SourceControlProxy]

Url=192.0.0.88

Port=80

Username=

Password=

Timeout=10

The PowerBuilder Environment

Page 97

Figure 1.31: Git Login

PowerBuilder pushes the selected objects to the Git source control system.

"Reference was not fast-forwardable" error when pushing to Bitbucket

When adding the workspace to the Bitbucket server using "Git Push", you may
come across the "Reference was not fast-forwardable" error, if the repository on the
Bitbucket server is created with a readme (the "Include a README" option set to
"Yes, ..."). To resolve this error, you can first execute a "Git Pull" (to synchronize the
server repository with the local repository) and then execute "Git Push" again.

1.3.3.2 Get a workspace from Git

When PowerBuilder IDE opens without loading any workspace, you can get a PowerBuilder
workspace from the source control system and open the workspace in the PowerBuilder IDE
directly.

The PowerBuilder Environment

Page 98

To get a PowerBuilder workspace from the Git source control system:

1. Right-click "No Workspace" in the System Tree and select Connect to Workspace from
the pop-up menu

or

Select Connect to Workspace from the File menu.

The Connect to Workspace dialog box displays. If the login information has been input
before, they will be filled in automatically.

2. Select Git from the Source Control System list.

Input the URL of the Git source control server and the name of an existing repository on
the server.

Select an authentication type: basic or token.

Type in your user name and password (or token) for the Git source control system.

Type or select a path for the local root directory in the "Checkout Directory" box.
All the files that you add to or get from source control must reside in this path or in a
subdirectory of this path.

Input the author name and author email.

Select the "Refresh all PBLs with the source code after download" option to refresh all
PBLs after downloading the source code from workspace if you are unsure whether the
PBLs are updated with the latest source code.

If using proxy server

If using the proxy server, configure the proxy server IP address and port number in
the PB.ini file (by default, the INI file is located in C:\Users\[username]\appdata\local
\appeon\powerbuilder [version]\ in Windows 8.1 or later). Copy the following section
to the INI file and set the appropriate value for the proxy server:

[SourceControlProxy]

Url=192.0.0.88

Port=80

Username=

Password=

Timeout=10

The PowerBuilder Environment

Page 99

Figure 1.32: Connect to Workspace

3. Click Test Connection, and click OK when connection is successful.

PowerBuilder starts downloading the workspace from the Git source control system, and
after the workspace is successfully downloaded, it will be loaded in the PowerBuilder
IDE automatically.

Note

After you get a workspace which was added to Git using a third-party tool such as
TortoiseGit (not by PowerBuilder IDE), the objects will be marked with this icon
which means the objects are not yet under source control in PowerBuilder IDE, so
you should commit the entire workspace from the PowerBuilder IDE to Git to add it
under source control.

The PowerBuilder Environment

Page 100

1.3.3.3 Commit objects to Git

After you create a new object or change an existing object on your local workspace, you
can commit the object to the Git source control system so that other developers can reach it.
Similar to how you add a workspace to Git, you commit the object in two steps: 1) upload
the object to the local repository; 2) push the object from the local repository to the server
repository.

Note that if conflicts are detected, make sure you resolve the conflict before committing the
object.

To commit an object to the Git source control system:

1. Right-click the object (or the library that contains the object) in the System Tree and
select Git Commit from the pop-up menu.

2. In the commit dialog box that displays, input a comment and click OK to confirm
committing the object.

PowerBuilder uploads the object to the repository on the local computer. After the object
is uploaded successfully, the icon in front of the object will change from a plus sign ()
to a green dot (), indicating that the object on the local computer is in sync with the
object on the local repository. Note that if you have only committed some (not all) of the
objects, performing Refresh may remove the uncommitted objects.

Now you can proceed to push the objects from the local repository to the server
repository.

To push objects to the server repository, you can only push from the workspace, as
described in the next step.

3. Right-click the workspace in the System Tree and select Git Push from the pop-up
menu.

PowerBuilder pushes the new or changed objects from the local repository to the server
repository.

If conflicts are detected, you will be prompted in the output view and will have to
resolve the conflict manually before you can push the object to the server repository. See
Section 1.3.3.5, “Resolve conflicts” for details.

If you remove an object from your local workspace, you use the same instructions as above to
commit the change and remove the object from the Git source control server.

The output (including error and warning) of a variety of operations (Git Commit, Git Pull, Git
Revert, and Refresh) displays in the Output window. Currently, lines in the Output window
provide no links to open the object when you double-click on that line, and although the pop-
up menu provides the options Edit and Edit Source, they will not open an object in a painter
or the Source editor.

1.3.3.4 Get objects from Git

For objects that are changed or added by other developers to the Git source control server
but not yet synchronized to your local workspace, you can get these objects from the source
control system.

The PowerBuilder Environment

Page 101

PowerBuilder IDE will add the autocrlf option and set it to true on Windows if no other
Git tool has installed and configured such an option. However, if you manually change the
setting of autocrlf (from true to false or input), and then download objects from the server,
these objects will have LF line endings instead of CRLF, which will cause compilation errors
in the PowerBuilder IDE. If such compilation error occurs, you should set autocrlf to true,
download files from the server again, and then compile again. For more about the autocrlf
option, refer to https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration.

To get objects from the Git source control system:

• Right-click the workspace (that contains the object to be downloaded) in the System
Tree and select Git Pull from the pop-up menu.

Git Pull menu is only available at the workspace level, and is not available at the target
or library levels.

PowerBuilder starts downloading the new objects or changed objects from the
Git source control system to the local workspace. After the object is downloaded
successfully, the object will be marked with a green dot () in front of it, indicating that
the object on the local computer is in sync with the object on the server.

If conflicts are detected, you will be prompted in the output view and will have to
resolve the conflict using a Git client. See Section 1.3.3.5, “Resolve conflicts” for
details.

When "Compile failure" error occurs

When "Compile failure" error occurs during the download process, clicking OK will
still download and import the object with the error (and you will need to fix the error
later), or clicking Cancel will terminate the download process of all objects and revert
back to the object on the local computer.

When to do a full build

When the following problems happen, a full build may help to fix them:

• If both the parent object and the child object have been changed on the source
control server, the parent object or the child object may not display correctly after
downloaded from the server to the local computer.

• After the object is downloaded from the server to the local computer, PowerBuilder
IDE crashed when trying to open the object.

• After the object is downloaded from the server to the local computer, the
application crashed when running from the PowerBuilder IDE.

1.3.3.5 Resolve conflicts

If more than one developer are making changes to the same object and committing the
object at the same time, conflicts will occur when synchronizing the object. When conflicts

https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration

The PowerBuilder Environment

Page 102

are detected, the object in the library tree will be marked by a "!" sign () and you will be
prompted in the output view and will have to resolve the conflict manually before you can
commit the object.

The following steps walk you through how to resolve the conflicts and merge the changes
(Suppose developer A and B make changes to the same PowerBuilder object at the same
time):

Step 1: Developer A commits the object to the source control server successfully.

Step 2: When developer B tries to commit the object, he receives a message requiring him
to update the object first, so developer B performs Git Pull, then the object in the library tree

will be marked by a "!" sign () which means there is a conflict, and the changes made by
Developer B, the original code, and the changes made by Developer A will be listed together
in the object's source code.

Step 3: Developer B right-clicks the object and selects Edit Conflicts; the object's source code
will be displayed in TortoiseGit. Developer B looks into the source code and decides which
changes to keep (the changes made by Developer B, the original code, or the changes made
by Developer A). He manually removes the unwanted changes from the object's source code.

In order for the "Edit Conflicts" option to work, developers will need to specify the
executable program of TortoiseGit in the Properties of Workspace dialog box first. See Tools
for Show Log\Edit Conflicts for details.

Note

After you merge the changes, make sure to refresh and then compile the object
in PowerBuilder, otherwise, the object may be missing or fail to open in the
PowerBuilder IDE, or may cause the PowerBuilder IDE to crash.

Step 4: Developer B performs Git Resolve for the object to refresh the object status (clears
the conflict sign) and commit the object to the server.

1.3.3.6 Revert changes

For objects that are changed locally but not yet synchronized to the Git source control system,
you can give up the local changes and restore to the version in the server repository.

To revert objects from the Git source control system:

• Right-click the object in the System Tree and select Git Revert from the pop-up menu.

PowerBuilder downloads the object from the server repository and replaces the copy in
the local repository.

1.3.3.7 Refresh objects

After the object is loaded into the PowerBuilder IDE, it might be changed outside of the
PowerBuilder IDE, for example, the developer merges the changes from the other version
using a Git client, and such changes will not be detected by the PowerBuilder IDE, you will

The PowerBuilder Environment

Page 103

need to right click the object and select Refresh from the pop-up menu to reload the object in
the PowerBuilder IDE.

The "Refresh" menu is also used when the PBL file on the source control server is not the
latest when you first download the entire workspace from the source control server. In such
case, after you download the PBL file, you will need to select the Refresh menu to refresh the
objects and reload the latest objects in the PowerBuilder IDE.

1.3.3.8 Upload PBL

The "Upload PBL" menu should be used with caution.

The PBL file will be uploaded to the source code server automatically when the workspace
is first added to source control, and the PBL file will be downloaded automatically when the
workspace is first downloaded from source control to a local machine. After that, it will not
need to be uploaded or downloaded again whenever new or changed objects are uploaded
or downloaded. Instead, the PBL file on the local machine will be updated automatically
whenever objects are created or changed.

The "Upload PBL" menu is used only when you need to separately upload the PBL file to
the source control server, in scenarios like you add a new PBL to the workspace and the PBL
has not been uploaded to the source control server before, or the PBL file is removed from
the workspace, or the PBL file has been changed dramatically since it is first uploaded, or the
workspace is compiled with related errors. In any other circumstances, it is not recommended
to manipulate (including get, commit, lock etc.) the PBL file in the source control system
using any tool.

The Upload PBL dialog will list and select the newly added PBL file, but will not select the
modified PBL file.

1.3.3.9 Tools for Show Log\Edit Conflicts

PowerBuilder IDE provides no utilities to view logs or edit conflicts, but it allows you to
specify the executable file of TortoiseGit and use it to view logs and edit conflicts.

To specify the executable file of TortoiseGit:

1. Right-click the workspace in the System Tree and select Properties from the pop-up
menu.

2. In the Properties of Workspace dialog box, select the Source Control tab, and then click
the Advanced button.

3. In the Source Control Advanced Settings dialog box, select Show Log in the left panel,
and then specify the executable program of TortoiseGit.

4. Click OK.

The PowerBuilder Environment

Page 104

Figure 1.33: Source Control Advanced Settings

To show the revision log:

• Right-click the workspace, target, library, or object in the System Tree and select Git
Show Log from the pop-up menu.

The TortoiseGit tool displays the revision logs directly.

To edit conflicts:

•
Right-click the object with the conflict sign () in the System Tree and select Git Edit
Conflicts from the pop-up menu.

The TortoiseGit tool displays the source control with the conflicts. For more details, see
Resolve conflicts.

The PowerBuilder Environment

Page 105

1.3.3.10 Compare objects

You can compare an object in your local directory with the version of the object that was last
synchronized with the source control server. If the object you want to compare has not been
added to the source control server, or the local object is not changed since last sync, the Git
Diff menu item is not available.

PowerBuilder IDE provides no difference utility, but it allows you to select one that you have
already installed. Please make sure the utility itself is compatible with Git client 2.0 or later.
The recommended utilities and versions are:

• TortoiseGit 2.6.0.0

• Araxis Merge 2018.4988

• Beyond Compare 4.2.4

• DiffMerge 4.2.0

• ExamDiff Pro 9.0.1.8

• KDiff3 0.9.98

• SemanticMerge 2.0.120.0

• UltraCompare 18.00.0.47

• WinMerge 2.14.0.0

To select a utility for object comparison:

1. Right-click the workspace in the System Tree and select Properties from the pop-up
menu.

2. In the Properties of Workspace dialog box, select the Source Control tab, and then click
the Advanced button.

3. In the Source Control Advanced Settings dialog box, select Diff Viewer in the left panel,
then select the tool name from the list, specify the executable program of the tool, and
change the arguments if necessary.

4. Click OK.

The PowerBuilder Environment

Page 106

Figure 1.34: Source Control Advanced Settings

Method 1: To compare the local object with the version last sync with source control:

• Right-click the object in the System Tree and select Git Diff from the pop-up menu.

The difference utility displays the objects directly.

Method 2: To compare the local object with the version last sync with source control:

1. Right-click the object in the System Tree and select Git Commit (Revert, or Resolve)
from the pop-up menu.

2. In the Git Commit (Revert, or Resolve) dialog, double click an item from the object list
to view the differences.

You can view the differences of the item which is added, modified, locked, or conflicted
(but not deleted).

The PowerBuilder Environment

Page 107

The difference utility displays the objects and highlights the differences directly.

You can also compare the workspace file (.pbw) by right-clicking the workspace and
selecting Git Diff, or compare the target file (.pbt) by right-clicking the target and selecting
Git Diff, but you cannot compare the binary file such as the library file (.pbl).

1.3.3.11 Use branches

You can create a branch after the workspace is added to the Git source control.

To create a branch,

1. Right-click the workspace and select Git Create Branch from the pop-up menu.

2. In the Create Branch dialog, input the branch name you want to create, select whether to
base the new branch on HEAD or a chosen branch, and click OK.

To overwrite the branch if a branch with the same name already exists, select the "Force
if duplicate branch name exists" option.

The branch will be created in your local repository. You can use the Git Push menu to
commit the branch to the remote repository on the server, but note that the PBL file(s)
will not be uploaded to the server.

To switch to a branch,

1. Right-click the workspace and select Git Switch Branch from the pop-up menu.

2. In the Switch Branch dialog, select the branch you want to switch to and click OK.

If you switch to a remote branch (in most cases the one starting with "origin/"), you will
not be able to commit changes to the remote branch.

If you get a workspace which was added to Git using a third-party tool such as
TortoiseGit, you should commit the entire workspace from the PowerBuilder IDE to
Git immediately after you get it; otherwise the object or changes may be lost after you
switch the branch.

1.3.3.12 View/Edit the connection settings

After you add the workspace to Git using the Add to Source Control menu or get the
workspace from Git using the Connect to Workspace menu, you can view and edit the Git
connection settings in the Properties of Workspace dialog box; you can also remove and
restore the connection between the workspace and the source control server.

To view/edit the connection settings of the Git source control system:

1. Right-click the workspace in the System Tree and select Properties from the pop-up
menu.

2. Select the Source Control tab in the Properties of Workspace dialog box.

The PowerBuilder Environment

Page 108

3. Select Git from the Source Control System list.

Git is available from the list when the current workspace is under the Git source
control, for example, after the workspace is uploaded to Git using the Add to Source
Control menu (see Section 1.3.3.1, “Add a workspace to Git”), or after the workspace is
downloaded from Git using the Connect to Workspace menu (see Section 1.3.3.2, “Get a
workspace from Git”), or when PowerBuilder IDE detects that a .git sub-folder exists.

Figure 1.35: Source Control

4. View or change the connection settings for the selected source control system. Note that
User ID and Password are used by all workspaces, but the other settings are not.

User ID and Password/Token: User credentials for logging into the source control
system. These settings can be changed here.

Repository URL: A URL that points to the repository on the source control server. This
setting can be changed here.

The PowerBuilder Environment

Page 109

Local Root Directory: A local path where all the files that you add to or get from source
control must reside. This setting is read-only and cannot be changed here.

Author and Email: Author information that will be used when committing objects. These
settings can be changed here.

5. Click OK.

To remove/restore the connection settings from the Git source control system:

1. If you select None from the Source Control System list and click OK, PowerBuilder will
remove the connection between the workspace and the source control server.

2. If you move the workspace to a new location and then select Git from the Source
Control System list and click OK, PowerBuilder will restore connections between the
workspace and the source control server.

Besides that, if a workspace is under source control using a third-party tool such as
TortoiseGit, you can open the workspace (make sure the .git sub-folder exists) and
then select Git from the Source Control System list to establish connections between
the workspace and the source control server in the PowerBuilder IDE. Notice that the
objects are marked with this icon which means the objects are not yet under source
control in PowerBuilder IDE, so you should commit the entire workspace to add it under
source control, and so the "ws_objects" folder is successfully created and uploaded
to Git. The "ws_objects" folder is essential for correctly identifying the status of the
PowerBuilder objects during the source control management process.

1.3.3.13 View the status of source-controlled objects

After a workspace is successfully added to the Git source control, icons in the PowerBuilder
System Tree display the source control status of all objects in the workspace.

The icons and their meanings are described in the following tables.

Table 1.21: Git source control status icons in PowerBuilder

Icon Git source control status of object displaying icon

The object resides only locally and is not under source control.

The object is under source control. The object on the local computer is in
sync with the object on the server.

The object is under source control. The object on the local computer is
changed, and is not committed to the server.

The object is under source control. The object on the local computer conflicts
with the object on the server.

1.3.4 Using source control systems via SCC API

1.3.4.1 Using a source control system with PowerBuilder

PowerBuilder provides a direct connection to external SCC-compliant source control
systems. It no longer requires you to register PowerBuilder objects in a separate work PBL
before you can check them into or out of the source control system.

The PowerBuilder Environment

Page 110

For information on upgrading PowerBuilder applications and objects previously checked
into source control through a registered PBL, see Upgrading existing projects under source
control.

Before you can perform any source control operations from PowerBuilder, you must set up a
source control connection profile for your PowerBuilder workspace, either from the System
Tree or from the Library painter. Even if you use the PBNative check in/check out utility,
you must access source-controlled objects through an SCC interface that you define in the
Workspace Properties dialog box.

The source control connection profile assigns a PowerBuilder workspace to a source
control project. Setting up a source control project is usually the job of a project manager or
administrator. See Project manager's tasks [73].

Creating a new source control project

Although you can create a project in certain source control systems directly from
PowerBuilder, it is usually best to create the project from the administrative tool for
your source control system before you create the connection profile in PowerBuilder.

1.3.4.1.1 Setting up a connection profile

In PowerBuilder you can set up a source control connection profile at the workspace level
only. Local and advanced connection options can be defined differently on each computer for
PowerBuilder workspaces that contain the same targets.

Local connection options

Local connection options allow you to create a trace log to record all source control activity
for your current workspace session. You can overwrite or preserve an existing log file for
each session.

You can also make sure a comment is included for every file checked into source control
from your local computer. If you select this connection option, the OK button on the Check
In dialog box is disabled until you type a comment for all the objects you are checking in.

The following table lists the connection options you can use for each local connection profile:

Table 1.22: Source control properties for a PowerBuilder workspace

Select this option To do this

Log All Source Management
Activity (not selected by default)

Enable trace logging. By default the log file name is
PBSCC190.LOG, which is saved in your workspace
directory, but you can select a different path and file
name.

Append To Log File (default
selection when logging is enabled)

Append source control activity information to named
log file when logging is enabled.

Overwrite Log File (not selected by
default)

Overwrite the named log file with source control
activity of the current session when logging is enabled.

Require Comments On Check
In (not selected by default; not
available for PBNative source
control)

Disable the OK button on the Check In dialog box until
you type a comment.

The PowerBuilder Environment

Page 111

Select this option To do this

This Project Requires That I
Sometimes Work Offline (not
selected by default)

Disable automatic connection to source control when
you open the workspace.

Delete PowerBuilder Generated
Object Files (not selected by
default)

Remove object files (such as SRDs) from the local
directory after they are checked into source control.
This may increase the time it takes for PowerBuilder to
refresh source control status, but it minimizes the drive
space used by temporary files. You cannot select this
option for the Perforce, ClearCase, or Continuus source
control systems.

Perform Diff On Status Update Permit display of out-of-sync icons for local objects
that are different from objects on the source control
server. Selecting this also increases the time it takes
to refresh source control status. You cannot select this
option for Perforce.

Suppress prompts to overwrite
read-only files

Avoid message boxes warning that read-only files exist
on your local project directory.

Show warning when opening
objects not checked out

Avoid message boxes when opening objects that are
still checked in to source control.

Status Refresh Rate (5 minutes by
default)

Specifies the minimum time elapsed before
PowerBuilder automatically requests information from
the source control server to determine if objects are out
of sync. Valid values are between 1 and 59 minutes.
Status refresh rate is ignored when you are working
offline.

Advanced connection options

Advanced connection options depend on the source control system you are using to store
your workspace objects. Different options exist for different source control systems.

Applicability of advanced options

Some advanced options might not be implemented or might be rendered inoperable
by the PowerBuilder SCC API interface. For example, if an advanced option allows
you to make local files writable after an Undo Check Out operation, PowerBuilder
still creates read-only files when reverting an object to the current version in source
control. (PowerBuilder might even delete these files if you selected the Delete
PowerBuilder Generated Object Files option.)

To set up a connection profile

1. Right-click the Workspace object in the System Tree (or in the Tree view of the Library
painter) and select Properties from the pop-up menu.

2. Select the Source Control tab from the Workspace Properties dialog box.

3. Select the system you want to use from the Source Control System drop-down list.

The PowerBuilder Environment

Page 112

Only source control systems that are defined in your registry
(HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider
\InstalledSCCProviders) appear in the drop-down list.

4. Type in your user name for the source control system.

Some source control systems use a login name from your registry rather than the user
name that you enter here. For these systems (such as Perforce or PVCS), you can leave
this field blank.

5. Click the ellipsis button next to the Project text box.

A dialog box from your source control system displays. Typically it allows you to select
or create a source control project.

The dialog box displayed for PBNative is shown below:

Figure 1.36:

6. Fill in the information required by your source control system and click OK.

The Project field on the Source Control page of the Workspace Properties dialog box is
typically populated with the project name from the source control system you selected.
However, some source control systems (such as Perforce or Vertical Sky) do not return a
project name. For these systems, you can leave this field blank.

7. Type or select a path for the local root directory.

All the files that you check into and out of source control must reside in this path or in a
subdirectory of this path.

8. (Option) Select the options you want for your local workspace connection to the source
control server.

9. (Option) Click the Advanced button and make any changes you want to have apply to
advanced options defined for your source control system.

The Advanced button might be grayed if you are not first connected to a source control
server. If Advanced options are not supported for your source control system, you see

The PowerBuilder Environment

Page 113

only a splash screen for the system you selected and an OK button that you can click to
return to the Workspace Properties dialog box.

10. Click Apply or click OK.

1.3.4.1.2 Viewing the status of source-controlled objects

After a PowerBuilder workspace is assigned to an external SCC-compliant source control
project through a connection profile, icons in the PowerBuilder System Tree display the
source control status of all objects in the workspace. The same icons are also displayed for
objects in the Library painter if the workspace to which they belong is the current workspace
for PowerBuilder.

Source control icons

The icons and their meanings are described in the following tables.

Table 1.23: SCC-compliant source control status icons in PowerBuilder

Icon SCC-compliant source control status of object displaying icon

The object resides only locally and is not under source control.

The object is under source control and is not checked out by anyone. The
object on the local computer is in sync with the object on the server unless the
icon for indeterminate status also appears next to the same object.

The object is checked out by the current user.

The object is checked out by another user.

The current status of an object under source control has not been determined.
You are likely to see this icon only if the Perform Diff On Status Update
check box is not selected and if diffs are not performed for your source
control system based on version number. This icon can appear only in
conjunction with the icon for a registered object (green dot icon) or for an
object checked out by another user (red x icon).

The object on the local computer is registered to source control, but is out of
sync with the object on the server. This icon can also appear with the icon for
an object checked out by another user. The Perform Diff On Status Update
check box must be selected for this icon to display.

Compound icons with a red check mark can display only if your SCC provider permits
multiple user checkouts. These icons are described in the following table:

Table 1.24: Source control status icons with multiple checkouts enabled

Icon Source control status of object displaying icon

The object is under source control and is checked out nonexclusively by
another user. PowerBuilder allows a concurrent checkout by the current user.

The object is checked out by both the current user and another user.

The object is checked out nonexclusively by another user and the version in
the current user's local path is out of sync.

The PowerBuilder Environment

Page 114

For more information on allowing multiple user checkouts, see Checking objects out from
source control.

Pop-up menus

Pop-up menus for each object in the workspace change dynamically to reflect the source
control status of the object. For example, if the object is included in a source-controlled
workspace but has not been registered to source control, the Add To Source Control menu
item is visible and enabled in the object's pop-up menu. However, other source control menu
items such as Check In and Show Differences are not visible until the object is added to
source control.

Library painter Entry menu

Additional status functionality is available from the Entry menu of the Library painter.
Depending on the source control system you are using, you can see the owner of an object
and the name of the user who has the object checked out. For most source control systems,
you can see the list of revisions, including any branch revisions, as well as version labels for
each revision.

Library painter selections

When a painter is open, menu commands apply to the current object or objects in the
painter, not the current object in the System Tree. This can get confusing with the
Library painter in particular, since Library painter views list objects only (much like
the System Tree), and do not provide a more detailed visual interface for viewing
current selections, as other painters do.

To view the status of source-controlled objects

1. In a Library painter view, select the object (or objects) whose status you want to
determine.

2. Select Entry>Source Control>Source Control Manager Properties.

A dialog box from your source control system displays. Typically it indicates if the
selected file is checked in, or the name of the user who has the file checked out. It
should also display the version number of the selected object.

Displaying the version number in the Library painter

You can display the version number of all files registered in source control directly
in the Library painter. You add a Version Number column to the Library painter
List view by making sure the SCC Version Number option is selected in the Options
dialog box for the Library painter.

For more information, see Controlling columns that display in the List view.

1.3.4.1.3 Working in offline mode

Viewing status information offline

You can work offline and still see status information from the last time you were connected
to source control. However, you cannot perform any source control operations while you are

The PowerBuilder Environment

Page 115

offline, and you cannot save changes to source-controlled objects that you did not check out
from source control before you went offline.

To be able to work offline, you should select the option on the Source Control page of the
Workspace Properties dialog box that indicates you sometimes work offline. If you select this
option, a dialog box displays each time you open the workspace. The dialog box prompts you
to select whether you want to work online or offline.

For more information about setting source control options for your workspace, see Setting up
a connection profile.

About the PBC file

If you opt to work offline, PowerBuilder looks for (and imports) a PBC file in the local root
directory. The PBC file is a text file that contains status information from the last time a
workspace was connected to source control. PowerBuilder creates a PBC file only from a
workspace that is connected to source control. Status information is added to the PBC file
from expanded object nodes (in the System Tree or in a Library painter view) at the time you
exit the workspace.

If a PBC file already exists for a workspace that is connected to source control, PowerBuilder
merges status information from the current workspace session to status information already
contained in the PBC file. Newer status information for an object replaces older status
information for the same object, but older status information is not overwritten for objects in
nodes that were not expanded during a subsequent workspace session.

Backing up the PBC file

You can back up the PBC file with current checkout and version information by selecting the
Backup SCC Status Cache menu item from the Library painter Entry>Source Control menu,
or from the pop-up menu on the current workspace item in the System Tree. The Library
painter menu item is only enabled when the current workspace file is selected.

The Backup SCC Status Cache operation copies the entire contents of the refresh status cache
to the PBC file in the local project path whether the status cache is dirty or valid. To assure a
valid status cache, you can perform a Refresh Status operation on the entire workspace before
backing up the SCC status cache.

For information about refreshing the status cache, see Refreshing the status of objects.

1.3.4.1.4 Fine-tuning performance for batched source control requests

PowerBuilder uses an array of object file names that it passes to a source control system
in each of its SCC API requests. The SCC specification does not mention an upper limit
to the number of files that can be passed in each request, but the default implementation in
PowerBuilder limits SCC server requests to batches of 25 objects.

A PB.INI file setting allows you to override the 25-file limit on file names sent to the source
control server in a batched request. You can make this change in the Library section of the
PB.INI file by adding the following instruction:

SccMaxArraySize=nn

where nn is the number of files you want PowerBuilder to include in its SCC API batch calls.
Like other settings in the PB.INI file, the SccMaxArraySize parameter is not case sensitive.

The PowerBuilder Environment

Page 116

1.3.4.1.5 Configuring Java VM initialization

When you connect to a source control system, PowerBuilder instantiates a Java VM by
default. For certain SCC programs, such as Borland's StarTeam or Serena's TrackerLink, the
Java VM instantiated by PowerBuilder conflicts with the Java VM instantiated by the SCC
program. To prevent Java VM conflicts, you must add the following section and parameter
setting to the PB.INI file:

[JavaVM]
CreateJavaVM=0

By adding this section and parameter setting to the PB.INI file, you prevent PowerBuilder
from instantiating a Java VM when it connects to a source control system.

1.3.4.1.6 Files available for source control

The following schema shows a directory structure for files in the local PowerBuilder
workspace and on the source control server. File types in the local root path that can be
copied to the source control server from PowerBuilder are displayed in bold print. File types
displayed in normal print are not copied. Asterisks shown before a file extension indicate
variable names for files of the type indicated by the extension. The asterisk included in a
file extension is also a variable. The variable for the extension depends on the type of object
exported from a PBL, so it would be "w" for a window, "u" for a user object, and so on.

Figure 1.37: Directory structure in local path and source control server

Typically, the source control server files are stored in a database but preserve the file system
structure. Files in any deployment configuration directories can be regenerated automatically
by building and deploying the files in the Source directory.

Temporary files in local root path

When you add or check in a PowerScript object to source control, PowerBuilder first
exports the object as a temporary file (*.SR*) to your local target directory. For some
source control systems, you might choose to delete temporary files from the local root
path.

The PowerBuilder Environment

Page 117

1.3.4.2 Source control operations via SCC API in PowerBuilder

The following source control operations are described in this section:

• Adding objects to source control

• Checking objects out from source control

• Checking objects in to source control

• Clearing the checked-out status of objects

• Synchronizing objects with the source control server

• Refreshing the status of objects

• Comparing local objects with source control versions

• Displaying the source control version history

• Removing objects from source control

Source control operations on workspace and PBL files are performed on the objects
contained in the current workspace or in target PBLs, not on the actual PBW and PBL
files. The PBW and PBL files cannot be added to source control through the PowerBuilder
interface. Source control operations are not enabled for target PBD files or for any of the
objects in target PBD files.

1.3.4.2.1 Adding objects to source control

You add an object to your source control project by selecting the Add To Source Control
menu item from the object's pop-up menu in the System Tree or in the Library painter. You
can also select an object in a Library painter view and then select Entry>Source Control>Add
To Source Control from the Library painter menu bar.

What happens when you add objects to source control

When you add an object to source control, the icon in front of the object changes from a plus
sign to a green dot, indicating that the object on the local computer is in sync with the object
on the server.

PowerBuilder creates read-only object files in the local root directory for each PowerBuilder
object that you add to source control. These files can be automatically deleted if you
selected the Delete PowerBuilder Generated Object Files option as a source control
connection property (although you cannot do this for certain SCC systems such as Perforce or
ClearCase).

Read-only attributes are not changed by PowerBuilder if you later remove a workspace
containing these files from source control.

Adding multiple objects to source control

If the object you select is a PowerBuilder workspace, a dialog box displays listing all
the objects for that workspace that are not currently under source control (although the
workspace PBW and target PBLs are not included in the list). If the object you select is a
PowerBuilder target, and at least one of the objects in that target has not been registered with
the current source control project, PowerBuilder displays a dialog box that prompts you to:

The PowerBuilder Environment

Page 118

• Select multiple files contained in the target

• Register the target file only

If you select the multiple files radio button, another dialog box displays with a list of objects
to add to source control. A check box next to each object lets you select which objects you
want to add to source control. By default, check boxes are selected for all objects that are
not in your source control project. They are not selected for any object already under source
control.

Figure 1.38:

You can resize all source control dialog boxes listing multiple files by placing a cursor over
the edge of a dialog box until a two-headed arrow displays, then dragging the edge in the
direction of one of the arrow heads.

Selecting multiple files from a PBL

If you select Add To Source Control for a target PBL, you immediately see the list
of multiple files from that PBL in the Add To Source Control dialog box. There is
no need for an intervening dialog box as there is for a target or workspace, since you
cannot register a PBL file to source control from the PowerBuilder UI -- you can only
register the objects contained in that PBL.

You can also select multiple objects to add to source control from the List view of the Library
painter (without selecting a workspace, target, or PBL).

The Add To Source Control menu item is disabled for all objects that are registered in source
control except workspaces and targets. If you select the Add To Source Control menu item
for a workspace or target in which all the objects are already registered to source control,
PowerBuilder displays the Add To Source Control dialog box with an empty list of files. You
cannot add objects to your source control project that are already registered with that project.

Creating a mapping file for target PBLs

When you add a target or an object (in a target that is not under source control) to source
control, PowerBuilder creates a PBG file. A PBG file maps objects in a target to a particular
PBL in a PowerScript or .NET target. One PBG file is created per PBL, so there can be
multiple PBG files for these types of target.

The PowerBuilder Environment

Page 119

If a PBG file already exists for a target PBL containing the object you are adding to source
control, PowerBuilder checks the PBG file out of source control and adds the name of the
object to the names of objects already listed in the PBG file. It then checks the PBG file back
into source control.

The PBG files are used by PowerBuilder to make sure that objects are distributed to the
correct PBLs and targets when you check the objects out (or get the latest versions of the
objects) from source control.

If your source control system requires comments on registration and check-in, you get
separate message boxes for the PBG file and the objects that you are adding to source control.
If your source control system gives you the option of adding the same comments to all the
objects you are registering, you can still get additional message boxes for PBG files, since
PBG files are checked in separately.

Because it is possible for PBG files to get out of sync, it is important that the project manager
monitor these files to make sure they map all objects to the correct PBLs and contain
references to all objects in the source control project. However, you cannot explicitly check
in or check out PBG files through the PowerBuilder SCC API.

For more information on modifying PBG files, see Editing the PBG file for a source-
controlled target.

1.3.4.2.2 Checking objects out from source control

What happens on checking out an object

When you check out an object, PowerBuilder:

• Locks the object in the archive so that no one else can modify it -- unless your source
control system permits multiple user checkouts

• Copies the object to the directory for the target to which it belongs

• For a PowerScript object, compiles the object and regenerates it in the target PBL to which
it is mapped

• Displays a check mark icon next to the object in your System Tree and in your Library
painter to show that the object has been checked out

Checking out multiple objects

If you select the Check Out menu item for a PowerBuilder target that is not already checked
out, and at least one of the objects in that target is available for checkout, PowerBuilder
displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Check out the target file only

If you select the multiple file option, or if the target file is already checked out, the Check Out
dialog box displays the list of objects from that target that are available for checkout. A check
box next to each object in the list lets you choose which objects you want to check out. By
default, check boxes are selected for all objects that are not currently checked out of source
control.

The PowerBuilder Environment

Page 120

The Deselect All button in the Check Out dialog box lets you clear all the check boxes with
a single click. When none of the objects in the list is selected, the button text becomes Select
All, and you can click the button to select all the objects in the list.

You can also select multiple objects (without selecting a target) in the List view of the
Library painter. The PowerBuilder SCC API does not let you check out an object that you
or someone else has already checked out or that is not yet registered with source control. If
you use multiple object selection to select an object that is already checked out, PowerBuilder
does not include this object in the list view of the Check Out dialog box.

Multiple user checkout. Checking out an object from a source control system usually
prevents other users from checking in modified versions of the same object. Some source
control systems, such as Serena Version Manager (formerly Merant PVCS) and MKS Source
Integrity, permit multiple user checkouts. In these systems, you can allow shared checkouts
of the same object.

By default, PowerBuilder recognizes shared checkouts from SCC providers that support
multiple user checkouts. PowerBuilder shows a red check mark as part of a compound icon
to indicate that an object is checked out to another user in a shared (nonexclusive) mode. You
can check out an object in shared mode even though another user has already checked the
object out.

Managing multiple user check-ins

If you allow multiple user checkouts, the SCC administrator should publish a
procedure that describes how to merge changes to the same object by multiple users.
Merge functionality is not automatically supported by the SCC API, so checking in an
object in shared mode might require advanced check-in features of the source control
system. Merging changes might also require using the source control administration
utility instead of the PowerBuilder user interface.

If your SCC provider permits multiple user checkouts, you can still ensure that an item
checked out by a user is exclusively reserved for that user until the object is checked back in,
but only if you add the following instruction to the Library section of the PB.INI file:

[Library]
SccMultiCheckout=0

After you add this PB.INI setting, or if your SCC provider does not support multiple user
checkouts, you will not see the compound icons with red check marks, and all items will be
checked out exclusively to a single user. For source control systems that support multiple
user checkouts, you can re-enable shared checkouts by setting the SccMultiCheckout value to
1 or -1.

Creating a source control branch

If your source control system supports branching and its SCC API lets you check out a
version of an object that is not the most recent version in source control, you can select
the version you want in the Advanced Check Out dialog box (that you access by clicking
the Advanced button in the Check Out dialog box). When you select an earlier version,
PowerBuilder displays a message box telling you it will create a branch when you check
the object back in. You can click Yes to continue checking out the object or No to leave the
object unlocked in the source control project. If this is part of a multiple object checkout, you
can select Yes To All or No To All.

The PowerBuilder Environment

Page 121

If you want just a read-only copy of the latest version of an object

Instead of checking out an object and locking it in the source control system, you
can choose to get the latest version of the object with a read-only attribute. See
Synchronizing objects with the source control server.

To check out an object from source control:

1. Right-click the object in the System Tree or in a Library painter view and select Check
Out from the pop-up menu

or

Select the object in a Library painter view and select Entry>Source Control>Check Out
from the Library painter menu.

The Check Out dialog box displays the name of the object you selected. For PowerScript
objects, the object listing includes the name of the PBL that contains the selected object.

If you selected multiple objects, the Check Out dialog box displays the list of objects
available for checkout. You can also display a list of available objects when you select
a target file for checkout. A check mark next to an object in the list marks the object as
assigned for checkout.

2. Make sure that the check box is selected next to the object you want to check out, and
click OK.

1.3.4.2.3 Checking objects in to source control

When you finish working with an object that you checked out, you must check it back in
so other developers can use it, or you must clear the object's checked-out status.You cannot
check in objects that you have not checked out.

If you do not want to use the checked-out version

Instead of checking an entry back in, you can choose not to use the checked-out
version by clearing the checked-out status of the entry. See Clearing the checked-out
status of objects.

Checking in multiple objects

If you select the Check In menu item for a workspace, PowerBuilder lists all the objects in
the workspace that are available for check-in. If you select the Check In menu item for a
PowerBuilder target that is currently checked out to you, and at least one of the objects in that
target is also checked out to you, PowerBuilder displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Check in the target file only

If you select the multiple file option, or if the target file is not currently checked out to you,
the Check In dialog box displays the list of objects from that target that are available for you
to check in. A check box next to each object in the list lets you choose which objects you
want to check in. By default, check boxes are selected for all objects that you currently have
checked out of source control.

The PowerBuilder Environment

Page 122

The Deselect All button in the Check In dialog box lets you clear all the check boxes with a
single click. When none of the objects in the list is selected, the button text becomes Select
All, and you can click the button to select all the objects in the list.

You can also select multiple objects (without selecting a workspace or target) in the List view
of the Library painter. The PowerBuilder SCC API does not let you check in an object that
you have not checked out of source control. If you use multiple object selection to select an
object that is not checked out to you, PowerBuilder does not include this object in the list
view of the Check In dialog box.

To check in objects to source control

1. Right-click the object in the System Tree or in a Library painter view and select Check
In from the pop-up menu

or

Select the object in a Library painter view and select Entry>Source Control>Check In
from the Library painter menu.

The Check In dialog box displays the name of the object you selected. If you selected
multiple objects or a workspace, the Check In dialog box displays the list of objects
available for check-in. You can also display a list of available objects when you select
a target file. A check mark next to an object in the list marks the object as assigned for
check-in.

2. Make sure the check box is selected next to the object you want to check in and click
OK.

1.3.4.2.4 Clearing the checked-out status of objects

Sometimes you need to clear (revert) the checked-out status of an object without checking it
back into source control. This is usually the case if you modify the object but then decide not
to use the changes you have made. When you undo a checkout on an object, PowerBuilder
replaces your local copy with the latest version of the object on the source control server. For
PowerScript and .NET targets, it compiles and regenerates the object in its target PBL.

Clearing the status of multiple objects

If you select the Undo Check Out menu item for a PowerBuilder target that is checked out
to you, and at least one of the objects in that target is also checked out to you, PowerBuilder
displays a dialog box that prompts you to:

• Select multiple files contained in the target

• Undo the checked-out status for the target file only

If you select the multiple file option, or if the target file is not currently checked out to you,
the Undo Check Out dialog box displays the list of objects from that target that are locked by
you in source control. A check box next to each object in the list lets you choose the objects
for which you want to undo the checked-out status. By default, check boxes are selected for
all objects that are currently checked out to you from source control.

You can also select multiple objects (without selecting a target) in the List view of the
Library painter. The PowerBuilder SCC API does not let you undo the checked-out status of

The PowerBuilder Environment

Page 123

an object that you have not checked out of source control. If you use multiple object selection
to select an object that is not checked out to you, PowerBuilder does not include this object in
the list view of the Undo Check Out dialog box.

To clear the checked-out status of entries

1. Right-click the object in the System Tree or in a Library painter view and select Undo
Check Out from the pop-up menu

or

Select the object in a Library painter view and select Entry>Source Control>Undo
Check Out from the Library painter menu.

The Undo Check Out dialog box displays the name of the object you selected. If you
selected multiple objects, the Undo Check Out dialog box displays the list of objects in
the selection that are currently checked out to you. You can also display a list of objects
that are checked out to you when you select a target file.

2. Make sure that the check box is selected next to the object whose checked-out status you
want to clear, and click OK.

1.3.4.2.5 Synchronizing objects with the source control server

You can synchronize local copies of PowerBuilder objects with the latest versions of these
objects in source control without checking them out from the source control system. The
objects copied to your local computer are read-only. The newly copied PowerScript objects
are then compiled into their target PBLs.

If there are exported PowerScript files in your local path that are marked read-only, and
you did not select the Suppress Prompts To Overwrite Read-Only Files option, your
source control system might prompt you before attempting to overwrite these files during
synchronization. If you are synchronizing multiple objects at the same time, you can select:

• Yes To All, to overwrite all files in your selection

• No To All, to cancel the synchronization for all objects in the selection that have writable
files in the local path

Synchronizing an object does not lock that object on the source control server. After you
synchronize local objects to the latest version of these objects in source control, other
developers can continue to perform source control operations on these objects.

If you want only to check whether the status of the objects has changed on the source control
server, you can use the Refresh Status menu item from the Library painter Entry menu or
System Tree pop-up menus. The Refresh Status command runs on a background thread. If
you do not use the Refresh Status feature before getting the latest versions of workspace or
target objects, then PowerBuilder has to obtain status and out-of-sync information from the
SCC provider in real time during a GetLatestVersion call.

For more information, see Refreshing the status of objects.

To synchronize a local object with the latest source control version

1. Right-click the object in the System Tree or in a Library painter view and select Get
Latest Version from the pop-up menu

The PowerBuilder Environment

Page 124

or

Select the object in a Library painter view and select Entry>Source Control>Get Latest
Version from the Library painter menu.

The Get Latest Version dialog box displays the name of the object you selected. If you
selected multiple objects in the Library painter List view, the Get Latest Version dialog
box lists all the objects in your selection. If you selected a workspace, the Get Latest
Version dialog box lists all the objects referenced in the PBG files belonging to your
workspace. You can also display a list of available objects (from the PBG files for a
target) when you select the Get Latest Version menu item for a target file.

A check mark next to an object in the list assigns the object for synchronization. By
default only objects that are currently out of sync are selected in this list. You can
use the Select All button to select all the objects for synchronization. If all objects are
selected, the button text becomes Deselect All. Its function also changes, allowing you
to clear all the selections with a single click.

2. Make sure that the check box is selected next to the object for which you want to get the
latest version, and click OK.

1.3.4.2.6 Refreshing the status of objects

PowerBuilder uses the source control connection defined for a workspace to check
periodically on the status of all objects in the workspace. You can set the status refresh rate
for a workspace on the Source Control page of the Workspace Properties dialog box. You
can also select the Perform Diff on Status Update option to detect any differences between
objects in your local directories and objects on the source control server.

For more information about source control options you can set on your workspace, see
Setting up a connection profile.

PowerBuilder stores status information in memory, but it does not automatically update the
source control status of an object until a System Tree or Library painter node containing that
object has been expanded and the time since the last status update for that object exceeds the
status refresh rate.

Status information can still get out of sync if multiple users access the same source control
project simultaneously and you do not refresh the view of your System Tree or Library
painter. By using the Refresh Status menu item, you can force a status update for objects in
your workspace without waiting for the refresh rate to expire, and without having to open and
close tree view nodes containing these objects.

The Refresh Status feature runs in the background on a secondary thread. This allows you to
continue working in PowerBuilder while the operation proceeds. When the Refresh Status
command is executed, your SCC status cache is populated with fresh status values. This
allows subsequent operations like a target-wide synchronization (through a GetLatestVersion
call) to run much faster.

To refresh the status of objects

1. Right-click the object in the System Tree or in a Library painter view and select Refresh
Status from the pop-up menu

or

The PowerBuilder Environment

Page 125

Select the object in a Library painter view and select Entry>Source Control>Refresh
Status from the Library painter menu.

If the object you selected is not a workspace, target, or PBL file, the object status is
refreshed and any change is made visible by a change in the source control icon next to
the object. If you selected an object in a Library painter view, the status of this object in
the System Tree is also updated.

For information about the meaning of source control icons in PowerBuilder, see
Viewing the status of source-controlled objects.

2. If the object you selected in step 1 is a workspace or target file, select a radio button to
indicate whether you want to refresh the status of the selected file only or of multiple
files in the workspace or target.

3. If the object you selected in step 1 is a PBL, or if you selected the multiple files option
in step 2, make sure that the check box is selected next to the object or objects whose
status you want to refresh, and click OK.

Status is refreshed for every object selected in the Refresh Status dialog box. Any
change in status is made visible by a change in the source control icon next to the
objects (in the selected workspace, target, or PBL) that are refreshed.

1.3.4.2.7 Comparing local objects with source control versions

The PowerBuilder SCC API lets you compare an object in your local directory with a version
of the object in the source control archive (or project). By default, the comparison is made
with the latest version in the archive, although most source control systems let you compare
your local object to any version in the archive. Using this feature, you can determine what
changes have been made to an object since it was last checked into source control.

Setting up PBNative for object comparisons

PBNative does not have its own visual difference utility, but it does allow you to select one
that you have already installed. You must use only a 32-bit visual difference utility for the
object comparisons. You can select any or all of the following options when you set up the
utility to work with a PBNative repository:

Table 1.25: Object comparison options for use with PBNative

Option Select this if

Enclose file names in
double quotes

Your visual difference utility does not handle spaces in file
names.

Refer to local PBL entry
as argument #1

You do not want the visual difference utility to use the repository
object as the first file in a file comparison.

Generate short (8.3) file
names

Your visual difference utility does not handle long file names.

Generate an extra space
prior to file arguments

Your visual difference utility requires an extra space between
files that are listed as arguments when you open the utility from a
command line. This option was added for backward compatibility
only, as an extra space was automatically added by PowerBuilder
8.

The PowerBuilder Environment

Page 126

To set up PBNative for object comparisons

1. Right-click the Workspace object in the System Tree and click the Source Control tab in
the Workspace Properties dialog box.

PBNative should be your selection for the source control system, and you must have
a project and local root directory configured. If you are connected already to source
control, you can skip the next step.

2. Click Connect.

The Connect button is disabled if you are already connected to source control.

3. Click Advanced.

The PBNative Options dialog box displays.

4. Type the path to a visual difference utility followed by the argument string required by
your utility to perform a diff (comparison) on two objects.

Typically, you would add two %s parameter markers to indicate where PowerBuilder
should perform automatic file name substitution. The following figure shows a setting
used to call the Microsoft WinDiff utility:

Figure 1.39:

5. (Optional) Select any or all of the check box options in the PBNative Command Options
dialog box for your object comparisons.

6. Click OK twice.

You are now set to use your visual difference utility to compare objects on the local
computer and the server.

Using Show Differences to compare objects

You can select Show Differences from a pop-up menu or from the Library painter menu bar.
If the object you want to compare has not been added to the source control project defined for
your workspace, the Show Differences menu item is not available.

The PowerBuilder Environment

Page 127

To compare a local object with the latest source control version

1. Right-click the object in the System Tree or in a Library painter view and select Show
Differences from the pop-up menu

or

Select the object in a Library painter view and select Entry>Source Control>Show
Differences from the Library painter menu bar.

A dialog box from your source control system displays.

PBNative connections

Skip the next step if you are using a visual difference utility with PBNative. The
difference utility displays the files directly or indicates that there are no differences
between the files.

2. Select the source control comparison options you want and click OK.

Some source control systems support additional comparison functions. You may need
to run the source control manager for these functions. See your source control system
documentation for more information.

1.3.4.2.8 Displaying the source control version history

For some source control systems, the PowerBuilder SCC API lets you show the version
control history of an object in source control. Using this feature, you can determine what
changes have been made to an object since it was first checked into source control.

The Show History menu item is not visible if the object for which you want to display a
version history has not been added to the source control project defined for your workspace.
It is grayed out if your source control system does not support this functionality through the
PowerBuilder SCC API.

To display the source control version history

1. Right-click the object in the System Tree or in a Library painter view and select Show
History from the pop-up menu

or

Select the object in a Library painter view and select Entry>Source Control>Show
History from the Library painter menu bar.

A dialog box from your source control system displays.

2. Select the source control options you want and click OK.

Some source control systems support additional tracing and reporting functions for
objects in their archives. You may need to run the source control manager for these
functions. See your source control system documentation for more information.

1.3.4.2.9 Removing objects from source control

The PowerBuilder SCC API lets you remove objects from source control, although for
some source control systems, you may have to use the source control manager to delete the

The PowerBuilder Environment

Page 128

archives for the objects you remove. You cannot remove an object that is currently checked
out from source control.

You cannot delete a source-controlled object from a local PowerBuilder workspace before
that object has been removed from source control. There is no requirement, however, that
the source control archive be deleted before you delete the object from its PowerBuilder
workspace.

To remove objects from source control

1. Select the object in a Library painter view and select Entry>Source Control>Remove
From Source Control from the Library painter menu.

The Remove From Source Control dialog box displays the name of the object you
selected.

If you selected multiple objects or a workspace, the Remove From Source Control
dialog box displays the list of objects in your selection that are not currently checked
out from source control. You can also display a list of available objects when you select
the Remove From Source Control menu item for a target file. A check mark next to an
object in the list marks the object as assigned for removal from source control.

2. Make sure that the check box is selected next to the object you want to remove, and
click OK.

1.3.4.3 Initialization settings that affect source control

Settings for managing source control operations

In addition to the SccMaxArraySize described in Fine-tuning performance for batched source
control requests, and SccMultiCheckout described in Multiple user checkout, there are other
PB.INI parameters you can add that affect source control operations.

Table 1.26: PB.INI settings for source control purposes

PB.INI
parameter

Permitted
values

Description

SccCOImport full

inc

outofdate

full outofdate

inc outofdate

During checkout the default behavior is to import and
compile only the objects being checked out. You can make
the compile more inclusive by adding this parameter to the
initialization file and assigning either the "full" or "inc"
value to it. You can use the "outofdate" value to avoid
unnecessary import and compile operations.

For a fuller description of the permitted values, see the
following table.

SccUCImport full

inc

outofdate

full outofdate

inc outofdate

When you revert a checkout, the default behavior is to
refresh and compile only those objects in the local project
path that were originally checked out. You can make the
compile more inclusive by adding this parameter and
assigning either the "full" or "inc" value to it. You can use
the "outofdate" value to avoid unnecessary import and
compile operations.

The PowerBuilder Environment

Page 129

PB.INI
parameter

Permitted
values

Description

For the meaning of the permitted values, see the following
table.

SccGLImport full

inc

When you issue a GetLatestVersion call, the default
behavior is to refresh and compile only the objects in the
request. You can make the compile more inclusive by
adding this parameter and assigning a permitted value to it.

For the meaning of the permitted values, see the following
table.

SccRBImport full

inc

When you issue a checkout, get latest version, or undo
checkout call, images of the requested objects are exported
to a temporary directory. When refreshed objects fail to
compile, a dialog box asks whether you want to continue
with or cancel the operation for all objects that fail to
compile.

If you select Cancel, the older images for the objects that
fail to compile are reimported from the temporary directory
to the local project path. Whenever object images are rolled
back in this manner, you can force an incremental or full
compilation of the entire target by adding the SccRBImport
parameter and assigning a permitted value to it.

For the meaning of the permitted values, see the following
table.

SccMaxArraySizenn (positive
integer)

Allows you to override the 25-file limit on file names sent
to the source control server in a batched request. For more
information, see Fine-tuning performance for batched
source control requests.

SccCaseSensitive0 or 1 (1 is
default for
Telelogic
Synergy, 0 for
all other SCC
providers)

By default, PowerBuilder uses a case sensitivity setting that
is compatible with the SCC provider you are using. You
can override the default setting by adding this parameter
and assigning a different value. A value of 1 means
that object names checked into source control are case
sensitive, and a value of 0 means that they are not case
sensitive.

SccMultiCheckout0 or 1 (1 is
default for
SCC providers
that support
multiuser
checkouts, 0 for
providers that
do not support
multiuser
checkout)

If your SCC provider permits multiple user checkouts, you
can use this initialization parameter to ensure that an item
checked out by a user is exclusively reserved for that user
until the object is checked back in. For more information,
see Multiple user checkout.

The PowerBuilder Environment

Page 130

PB.INI
parameter

Permitted
values

Description

SccCheckoutNoLock0 or 1 (1 is
default for
MKS Source
Integrity, 0
for all other
providers

Based on known defaults for the SCC provider you are
using, PowerBuilder determines whether locks are added
in source control to objects that you check out. You can
override the default setting for some SCC providers by
adding this parameter and assigning a different value. If
the SCC provider permits checkouts of objects without
locking them, a value of 1 means that no locks are added
for objects that you check out. A value of 0 makes sure that
locks are added for these objects.

Permitted values for Import parameters

The following table describes the effect of permitted values for the SccCOImport,
SccUCImport, SccGLImport, and SccRBImport parameters in the PB.INI initialization file.
You can also add an import parameter without assigning it a value. This has the same effect
as the default behavior during checkout, undo checkout, get latest version, and rollback
operations.

Table 1.27: Permitted values for import parameters in the PB.INI file

Permitted
value

Description

full Forces a full build of the target after the requested source control operation
is completed.

For SccCOImport and SccUCImport, you can combine the "full" value with
the "outofdate" value to reduce the number of objects imported from the
local project path to the target PBLs before a full rebuild. You combine the
values by separating them with a single space, as shown in the following
example: SccUCImport= full outofdate.

For SccRBImport, if rollback fails for any reason, the build operation is not
performed.

inc Examines the entire target for additional objects that are descendants of
objects or have dependencies on the objects that are included in the initial
source control request. The dependent objects are compiled and regenerated
as part of an incremental build, along with the objects in the initial request.

For SccCOImport and SccUCImport, you can combine the "inc" value with
the "outofdate" value to reduce the number of objects imported from the
local project path to the target PBLs before an incremental rebuild. You
combine the values by separating them with a single space, as shown in the
following example: SccUCImport= inc outofdate.

For SccRBImport, if rollback fails for any reason, the build operation is not
performed.

outofdate Compares the exported object images to the source code in target PBLs
after an initial checkout or undo checkout operation. If the code in the PBLs

The PowerBuilder Environment

Page 131

Permitted
value

Description

is identical to the object images, the object images are not imported. The
source code for identical PBL objects is also not compiled unless you also
assign "full" or "inc" to the SccCOImport or SccUCImport parameters.

The "outofdate" value is not available for the SccGLImport and
SccRBImport parameters. Typically GetLatestVersion calls are made for
objects that are assumed to be out of sync, in which case the out-of-date
comparison is not expected to be useful. Also, object images that have
been rolled back should always be reimported and compiled to assure the
integrity of the target PBLs.

Settings for troubleshooting problems with source control

In addition to the initialization parameters that can help with managing source control
operations, there are also parameters you can use to troubleshoot problems with source
control. These parameters should not be used in normal operations. They should be used only
for diagnosing a problem with source control. The following table describes these parameters.

Table 1.28: PB.INI settings for troubleshooting

PB.INI
parameter

Permitted
values

Description

SccExtensions 0 or 1 (1 is
default)

Add this parameter and set it to 0 to disable
SccQueryInfoEx calls when your source control provider
supports this extension to the SCC API. You should do this
either to

Measure performance differences between SccDiff and
SccQueryInfoEx calls.

Test for incompatibilities between PowerBuilder clients
and SCC provider DLL implementations.

For more information about SccQueryInfoEx calls, see
Extension to the SCC API.

SccLogLevel 1 or 3 (1 is
default)

Add this parameter and set it to 3 to enable more detailed
tracing of SCC requests and the responses from the SCC
provider. Increased tracing detail requires more file
input and output, so this setting should be used only for
diagnosing problems.

SccMultithread 0 or 1 (1 is
default)

Add this parameter and set it to 0 to disable multithreading.
Disabling multithreading can cause significant delays
when first connecting to source control or when expanding
a node in the PowerBuilder System Tree, so this setting
should be used only to diagnose integration issues with a
specific provider or to work around a known defect.

SccDiffStrategy nn (positive
integer)

Depending on the capabilities of an SCC provider,
different strategies are used for determining whether

The PowerBuilder Environment

Page 132

PB.INI
parameter

Permitted
values

Description

a PBL object is out of sync with object files in the
SCC repository. By default, a comparison is made by
version number if the SCCQueryInfoEx API extension is
supported and the SccExtensions parameter is not set to 0.
Otherwise, a provider-specific backup strategy is used for
the object comparisons.

You can override the default comparison strategy by
adding the SccDiffStrategy parameter to the initialization
file and assigning an appropriate value to it. For more
information, see Comparison strategies [132].

Comparison strategies

By default, PowerBuilder uses the SCCQueryInfoEx API extension command to compare
objects in target PBLs with object files in a source control repository.

For more information on the SCCQueryInfoEx API extension command, see Extension to the
SCC API.

A backup strategy is set for SCC providers that do not support the API extension. The
default backup strategy for all SCC providers except ClearCase and Perforce is to issue
an SccDiff command. For ClearCase, the backup strategy compares the PBL object with
the local project path object file. For Perforce versions earlier than 2008, the strategy for
comparing differences first examines the SCC_STATUS_OUTOFDATE bit returned by the
SccQueryInfo command and then compares the PBL object with the local project page object
file.

You can override the default comparison strategy by adding the SccDiffStrategy parameter
to the initialization file and assigning a value to it from the following table. You can also
add the values together to use multiple comparison strategies, as long as those strategies are
supported by your SCC provider.

Perforce 2008 and later

The Perforce client behavior changed with the 2008 version. SccQueryInfo does not
return information about added objects to a Perforce 2008 depot. Therefore, for this
SCC client, it is best to perform full synchronizations from the Perforce management
utility or by using the OrcaScript scc refresh target <full> command. You also need to
add the SccDiffStrategy parameter to the initialization file and set its bit value to 08
to make sure that the source code in the target PBLs match the object files in the local
project path.

Table 1.29: SccDiffStrategy values for object comparison strategies

Parameter value Object comparison strategy

02 (default) Compares by version number (SCCQueryInfoEx) -- not supported by all
vendors

The PowerBuilder Environment

Page 133

Parameter value Object comparison strategy

04 Examines the SCC_STATUS_OUTOFDATE bit from the
SccQueryInfo command to determine which objects are out of sync

08 Compares the source code in the target PBLs with object files in the
local project path

16 Uses the SccDiff command in quiet mode

1.3.4.4 Modifying source-controlled targets and objects

Objects in targets under source control must be managed differently than the same objects in
targets that are not under source control.

1.3.4.4.1 Effects of source control on object management

You must check out a target file from source control before you can modify its properties. If
objects in a source-controlled target are not themselves registered in source control, you can
add them to or delete them from the local target without checking out the target. However,
you must remove a source-controlled object from the source control system before you can
delete the same object from the local copy of the target (whether or not the target itself is
under source control).

Although you can add objects to a source-controlled target without checking out the target
from source control, you cannot add existing libraries to the library list of a source-controlled
target unless the target is checked out.

For information on removing an object from source control, see Removing objects from
source control.

1.3.4.4.2 Opening objects checked in to source control

Although you can open objects in a PowerBuilder painter when they are checked in to source
control, until you check them out again, any changes you make to those objects cannot
be saved. By default, when you try to open an object under source control, PowerBuilder
provides a warning message to let you know when the object is not checked out. You can
avoid this type of warning message by clearing the "Suppress prompts to overwrite read-only
files" check box on the Source Control tab of the Workspace Properties dialog box.

If you did not change the default, you can still select a check box on the first warning
message that displays. After you select the "Do not display this message again" check
box in a warning message box and click Yes, the check box on the Source Control tab is
automatically cleared. This prevents warning messages from displaying the next time you
open objects that are checked in to source control. Although warning messages do not
display, you still cannot save any changes you make to these objects in a PowerBuilder
painter.

1.3.4.4.3 Copy and move operations on source-controlled objects

You cannot copy a source-controlled object to a destination PBL in the same directory as
the source PBL. Generally when you work with source control, objects with the same name
should not exist in more than one PBL in the same directory.

The PowerBuilder Environment

Page 134

Moving an object that is not under source control to a destination PBL having a source-
controlled object with the same name is permitted only when the second object is checked out
of source control.

You cannot move an object from a source PBL if the object is under source control, even
when the object has been checked out. The right way to move an object under source control
is described below.

To move an object under source control from one PBL to another

1. Export the object from the first PBL.

2. Remove the object from source control.

See Removing objects from source control.

3. Delete the object from the first PBL.

4. Import the object into the second PBL.

5. Register the object in source control once again.

1.3.4.4.4 Editing the PBG file for a source-controlled target

PowerBuilder creates and uses PBG files to determine if any objects present on a source
control server are missing from local PowerScript or .NET targets. Up-to-date PBG files
insure that the latest objects in source control are available to all developers on a project, and
that the objects are associated with a named PBL file.

Ideally, PBG files are not necessary. If the source control system exposes the latest additions
of objects in a project through its SCC interface, PowerBuilder can obtain the list of all
objects added to a project since the last status refresh. However, many source control systems
do not support this, so PowerBuilder uses the PBG files to make sure it has an up-to-date list
of objects under source control.

PBG files are registered and checked in to source control separately from all other objects
in PowerBuilder. They are automatically updated to include new objects that are added
to source control, but they can easily get out of sync when multiple users simultaneously
register objects to (or delete objects from) the same source control project. For example, it is
possible to add an object to source control successfully yet have the check-in of the PBG file
fail because it is locked by another user.

You cannot see the PBG files in the System Tree or Library painter unless you set the root
for these views to the file system. To edit PBG files manually, you should check them out
of source control using the source control manager and open them in a text editor. (If you
are using PBNative, you can edit PBG files directly in the server storage location, without
checking them out of source control.)

You can manually add objects to the PBG file for a PowerBuilder library by including a
new line for each object after the @begin Objects line. The following is an example of the
contents of a PBG file for a PBL that is saved to a subdirectory (target1) of the workspace
associated with the source control project:

The PowerBuilder Environment

Page 135

Figure 1.40:

1.3.4.5 Upgrading existing projects under source control

Upgrading from earlier versions of PowerBuilder

There are different strategies for upgrading existing source control projects from earlier
versions of PowerBuilder. To upgrade a target from PowerBuilder 8 or later, you can check
the target out from source control, then add the target to a workspace in the new version of
PowerBuilder. When the Migrate Application dialog box prompts you to migrate the libraries
in the application library list, click OK to begin the migration.

If you change the directory hierarchy for target libraries in the new version of PowerBuilder,
you should use the Existing Application target wizard to create a new target instead of adding
and upgrading a PowerBuilder 8 or later target. If you keep the old target file (PBT) in the
new target path, you must give the new target a different name or the wizard will not be able
to create a new PBT.

For information on using the Existing Application target wizard, see Using the Existing
Application target wizard.

When you open a PowerBuilder 8 or later workspace in the current version of PowerBuilder,
a dialog box prompts you to upgrade the workspace targets. If you select the No Prompting
check box and click OK, the target libraries are upgraded without additional prompting, and
the Migrate Application dialog box never displays. You can then add the migrated target
objects to source control from the new version of PowerBuilder.

For more information about upgrade, see Upgrading targets.

Removing PowerBuilder 8

If you remove PowerBuilder 8 from a computer where you have already installed
a later version of PowerBuilder, the setup program deletes the PBNative registry
entry. Subsequently, if you want to use PBNative source control with PowerBuilder
2019 R3, you must reregister PBNAT.dll. Attempting to use PBNative before
reregistering the DLL produces an error message that points out the problem and the

The PowerBuilder Environment

Page 136

solution. You can reregister the DLL by opening a DOS command box, changing to
the %AppeonInstallPath%\PowerBuilder [version]\IDE directory, and entering the
command REGSVR32 PBNAT.dll.

Removing PowerBuilder 9 or later does not remove the DLL or the registry entry for
PBNative source control.

Upgrading from PowerBuilder 7 or earlier

Upgrading an application from PowerBuilder 7 or earlier requires a different approach, since
workspaces and targets were introduced with PowerBuilder 8. You need to create a new
workspace and appropriate targets for any PowerBuilder 7 (or older) objects that you are
upgrading.

The strategies available to you or the project manager are:

• Using the Existing Application target wizard

• Importing source control files to a new library

To use the first strategy, you must keep a copy of the old version of PowerBuilder -- at least
until you have finished upgrading all your source-controlled PBLs.

1.3.4.5.1 Using the Existing Application target wizard

Source control in early PowerBuilder versions

Because workspaces and targets were not available in PowerBuilder prior to version 8, you
must use the Existing Application wizard to create targets for applications that you built with
PowerBuilder 7 or earlier PowerBuilder versions. A source control project in PowerBuilder 7
(or earlier PowerBuilder versions) was associated with a single application.

Beginning with PowerBuilder 8, source control is associated with a workspace that can have
multiple targets and applications.

If you keep a copy of your old version of PowerBuilder, you can check out your application
object and all other objects from source control to a work PBL. By checking out the objects
in the older version of PowerBuilder, you make sure that no one else makes changes to the
objects before you upgrade them to the current version of PowerBuilder.

Deciding on a directory hierarchy

You should decide on a directory hierarchy before you upgrade. PowerBuilder 7 and earlier
versions required you to keep all source-controlled files in a single directory. Beginning
with PowerBuilder 8, you can create subdirectories to contain each PBL in your library
list. Although this is not required, it is useful in that it keeps objects from different PBLs
separated in source control subprojects.

You must also decide whether to add a new target to an existing PowerBuilder workspace or
to a new workspace that you create specifically for the target. You can then use the Existing
Application target wizard to create a new target from the local copies of your registered PBLs
(making sure to select all the supporting PBLs for your application on the Set Library Search
Path page of the wizard). When you run the wizard, PowerBuilder prompts you to upgrade
the PBLs you select.

The PowerBuilder Environment

Page 137

After you have run the wizard and upgraded all the source-controlled PBLs, you can define
the source control connection profile for the workspace to point to the old source control
project if you want to maintain it, or to a new source control project if you do not. You
can then check in or add the upgraded objects to source control and delete the work PBL
containing the older versions of the objects. You do not need a separate work PBL in
PowerBuilder 9 or later.

To migrate a source control project using the Existing Application wizard

1. From your old version of PowerBuilder, check out your objects to a work PBL.

2. Decide on a new file hierarchy for the libraries in your application library list.

You can keep all the libraries in the same directory if you want, but it can be
advantageous to create separate subdirectories for each library in the list. If you plan to
share libraries among different targets, you should structure the directories so that the
common libraries are in the local root path of every target that uses them.

3. Create a new workspace in the new version of PowerBuilder, or open an existing
workspace in the new version of PowerBuilder.

4. Create a new target using the Existing Application wizard.

5. In the wizard, point to the PBL with an Application object and add all the helper PBLs
to the library search path.

PowerBuilder prompts you to upgrade the PBLs.

6. Click Yes to upgrade each library in the path.

7. Create a source connection profile for the workspace that points to the old source control
project or to a new project.

8. Check in the upgraded objects to source control if you are using the old source control
project, or add the upgraded objects to source control if you are using a new source
control project.

9. Delete the work PBL whenever you want.

1.3.4.5.2 Importing source control files to a new library

You can use your source control manager to check out all the old PowerBuilder objects to a
named directory or folder. If you plan to use the same project to store your upgraded objects,
you must make sure that the manager locks the files you check out of the source control
archive.

You can create a new target using the Application target wizard in a new or existing
workspace. The Application wizard lets you select or name a new PBL file to associate with
the target it creates. You can use the Target property sheet to list any additional PBLs you
want to associate with the target.

You can then import the files that you checked out of source control, distributing them as
needed to the libraries you associated with the new target. After importing the files, you can

The PowerBuilder Environment

Page 138

upgrade the target by right-clicking it in the System Tree and selecting Migrate from the
target pop-up menu. You should also do a full build of the target. After you have upgraded
and built the target, you can define the connection profile for the workspace to point to the
old source control project if you want to maintain it, or to a new source control project if you
do not.

Working with Targets

Page 139

2 Working with Targets
This part describes how to work with targets in painters, how to set properties for an
application, and how to manage PowerBuilder libraries.

2.1 Working with Targets

About this chapter

This chapter describes working with application, component, and .NET targets in the
development environment.

2.1.1 About targets

A target can be used to create:

• An executable application

A collection of PowerBuilder windows that perform related activities and that you deliver
to users.

An executable application can be a traditional client/server application that accesses
a database server or an application that acts as a client in a distributed application and
requests services from a server application.

• A .NET assembly or Web service (obsolete)

A custom class user object to be deployed to the .NET Framework.

The first step in creating a new application or component is to use a Target wizard, described
in Working with PowerBuilder.

Depending on the type of target you choose to create, the target can include only an
Application object or it can include additional objects. If the target requires connection to a
server or a SQL database, the Template Application wizard also creates a Connection object.

The Application object

All application, component, and .NET targets include an Application object. It is a discrete
object that is saved in a PowerBuilder library, just like a window, menu, function, or
DataWindow object. When a user runs the application, the scripts you write for events are
triggered in the Application object.

When you open an Application object in PowerBuilder, you enter the Application painter.

After you create the new target, you can open the Application object and work in the
Application painter to define application-level properties (such as which fonts are used by
default for text) and application-level behavior (such as what processing should occur when
the application begins and ends).

2.1.2 Working in painters

In PowerBuilder, you edit objects such as applications, windows, menus, DataWindow
objects, and user objects in painters. In addition to painters that edit objects, other painters

Working with Targets

Page 140

such as the Library painter and the Database painter provide you with the ability to work with
libraries and databases.

2.1.2.1 Opening painters

Painters that edit objects

There are several ways to open painters that edit objects:

Table 2.1:

From here You can

PowerBar Click New or Inherit (to create new objects)
or Open (to open existing objects)

Library painter Double-click an object or select Edit from the
object's pop-up menu

System Tree Double-click an object or select Edit from the
object's pop-up menu

Browser Select edit from an object's pop-up menu

Other painters

Most other painters are accessible from the New dialog box. Some are also available on the
PowerBar and from the Tools menu.

Select Target for Open

You may see the Select Target for Open dialog box if you use the same PBL in more
than one target. When you open an object in a PBL that is used in multiple targets,
PowerBuilder needs to set global properties for the specific target you are working on.
If you open the object from the Workspace page when the root is not set to the current
workspace, PowerBuilder asks you which target you want to open it in. A similar
dialog box displays if you select Inherit, Run/Preview, Regenerate, Print, or Search.

2.1.2.2 Painter summary

The PowerBuilder painters are:

Table 2.2:

Painter What you do

Application painter Specify application-level properties and scripts.

Database painter Maintain databases, control user access to databases, manipulate
data in databases, and create tables.

DataWindow painter Build intelligent objects called DataWindow objects that present
information from the database.

Data Pipeline painter Transfer data from one data source to another and save a pipeline
object for reuse.

Function painter Build global functions to perform processing specific to your
application.

Working with Targets

Page 141

Painter What you do

Library painter Manage libraries, create a new library, and build dynamic libraries.

Menu painter Build menus to be used in windows.

Project painter Create executable files, dynamic libraries, components, and
proxies.

Query painter Graphically define and save SQL SELECT statements for reuse
with DataWindow objects and pipelines.

SQLSelect painter Graphically define SQL SELECT statements for DataWindow
objects and pipelines.

Structure painter Define global structures (groups of variables) for use in your
application.

User Object painter
(visual)

Build custom visual objects that you can save and use repeatedly in
your application. A visual user object is a reusable control or set of
controls that has a certain behavior.

User Object painter
(nonvisual)

Build custom nonvisual objects that you can save and use
repeatedly in your application. A nonvisual user object lets you
reuse a set of business rules or other processing that acts as a unit
but has no visual component.

Window painter Build the windows that will be used in the application.

2.1.2.3 Painter features

Painters that edit objects

Most painters that edit PowerBuilder objects have these features:

Table 2.3:

Feature Notes

Painter window with
views

See Views in painters that edit objects.

Unlimited undo/redo Undo and redo apply to all changes.

Drag-and-drop
operations

Most drag-and-drop operations change context or copy objects.

To-Do List support When you are working in a painter, a linked item you add to the
To-Do list can take you to the specific location. See Using the To-
Do List.

Save needed indicator When you make a change, PowerBuilder displays an asterisk after
the object's name in the painter's Title bar to remind you that the
object needs to be saved.

Other painters

Most of the painters that do not edit PowerBuilder objects have views and some drag-and-
drop operations.

Working with Targets

Page 142

2.1.2.4 Views in painters that edit objects

Each painter has a View menu that you use for opening views. The views you can open
depend on the painter you are working in. Every painter has a default arrangement of views.
You can rearrange these views, choose to show or hide views, and save arrangements that
suit your working style. See Using views in painters.

Many views are shared by some painters, but some views are specific to a single painter. For
example, the Layout, Properties, and Control List views are shared by the Window, Visual
User Object, and Application painters, but the Design, Column Specifications, Data, Preview,
Export/Import Template for XML, and Export Template for XHTML views are specific to
the DataWindow painter. The WYSIWYG Menu and Tree Menu views are specific to the
Menu painter.

The following sections describe the views you see in many painters. Views that are specific
to a single object type are described in the chapter for that object.

Layout view

The Layout view shows a representation of the object and its controls. It is where you place
controls on an object and design the layout and appearance of the object.

Figure 2.1:

If the Properties view is displayed and you select a control in the Layout view or the Control
List view, the properties for that control display in the Properties view. If you select several
controls in the Layout view or the Control List view, the properties common to the selected
controls display in the Properties view.

Working with Targets

Page 143

Properties view

The Properties view displays properties for the object itself or for the currently selected
controls or nonvisual objects in the object. You can see and change the values of properties in
this view.

Figure 2.2:

The Properties view dynamically changes when you change selected objects or controls in the
Layout, Control List, and Non-Visual Object List views.

If you select several controls in the Layout view or the Control List view, the Properties
view says group selected in the title bar and displays the properties common to the selected
controls.

In the Properties view pop-up menu, you can select Labels On Top or Labels On Left to
specify where the labels for the properties display. For help on properties, select Help from
the pop-up menu.

If the Properties view is displayed and you select a nonvisual object in the Non-Visual Object
List view, the properties for that nonvisual object display in the Properties view. If you select
several nonvisual objects in the Non-Visual Object List view, the properties common to the
selected nonvisual objects display in the Properties view.

Script view

Working with Targets

Page 144

The Script view is where you edit the scripts for events and functions, define and modify
user events and functions, declare variables and external functions, and view the scripts for
ancestor objects.

Figure 2.3:

You can open the default script for an object or control by double-clicking it in the System
Tree or the Layout, Control List, or Non-Visual Object List views, and you can insert the
name of an object, control, property, or function in a script by dragging it from the System
Tree.

For information about the Script view, see Writing Scripts.

Control List view

The Control List view lists the visual controls on the object. You can click the Control
column to sort the controls by control name or by hierarchy.

Working with Targets

Page 145

Figure 2.4:

If you select one or more controls in the Control List view, the controls are also selected
in the Layout view. Selecting a control changes the Properties view and double-clicking a
control changes the Script view.

Event List view

The Event List view displays the full event prototype of both the default and user-defined
events mapped to an object. Icons identify whether an event has a script, is a descendant
event with a script, or is a descendant event with an ancestor script and a script of its own.

Figure 2.5:

Non-Visual Object List view

The Non-Visual Object List view is a list of nonvisual objects that have been inserted in
an Application object, window, or user object of any type. You can sort controls by control
name or ancestor.

Working with Targets

Page 146

Figure 2.6:

Function List view

The Function List view lists the system-defined functions and the object-level functions you
defined for the object. Icons identify whether a function has a script, is a descendant of a
function with a script, or is a descendant of a function with an ancestor script and script of its
own.

Figure 2.7:

Note that although the half-colored icon identifies the myfunc user-defined function as
having both an ancestor script and a script of its own, for a function this means that the
function is overridden. This is different from the meaning of a half-colored icon in the Event
List view.

Structure List view

The Structure List view lists the object-level structures defined for the object.

Working with Targets

Page 147

Figure 2.8:

If you double-click a structure in the Structure List view, the structure's definition displays in
the Structure view.

Structure view

The Structure view is where you edit the definition of object-level structures in the Window,
Menu, and User Object painters.

Figure 2.9:

2.1.3 About the Application painter

Views in the Application painter

The Application painter has several views where you specify properties for your application
and how it behaves at start-up. Because the Application painter is an environment for editing
a nonvisual object of type application, the Application painter looks like the User Object
painter for nonvisual user objects and it has the same views. For details about the views, how
you use them, and how they are related, see Views in painters that edit objects.

Application painter layout

Most of your work in the Application painter is done in the Properties view and the Script
view to set application-level properties and code application-level scripts. For information
about specifying properties, see Specifying application properties. For information about
coding in the Script view, see Writing Scripts.

Inserting nonvisual objects

You can automatically create nonvisual objects in an application by inserting a nonvisual
object in the Application object. You do this if you want the services of a nonvisual object

Working with Targets

Page 148

available to your application. The nonvisual object you insert can be a custom class or
standard class user object.

You insert a nonvisual object in an Application object in the same way you insert one in a
user object. For more information, see Using class user objects.

2.1.4 Specifying application properties

You specify application properties in the Application painter's Properties view.

To specify application properties:

1. In the Application painter, if the Properties view is not open, select View>Properties
from the menu bar.

With the exception of the AppName property, the properties on the General and Toolbar
tab pages can be modified in the Properties view and in scripts.

If you need help specifying properties in the Properties view, right-click on the
background of the Properties view and select Help from the pop-up menu.

2. Select the General or Toolbar tab page, or, on the General tab page, click the Additional
Properties button to display the Application properties dialog box.

The additional properties on the Application properties dialog box can be modified only
in this dialog box. They cannot be modified in scripts.

3. Specify the properties:

Table 2.4:

To specify this Use this tab page

Display name General tab page

Application has toolbar text and toolbar tips Toolbar tab page

Default font for static text as it appears in windows, user
objects, and DataWindow objects

Additional Properties (Text
Font)

Default font for data retrieved in a DataWindow object Additional Properties
(Column Font)

Default font for column headers in tabular and grid
DataWindow objects

Additional Properties
(Header Font)

Default font for column labels in freeform DataWindow
objects

Additional Properties
(Label Font)

Application icon Additional Properties (Icon)

Global objects for the application Additional Properties
(Variable Types)

RichTextEdit control for the application Additional Properties
(RichTextEdit)

UI Theme for the application Additional Properties
(Themes)

Working with Targets

Page 149

These sections have information about how you specify the following application properties
in the Application painter:

• Specifying default text properties

• Specifying an icon

• Specifying default global objects

• Specifying a rich text editor

• Specifying a theme for the application UI

2.1.4.1 Specifying default text properties

You probably want to establish a standard look for the text in your application. There are
four kinds of text whose properties you can specify in the Application painter: text, header,
column, and label.

PowerBuilder provides default settings for the font, size, and style for each of these and a
default color for text and the background. You can change these settings for an application in
the Application painter and override the settings for a window, user object, or DataWindow
object.

Properties set in the Database painter override application properties

If extended attributes have been set for a database column in the Database painter or
Table painter, those font specifications override the fonts specified in the Application
painter.

To change the text defaults for an application:

1. In the Properties view, click Additional Properties and select one of the following:

• Text Font tab

• Header Font tab

• Column Font tab

• Label Font tab

The tab you choose displays the current settings for the font, size, style, and color. The
text in the Sample box illustrates text with the current settings.

2. Review the settings and make any necessary changes:

• To change the font, select a font from the Font list.

• To change the size, select a size from the Size list or type a valid size in the list.

• To change the style, select a style (Regular, Italic, Bold, or Bold Italic) from the Font
styles list.

Working with Targets

Page 150

• To change font effects, select one or more from the Effects group box (Strikeout and
Underline).

• To change the text color, select a color from the Text Color list. (You do not specify
colors for data, headings, and labels here; instead, you do that in the DataWindow
painter.)

• To change the background color, select a color from the Background list.

Using custom colors

When specifying a text color, you can choose a custom color. You can define custom
colors in several painters, including the Window painter or DataWindow painter.

3. When you have made all the changes, click OK.

2.1.4.2 Specifying an icon

Users can minimize your application at runtime. If you specify an icon in the application
painter, the icon will display when the application is minimized.

To associate an icon with an application

1. In the Properties view, click Additional Properties and select the Icon tab.

2. Specify a file containing an icon (an ICO file).

The button displays below the Browse button.

3. Click OK to associate the icon with the application.

2.1.4.3 Specifying default global objects

PowerBuilder provides five built-in global objects that are predefined in all applications.

Table 2.5:

Global object Description

SQLCA Transaction object, used to communicate with your database

SQLDA DynamicDescriptionArea, used in dynamic SQL

SQLSA DynamicStagingArea, used in dynamic SQL

Error Used to report errors during execution

Message Used to process messages that are not PowerBuilder-defined
events and to pass parameters between windows

You can create your own versions of these objects by creating a standard class user object
inherited from one of the built-in global objects. You can add instance variables and
functions to enhance the behavior of the global objects.

Working with Targets

Page 151

For more information, see Working with User Objects.

After you do this, you can specify that you want to use your version of the object in your
application as the default, instead of the built-in version.

To specify the default global objects

1. In the Properties view, click Additional Properties and select the Variable Types tab.

The Variable Types property page displays.

2. Specify the standard class user object you defined in the corresponding field.

For example, if you defined a user object named mytrans that is inherited from the built-
in Transaction object, type mytrans in the box corresponding to SQLCA.

Figure 2.10:

3. Click OK.

Working with Targets

Page 152

When you run your application, it will use the specified standard class user objects as
the default objects instead of the built-in global objects.

2.1.4.4 Specifying a rich text editor

You can select from the three rich text editors supported by Appeon PowerBuilder. The
selected rich text editor will be applicable to the RichTextEdit control, the RichText
DataWindow object, and the RichText edit style.

To select a rich text editor:

1. In the Application painter, select the General tab page.

2. On the General tab page, click the Additional Properties button to display the
Application properties dialog box.

3. In the Application properties dialog box, select the RichTextEdit Control tab, and then
select a rich text editor.

You can select different rich text editors for 32-bit and 64-bit applications.

For 32-bit applications, you can choose from four editors: Built-in TX Text Control
ActiveX 15.0, Built-in TX Text Control ActiveX 28.0, Built-in Rich Edit Control
(Obsolete), and TX Text Control ActiveX 24.0 Professional/Enterprise.

For 64-bit applications, you can choose from two editors: Built-in TX Text Control
ActiveX 28.0, and Microsoft RichEdit Control.

For more information about the rich text editors, see Section 4.5.1.3, “Rich text
editors” in Application Techniques; and for feature difference of the rich text editor, see
Section 4.5.1.3.2, “Feature difference between TE Edit Control and TX Text Control”
in Application Techniques and Section 4.5.1.3.1, “Feature difference between TX
Text Control 28.0 (64-bit) and Microsoft RichEdit Control (64-bit)” in Application
Techniques.

4. Input a valid serial number if you selected to use the TX Text Control ActiveX 24.0
Professional/Enterprise editor.

5. Click OK.

2.1.4.5 Specifying a theme for the application UI

2.1.4.5.1 UI Theme

System themes

You can apply the following system themes to the window, DataWindow, and all visual
controls (except Line, Oval, Rectangle, RoundRectangle, Picture, PictureHyperLink, and
Animation) in your application.

• Flat Design Blue -- this theme is evolved from the Windows 10 style, featuring a flat
design style in contrasting to a prominent UI content. The window style is similar to that of

Working with Targets

Page 153

Windows 10. The controls are flattened, and the color is gray in the normal state, and blue
in the default state, making a more visually appealing and recognizable UI.

• Flat Design Dark -- this theme displays light white text on dark backgrounds, making the
information on the page more prominent and easy to read; and displays a blue auxiliary
color, making the page looks technical. The dark theme can lessen eye strain during the
night.

• Flat Design Grey -- this theme is based on the original PowerBuilder style. It retains most
of the color matching of the controls, and removes their 3D effect so they are flattened; the
window is displayed in a gray background, making the UI convenient for users to read and
improves user experience.

• Flat Design Silver -- this theme is a combination of the modern designs. The theme
removes the control border, and divides controls by shallow color blocks, making the UI
more concise and focused.

If no theme is applied or if the theme is unsupported for a control, the style of windows,
DataWindows, and controls will be determined by the settings in the PowerBuilder IDE or
script.

Table 2.6:

 Do not
use theme

Flat Design
Blue

Flat Design
Dark

Flat Design
Grey

Flat Design
Silver

Window
background
color

By IDE or
script

White Dark Grey White

Font color * By IDE or
script

Black White Black Silver Black

Control
background
color

By IDE or
script

White Black White White or
Shallow Color
Block

Button By IDE or
script

2D 2D 2D 2D

Border By IDE or
script

2D 2D 2D No Border

Border
thickness

1 pixel 1 pixel 1 pixel 1 pixel No Border

* The font related properties (except font color) are unsupported to be set by the theme.

The system themes are installed to %AppeonInstallPath%\PowerBuilder [version]\IDE
\theme. There are four subfolders in the "theme" folder by default; each represents a system
theme: Flat Design Blue, Flat Design Dark, Flat Design Grey, and Flat Design Silver. Each
subfolder contains the theme definition files of the corresponding theme, which are mainly
the following two types of files:

Working with Targets

Page 154

• theme.json file -- this is the master theme definition file which sets the visual appearance
(such as color, state, border, text etc.) of all supported elements of the window,
DataWindow and control. For more about the theme.json file, refer to Understanding the
theme.json file.

• numerous image files -- they are referenced in the theme.json file and used to make up the
visual elements (such as checked/unchecked/indeterminate/enabled/disabled/hover/pressed
state of the control etc.) in the theme.

Custom themes

You can add a new folder in the theme path to hold your custom themes. It is recommended
that you directly make a copy of an existing system theme folder and then make changes to
the copy. Make sure the copied folder contains the theme.json file, so the folder name will be
automatically recognized as the theme name and listed for selection in the Themes tab.

Note

If you directly make changes to the system theme, the changes may lose after you re-
install or upgrade PowerBuilder IDE.

Each individual control or object can have its own theme settings, for example, one button
can have theme settings different from the other buttons. And controls of the same type in the
same window/user object can have their own theme settings, for example, all group boxes in
one window can have theme settings different from the group boxes in the other window.

Therefore you can create custom themes to configure theme settings for a specific control or
object, or controls or objects of a specific type.

Unsupported

The dynamically created DataWindow is unsupported to have custom theme settings.

The dynamically created user object is unsupported to have custom theme settings.

To create custom themes and configure for a control or object:

1. Open the "%AppeonInstallPath%\PowerBuilder [version]\IDE\theme" directory, copy a
system theme folder, and rename it.

2. In your theme folder where the theme.json file exists, add one or more custom theme
definition files.

• The custom theme file must be named in this format: theme-[xxxx].json.

The file prefix must be "theme-", [xxxx] can be any text, and the extension must
be .json, for example, theme-control.json, theme-dw.json, etc.

• The settings in the file can be a subset or all of the theme.json file (see Understanding
the theme.json file for more about the theme.json file).

The nodes that host theme settings are the system object or control name (such as
"checkbox", "commandbutton" etc.) in theme.json; but the nodes that host theme

Working with Targets

Page 155

settings in the custom theme file must be the name that points to the specific object
or control (such as "w_main.uo_1.cb_1", "w_main$commandbutton" etc.) that will
apply the settings. For example,

{
 "meta-info":
 {
 "version":"190"
 },
 "w_main.uo_1.cb_1":
 {
 ...
 //Copy the settings from the "commandbutton" node
 //of the "theme.json" file and then modify.
 }
 "w_main$commandbutton":
 {
 ...
 //Copy the settings from the "commandbutton" node
 //of the "theme.json" file and then modify.
 }
 "w_main":
 {
 ...
 //Copy the settings from the "window" node
 //of the "theme.json" file and then modify.
 }
}

3. In the custom theme file, configure the theme settings for a specific control/object,
controls of the same type in the same window, a window, or a custom visual user object.

• A specific control or user object in the window must be referenced in this format:
[windowname].[...].[control-or-object-name], for example,

• A control in a window: w_main.cb_1

• A userobject in a window: w_main.uo_1

• An embedded userobject in a window: w_main.uo_1.uo_custom

• A control in a userobject: w_main.uo_1.cb_1

• A control in an embedded userobject: w_main.uo_1.uo_custom.cb_1

• A tab in a window: w_main.tab_1

• A tab in a userobject: w_main.uo_1.tab_1

• A tab in an embedded userobject: w_main.uo_1.uo_custom.tab_1

• A control in a tabpage: w_main.tab_1.tabpage_1.cb_1

• A control in a tabpage in a userobject: w_main.uo_1.tab_1.tabpage_1.cb_1

• A control in a tabpage in an embedded userobject:
w_main.uo_1.uo_custom.tab_1.tabpage_1.cb_1

Working with Targets

Page 156

• A control in a userobject in a tabpage: w_main.tab_1.tabpage_1.uo_1.cb_1

• A control in an embedded userobject in a tabpage:
w_main.tab_1.tabpage_1.uo_1.uo_custom.cb_1

• A userobject in a tabpage: w_main.tab_1.tabpage_1.uo_1

• An embedded userobject in a tabpage: w_main.tab_1.tabpage_1.uo_1.uo_custom

• A specific control or user object in the user object must be referenced in this format:
[userobjectname].[...].[control-or-object-name], for example,

• A control in a userobject: uo_base1.cb_1

• An embedded userobject in a userobject: uo_base1.uo_1 or uo_base2. See example
4 below.

• A control in an embedded userobject: uo_base2.cb_1 (the parent userobject must be
ignored). See example 5 below.

• A tab in a userobject: uo_base1.tab_1

• A tab in an embedded userobject: uo_base2.tab_1 (the parent userobject must be
ignored)

• A control in a tabpage: uo_base1.tab_1.tabpage_1.cb_1

• A control in a tabpage in an embedded userobject: uo_base2.tab_1.tabpage_1.cb_1
(the parent userobject must be ignored)

• Controls of the same type in the same window must be referenced in this format:
[windowname]$[controltype], for example, for all command buttons in w_main
window: w_main$commandbutton.

[controltype] must be the same values as those in theme.json, for example, checkbox,
commandbutton, datawindow, groupbox, ribbonbar, tab, userobject etc.

[userobject]$[controltype] is unsupported currently.

• A window must be referenced in this format: [windowname], for example, w_main.

• A user object must be referenced in this format: [userobjectname], for example,
uo_base1.

The user object indicates the custom visual user object only (not the external or
standard visual user objects).

However, the user object which is dynamically created via OpenTab or
OpenUserObject method is unsupported to have their own theme settings.

Example 1: to configure the theme settings for a specific button in a window:
w_main.uo_1.cb_1, add the following scripts in theme-[xxxx].json:

Working with Targets

Page 157

"w_main.uo_1.cb_1":
{
 ... //You should copy syntax in "commandbutton" node from "theme.json" file.
}

Example 2: to configure the theme settings for all group boxes in a window: w_main
$groupbox, add the following scripts in theme-[xxxx].json:

"w_main$groupbox":
{
 ... //You should copy syntax in "groupbox" node from "theme.json" file.
}

Example 3: to configure the theme settings for a window: w_main, add the following
scripts in theme-[xxxx].json:

"w_main":
{
 ... //You should copy syntax in "window" node from "theme.json" file.
}

Example 4: suppose uo_base2 is embedded (as name uo_1) in uo_base1, to configure
the theme settings for uo_1, add the following scripts in theme-[xxxx].json:

"uo_base1.uo_1":
{
 ...//You should copy syntax in "userobject" node from "theme.json" file.
}

Or

"uo_base2":
{
 ...//You should copy syntax in "userobject" node from "theme.json" file.
}

Example 5: suppose uo_base2 is embedded in uo_base1, to configure the theme settings
for a button contained in uo_base2, add the following scripts in theme-[xxxx].json (the
parent object uo_base1 must be omitted):

"uo_base2.cb_1":
{
 ...//You should copy syntax in "commandbutton" node from "theme.json" file.
}

Setting precedence

If there are multiple theme-[xxxx].json files, the settings in the last file in alphabetical
order will be searched and applied first.

If there are multiple settings defined for the same object/control, the settings will be
searched and applied in this order: setting configured for a specific control (in theme-
[xxxx].json) > setting for controls of the same type (in theme-[xxxx].json) > generic
setting for controls of the same type (in theme.json).

2.1.4.5.2 Applying a theme

You can apply a theme in the Application painter or by calling the ApplyTheme function.

Working with Targets

Page 158

To select a theme in the painter:

1. In the Application painter, select the General tab page.

2. On the General tab page, click the Additional Properties button to display the
Application properties dialog box.

3. In the Application properties dialog box, select the Themes tab, and then specify the
path for the theme files and select a theme from the list.

• Theme Path -- The default value for Theme Path is %AppeonInstallPath%
\PowerBuilder [version]\IDE\theme and this is where the system themes are stored.

Theme Path can be either set to an absolute path or a relative path. For example, it can
be an absolute path: D:\App1SourceCode\Themes, or a relative path that starts with ".
\", ".\..\", or a folder name: ".\Themes", ".\..\Themes" or "themes". The relative path is
relative to the location of the PBT file.

Note

In Windows system, the maximum length for a path is defined as 260 characters.
Therefore, it is recommended the theme path (including theme name) should be less
than 260 characters and the path alone (excluding theme name) should be less than
200 characters.

When the application is run from the IDE, it reads the theme files from the path
specified by Theme Path in the painter; but when the application's executable file is
run, the Theme Path setting in the painter will be ignored; instead it reads the theme
files from the "theme" folder under the root of the application installation directory
(for example, if the application is installed to C:\App1Executable\, then the theme
path is C:\App1Executable\theme). To summarize:

• At the development environment (when the app is run from the IDE): use the path
set in the Theme Path field.

• At the production environment (when the app's executable file is run): use the
"theme" folder under the same location of the application's executable file.

However, this will be a different case if the ApplyTheme function is used, as the
theme path and name set by the ApplyTheme function takes precedence over those
selected in the painter.

• Theme -- Four system themes are provided under the default path; each one is stored
in a sub-folder named after the theme: Flat Design Blue, Flat Design Dark, Flat
Design Grey, and Flat Design Silver. These four sub-folders will be overwritten when
you re-install or upgrade PowerBuilder IDE. Therefore, if you want to customize
the system theme, make sure to make a copy of the theme and then make changes
there, the custom theme will not be overwritten when PowerBuilder is re-installed or
upgraded.

• Restore button -- The Restore button is effective only when Theme Path is the default
path and the theme name is the system theme.

Working with Targets

Page 159

If restoring theme failed, make sure to close any theme files that are currently opened
and then click the Restore button to try again.

4. In the Preview section, take a quick look at how UI will look like after a theme is
applied.

5. Click OK.

To select a theme in the script:

Instead of specifying the theme to use in the Additional Properties of the application object,
you can set a theme dynamically in the script using the ApplyTheme method. The theme
path and name set by the ApplyTheme function takes precedence over those selected in the
painter.

• Call the ApplyTheme function in the application script to select a theme.

Best practice: 1) It is recommended to call the ApplyTheme function in the Application
Open event and before any child window is opened. 2) You can add an dialog box to the
application, where you provide end users the theme options to select by themselves.

You can specify no path, a relative path, or an absolute path (not recommended) in the
function.

When specifying no path:

ApplyTheme ("Flat Design Blue")

This script applies the "Flat Design Blue" theme (the theme name selected in the painter
will be ignored) and reads the theme files from the following path:

• At the development environment: the script reads the theme files from the Theme
Path set in the painter.

• At the production environment: the script reads the theme files from the "theme"
folder under the same location of the application's executable file.

When specifying a relative path:

ApplyTheme (".\themes\Flat Design Blue")

This script applies the "Flat Design Blue" theme (both the theme path and the theme
name selected in the painter will be ignored) and reads the theme files from the path
relative to the location of the PBT file (or the application's executable file).

When specifying an absolute path (not recommended):

ApplyTheme ("D:\App1SourceCode\themes\Flat Design Blue")

This script applies the "Flat Design Blue" theme (both the theme path and the theme
name selected in the painter will be ignored) and reads the theme files from "D:
\App1SourceCode\themes\" at both the development environment and the production
environment.

Working with Targets

Page 160

Note: absolute path is not recommended, because when it goes to the production
environment, it would be difficult to ensure the absolute path exists at every client
machine.

You can get the theme that is currently applied to the application using the GetTheme
function. For more, see Section 2.4.345, “GetTheme” in PowerScript Reference and
Section 2.4.28, “ApplyTheme” in PowerScript Reference.

2.1.4.5.3 Making the theme effective

The UI Theme takes effect only when the application is run, not at the painter or under
preview.

To make the theme effective:

1. Click the Run or Select and Run button on the PowerBar to run the application and
review the UI effect of the selected theme.

2. Or, run the compiled executable file of the application.

Disable the following options in PowerBuilder IDE or the Windows operating system as
they may prevent the selected theme working correctly:

• Disable the "Enable Windows Classic Style in the IDE" option in System Options and
the "Windows classic style" option in the project painter

When you run the application from the IDE or build the application in the project
painter, you should not select the Windows classic style option, otherwise, the
application UI will be rendered in the Windows classic style instead of the selected
theme.

• Avoid using the "Windows Classic" theme in the Windows operating system

When the application is run in the Windows system and if the Windows system theme
is set to "Windows Classic", then the application UI will be rendered in the Windows
Classic theme instead of the selected theme.

• Disable the "Use Windows XP style DPI scaling" option in Windows 7 and Windows
Server 2012

If the scaling percentage is set to 125% or lower, the "Use Windows XP style DPI
scaling" option will be automatically selected, which will prevent the selected theme
working correctly. In such case (125% or lower), you should manually uncheck the
"Use Windows XP style DPI scaling" option.

2.1.4.5.4 Packaging the theme

When the PowerBuilder application is deployed, the system DLLs such as pbtheme.dll and
pbjson.dll for supporting the UI Theme will be deployed automatically. However, you will
also need to manually copy the "theme" folder when creating the application installation
package, so that the theme definition files will be installed along with the application and will
be accessible to the application.

Working with Targets

Page 161

To package the theme folder:

• Manually copy the theme definition folder (just like copy the other resource files) to the
path according to how you apply the theme:

• If you have not specified the path in the ApplyTheme function (and no matter if you
have specified the theme path in the Application painter), copy the "theme" folder to
the same location of the application's executable file and place the theme definition
folder into the "theme" folder.

• If you have specified the relative path in the ApplyTheme function, then copy
the theme definition folder to the path relative to the location of the application's
executable file;

• If you have specified the absolute path in the ApplyTheme function, make sure the
theme definition folder exists in the specified path or change to use no path or the
relative path and then copy the theme folder according to the above instructions.

• If you have specified the theme path in the Application painter instead of using
the ApplyTheme function, copy the "theme" folder to the same location of the
application's executable file and place the theme definition folder into the "theme"
folder.

2.1.4.5.5 Turning off the theme

You can select or switch a theme in the painter or scripts easily, but to turn off the theme (to
not use any theme), you may need to do a little bit work, especially at runtime.

To turn off the theme:

• At design time: remove the ApplyTheme method from the scripts first, then select "Do
Not Use Themes" for the theme settings in the PowerBuilder painter, and then restart the
application for the change to take effect.

At runtime, use this workaround if you want to dynamically turn off the theme: create
a custom theme that has {“drawing”:false} for every control type, and use this theme in
the ApplyTheme method.

Important

Before switching between themes or turning off the theme thru the ApplyTheme
method, it is the best practice to prompt end users to reopen the current window, in
order to refresh the UI correctly.

2.1.4.5.6 Understanding the theme.json file

The "theme.json" file is the master theme definition file which contains all of the available
theme settings. It can be used as a template or example that shows how each supported
control and individual property can be set through a theme. The file is well structured and
shall be easy to follow. Here are a few points worth mentioning:

Working with Targets

Page 162

• Every supported control and their supported properties are listed and set with default
values (given as examples) in the theme.json file; and the unsupported control or properties
are not listed currently. The supported controls and properties are named literally so
developers can find and understand them easily.

• Developers are not recommended to directly adjust the property values in the theme.json
file, instead, they should create a custom theme file by copying the content from
theme.json and adjust the property values in the custom file to see the effects.

• "drawing"=true in each section means that the settings in the section will take effect after
you apply the theme. You can set the node to false if you want to use the "no-theme" style
for the settings in the section.

Note that the value for "drawing" can only be true or false (all letters in lower case).

• "border" can be set to 0, 1, or 2. Unless otherwise explained in this tutorial, 0 means
whether to draw borders relies on the Border setting in the PB IDE; 1 means that borders
will always be drawn; 2 means no border.

• The other node values will be either hex color value or specific image file to be assigned to
the node.

You will find that you can configure much more visual elements in the theme.json file for
your application than before. See Understanding what additional features provided by the
theme for the additional UI properties that you can set in the theme.json file.

2.1.4.5.7 Understanding what can be set by the theme

Since the application UI mechanism is very complicated, it is very important to understand
what the UI Theme can achieve and cannot achieve before you decide to apply the theme.

Windows and User Objects

Once a theme is applied, the UI settings of window and user object can be set by the theme
JSON file.

The theme settings for user object contain a "default-style" property to determine whether
"border-color" is effective. When "default-style" is true, "border-color" has no effect.

What can be set by the theme

• Background color, title bar, border, and system buttons (such as maximize, minimize and
restore buttons) of window and user object

• Menu, toolbar, and status bar of window and user object

• Scroll bar on the OLE control, user object, and window

• Font color of the window title

What cannot be set by the theme

• Windows system dialog (such as Save As dialog, Open dialog) and the PowerBuilder built-
in dialog (such as Filter dialog, Sort dialog)

Working with Targets

Page 163

• Menu which calls a third-party DLL (which may cause the application crash)

• Floating FrameBar and toolbar

• Font related properties (except font color)

• Dockable window (obsolete)

Controls

Once a theme is applied, the UI settings (mainly font color and background color) of controls
in the theme file have the highest priority; and the border (whether and what color to display)
varies from different controls.

What can be set by the theme

Background color and font color:

• The background color and the text font color of controls in the theme file have the highest
priority.

• The background of the following control is set to transparent by default in the theme file:
GroupBox, StaticText, and StaticHyperLink. If you want to set the background color of
them, you should first set "background-transparent" to false in the theme file.

Border:

• If the control has a border, then the border style is always StyleBox!, no matter if you have
set to StyleBox!, StyleLowered!, StyleRaised!, or StyleShadowBox in the painter.

• If the control has a border, then the border color in the theme file has the highest priority.

• The following control always has a border regardless whether Border is selected in the
painter: DatePicker, DropDownListBox, and DropDownPictureListBox. And you can set
their border color in the theme file.

• The following control always has a border although there is no Border property in the
painter or the theme file: CommandButton, PictureButton, and GroupBox. And you can set
their border color in the theme file.

• Whether the following control has a border is determined by the Border setting in the
painter: WebBrowser, InkEdit, InkPicture, SingleLineEdit, EditMask, MultiLineEdit,
RichTextEdit, ListBox, PictureListBox, ListView, TreeView, Graph, and MonthCalendar.
Dynamically setting the border property at runtime in the script has no effect.

• The following control has no border by default ("border"=0 in the theme file): StaticText
and StaticHyperLink. If you set "border"=1 in the theme file, then the border settings in the
painter determine whether and what color to display the border.

RibbonBar:

• The background color, border color, font color of the RibbonBar control and ribbon item
controls can be set in the theme file.

Working with Targets

Page 164

What cannot be set by the theme

• The theme is not effective to Line, Oval, Rectangle, RoundRectangle, Picture,
PictureHyperLink, and Animation.

• The theme is not effective to the OLE control or ActiveX control.

• RichTextEdit control is a third-party ActiveX control, so only the border of this control is
configurable in the theme file.

• The background color for the following controls is transparent: CheckBox and
RadioButton; it cannot be changed in the painter or the theme file. But when they are
placed on top of an unsupported control (such as Picture), their background color will not
be transparent and can be set in the painter.

• The lines that connect the tree items in the TreeView control will not display, even though
the HasLines property is enabled.

• The font related properties (except font color) cannot be set by the theme file.

• The ListView Header cannot be set by the theme file.

Workarounds

Take StaticText as an example. If a theme is applied, the font color and background color
of StaticText can only be set in the theme file, and cannot be dynamically changed by the
expression or the Modify method. If you want to set different font color or background color
for multiple StaticText controls, you will have to disable the UI Theme for this control first.
To disable the UI Theme for the StaticText control, change the value of "drawing" to false
under "statictext" in the theme file.

DataWindows

The UI settings of DataWindow set by the expression or the Modify method have higher
priorities than the theme file; except for the border and resizable properties whose settings in
the painter have higher priorities than the theme file.

What can be set by the theme

Background color and font color:

• When "background-color-enabled" is true in the theme file, the background color in the
theme file takes effect; when "background-color-enabled" is false in the theme file, the
background color in the painter takes effect.

• For the background color and font color of Column, Text, Computed Field, and GroupBox
controls, the settings in the expression or the Modify method have higher priorities than the
theme file. The settings in the painter have no effect.

• For the Header of Grid and CrossTab DataWindows, the background of the Text control is
transparent and the background color of the Header band is determined by the theme file.

Border:

Working with Targets

Page 165

• For the DataWindow border property, the settings in the painter have higher priorities than
the theme file. Dynamically setting the border property at runtime in the script will not
take effect.

• When the TitleBar property is disabled and the Border property is enabled in the painter,
border is rendered using the settings in the theme file; when both the TitleBar property and
the Border property are disabled in the painter, no border is rendered (the theme file has no
effect to the DataWindow title bar as well as its border).

• For controls in the DataWindow object, when "border"=0 in the theme file, the visibility
of the border is determined by the Border setting in the painter; if the Border setting
is selected in the painter, the border is displayed (with the style of StyleBox!) and the
border color can be set in the theme file; when "border"=1 in the theme file, controls in
the DataWindow object will have StyleBox! border, regardless of the border settings in
the painter; when "border"=2 in the theme file, controls in the DataWindow object will not
have border, regardless of the border settings in the painter.

Resizable:

• For the Resizable property, the settings in the painter have higher priorities than the theme
file: when enabled in the painter, DataWindow is not flattened; when disabled in the
painter, DataWindow is flattened. Dynamically setting the Resizable property at runtime in
the script will not take effect.

Presentation styles:

• The controls in the DataWindow are configured respectively in the theme file, except for
the Column, Text and Computed Field controls in the Grid and Crosstab DataWindow
which are configured under the "grid-style" and "cross-style" in the theme file.

• The DataWindow selected row is determined by the theme file, which are configured under
the "cross-style" for the Crosstab DataWindow, or configured under the "grid-style" for
DataWindows of other presentation styles.

What cannot be set by the theme

• The theme is not effective to the DataWindow with the following presentation style: Label,
Composite, OLE 2.0, and RichText.

• The theme is not effective to the DataWindow title bar.

• The theme is not effective to the DataWindow Button control if the button displays a
picture (system picture or custom picture).

• If a DataWindow control is dynamically created, it will be first rendered by the theme
file (rather than the definition in the Create statement), or changed later by the property
expression in the painter or the Modify method in the script.

• The color of the DataWindow band (except for the Header of Grid and Crosstab
DataWindows) is not configurable in the theme file; it is determined by the settings in the
painter.

Working with Targets

Page 166

• When printing or saving the DataWindow as PDF file, the theme will not take effect,
except for the Graph DataWindow.

• The border style is always StyleBox!. The following border styles are unsupported:
StyleLowered!, StyleRaised!, and StyleShadowBox.

• The CheckBox and RadioButton control on a DataWindow Column will have no border.

• The font related properties (except font color) cannot be set by the theme file.

• If DataWindow HSplitScroll is set to true, the height of HScrollBar groove and the width
of VScrollBar groove cannot be set by the theme file; they will have no effect and will use
the default values.

Workarounds

The following workaround takes the Text control for DataWindow as an example. If a theme
is applied, the font color, background color, and border of Text is set in the theme file. If you
want to set different background color for the Text controls in the header band and the detail
band, you can set it in the expression or the Modify method.

In the expression:

string ls_create,ls_error
dw_1.dataobject = "d_test2"
ls_create = 'create text(band=detail alignment="2" text="create" border="2" color="
 65280~t 65280" x="100" y="200" height="116" width="485" html.valueishtml="0"
 name=t_1 visible="1" font.face="MS Sans Serif" font.height="-16"
 font.weight="700" font.family="2" font.pitch="2" font.charset="0"
 background.mode="2" background.color=" 255~tif(1<>1,rgb(0,0,255),rgb(255,0,0))")'
ls_error = dw_1.modify(ls_create)

In the Modify method:

ls_error =dw_1.modify("t_1.color=' 65280'")

2.1.4.5.8 Understanding what additional features provided by the theme

The new UI Theme allows you to configure much more visual elements of the controls than
before. For example, you can configure the grid line in the CrossTab and Grid DataWindows,
or change the image for the box (of CheckBox), arrow (of DropDownListBox, EditMask etc.)
etc. The following lists the additional UI properties which you can set in the theme file.

RibbonBar:

• Configure the background color, border color, font color of the RibbonBar control and
ribbon item controls (JSON node: "ribbonbar").

Menu and status bar:

• Configure the menu (including menubar, popup menu, toolbar) and status bar of the
window and user object (JSON node: "menu" and "statusbar").

Grid line:

• Configure the line and color for the grid line of CrossTab and Grid DataWindow (JSON
node: "datawindow"->"cross-style" and "datawindow"->"grid-style").

Working with Targets

Page 167

Border color:

• Configure the border color of controls (JSON node: "border-color" under each control).

Background transparency:

• Configure a transparent background for GroupBox, StaticText, and StaticHyperLink
(JSON node: "background-transparent" under the control).

Graph:

• Configure the color for a graph (JSON node: "graph-colors").

Select row:

• Configure the text color and background color for the selected row in the DropDown edit-
style column in DataWindow (JSON node: "datawindow"->"dwo-column"->"dropdown-
type").

• Configure the text color and background color for the detail band of CrossTab and Grid
DataWindow (JSON node: "datawindow"->"cross-style" and "datawindow"->"grid-style").

Images:

• Configure the box for the CheckBox control and the CheckBox edit-style column in
DataWindow (JSON node: "checkbox" and "datawindow"->"dwo-column"->"checkbox-
type").

• Configure the radio for the RadioButton control and the RadioButton edit-style column
in DataWindow (JSON node: "radiobutton" and "datawindow"->"dwo-column"-
>"radiobuttons-type").

• Configure the arrow for the DropDown edit-style column in DataWindow (JSON node:
"datawindow"->"dwo-column"->"dropdown-type").

• Configure the arrow for the DatePicker, DropDownListBox, and
DropDownPictureListBox controls (JSON node: "datepicker", "dropdownlistbox", and
"dropdownpicturelistbox").

• Configure the arrow (up, down, and dropdown) for the EditMask control and the EditMask
edit-style column in DataWindow (JSON node: "editmask" and "datawindow" -> "dwo-
column" -> "editmask-type").

• Configure the left and right buttons for the HScrollBar control (JSON node: "hscrollbar").

• Configure the top and bottom buttons for the VScrollBar control (JSON node:
"vscrollbar").

• Configure the left, right, top, and bottom buttons for the Tab control (JSON node: "tab").

• Configure the foreground and background color for the slider and the image for thumb in
the HTrackBar and VTrackBar control (JSON node: "htrackbar" and "vtrackbar").

Working with Targets

Page 168

• Configure the image for the check box and the expanded and collapsed buttons in
TreeView (JSON node: "treeview").

• Configure the background color of toolbar (JSON node: "toolbar").

Example

PowerBuilder IDE provides no options for you to set the background color of toolbar; but
the theme file allows you to do that. In the theme file, find the "bitmap-background-color"
property under "toolbar" to set the background color of toolbar.

 "toolbar":
 {
 "border-color":"#CCCCCC",
 "background-color":"#E6E6E6",
 "grabbar-color":"#999999",
 "separator-color":"#BFBFBF",
 "arrow-color":"#666666",
 "bitmap-background-color":"#E6E6E6",

2.1.4.5.9 Understanding the event differences

With the UI Theme feature applied to an application, the application may be affected by the
following event differences:

• When the DataWindow adds the scroll bar, the DataWindow Resize event will be
automatically triggered (for one time) to refresh UI. We recommend you review the scripts
carefully in the DataWindow Resize event as the event will be triggered for one extra time.

• The ListBox Resize event will have to be triggered a few times automatically when the
ListBox control is painted according to the settings in the theme file. We recommend you
should not write scripts to the ListBox Resize event to avoid any issues as the event will be
repeatedly triggered a few times.

• The ListView GetFocus event must be triggered first before the ListView Clicked event
can be triggered. Therefore, please make sure to trigger the ListView GetFocus event first
if you want to trigger the ListView Clicked event.

2.1.5 Writing application-level scripts

When a user runs an application, an Open event is triggered in the Application object. The
script you write for the Open event initiates the activity in the application. Typically it sets up
the environment and opens the initial window.

When a user ends an application, a Close event is triggered in the Application object. The
script you write for the Close event usually does all the cleanup required, such as closing a
database or writing a preferences file.

If there are serious errors during execution, a SystemError event is triggered in the
Application object.

Batch applications

If your application performs only batch processing, all processing takes place in the
script for the application Open event.

Working with Targets

Page 169

The following table lists all events that can occur in the Application object. The only event
that requires a script is Open.

Table 2.7: Events in the Application object

Event Occurs when

Open The user starts the application.

Close The user closes the application. Typically, you write a script
for this event that shuts everything down (such as closing the
database connection).

SystemError A serious error occurs at runtime (such as trying to open
a nonexistent window). If there is no script for this event,
PowerBuilder displays a message box with the PowerBuilder
error number and message text. If there is a script, PowerBuilder
executes the script.

For more about error handling, see Handling errors at runtime.

Idle The Idle PowerScript function has been called and the specified
number of seconds has elapsed with no mouse or keyboard
activity.

2.1.5.1 Setting application properties in scripts

The Application object has several properties that specify application-level properties. For
example, the property ToolbarText specifies whether text displays on toolbars in an MDI
application.

You can reference these properties in any script in the application using this syntax:

AppName.property

For example, to specify that text displays on toolbars in the Test application, code this in a
script:

Test.ToolbarText = TRUE

If the script is in the Application object itself, you do not need to qualify the property name
with the application name.

Application name cannot be changed

The name of an application is one of the Application object's properties, but you
cannot change it.

For a complete list of the properties of the Application object, see Section 2.3,
“Application object” in Objects and Controls.

2.1.6 Specifying target properties

To set properties for a target, right-click the target in the System Tree and select Properties
from the pop-up menu.

Working with Targets

Page 170

Close all painters

The tab pages in the target properties dialog box are disabled if any painters are open.

All target types have Library List and Deploy tabs. If there is more than one project in the
target, you can use the Deploy tab page to specify which projects should be deployed and in
which order.For more information about setting deploy properties for workspaces and targets,
see Building workspaces.

.NET targets have a Run tab, where you select the project to be used for running and
debugging the target. .NET targets also have a .NET Assemblies tab that you use to
import .NET assemblies into the target.

2.1.6.1 Specifying the target's library search path

The objects you create in painters are stored in PowerBuilder libraries (PBLs). You can use
objects from one library or multiple libraries in a target. You define each library the target
uses in the library search path.

PowerBuilder uses the search path to find referenced objects at runtime. When a new
object is referenced, PowerBuilder looks through the libraries in the order in which they are
specified in the library search path until it finds the object.

On the Library List tab page of the Target Properties dialog box, you can modify the libraries
associated with the current target.

To specify the target's library search path

1. In the Workspace tab of the System Tree, right-click on the target containing your
application and select Library List from the pop-up menu.

The Target Properties dialog box displays the Library List tab page. The libraries
currently included in the library search path are displayed in the list.

2. Do one of the following:

• Enter the name of each library you want to include in the Library Search Path list,
separating the names with semicolons.

• Use the Browse button to include other libraries in your search path.

You must specify libraries using an absolute path. To change the order of libraries in the
search path, use the pop-up menu to copy, cut, and paste libraries.

Make sure the order is correct

When you select multiple libraries from the Select Library dialog box using Shift
+click or Ctrl+click, the first library you select appears last in the Library Search Path
list and will be the last library searched.

To delete a library from the search path, select the library in the list and use the pop-
up menu or press Delete.

Working with Targets

Page 171

3. Click OK.

PowerBuilder updates the search path for the target.

Where PowerBuilder maintains the library search path

PowerBuilder stores your target's library search path in the target (.pbt) file in a line
beginning with LibList; for example:

LibList "pbtutor.pbl;tutor_pb.pbl";

2.1.6.2 Importing .NET assemblies

Note

.NET Web Service target and .NET Assembly target are considered to be
obsolete in PowerBuilder. Obsolete features are still available to use, but are no
longer eligible for technical support and will no longer be enhanced.

You can import .NET assemblies into .NET targets from the .NET Assemblies page in the
Properties dialog box for the target. (Right-click on the target and select .NET Assemblies
from the pop-up menu.)

Click the Browse button to open the Browse for a .NET Assembly dialog box, from which
you can browse to import private assemblies with the .dll, .tlb, .olb, .ocx, or .exe extension.
To import an assembly, select it and click Open. To import multiple assemblies, you must
select and import them one at a time.

Click the Add button to open the Import .NET Assembly dialog box, from which you can
import a shared assembly into your target. Assemblies must have a strong name. A strong
name includes the assembly's identity as well as a public key and a digital signature. For
more information about assemblies and strong names, see the Microsoft library at https://
msdn.microsoft.com/en-us/library/wd40t7ad(v=vs.100).aspx.

To import an assembly, select it and click OK. To import multiple assemblies, you must
select and import them one at a time.

You can also use the Import .NET Assembly dialog box to import recently used assemblies.

Note

Starting from version 2019 R2, PowerBuilder Section 2.16, “DotNetAssembly object”
and Section 2.17, “DotNetObject object” objects are provided to call the functions
defined in the .NET class; and a tool called ".NET DLL Importer" is provided to help
developers write scripts to correctly call .NET functions.

System Tree display

The System Tree shows the classes, methods, structures, and enumerations for C# assemblies
that you import into your .NET targets. However, a language-related limitation affecting
managed C++ assemblies prevents the System Tree from displaying members of classes,
structures, and enumeration types. It also causes managed C++ classes to display as
structures.

https://msdn.microsoft.com/en-us/library/wd40t7ad(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/wd40t7ad(v=vs.100).aspx

Working with Targets

Page 172

By default, the full name of each class in an assembly is displayed in the System Tree. If you
prefer to show only the final name, add the following line to the [PB] section of your pb.ini
file:

SystemTree_DotNetFullName=0

For example, with this setting the Microsoft.SQLServer.Server.DataAccessKind class
in System.Data.dll displays as DataAccessKind. You can right-click the class and select
Properties from the pop-up menu to display the full class name.

2.1.7 Looking at an application's structure

If you are working with an application that references one or more objects in an application-
level script, you can look at the application's structure in the Browser.

To display the application's structure:

1. Click the Browser button on the PowerBar.

2. In the Browser, select the Uses tab page and select Expand All from the Application
object's pop-up menu.

PowerBuilder expands the display to show all the global objects that are referenced in a
script for the Application object. You can expand the display further as needed.

2.1.7.1 Which objects are displayed

The Browser's Uses tab page shows global objects that are referenced in your application.
It shows the same types of objects that you can see in the Library painter. It does not show
entities that are defined within other objects, such as controls and object-level functions.

Figure 2.11:

Working with Targets

Page 173

2.1.7.1.1 Which references are displayed

The Browser displays the following types of references when the Application object is
expanded.

Objects referenced in painters

These are examples of objects referenced in painters:

• If a menu is associated with a window in the Window painter, the menu displays when the
window is expanded.

• If a DataWindow object is associated with a DataWindow control in the Window painter,
the DataWindow object displays when the window is expanded.

• If a window contains a custom user object that includes another user object, the custom
user object displays when the window is expanded, and the other user object displays when
the custom user object is expanded.

Objects directly referenced in scripts

These are examples of objects referenced in scripts:

• If a window script contains the following statement, w_continue displays when the
window is expanded:

Open(w_continue)

Which referenced windows display in the Browser

Windows are considered referenced only when they are opened from within a script.
A use of another window's property or instance variable will not cause the Browser to
display the other window as a reference of the window containing the script.

• If a menu item script refers to the global function f_calc, f_calc displays when the menu is
expanded:

f_calc(EnteredValue)

• If a window uses a pop-up menu through the following statements, m_new displays when
the window is expanded:

m_new mymenu
mymenu = create m_new
mymenu.m_file.PopMenu(PointerX(), PointerY())

2.1.7.1.2 Which references are not displayed

The Browser does not display the following types of references.

Objects referenced through instance variables or properties

These are examples of objects referenced through instance variables or properties:

• If w_go has this statement (and no other statement referencing w_emp), w_emp does not
display as a reference for w_go:

Working with Targets

Page 174

w_emp.Title = "Managers"

Objects referenced dynamically through string variables

These are examples of objects referenced dynamically through string variables:

• If a window script has the following statements, the window w_go does not display when
the window is expanded. The window w_go is named only in a string:

window mywin
string winname = "w_go"
Open(mywin,winname)

• If the DataWindow object d_emp is associated with a DataWindow control dynamically
through the following statement, d_emp does not display when the window containing the
DataWindow control is expanded:

dw_info.DataObject = "d_emp"

2.1.8 Working with objects

In targets, you can:

• Create new objects

• Create new objects using inheritance

• Open existing objects

• Run or preview objects

After you create or open an object, the object displays in its painter and you work on it there.

2.1.8.1 Creating new objects

To create new objects, you use the New dialog box.

To create a new object:

1. Do one of the following:

• Click the New button in the PowerBar.

• Select File>New from the menu bar.

• On the Workspace tab of the System Tree, right-click on a workspace or target name
and select New from the pop-up menu.

2. In the New dialog box, select the appropriate tab page for the object you want to create.

You use icons on the PB Object tab page for creating new user objects, windows,
menus, structures, and functions.

Working with Targets

Page 175

3. Select an icon and click OK.

2.1.8.2 Creating new objects using inheritance

One of the most powerful features of PowerBuilder is inheritance. With inheritance, you can
create a new window, user object, or menu (a descendant object) from an existing object (the
ancestor object).

To create a new object by inheriting it from an existing object

1. Click the Inherit button in the PowerBar, or select File>Inherit from the menu bar.

2. In the Inherit From Object dialog box, select the object type (menu, user object, or
window) from the Object Type drop-down list. Then select the target as well as the
library or libraries you want to look in. Finally, select the object from which you want to
inherit the new object.

Figure 2.12:

Displaying objects from many libraries

To find an object more easily, you can select more than one library in the Libraries
list. Use Ctrl+click to select additional libraries and Shift+click to select a range.

3. Click OK.

The new object, which is a descendant of the object you chose to inherit from, opens in
the appropriate painter.

Working with Targets

Page 176

For more information about inheritance, see Understanding Inheritance.

2.1.8.3 Naming conventions

As you use PowerBuilder to develop your application, you create many different components
that require names. These components include objects such as windows and menus, controls
that go into your windows, and variables for your event and function scripts.

You should devise a set of naming conventions and follow them throughout your project.
When you are working in a team, this is critical to enforcing consistency and enabling others
to understand your code. This section provides tables of common naming conventions.
PowerBuilder does not require you to use these conventions, but they are followed in many
PowerBuilder books and examples.

All identifiers in PowerBuilder can be up to 255 characters long. The first few characters are
typically used to specify a prefix that identifies the kind of object or variable, followed by an
underscore character, followed by a string of characters that uniquely describes this particular
object or variable.

Object naming conventions

The following table shows common prefixes for objects that you create in PowerBuilder.

Table 2.8: Common prefixes for objects

Prefix Description

w_ Window

m_ Menu

d_ DataWindow

pipe_ Data Pipeline

q_ Query

n_ or
n_standardobject_

Standard class user object, where standardobject represents the type
of object; for example, n_trans

n_ or n_cst Custom class user object

u_ or
u_standardobject_

Standard visual user object, where standardobject represents the type
of object; for example, u_cb

u_ Custom visual user object

f_ Global function

of_ Object-level function

s_ Global structure

str_ Object-level structure

ue_ User event

Variable naming conventions

The prefix for variables typically combines a letter that represents the scope of the variable
and a letter or letters that represent its datatype. The following table lists the prefixes used to

Working with Targets

Page 177

indicate a variable's scope. The following table lists the prefixes for standard datatypes, such
as integer or string.

The variable might also be a PowerBuilder object or control. The following table lists
prefixes for some common PowerBuilder system objects. For controls, you can use the
standard prefix that PowerBuilder uses when you add a control to a window or visual user
object. To see these prefixes, open the Window painter, select Design>Options, and look at
the Prefixes 1 and Prefixes 2 pages.

Table 2.9: Prefixes that indicate the scope of variables

Prefix Description

a Argument to an event or function

g Global variable

i Instance variable

l Local variable

s Shared variable

Table 2.10: Prefixes for standard datatypes

Prefix Description

a Any

blb Blob

b Boolean

ch Character

d Date

dtm DateTime

dc Decimal

dbl Double

e Enumerated

i Integer

l Long

r Real

s String

tm Time

ui UnsignedInteger

ul UnsignedLong

Table 2.11: Prefixes for selected PowerBuilder system objects

Prefix Description

ds DataStore

Working with Targets

Page 178

Prefix Description

dw DataWindow

dwc DataWindowChild

dwo DWobject

env Environment

err Error

gr Graph

inet Inet

ir InternetResult

lvi ListViewItem

mfd MailFileDescription

mm MailMessage

mr MailRecipient

ms MailSession

msg Message

nvo NonVisualObject

tr Transaction

tvi TreeViewItem

2.1.8.4 Opening existing objects

You can open existing objects through the Open dialog box or directly from the System Tree.

To open existing objects

1. Click the Open button in the PowerBar or select File>Open from the menu bar.

When using the System Tree

To open an existing object directly from the System Tree, either double-click on the
object name or select Edit from the pop-up menu.

2. In the Open dialog box, select the object type from the Object Type drop-down list.
Then select the target as well as the library or libraries you want to look in. Finally select
the object you want to open.

Working with Targets

Page 179

Figure 2.13:

Displaying objects from many libraries

To find an object more easily, you can select more than one library in the Libraries
list. Use Ctrl+click to select additional libraries and Shift+click to select a range.

3. Click OK.

The object opens in the appropriate painter.

Accessing recently opened objects

You can quickly open recently opened objects by selecting File>Recent Objects from the
menu bar. The Recent Objects list includes the eight most recently opened objects by default,
but you can include up to 36 objects on the list.

To modify the number of recent objects

1. Select Tools>System Options from the menu bar.

2. On the General page of the System Options dialog box, modify the number for the
recent objects list.

2.1.8.5 Running or previewing objects

To run a window or preview a DataWindow object, you use the Run dialog box.

Working with Targets

Page 180

Using the System Tree

Instead of using the Run dialog box, you can right-click the object in the System Tree
and select Run/Preview from the pop-up menu.

To run or preview an object

1. Do one of the following:

• Click the Run/Preview Object button in the PowerBar.

• Select File>Run/Preview from the menu bar.

2. In the Run dialog box, select the object type from the Object Type drop-down list.

3. Select the target as well as the library or libraries you want to look in.

4. Select the object you want to run or preview and click OK.

The object runs or is previewed.

For more specific information on running a window, see Running a window.
For information on using the DataWindow painter's Preview view, see Defining
DataWindow Objects.

2.1.9 Using the Source editor

You can use the Source editor to edit the source of most PowerScript objects directly instead
of making changes to an object in a painter. You cannot edit the source of project or proxy
objects. The Source editor makes it unnecessary to export an object in order to edit it and then
import it, as you do with the file editor.

Caution: back up your objects

Although the Source editor provides a quick way to make global changes, you
should use it with caution, and you must be familiar with the syntax and semantics of
PowerScript source code before using the Source editor to change it.

Changes you make to an object's source code using the Source editor take effect
immediately when you save the object, before the code is validated. If an error
message displays in the Output window, you must fix the problem in the Source
editor before you close the editor. If you do not, you will not be able to open the
object in a painter.

Technical Support is not able to provide support if changes you make in the Source
editor render an object unusable. For this reason, Appeon strongly recommends that
you make backup copies of your PBLs or objects before you edit objects in the Source
editor.

You can open an object in the Source editor in one of several ways:

• Use the Open dialog box

• Select the Edit Source menu item in the System Tree or Library painter

Working with Targets

Page 181

• Select the Edit Source menu item in the Output window for a line that contains an error

Unlike the file editor, the Source editor cannot be opened independently. It can only be used
in conjunction with an object defined within a target in the current workspace. You cannot
open an object in the Source editor that is already open in a painter.

When you export an object and view the exported file in the file editor, a PBExportHeader
line displays at the beginning of the file. If you saved the object with a comment from the
object's painter, a PBExportComment also displays. The Source editor display is identical
to the display in the file editor except that the PBExport lines are not present in the Source
editor.

For more information on exporting objects, see Exporting and importing entries.

2.2 Working with Libraries

About this chapter

PowerBuilder stores all the PowerScript objects you create in libraries. This chapter describes
how to work with your libraries.

2.2.1 About libraries

Whenever you save an object, such as a window or menu, in a painter, PowerBuilder stores
the object in a library (a PBL file). Similarly, whenever you open an object in a painter,
PowerBuilder retrieves the object from the library.

Assigning libraries

Application and .NET targets can use as many libraries as you want. Libraries can be on your
own computer or on a server. When you create a target, you specify which libraries it uses.
You can also change the library search path for a target at any time during development.

For information about specifying the library search path, see Specifying the target's library
search path.

How the information is saved

Every object is saved in two parts in a library:

• Source form

This is a syntactic representation of the object, including the script code.

• Object form

This is a binary representation of the object, similar to an object file in the C and C++
languages. PowerBuilder compiles an object automatically every time you save it.

2.2.1.1 Using libraries

It is hard to predict the needs of a particular application, so the organization of a target's
libraries generally evolves over the development cycle. PowerBuilder lets you reorganize
your libraries easily at any time.

About library size

Working with Targets

Page 182

For small applications, you might use only one library, but for larger applications, you should
split the application into different libraries.

There are no limits to how large libraries can be, but for performance and convenience, you
should follow these guidelines:

• Number of objects

It is a good idea not to have more than 50 or 60 objects saved in a library. This is strictly
for your convenience; the number of objects does not affect performance. If you have
many objects in a library, list boxes that list library objects become unmanageable and the
System Tree and Library painter become more difficult to use.

• Balance

Managing a large number of libraries with only a few objects makes the library search
path too long and can slow performance by forcing PowerBuilder to look through many
libraries to find an object. Try to maintain a balance between the size and number of
libraries.

2.2.1.2 Organizing libraries

You can organize your libraries any way you want. For example, you might put all objects of
one type in their own library, or divide your target into subsystems and place each subsystem
in its own library.

Sharing objects with others

PowerBuilder provides basic source control using the PBNative check in/check out utility.
PBNative allows you to lock the current version of PowerBuilder objects and prevents others
from checking out these objects and modifying them while you are working on them.

The project administrator must design a directory hierarchy for the project's workspace.
The administrator might create a separate subdirectory for each target in the workspace,
or for each PBL in the workspace. After the administrator sets up the project and registers
every object in the workspace, individual developers copy a template workspace to their own
computers, open the workspace, and connect to source control.

PowerBuilder also provides a direct connection to external SCC-compliant source control
systems.

For more about using PBNative and other source control systems, see Using a source control
system with PowerBuilder.

2.2.2 Opening the Library painter

To open the Library painter:

• Click the Library button in the PowerBar or select Tools>Library Painter.

What you can do in the Library painter

In the Library painter, you can:

• Create a new library

Working with Targets

Page 183

• Create new objects in targets in your current workspace

• Copy, move, and delete objects in any library

• Open objects in libraries that are on a library list in the current Workspace to edit them in
the appropriate painters

• Upgrade, rebuild, and regenerate libraries in the current Workspace

• Control modifications to library objects by using check-out and check-in or use version
control systems

• Create a runtime library that includes objects in the current library and related resource
objects

• Open the containing folder of the selected workspace, target, or library

What you cannot do in the Library painter

You cannot upgrade or open objects in PowerBuilder libraries that are not on the library list.
You also cannot rename a library.

2.2.3 About the Library painter

Views in the Library painter

The Library painter has two views, the Tree view and the List view, that can display all the
files in your file system, not just PowerBuilder objects. You use the painter primarily for
displaying and working with workspaces, targets, library files (PBLs), and the objects they
contain.

The Tree and List views are available from the View menu. By default, the Library painter
displays one Tree view (on the left) and one List view (on the right). When the Library
painter opens, both the Tree view and the List view display all the drives on your computer,
including mapped network drives.

Figure 2.14:

Working with Targets

Page 184

Using the System Tree

The Workspace tab page in the System Tree works like a Tree view in the Library painter.
You can perform most tasks in either the System Tree or the Library painter Tree view, using
the pop-up menu in the System Tree and the pop-up menu, PainterBar, or menu bar in the
Library painter. When you have the System Tree and a Library painter open at the same time,
remember that the PainterBar and menu bar apply only to the Library painter.

Each time you click the Library painter button on the PowerBar, PowerBuilder opens a new
instance of the Library painter. One advantage of using the System Tree is that there is only
one instance of it that you can display or hide by clicking the System Tree button on the
PowerBar.

About the Tree view

The Tree view in the Library painter displays the drives and folders on the computer and the
workspaces, targets, libraries, objects, and files they contain. You can expand drives, folders,
and libraries to display their contents.

About the List view

The List view in the Library painter displays the contents of a selected drive, folder, or library
and has columns with headers that provide extra information. For libraries, the comment
column displays any comment associated with the library. For objects in libraries, the
columns display the object name, modification date, size, and any comment associated with
the object. You can resize columns by moving the splitter bar between columns, and you can
sort a column's contents by clicking the column header.

About sorting the Name column

When you click the Name column header repeatedly to sort, the sort happens in four
ways: by object type and then name, in both ascending and descending order, and by
object name, in both ascending and descending order. You might not easily observe
the four ways of sorting if all objects of the same type have names that begin with the
same character or set of characters.

Displaying items in the Tree view and the List view

Most of the time, you select a library in the Tree view and display the objects in that library
in the List view, but at any time, you can set a new root or move back and forward in the
history of your actions in the List view and the Tree view to display libraries or other items.
For more information, see Setting the root and Moving back, forward, and up one level.

Using custom layouts

You might find that having more than one Tree view or List view makes your work easier.
Using the View menu, you can display as many Tree views and List views as you need.

The following screen shows the Library painter with one Tree view and three List views.

Working with Targets

Page 185

Figure 2.15:

You can filter the objects in each of the List views so that one List view shows menus,
another windows, and another user objects. For information about filtering objects in a view,
see Filtering the display of objects.

To get this layout in the Library painter, use the View menu to display two more List views
and then manipulate the views to fit this layout. For information about opening and closing
views, manipulating views, returning to the default view layout, or saving your favorite
layouts, see Using views in painters.

View synchronization

Tree and List views are synchronized with each other. When you are using more than one
Tree view or List view, changes you make in one type of view are reflected in the last view
you touched of the other type. For example, when an item is selected in a Tree view, the
contents of that item display in the List view that you last touched. When you display new
contents in a List view by double-clicking an item, that item is selected in the Tree view you
last touched (if it can be done without resetting the root).

Each List view in the previous screen displays the contents of a different library because
three libraries were dragged from the Tree view and dropped in different List views. For
information about drag and drop, see Displaying libraries and objects.

2.2.4 Working with libraries

The Library painter is designed for working with PowerBuilder libraries.

2.2.4.1 Displaying libraries and objects

What you see in the views

In the Tree view, you can expand items and see the folders, libraries, or objects they contain.
The List view displays the contents of a selection in the Tree view.

Working with Targets

Page 186

To expand or collapse an item in the Tree view

• Double-click the item.

If the item contains libraries or objects, they display in the List view.

To display the contents of an item in the List view

• Select the item in the Tree view or double-click the item in the List view.

Using drag and drop to expand items

You can drag and drop items to expand them and see the contents.

If you drag an item from a Tree view or List view to a List view, the List view sets the item
as the root and displays its contents.

If you drag an item from a Tree view or List view to a Tree view, the Tree view expands to
display the dragged item.

For example, you can drag a library from the Tree view and drop it in the List view to quickly
display the objects the library contains in the List view. If you are using one Tree view and
multiple List views, you can drag a specific library from the Tree view to each List view so
each List view contains the contents of a specific library.

For information about using drag and drop to copy or move items, see Copying, moving, and
deleting objects.

2.2.4.2 Using the pop-up menu

Like other painters, the Library painter has a pop-up menu that provides options that apply
to the selected item in the Tree view or the List view. For example, from a library's pop-up
menu, you can delete, optimize, or search the library, print the directory, specify the objects
that display in the library, and import objects into it.

The actions available from an object's pop-up menu depend on the object type. For
PowerBuilder objects that you can work with in painters, you can edit the object in a painter
or in the Source editor, copy, move, or delete the object, export it to a text file, search it,
regenerate it, or send it to a printer. You can also preview and inherit from some objects. For
most of these actions, the object must be in a library in your current workspace.

Actions available from the pop-up menus are also available on the Entry menu on the menu
bar.

2.2.4.3 Controlling columns that display in the List view

You can control whether to display the last modification date, compilation date, size, SCC
version number, and comments (if a comment was created when an object or library was
created) in the List view.

The version number column in the Library painter list view remains blank if the source
control system for your workspace does not support the PowerBuilder extension to the SCC
API. If your source control system supports this extension and if you are connected to source
control, you can override the SCC version number of a PowerScript object in the local copy
directory through the property sheet for that object.

Working with Targets

Page 187

For more information about listing the SCC version number and overriding it through the
PowerBuilder interface, see Extension to the SCC API.

To control the display of columns in the List view

1. Select Design>Options from the menu bar.

2. On the General tab page, select or clear these display items: Modification Date,
Compilation Date, Sizes, SCC Version Number, and Comments.

2.2.4.4 Selecting objects

In the List view, you can select one or more libraries or objects to act on.

To select multiple entries

• In the List view, use Ctrl+click (for individual entries) and Shift+click (for a group of
entries).

To select all entries

• In the List view, select an object and click the Select All button on the PainterBar.

2.2.4.5 Filtering the display of objects

You can change what objects display in expanded libraries.

Settings are remembered

PowerBuilder records your preferences in the Library section of the PowerBuilder
initialization file so that the next time you open the Library painter, the same
information is displayed.

Specifying which objects display in all libraries

In the Tree and List views, the Library painter displays all objects in libraries that you
expand, as well as targets, workspaces, folders, and files. You can specify that the Library
painter display only specific kinds of objects and/or objects whose names match a specific
pattern. For example, you can limit the display to only DataWindow objects, or limit the
display to windows that begin with w_emp.

To restrict which objects are displayed

1. Select Design>Options from the menu bar and select the Include tab.

2. Specify the display criteria:

• To limit the display to entries that contain specific text in their names, enter the text in
the Name box. You can use the wildcard characters question mark (?) and asterisk (*)
in the string. The ? represents one character; an * represents any string of characters.
The default is all entries of the selected types.

Working with Targets

Page 188

• To limit the display to specific entry types, clear the check boxes for the entry types
that you do not want to display. The default is all entries.

3. Click OK.

The Options dialog box closes.

In the Tree view, expand libraries or select a library to display the objects that meet the
criteria.

Overriding the choices you made for a specific view

In either the Tree view or the List view, you can override your choice of objects that display
in all libraries by selecting a library, displaying the library's pop-up menu, and then clearing
or selecting items on the list of objects.

2.2.4.6 Creating and deleting libraries

A library is created automatically when you create a new target, but you can create as many
libraries as you need for your project in the Library painter.

To create a library

1. Click the Create button or select Entry>Library>Create from the menu bar.

The Create Library dialog box displays showing the current directory and listing the
libraries it contains.

2. Enter the name of the library you are creating and specify the directory in which you
want to store it.

The file is given the extension .PBL.

3. Click Save.

The library properties dialog box displays.

4. Enter any comments you want to associate with the library.

Adding comments to describe the purpose of a library is important if you are working on
a large project with other developers.

5. Click OK.

PowerBuilder creates the library.

To delete a library

1. In either the Tree view or the List view, select the library you want to delete.

2. Select Entry>Delete from the menu bar or select Delete from the pop-up menu.

Restriction

You cannot delete a library that is in the current target's library search path.

Working with Targets

Page 189

The Delete Library dialog box displays showing the library you selected.

3. Click Yes to delete the library.

The library and all its entries are deleted from the file system.

Creating and deleting libraries at runtime

You can use the LibraryCreate and LibraryDelete functions in scripts to create and
delete libraries. For information about these functions, see the Part I, “PowerScript
Reference”.

2.2.4.7 Filtering the display of libraries and folders

In either the Tree view or the List view, you can control what displays when you expand a
drive or folder. An expanded drive or folder can display folders, workspaces, targets, files,
and libraries.

To control display of the contents of drives and folders

• In either the Tree or List view, select a drive or folder, select Show from the pop-up
menu, and select or clear items from the cascading menu.

2.2.4.8 Working in the current library

In PowerBuilder, the current library is the library that contains the object most recently
opened or edited. That library becomes the default for Open and Inherit. If you click the Open
or Inherit button in the PowerBar, the current library is the one selected in the Libraries list.

You can display the current library in the Library painter.

To display objects in the current library

1. Click in the Tree view or the List view.

2. Click the Display Most Recent Object button on the PainterBar or select Most Recent
Object from the View menu.

The library that contains the object you opened or edited last displays in the view you
selected with the object highlighted.

2.2.4.9 Opening and previewing objects

You can open and preview objects in the current workspace.

Opening PowerBuilder objects

PowerBuilder objects, such as windows and menus, are opened only if they are in a PBL in
the current workspace.

To open an object

• In either the Tree view or the List view, double-click the object, or select Edit from the
object's pop-up menu.

Working with Targets

Page 190

PowerBuilder takes you to the painter for that object and opens the object. You can
work on the object and save it as you work. When you close it, you return to the Library
painter.

Opening other objects

The Library painter allows you to open most of the different file types it displays. When you
double-click on an object, PowerBuilder attempts to open it using the following algorithm:

• PowerBuilder determines if the object can be opened in the File editor. For example, files
with the extensions .txt, .ini, and .sr* open in the File editor.

• PowerBuilder determines if the object can be opened in a painter or HTML editor.

• PowerBuilder checks to see if the object is associated with a program in the
HKEY_CLASSES_ROOT section of the Windows registry and, if so, launches the
application.

Previewing PowerBuilder objects

You can run windows and preview DataWindow objects from the Library painter.

To preview an object in the Library painter

• Select Run/Preview from the object's pop-up menu.

2.2.4.10 Copying, moving, and deleting objects

As the needs of your target change, you can rearrange the objects in libraries. You can copy
and move objects between libraries or delete objects that you no longer need.

To copy objects using drag and drop

1. In the Tree view or the List view, select the objects you want to copy.

2. Drag the objects to a library in either view. If the contents of a library are displaying in
the List view, you can drop it there.

PowerBuilder copies the objects. If an object with the same name already exists,
PowerBuilder prompts you and if you allow it, replaces it with the copied object.

To move objects using drag and drop

1. In the Tree view or the List view, select the objects you want to move.

2. Press and hold Shift and drag the objects to a library in either view. If the contents of a
library are displaying in the List view, you can drop it there.

PowerBuilder moves the objects and deletes them from the source library. If an object
with the same name already exists, PowerBuilder prompts you and if you allow it,
replaces it with the moved object.

Working with Targets

Page 191

To copy or move objects using a button or menu item

1. Select the objects you want to copy or move to another library.

2. Do one of the following:

• Click the Copy button or the Move button.

• Select Copy or Move from the pop-up menu.

• Select Entry>Library Item>Copy or Entry>Library Item>Move from the menu bar.

The Select Library dialog box displays.

3. Select the library to which you want to copy or move the objects and click OK.

To delete objects

1. Select the objects you want to delete.

2. Do one of the following:

• Click the Delete button.

• Select Delete from the pop-up menu.

• Select Entry>Delete from the menu bar.

You are asked to confirm the first deletion.

Being asked for confirmation

By default, PowerBuilder asks you to confirm each deletion. If you do not want to
have to confirm deletions, select Design>Options to open the Options dialog box
for the Library painter and clear the Confirm on Delete check box in the General tab
page.

PowerBuilder records this preference as the DeletePrompt variable in the Library
section of the PowerBuilder initialization file.

3. Click Yes to delete the entry or Yes To All to delete all entries. Click No to skip the
current entry and go on to the next selected entry.

2.2.4.11 Setting the root

In either the Tree view or the List view, you can set the root location of the view.

To set the root of the current view

1. In either view, select View>Set Root from the menu bar or select Set Root from the pop-
up menu to display the Set Root dialog box.

Working with Targets

Page 192

Figure 2.16:

2. If you want the root to be a directory or library, type the path or browse to the path.

Setting the root to the current workspace

In the System Tree, the default root is the current workspace. If you prefer to work in the
Library painter, you may find it convenient to set the root to the current workspace. Using
the current workspace as your root is particularly helpful if you are using many libraries in
various locations, because they are all displayed in the same tree.

2.2.4.12 Moving back, forward, and up one level

You can also set a new root by moving back to where you were before, moving forward to
where you just were, or for the List view, moving up a level.

To move back, forward, or up one level

• Do one of the following:

• Select View>Back, View>Forward, or View>Up One Level from the menu bar.

• Select Back, Forward, or Up One Level from the pop-up menu.

The name of the location you are moving back to or forward to is appended to Back and
Forward.

2.2.4.13 Modifying comments

You can use comments to document your objects and libraries. For example, you might use
comments to describe how a window is used, specify the differences between descendant
objects, or identify a PowerBuilder library.

You can associate comments with an object or library when you first save it in a painter
and add or modify comments in the System Tree or Library painter. If you want to modify
comments for a set of objects, you can do so quickly in the List view.

To modify comments for multiple objects

1. In the List view, select the objects you want.

2. Select Entry>Properties from the menu bar or select Properties from the pop-up menu.

Working with Targets

Page 193

PowerBuilder displays the Properties dialog box. The information that displays is for
one of the objects you selected. You can change existing comments, or, if there are no
comments, you can enter new descriptive text.

3. Click OK when you have finished editing comments for this object.

If you do not want to change the comments for an object, click OK. The next object
displays.

4. Enter comments and click OK for each object until you have finished.

If you want to stop working on comments before you finish with the objects you
selected, click Cancel. The comments you have entered until the most recent OK are
retained and display in the List view.

To modify comments for a library

1. Select the library you want.

2. Click the Properties button or select Library from the pop-up menu.

3. Add or modify the comments.

2.2.5 Searching targets, libraries, and objects

Global search of targets

You can search a target to locate where a specified text string is used. For example, you could
search for:

• All scripts that use the SetTransObject function

• All windows that contain the CommandButton cb_exit (all controls contained in a window
are listed in the window definition's source form in the library so they can be searched for
as text)

• All DataWindow objects accessing the Employee table in the database

Working with targets

To see the pop-up menu that lets you perform operations on a target, such as search,
build, and upgrade, you must set the root of the System Tree or the view in the
Library painter to the current workspace.

Searching selected libraries and objects

You can also select a library or one or more PowerBuilder objects to search. The following
procedure applies whatever the scope of your search is.

To search a target, library, or object for a text string:

1. Select the target, library, or objects you want to search.

You can select multiple objects in the List view using Shift+click and Ctrl+click.

2. Select Search from the pop-up menu or the PainterBar.

Working with Targets

Page 194

The Search Library Entries dialog box displays.

Figure 2.17:

3. Enter the string you want to locate (the search string) in the Search For box.

The string can be all or part of a word or phrase used in a property, script, or variable.
You cannot use wildcards in the search string.

4. In the Display group box, select the information you want to display in the results of the
search.

5. In the Search In group box, select the parts of the object that you want PowerBuilder to
inspect: properties, scripts, and/or variables.

6. Click OK.

PowerBuilder searches the libraries for matching entries. When the search is complete,
PowerBuilder displays the matching entries in the Output window.

For example, the following screen displays the results of a search for the string
garbagecollect:

Figure 2.18:

From the Output window, you can:

• Jump to the painter in which an entry was created

Working with Targets

Page 195

To do this, double-click the entry or select it and then select Edit from the pop-up menu.

• Print the contents of the window

• Copy the search results to a text file

2.2.6 Optimizing libraries

You should optimize your libraries regularly. Optimizing removes gaps in libraries and
defragments the storage of objects, thus improving performance.

Optimizing affects only layout on disk; it does not affect the contents of the objects. Objects
are not recompiled when you optimize a library.

Once a week

For the best performance, you should optimize libraries you are actively working on
about once a week.

To optimize a library:

1. In either Tree view or List view, choose the library you want to optimize.

2. Select Entry>Library>Optimize from the menu bar or select Optimize from the library's
pop-up menu.

PowerBuilder reorganizes the library structure to optimize object and data storage and
index locations. Note that PowerBuilder does not change the modification date for the
library entries. PowerBuilder saves the unoptimized version as a backup file in the same
directory.

The optimized file is created with the default permissions for the drive where it is stored.
On some systems new files are not shareable by default. If you see "save of object
failed" or "link error messages after optimizing," check the permissions assigned to the
PBL.

If you do not want a backup file

If you do not want to save a backup copy of the library, clear the Save Optimized
Backups check box in the Library painter's Design>Options dialog box. If you clear
this option, the new setting will remain in effect until you change it.

2.2.7 Regenerating library entries

Occasionally you may need to update library entries by regenerating, rebuilding, or upgrading
them. For example:

• When you modify an ancestor object, you can regenerate descendants so they pick up the
revisions to their ancestor.

• When you make extensive changes to a target, you can rebuild entire libraries so objects
are regenerated sequentially based on interdependence.

• When you upgrade to a new version of PowerBuilder, you need to upgrade your targets.

Working with Targets

Page 196

• When you regenerate an entry, PowerBuilder recompiles the source form stored in the
library and replaces the existing compiled form with the recompiled form. You can
regenerate entries in the Library painter or by selecting regenerate from the object's pop-up
menu in the System Tree.

You can also regenerate and rebuild from a command line. For more information, see
Appendix B, The OrcaScript Language.

To regenerate library entries in the Library painter:

1. Select the entries you want to regenerate.

2. Click the Regenerate button or select Entry>Library Item>Regenerate from the menu
bar.

PowerBuilder uses the source to regenerate the library entry and replaces the current
compiled object with the regenerated object. The compilation date and size are updated.

Regenerating descendants

You can use the Browser to easily regenerate all descendants of a changed ancestor object.

To regenerate descendants:

1. Click the Browser button in the PowerBar.

The Browser displays.

2. Select the tab for the object type you want to regenerate.

For example, if you want to regenerate all descendants of window w_frame, click the
Window tab.

3. Select the ancestor object and choose Show Hierarchy from its pop-up menu.

The Regenerate item displays on the pop-up menu.

Figure 2.19:

Working with Targets

Page 197

4. Click the Regenerate item.

PowerBuilder regenerates all descendants of the selected ancestor.

For more about the Browser, see Browsing the class hierarchy.

Regenerate limitations

If you regenerate a group of objects, PowerBuilder will regenerate them in the
order in which they appear in the library, which might cause an error if an object is
generated before its ancestor. For this reason, you should use a full or incremental
build to update more than one object at a time.

2.2.8 Rebuilding workspaces and targets

When you make modifications to a target and need to update one or more libraries, you
should use a rebuild option to update all the library objects in the correct sequence.

Working with targets

To see the pop-up menu that lets you perform operations on a target such as search,
build, and upgrade, you must set the root of the System Tree or the view in the
Library painter to the current workspace.

There are two methods to use when you rebuild a workspace or target:

• Incremental rebuild

Updates all the objects and libraries that reference objects that have been changed since the
last time you built the workspace or target

• Full rebuild

Updates all the objects and libraries in your workspace or target

To rebuild a workspace:

• Do one of the following:

• Select Incremental Build Workspace or Full Build Workspace from the PowerBar.

• Select the Workspace in the System Tree or Library painter and select Incremental
Build or Full Build from the pop-up menu.

To rebuild a target:

• Do one of the following:

• Select the target in the Library painter and select Entry>Target>Incremental Build or
Entry>Target>Full Build from the menu bar.

• Select the target in the System Tree or Library painter and select Incremental Build or
Full Build from the pop-up menu.

Working with Targets

Page 198

2.2.9 Upgrading targets

When you upgrade to a new version of PowerBuilder, your existing targets need to be
upgraded to the new version. Typically, when you open a workspace that contains targets
that need to be upgraded, or add a target that needs to be upgraded to your workspace,
PowerBuilder prompts you to upgrade the targets. However, there are some situations when
you need to upgrade a target manually. For example, if you add a library that has not been
upgraded to a target's library list, you will not be able to open objects in that library until the
target has been upgraded.

You cannot upgraded a target that is not in your current workspace and you must set the root
of the System Tree or the view in the Library painter to the current workspace.

Before you upgrade

There are some steps you should take before you upgrade a target:

1. Use the Migration Assistant to check for obsolete syntax or the use of reserved words in
your code

2. Check the release notes for migration issues

3. Make backup copies of the target and libraries

4. Make sure that the libraries you will upgrade are writable

Always back up your PBLs before upgrading

Make sure you make a copy of your PBLs before upgrading. After migration, you
cannot open them in an earlier version of PowerBuilder.

The Migration Assistant is available on the Tool page of the New dialog box. For help using
the Migration Assistant, click the Help (?) button in the upper-right corner of the window and
click the field you need help with, or click the field and press F1. If the Migration Assistant
finds obsolete code, you can fix it in an earlier version of PowerBuilder to avoid errors when
you upgrade to the current version.

PowerBuilder libraries and migration

PowerBuilder libraries (PBLs) contain a header, source code for the objects in the PBL, and
binary code. There are two differences between PowerBuilder 10 and later PBLs and PBLs
developed in earlier versions of PowerBuilder:

• The source code in PowerBuilder 10 and later PBLs is encoded in Unicode (UTF-16LE,
where LE stands for little endian) instead of DBCS (versions 7, 8, and 9) or ANSI (version
6 and earlier).

• The format of the header lets PowerBuilder determine whether it uses Unicode encoding.
The header format for PowerBuilder 10 is the same as that used for PUL files in
PowerBuilder 6.5 and for PKL files in PocketBuilder. These files do not need to be
converted to Unicode when they are upgraded to PowerBuilder 10 or later.

When PBLs are upgraded

Working with Targets

Page 199

Before opening a PBL, PowerBuilder checks its header to determine whether or not it uses
Unicode encoding. PBLs are not converted to Unicode unless you specifically request that
they be upgraded.

You cannot expand the icon for a PBL from PowerBuilder 9 or earlier in the Library painter.
To examine its contents, you must upgrade it to PowerBuilder 10 or later.

When you attempt to open a workspace that contains targets from a previous release in
PowerBuilder, the Targets to be Migrated dialog box displays. You can upgrade targets from
this dialog box, or clear the No Prompting check box to open the Migrate Application dialog
box.

PowerBuilder dynamic libraries

If you plan to reference a PowerBuilder dynamic library (PBD) that was encoded in
ANSI formatting (for example, if it was created in PowerBuilder 9 or earlier), you
must regenerate the PBD to use Unicode formatting. Dynamic libraries that you create
in PowerBuilder 10 or later use Unicode formatting exclusively.

For information on creating PBDs, see Creating runtime libraries.

The Migrate Application dialog box

The Migrate Application dialog box lists each PBL that will be upgraded and lets you choose
the type of messages that display during the migration process.

Figure 2.20:

Working with Targets

Page 200

If you click OK, each PBL is first upgraded to the new version of PowerBuilder. If necessary,
PowerBuilder converts source code from DBCS to Unicode. PowerBuilder performs a full
build and saves the source code back to the same PBL files. Changes to scripts display in
informational messages in the Output window and are written to a log file for each PBL so
that you can examine the changes later. Recommended changes are also written to the log
file.

Migration from DBCS versions

The migration process automatically converts multibyte strings in DBCS applications
to unicode strings. You do not need to select the Automatically Convert DBCS String
Manipulation Functions check box for this conversion. If the migration encounters an
invalid multibyte string, it sets the invalid string to a question mark and reports the
error status. You can modify question marks in the Unicode output string after the
migration.

The following two lines from a log file indicate that the FromAnsi function is obsolete and
was replaced with the String function, and that an encoding parameter should be added to an
existing instance of the String function:

2006/01/27 08:20:11 test.pbl(w_main).cb_1.clicked.4: Information C0205: Function
 'FromAnsi' is replaced with function 'String'.
2006/01/27 08:20:11 test.pbl(w_main).cb_2.clicked.4: Information C0206: Append
 extra argument 'EncodingAnsi!' to function 'String' for backward compatibility.

The log file has the same name as the PBL with the string _mig appended and the
extension .log and is created in the same directory as the PBL. If no changes are made,
PowerBuilder creates an empty log file. If the PBL is upgraded more than once, output is
appended to the existing file.

PowerBuilder makes the following changes:

• The FromUnicode function is replaced with the String function and the second argument
EncodingUTF16LE! is added

• The ToUnicode function is replaced with the Blob function and the second argument
EncodingUTF16LE! is added

• The FromAnsi function is replaced with the String function and the second argument
EncodingAnsi! is added

• The ToAnsi function is replaced with the Blob function and the second argument
EncodingAnsi! is added

• An Alias For clause with the following format is appended to declarations of external
functions that take strings, chars, or structures as arguments or return any of these
datatypes:

ALIAS FOR "functionname;ansi"

If the declaration already has an Alias For clause, only the string ;ansi is appended.

Working with Targets

Page 201

DBCS users only

If you select the Automatically Convert DBCS String Manipulation Functions
check box, PowerBuilder automatically makes appropriate conversions to scripts
in PowerBuilder 9 applications. For example, if you used the LenW function, it is
converted to Len, and if you used the Len function, it is converted to LenA. The
changes are written to the Output window and the log file. This box should be
selected only in DBCS environments.

Adding PBLs to a PowerBuilder target

When you add PBLs from a previous release to a PowerBuilder target's library list, the PBLs
display in the System Tree. The PBLs are not upgraded when you add them to the library
list. Their contents do not display because they have not yet been converted. To display their
contents, you must upgrade the target.

You can upgrade a target from the Workspace tab of the System Tree by selecting Migrate
from the pop-up menu for the target. You can also upgrade targets in the Library painter if
they are in your current workspace.

To upgrade a target in the Library painter:

1. Select the target you want to upgrade and select Entry>Target>Migrate from the menu
bar.

The Migrate Application dialog box displays.

2. Select OK to upgrade all objects and libraries in the target's path to the current version.

2.2.10 Exporting and importing entries

You can export object definitions to text files. The text files contain all the information that
defines the objects. The files are virtually identical syntactically to the source forms that are
stored in libraries for all objects.

You may want to export object definitions in the following situations:

• You want to store the objects as text files.

• You want to move objects to another computer as text files.

Later you can import the files back into PowerBuilder for storage in a library.

Caution

The primary use of the Export feature is exporting source code, modifying the source.
You can use the Source editor to modify the source code of an object directly, but
modifying source in an ASCII text file is not recommended for most users. See Using
the Source editor.

To export entries to text files:

1. Select the Library entries you want to export.

You can select multiple entries in the List view.

Working with Targets

Page 202

2. Do one of the following:

• Select Export from the pop-up menu.

• Click the Export button on the PainterBar.

• Select Entry>Library Item>Export from the menu bar.

The Export Library Entry dialog box displays, showing the name of the first entry
selected for export in the File Name box and the name of the current directory. The
current directory is the target's directory or the last directory you selected for saving
exported entries or saving a file using the file editor.

PowerBuilder appends the file extension .srx, where x represents the object type.

3. Specify the file name and directory for the export file. Do not change the file extension
from the one that PowerBuilder appended.

4. Select the encoding for the exported file.

The HEXASCII export format is used for source-controlled files. Unicode strings are
represented by hexadecimal/ASCII strings in the exported file, which has the letters HA
at the beginning of the header to identify it as a file that might contain such strings. You
cannot import HEXASCII files into a previous version of PowerBuilder.

5. Click OK.

PowerBuilder converts the entry to text, stores it with the specified name, then displays
the next entry you selected for export.

If a file already exists with the same name, PowerBuilder displays a message asking
whether you want to replace the file. If you say no, you can change the name of the file
and then export it, skip the file, or cancel the export of the current file and any selected
files that have not been exported.

6. Repeat steps 3 through 5 until you have processed all the selected entries.

If the Library painter is set to display files, you can see the saved files and double-click
them to open them in the File editor.

To import text files to library entries:

1. In the System Tree or Library painter, select the library into which you want to import
an object.

2. Select Import from the pop-up menu, or, in the Library painter only, click the Import
button on the PainterBar.

The Select Import Files dialog box displays, showing the current directory and a list
of files with the extension .sr* in that directory. The current directory is the target's
directory or the last directory you selected for saving exported entries or saving a file
using the file editor.

Working with Targets

Page 203

Figure 2.21:

3. Select the files you want to import. Use Shift+click or Ctrl+click to select multiple files.

4. Click Open.

PowerBuilder converts the specified text files to PowerBuilder format, regenerates
(recompiles) the objects, stores the entries in the specified library, and updates the
entries' timestamps.

If a library entry with the same name already exists, PowerBuilder replaces it with the
imported entry.

Caution

When you import an entry with the same name as an existing entry, the old entry is
deleted before the import takes place. If an import fails, the old object will already be
deleted.

2.2.11 Creating runtime libraries

If you want your deployed target to use dynamic runtime libraries, you can create them in the
Library painter.

For information about using runtime libraries, see Creating Executables and Components.
That chapter also describes the Project painter, which you can use to create dynamic runtime
libraries automatically.

Working with Targets

Page 204

To create a runtime library:

1. Select the library you want to use to build a runtime library.

2. Select Entry>Library>Build Runtime Library from the menu bar, or select Build
Runtime Library from the library's pop-up menu.

The Build Runtime Library dialog box displays, listing the name of the selected library.

Figure 2.22:

If any of the objects in the source library use resources, specify a PowerBuilder resource
file in the Resource File Name box (see Including additional resources).

3. Select other options as appropriate.

Most options are available only if you select Machine Code, which creates a DLL
file. The default is Pcode, which creates a PBD file. For more information about build
options, see Executable application project options [949].

4. Click OK.

PowerBuilder closes the dialog box and creates a runtime library with the same name as
the selected library and the extension .dll or .pbd.

There is no difference between 32-bit platform and the 64-bit platform if you build
the runtime library in Pcode. The same PBD file works for both 32-bit and 64-bit
PowerBuilder applications.

2.2.11.1 Including additional resources

When building a runtime library, PowerBuilder does not inspect the objects; it simply
removes the source form of the objects. Therefore, if any of the objects in the library
use resources (pictures, icons, and pointers)—either specified in a painter or assigned
dynamically in a script—and you do not want to provide these resources separately, you must

Working with Targets

Page 205

list the resources in a PowerBuilder resource file (PBR file). Doing so enables PowerBuilder
to include the resources in the runtime library when it builds it.

For more on resource files, see Using PowerBuilder resource files.

After you have defined the resource file, specify it in the Resource File Name box to include
the named resources in the runtime library.

2.2.12 Creating reports on library contents

You can generate three types of reports from the Library painter:

• The search results report

• Library entry reports

• The library directory report

The search results report contains the matching-entries information that PowerBuilder
displays after it completes a search, described in Searching targets, libraries, and objects. The
other two types of reports are described in this section.

2.2.12.1 Creating library entry reports

Library entry reports provide information about selected entries in the current target. You
can use these reports to get printed documentation about the objects you have created in your
target.

To create library entry reports

1. Select the library entries you want information about in the List view.

2. Select Entry>Library Item>Print from the menu bar, or select Print from the pop-up
menu.

The Print Options dialog box displays.

Working with Targets

Page 206

Figure 2.23:

3. If you have selected the Application object or one or more menus, windows, or user
objects to report on, select the information you want printed for each of these object
types.

For example, if you want all properties for selected windows to appear in the report,
make sure the Properties box is checked in the Window/User Object group box.

The settings are saved

PowerBuilder records these settings in the Library section of the PowerBuilder
initialization file.

4. Click OK.

PowerBuilder generates the selected reports and sends them to the printer specified in
Printer Setup in the File menu.

2.2.12.2 Creating the library directory report

The library directory report lists all entries in a selected library in your workspace, showing
the following information for all objects in the library, ordered by object type:

• Name of object

• Modification date and time

• Size (of compiled object)

• Comments

Working with Targets

Page 207

To create the library directory report

1. Select the library that you want the report for.

The library must be in your current workspace.

2. Select Entry>Library>Print Directory from the menu bar, or select Print Directory from
the pop-up menu.

PowerBuilder sends the library directory report to the printer specified under
File>Printer Setup in the menu bar.

Coding Fundamentals

Page 208

3 Coding Fundamentals
This part describes how to code your application. It covers the basics of the PowerScript
language, how to use the Script view, and how to create functions, structures, and user events
to make your code more powerful and easier to maintain.

3.1 Writing Scripts

About this chapter

PowerBuilder applications are event driven. You specify the processing that takes place when
an event occurs by writing a script. This chapter describes how to use the Script view to write
scripts using the PowerScript language.

For more information

For complete information about the PowerScript language, see Section 1.1, “Language
Basics” in PowerScript Reference.

3.1.1 About the Script view

You use the Script view to code functions and events, define your own functions and events,
and declare variables and external functions.

Script views are part of the default layout in the Application, Window, User Object, Menu,
and Function painters. In Application, Window, and User Object painters, the initial layout
has one Script view that displays the default event script for the object and a second Script
view set up for declaring instance variables. You can open as many Script views as you need,
or perform all coding tasks in a single Script view.

Title bar

The Script view's title bar shows the name and return type of the current event or function,
as well as the name of the current control for events and the argument list for functions. If
the Script view is being used to declare variables or functions, the titlebar shows the type of
declaration.

Drop-down lists

There are three drop-down lists at the top of the Script view:

Coding Fundamentals

Page 209

Figure 3.1:

In the first list, you can select the object, control, or menu item for which you want to write
a script. You can also select Functions to edit function scripts or Declare to declare variables
and external functions.

The second list lets you select the event or function you want to edit or the kind of declaration
you want to make. A script icon next to an event name indicates there is a script for that
event, and the icon's appearance tells you more about the script:

Table 3.1: Script icons in the Script view

If there is a script The script icon displays

For the current object or control With text

In an ancestor object or control only In color

In an ancestor as well as in the object or
control you are working with

Half in color

The same script icons display in the Event List view.

The third list is available in descendant objects. It lists the current object and all its ancestors
so that you can view scripts in the ancestor objects.

Toggle buttons for Prototype and Error windows

A Prototype window displays at the top of the Script view when you define a new function or
event. An Error window displays at the bottom of the view when there are compilation errors.

Coding Fundamentals

Page 210

You can toggle the display of these windows with the two toggle buttons to the right of the
lists.

Figure 3.2:

For more information about the Prototype window, see Working with User-Defined
Functions and Working with User Events.

3.1.2 Opening Script views

If there is no open Script view, selecting a menu or PainterBar item that requires a Script
view opens one automatically. If you want to edit more than one script at a time, you can
open additional Script views from the View menu.

To open a new Script view:

• Select View>Script from the menu bar.

To edit a script for a control:

• Double-click a scriptable control, or select Script from the PainterBar or a pop-up menu.

The Script view shows the default script for the control. If the Script view is in a stacked
pane and is hidden, it pops to the front. If there is no open Script view, PowerBuilder
creates a new one.

Using drag and drop

If a Script view is visible, you can drag a control from the Control list view to the
Script view to edit a script for the control.

To edit a script for a function or event:

• Double-click an item in the Event list or Function list views, or select the function or
event from the second drop-down list in an open Script view.

The Script view shows the script for the selected event or function. If the Script view
is in a tabbed pane and is hidden, it pops to the front. If there is no open Script view,
PowerBuilder creates a new one.

3.1.3 Modifying Script view properties

The Script view automatically:

• Color-codes scripts to identify datatypes, system-level functions, flow-of-control
statements, comments, and literals

Coding Fundamentals

Page 211

• Indents the script based on flow-of-control statements

You can modify these and other properties.

Some properties are shared

Some properties you specify for the Script view also affect the file editor, Source
editor, Debugger, and the Interactive SQL and Activity Log views in the Database
painter.

To specify Script view properties:

1. Select Design>Options to display the Options dialog box for the painter.

The Options dialog box includes four tab pages that affect the Script view: Script, Font,
Coloring, and AutoScript.

2. Choose the tab appropriate to the property you want to specify:

Table 3.2:

To specify Choose this tab

Tab size, automatic indenting, whether dashes are allowed
in identifiers, and which compiler and database messages
display

Script

Font family, size, and color for the Script view Font

Text and background coloring for PowerScript syntax
elements

Coloring

Whether AutoScript is enabled and what kind of assistance it
provides

AutoScript

3.1.4 Editing scripts

You can perform standard editing tasks in the Script view using the Edit menu, the pop-up
menu in the Script view, or the PainterBars. There are shortcuts for many editing actions.

Setting up shortcuts

In a painter with a Script view, select Tools>Keyboard Shortcuts. Expand the Edit
menu to view existing shortcuts and set up your own shortcuts.

3.1.4.1 Limiting size of scripts

There is an internal limit on the size of compiled Pcode on any script. Pcode is the interpreted
language into which scripts are compiled. A script that exceeds this limit can be compiled
successfully, but the error "Maximum script size exceeded" displays when you attempt to
save the script. Note that the amount of Pcode generated from a given script is not directly
proportional to the number of lines of code, so you might encounter this error in a script with
1200 lines of code, but not in a script with 1500 lines of code. To avoid receiving this error,
move code to functions that you post or trigger in the event script.

Coding Fundamentals

Page 212

3.1.4.2 Printing scripts

You can print a description of the object you are editing, including all its scripts, by selecting
File > Print from the menu bar. To print a specific script, select File > Print Script.

3.1.4.3 Pasting information into scripts

You can paste the names of variables, functions, objects, controls, and other items directly
into your scripts. (You can also use AutoScript. See Using AutoScript.) If what you paste
includes commented text that you need to replace, such as function arguments or clauses in a
statement, you can use Edit>Go To>Next Marker to move your cursor to the next commented
item in the template.

Table 3.3: Pasting information into scripts

To paste Use

PowerBuilder objects and their properties,
functions, and events

System Tree

Properties, datatypes, functions, structures,
variables, and objects

Browser

Contents of clipboard Edit > Paste

Contents of Clipboard window Drag and drop

Objects, controls, arguments, and global and
instance variables

Paste buttons on PainterBar or Edit > Paste
Special

PowerScript statements Paste Statement button or Edit > Paste
Special>Statement

SQL statements Paste SQL button or Edit > Paste
Special>SQL

Built-in, user-defined, and external functions Paste Function button or Edit > Paste
Special>Function

Preprocessor statements Edit > Paste Special>Preprocessor

Contents of text files Edit > Paste Special>From File

Undoing a paste

If you paste information into your script by mistake, click the Undo button or select
Edit>Undo from the menu bar.

Some of these techniques are explained in the sections that follow.

Using the System Tree

To paste the name of a PowerBuilder object or of any of its properties, functions, or events,
select the item you want to paste on the Workspace tab of the System Tree and drag it into
your script.

Using the Browser

You can use the Browser to paste the name of any property, datatype, function, structure,
variable, or object in the application.

Coding Fundamentals

Page 213

Most tab pages in the Browser have two panes:

Figure 3.3:

The left pane displays a single type of object, such as a window or menu. The right pane
displays the properties, events, functions, external functions, instance variables, shared
variables, and structures associated with the object.

Getting context-sensitive Help in the Browser

To get context-sensitive Help for an object, control, or function, select Help from its
pop-up menu.

To use the Browser to paste information into the Script view

1. Click the Browser button in the PowerBar, or select Tools>Browser.

2. Select the target you want to browse.

3. Select the appropriate tab and then select the object in the left pane.

4. Select the category of information you want to display by expanding the appropriate
folder in the right pane.

5. Select the information and click Copy.

6. In the Script view, move the cursor where you want to paste the information and select
any text you want to replace with the pasting.

7. Select Paste from the pop-up menu.

PowerBuilder displays the information at the insertion point in the script, replacing any
selected text.

Coding Fundamentals

Page 214

For information about using the Browser to paste OLE object information into a script,
see Section 5.3.7, “OLE information in the Browser” in Application Techniques.

Pasting statements

You can paste a template for all basic forms of the following PowerScript statements:

• IF...THEN

• DO...LOOP

• FOR...NEXT

• CHOOSE CASE

• TRY...CATCH... FINALLY

When you paste these statements into a script, prototype values display in the syntax to
indicate conditions or actions. By default, the statements are pasted in lowercase. To paste
statements in uppercase, add the following line to the [PB] section of the PB.INI file:

PasteLowercase=0

This setting also affects AutoScript.

To paste a PowerScript statement into the script

1. Place the insertion point where you want to paste the statement in the script.

2. Select the Paste Statement button from the PainterBar, or select Edit>Paste
Special>Statement from the menu bar.

3. Select the statement you want to paste from the cascading menu.

The statement prototype displays at the insertion point in the script.

4. Replace the prototype values with the conditions you want to test and the actions you
want to take based on the test results.

For more about PowerScript statements, see Section 2.1, “PowerScript Statements” in
PowerScript Reference.

Pasting SQL

You can paste a SQL statement into your script instead of typing the statement.

To paste a SQL statement

1. Place the insertion point where you want to paste the SQL statement in the script.

2. Click the Paste SQL button in the PainterBar, or select Edit>Paste Special>SQL from
the menu bar.

3. Select the type of statement you want to insert from the cascading menu by double-
clicking the appropriate button.

Coding Fundamentals

Page 215

The appropriate dialog box displays so that you can create the SQL statement.

4. Create the statement, then return to the Script view.

The statement displays at the insertion point in the workspace.

For more about embedding SQL in scripts, see Section 2.2.1, “Using SQL in scripts” in
PowerScript Reference.

Pasting functions

You can paste any function into a script.

To paste a function into a script

1. Place the insertion point where you want to paste the function in the script.

2. Click the Paste Function button in the PainterBar, or select Edit>Paste Special>Function
from the menu bar.

3. Choose the type of function you want to paste: built-in, user-defined, or external.

4. Double-click the function you want from the list that displays.

PowerBuilder pastes the function into the script and places the cursor within the
parentheses so that you can define any needed arguments.

For more about pasting user-defined functions, see Pasting user-defined functions [290].
For more about external and built-in functions, see Section 5.5.1, “Using external functions”
in Application Techniques.

Pasting contents of files

If you have code that is common across different scripts, you can keep that code in a text file,
then paste it into new scripts you write. For shorter snippets of code, you can also use the
Clip window. See The Clip window.

To import the contents of a file into the Script view

1. Place the insertion point where you want the file contents pasted.

2. Select Edit > Paste Special>From File from the menu bar.

The Paste From File dialog box displays, listing all files with the extension SCR. If
necessary, navigate to the directory that contains the script you want to paste.

3. Choose the file containing the code you want. You can change the type of files displayed
by changing the file specification in the File Name box.

PowerBuilder copies the file into the Script view at the insertion point.

Saving a script to a file

To save all or part of a script to an external text file, select the code you want to
save and copy and paste it to the file editor. Use the extension .SCR to identify it as

Coding Fundamentals

Page 216

PowerScript code. You might want to use this technique to save a backup copy before
you make major changes or so that you can use the code in other scripts.

3.1.4.4 Reverting to the unedited version of a script

You can discard the edits you have made to a script and revert to the unedited version by
selecting Edit > Revert Script from the menu.

3.1.5 Using AutoScript

AutoScript is a tool designed to help you write PowerScript code more quickly by providing
a lookup and paste service inside the Script view. It is an alternative to using the paste toolbar
buttons or the Browser—you do not need to move your hands away from the keyboard to
paste functions, events, variables, properties, and templates for PowerBuilder TRY, DO,
FOR, IF, and CHOOSE statements into your script.

If you are not sure what the name or syntax of a function is or what the names of certain
variables are, AutoScript can show you a list to choose from and paste what you need right
into the script. If you can remember part of the name, start typing and select Edit>Activate
AutoScript (or do nothing if automatic pop-up is turned on). If you cannot remember
the name at all, turn automatic pop-up on, place your cursor in white space, and select
Edit>Activate AutoScript.

Assign a shortcut key

If you plan to use AutoScript, assign a shortcut key to the Activate AutoScript menu
item. See Creating shortcut keys [218].

Where you use AutoScript

You can use AutoScript in three different contexts:

• When you can remember part of the name and you want AutoScript to finish typing it for
you or show you a list of alternatives.

• When you cannot remember the name or you just want a list. AutoScript options can
help you narrow the list if you do not know the name but you do know the type you are
looking for. For example, you can choose to see a list showing all variables, or only all
local variables.

• When you want a list of the properties and/or functions and events that apply to an
identifier followed by a dot.

For how to use AutoScript options, see Customizing AutoScript.

Two ways to use AutoScript

AutoScript can pop up a list automatically when you pause while typing, or when you request
it:

• Turn automatic pop-up on to have AutoScript pop up the list or complete what you
are typing when you pause for a few seconds after typing one or more characters or an
identifier followed by a dot. See Using automatic pop-up [220].

Coding Fundamentals

Page 217

• Invoke AutoScript when you need it by pressing the shortcut key you assigned to the
Edit>Activate AutoScript menu item when you have typed one or more characters or an
identifier followed by a dot. Pressing the shortcut key activates AutoScript only once. It
does not turn automatic pop-up on.

For how to paste an item from the pop-up window into a script, see Using the AutoScript
pop-up window.

3.1.5.1 Using the AutoScript pop-up window

If there is more than one property, variable, method, or statement that could be inserted,
AutoScript pops up an alphabetical list of possible completions or insertions. An icon next
to each item indicates its type. The following screen includes an instance variable, events,
properties, statements, and a function:

Figure 3.4:

If a function is overloaded, each version displays on a different line in the AutoScript pop-up
window.

If you have started typing a word, only completions that begin with the string you have
already typed display in the list.

Case sensitivity

If you have set the PasteLowerCase PB.INI variable to 0 as described in Pasting
statements [214], AutoScript always pastes uppercase characters. Otherwise, AutoScript
always pastes lowercase characters.

The case of any characters you have already typed is preserved. For example, if you are using
AutoScript to complete a function name and you want to use mixed case, you can type up to
the last uppercase letter before invoking AutoScript. AutoScript completes the function name
in lowercase characters and pastes an argument template.

Pasting an item into the script

To paste an item into the script, press Tab or Enter or double-click the item. Use the arrow
and page up and page down keys to scroll through the list. If the item is a function, event, or
statement, the template that is pasted includes descriptive comments that you replace with
argument names, conditions, and so forth. The first commented argument or statement is

Coding Fundamentals

Page 218

selected so that it is easy to replace. You can jump to the next comment by selecting Edit>Go
To>Next Marker.

Go to next marker

You can use Edit>Go To>Next Marker to jump to the next comment enclosed by /*
and */ anywhere in the Script view, not just in AutoScript templates. For the steps to
create a shortcut for this menu item, see Customizing AutoScript.

If you do not want to paste from the list

Press the Backspace key or click anywhere outside the pop-up window to dismiss it without
pasting into the script.

If nothing displays

AutoScript does not pop up a list if the cursor is in a comment or string literal or if an
identifier is complete. If neither of these conditions applies and nothing displays when you
select Edit>Activate AutoScript, there may be no appropriate completions in the current
context. Check that the options you need are selected on the AutoScript options page as
described in Customizing AutoScript.

3.1.5.2 Customizing AutoScript

There are four ways to customize AutoScript:

• Creating shortcut keys [218]

• Specifying what displays in the list [218]

• Using automatic pop-up [220]

• Using AutoScript only with dot notation [220]

Creating shortcut keys

AutoScript is easier to use if you create shortcuts for the menu items that you use frequently.

To modify or create shortcut keys for using AutoScript

1. Select Tools>Keyboard Shortcuts from the menu bar and expand the Edit menu in the
Keyboard Shortcuts dialog box.

2. Scroll down and select Activate AutoScript and type a key sequence, such as Ctrl+space.

3. Expand the Go To menu, select Next Marker, and type a key sequence, such as Ctrl+M.

After you click OK, the shortcuts display in the Edit menu.

Specifying what displays in the list

You can select different items to include in three different contexts:

• When you have started typing a variable or method name or the beginning of a
PowerScript statement

Coding Fundamentals

Page 219

• When you have typed the name of an object followed by a dot

• When the cursor is at the beginning of a new line or in white space

To make these customizations, select Design>Options from the menu bar and select the
AutoScript tab.

The following table shows what is included in the list or pasted when you check each box.

Table 3.4: Setting options for AutoScript

Check box Displays

Arguments Arguments for the current function or event.

Local Variables Variables defined in the current script.

Instance
Variables

Variables defined for and associated with an instance of the current object
or, after a dot, variables associated with the object preceding the dot.

Shared
Variables

Variables defined for the current object and associated with all instances
of it.

Global
Variables

Variables defined for the current application.

Properties Properties for the current object or, after a dot, properties for the object
preceding the dot. Includes controls on the current window.

Methods Functions and events for the current object or, after a dot, functions and
events for the object preceding the dot.

Statement
Templates

PowerScript statement templates for each type of IF, FOR, CHOOSE
CASE, TRY, or DO statement with comments indicating what code
should be inserted. This option is off by default.

Turning options off reduces the length of the list that displays when you invoke AutoScript so
that it is faster and easier to paste a completion or insert code into the script:

• To show all variables and methods when typing, check all the boxes except Statement
Templates in the Partial Name Resolution Include group box. When you pause or press the
Activate AutoScript shortcut key, the list shows variables and methods that begin with the
string you typed.

• To quickly find functions on an object, clear all the boxes except Methods in the After A
Dot Include group box. When you type an instance name followed by a dot, only function
and event names for the instance display.

• To see a list of arguments and local variables when the cursor is in white space, check the
Arguments and Local Variables boxes in the When No Context Include group box. When
you press the Activate AutoScript shortcut key, the list shows only arguments and local
variables.

Using name completion shortens the list

You might not need to clear boxes on the AutoScript page to reduce the length of
the list if you are using name completion and the Activate AutoScript shortcut key

Coding Fundamentals

Page 220

to invoke AutoScript. For example, suppose you have created an instance called
inv_ncst_dssrv of the class n_cst_dssrv and you know the function you want to
use begins with of_g. Type the following into a script and then press the Activate
AutoScript shortcut key:

inv_ncst_dssrv.of_g

AutoScript displays a pop-up window showing only the functions on n_cst_dssrv that
begin with of_g.

Using automatic pop-up

Most of the time you will probably use a shortcut key to invoke AutoScript, but you can
also have AutoScript pop up a list or paste a selection automatically whenever you pause for
several seconds while typing. To do so, check the Automatic Popup box on the AutoScript
options page. Automatic pop-up does not operate when the cursor is at the beginning of a line
or in white space.

This feature is most useful when you are entering new code. You can customize the options
in the Partial Name Resolution Include and After A Dot Include group boxes to reduce the
number of times AutoScript pops up.

When you are editing existing code, it is easier to work with automatic pop-up off.
AutoScript might pop up a list or paste a template for a function when you do not want it to.
Using only the shortcut key to invoke AutoScript gives you complete control.

Using AutoScript only with dot notation

If you want AutoScript to work only when you have typed an identifier followed by a dot,
check the Activate Only After a Dot box on the AutoScript options page. The effect of
checking this box applies whether or not you have checked Automatic Popup. You might find
it most useful when you have checked Automatic Popup, because it provides another way to
limit the number of times AutoScript pops up automatically.

3.1.5.3 Example

The following simple example illustrates how AutoScript works with automatic pop-up
turned off and different settings for each context. The example assumes that you have set up
F8 as the Activate AutoScript shortcut key.

To set up the example:

1. Create a new window and place on it a DataWindow control and a CommandButton
control.

2. Select all the boxes in the Partial Name Resolution Include group box.

3. Clear all the boxes in the After A Dot Include group box except Methods.

4. Clear all the boxes in the When No Context Include group box except Arguments and
Local Variables.

5. Clear both boxes in the Options group box.

Coding Fundamentals

Page 221

Table 3.5: AutoScript example

Context Do this What happens

In the Clicked event script
for cb_1, type long ll_rtn. On
a new line, type ll and press
F8.

AutoScript pastes the local variable
ll_rtn into the script because it is the
only completion that begins with ll.

Type = d and press F8. The list displays all properties, events,
functions, variables, and statements
that begin with d.

Partial name
resolution

Type w and press Tab or
Enter.

The list scrolls to dw_1 and AutoScript
pastes it into the script when you press
Tab or Enter.

Type a dot after dw_1 and
press F8.

The list shows all the functions and
events for a DataWindow control.

Type GetNextM and press
Tab or Enter.

AutoScript pastes the rest of the
GetNextModified function name and
template into the script, retaining your
capitalization.

After a dot

Select Edit>Go To>Next
Marker.

AutoScript selects the next function
argument so you can replace it.
Complete or comment out the
statement.

No context In the empty ItemChanged
event for dw_1, declare some
local variables, press Tab or
Enter, and then press F8.

The list displays the local
variables and the arguments for the
ItemChanged event.

3.1.6 Getting context-sensitive Help

In addition to accessing Help through the Help menu and F1 key, you can use context-
sensitive Help in the Script view to display Help for reserved words and built-in functions.

To use context-sensitive Help:

1. Place the insertion point within a reserved word (such as DO or CREATE) or built-in
function (such as Open or Retrieve).

2. Press Shift+F1.

The Help window displays information about the reserved word or function.

Copying Help text

You can copy text from the Help window into the Script view. This is an easy way to
get more information about arguments required by built-in functions. You can also
copy scripts directly from code examples and modify them for use in your application.

Coding Fundamentals

Page 222

3.1.7 Compiling the script

Before you can execute a script, you must compile it.

To compile a script:

• Click the Compile button, or select Edit>Compile from the menu bar.

PowerBuilder compiles the script and reports any problems it finds, as described in
Handling problems.

PowerBuilder compiles automatically

When you attempt to open a different script in a Script view, PowerBuilder compiles
the current script. When you save the object, such as the window containing a control
you wrote a script for, PowerBuilder recompiles all scripts in the object to make
sure they are still valid. For example, PowerBuilder checks that all objects that were
referenced when you wrote the script still exist.

3.1.7.1 Handling problems

If problems occur when a script is compiled, PowerBuilder displays messages in a Message
window below the script.

Figure 3.5:

There are three kinds of messages:

• Errors

• Warnings

• Information messages

Coding Fundamentals

Page 223

Understanding errors

Errors indicate serious problems that you must fix before a script will compile and before you
can close the Script view or open another script in the same view. Errors are shown in the
Message window as:

line number: Error error number:message

Understanding warnings

Warnings indicate problems that you should be aware of but that do not prevent a script from
compiling.

There are three kinds of warnings.

Compiler warnings. Compiler warnings inform you of syntactic problems, such as
undeclared variables. PowerBuilder lets you compile a script that contains compiler
warnings, but you must fix the problem in the script before you can save the object that the
script is for, such as the window or menu.Compiler warnings are shown in the Message
window as:

line number: Warning warning number:message

Obsolete warnings. Obsolete warnings inform you when you use any obsolete functions
or syntax in your script. Obsolete functions, although they still compile and run, have
been replaced by more efficient functions and will be discontinued in a future release of
PowerBuilder. You should replace all references to obsolete functions as soon as possible.
Obsolete warnings are shown in the Message window as:

line number: Warning warning number:message

Database warnings. Database warnings come from the database manager you are
connected to. PowerBuilder connects to the database manager when you compile a script
containing embedded SQL. Typically, these warnings arise because you are referencing a
database you are not connected to. Database warnings are shown in the Message window as:

line number: Database warning number:message

PowerBuilder lets you compile scripts with database warnings and also lets you save the
associated object. It does this because it does not know whether the problem will apply
during execution, since the execution environment might be different from the compile-time
environment.

You should study database warnings carefully to make sure the problems will not occur at
runtime.

Understanding information messages

Information messages are issued when there is a potential problem. For example, an
information message is issued when you have used a global variable name as a local variable,
because that might result in a conflict later.

Information messages are shown in the Message window as:

line number: Information number:message

Displaying warnings and messages

Coding Fundamentals

Page 224

To specify which messages display when you compile, select Design>Options to open the
Options dialog box, select the Script tab page, and check or clear the Display Compiler
Warnings, Display Obsolete Messages, Display Information Messages, and Display Database
Warnings check boxes. The default is to display compiler and database warning messages.
Error messages always display.

Fixing problems

To fix a problem, click the message. The Script view scrolls to display the statement that
triggered the message. After you fix all the problems, compile the script again.

To save a script with errors

Comment out the lines containing errors.

Disabling database connection when compiling and building

When PowerBuilder compiles an application that contains embedded SQL, it connects to
the database profile last used in order to check for database access errors during the build
process. For applications that use multiple databases, this can result in spurious warnings
during the build since the embedded SQL can be validated only against that single last-
used database and not against the databases actually used by the application. In addition, an
unattended build, such as a lengthy overnight rebuild, can stall if the database connection
cannot be made.

To avoid these issues, you can select the Disable Database Connection When Compiling and
Building check box on the General page of the System Options dialog box.

Caution

Select the check box only when you want to compile without signing on to the
database. Compiling without connecting to a database prevents the build process from
checking for database errors and may therefore result in runtime errors later.

3.1.7.2 Compiler Errors

3.1.7.2.1 C0001 Compiler Error

Message text

Illegal datatype: type.

Explanation

The following statement generates Error C0001: Illegal datatype indt:

indt li_num

A variable can be a standard datatype, a structure, or an object. Object datatypes can be
system objects as displayed in the Browser or they can be objects you have defined by
deriving them from those system object types.

See Also

Declaring Variables in Section 1.3.1, “Declaring variables” in PowerScript Reference.

Coding Fundamentals

Page 225

3.1.7.2.2 C0002 Compiler Error

Message text

Array subscript is not an integer.

Explanation

The following code generates C0002:

char lc_char='a'
int li_array[2]
li_array[lc_char]=1 //generates error C0002

Boolean lb_bool=false
int li_array2[2]
li_array2[lb_bool]=1 //generates error C0002

Array subscripts must be integers. The following code compiles without error:

char lc_char='a'
char li_array[2]
li_array[1]=lc_char

Boolean lb_bool=false
boolean li_array2[2]
li_array2[1]=lb_bool

See Also

Declaring arrays in Section 1.3.3, “Declaring arrays” in PowerScript Reference.

3.1.7.2.3 C0003 Compiler Error

Message text

Condition for if statement must be a boolean.

Explanation

The following code generates C0003:

int li_num
if li_num then // generates C0003
 li_num++
end if

The following code compiles without error:

int li_num
if li_num < 100 then
 li_num++
end if

See Also

IF...THEN in Section 2.1.12, “IF...THEN” in PowerScript Reference.

3.1.7.2.4 C0004 Compiler Error

Message text

Condition for elseif statement must be a boolean.

Coding Fundamentals

Page 226

Explanation

The following code generates C0004:

boolean lb_cond
int li_num
char lc_charc

if lb_cond then
 li_num++
elseif lc_charc then // generates C0004
 li_num -- // note space required before --
end if

The following code compiles without error:

boolean lb_cond
int li_num
char lc_charc

if lb_cond then
 li_num++
elseif lc_charc = 'Z' then
 li_num --
end if

See Also

IF...THEN in Section 2.1.12, “IF...THEN” in PowerScript Reference.

3.1.7.2.5 C0005 Compiler Error

Message text

Condition for do loop must be a boolean.

Explanation

The following code generates C0005:

boolean lb_cond
int li_a=1,li_b

DO UNTIL li_b // generates C0005
 li_a++
LOOP

DO WHILE li_b // generates C0005
 li_a++
LOOP

The following code compiles without error:

boolean lb_cond
int li_a=1,li_b

DO UNTIL li_a = 100
 li_a++
LOOP

DO WHILE lb_cond
 li_a++
LOOP

See Also

Coding Fundamentals

Page 227

DO...LOOP in Section 2.1.7, “DO...LOOP” in PowerScript Reference.

3.1.7.2.6 C0006 Compiler Warning

Message text

Unused label: label.

Explanation

The following code generates C0006:

int li_b
nextline: li_b=3 //generates C0006
li_b=3

The following code compiles without error:

int li_b
goto nextline
nextline: li_b=3
li_b=3

See Also

GOTO in Section 2.1.10, “GOTO” in PowerScript Reference.

3.1.7.2.7 C0007 Compiler Error

Message text

No label for goto: string.

Explanation

The following code generates C0007:

int li_num=123
goto start // generates C0007
goto nextline
nextline: li_num++

See Also

GOTO in Section 2.1.10, “GOTO” in PowerScript Reference.

3.1.7.2.8 C0008 Compiler Error

Message text

Incompatible types in assignment: type1, type2.

Explanation

The following code generates C0008:

int li_num
li_num = "string" // generates C0008: Incompatible
 // types in assignment: integer, string

See Also

Assignment in Section 2.1.1, “Assignment” in PowerScript Reference.

Coding Fundamentals

Page 228

3.1.7.2.9 C0009 Compiler Error

Message text

Array initialization has too many members.

3.1.7.2.10 C0010 Compiler Error

Message text

Nested array list expressions are illegal.

Explanation

The following code generates C0010:

int li_a[3]={{1,2},3} // generates C00010

See Also

Using arraylists to assign values to an array in Section 1.3.3.3.2, “Using arraylists to assign
values to an array” in PowerScript Reference.

3.1.7.2.11 C0011 Compiler Error

Message text

Incompatible types in expression: type1, type2.

Explanation

The following code generates C00011:

int li_a
string ls_b

// Each of the following statements generates C00011:
// Incompatible types in expression: integer, string
ls_b = li_a + ls_b
ls_b = li_a * ls_b
ls_b = li_a - ls_b
ls_b = li_a / ls_b

See Also

Datatype of PowerBuilder expressions in Section 1.4.3, “Datatype of PowerBuilder
expressions” in PowerScript Reference.

3.1.7.2.12 C0013 Compiler Error

Message text

Incompatible types in boolean expression: type1, type2.

Explanation

The following code generates C00013:

char lc_ch
int li_n

do while lc_ch and li_n // generates C0013: Incompatible
 // types in boolean expression:
 // character, integer

Coding Fundamentals

Page 229

...
loop

See Also

Datatype of PowerBuilder expressions in Section 1.4.3, “Datatype of PowerBuilder
expressions” in PowerScript Reference.

3.1.7.2.13 C0014 Compiler Warning

Message text

Undefined variable: variable.

Explanation

The following code generates C00014:

num=10 // generates C0014: Undefined variable: num
char lc_ch
lc_ch = achar // generates C0014:
 // Undefined variable: achar

See Also

Declaring Variables in Section 1.3.1, “Declaring variables” in PowerScript Reference.

3.1.7.2.14 C0015 Compiler Error

Message text

Undefined variable: variable.

Explanation

The following code generates C00015 when the global variables gi_var and gc_var have not
been defined:

int li_a=::gi_var
char lc_ch=::gc_var

See Also

Declaring Variables in Section 1.3.1, “Declaring variables” in PowerScript Reference.

3.1.7.2.15 C0016 Compiler Error

Message text

Incompatible type in expression: type.

Explanation

The following code generates C00016:

char lc_a
int num= - lc_a // generates C0016: Incompatible type
 // in expression: character

See Also

Datatype of PowerBuilder expressions in Section 1.4.3, “Datatype of PowerBuilder
expressions” in PowerScript Reference.

Coding Fundamentals

Page 230

3.1.7.2.16 C0017 Compiler Error

Message text

Incompatible type for NOT operator: type.

Explanation

The following code generates C00017:

int li_a
int li_b

if not li_b then // generates C00017: Incompatible type
 // for NOT operator: integer
 li_a ++
end if

The following code compiles without error:

int li_a
boolean bstatus

if not bstatus then
 li_a ++
end if

See Also

Relational operators in PowerBuilder in Section 1.4.1.2, “Relational operators in
PowerBuilder” in PowerScript Reference.

3.1.7.2.17 C0018 Compiler Error

Message text

Cannot use dot operator on expression of undetermined type.

3.1.7.2.18 C0019 Compiler Error

Message text

Incompatible property property for type type.

Explanation

Error C0019 is generated when you try to access a property that does not exist. The window
w_compiler has an instance variable, integer xyz, but it does not have an instance variable
named abc. The last line in this code in the open event of the window generates C00019:
Incompatible property abc for type w_compiler:

integer li_num
li_num = w_compiler.xyz // compiles without error
li_num = w_compiler.abc // generates C0019

3.1.7.2.19 C0020 Compiler Error

Message text

Function with no return value used in expression.

Explanation

Coding Fundamentals

Page 231

In a custom class user object, two functions are defined. Function f1 has no return value. The
following script in function f2 generates C0020:

int li_num
li_num=1+f1() //generates C0020

3.1.7.2.20 C0021 Compiler Error

Message text

Global variables must be declared outside a routine.

Explanation

In a custom class user object, a function f1 is defined. The following statement in function f1
generates C0021:

global char lc_ch //generates C0021

The global variable char lc_ch should be defined on the Declare Global Variables tab in the
Script view.

See Also

Where to declare variables in Section 1.3.1.1, “Where to declare variables” in PowerScript
Reference.

3.1.7.2.21 C0022 Fatal Compiler Error

Message text

Error Internal overflow, script is too large.

3.1.7.2.22 C0023 Compiler Error

Message text

Script is too large: divide script into multiple events or functions.

3.1.7.2.23 C0024 Compiler Error

Message text

Cannot mix valued enumerated properties with non-valued enumerated properties.

3.1.7.2.24 C0025 Compiler Error

Message text

Illegal datatype for parent: type.

Explanation

The following source code for a custom class user object generates C0025:

forward
global type my_nvo from nonvisualobject
end type
end forward

global type my_nvo from my_nvo //generates C0025

Coding Fundamentals

Page 232

end type
global my_nvo my_nvo

3.1.7.2.25 C0026 Compiler Error

Message text

Cannot inherit from enumerated type: type.

Explanation

The following source code for a custom class user object generates C0026:

forward
global type my_nvo from nonvisualobject
end type
end forward

global type my_nvo from border //generates C0026
end type
global my_nvo my_nvo

3.1.7.2.26 C0027 Compiler Error

Message text

Error opening routine: routine.

3.1.7.2.27 C0028 Compiler Error

Message text

Event event is illegal for current object.

3.1.7.2.28 C0029 Compiler Error

Message text

System event type event not found.

3.1.7.2.29 C0030 Fatal Compiler Error

Message text

Stack overflow in parser.

3.1.7.2.30 C0031 Compiler Error

Message text

Syntax error.

3.1.7.2.31 C0032 Fatal Compiler Error

Message text

Undetermined error.

3.1.7.2.32 C0033 Compiler Error

Message text

Coding Fundamentals

Page 233

Error creating obtypeid.h.

3.1.7.2.33 C0034 Compiler Error

Message text

Error opening typedef.scr.

3.1.7.2.34 C0035 Compiler Error

Message text

Unclosed comment beginning at line: number.

3.1.7.2.35 C0036 Compiler Error

Message text

Illegal symbol: symbol.

3.1.7.2.36 C0037 Compiler Error

Message text

Unclosed quoted string.

3.1.7.2.37 C0038 Database Error

Message text

Error string generated by the DBMS.

Explanation

This string is generated by the database management system to which you are connected. For
example, if you are using the PowerBuilder Desktop edition and you attempt to use a SQL
Anywhere stored procedure, you see the following error message:

Database C0038: The PowerBuilder Desktop edition does not support stored
 procedures.

3.1.7.2.38 C0039 Compiler Error

Message text

Cursor/Procedure (procedure) has not been declared.

Explanation

The following script in a function generates C0039 because the cursors li_a and abc have not
been declared:

int li_a
DECLARE curs CURSOR FOR
SELECT employee.emp_id
FROM employee
WHERE employee.salary > 1000;

OPEN curs; // compiles
OPEN li_a; // generates C0039

Coding Fundamentals

Page 234

OPEN abc; // generates C0039

The following script in a function generates C0039 because the procedures li_a and abc have
not been declared:

int li_a
DECLARE proc PROCEDURE FOR procname;
EXECUTE proc; // compiles
EXECUTE li_a; // generates C0039
EXECUTE abc; // generates C0039

3.1.7.2.39 C0040 Compiler Error

Message text

Cursor/Procedure procedure has already been declared.

3.1.7.2.40 C0041 Compiler Error

Message text

Count mismatch between fetch and declare variable references.

3.1.7.2.41 C0042 Compiler Error

Message text

Cannot compile without valid database sign-on.

3.1.7.2.42 C0043 Compiler Error

Message text

Database command must reference transaction object.

Explanation

The following script in a function generates C0043 because the cursor curs and procedure
proc do not reference transaction objects:

int li_a = 1
transaction trans
transaction trans_arr[5]

CONNECT USING sqlca; // ok - default transaction
COMMIT USING trans; // ok - declared transaction

DECLARE curs CURSOR FOR
SELECT employee.emp_id
INTO :li_a
FROM employee
WHERE employee.salary > 1000
USING li_a; // error - integer, not transaction

DECLARE proc PROCEDURE FOR procname
USING trans_arr; // error - array
DELETE FROM employee
WHERE emp_id<200
USING trans_arr[1]; // ok - array element

See Also

Using SQL in scripts in Section 2.2.1, “Using SQL in scripts” in PowerScript Reference.

Coding Fundamentals

Page 235

3.1.7.2.43 C0044 Compiler Error

Message text

Variable reference in database statement has unsupported datatype.

Explanation

The following script in a function in the custom class user object n_nvo generates C0044
because the integer array and nonvisualobject datatypes are not supported:

int idnum = 0 // ok
int int_arr[] // error
char char_arr[] // ok
n_nvo n // error

int minsalary = 1000
SELECT employee.emp_id
INTO :idnum, :int_arr, :char_arr, :n // generates C0044
FROM employee
WHERE employee.salary > :minsalary;

See Also

Using SQL in scripts in Section 2.2.1, “Using SQL in scripts” in PowerScript Reference.

3.1.7.2.44 C0045 Compiler Error

Message text

Indicator variable reference in database statement must be an integer.

Explanation

The following script in a function in the custom class user object n_nvo generates C0045
because the integer array and nonvisualobject datatypes are not supported:

int idnum = 0
char char_arr[]
int li_ind //ok
char lc_ind //error

int minsalary = 1000

SELECT employee.emp_id
INTO :idnum :li_ind, :char_arr :lc_ind
FROM employee
WHERE employee.salary > :minsalary;

See Also

Using SQL in scripts in Section 2.2.1, “Using SQL in scripts” in PowerScript Reference.

3.1.7.2.45 C0046 Compiler Error

Message text

Illegal datatype for within clause: type.

Explanation

If you edit the source of a window, you will notice "within" clauses like the following: type
cb_1 from commandbutton within w_1. Changing the object referenced in the
within clause can cause this error.

Coding Fundamentals

Page 236

3.1.7.2.46 C0047 Compiler Error

Message text

Simple datatype illegal for statement statement: type.

3.1.7.2.47 C0048 Compiler Error

Message text

Enumerated datatype illegal for statement statement: type.

3.1.7.2.48 C0049 Compiler Error

Message text

Illegal datatype for on statement: type.

3.1.7.2.49 C0050 Compiler Error

Message text

Datatype type must be created in context of its 'within' class.

3.1.7.2.50 C0051 Compiler Error

Message text

Unknown function name: function.

Explanation

The following script in a function in a custom class user object generates C0051 because the
function openn() does not exist:

openn() // generates C0051
return 1

3.1.7.2.51 C0052 Compiler Error

Message text

Bad argument list for function: function.

Explanation

Consider two functions defined on a custom class user object. Function f1 takes one integer
argument by value. The following script in function f2 generates C0052 because "a" is
declared as a char:

char a
f1(a) // generates C0052

3.1.7.2.52 C0053 Compiler Error

Message text

Duplicate symbol symbol in library library.

3.1.7.2.53 C0054 Database Error

Message text

Coding Fundamentals

Page 237

Database command not supported for this DBMS.

3.1.7.2.54 C0055 Compiler Error

Message text

Illegal for loop counter variable type: type.

Explanation

You cannot initialize a FOR loop with a non-numeric datatype. The following script
generates C0055:

char lc_ch
for lc_ch= 1 to 3 // generates C0055: Illegal for loop
 // counter variable type: character
 ...
next

See Also

FOR...NEXT in Section 2.1.9, “FOR...NEXT” in PowerScript Reference.

3.1.7.2.55 C0056 Compiler Error

Message text

Illegal for loop initializer expression type: type.

Explanation

You cannot use a non-numeric datatype in an expression in a FOR loop. . The following
script generates C0056:

char lc_ch = 'a'
int li_num
for li_num = lc_ch to 3 // generates C0056: Illegal for
 // loop initializer expression
 // type: character
 ...
next

See Also

FOR...NEXT in Section 2.1.9, “FOR...NEXT” in PowerScript Reference.

3.1.7.2.56 C0057 Compiler Error

Message text

Illegal for loop terminator expression type: type.

Explanation

You cannot use a non-numeric datatype in an expression in a FOR loop. The following script
generates C0057:

char lc_ch = 'a'
int li_num
for li_num = 1 to lc_ch // generates C0057: Illegal for
 // loop terminator expression
 // type: character
 ...

Coding Fundamentals

Page 238

next

See Also

See DO...LOOP and FOR...NEXT in Section 2.1.7, “DO...LOOP” in PowerScript Reference
and Section 2.1.9, “FOR...NEXT” in PowerScript Reference.

3.1.7.2.57 C0058 Compiler Warning

Message text

Exit statement occurs outside loop construct.

Explanation

Both these functions generate C0058:

// function f1
boolean lb_bool
int li_num
do while lb_bool
 li_num++
 exit
loop
exit // generates C0058

// function f2
int li_num
for li_num=1 to 4
 li_num++
next
exit // generates C0058

These functions compile without errors:

// function f1
boolean lb_bool
int li_num
do while lb_bool
 li_num++
 exit
loop

// function f2
int li_num
for li_num=1 to 4
 li_num++
 exit
next

See Also

See DO...LOOP and FOR...NEXT in Section 2.1.7, “DO...LOOP” in PowerScript Reference
and Section 2.1.9, “FOR...NEXT” in PowerScript Reference.

3.1.7.2.58 C0059 Compiler Warning

Message text

Continue statement occurs outside loop construct.

Explanation

This function generates C0059:

Coding Fundamentals

Page 239

int li_num
for li_num=1 to 4
 li_num++
next
continue

This function compiles without errors:

int li_num
for li_num=1 to 4
 li_num++
 continue
next

See Also

See DO...LOOP and FOR...NEXT in Section 2.1.7, “DO...LOOP” in PowerScript Reference
and Section 2.1.9, “FOR...NEXT” in PowerScript Reference.

3.1.7.2.59 C0060 Compiler Error

Message text

Illegal enumerated constant: constant.

Explanation

This script generates C0059: Illegal enumerated constant: happiness:

border lb_a = box!
border lb_b = happiness!

3.1.7.2.60 C0061 Compiler Error

Message text

Current object has no parent.

Explanation

This statement in the open event of a window generates C0061:

parent.width = 1000 // generates C0061

A window has no parent. Its properties can be accessed using the pronoun "this" or using
the pronoun "parent" with a control on the window. This statement in the open event of the
window compiles without error:

this.width = 1000

This statement in the clicked event of a button on the window produces the same result:

parent.width = 1000

3.1.7.2.61 C0062 Compiler Error

Message text

Invalid case.

3.1.7.2.62 C0063 Compiler Error

Message text

Coding Fundamentals

Page 240

Invalid operand type for Dot operator: type.

Explanation

These statements generate C0063: Invalid operand type for Dot operator: integer:

int li_a,li_b
li_a = li_a.li_b // generates C0063

3.1.7.2.63 C0064 Compiler Error

Message text

Invalid ~ octal character sequence in string.

Explanation

This statement generates C0064. Octals can contain only the digits 0 through 7:

string ls_b = "~o128" // generates C0064

This statement compiles correctly and the string ls_b is set to the uppercase letter W:

string ls_b = "~o127"

See Also

Special ASCII characters in Section 1.1.4, “Special ASCII characters” in PowerScript
Reference.

3.1.7.2.64 C0065 Compiler Error

Message text

Invalid ~ hex character sequence in string.

Explanation

This statement generates C0065. Hexadecimals can contain only the digits 0 through 9 and
the letters A through F:

string ls_b = "~h4H" // generates C0065

This statement compiles correctly and the string ls_b is set to the uppercase letter O:

string ls_b = "~h4F"

See Also

Special ASCII characters in Section 1.1.4, “Special ASCII characters” in PowerScript
Reference.

3.1.7.2.65 C0066 Compiler Error

Message text

Invalid ~ decimal character sequence in string.

Explanation

These statements generate C0066. Decimals must contain three digits in the range 000 to 255:

string ls_a = "~266" // generates C0066
string ls_b = "~3" // generates C0066

Coding Fundamentals

Page 241

This statement compiles correctly and the string ls_b is set to the uppercase letter B:

string ls_b = "~066"

See Also

Special ASCII characters in Section 1.1.4, “Special ASCII characters” in PowerScript
Reference.

3.1.7.2.66 C0067 Compiler Error

Message text

Illegal to use array as for loop counter variable.

Explanation

This sample generates C0067:

int li_a
int li_arr[2]
int li_brr[2,2]

for li_arr=li_arr[1] to li_brr[2,2] // generates C0067
 beep(1)
next

for li_brr=li_a to li_brr[2,2] // generates C0067
 beep(1)
next

3.1.7.2.67 C0068 Compiler Error

Message text

Illegal use of array in expression.

Explanation

The following samples generate C0068:

// Example 1
int li_arr[2]
li_arr+=1 // generates C0068
int li_b[2]={1,2}
li_b=1+{1} // generates C0068

// Example 2
int li_arr[2]
int li_a
li_a = li_arr.abc // generates C0068

// Example 3
int li_arr[2], li_int
char lc_arr[2]
string ls_str

if li_int > 5 then
 ...
elseif lc_arr < "ab" then //char arr<literal string (ok)
 ...
elseif ls_str >= lc_arr then //string >= char arr (ok)
 ...
elseif li_arr <= "ab" then //int arr <= literal string
 // generates C0068

Coding Fundamentals

Page 242

 ...
elseif "ab" <= li_arr then //literal string <= int arr
 // generates C0068
 ...
end if

// Example 4
int li_arr[2]
boolean lb_a

if li_arr and lb_a then // generates C0068 and C0003
 ...
end if

// Example 5
int li_arr[2]
int li_a
boolean lb_a

lb_a = not li_arr[] // generates C0068
li_a = -li_arr // generates C0068

// Example 6
int li_arr[2]
int li_a

li_a = 5 * li_arr // generates C0068

// Example 7
int li_arr[2]
char lc_arr[2]
int li_a
string ls_a
char lc_a

ls_a = lc_arr + ls_a // char array + string (ok)
ls_a = lc_arr + lc_a // char array + char (ok)
ls_a = ls_a + lc_arr // string + char array(ok)
ls_a = lc_a + lc_arr // char + char array (ok)
ls_a = lc_arr + lc_arr // char array + char array (ok)

// The following statements generate C0068
li_a = li_arr + li_arr // int array + int array (error)
li_a = li_arr + 5 // int array + int (error)
li_a = 5 + li_arr // int + int array (error)

// Example 8
int li_arr[2]
char lc_arr[2]
string ls_str

if li_arr[1] = 5 then
elseif lc_arr = "ab" then //char arr=literal string (ok)
elseif ls_str = lc_arr then //string = char arr (ok)
elseif li_arr = "ab" then //int arr = literal string
 // generates C0068 and C0011
elseif "ab" = li_arr then //literal string = int arr
 // generates C0068 and C0011
end if

3.1.7.2.68 C0069 Compiler Error

Message text

Subscripted expression not an array.

Coding Fundamentals

Page 243

Explanation

This sample generates C0069:

int li_arr[10]
int li_1a,li_1b
int li_1arr[2]

for li_1b=li_1a[1] to li_1a[2] // generates C0069 for
 // li_la[1] and li_la[2]
 ...
next

int li_2arr[3]={1,2,3}
int li_2b
constant int li_2c=1
int li_2d=li_2arr[li_2b]*li_2b[li_2arr[li_2c]]
 // generates C0069
li_1a = li_arr[3] //ok

3.1.7.2.69 C0070 Compiler Error

Message text

Mixing array and non-array in assignment statement.

Explanation

With the following variables declared as instance variables:

int ii_arr[2]
int ii_b

this script in a function generates C0070:

int li_arr[4] = {0, 1, 2, 3} // ok
int li_a = {0, 1, 2, 3} // generates C0070
this.ii_arr = {1,2} // ok
this.ii_b = {1,2} // generates C0070
int li_brr[3]
li_brr = {4,5,6} // ok
int li_bli_b = {4,5,6} // generates C0070

3.1.7.2.70 C0071 Compiler Error

Message text

Out-of-date entry referenced during compile: entry.

3.1.7.2.71 C0072 Compiler Error

Message text

Decimal precision value out of range: number.

Explanation

This statement generates C0072: Decimal precision value out of range: 39:

decimal {39} ld_a = 3.14159265 // generates C0072

This statement compiles successfully:

decimal {28} ld_a = 3.14159265

Coding Fundamentals

Page 244

3.1.7.2.72 C0073 Compiler Warning

Message text

{"number"} meaningless with type type.

Explanation

This statement generates C0073: {3} meaningless with type string:

constant string {3} ls_str="aaa" // generates C0073

This statement generates C0073: {1} meaningless with type integer:

int {1} li_a[3]={1} // generates C0073

These statements compile successfully:

constant string ls_str="aaa"
int li_a[3]={1}
decimal {28} ld_a = 3.14159265

3.1.7.2.73 C0074 Compiler Error

Message text

Illegal array declaration.

Explanation

For fixed-size arrays, you can use TO to specify a range of element numbers (instead of a
dimension size) for one or more of the dimensions. The syntax is:

[lowerbound1 TO upperbound1 {, lowerbound2 TO upperbound2}...]

The upperboundn value must be greater than the lowerboundn value. These statements
generate C0074, because the upper bound is greater than the lower bound:

int li_array1[10 to 5] // generates C0074
int li_array2[1 to 9,3 to 1] // generates C0074

This statement compiles successfully:

int li_array3[1 to 9,3 to 6]

3.1.7.2.74 C0075 Compiler Warning

Message text

Decimal precision value used in function declaration ignored.

3.1.7.2.75 C0076 Compiler Error

Message text

Duplicate subroutine reference: subroutine.

3.1.7.2.76 C0077 Compiler Error

Message text

Integer constant out of range, max = 18446744073709551615.

Coding Fundamentals

Page 245

Explanation

The maximum range for a longlong variable, which is the longest integer type supported in
PowerScript, is from -9223372036854775808 to 9223372036854775807. These statements
all generate C0077, because they all exceed the maximum value of 18446744073709551615
(9223372036854775808 + 9223372036854775807):

constant longlong lll_a = 18446744073709551616
longlong lll_b = 18446744073709551616/2
constant long ll_a = 18446744073709551616
int li_a = 18446744073709551616

These statements compile successfully, but you should be aware that you should not exceed
the limits for each type specified in the documentation, because your code will fail at
runtime:

constant longlong lll_a = 18446744073709551615
longlong lll_b = 18446744073709551615/2
constant long ll_a = 18446744073709551615
int li_a = 18446744073709551615

These statements compile successfully and the values specified are valid at runtime:

constant longlong lll_a = 9223372036854775807
longlong lll_b = 9223372036854775807/2
constant long ll_a = 2147483647
int li_a = 32767

3.1.7.2.77 C0078 Compiler Error

Message text

Invalid time constant.

Explanation

Two of the following statements generate C0078 because they exceed the maximum range
for the time datatype of 00:00:00 to 23:59:59:999999:

constant time lt_a=25:05:08 // generates C0078
constant time lt_b=23:59:59 // ok
constant time lt_c=23:59:59.999999 // ok
constant time lt_d=23:59:59.1000000 // generates C0078

3.1.7.2.78 C0079 Compiler Error

Message text

Invalid date constant.

Explanation

Two of the following statements generate C0079. The ranges for each part of the date
datatype are 1000 to 3000 for the year, 01 to 12 for the number of the month, and 01 to
31 for the day. In the first statement, both the month and day are out of range. In the third
statement, there was no February 29 in the year 1900, but there was one in 2004, so the
second statement compiles successfully:

constant date ld_a=1234-34-34 // generates C0079
constant date ld_b=2004-02-29 // ok
constant date ld_c=1900-02-29 // generates C0079

Coding Fundamentals

Page 246

3.1.7.2.79 C0080 Compiler Error

Message text

Invalid object name: object.

3.1.7.2.80 C0081 Compiler Error

Message text

Duplicate variable: variable.

Explanation

Declaring a variable with the same name twice in the same script generates C0081: Duplicate
variable: li_a:

int li_a
...
int li_a[4]// generates C0081

3.1.7.2.81 C0082 Compiler Error

Message text

Reference argument must be a non-constant and non-readonly variable reference.

Explanation

If two functions are defined on a custom class user object, and function f1 takes one integer
argument by reference, the following script in function f2 generates C0082:

f1(6) // generates C0082

3.1.7.2.82 C0083 Compiler Error

Message text

Illegal for loop step value.

Explanation

The increment values in the STEP clauses in some of the following FOR loops generate
C0083. Any increment value that evaluates to 0 generates the error. For example, for integer
variables, 0.1 is rounded down to 0 and generates the error, while 2.3 is rounded down to 2.

For an integer, -1E-1 evaluates to 0 and the error is generated, but for decimal and real
values, it evaluates to a small negative number and the error is not generated. However, the
FOR loop will not be entered at runtime if the ending value of the variable is greater than the
starting value.

int li_a
long ll_a
longlong lll_a
dec ld_a
real lr_a

// Integer variables
for li_a=1 to 5 step 0 // generates C0083
...
next

Coding Fundamentals

Page 247

for ll_a=1 to 5 step 0.1 // generates C0083
...
next

for lll_a=1 to 5 step 2.3 // ok
...
next

for li_a=1 to 5 step -1E-1 // generates C0083
...
next

// Decimal variables
for ld_a=1 to 5 step 0.1 // ok
...
next

for ld_a=1 to 5 step -1E-1 // ok
...
next

for ld_a=1 to 5 step 0.0 // generates C0083
...
next

// Real variables
for lr_a=1 to 5 step 0.1 // ok
...
next

for lr_a=1 to 5 step -1E-1 // ok
...
next

for lr_a=1 to 5 step 0E1 // generates C0083
...
next

3.1.7.2.83 C0084 Compiler Error

Message text

Bad number of arguments for function: function.

Explanation

If two functions are defined on a custom class user object and function f1 takes one integer
argument by value, the following script in function f2 generates C0084:

int a, b
f1(a, b) // generates C0084

3.1.7.2.84 C0085 Compiler Error

Message text

Invalid variable declaration initialization.

3.1.7.2.85 C0086 Compiler Warning

Message text

Duplicate instance variable name: variable.

Coding Fundamentals

Page 248

Explanation

Declaring an instance variable with the same name twice for the same object generates
C0086: Duplicate instance variable name: li_a:

int li_a
...
int li_a[4]// generates C0086

3.1.7.2.86 C0087 Compiler Warning

Message text

Instance variable with same name as property: variable.

3.1.7.2.87 C0088 Compiler Warning

Message text

Duplicate property name: property.

3.1.7.2.88 C0089 Compiler Warning

Message text

Maximum string constant length exceeded.

3.1.7.2.89 C0090 Compiler Error

Message text

Incompatible types in array list expression: type1, type2.

Explanation

The first statement in this example generates C0090: Incompatible types in array list
expression: long, string. The second statement generates C0090: Incompatible types in array
list expression: real, boolean:

int li_arr[2]={1,'a'} // generates C0090
long ll_arr[4] = {1, 2.3, 4E3, true} // generates C0090

3.1.7.2.90 C0091 Compiler Error

Message text

Returned expression cannot be an array.

Explanation

The return statement in this example generates C0091:

int li_arr[2]={1,2}
return li_arr // generates C0091

3.1.7.2.91 C0092 Compiler Error

Message text

Return expression in subroutine.

Explanation

Coding Fundamentals

Page 249

The return statement in this function that was defined as returning no value generates C0092:

return 10 // generates C0092

3.1.7.2.92 C0093 Compiler Error

Message text

Incompatible type type returned for function.

Explanation

The return statement in this function that was defined as returning no value generates C0093
and C0094:

string a
return a // generates C0093 and C0094

3.1.7.2.93 C0094 Compiler Error

Message text

Routine must return a value.

Explanation

Omitting the return statement in a function that was defined as returning a value generates
C0094.

3.1.7.2.94 C0095 Compiler Error

Message text

Reserved keyword 'type' used as a variable.

3.1.7.2.95 C0096 Compiler Error

Message text

Referencing number dimensional array with number subscripts.

Explanation

The FOR statement in this function generates C0096: Referencing 3 dimensional array with 2
subscripts:

int li_num,li_arr[2,2,1]={1,2,3,4}
for li_num=li_arr[1,1] to 5 // generates C0096
...
next

3.1.7.2.96 C0097 Compiler Error

Message text

Invalid statement.

3.1.7.2.97 C0098 Compiler Error

Message text

Function qualifier type type not ancestor of current object.

Coding Fundamentals

Page 250

3.1.7.2.98 C0099 Compiler Warning

Message text

Fixed length binary arrays not supported; using unbounded.

Explanation

The second statement in this example generates C0099. The third statement defined an
unbounded array of blobs:

blob {5} lb_a
blob {5} lb_arr[] // generates C0099
blob lb_arr2[]

3.1.7.2.99 C0100 Compiler Error

Message text

Initialization of binary variables not supported.

Explanation

Attempting to initialize a blob generates C0100:

blob lb_a=1 // generates C0100

3.1.7.2.100 C0101 Compiler Error

Message text

Referenced object object is out of date, must be converted.

3.1.7.2.101 C0102 Compiler Error

Message text

Dynamic SQL command variable must be a string.

Explanation

You can use only string variables in dynamic SQL commands. The following sample
generates C0102:

int li_a

prepare sqlsa from :li_a; // generates C0102
execute immediate :li_a; // generates C0102

This sample compiles without error:

string ls_a

prepare sqlsa from :ls_a; // ok
execute immediate :ls_a; // ok

See Also

Using dynamic SQL in Section 2.2.2, “Using dynamic SQL” in PowerScript Reference.

3.1.7.2.102 C0103 Compiler Error

Message text

Coding Fundamentals

Page 251

Dynamic SQL command must reference DynamicStagingArea object.

Explanation

PowerBuilder has four dynamic SQL formats. You must reference a DynamicStagingArea
object in some dynamic SQL commands. For more information, see Section 2.2, “SQL
Statements” in PowerScript Reference for more information.

The last five statements in this example generate C0103 because they reference a
DynamicDescriptionArea object (sqlda) or other variables instead of a DynamicStagingArea
object (sqlsa):

string str
int num
long l
int numarr[]
throwable t

prepare sqlsa from :str;
describe sqlsa into sqlda;
execute sqlsa using :num;
declare my_cursor dynamic cursor for sqlsa;
declare my_proc dynamic procedure for sqlsa;

// The following statements generate C0103
prepare num from :str;
describe numarr into sqlda;
execute sqlda using :num;
declare my_cursor1 dynamic cursor for t;
declare my_proc1 dynamic procedure for l;

See Also

Using dynamic SQL in Section 2.2.2, “Using dynamic SQL” in PowerScript Reference.

3.1.7.2.103 C0104 Compiler Error

Message text

Open/execute command with parameters must reference dynamic cursor/procedure.

Explanation

PowerBuilder has four dynamic SQL formats. If you use an OPEN or EXECUTE
statement that has parameters, you must reference a dynamic cursor or procedure. For
more information, see Section 2.2, “SQL Statements” in PowerScript Reference for more
information.

Two statements in this example generate C0104 because they reference a cursor or procedure
that was not declared using the DYNAMIC keyword:

int li_a

declare curs cursor for select emp_id from employee;
declare dyncurs dynamic cursor for sqlsa;
declare proc procedure for webchanged;
declare dynproc dynamic procedure for sqlsa;

open dynamic curs using :li_a; // generates C0104
execute dynamic proc using :li_a; // generates C0104

open dynamic dyncurs using :li_a; // ok

Coding Fundamentals

Page 252

execute dynamic dynproc using :li_a;// ok

See Also

Using dynamic SQL in Section 2.2.2, “Using dynamic SQL” in PowerScript Reference.

3.1.7.2.104 C0105 Compiler Error

Message text

Dynamic SQL command must reference DynamicDescriptionArea object.

Explanation

PowerBuilder has four dynamic SQL formats. You must reference a
DynamicDescriptionArea object in some dynamic SQL commands. For more information,
see Section 2.2, “SQL Statements” in PowerScript Reference for more information.

The last three statements in this example generate C0105 because they reference a
DynamicStagingArea object (sqlsa) or other variables instead of a DynamicDescriptionArea
object (sqlda):

int num
int numarr[]
throwable t

declare proc procedure for webchanged;
declare dynproc dynamic procedure for sqlsa;
declare dyncursor dynamic cursor for sqlsa;

fetch proc using descriptor sqlda;
execute dynamic dynproc using descriptor sqlda;
open dynamic dyncursor using descriptor sqlda;

declare proc1 procedure for webchanged;
declare dynproc1 dynamic procedure for sqlsa;
declare dyncursor1 dynamic cursor for sqlsa;

// The following statements generate C0105
fetch proc using descriptor num;
execute dynamic dynproc using descriptor numarr;
open dynamic dyncursor using descriptor t;

See Also

Using dynamic SQL in Section 2.2.2, “Using dynamic SQL” in PowerScript Reference.

3.1.7.2.105 C0106 Compiler Error

Message text

'Super' keyword can be used only within an inherited type.

See Also

Using dynamic SQL in Section 2.2.2, “Using dynamic SQL” in PowerScript Reference.

3.1.7.2.106 C0107 Compiler Error

Message text

Open/execute command with descriptor must reference dynamic cursor/procedure.

Coding Fundamentals

Page 253

Explanation

PowerBuilder has four dynamic SQL formats. If you use an OPEN or EXECUTE statement
with a descriptor, you must reference a dynamic cursor or procedure.

Two statements in this example generate C0107 because they reference a cursor or procedure
that was not declared using the DYNAMIC keyword:

int li_a

declare curs cursor for select emp_id from employee;
declare dyncurs DYNAMIC cursor for sqlsa;
declare proc procedure for webchanged;
declare dynproc DYNAMIC procedure for sqlsa;

// The following statements generate C0107
open dynamic curs using descriptor sqlda;
execute dynamic proc using descriptor sqlda;

// The following statements compile without error
open dynamic dyncurs using descriptor sqlda;
execute dynamic dynproc using descriptor sqlda;

See Also

FOR...NEXT in Section 2.1.9, “FOR...NEXT” in PowerScript Reference.

3.1.7.2.107 C0108 Compiler Error

Message text

Database command must reference blob variable.

3.1.7.2.108 C0109 Compiler Error

Message text

Private or protected function cannot be accessed: function.

Explanation

You cannot access a private or protected function in another object. In this example, of_add
is a protected function in n_math that is being called from another object:

integer li_result
li_result = n_math.of_add(10, 20) // generates C0109

See Also

Section 3.2, “Working with User-Defined Functions”.

3.1.7.2.109 C0110 Compiler Warning

Message text

Mixing signed and unsigned values in for statement

Explanation

Two statements in this example generate C0110 because they mix int and uint values in the
FOR statement:

int li_a, li_b, li_c

Coding Fundamentals

Page 254

uint lu_a, lu_b, lu_c

for li_a = li_b to li_c // both int values
 ...
next
for lu_a = lu_b to lu_c // both uint values
 ...
next
for li_a = li_b to lu_c // generates C0110
 ...
next
for lu_a = li_b to lu_c // generates C0110
 ...
next

3.1.7.2.110 C0111 Compiler Error

Message text

Maximum script size exceeded.

3.1.7.2.111 C0112 Compiler Error

Message text

Incompatible types in array assignment: type1, type2.

Explanation

This example generates C0112 because it mixes int and char values in the array assignment:

int li_arr[2] = {'a','b'}
char lc_arr[2] = {3, 0.2}
int arr[]

arr = {'a', 'b', 'c'}

See Also

Assignment statement in Section 2.1.1, “Assignment” in PowerScript Reference.

3.1.7.2.112 C0113 Compiler Error

Message text

Error reading object source entry: source.

3.1.7.2.113 C0114 Compiler Error

Message text

Error scanning object source entry: source.

3.1.7.2.114 C0115 Compiler Error

Message text

Array subscript is out of bounds.

3.1.7.2.115 C0116 Compiler Error

Message text

Coding Fundamentals

Page 255

Reference argument type does not match function definition: type.

3.1.7.2.116 C0117 Compiler Error

Message text

Illegal datatype for increment statement: type.

Explanation

The datatype of the variable used with the increment assignment shortcut must be a datatype
that can be incremented, such as a numeric or Any datatype. Other datatypes, such as Char or
String, generate C0117, as shown in this example:

int li_a
any la_a
char lc_a

li_a++ // ok
la_a++ // ok
lc_a++ // generates C0117

See Also

Assignment statement in Section 2.1.1, “Assignment” in PowerScript Reference.

3.1.7.2.117 C0118 Compiler Error

Message text

Illegal datatype for decrement statement: type.

Explanation

The datatype of the variable used with the decrement assignment shortcut must be a datatype
that can be decremented, such as a numeric or Any datatype. Other datatypes, such as Char or
String, generate C0118, as shown in this example:

int li_a
any la_a
char lc_a

li_a-+ // ok
la_a-+ // ok
lc_a-+ // generates C0118

See Also

Assignment statement in Section 2.1.1, “Assignment” in PowerScript Reference.

3.1.7.2.118 C0119 Compiler Error

Message text

Invalid function template argument: argument.

3.1.7.2.119 C0120 Compiler Error

Message text

Invalid number of indirect property templates.

Coding Fundamentals

Page 256

3.1.7.2.120 C0121 Compiler Error

Message text

Invalid indirect property.

3.1.7.2.121 C0122 Compiler Error

Message text

Function argument differs from ancestor only by pass by reference or value for function
function.

3.1.7.2.122 C0123 Compiler Error

Message text

Function function differs from ancestor only by return type.

3.1.7.2.123 C0124 Compiler Error

Message text

Illegal expression on left side of assignment.

Explanation

The expression on the left side of an assignment must be the name of a variable or object
property to which you want to assign a value. For example, the classname function returns
the class of an object. You cannot assign a value to it:

powerobject po
po = create powerobject
po.classname() = "newname" // generates C0124

// these statements assign the string
// powerobject to ls_classname
string ls_classname
ls_classname = po.classname()

See Also

Assignment statement in Section 2.1.1, “Assignment” in PowerScript Reference.

3.1.7.2.124 C0125 Compiler Error

Message text

Event qualifier type type not ancestor of current object.

3.1.7.2.125 C0126 Compiler Error

Message text

Function has conflicting argument or return type in ancestor.

3.1.7.2.126 C0127 Compiler Error

Message text

Invalid host variable or SQL name.

Coding Fundamentals

Page 257

3.1.7.2.127 C0128 Compiler Error

Message text

Only one variable allowed in INTO clause of SelectBlob command.

Explanation

The INTO clause in a SELECTBLOB statement can contain only one variable:

blob lb_a, lb_b
selectblob catalog_picture
into :lb_a
from product;

selectblob catalog_picture
into :lb_a, :lb_b // generates C0128
from product;

See Also

SELECTBLOB statement in Section 2.2.1.16, “SELECTBLOB” in PowerScript Reference.

3.1.7.2.128 C0129 Compiler Warning

Message text

Indicator variables not supported in SelectBlob command.

Explanation

A special type of integer variable called an indicator variable is used in SELECT, FETCH,
UPDATE, UPDATE WHERE CURRENT, and INSERT commands to identify null values
and in SELECT and FETCH commands to identify truncated output strings. The use of
indicator variables in SELCTBLOB statements is restricted.

See Also

SELECTBLOB statement in Section 2.2.1.16, “SELECTBLOB” in PowerScript Reference.

3.1.7.2.129 C0130 Compiler Error

Message text

Invalid keyword keyword used in a method call.

3.1.7.2.130 C0131 Compiler Error

Message text

Duplicate keyword keyword used in a method call.

Explanation

You cannot use the same keyword more than once when calling a function or event. This
example repeats the use of the DYNAMIC keyword:

dynamic f2()
dynamic dynamic f2() // generates C0131
dynamic post dynamic f2() // generates C0131

See Also

Coding Fundamentals

Page 258

Syntax for calling PowerBuilder functions and events in Section 1.6.8, “Syntax for calling
PowerBuilder functions and events” in PowerScript Reference.

3.1.7.2.131 C0132 Compiler Error

Message text

The DYNAMIC keyword can be specified only once per method call.

Explanation

You cannot use the DYNAMIC keyword more than once when calling a function or event.
In this example, a nonvisualobject mynvo has a simple function, returnself, that takes a
nonvisual object as an argument and returns the nonvisualobject. The following example
shows a second function that calls the returnself function iteratively, effectively repeating the
use of the DYNAMIC keyword:

mynvo a,b,c,d

returnself(a).dynamic returnself(returnself(b).dynamic
 returnself(c)).returnself(d) // ok

returnself(a).returnself(dynamic returnself(b).dynamic
 returnself(c)).returnself(d) // generates C0132

returnself(a).dynamic returnself(returnself(b).returnself(c)).dynamic
 returnself(d) // generates C0132

See Also

Using cascaded calling and return values in Section 1.6.7.3, “Using cascaded calling and
return values” in PowerScript Reference.

3.1.7.2.132 C0133 Compiler Error

Message text

The POST keyword can be applied only to the last method in a sequence of calls.

Explanation

In a sequence of calls, you can apply the POST keyword only to the last method in the
sequence because POST makes the return value unavailable to the caller. Calls before the
last call must return a valid object that can be used by the following call. In this example,
a nonvisualobject mynvo has several simple functions, return1, return2, and so on, each of
which takes a nonvisual object as an argument and returns the nonvisualobject. The following
code shows another function that uses the POST keyword incorrectly:

mynvo a,b,c,d

return0(a).post return1(d) // ok
return0(a).post return1(d).post // generates C0133

return2(a).post return3(return4(b).return5(c)).post return6(d) // generates C0133

See Also

Using cascaded calling and return values in Section 1.6.7.3, “Using cascaded calling and
return values” in PowerScript Reference.

Coding Fundamentals

Page 259

3.1.7.2.133 C0134 Compiler Error

Message text

The STATIC keyword cannot override the DYNAMIC keyword.

Explanation

If you use the DYNAMIC keyword in a chain of cascaded calls, it carries over to all function
calls that follow. You cannot apply the STATIC keyword to calls that follow the DYNAMIC
keyword. In this example, a nonvisualobject mynvo has a simple function, returnself, that
takes a nonvisual object as an argument and returns the nonvisualobject. The following
code shows two statements that generate C0134 because the STATIC keyword follows the
DYNAMIC keyword:

mynvo a,b,c,d

returnself(a).static returnself(b).dynamic returnself(c) // ok
returnself(a).dynamic returnself(b).static returnself(c) // generates C0134
d = dynamic returnself(a).returnself(b).static returnself(c) // generates C0134

See Also

Static versus dynamic calls in Section 1.6.4, “Static versus dynamic calls” in PowerScript
Reference.

3.1.7.2.134 C0135 Compiler Error

Message text

The keywords keyword1 and keyword2 cannot be applied to the same method.

Explanation

When you call a function or event, you can only use one of the following pairs of keyword:
FUNCTION and EVENT, STATIC and DYNAMIC, and TRIGGER and POST.

// generates C0135: The keywords function and event
// cannot be applied to the same method
function event f1()

// generates C0135: The keywords static and dynamic
// cannot be applied to the same method
static dynamic f1()

// generates C0135: The keywords trigger and post
// cannot be applied to the same method
trigger post f1()

See Also

Syntax for calling PowerBuilder functions and events in Section 1.6.8, “Syntax for calling
PowerBuilder functions and events” in PowerScript Reference.

3.1.7.2.135 C0136 Compiler Error

Message text

It is illegal to POST a method whose result is needed as an argument value, or for a
subsequent expression.

Explanation

Coding Fundamentals

Page 260

In this example, a nonvisualobject has a simple function, f2, that takes an integer argument
and returns 1. The following code shows another function that uses the POST keyword
incorrectly:

int li_a = post f2(1) // generates C0136
int li_b

li_b = 5 + post f2(2) // generates C0136
li_b = f2(post f2(3)) // generates C0136
post f2(4) // ok

See Also

Triggering versus posting functions and events in Section 1.6.3, “Triggering versus posting
functions and events” in PowerScript Reference.

3.1.7.2.136 C0137 Compiler Error

Message text

Qualified Class is not supported on a DYNAMIC method call.

3.1.7.2.137 C0138 Compiler Error

Message text

It is illegal to POST an INTRINSIC method.

Explanation

Some built-in PowerScript functions, including Int, Abs, Blob, Ceiling, Exp, Len, Max, Min,
IsValid, Trim, and Upper, cannot be posted because of the way they are handled internally.
For example:

post MessageBox("", "") //ok
post blob("") // generates C0138

See Also

Triggering versus posting functions and events in Section 1.6.3, “Triggering versus posting
functions and events” in PowerScript Reference.

3.1.7.2.138 C0139 Compiler Error

Message text

Illegal datatype for CREATEUSING statement: type. Must be a non-array variable or
expression resulting in a STRING or an ANY.

Explanation

You cannot use an array or any expression that does not result in an Any or String datatype in
a CREATE USING statement:

string ls_arr[3]
int li_a
any la_a, la_a2

la_a2 = create using la_a // ok - any
la_a2 = create using ls_arr[1] // ok - results in string
la_a2 = create using ls_arr // array -generates C0139
la_a2 = create using li_a // int - generates C0139

Coding Fundamentals

Page 261

See Also

CREATE in Section 2.1.5, “CREATE” in PowerScript Reference.

3.1.7.2.139 C0140 Compiler Error

Message text

The datatype for a CONSTANT property or variable must be either a simple non-object type
or an enumerated type.

Explanation

You cannot use the CONSTANT keyword when you declare an object of system object type:

constant commandbutton cb_1 // generates C0140
constant transaction mytrans // generates C0140
constant border mybordertype = raised!// ok
commandbutton cb_2 // ok
transaction mytrans2 // ok

See Also

Declaring constants in Section 1.3.2, “Declaring constants” in PowerScript Reference.

3.1.7.2.140 C0141 Compiler Error

Message text

A property or variable marked as CONSTANT must have an initializing value or expression.

Explanation

You must supply an initial value when you declare a constant:

constant int li_a // generates C0141
constant date ld_a // generates C0141
constant int li_b = 100 // ok
constant date ld_b = today() // ok

See Also

Declaring constants in Section 1.3.2, “Declaring constants” in PowerScript Reference.

3.1.7.2.141 C0142 Compiler Error

Message text

A property or variable marked as CONSTANT cannot be an array.

Explanation

You cannot use the CONSTANT keyword when you declare an array:

constant int li_arr[3] // generates C0142
constant date ld_arr[2] // generates C0142

See Also

Declaring constants in Section 1.3.2, “Declaring constants” in PowerScript Reference.

3.1.7.2.142 C0143 Compiler Error

Message text

Coding Fundamentals

Page 262

A property property can be modified only in an event or function in its parent class.

3.1.7.2.143 C0144 Compiler Error

Message text

Multiple routines named routine were found that match this set of arguments, causing an
ambiguous match.

3.1.7.2.144 C0145 Compiler Error

Message text

A READONLY argument cannot be assigned into or passed to a function or event as a
reference argument.

Explanation

The function f2 takes an integer argument by reference. The following function, f1, takes a
readonly integer argument:

f2(ai_readonly) // generates C0145
ai_readonly = 1 // generates C0145
return 1

See Also

Passing arguments to functions and events in Section 1.6.6, “Passing arguments to functions
and events” in PowerScript Reference.

3.1.7.2.145 C0146 Informational Message

Message text

The identifier identifier conflicts with an existing global variable with this name. The new
definition of identifier will take precedence and the prior value will be ignored until this
version of identifier goes out of scope.

3.1.7.2.146 C0147 Informational Message

Message text

The identifier identifier conflicts with an existing shared variable with this name. The new
definition of identifier will take precedence and the prior value will be ignored until this
version of identifier goes out of scope.

3.1.7.2.147 C0148 Informational Message

Message text

The identifier identifier conflicts with an existing property with this name. The new
definition of identifier will take precedence and the prior value will be ignored until this
version of identifier goes out of scope.

3.1.7.2.148 C0149 Informational Message

Message text

Coding Fundamentals

Page 263

The identifier identifier conflicts with an existing property with this name in the parent class.
The new definition of identifier will take precedence and the prior value will be ignored until
this version of identifier goes out of scope.

3.1.7.2.149 C0150 Compiler Warning

Message text

Function function is obsolete.

3.1.7.2.150 C0151 Compiler Warning

Message text

Function function has been renamed to newfunction (no prefix); switch to the new name.

3.1.7.2.151 C0152 Compiler Error

Message text

string can be specified only on PUBLIC or PROTECTED property definitions.

3.1.7.2.152 C0153 Compiler Error

Message text

string can be specified only on PUBLIC property definitions.

3.1.7.2.153 C0154 Compiler Error

Message text

The access modifier access modifier can be specified only once per property declaration.

3.1.7.2.154 C0155 Compiler Error

Message text

The property property was found, but insufficient rights are available to access it.

3.1.7.2.155 C0156 Compiler Warning

Message text

The property property was found, but insufficient rights are available to access it.

3.1.7.2.156 C0157 Informational Message

Message text

A call to a nonexistent ancestor event was detected and will be ignored. This message is
triggered by removing an event definition from an ancestor object while the event still has
script in a descendant object.

See Also

Calling functions and events in an object's ancestor in Section 1.6.9, “Calling functions and
events in an object's ancestor” in PowerScript Reference.

Coding Fundamentals

Page 264

3.1.7.2.157 C0158 Compiler Error

Message text

The property property was found in class class, but insufficient rights are available to access
it.

Explanation

You can access private or protected variables in an object only from the object itself. In this
example, Employee is a custom class user object with a private or protected variable of type
double named salary. Attempting to access the variable generates C0158:

double salary
Employee e

e = create Employee
salary = e.salary // generates C0158

See Also

Access for instance variables in Section 1.3.1.3.4, “Access for instance variables” in
PowerScript Reference.

3.1.7.2.158 C0159 Compiler Error

Message text

Conversion of string1(string2) failed.

Probable library file I/O error.

3.1.7.2.159 C0160 Compiler Error

Message text

Regenerate of string1(string2) failed.

Probable library file I/O error.

3.1.7.2.160 C0161 Compiler Error

Message text

Regenerate of string1(string2) failed.

Destination library is not in the current library list.

3.1.7.2.161 C0162 Compiler Error

Message text

Cannot regenerate string1(string2) while it is open in another painter.

3.1.7.2.162 C0163 Compiler Error

Message text

The definition of referenced global variable variable was improperly compiled in object
object.

Coding Fundamentals

Page 265

3.1.7.2.163 C0164 Compiler Error

Message text

The type type of referenced global variable variable is an unresolved external.

3.1.7.2.164 C0165 Compiler Error

Message text

Misused type: type.

3.1.7.2.165 C0166 Compiler Error

Message text

Variable name conflicts with parameter name: parameter.

3.1.7.2.166 C0167 Compiler Error

Message text

External objects are not supported with operatorname operator.

3.1.7.2.167 C0168 Informational Message

Message text

The identifier identifier conflicts with a variable variable of the same name. It can be
accessed using only an explicit 'this.'

3.1.7.2.168 C0169 Compiler Error

Message text

Autoinstantiated class illegal for statement statement: class.

3.1.7.2.169 C0170 Compiler Error

Message text

Array type illegal for statement statement: type.

3.1.7.2.170 C0171 Compiler Warning

Message text

FOR statement end value out of range for iterator variable. Use type for the type of the
iterator variable.

Explanation

The end value for the iterator in a FOR loop must be within the range defined for the
datatype:

int li_a, li_b

for li_a = li_b to 2147483648 // generates C0171
next

for li_a = li_b to 2147483647 // ok

Coding Fundamentals

Page 266

next

See Also

Standard datatypes in Section 1.2.1, “Standard datatypes” in PowerScript Reference.

3.1.7.2.171 C0172 Compiler Error

Message text

Global function calls cannot be DYNAMIC.

3.1.7.2.172 C0173 Compiler Error

Message text

Global operator '::'cannot be used with a qualified class.

3.1.7.2.173 C0174 Compiler Error

Message text

Type of actual parameter cannot be ancestor of formal reference parameter type.

3.1.7.2.174 C0175 Compiler Error

Message text

Strings cannot be implicitly converted into multi-dimensional static character arrays. Only
one-dimensional or dynamic arrays are supported.

Explanation

Attempting to assign a string to a multidimensional static character array. A string can be
assigned to a one-dimensional array:

string ls_str

ls_str="abcdef"

char lc_str[2,3]
char lc_str2[2]

lc_str=ls_str // generates C0175
lc_str2=ls_str // ok
return 1

See Also

Values for array elements in Section 1.3.3.1, “Values for array elements” in PowerScript
Reference.

3.1.7.2.175 C0176 Compiler Error

Message text

Badly ordered TYPE and VARIABLE declarations. Is this modified exported source?

3.1.7.2.176 C0177 Compiler Error

Message text

Coding Fundamentals

Page 267

Unexpected '[' at top level.

3.1.7.2.177 C0178 Compiler Warning

Message text

Different DESCRIPTOR values on prototype:

"value1"

and routine declaration:

"value2"

3.1.7.2.178 C0179 Compiler Warning

Message text

Different REF TO values on prototype:

"value1"

and routine declaration:

"value2"

3.1.7.2.179 C0180 Compiler Error

Message text

Attribute cannot be assigned to.

3.1.7.2.180 C0181 Compiler Error

Message text

The argument to SetNull cannot be an argument.

3.1.7.2.181 C0182 Compiler Error

Message text

External event event triggered. This can only be posted.

3.1.7.2.182 C0183 Compiler Error

Message text

Must specify either LIBRARY or RPCFUNC.

3.1.7.2.183 C0184 Compiler Error

Message text

Error opening name.

3.1.7.2.184 C0185 Obsolete Warning

Message text

Coding Fundamentals

Page 268

Function function is now obsolete and will be removed in a future release.

3.1.7.2.185 C0186 Compiler Warning

Message text

The identifier identifier conflicts with an existing constant constant with this name.

3.1.7.2.186 C0187 Compiler Error

Message text

Illegal use of an Arraylist. An Arraylist can be used only to initialize an array.

3.1.7.2.187 C0188 Compiler Warning

Message text

Argument value not available at compile time. Use a separate assignment statement for
initialization.

3.1.7.2.188 C0189 Compiler Error

Message text

SQL host variable or SQL name cannot be a constant or read-only variable.

Explanation

The INTO clause in the following function, which takes a readonly argument (ai_readonly)
attempts to use the readonly variable as well as two constant variables:

constant int outvar_const = 1
int outvar = 1
constant int invar = 1
constant int indicator = 1

select employee.emp_id

// generates C0189
into :outvar:indicator, :ai_readonly, :outvar_const
from employee
where employee.emp_id = :invar
using sqlca;

return 1

See Also

SELECT in Section 2.2.1.15, “SELECT” in PowerScript Reference.

3.1.7.2.189 C0190 Compiler Warning

Message text

Instance variables of local structure type structure will be implicitly private in the next
release.

3.1.7.2.190 C0191 Compiler Error

Message text

Coding Fundamentals

Page 269

Instance variable name conflicts with an inherited private instance variable: variable.

3.1.7.2.191 C0192 Compiler Error

Message text

Declaration using descendant's nested type type2 not supported. type1 is an ancestor of type2.

3.1.7.2.192 C0193 Compiler Error

Message text

One or more of the files in your library list could not be opened for write.

3.1.7.2.193 C0194 Compiler Error

Message text

Missing pcode block for indirect function.

Possible cause: library missing from library list.

3.1.7.2.194 C0195 Compiler Error

Message text

Error string.

3.1.7.2.195 C0196 Compiler Error

Message text

GOTO statement is illegal inside try block.

3.1.7.2.196 C0197 Informational Message

Message text

Component Validation.

3.1.7.2.197 C0198 Compiler Warning

Message text

Illegal type1 type: type2.

3.1.7.2.198 C0199 Compiler Warning

Message text

EAServer/Application Server component deployment error: error string.

3.1.7.2.199 C0200 Compiler Error

Message text

Illegal datatype type used in statement statement. Must be a variable that derives from the
system type THROWABLE.

Coding Fundamentals

Page 270

3.1.7.2.200 C0201 Compiler Error

Message text

Try statement must contain at least one catch block or a finally block.

3.1.7.2.201 C0202 Compiler Error

Message text

Label is illegal inside try block.

3.1.7.2.202 C0203 Compiler Error

Message text

Exception type exception must either be caught in this method or declared in the throws
clause of this method prototype.

3.1.7.2.203 C0204 Compiler Error

Message text

Catch statement unreachable. Ancestor (or same type) is caught in previous statement.

3.1.7.2.204 C0205 Migration Warning

Message text

Function function has been replaced with function newfunction.

3.1.7.2.205 C0206 Migration Warning

Message text

Append extra argument argument to function function for backward compatibility.

3.1.7.2.206 C0207 Migration Warning

Message text

Append ALIAS FOR clause to external function function for backward compatibility.

3.1.7.2.207 C0208 Informational Message

Message text

An application object cannot be added to a namespace. The defined namespace namespace
will be ignored.

3.1.7.2.208 C0209 Compiler Warning

Message text

Function or event method must be declared before it can be compiled.

3.1.7.2.209 C0210 Compiler Warning

Message text

Coding Fundamentals

Page 271

Event event cannot be overloaded.

3.1.7.2.210 C0212 Compiler Error

Message text

Invalid #if preprocessor statement.

3.1.7.2.211 C0213 Compiler Error

Message text

Invalid #elseif preprocessor statement.

3.1.7.2.212 C0214 Compiler Error

Message text

#end if directive expected.

3.1.7.2.213 C0215 Compiler Error

Message text

Unexpected preprocessor directive.

3.1.7.2.214 C0216 Compiler Error

Message text

Preprocessor syntax error.

3.1.7.2.215 C0217 Informational Message

Message text

Please note that the user-defined event event can now be implemented using the equivalent
system event event.

3.1.7.2.216 C0218 Compiler Warning

Message text

Migration: Invalid multibyte character(s) in source string1(string2) have been replaced with
the character '?'.

3.1.7.2.217 C0300 Compiler Error

Message text

The statement is not complete.

Explanation

Error C0300 is generated when you deploy a .NET target that contains an incomplete
statement inside a conditional compilation clause:

int i
#if defined PBWEBFORM the

Coding Fundamentals

Page 272

 i = // generates C0300
#end if

3.1.7.2.218 C0301 Compiler Error

Message text

; expected.

Explanation

Error C0301 is generated when you deploy a .NET target that has a statement with a missing
semicolon inside a conditional compilation clause:

int EmpNbr
string EmpName

#if defined PBWEBFORM then
INSERT INTO Employee (employee.Emp_nbr, employee.Emp_name) VALUES
 (:EmpNbr, :EmpName) USING sqlca // generates C0301
#end if

3.1.7.2.219 C0302 Compiler Error

Message text

) expected.

Explanation

Error C0302 is generated when you deploy a .NET target that has a statement with a missing
closing parenthesis inside a conditional compilation clause:

#if defined PBWEBFORM then
 System.Net.Mail.Attachment att
// the following staement generates C0302
 att = create System.Net.Mail.Attachment("c:\temp\emp_data.pdf"
#end if

3.1.7.2.220 C0303 Compiler Error

Message text

{ expected.

Explanation

This is an internal error that may be generated in the context of other errors.

3.1.7.2.221 C0304 Compiler Error

Message text

Syntax Error, string expected.

Explanation

Error C0304 is generated when you deploy a .NET target that has a statement with a missing
component inside a conditional compilation clause:

#if defined PBWEBFORM then

Coding Fundamentals

Page 273

// the following statement generates C0304:
// Syntax Error 'RCURLY' expected.
 string ls_city[] = { "aaaa", "bbbb", "cccc"

// the following statement generates C0304:
// Syntax Error 'IDENTIFIER' expected.
 string ls_city[] = "aaaa", "bbbb", "cccc" }

#end if

3.1.7.2.222 C0305 Compiler Error

Message text

; or newline expected.

Explanation

This is an internal error that may be generated in the context of other errors.

3.1.7.2.223 C0306 Compiler Error

Message text

Syntax error: string.

Explanation

Error C0306 is generated when you deploy a .NET target that has a statement with
incomplete or incorrect syntax like the following inside a conditional compilation clause:

#if defined PBWEBFORM then
 integer i = // generates C0306
#end if

The following code also generates error C0306:

#if defined PBDOTNET then
 // generates C0306: Syntax error: 'create'
 System.Text.ASCIIEncoding enc = create &
 System.Text.ASCIIEncoding
#end if

To avoid the error, declare an instance of the object and issue the CREATE statement on
separate lines:

#if defined PBDOTNET then
 // compiles successfully
 System.Text.ASCIIEncoding enc
 enc = create System.Text.ASCIIEncoding
#end if

3.1.7.2.224 C0307 Compiler Error

Message text

Syntax error: unexpected string.

Explanation

Error C0307 is generated when you deploy a .NET target that has a statement like the
following inside a conditional compilation clause:

Coding Fundamentals

Page 274

#if defined PBWEBFORM then

 halt clos // generates C0307:
 // Syntax error: unexpected "clos"
#end if

3.1.7.2.225 C0308 Compiler Error

Message text

'end if' expected.

Explanation

Error C0308 is generated when you deploy a .NET target that has an IF statement with no
closing END IF inside a conditional compilation clause:

#if defined PBWEBFORM then
 if a then // generates C0308
#end if

3.1.7.2.226 C0309 Compiler Error

Message text

'end try' expected.

Explanation

Error C0309 is generated when you deploy a .NET target that has a TRY statement with no
closing END TRY inside a conditional compilation clause:

n_throwable1 thr1
n_throwable2 thr2
n_throwable3 thr3
n_throwable4 thr4

#if defined pbwebform then
 try
 try
 hasthrow1()
 throw thr3
 throw thr4
 catch (n_throwable4 exce4)
 end try
 catch (n_throwable3 exce3)
 // missing end try generates C0309
#end if

3.1.7.2.227 C0310 Compiler Error

Message text

'end choose' expected.

Explanation

Error C0310 is generated when you deploy a .NET target that has a CHOOSE CASE
statement with no closing END CHOOSE inside a conditional compilation clause:

decimal weight
decimal postage

Coding Fundamentals

Page 275

#if defined pbwebform then
 choose case weight
 case is<10
 postage=weight*0.30
 case 10
 postage=4.50
 case 11 to 20
 postage=6.0
 case is>21, is<=40, 44
 postage=10.0
 case else
 postage=25.00 // missing end choose generates C0310
#end if

3.1.7.2.228 C0311 Compiler Error

Message text

'end for' expected.

Explanation

Error C0311 is generated when you deploy a .NET target that has a FOR statement with no
closing END FOR inside a conditional compilation clause:

int i
#if defined PBWEBFORM then
 for i = 1 to 100
 // missing end for generates C0311
#end if

3.1.7.2.229 C0312 Compiler Error

Message text

An object reference is required for a nonstatic field, method, or property.

Explanation

To access a nonstatic variable in a .NET class in a conditional compilation clause, an instance
of the class must be created. This example uses a simple public class Department that is in
the .NET assembly PBInterop.dll. Department has two member variables: public string Name
and public static int ID. In the following example, the attempt to access the nonstatic variable
Name without creating and using an instance of the Department class generates C0312:

String dept_name
#if defined pbwebform then
 PBInterOp.Department dept
 dept_name = PBInterOp.Department.Name // C0312
#end if

This example deploys without error because an instance of the Department class is created
and used to access the nonstatic variable:

String dept_name
 dept = create PBInterOp.Department
 dept_name = dept.Name
#end if

See Also

Coding Fundamentals

Page 276

C0313 Compiler Error

3.1.7.2.230 C0313 Compiler Error

Message text

Static member name cannot be accessed with an instance reference. Qualify the static
member with a type name.

Explanation

To access a static variable in a .NET class in a conditional compilation clause, you must use
a type name, not a reference to an instance of the class. This example uses a simple public
class Department that is in the .NET assembly PBInterop.dll. Department has two member
variables: public string Name and public static int ID. In the following example, the attempt
to access the static variable ID using an instance of the Department class generates C0313:

long dept_id
#if defined pbwebform then
 PBInterOp.Department dept
 dept = create PBInterOp.Department
 dept_id = dept.ID // generates C0313
#end if

This example deploys without error because the type name of the class is used to access the
static variable:

long dept_id
#if defined pbwebform then
 dept_id = PBInterOp.Department.ID
#end if

See Also

C0312 Compiler Error

3.1.7.2.231 C0314 Compiler Warning

Message text

Value of maths literal above maximum allowed for datatype type.

Explanation

Warning C0314 is generated when you deploy a .NET target that sets the value of a numeric
variable to a value greater than its range, for example:

int i = 4449999998999 // generates C0314

3.1.7.2.232 C0315 Compiler Warning

Message text

Value of maths literal below minimum allowed for datatype type.

Explanation

Warning C0315 is generated when you deploy a .NET target that sets the value of a numeric
variable to a value that is less than its minimum value, for example:

int i = -4449999998999 // generates C0315
byte b = -1 // generates C0315

Coding Fundamentals

Page 277

3.1.7.2.233 C0316 Compiler Error

Message text

Function scope cannot be of type type.

Explanation

Error C0316 is generated when you deploy a .NET target that contains a statement like the
following in the body of a function, where f1 is a function that does not return a value:

f1().f2() // generates C0316: Function scope
 // cannot be of type "void"

3.1.7.2.234 C0317 Compiler Warning

Message text

May cause data loss.

3.1.7.2.235 C0318 Compiler Warning

Message text

'this' cannot be used in a global function.

Explanation

Warning C0318 is generated when you deploy a .NET target that contains a global function
that uses the this keyword:

PowerObject po
po = this // generates C0318

3.1.7.2.236 C0319 Compiler Error

Message text

No suitable constructor for statement statement: name.

Explanation

Error C0319 is generated when you deploy a .NET target that uses incorrect syntax in a
statement that requires a constructor. This example uses a simple public class Class1 that is
in the .NET assembly Interop.dll. Attempting to create an instance of Class1generates C0319,
because the constructor for Class1 does not take a System.Nullable argument:

#if defined PBDOTNET then
 Interop.Class1 obj
 System.Nullable p
 p = create System.Nullable
 obj = create Interop.Class1(p) //generates C0319:
// No suitable constructor for create statement: class1
#end if

3.1.7.2.237 C0320 Compiler Error

Message text

Event (event) cannot be overloaded: event.

Explanation

Coding Fundamentals

Page 278

Error C0320 is generated when you deploy a .NET target that contains an inherited event
that is overloaded. This can occur if the datatype of an inherited event's argument is changed
in the Source editor. Suppose a window w_1 has an event e that takes an integer argument.
If w_2 is inherited from w_1, but the inherited event's argument is changed from integer to
long, C320 is generated. This is the incorrect code in the Source editor:

global type w_2 from w_1
event e (long i) // generates C320
end type
global w_2 w_2

3.1.7.2.238 C0321 Compiler Error

Message text

Event (event) is different from its prototype: event.

Explanation

Error C0321 is generated when you deploy a .NET target that contains an inherited event that
has a different argument from its prototype. This can occur if the datatype of an inherited
event's argument is changed in the Source editor. Suppose a window w_1 has an event e that
takes an integer argument. If w_2 is inherited from w_1, the inherited event also takes an
integer argument. If the event is redefined to take a long argument in the Source editor, C321
is generated. This is the incorrect code in the Source editor:

global type w_2 from w_1
event e (integer i)
end type
global w_2 w_2
event e (long i) // generates C321
end type

3.1.7.2.239 C0322 Compiler Error

Message text

No label label within the scope of the GoTo statement.

Explanation

Error C0322 is generated when you deploy a .NET target that contains a GoTo statement
that jumps into a branch of a compound statement. This is legal in PowerScript because
the concept of scope inside a function does not exist. In C#, the IF and ELSE clauses are in
different scopes.

int li_num=123
boolean b=true

if b then
 start: li_num++
else
 goto start // generates C0322
end if

3.1.7.2.240 C0323 Compiler Warning

Message text

Downcast warning: assign/pass type type1 to type type2 might cause runtime errors.

Coding Fundamentals

Page 279

3.1.7.2.241 C0324 Compiler Warning

Message text

Calling an indirect ancestor event (event) is not supported in .NET.

Explanation

Suppose that there are three windows, w_1, w_2, and w_3. w_1 inherits from Window, w_2
inherits from w_1, and w_3 inherits from w_2. Each of these classes handles the Clicked
event. In the Clicked event of w_3, it is legal to code the following in PowerScript:

call w_1::clicked

However, in C#, calling the base method of an indirect base class from an override method
is not allowed. The previous statement translates into the following C# code, which might
produce different behavior:

base.clicked();

In this example, a possible workaround is to move code from the Clicked event of the indirect
ancestor window to a window function, and then call the function, rather than the original
Clicked event, from the descendant window.

3.1.7.2.242 C0325 Compiler Error

Message text

Function (function) has a different return type (type1) from its prototype's (type2).

Explanation

Error C0325 is generated when you deploy a .NET target that contains a function whose
return type has been changed. This can occur if the return datatype is changed in the Source
editor. This is the incorrect code in the Source editor:

forward prototypes
public function integer f1 ()
end prototypes

public function long f1 ();return 2 // generates C0325
end function

3.1.7.2.243 C0326 Compiler Error

Message text

Return statement cannot be used in 'finally' clause.

Explanation

PowerScript allows you to code a Return statement in the Finally clause of a try–catch
statement, but C# does not support Return statements in Finally clauses. If your code includes
such statements, C0326 is generated when you deploy a .NET target:

integer ll_num=123

TRY
 ...
CATCH (throwable exec1)

Coding Fundamentals

Page 280

 ...
FINALLY
 return ll_num // generates C0326
END TRY
return ll_num

3.1.7.2.244 C0327 Compiler Error

Message text

The best overloaded method match for method has some invalid arguments.

Explanation

If a custom class user object has two functions, f1 and f2, and f1 takes a long argument,
code like the following in the body of f2 generates a "Bad argument list for function: f1"
error when it is compiled. If the code is enclosed in a .NET conditional compilation block,
the compile-time error is not generated and C0327 is generated when you deploy the .NET
target:

string s='123'
f1(s) // generates C0327

3.1.7.2.245 C0328 Compiler Error

Message text

Private function cannot be inherited.

Explanation

If an object contains a private function, you cannot change the body of that function in an
inherited object. Suppose a window w_1 has a private function f1 that takes an integer as an
argument and returns an integer. If w_2 inherits from w_1, any code in the body of f1 in w_2
generates C0328 when you deploy the .NET target:

return 1 //generates C0328

3.1.7.2.246 C0329 Compiler Error

Message text

Function function has no prototype.

Explanation

Error C0329 is generated when you deploy a .NET target that contains a function that has no
prototype. This can occur if the function is added without a prototype in the Source editor.
This incorrect code in the Source editor compiles but generates C0329 when the .NET target
is deployed:

global type of_test from function_object
end type

forward prototypes
global function integer of_test (integer arg1)
end prototypes

global function integer of_test (integer arg1);return 1
end function

Coding Fundamentals

Page 281

function integer of_test2 (integer arg2);return 2
 // generates C0329
end function

3.1.7.2.247 C0330 Compiler Error

Message text

Cannot create an instance of the abstract class or interface name.

Explanation

Error C0330 is generated if you try to create an instance of an abstract class or interface, as in
the following code example:

System.Enum e
e = create System.Enum

3.1.7.2.248 C0331 Compiler Error

Message text

Static member name cannot be accessed with a function or property call.

Explanation

Error C0331 is generated if you call a static member in a function or property. For example,
each of the following calls generates error C0331:

s = emp.GetAssest().StaGetName()

s = dept.EmpField.StaName;

3.1.8 Declaring variables and external functions

The default layout in the Application, Window, and User Object painters includes a Script
view set up to declare variables. Keeping a separate Script view open makes it easy to
declare any variables or external functions you need to use in your code without closing and
compiling the script.

To declare variables and external functions:

1. Select [Declare] from the first list in the Script view.

2. Select the variable type (instance, shared, or global) or the function type (local or global)
from the second list.

3. Type the declaration in the Script view.

For more information about declaring variables, see Section 1.3.1, “Declaring variables”
in PowerScript Reference. For more information about declaring and using external
functions, see Section 1.3.4, “Declaring external functions” in PowerScript Reference and
Section 5.5.1.1, “Declaring external functions” in Application Techniques.

3.2 Working with User-Defined Functions

About this chapter

Coding Fundamentals

Page 282

This chapter describes how to build and use user-defined functions.

3.2.1 About user-defined functions

The PowerScript language has many built-in functions, but you may find that you need to
code the same procedure over and over again. For example, you may need to perform a
certain calculation in several places in an application or in different applications. In such a
situation, create a user-defined function to perform the processing.

A user-defined function is a collection of PowerScript statements that perform some
processing. After you define a user-defined function and save it in a library, any application
accessing that library can use the function.

There are two kinds of user-defined functions, global and object-level functions.

Global functions

Global functions are not associated with any object in your application and are always
accessible anywhere in the application.

They correspond to the PowerBuilder built-in functions that are not associated with an object,
such as the mathematical and string-handling functions. You define global functions in the
Function painter.

Object-level functions

Object-level functions are defined for a window, menu, user object, or application object.
These functions are part of the object's definition and can always be used in scripts for the
object itself. You can choose to make these functions accessible to other scripts as well.

These functions correspond to built-in functions that are defined for specific PowerBuilder
objects such as windows or controls. You define object-level functions in a Script view for
the object.

3.2.1.1 Deciding which kind you want

When you design your application, you need to decide how you will use the functions you
will define:

• If a function is general purpose and applies throughout an application, make it a global
function.

• If a function applies only to a particular kind of object, make it an object-level function.
You can still call the function from anywhere in the application, but the function acts only
on a particular object type.

For example, suppose you want a function that returns the contents of a SingleLineEdit
control in one window to another window. Make it a window-level function, defined in the
window containing the SingleLineEdit control. Then, anywhere in your application that
you need this value, call the window-level function.

Multiple objects can have functions with the same name

Two or more objects can have functions with the same name that do different things.
In object-oriented terms, this is called polymorphism. For example, each window type

Coding Fundamentals

Page 283

can have its own Initialize function that performs processing unique to that window
type. There is never any ambiguity about which function is being called, because you
always specify the object's name when you call an object-level function.

Object-level functions can also be overloaded—two or more functions can have the
same name but different argument lists. Global functions cannot be overloaded.

3.2.2 Defining user-defined functions

Although you define global functions in the Function painter and object-level functions in the
painter for a specific object, in both cases you define and code the function in a Script view.

When you add a new function, a Prototype window displays above the script area in the
Script view. The fields in the Prototype window are in the same order as the function's
signature:

• The function's access level, return type, and name

• For each parameter, how it is passed, its datatype, and its name

• The exceptions the function can throw, if any

Figure 3.6:

The following sections describe each of the steps required to define and code a new function:

• Opening a Prototype window to add a new function.

• Defining the access level (for object-level functions).

• Defining a return type.

Coding Fundamentals

Page 284

• Naming the function.

• Defining arguments.

• Defining a THROWS clause.

• Coding the function.

• Compiling and saving the function.

3.2.2.1 Opening a Prototype window to add a new function

How you create a new function depends on whether you are defining a global function or an
object-level function.

To create a new global function

• Select File>New from the menu bar and select Function from the PB Object tab.

The Function painter opens, displaying a Script view with an open Prototype window in
which you define the function.

To create a new object-level function

1. Open the object for which you want to declare a function.

You can declare functions for windows, menus, user objects, or applications.

2. Select Insert>Function from the menu bar, or, in the Function List view, select Add from
the pop-up menu.

The Prototype window opens in a Script view or, if no Script view is open, in a new
Script view.

3.2.2.2 Defining the access level

In the Prototype window, use the drop-down list labeled Access to specify where you can call
the function in the application.

For global functions

Global functions can always be called anywhere in the application. In PowerBuilder terms,
they are public. When you are defining a global function, you cannot modify the access level;
the field is read-only.

For object-level functions

You can restrict access to an object-level function by setting its access level.

Table 3.6: Access levels for object-level functions

Access Means you can call the function

Public In any script in the application.

Private Only in scripts for events in the object in which the function is defined.
You cannot call the function from descendants of the object.

Coding Fundamentals

Page 285

Access Means you can call the function

Protected Only in scripts for the object in which the function is defined and
scripts for that object's descendants.

If a function is to be used only internally within an object, you should define its access as
private or protected. This ensures that the function is never called inappropriately from
outside the object. In object-oriented terms, defining a function as protected or private
encapsulates the function within the object.

3.2.2.3 Defining a return type

Many functions perform some processing and then return a value. That value can be the result
of the processing or a value that indicates whether the function executed successfully or not.
To have your function return a value, you need to define its return type, which specifies the
datatype of the returned value.

You must code a return statement in the function that specifies the value to return. See
Returning a value [288]. When you call the function in a script or another function, you
can use an assignment statement to assign the returned value to a variable in the calling
script or function. You can also use the returned value directly in an expression in place of a
variable of the same type.

To define a function's return type

• Select the return type from the Return Type drop-down list in the Prototype window, or
type in the name of an object type you have defined.

You can specify any PowerBuilder datatype, including the standard datatypes, such as
integer and string, as well as objects and controls, such as DataStore or MultiLineEdit.

You can also specify as the return type any object type that you have defined. For
example, if you defined a window named w_calculator and want the function to process
the window and return it, type w_calculator in the Return Type list. You cannot select
w_calculator from the list, because the list shows only built-in datatypes.

To specify that a function does not return a value

• Select (None) from the Return Type list.

This tells PowerBuilder that the function does not return a value. This is similar to
defining a procedure or a void function in some programming languages.

Examples of functions returning values

The following examples show the return type you would specify for some different functions:

Table 3.7:

If you are defining Specify this return
type

A mathematical function that does some processing and returns a
real number

real

Coding Fundamentals

Page 286

If you are defining Specify this return
type

A function that takes a string as an argument and returns the string
in reverse order

string

A function that is passed an instance of window w_calculator, does
some processing (such as changing the window's color), then returns
the modified window

w_calculator

3.2.2.4 Naming the function

Name the function in the Function Name box. Function names can have up to 40 characters.
For valid characters, see Section 1.1.2, “Identifier names” in PowerScript Reference.

For object-level functions, the function is added to the Function List view when you tab off
the Function Name box. It is saved as part of the object whenever you save the object.

Using a naming convention for user-defined functions makes them easy to recognize and
distinguish from built-in PowerScript functions. A commonly used convention is to preface
all global function names with f_ and object-level functions with of_, such as:

// global functions
f_calc
f_get_result
// object-level functions
of_refreshwindow
of_checkparent

Built-in functions do not usually have underscores in their names, so this convention makes it
easy for you to identify functions as user defined.

3.2.2.5 Defining arguments

Like built-in functions, user-defined functions can have any number of arguments, including
none. You declare the arguments and their types when you define a function.

Passing arguments

In user-defined functions, you can pass arguments by reference, by value, or read-only. You
specify this for each argument in the Pass By list.

By reference. When you pass an argument by reference, the function has access to the
original argument and can change it directly.

By value. When you pass by value, you are passing the function a temporary local copy of
the argument. The function can alter the value of the local copy within the function, but the
value of the argument is not changed in the calling script or function.

Read-only. When you pass as read-only, the variable's value is available to the function
but it is treated as a constant. Read-only provides a performance advantage over passing by
value for string, blob, date, time, and datetime arguments, because it does not create a copy of
the data.

If the function takes no arguments

Leave the initial argument shown in the Prototype window blank.

Coding Fundamentals

Page 287

To define arguments:

1. Declare whether the first argument is passed by reference, by value, or read-only.

The order in which you specify arguments here is the order you use when calling the
function.

2. Declare the argument's type. You can specify any datatype, including:

• Built-in datatypes, such as integer and real

• Object types, such as window, or specific objects, such as w_emp

• User objects

• Controls, such as CommandButtons

3. Name the argument.

If you want to add another argument, press the Tab key or select Add Parameter from
the pop-up menu and repeat steps 1 to 3.

Passing arrays

You must include the square brackets in the array definition, for example, price[]or
price[50], and the datatype of the array must be the datatype of the argument.
For information on arrays, see Section 1.3.3, “Declaring arrays” in PowerScript
Reference.

3.2.2.6 Defining a THROWS clause

If you are using user-defined exceptions, you must define what exceptions might be thrown
from a user-defined function or event. You use the Throws box to do this.

When you need to add a THROWS clause

Any developers who call the function or event need to know what exceptions can be thrown
from it so that their code can handle the exceptions. If a function contains a THROW
statement that is not surrounded by a try-catch block that can deal with that type of exception,
then the function must be declared to throw that type of an exception or some ancestor of that
exception type.

There are two exception types that inherit from the Throwable object: Exception and
RuntimeError. Typically, you add objects that inherit from Exception to the THROWS
clause of a function. Exception objects are the parents of all checked exceptions, which are
exceptions that must be dealt with when thrown and declared when throwing. You do not
need to add Runtime error objects to the THROWS clause, because they can occur at any
time. You can catch these errors in a try-catch block, but you are not required to.

Adding a THROWS clause

You can add a THROWS clause to any PowerBuilder function or to any user event that is not
defined by an event ID. To do so, drag and drop it from the System Tree, or type the name
of the object in the box. If you type the names of multiple user objects in the Throws box,

Coding Fundamentals

Page 288

use a comma to separate the object names. When you drag and drop multiple user objects,
PowerBuilder automatically adds the comma separators.

The PowerBuilder compiler checks whether a user-defined exception thrown on a function
call in a script matches an exception in the THROWS clause for that function. It prompts you
if there is no matching exception in the THROWS clause.

You can define a user-defined exception object, and inherit from it to define more specific
lower-level exceptions. If you add a high-level exception to the throws clause, you can throw
any lower-level exception in the script, but you risk hiding any useful information obtainable
from the lower-level exception.

For more information about exception handling, see Section 2.2.9.3, “Handling exceptions”
in Application Techniques.

3.2.2.7 Coding the function

When you have finished defining the function prototype, you specify the code for the
function just as you specify the script for an event in the Script view. For information about
using the Script view, see Writing Scripts.

What functions can contain

User-defined functions can include PowerScript statements, embedded SQL statements, and
calls to built-in, user-defined, and external functions.

You can type the statements in the Script view or use the buttons in the PainterBar or items
on the Edit>Paste Special menu to insert them into the function. For more information, see
Pasting information into scripts.

Returning a value

If you specified a return type for your function in the Prototype window, you must return a
value in the body of the function.To return a value in a function, use the RETURN statement:

RETURN expression

where expression is the value you want returned by the function. The datatype of the
expression must be the datatype you specified for the return value for the function.

Example

The following function returns the result of dividing arg1 by arg2 if arg2 does not equal zero.
It returns –1 if arg2 equals zero:

IF arg2 <> 0 THEN
 RETURN arg1 / arg2
ELSE
 RETURN -1
END IF

3.2.2.8 Compiling and saving the function

When you finish building a function, compile it and save it in a library. Then you can use it in
scripts or other user-defined functions in any application that includes the library containing
the function in its library search path. You compile the script and handle errors as described
in Compiling the script.

Coding Fundamentals

Page 289

3.2.3 Modifying user-defined functions

You can change the definition of a user-defined function at any time. You change the
processing performed by the function by modifying the statements in the Script view. You
can also change the return type, argument list, or access level for a function.

To change a function's return type, arguments, or access level:

1. Do one of the following:

• In the Function painter, open the global function.

• Open the object that contains the object-level function you want to edit and select the
function from the Function list.

2. Make the changes you want in the Prototype window.

3. If the Prototype window is hidden, click the toggle button to display it.

4. Select File>Save from the menu bar.

To change a function's name:

1. If desired, modify the function's return type, arguments, or access level as described in
the previous procedure.

2. Do one of the following:

• In the Function painter, select File>Save As from the menu bar and enter a name.

• In the Script view, enter a new name in the Function Name box.

When you tab off the box, the new function name displays in the Function List view.

Changing the arguments

You can change a function's arguments at any time using the pop-up menu in the Prototype
window:

• Add an argument by selecting Add Parameter. Boxes for defining the new argument
display below the last argument in the list.

• Insert an argument by moving the pointer to the argument before which you want to insert
the argument and selecting Insert Parameter. Boxes for defining the new argument display
above the selected argument.

• Delete an argument by selecting it and clicking the Delete button.

To change the position of an argument

To change the position of an argument, delete the argument and insert it as a new
argument in the correct position.

Recompiling other scripts

Coding Fundamentals

Page 290

Changing arguments and the return type of a function affect scripts and other functions
that call the function. You should recompile any script in which the function is used. This
guarantees that the scripts and functions work correctly during execution.

Seeing where a function is used

PowerBuilder provides browsing facilities to help you find where you have referenced your
functions. In the System Tree or Library painter, select a target, library, or object and select
Search from the pop-up menu. You can also search multiple entries in the Library painter:

To determine which functions and scripts call a user-defined function:

1. Open the Library painter.

2. In a List view, select all the entries you want to search for references to the user-defined
function.

3. Select Entry>Search from the menu bar.

4. The Search Library Entries dialog box displays.

5. Specify the user-defined function as the search text and specify the types of components
you want to search.

6. Click OK.

PowerBuilder displays all specified components that reference the function in the Output
window. You can double-click a listed component to open the appropriate painter.

For more about browsing library entities, see Searching targets, libraries, and objects.

3.2.4 Using your functions

You use user-defined functions the same way you use built-in functions. You can call them in
event scripts or in other user-defined functions.

For complete information about calling functions, see Part I, “Application Techniques”.

Pasting user-defined functions

When you build a script in the Script view, you can type the call to the user-defined function.
You can also paste the function into the script. There are four ways to paste a user-defined
function into a script:

• Drag the function from the System Tree to the Script view.

• Select Edit>Paste Special>Function>User-defined from the menu bar.

• Enable AutoScript, select the function's signature in the list that displays when you pause,
and press Tab or Enter.

• Select the function in the Browser and copy and paste it into the script.

Using the System Tree, AutoScript, or the Browser pastes the function's prototype arguments
as well as its name into the script.

For more information about AutoScript, see Using AutoScript.

Coding Fundamentals

Page 291

To paste a user-defined function into a script from the Browser:

1. Select Tools>Browser from the menu bar.

2. Do one of the following:

• Select a global function from the Function page.

• Select the object that contains the object-level function you want to paste from the
corresponding page (such as the Window page).

• Double-click the Functions category in the right pane.

• Select the function you want to paste and select Copy from its pop-up menu.

3. In the Script view, move the insertion point to where you want to paste the function and
select Paste from the pop-up menu.

The function and its prototype parameters display at the insertion point in your script.

4. Specify the required arguments.

3.3 Working with User Events
About this chapter

This chapter introduces user events, describes how to define them, and discusses how to use
them in an application.

3.3.1 About user events

Windows, user objects, controls, menus, and Application objects each have a predefined set
of events. In most cases, the predefined events are all you need, but there are times when
you want to declare your own user event. You can use predefined event IDs to trigger a user
event, or you can trigger it exclusively from within your application scripts.

Features that you might want to add to your application by creating user events include
keystroke processing, providing multiple ways to perform a task, and communication
between a user object and a window.

Keystroke processing

Suppose that you want to modify the way keystrokes are processed in your application. For
example, in a DataWindow control, you want the user to be able to press the Down Arrow
and Up Arrow keys to scroll among radio buttons in a DataWindow column. Normally,
pressing these keys moves the focus to the next or preceding row.

To do this, you define user events corresponding to Windows events that PowerBuilder does
not define.

Multiple methods

Suppose that you want to provide several ways to accomplish a certain task within a window.
For example, you want the user to be able to update the database by either clicking a button
or selecting a menu item. In addition, you want to provide the option of updating the database
when the user closes the window.

Coding Fundamentals

Page 292

To do this, you define a user event to update the database.

Communication between user object and window

Suppose that you have placed a custom visual user object in a window and need to
communicate between the user object and the window. For information, see Communicating
between a window and a user object.

3.3.1.1 User events and event IDs

An event ID connects events related to user actions or system activity to a system message.
PowerBuilder defines (or maps) events to commonly used event IDs, and when it receives a
system message, it uses the mapped event ID to trigger an event.

User-defined events do not have to be mapped to an event ID. See Defining user events.

3.3.1.1.1 Event ID names

The PowerBuilder naming convention for user event IDs is similar to the convention
Windows uses to name messages. All PowerBuilder event IDs begin with pbm_.

Event IDs associated with Windows messages

Several Windows messages and notifications map to PowerBuilder event IDs.

For Windows messages that begin with wm_, the PowerBuilder event ID typically has the
same name with pbm_ substituted for wm_. For messages from controls, the PowerBuilder
event ID typically has the same name but begins with pbm_ and has the Windows prefix for
the control added to the message name. For example:

• wm_keydown maps to pbm_keydown

• bm_getcheck (a button control message) maps to pbm_bmgetcheck

• bn_clicked (a button control notification message) maps to pbm_bnclicked

To see a list of event IDs to which you can map a user-defined event, select Insert>Event and
display the Event ID drop-down list in the Prototype window that displays.

Windows messages that are not mapped to a PowerBuilder event ID map to the pbm_other
event ID. The PowerBuilder Message object is populated with information about system
events that are not mapped to PowerBuilder event IDs. For more information about the
Message object, see Section 2.60, “Message object” in Objects and Controls or Section 5.5.4,
“The Message object” in Application Techniques.

For more information about Windows messages and notifications, see the information
about Windows controls and Windows management in the section on user interface design
and development in the Microsoft MSDN Library at http://msdn.microsoft.com/library/
default.aspx.

Event IDs associated with PowerBuilder events

PowerBuilder has its own events, each of which has an event ID. For example, the
PowerBuilder event DragDrop has the event ID pbm_dragdrop. The event name and event ID
of the predefined PowerBuilder events are protected; they cannot be modified. The event IDs
for predefined events are shown in the Event List view:

http://msdn.microsoft.com/library/default.aspx
http://msdn.microsoft.com/library/default.aspx

Coding Fundamentals

Page 293

Figure 3.7:

Custom event IDs

The list of event IDs that displays in the Event ID drop-down list in the Prototype window
includes custom event IDs. Custom user events can be mapped from Windows wm_user
message numbers to pbm_customxx event IDs.

Obsolete technique

This technique is not recommended and is considered to be obsolete. The ability to
use this technique has been retained for backward compatibility. If you do not want to
map a user event to a named pbm_ code, use an unmapped user event as described in
Unmapped user events [294].

These event IDs were intended for use with DataWindow controls, windows, and user objects
other than standard visual user objects, which behave like the built-in controls they inherit
from. They were not intended for use with standard controls.

Defining custom user events for standard controls can cause unexpected behavior because all
standard controls respond to standard events in the range 0 to 1023. Most controls also define
their own range of custom events beyond 1023, corresponding to wm_user messages, and
some controls have custom events that overlap with the PowerBuilder custom events. The
pbm_custom01 event ID maps to wm_user+0, pbm_custom02 maps to wm_user+1, and so
on, through pbm_custom75, which maps to wm_user+74.

3.3.2 Defining user events

In PowerBuilder, you can define both mapped and unmapped user events for windows, user
objects, controls, menus, and the Application object.

Coding Fundamentals

Page 294

When you add a new event, a Prototype window displays above the script area in the Script
view. Most of the fields in the Prototype window are the same as when you define a user-
defined function. They are in the same order as the event's signature: access level, return
type, and name; then for each parameter, how it is passed, its datatype, and its name; and
finally, the THROWS clause. For information about filling in these fields, see Defining user-
defined functions.

The access level for events is always public.

Figure 3.8:

The Prototype window for user events has an additional field that you use if you want to map
the user event to an event ID.

External check box

When you select the External check box, PowerBuilder sets the IsExternalEvent
property of the ScriptDefinition object associated with the event to "true". This has no
effect on your application in this release. The feature may be used in a future release.

Mapped user events

When a system message occurs, PowerBuilder triggers any user event that has been mapped
to the message and passes the appropriate values to the event script as arguments. When you
define a user event and map it to an event ID, you must use the return value and arguments
that are associated with the event ID.

Unmapped user events

Unmapped user events are associated with a PowerBuilder activity and do not have an
event ID. When you define an unmapped user event, you specify the arguments and return
datatype; only your application scripts can trigger the user event. For example, if you create
an event called ue_update that updates a database, you might trigger or post the event in the
Clicked event of an Update command button.

To define a mapped user event:

1. Open the object for which you want to define a user event.

If you want to define a user event for a control on a window or visual user object,
double-click the control to select it.

2. Select Insert>Event from the menu bar, or, in the Event List view, select Add from the
pop-up menu.

Coding Fundamentals

Page 295

The Prototype window opens in the Script view. If you display the Script view's title bar,
you see (Untitled) because you have not named the event yet. If there is no open Script
view, a new view opens.

3. Name the event and tab to the next field.

Event names can have up to 40 characters. For valid characters, see Section 1.1.2,
“Identifier names” in PowerScript Reference.

To recognize user events easily, consider prefacing the name with an easily recognizable
prefix such as ue_.

When you tab to the next field, the user event is added to the Event List view. It is saved
as part of the object whenever you save the object.

4. Select an ID from the drop-down list at the bottom of the Prototype window.

To define an unmapped user event:

1. Open the object for which you want to define a user event.

If you want to define a user event for a control on a window or visual user object,
double-click the control to select it.

2. Select Insert>Event from the menu bar, or, in the Event List view, select Add from the
pop-up menu.

The Prototype window opens in the Script view. If you display the Script view's title bar,
you see (Untitled) because you have not named the event yet. If there is no open Script
view, a new view opens.

3. Select a return type and tab to the next field.

Defining return types for events is similar to defining them for functions. See Defining a
return type.

When you can specify return type and arguments

If you map the user event to an event ID, you cannot change its return type or specify
arguments.

4. Name the event and tab to the next field.

Event names can have up to 40 characters. For valid characters, see the Section 1.1.2,
“Identifier names” in PowerScript Reference.

To recognize user events easily, consider prefacing the name with an easily recognizable
prefix such as ue_.

When you tab to the next field, the user event is added to the Event List view. It is saved
as part of the object whenever you save the object.

If the event will take arguments, define arguments for the event.

Defining arguments for events is similar to defining them for functions. See Defining
arguments and Changing the arguments [289].

Coding Fundamentals

Page 296

5. Optionally enter the name of exceptions that can be thrown by the event.

To open a user event for editing:

• In the Event List view, double-click the event's name.

To delete a user event:

• In the Event List view, select the user event's name and select Delete from the Edit menu
or the pop-up menu.

3.3.3 Using a user event

After you define a user event, you must write the script that PowerBuilder will execute when
that user event is triggered. If it is an unmapped user event, you also write the code that will
trigger the user event.

User events display in alphabetical order in the Event List view and the event list box in
the Script view, along with the predefined events. As with predefined events, the script tells
PowerBuilder what processing to perform when the user event occurs.

If the user event is not mapped to a Windows message (that is, if there is no event ID
associated with it), you must trigger the event in a script. You can trigger the user event in
an object using the EVENT syntax. For information about calling events, see Section 2.3.1,
“About events” in PowerScript Reference.

3.3.3.1 Examples of user event scripts

This section includes two examples that use a mapped user event and one example that uses
an unmapped user event. For more user event examples, see Communicating between a
window and a user object.

Example 1: mapped user event for a control

Situation. You have several SingleLineEdit controls in a window and want the Enter
key to behave like the Tab key (if users press Enter, you want them to tab to the next
SingleLineEdit).

Solution. Define a user event for each SingleLineEdit. Give the event any name you want,
such as ue_CheckKey. Map the event to the event ID pbm_keydown. Write a script for the
user event that tests for the key that was pressed. If Enter was pressed, set the focus to the
SingleLineEdit that you want the user to go to.

For example, in the script for the user event for sle_1, you could code:

// Script for user event ue_CheckKey
// which is mapped to pbm_keydown.
IF KeyDown(KeyEnter!) THEN // Go to sle_2 if
 sle_2.SetFocus() // Enter pressed.
END IF

Similarly, in the script for the user event for sle_2, you could code:

// Script for user event ue_CheckKey,
// which is mapped to pbm_keydown.
IF KeyDown(KeyEnter!) THEN // Go to sle_3 if

Coding Fundamentals

Page 297

 sle_3.SetFocus() // Enter pressed.
END IF

Example 2: mapped user event for an edit style

Situation. You have a DataWindow control with a column that uses the RadioButton edit
style and you want to allow users to scroll through the RadioButtons when they press Down
Arrow or Up Arrow (normally, pressing Down Arrow or Up Arrow scrolls to the next or
preceding row).

Solution. Declare a user event for the DataWindow control that maps to the event ID
pbm_dwnkey and write a script like the following for it. dwn stands for DataWindow
notification.

// Script is in a user event for a DataWindow control.
// It is mapped to pbm_dwnkey. If user is in column
// number 6, which uses the RadioButton edit style, and
// presses DownArrow, the cursor moves to the next item
// in the RadioButton list, instead of going to the next
// row in the DataWindow, which is the default behavior.
// Pressing UpArrow moves to preceding RadioButton.
//
// Note that the CHOOSE CASE below tests for data
// values, not display values, for the RadioButtons.

int colnum = 6 // Column number
long rownum
rownum = dw_2.GetRow() // Current row

IF KeyDown(KeydownArrow!) AND &
 This.GetColumn() = colnum THEN
 CHOOSE CASE dw_2.GetItemString(rownum, colnum)
 case "P" // First value in RB
 This.SetItem(rownum, colnum,"L") // Next
 case "L" // Second value in RB
 This.SetItem(rownum, colnum,"A") // Next
 case "A" // Last value in RB
 This.SetItem(rownum, colnum,"P") // First
 END CHOOSE
 This.SetActionCode(1) // Ignore key press
END IF

// The following code does same thing for UpArrow.
IF KeyDown(KeyupArrow!) AND &
 This.GetColumn() = colnum THEN

 CHOOSE CASE dw_2.GetItemString(rownum, colnum)
 case "P" // First value in RB
 This.SetItem(rownum, colnum,"A") // Last
 case "L" // Another value in RB
 This.SetItem(rownum, colnum,"P")
 case "A" // Last value in RB
 This.SetItem(rownum, colnum,"L")
 END CHOOSE
 This.SetActionCode(1)
END IF

Example 3: unmapped user event for menu options

Situation. Suppose you use the same menu in all your windows, but you want to enable
or disable some menu items, in this case database update items, depending on which window
the user is in.

Coding Fundamentals

Page 298

Solution. In the window that will be the ancestor of all the sheet windows that do not have
database update capability, define an unmapped user event called ue_ct_menu_enable. The
event takes a boolean argument, ab_state, to set or clear the enabled property on various
menus. This is the script for the ue_ct_menu_enable user event in the ancestor window:

// Enable / Disable Menu Options
 im_CurrMenu.m_maint.m_add.enabled = Not ab_state
 im_CurrMenu.m_maint.m_delete.enabled = Not ab_state
 im_CurrMenu.m_maint.m_undelete.enabled = Not ab_state
 im_CurrMenu.m_maint.m_update.enabled = Not ab_state
 im_CurrMenu.m_maint.m_close.enabled = ab_state

Then, in the script for the Activate event in the ancestor window, call the user event and pass
the value "true" for the boolean variable ab_state.

this.EVENT ue_ct_menu_enable (TRUE)

Write a similar script for the Deactivate event with the value "false" for ab_state.

You can use this window as the ancestor of any sheet window in your application that does
not have database update capability. When the window is active, the Add, Delete, Undelete,
and Update menu items are grayed out. When it is not active, the Close item is grayed out.

For windows that have database update capability, you can create a second ancestor window
that inherits from the ancestor window in which you defined ue_ct_menu_enable. In the
second ancestor window, you can override the ue_ct_menu_enable event script so that the
appropriate menu options are enabled.

3.4 Working with Structures

About this chapter

This chapter describes how to build and use structures.

3.4.1 About structures

A structure is a collection of one or more related variables of the same or different datatypes
grouped under a single name. In some languages, such as Pascal and COBOL, structures are
called records.

Structures allow you to refer to related entities as a unit rather than individually. For example,
if you define the user's ID, address, access level, and a picture (bitmap) of the employee as a
structure called s_employee, you can then refer to this collection of variables as s_employee.

Two kinds

There are two kinds of structures:

• Global structures, which are not associated with any object in your application. You
can declare an instance of the structure and reference the instance in any script in your
application.

• Object-level structures, which are associated with a particular type of window, menu, or
user object, or with the Application object. These structures can always be used in scripts
for the object itself. You can also choose to make the structures accessible from other
scripts.

Coding Fundamentals

Page 299

3.4.1.1 Deciding which kind you want

When you design your application, think about how the structures you are defining will be
used:

• If the structure is general-purpose and applies throughout the application, make it a global
structure.

• If the structure applies only to a particular type of object, make it an object-level structure.

3.4.2 Defining structures

Although you define object-level structures in the painter for a specific object and global
structures in the Structure painter, in both cases you define the structure in a Structure view.
The following sections describe each of the steps you take to define a new structure:

1. Open a Structure view.

2. For object-level structures, name the structure.

3. Define the variables that make up the structure.

4. Save the structure.

Opening a Structure view

How you open the Structure view depends on whether you are defining an object-level
structure or a global structure.

To define an object-level structure:

1. Open the object for which you want to declare the structure.

You can declare structures for windows, menus, user objects, or applications.

2. Select Insert>Structure from the menu bar.

A Structure view opens.

Figure 3.9:

Coding Fundamentals

Page 300

To define a global structure:

• Select Structure from the Objects tab in the New dialog box.

The Structure painter opens. It has one view, the Structure view. In the Structure painter,
there is no Structure Name text box in the Structure view.

Naming the structure

If you are defining an object-level structure, you name it in the Structure Name box in
the Structure view. If you are defining a global structure, you name it when you save the
structure.

Structure names can have up to 40 characters. For information about valid characters, see the
Section 1.1.2, “Identifier names” in PowerScript Reference.

You might want to adopt a naming convention for structures so that you can recognize them
easily. A common convention is to preface all global structure names with s_ and all object-
level structure names with str_.

Defining the variables

To define the variables that compose the structure:

1. Enter the datatype of a variable that you want to include in the structure.

The default for the first variable is string; the default for subsequent variables is the
datatype of the previous variable. You can specify any PowerBuilder datatype, including
the standard datatypes such as integer and string, as well as objects and controls such as
Window or MultiLineEdit.

You can also specify any object types that you have defined. For example, if you are
using a window named w_calculator that you have defined and you want the structure to
include the window, type w_calculator as the datatype. (You cannot select w_calculator
from the list, since the list shows only built-in datatypes.)

A structure as a variable

A variable in a structure can itself be a structure. Specify the structure's name as the
variable's datatype.

Specifying decimal places

If you select decimal as the datatype, the default number of decimal places is 2. You
can also select decimal{2} or decimal{4} to specify 2 or 4 decimal places explicitly.

2. Enter the name of the variable.

3. Repeat until you have entered all the variables.

Saving the structure

How you save the structure depends on whether it is an object-level structure or a global
structure.

Coding Fundamentals

Page 301

The names of object-level structures are added to the Structure List view and display in the
title bar of the Structure view as soon as you tab off the Structure Name box. As you add
variables to the structure, the changes are saved automatically. When you save the object
that contains the structure, the structure is saved as part of the object in the library where the
object resides.

Comments and object-level structures

You cannot enter comments for an object-level structure, because it is not a
PowerBuilder object.

To name and save a global structure:

1. Select File>Save from the menu bar, or close the Structure painter.

The Save Structure dialog box displays.

2. Name the structure.

See Naming the structure [300].

3. (Optional) Add comments to describe your structure.

4. Choose the library in which to save the structure.

5. Click OK.

PowerBuilder stores the structure in the specified library. You can view the structure as
an independent entry in the Library painter.

3.4.3 Modifying structures

To modify a structure:

1. Do one of the following:

• In the Open dialog box, select the global structure you want to modify.

• Open the painter for the object that contains the object-level structure and select the
structure from the Structure List view.

2. If the Structure List view is not open, select it from the View menu.

3. Review the variable information displayed in the Structure view and modify the
structure as necessary.

To insert a variable before an existing variable, highlight it and select Insert>Row from
the menu bar or Insert Row from the pop-up menu.

To delete a variable, select Delete Row from the pop-up menu.

4. Save the modified structure.

Building a similar structure

Coding Fundamentals

Page 302

If you want to create a structure that is similar to one that already exists, you can use the
existing structure as a starting point and modify it.

To build an object-level structure that is similar to an existing object-level structure:

1. Select the existing structure in the Structure List view.

2. Select Duplicate from the pop-up menu.

3. Name the new structure in the Structure Name box.

4. Modify variables as needed.

To build a global structure that is similar to an existing global structure:

1. Open and modify the existing structure.

2. Select File>Save As to save the structure under another name or in another library.

3.4.4 Using structures

After you define the structure, you can:

1. Reference an instance of the structure in scripts and functions

2. Pass the structure to functions

3. Display and paste information about structures by using the Browser

3.4.4.1 Referencing structures

When you define a structure, you are defining a new datatype. You can use this new datatype
in scripts and user-defined functions as long as the structure definition is stored in a library in
the application's library search path.

To use a structure in a script or user-defined function

1. Declare a variable of the structure type.

2. Reference the variable in the structure.

Referencing global structures

The variables in a structure are similar to the properties of a PowerBuilder object. To
reference a global structure's variable, use dot notation:

structure.variable

Example. Assume that s_empdata is a global structure with the variables emp_id,
emp_dept, emp_fname, emp_lname, and emp_salary. To use this structure definition, declare
a variable of type s_empdata and use dot notation to reference the structure's variables, as
shown in the following script:

s_empdata lstr_emp1, lstr_emp2 // Declare 2 variables
 // of type emp_data.

Coding Fundamentals

Page 303

lstr_emp1.emp_id = 100 // Assign values to the
lstr_emp1.emp_dept = 200 // structure variables.
lstr_emp1.emp_fname = "John"
lstr_emp1.emp_lname = "Paul-Jones"
lstr_emp1.emp_salary = 99908.23

// Retrieve the value of a structure variable.
lstr_emp2.emp_salary = lstr_emp1.emp_salary * 1.05

// Use a structure variable in a
// PowerScript function.
MessageBox ("New Salary", &
 String(lstr_emp2.emp_salary,"$###,##0.00"))

Referencing object-level structures

You reference object-level structures in scripts for the object itself exactly as you do global
structures: declare a variable of the structure type, then use dot notation:

structure.variable

Example. Assume that the structure str_custdata is defined for the window w_history and
you are writing a script for a CommandButton in the window. To use the structure definition
in the script, you write:

str_custdata lstr_cust1
lstr_cust1.name = "Joe"

No access to object-level structures outside the object

You cannot make object-level structures accessible outside the object because object-
level structures are implicitly private.

3.4.4.2 Copying structures

To copy the values of a structure to another structure of the same type

• Assign the structure to be copied to the other structure using this syntax:

struct1 = struct2

PowerBuilder copies all the variable values from struct2 to struct1.

Example. These statements copy the values in lstr_emp2 to lstr_emp1:

str_empdata lstr_emp1, lstr_emp2
...
lstr_emp1 = lstr_emp2

3.4.4.3 Using structures with functions

You can pass structures as arguments in user-defined functions. Simply name the structure
as the datatype when defining the argument.Similarly, user-defined functions can return
structures. Name the structure as the return type for the function.

You can also define external functions that take structures as arguments.

Example. Assume the following:

Coding Fundamentals

Page 304

• Revise is an external function that expects a structure as its argument.

• lstr_empdata is a declared variable of a structure datatype.

You can call the function as follows:

Revise(lstr_empdata)

Declare the function first

The external function must be declared before you can reference it in a script.

For more about passing arguments to external functions, see Section 5.5.1.3, “Passing
arguments” in Application Techniques.

3.4.4.4 Displaying and pasting structure information

You can display the names and variables of defined structures in the Browser. You can also
paste these entries into a script.

To display information about a global structure in the Browser

1. Select the Structure tab and select a structure.

2. Double-click the properties folder in the right pane.

The properties folder expands to show the structure variables as properties of the
structure.

To display information about an object-level structure in the Browser

1. Select the tab for the type of object for which the structure is defined.

2. Select the object that contains the structure.

3. Double-click the structure folder in the right pane.

The structure folder expands to display the structure variables using dot notation.

To paste the information into a script

1. Scroll to the structure variable you want to paste.

2. Select Copy from the variable's pop-up menu.

3. Insert the cursor in the script where you want to paste the variable and select Paste from
the pop-up menu.

The variable name displays at the insertion point in the script.

Working with Windows

Page 305

4 Working with Windows
This part describes how to create windows for your application. It covers the properties of
windows, the controls you can place in windows, how to use inheritance to save time and
effort, and how to define menus. It also introduces user objects.

4.1 Working with Windows
About this chapter

This chapter describes how to build windows in the Window painter.

4.1.1 About windows

Windows form the interface between the user and a PowerBuilder application. Windows
can display information, request information from a user, and respond to the user's mouse or
keyboard actions.

A window consists of:

• Properties that define the window's appearance and behavior

For example, a window might have a title bar or a minimize box.

• Events

Windows have events like other PowerBuilder objects.

• Controls placed in the window

At the window level

When you create a window, you specify its properties in the Window painter's Properties
view. You can also dynamically change window properties in scripts during execution.

You can write scripts for window events that specify what happens when a window is
manipulated. For example, you can connect to a database when a window is opened by
coding the appropriate statements in the script for the window's Open event.

At the control level

You place PowerBuilder controls, such as CheckBox, CommandButton, or MultiLineEdit
controls, in the window to request and receive information from the user and to present
information to the user.

After you place a control in the window, you can define the style of the control, move and
resize it, and build scripts to determine how the control responds to events.

4.1.1.1 Designing windows

The Microsoft Windows operating environment has certain standards that graphical
applications are expected to conform to. Windows, menus, and controls are supposed to look
and behave in predictable ways from application to application.

This chapter describes some of the guidelines you should follow when designing windows
and applications, but a full discussion is beyond the scope of this book. You should acquire a

Working with Windows

Page 306

book that specifically addresses design guidelines for applications on the Windows platform
and apply the rules when you use PowerBuilder to create your application.

4.1.1.2 Building windows

When you build a window, you:

1. Specify the appearance and behavior of the window by setting its properties

2. Add controls to the window

3. Build scripts that determine how to respond to events in the window and its controls

To support these scripts, you can define new events for the window and its controls, and
declare functions, structures, and variables for the window.

Two ways

There are two ways to build a window. You can:

• Build a new window from scratch

You use this technique to create windows that are not based on existing windows.

• Build a window that inherits its style, events, functions, structures, variables, and scripts
from an existing window

You use inheritance to create windows that are derived from existing windows, thereby
saving you time and coding.

For more information

For information on building windows from scratch, see Building a new window.

For information on using inheritance to build a window, see Using inheritance to build a
window.

4.1.2 Types of windows

PowerBuilder provides the following types of windows: main, pop-up, child, response,
Multiple Document Interface (MDI) frame, and MDI frame with MicroHelp.

4.1.2.1 Main windows

Main windows are standalone windows that are independent of all other windows. They can
overlap other windows and can be overlapped by other windows.

You use a main window as the anchor for your application. The first window your application
opens is a main window unless you are building a Multiple Document Interface (MDI)
application, in which case the first window is an MDI frame.

For more on building MDI applications, see Section 3.1, “Building an MDI Application” in
Application Techniques.

Using main windows

Define your independent windows as main windows. For example, assume that your
application contains a calculator or scratch pad window that you want to have always

Working with Windows

Page 307

available to the user. Make it a main window, which can be displayed at any time anywhere
on the screen. As a main window, it can overlap other windows on the screen.

4.1.2.2 Pop-up windows

Pop-up windows are typically opened from another window, which in most cases becomes
the pop-up window's parent.

Using the application's Open event

If you open a pop-up window from the application's Open event, the pop-up window
does not have a parent and works the same way a main window works.

A pop-up window can display outside its parent window. It cannot be overlaid by its parent.
A pop-up window is hidden when its parent is minimized and when its parent is closed.
When you minimize a pop-up window, the icon for the window displays at the bottom of the
desktop.

Using pop-up windows

Pop-up windows are often used as supporting windows. For example, say you have a window
containing master information, such as film listings. You can use a pop-up window to allow a
user to see details of a particular entry.

Explicitly naming a parent

In most cases, the window that opens a pop-up window becomes that window's parent. For
example, if a script in w_go has this statement, w_go is the parent of w_popup:

Open(w_popup)

You can also explicitly name a pop-up window's parent when you use Open in this way:

Open (popupwindow, parentwindow)

For example, the following statement opens w_popup and makes w_parent its parent:

Open(w_popup, w_parent)

However, there are also other considerations regarding which window becomes the parent of
an opened window.

For more information, see Section 2.4.532, “Open” in PowerScript Reference.

4.1.2.3 Child windows

Child windows are always opened from within a main or pop-up window, which becomes the
child window's parent.

A child window exists only within its parent. You can move the child window within the
parent window, but not outside the parent. When you move a portion of a child window
beyond the parent, PowerBuilder clips the child so that only the portion within the parent
window is visible. When you move the parent window, the child window moves with the
parent and maintains the same position relative to the parent.

Child windows cannot have menus and are never considered the active window. They
can have title bars and can be minimizable, maximizable, and resizable. When they are

Working with Windows

Page 308

maximized, they fill the space of their parent; when they are minimized, their icon displays at
the bottom of their parent.

The initial position of the child is relative to the parent and not to the entire screen. A child
window closes when you close its parent.

You will probably not use child windows very often. Typically, if you want to display
windows inside other windows, you will write MDI applications, where much of the window
management happens automatically.

For more on building MDI applications, see Section 3.1, “Building an MDI Application” in
Application Techniques.

4.1.2.4 Response windows

Response windows request information from the user. They are always opened from within
another window (its parent). Typically, a response window is opened after some event occurs
in the parent window.

Response windows are application modal. That is, when a response window displays, it is the
active window (it has focus) and no other window in the application is accessible until the
user responds to the response window. The user can go to other applications, but when the
user returns to the application, the response window is still active. Response windows act like
modal pop-up windows.

Using response windows

For example, if you want to display a confirmation window when a user tries to close a
window with unsaved changes, use a response window. The user is not allowed to proceed
until the response window is closed.

Using message boxes

PowerBuilder also provides message boxes, which are predefined windows that act like
response windows in that they are application modal. You open message boxes using the
PowerScript MessageBox function.

For more information, see Section 2.4.515, “MessageBox” in PowerScript Reference.

4.1.2.5 MDI frames

An MDI window is a frame window in which you can open multiple document windows
(sheets) and move among the sheets. There are two types of MDI frame windows: MDI frame
and MDI frame with MicroHelp.

For more on building MDI applications, see Section 3.1, “Building an MDI Application” in
Application Techniques.

4.1.3 About the Window painter

Views in the Window painter

You design windows in the Window painter. The Window painter has several views where
you specify how a window looks and how it behaves. The Window painter looks similar to
the User Object painter for visual user objects and it has the same views. For details about the
views, how you use them, and how they are related, see Views in painters that edit objects.

Working with Windows

Page 309

Window painter workspace

The default layout for the Window painter workspace has two stacked panes with the Script
and Properties views at the top of the stacks.

Most of your work in the Window painter is done in three views:

• The Layout view, where you design the appearance of the window

• The Properties view, where you set window properties and control properties

• The Script view, where you modify behavior by coding window and control scripts

This illustration shows the Layout view at the top of one of the stacks.

Figure 4.1:

For information about specifying window properties, see Defining the window's properties.

For information about adding controls and nonvisual objects to a window, see Adding
controls and Adding nonvisual objects.

For information about coding in the Script view, see Writing scripts in windows and Writing
Scripts.

4.1.4 Building a new window

This section describes how to build windows from scratch. You use this technique to create
windows that are not based on existing windows.

4.1.4.1 Creating a new window

To create a new window

1. Open the New dialog box.

Working with Windows

Page 310

2. On the PB Object tab page, select Window.

3. Click OK.

The Window painter opens. The new window displays in the Window painter's Layout
view and its default properties display in the Properties view.

4.1.4.2 Defining the window's properties

Every window and control has a style that determines how it appears to the user. You define
a window's style by choosing settings in the Window painter's Properties view. A window's
style encompasses its:

• Type

• Basic appearance

• Initial position on the screen

• Icon when minimized

• Pointer

About defining a window's style

When you define a window's style in the Window painter, you are actually assigning
values to the properties for the window. You can programmatically change a
window's style during execution by setting its properties in scripts. For a complete list
of window properties, see Section 2.151, “Window control” in Objects and Controls.

To specify window properties

1. Click the window's background to display the window's properties in the Properties
view.

Another way to display window properties

You can also select the window name in the Control List view.

2. Choose the tab appropriate to the property you want to specify:

Table 4.1:

To specify the window's Choose this tab

Name, type, state, color, and whether a
menu is associated with it

General

Icon to represent the window when you
minimize it

General

Transparency General

Opening and closing animation styles General

Working with Windows

Page 311

To specify the window's Choose this tab

Position and size when it displays at
runtime

Other

Default cursor whenever the mouse moves
over the window

Other

Horizontal and vertical scroll bar
placement

Scroll

Toolbar placement Toolbar

4.1.4.2.1 Using the General property page

Use the General property page to specify the following window information:

• Window type

• Title bar text

• Menu name

• Color

• Transparency

• Animation

Specifying the window's type

The first thing you should do is specify the type of window you are creating.

To specify the window's type

1. In the Properties view for the window, select the General tab.

2. Scroll down the property page and select the appropriate window type from the
WindowType drop-down list.

Figure 4.2:

Working with Windows

Page 312

Depending on the type of window, PowerBuilder enables or disables certain check
boxes that specify other properties of the window. For example, if you are creating a
main window, the Title Bar check box is disabled. Main windows always have title bars,
so you cannot clear the Title Bar check box.

Specifying other basic window properties

By selecting and clearing check boxes on the General property page, you can specify whether
the window is resizable or minimizable, is enabled, has a border, and so on.

Note the following:

• A main window must have a title bar

• A child window cannot have a menu

• A response window cannot have a menu, Minimize box, or Maximize box

Associating a menu with the window

Many of your windows will have a menu associated with them.

To associate a menu with the window

1. Do one of the following:

• Enter the name of the menu in the Menu Name text box on the General property page

• Click the Browse button and select the menu from the Select Object dialog box,
which displays a list of all menus available to the application

2. Click the Preview button in the PainterBar to see the menu.

For information about preview, see Viewing your work.

Changing the menu

You can change a menu associated with a window during execution using the
ChangeMenu function. For more information, see Section 2.4.61, “ChangeMenu” in
PowerScript Reference.

Choosing a window color

You can change the background color of your window.

To specify the color of a window

• Do one of the following:

• Specify the color of the window from the BackColor drop-down list on the General
property page

• If the window is an MDI window, specify a color in the MDI Client Color drop-down
list

Working with Windows

Page 313

Changing default window colors

For main, child, pop-up, and response windows, the default color is ButtonFace if you are
defining a 3D window, and white if you are not. If you or the user specified different display
colors in the Windows Control Panel, a 3D window will display in the color that is set for the
window background.

You can change the default for windows that are not 3D in the Application painter Properties
view. To do so, click the Additional Properties button on the General page and modify the
Background color on the Text Font tab page. New windows that are not 3D will have the new
color you specified.

For more about using colors in windows, including how to define your own custom colors,
see Working with Controls.

Choosing the window icon

If the window can be minimized, you can specify an icon to represent the minimized window.
If you do not choose an icon, PowerBuilder uses the application icon for the minimized
window.

To choose the window icon

1. Click the window's background so the Properties view displays window properties.

2. Select the General tab.

3. Choose the icon from the Icon drop-down list or use the Browse (...) button to select an
icon (.ICO) file.

The icon you chose displays in the Icon list.

Changing the icon at runtime

You can change the window icon at runtime by assigning in code the name of the icon
file to the window's Icon property, window.Icon.

Specifying the window's transparency

You can specify a value between 1 and 100% for the Transparency property of a window.
This property is useful if you want a non-modal dialog box to remain visible but become
semi-transparent when it loses focus.

Opening and closing windows with an animated effect

You can use a special effect when a window opens or closes. Effects include fading in or
out, opening from the center, and sliding or rolling from the top, bottom, left, or right. You
specify animation effects with the OpenAnimation, CloseAnimation, and AnimationTime
properties. Set the AnimationTime property to between 1 and 5000 milliseconds to specify
how long the animation effect takes to complete.

For example, if your application displays a splash screen while the application's main
window is initializing, you can set the splash screen's CloseAnimation property to have the
window fade out rather than just disappearing when the application is initialized or after a
timeout by setting the CloseAnimation property to FadeAnimation!.

Working with Windows

Page 314

4.1.4.2.2 Choosing the window size and position

To resize a window in the Layout view

• Drag the edge of the window in the Window painter's Layout view.

Resizing a window is easiest using the Layout view, but you can also change the
window's width and height properties in the Properties view.

To specify a window's position and size

1. Click the window's background so the Properties view displays window properties.

2. Select the Other tab.

3. Enter values for x and y locations in PowerBuilder units.

About x and y values

For main, pop-up, response, and MDI frame windows, x and y locations are relative
to the upper-left corner of the screen. For child windows, x and y are relative to the
parent.

4. Enter values for width and height in PowerBuilder units.

The size of the window changes in the Layout view.

5. To see the position of the window, click the Preview button in the PainterBar (not the
Preview button on the PowerBar).

6. To return to PowerBuilder, close the window.

For information about preview, see Viewing your work.

About PowerBuilder units

All window measurements are in PowerBuilder units (PBUs). Using these units, you can
build applications that look similar on different resolution screens. A PBU is defined in terms
of logical inches. The size of a logical inch is defined by your operating system as a specific
number of pixels. The number is dependent on the display device. Windows typically uses 96
pixels per logical inch for small fonts and 120 pixels per logical inch for large fonts.

Almost all sizes in the Window painter and in scripts are expressed as PowerBuilder units.
The two exceptions are text size, which is expressed in points, and grid size in the Window
and DataWindow painters, which is in pixels.

For more about PowerBuilder units, see Section 2.4.562, “PixelsToUnits” in PowerScript
Reference and Section 2.4.859, “UnitsToPixels” in PowerScript Reference.

4.1.4.2.3 Choosing the window pointer

The default pointer used when the mouse is over a window is an arrow. You can change this
default on the Other page in the properties view.

Working with Windows

Page 315

To choose the window pointer

1. Click the window's background so the Properties view displays window properties.

2. Select the Other tab.

3. At the bottom of the property page, choose the pointer from the Pointer drop-down list
or use the Browse (...) button to select a cursor (.CUR) file.

Specifying the pointer for a control

You can specify the pointer that displays when the mouse is over an individual
control. Select the control to display the Properties view for the control, then specify
the Pointer property on the Other page.

4.1.4.2.4 Specifying window scrolling

If your window is resizable, it is possible that not all the window's contents will be visible
during execution. In such cases, you should make the window scrollable by providing vertical
and horizontal scroll bars. You do this on the Scroll property page.

By default, PowerBuilder controls scrolling when scroll bars are present. You can control the
amount of scrolling.

To specify window scrolling

1. Click the window's background so the Properties view displays window properties.

2. Select the Scroll tab.

3. Indicate which scroll bars you want to display by selecting the HScrollBar and
VScrollBar check boxes.

4. Specify scrolling characteristics as follows:

Table 4.2:

Option Meaning

UnitsPerLine The number of PowerBuilder units to scroll up or down when
the user clicks the up or down arrow in the vertical scroll bar.
When the value is 0 (the default), it scrolls 1/100 the height of
the window.

UnitsPerColumn The number of PowerBuilder units to scroll right or left when
the user clicks the right or left arrow in the horizontal scroll bar.
When the value is 0 (the default), it scrolls 1/100 the width of
the window.

ColumnsPerPage The number of columns to scroll when the user clicks the
horizontal scroll bar itself. When the value is 0 (the default), it
scrolls 10 columns.

LinesPerPage The number of lines to scroll when the user clicks the vertical
scroll bar itself. When the value is 0 (the default), it scrolls 10
lines.

Working with Windows

Page 316

4.1.4.2.5 Specifying toolbar properties

You can specify whether or not you want to display a menu toolbar (if the menu you
associate with your window assigns toolbar buttons to menu objects) in your window. If you
choose to display the toolbar, you can specify the location for it.

To specify toolbar properties

1. Click the window's background so the Properties view displays window properties.

2. Select the Toolbar tab.

To display the toolbar with your window, select the ToolbarVisible check box.

3. Set the location of the toolbar by selecting an alignment option from the
ToolbarAlignment drop-down list.

If you choose Float as your toolbar alignment, you must set the following values:

• X and Y coordinates for the toolbar

• Width and Height for the toolbar

For more information about defining toolbars, see Working with Menus and Toolbars.

4.1.4.3 Adding controls

When you build a window, you place controls, such as CheckBox, CommandButton, and
MultiLineEdit controls, in the window to request and receive information from the user and
to present information to the user.

After you place a control in the window, you can define its style, move and resize it, and
write scripts to determine how the control responds to events.

For more information, see Working with Controls.

4.1.4.4 Adding nonvisual objects

You can automatically create nonvisual objects in a window by inserting a nonvisual object
in the window. You do this if you want the services of a nonvisual object available to your
window. The nonvisual object you insert can be a custom class or standard class user object.

You insert a nonvisual object in a window in the same way you insert one in a user object.
For more information, see Using class user objects.

4.1.4.5 Saving the window

You can save the window you are working on at any time.

To save a window

1. Select File>Save from the menu bar.

If you have previously saved the window, PowerBuilder saves the new version in the
same library and returns you to the Window painter workspace.

Working with Windows

Page 317

If you have not previously saved the window, PowerBuilder displays the Save Window
dialog box.

2. Name the window in the Windows text box (see below).

3. Type comments in the Comments text box to describe the window.

These comments display in the Select Window window and in the Library painter. It is
a good idea to use comments so you and others can easily remember the purpose of the
window later.

4. Specify the library where you want to save the window.

5. Click OK.

Naming the window

The window name can be any valid PowerBuilder identifier of up to 40 characters. For
information about PowerBuilder identifiers, see Section 1.1.2, “Identifier names” in
PowerScript Reference.

A commonly used convention is to preface all window names with w_ and use a suffix
that helps you identify the particular window. For example, you might name a window that
displays employee data w_empdata.

4.1.5 Viewing your work

While building a window, you can preview it and print its definition.

4.1.5.1 Previewing a window

As you develop a window, you can preview its appearance from the Window painter. By
previewing the window, you get a good idea of how it will look during execution.

Preview button on the PainterBar and the PowerBar

You can preview a window from the Window painter using the Preview button on
the PainterBar or by clicking the Preview button on the PowerBar. When you use the
Preview button on the PainterBar, you do not have to save the window first, but you
cannot trigger events as described below. For information about previewing using the
PowerBar button, see Running a window.

To preview a window

• Click the Preview button in the PainterBar (not the PowerBar), or select
Design>Preview from the menu bar.

PowerBuilder minimizes and the window displays with the properties you have defined,
such as title bar, menu, Minimize box, and so on.

What you can do

While previewing the window, you can get a sense of its look and feel. You can:

Working with Windows

Page 318

• Move the window

• Resize it (if it is resizable)

• Maximize, minimize, and restore it (if these properties were enabled)

• Tab from control to control

• Select controls

What you cannot do

You cannot:

• Change properties of the window

• Changes you make while previewing the window, such as resizing it, are not saved.

• Trigger events

For example, clicking a CommandButton while previewing a window does not trigger its
Clicked event.

• Connect to a database

To return to the Window painter

• Do one of the following:

• If the Window has a control menu, select Close from the control menu or click the
Close button in the upper right corner of the window.

• If the window is visible, shut down the process.

• If the window is not visible, click PowerBuilder on the task bar and then click the
Terminate button.

4.1.5.2 Printing a window's definition

You can print a window's definition for documentation purposes.

To print information about the current window

• Select File>Print from the menu bar.

Information about the current window is sent to the printer specified in Printer Setup.
The information sent to the printer depends on variables specified in the [Library]
section of the PowerBuilder initialization file.

Print settings

You can view and change the print settings in the Library painter. Select any
PowerBuilder object, then select Entry>Library Item>Print from the menu bar.

Working with Windows

Page 319

4.1.6 Writing scripts in windows

You write scripts for window and control events. To support these scripts, you can define:

• Window-level and control-level functions

• Instance variables for the window

4.1.6.1 About events for windows and controls

Windows have several events including Open, which is triggered when the window is
opened (before it is displayed), and Close, which is triggered when the window is closed. For
example, you might connect to a database and initialize some values in the window's Open
event, and disconnect from a database in the Close event.

Each type of control also has its own set of events. Buttons, for example, have Clicked
events, which trigger when a user clicks the button. SingleLineEdits and MultiLineEdits have
Modified events, which trigger when the contents of the edit control change.

Defining your own events

You can also define your own events, called user events, for a window or control, then use
the EVENT keyword to trigger your user event.

For example, assume that you offer the user several ways to update the database from a
window, such as clicking a button or selecting a menu item. In addition, when the user closes
the window, you want to update the database after asking for confirmation. You want the
same type of processing to happen after different system events.

You can define a user event for the window, write a script for that event, and then
everywhere you want that event triggered, use the EVENT keyword.

To learn how to use user events, see Working with User Events.

4.1.6.2 About functions for windows and controls

PowerBuilder provides built-in functions that act on windows and on different types of
controls. You can use these functions in scripts to manipulate your windows and controls. For
example, to open a window, you can use the built-in window-level function Open, or you can
pass parameters between windows by opening them with the function OpenWithParm and
closing them with CloseWithReturn.

You can define your own window-level functions to make it easier to manipulate your
windows. For more information, see Working with User-Defined Functions.

4.1.6.3 About properties of windows and controls

In scripts, you can assign values to the properties of objects and controls to change their
appearance or behavior. You can also test the values of properties to obtain information about
the object.

For example, you can change the text displayed in a StaticText control when the user clicks
a CommandButton, or use data entered in a SingleLineEdit to determine what information is
retrieved and displayed in a DataWindow control.

To refer to properties of an object or control, use dot notation to identify the object and the
property:

Working with Windows

Page 320

object.property

control.property

Unless you identify the object or control when you refer to a property, PowerBuilder assumes
you are referring to a property of the object or control the script is written for.

The reserved word Parent

In the script for a window control, you can use the reserved word Parent to refer to
the window containing the control. For example, the following line in a script for a
CommandButton closes the window containing the button:

close(Parent)

It is easier to reuse a script if you use Parent instead of the name of the window.

All properties, events, and built-in functions for all PowerBuilder objects, including
windows, and each type of control are described in Part I, “Objects and Controls”.

4.1.6.4 Declaring instance variables

Often, data needs to be accessible in several scripts within a window. For example, assume a
window displays information about one customer. You might want several CommandButtons
to manipulate the data, and the script for each button needs to know the customer's ID. There
are several ways to accomplish this:

• Declare a global variable containing the current customer ID

All scripts in the application have access to this variable.

• Declare an instance variable within the window

All scripts for the window and controls in the window have access to this variable.

• Declare a shared variable within the window

All scripts for the window and its controls have access to this variable. In addition, all
other windows of the same type have access to the same variable.

When declaring variables, you need to consider what the scope of the variable is. If the
variable is meaningful only within a window, declare it as a window-level variable, generally
an instance variable. If the variable is meaningful throughout the entire application, make it a
global variable.

For a complete description of the types of variables and how to declare them, see
Section 1.3.1, “Declaring variables” in PowerScript Reference.

4.1.6.5 Examples of statements

The following assignment statement in the script for the Clicked event for a CommandButton
changes the text in the StaticText object st_greeting when the button is clicked:

st_greeting.Text = "Hello User"

The following statement tests the value entered in the SingleLineEdit sle_state and displays
the window w_state1 if the text is "AL":

Working with Windows

Page 321

if sle_State.Text= "AL" then Open(w_state1)

4.1.7 Running a window

During development, you can test a window without running the whole application.

You can preview a window from the Window painter using the Preview button on the
PainterBar or run the window by clicking the Preview button on the PowerBar. The
PowerTip text for this button is Run/Preview Object. For information about previewing using
the PainterBar button, see Previewing a window.

When you run the window using the PowerBar button, you must save the window first. You
can also trigger events and open other windows because the window is functional.

To run a window:

1. Click the Preview button in the PowerBar (not the PainterBar).

2. In the Run/Preview dialog box, select Windows as the Objects of Type.

3. Select the target that includes the window you want to run.

4. Select the library that includes the window.

5. Select the window you want to run and click OK.

You must save your work before running a window. If you have not saved your work,
PowerBuilder prompts you to do so.

PowerBuilder runs the window.

You can trigger events, open other windows, connect to a database, and so on when running
a window. The window is fully functional. It has access to global variables that you have
defined for the application and to built-in global variables, such as SQLCA. The SystemError
event is not triggered if there is an error, because SystemError is an Application object event.

To return to the Window painter:

• Do one of the following:

• If the Window has a control menu, select Close from the control menu or click the
Close button in the upper right corner of the window.

• If the window is not visible, click PowerBuilder on the task bar and then click the
Terminate button.

4.1.8 Using inheritance to build a window

When you build a window that inherits its definition—its style, events, functions, structures,
variables, controls, and scripts—from an existing window, you save coding time. All you
have to do is modify the inherited definition to meet the requirements of the current situation.

This section provides an overview of using inheritance in the Window painter. The issues
concerning inheritance with windows are the same as the issues concerning inheritance with
user objects and menus. They are described in more detail in Understanding Inheritance.

Working with Windows

Page 322

4.1.8.1 Building two windows with similar definitions

Assume your application needs two windows with similar definitions. One window,
w_employee, needs:

• A title (Employee Data)

• Text that says Select a file:

• A drop-down list with a list of available employee files

• An Open button with a script that opens the selected file in a multiline edit box

• An Exit button with a script that asks the user to confirm closing the window and then
closes the window

The window looks like this:

Figure 4.3:

The only differences in the second window, w_customer, are that the title is Customer Data,
the drop-down list displays customer files instead of employee files, and there is a Delete
button so the user can delete files.

Your choices

To build these windows, you have three choices:

Working with Windows

Page 323

• Build two new windows from scratch as described in Building a new window.

• Build one window from scratch and then modify it and save it under another name

• Use inheritance to build two windows that inherit a definition from an ancestor window

Using inheritance

To build the two windows using inheritance, follow these steps:

1. Create an ancestor window, w_ancestor, that contains the text, drop-down list, and the
open and exit buttons, and save and close it.

Note

You cannot inherit a window from an existing window when the existing window is
open, and you cannot open a window when its ancestor or descendant is open.

2. Select File>Inherit, select w_ancestor in the Inherit From dialog box, and click OK.

3. Add the Employee Data title, specify that the DropDownListBox control displays
employee files, and save the window as w_employee.

4. Select File>Inherit, select w_ancestor in the Inherit From dialog box, and click OK.

5. Add the Customer Data title, specify that the DropDownListBox control displays
customer files, add the Delete button, and save the window as w_customer.

4.1.8.2 Advantages of using inheritance

Using inheritance has a number of advantages:

• When you change the ancestor window, the changes are reflected in all descendants of the
window. You do not have to make changes manually in the descendants as you would in a
copy. This saves you coding time and makes the application easier to maintain.

• Each descendant inherits the ancestor's scripts, so you do not have to re-enter the code to
add to the script.

• You get consistency in the code and in the application windows.

When you use inheritance to build an object, everything in the ancestor object is inherited in
all its descendants. In the descendant, you can:

• Change the properties of the window

• Add controls to the window and modify existing controls

• Size and position the window and the controls in the window

• Build new scripts for events in the window or its controls

Working with Windows

Page 324

• Reference the ancestor's functions and events

• Reference the ancestor's structures if the ancestor contains a public or protected instance
variable of the structure data type

• Access ancestor properties, such as instance variables, if the scope of the property is public
or protected

• Extend or override inherited scripts

• Declare functions, structures, and variables for the window

• Declare user events for the window and its controls

The only thing you cannot do is delete inherited controls. If you do not need an inherited
control, you can make it invisible in the descendant window.

4.1.8.3 Instance variables in descendants

If you create a window by inheriting it from an existing window that has public or protected
instance variables with simple datatypes, the instance variables display and can be modified
in the descendant window's Properties view. You see them at the bottom of the General tab
page. In this illustration, the last property is an inherited instance variable.

Figure 4.4:

All public instance variables with simple datatypes such as integer, boolean, character,
date, string, and so on display. Instance variables with the any or blob data type or instance
variables that are objects or arrays do not display.

4.1.8.4 Control names in descendants

PowerBuilder uses this syntax to show names of inherited controls:

ancestorwindow::control

Working with Windows

Page 325

For example, if you select the Open button in w_customer, which is inherited
from w_ancestor, its name displays on the General page in the properties view as
w_ancestor::cb_open.

Names of controls must be unique in an inheritance hierarchy. For example, you cannot have
a CommandButton named cb_close defined in an ancestor and a different CommandButton
named cb_close defined in a child. You should develop a naming convention for controls in
windows that you plan to use as ancestors.

4.2 Working with Controls
About this chapter

Users run your application primarily by interacting with the controls you place in windows.
This chapter describes the use of controls.

4.2.1 About controls

About window controls

You place controls in a window to request and receive information from the user and to
present information to the user. For a complete list of standard window controls, open a
window in the Window painter and select Insert>Control.

If you often use a control or set of controls with certain properties, such as a group of related
radio buttons, you can create a visual user object that contains the control or set of controls.
For more about user objects, see Working with User Objects.

About events

All window controls have events so that users can act on the controls. You write scripts that
determine the processing that takes place when an event occurs in the control.

Drawing controls are usually used only to make your window more attractive or to group
controls. Only constructor and destructor events are defined for them, but you can define your
own events if needed. The drawing controls are Line, Oval, Rectangle, and RoundRectangle.

4.2.2 Inserting controls in a window

You insert controls in a window in the Window painter.

To insert a control in a window:

1. Select Insert>Control from the menu bar, or display the Controls drop-down toolbar on
the PainterBar.

2. Select the control you want to insert.

3. If you select User Object, the Select Object dialog box displays listing all user objects
defined for the application. Select the library and the user object and click OK.

4. In the Layout view, click where you want the control.

After you insert the control, you can size it, move it, define its appearance and behavior,
and create scripts for its events.

Working with Windows

Page 326

Duplicating controls

To place multiple controls of the same type in a window, place a control in the window and
make sure it is selected. Then press Ctrl+T or select Duplicate from the pop-up menu once
for each duplicate control you want to place in the window. The controls are placed one
under another. You can drag them to other locations if you want.

Inserting controls with undefined content

When you insert a DataWindow, Picture, PictureButton, or PictureHyperLink control in a
window, you are inserting only the control. You see only an empty box for a DataWindow
control, the dotted outline of a box for Picture and PictureHyperLink controls, and a large
button resembling a CommandButton for a PictureButton control. You must specify a
DataWindow object or picture later.

Dragging and dropping DataWindow objects

You can insert a DataWindow control with a predefined DataWindow object in a
window by dragging the DataWindow object from the System Tree to the window's
Layout view.

Placing OLE controls

You can place objects from applications that support OLE, such as Excel worksheets and
Visio drawings, in your windows. For information about using OLE with PowerBuilder, see
Section 5.3, “Using OLE in an Application” in Application Techniques.

4.2.3 Selecting controls

You select controls so that you can change their properties or write scripts using the Layout
view or the Control List view.

To select a control:

• Click the control in the Layout view, or click the control in the Control List view.

In the Layout view, the control displays with handles on it. Previously selected controls
are no longer selected.

Acting on multiple controls

You can act on all or multiple selected controls as a unit. For example, you can move all of
them or change the fonts for all the text displayed in the controls.

To select multiple controls:

• In the Layout or Control List view, click the first control and then press and hold the
Ctrl key and click additional controls.

To select neighboring multiple controls:

• In the Layout view, press the left mouse button, drag the mouse over the controls you
want to select, and release the mouse button.

Working with Windows

Page 327

Selecting all controls

You can select all controls by selecting Edit>Select All from the menu bar.

Information displayed in the MicroHelp bar

The name, x and y coordinates, width, and height of the selected control are displayed in the
MicroHelp bar. If you select multiple objects, Group Selected displays in the Name area and
the coordinates and size do not display.

4.2.4 Defining a control's properties

Just like the window object, each control has properties that determine how the control looks
and behaves at runtime (the control's style).

You define a control's properties by using the Properties view for the control. The properties
and values displayed in the Properties view change dynamically when you change the
selected object or control. To see this, click the window background to display the window
properties in the Properties view and then click a control in the window to display the
control's properties in the Properties view.

To define a control's properties:

1. Select the control.

The selected control's properties display in the Properties view.

2. Use the tab pages in the Properties view to change the control's properties.

About tab pages in the Properties view

The Properties view presents information in a consistent arrangement of tabbed property
pages. You select items on the individual property pages to change the control's definition.

All controls have a General property page, which contains much of the style information
(such as the visibility of the control, whether it is enabled, and so on) about the control. The
General property page is always the first page.

Getting Help on properties

You can get Help when you are defining properties. In any tab page in the Properties view,
right-click on the background and select Help from the pop-up menu. The Help displays
information about the control with a link to an alphabetical list of properties for the control.

4.2.5 Naming controls

When you place a control in a window, PowerBuilder assigns it a unique name. The name
is the concatenation of the default prefix for the control name and the lowest 1- to 4-digit
number that makes the name unique.

For example, assume the prefix for ListBoxes is lb_ and you add a ListBox to the window:

• If the names lb_1, lb_2, and lb_3 are currently used, the default name is lb_4

• If lb_1 and lb_3 are currently used but lb_2 is not, the default name is lb_2

Working with Windows

Page 328

4.2.5.1 About the default prefixes

Each type of control has a default prefix for its name. The following table lists the initial
default prefix for each control (note that there is no prefix for a window).

Table 4.3: Default prefixes for window control names

Control Prefix

Animation am_

CheckBox cbx_

CommandButton cb_

DataWindow dw_

DatePicker dp_

DropDownListBox ddlb_

DropDownPictureListBox ddplb_

EditMask em_

Graph gr_

GroupBox gb_

HProgressBar hpb_

HScrollBar hsb_

HTrackBar htb_

InkEdit ie_

InkPicture ip_

Line ln_

ListBox lb_

ListView lv_

MonthCalendar mc_

MultiLineEdit mle_

OLE 2.0 ole_

Oval ov_

Picture p_

PictureHyperLink phl_

PictureButton pb_

PictureListBox plb_

RadioButton rb_

Rectangle r_

RichTextEdit rte_

RoundRectangle rr_

SingleLineEdit sle_

StaticText st_

Working with Windows

Page 329

Control Prefix

StaticHyperLink shl_

Tab tab_

TreeView tv_

User Object uo_

VProgressBar vpb_

VScrollBar vsb_

VTrackBar vtb_

4.2.5.1.1 Changing the default prefixes

You can change the default prefixes for controls in the Window painter's Options dialog box.
Select Design>Options from the menu bar to open the Options dialog box. The changes you
make are saved in the PowerBuilder initialization file. For more about the PowerBuilder
initialization file, see How the PowerBuilder environment is managed.

4.2.5.2 Changing the name

You should change the default suffix to a suffix that is meaningful in your application. For
example, if you have command buttons that update and retrieve database information, you
might call them cb_update and cb_retrieve. If you have many controls on a window, using
intuitive names makes it easier for you and others to write and understand scripts for these
controls.

Using application-based names instead of sequential numbers also minimizes the likelihood
that you will have name conflicts when you use inheritance to create windows.

To change a control's name

1. Select the control to display the control's properties in the Properties view.

2. On the General tab page, select the application-specific suffix (for example, the 1 in the
cb_1 command button name) and type a more meaningful one.

You can use any valid PowerBuilder identifier with up to 255 characters. For information
about PowerBuilder identifiers, see Section 1.1.2, “Identifier names” in PowerScript
Reference.

4.2.6 Changing text

You can specify the text and text display characteristics for a control in the Properties view
for the control. You can also use the Window painter StyleBar to change:

• The text itself

• The font, point size, and characteristics such as bold

• The alignment of text within the control

Working with Windows

Page 330

CommandButton text

Text in CommandButtons is always center aligned.

The default text for most controls that have a text property is none. To display an empty
StaticText or SingleLineEdit control, clear the Text box in the Properties view or the
StyleBar.

When you add text to a control's text property, the width of the control changes automatically
to accommodate the text as you type it in the StyleBar, or when you tab off the Text box in
the Properties view.

To change text properties of controls:

1. Select one or more controls whose properties you want to change.

2. Specify changes in the Font tab page in the Properties view, or specify changes using the
StyleBar.

4.2.6.1 How text size is stored

A control's text size is specified in the control's TextSize property. PowerBuilder saves the
text size in points, using negative numbers.

For example, if you define the text size for the StaticText control st_prompt to be 12 points,
PowerBuilder sets the value of st_prompt's TextSize property to–12. PowerBuilder uses
negative numbers to record point size for compatibility with previous releases, which saved
text size in pixels as positive numbers.

If you want to change the point size of text at runtime in a script, remember to use a negative
value. For example, to change the point size for st_prompt to 14 points, code:

st_prompt.TextSize = -14

You can specify text size in pixels if you want, by using positive numbers. The following
statement sets the text size to be 14 pixels:

st_prompt.TextSize = 14

4.2.7 Moving and resizing controls

There are several ways to move and resize controls in the Layout view.

4.2.7.1 Moving and resizing controls using the mouse

To move a control, drag it with the mouse to where you want it.

To resize a control, select it, then grab an edge and drag the edge with the mouse.

4.2.7.2 Moving and resizing controls using the keyboard

To move a control, select it, then press an arrow key to move it in the corresponding
direction.

To resize a control, select it, and then press:

Working with Windows

Page 331

• Shift+Right Arrow to make the control wider

• Shift+Left Arrow to make the control narrower

• Shift+Down Arrow to make the control taller

• Shift+Up Arrow to make the control shorter

4.2.7.3 Aligning controls using the grid

The Window painter provides a grid to help you align controls at design time. You can use
the grid options to:

• Make controls snap to a grid position when you place them or move them in a window

• Show or hide the grid when the workspace displays

• Specify the height and width of the grid cells

To use the grid

1. Choose Design>Options from the menu bar and select the General tab.

2. Do one or more of the following:

• Select Snap to Grid to align controls with a horizontal and vertical grid when you
place or move them

• Select Show Grid to display the grid in the Layout view

• Specify the width of each cell in the grid in pixels in the X text box

• Specify the height of each cell in the grid in pixels in the Y text box

Hiding the grid

Window painting is slower when the grid is displayed, so you might want to display
the grid only when necessary.

4.2.7.4 Aligning controls with each other

You can align selected controls by their left, right, top, or bottom edges or their horizontal or
vertical centers.

PainterBars in the Window painter

The Window painter has three PainterBars. PainterBar1 includes buttons that perform
operations that are common to many painters, including save, cut, copy, paste, and
close. PainterBar2 includes buttons used with the Script view. PainterBar3 contains
buttons that manipulate the display of the selected control or controls. The tools used
to align, resize, and adjust the space between controls are on a drop-down toolbar on
PainterBar3.

Working with Windows

Page 332

To align controls

1. Select the control whose position you want to use to align the others.

PowerBuilder displays handles around the selected control.

2. Press and hold the Ctrl key and click the controls you want to align with the first one.

All the selected controls have handles on them.

3. Select Format>Align from the menu bar, or select the Layout drop-down toolbar in
PainterBar3.

4. Select the dimension along which you want to align the controls.

PowerBuilder aligns all the selected controls with the first control selected.

4.2.7.5 Equalizing the space between controls

You can manually move controls by dragging them with the mouse. You can also equalize
the space around selected controls using the Format menu or the Layout drop-down toolbar.

To equalize the space between controls

1. Select the two controls whose spacing is correct.

2. To do so, select one control, then press and hold Ctrl and click the second control.

3. Press Ctrl and click to select the other controls whose spacing should match that of the
first two controls.

4. Select Format>Space from the menu bar, or select the Layout drop-down toolbar in
PainterBar3.

5. Select horizontal or vertical spacing.

4.2.7.6 Equalizing the size of controls

Using the Format menu or the Layout drop-down toolbar, you can adjust selected controls
so that they are all the same size as the first control selected. You might do this if you have
several SingleLineEdit or CommandButton controls on a window.

To equalize the size of controls

1. Select the control whose size is correct.

2. Press and hold Ctrl and click to select the other controls that should be the same size as
the first control.

3. Select Format>Size from the menu bar, or select the Layout drop-down toolbar in
PainterBar3.

4. Select the size for width, height, or both width and height.

Working with Windows

Page 333

4.2.8 Copying controls

You can copy controls within a window or to other windows. All properties of the control, as
well as all of its scripts, are copied. You can use this technique to make a copy of an existing
control and change what you want in the copy.

To copy a control:

1. Select the control.

2. Select Edit>Copy from the menu bar or press Ctrl+C.

The control is copied to a private PowerBuilder clipboard.

3. Do one of the following:

• To copy the control within the same window, select Edit>Paste Controls from the
menu bar or press Ctrl+V.

• To copy the control to another window, click the Open button in the PowerBar and
open the window in another instance of the Window painter. Make that window active
and select Edit>Paste Controls from the menu bar or press Ctrl+V.

If the control you are pasting has the same name as a control that already exists in the
window, the Paste Control Name Conflict dialog box displays.

If prompted, change the name of the pasted control to be unique.

PowerBuilder pastes the control in the destination window at the same location as in the
source window. If you are pasting into the same window, move the pasted control so it does
not overlay the original control. You can make whatever changes you want to the copy; the
source control will be unaffected.

4.2.9 Defining the tab order

When you place controls in a window, PowerBuilder assigns them a default tab order, the
default sequence in which focus moves from control to control when the user presses the Tab
key.

Tab order in user objects

When the user tabs to a custom user object in a window and then presses the Tab key,
focus moves to the next control in the tab order for the user object. After the user tabs
to all the controls in the tab order for the user object, focus moves to the next control
in the window tab order.

4.2.9.1 Establishing the default tab order

PowerBuilder uses the relative positions of controls in a window to establish the default tab
order. It looks at the positions in the following order:

• The distance of the control from the top of the window (Y)

• The distance of the control from the left edge of the window (X)

Working with Windows

Page 334

The control with the smallest Y distance is the first control in the default tab order. If
multiple controls have the same Y distance, PowerBuilder uses the X distance to determine
the tab order among them.

Default tab values

The default tab value for drawing objects and RadioButtons in a GroupBox is 0,
which means the control is skipped when the user tabs from control to control.

When you add a control to the window, PowerBuilder obtains the tab value of the control that
precedes the new control in the tab order and assigns the new control the next number.

For example, if the tab values for controls A, B, and C are 30, 10, and 20 respectively and
you add control D between controls A and B, PowerBuilder assigns control D the tab value
40.

4.2.9.2 Changing the window's tab order

To change the tab order

1. Select Format>Tab Order from the menu bar, or click the Tab Order button on
PainterBar1 (next to the Preview button).

The current tab order displays. If this is the first time you have used Tab Order for the
window, the default tab order displays.

Figure 4.5:

2. Use the mouse or the Tab key to move the pointer to the tab value you want to change.

3. Enter a new tab value from 0 to 9999.

The value 0 removes the control from the tab order. It does not matter exactly what
value you use, other than 0. Only the relative value is significant. For example, if you
want the user to tab to control B after control A but before control C, set the tab value
for control B so it is between the value for control A and the value for control C.

Tab tips

A tab order value of 0 does not prevent a control from being selected or activated or
from receiving keyboard events. To prevent a user from activating a control with the
mouse, clear the Enabled check box on its General property page.

Working with Windows

Page 335

To permit tabbing in a group box, change the tab value of the GroupBox control to 0,
then assign nonzero tab values to the controls in the group box.

4. Repeat the procedure until you have the tab order you want.

5. Select Format>Tab Order or the Tab Order button again.

PowerBuilder saves the tab order.

Each time you select Tab Order, PowerBuilder renumbers the tab order values to include
any controls that have been added to the window and to allow space to insert new
controls in the tab order. For example, if the original tab values for controls A, B, and C
were 10, 20, and 30, and you insert control D between A and B and give it a tab value of
15, when you select tab order again, the controls A, B, and C will have the tab values 10,
30, and 40, and control D will have the tab value 20.

4.2.10 Defining accelerator keys

You can define accelerator keys for controls to allow users to change focus from one control
to another. An accelerator key is sometimes referred to as a mnemonic access key.

Users press Alt followed by the accelerator key to use an accelerator. If the currently selected
control is not an editable control (such as a SingleLineEdit, MultiLineEdit, ListBox, or
DropDownListBox), users only have to press the accelerator key. They do not need to press
the Alt key.

How you define accelerator keys depends on whether the type of control has displayed text
associated with it. If there is no displayed text, you must define the accelerator key in the
control itself and in a label that identifies the control.

To define an accelerator key for a CommandButton, CheckBox, or RadioButton:

1. Click the control to display the control's properties in the Properties view.

2. In the Text box on the General page, precede the letter that you want to use as the
accelerator key with an ampersand character (&).

When you perform your next action (such as tab to the next property or select the
window or a control in the Layout view), the property is set and PowerBuilder displays
an underline to indicate the accelerator key.

Displaying an ampersand

If you want to display an ampersand character in the text of a control, type a double
ampersand. The first ampersand acts as an escape character.

To define an accelerator key for a SingleLineEdit, MultiLineEdit, ListBox, or
DropDownListBox:

1. Click the control to display the control's properties in the Properties view.

2. In the General tab page, type the letter of the accelerator key in the Accelerator box.

Working with Windows

Page 336

For example, if the control contains a user's name and you want to make Alt+N the
accelerator for the control, type n in the Accelerator box.

At this point you have defined the accelerator key, but the user has no way of knowing
it, so you need to label the control.

3. Place a StaticText control next to the control that was assigned the accelerator key.

4. Click the StaticText control to display its properties in the Properties view.

5. In the Text box on the General page, precede the letter that you want to use as the
accelerator key with an ampersand character (&).

For example, if the StaticText control will display the label Name, type &Name in
the Text box so that the letter N is underlined. Now your user knows that there is an
accelerator key associated with the control.

4.2.11 Specifying accessibility of controls

Controls have two boolean properties that affect accessibility of the control:

• Visible

• Enabled

4.2.11.1 Using the Visible property

If the Visible property of a control is selected, the control displays in the window. If you want
a control to be initially invisible, be sure the Visible property is not selected in the General
tab page in the control's Properties view.

Hidden controls do not display by default in the Window painter's Layout view.

To display hidden controls in the Layout view

• Select Design>Show Invisibles from the menu bar.

To display a control at runtime, assign the value "true" to the Visible property:

controlname.Visible = TRUE

4.2.11.2 Using the Enabled property

If the Enabled property is selected, the control is active. For example, an enabled
CommandButton can be clicked, a disabled CommandButton cannot.

If you want a control to display but be inactive, be sure the Enabled property is not selected
in the General tab page in the control's Properties view. For example, a CommandButton
might be active only after the user has selected an option. In this case, display the
CommandButton initially disabled so that it appears grayed out. Then, when the user selects
the option, enable the CommandButton in a script:

CommandButtonName.Enabled = TRUE

Working with Windows

Page 337

4.2.12 Choosing colors

The Window painter has two Color drop-down toolbars on PainterBar3 that display colors
that you can use for the background and foreground of components of the window. Initially,
the drop-down toolbars display these color selections:

• 20 predefined colors

• 16 custom colors (labeled C)

• The full set of Windows system colors

Windows system colors

The Windows system colors display in the same order as in the TextColor and BackColor
lists in the Properties view for a control. They are labeled with letters that indicate the type of
display element they represent:

• W for windows

• T for text in windows, title bars, menus, buttons, and so on

• A for the application workspace

• B for button face, highlight, shadows, and borders

• S for scroll bars

• D for the desktop

• M for menu bars

• F for window frames

• H for highlight

• L for links

The Windows system colors are those defined by the user in the Windows Control Panel, so
if you use these colors in your window, the window colors will change to match the user's
settings at runtime.

Defining custom colors

You can define your own custom colors for use in windows, user objects, and DataWindow
objects.

To define and maintain custom colors:

1. Select Design>Custom Colors from the menu bar.

The Color dialog box displays.

Working with Windows

Page 338

Figure 4.6:

2. Click in an empty color box in the list of custom colors.

3. Choose an existing color or create the color you want. You can start with one of the
basic colors and customize it in the palette to the right by dragging the color indicator
with the mouse. You can also specify precise values to define the color.

4. When you have the color you want, click Add to Custom Colors.

The new color displays in the list of custom colors.

5. Select the new color in the list of custom colors.

6. Click OK.

The new color displays in the Color drop-down toolbars and is available in all windows,
user objects, and DataWindow objects you create.

PowerBuilder saves custom colors in the [Colors] section of the PowerBuilder
initialization file, so they are available across sessions.

Specifying foreground and background colors

You can assign colors to controls using the Painterbar or the Properties view. The page
in the Properties view that you use depends on the control. For some controls you can
change only the background color, and for others you can change neither the foreground
nor the background color. These controls include CommandButton, PictureButton,
PictureHyperLink, Picture, ScrollBar, TrackBar, ProgressBar, and OLE controls.

Working with Windows

Page 339

To assign a color using the PainterBar:

1. Select the control.

2. Select either the foreground or background color button from the PainterBar.

3. Select a color from the drop-down toolbar.

4.2.13 Using the 3D look

Applications sometimes have a three-dimensional look and feel. To use this appearance for
an application, select a 3D border for your SingleLineEdit boxes and other controls and make
the window background gray.

To use the 3D look by default:

1. Select Design>Options from the menu bar.

The Options dialog box displays.

2. On the General property page, select Default to 3D.

When you build a new window, PowerBuilder automatically sets the window
background color to gray and uses 3D borders when you place controls.

PowerBuilder records this preference in the Default3D variable in the [Window] section
of the PowerBuilder initialization file, so the preference is maintained across sessions.

Mapping 3D colors for pictures

You can make the background of Picture, PictureHyperlink, and PictureButton controls blend
in with the background of your window. This applies to whatever color scheme the user
has selected on the Appearance page of the Display Properties dialog box in the Windows
Control Panel.

Use this feature if you want to place a control containing a picture on a window and have the
picture blend in with the background color of the window when the window's background is
using Button Face for a 3D effect. The control's picture takes on the 3D colors the user has
selected.

The window's background must be set to Button Face. To make the image blend in with
the window, give it a background color in the range between RGB(160,160,160) and
RGB(223,223,223), such as silver. Lighter shades of gray map to the button highlight color
and darker shades to the button shadow color.

This option can affect other colors used in the bitmap. It does not affect the control's border
settings, and it has no effect if there is no image associated with the control.

4.2.14 Using the individual controls

There are four basic types of controls with different purposes.

Table 4.4: Summary of control types by function

Function Controls include

Invoke actions CommandButtons, PictureButtons, PictureHyperLinks,
StaticHyperLinks, Tabs, User Objects

Working with Windows

Page 340

Function Controls include

Display or accept
data, or both

ListBoxes, PictureListBoxes, DropDownListBoxes,
DropDownPictureListBoxes, DataWindow controls, StaticText,
ListViews, TreeViews, RichTextEdit, Graphs, Pictures, ProgressBars,
ScrollBars, SingleLineEdits, MultiLineEdits, EditMasks, Tabs, user
objects, OLE controls, MonthCalendar, DatePicker, InkEdit, and
InkPicture controls

Indicate choices RadioButtons, CheckBoxes (you can group these controls in a
GroupBox), TrackBars

Decorative Line, Rectangle, RoundRectangle, Oval, Animation

How to use the controls

You should use the controls only for the purpose shown in the table. For example, users
expect radio buttons for selecting an option. Do not use a radio button also to invoke an
action, such as opening a window or printing. Use a command button for that.

There are, however, several exceptions: user objects can be created for any purpose, and
ListBoxes, ListViews, TreeViews, and Tabs are often used both to display data and to invoke
actions. For example, double-clicking a ListBox item often causes some action to occur.

Individual controls

The following sections describe some features that are unique to individual controls. The
controls are listed in the order in which they display on the Insert>Control menu and the
drop-down controls palette:

• CommandButton

• PictureButton

• CheckBox

• RadioButton

• StaticText

• StaticHyperLink

• Picture

• PictureHyperLink

• GroupBox

• Drawing controls

• SingleLineEdit and MultiLineEdit

• EditMask

• HScrollBar and VScrollBar

Working with Windows

Page 341

• HTrackBar and VTrackBar

• HProgressBar and VProgressBar

• DropDownListBox

• DropDownPictureListBox

• ListBox

• PictureListBox

• ListView

• TreeView

• Tab

• MonthCalendar

• DatePicker

• Animation

• InkEdit and InkPicture

Some controls are not covered in this chapter:

• DataWindow controls and objects. See Defining DataWindow Objects.

• RichTextEdit controls. See Working with Rich Text.

• User objects. See Working with User Objects.

• Graph controls. See Working with Graphs.

• OLE controls. See Using OLE in a DataWindow Object.

4.2.14.1 CommandButton

CommandButtons are used to carry out actions. For example, you can use an OK button to
confirm a deletion or a Cancel button to cancel a requested deletion. If there are many related
CommandButtons, place them along the right side of the window; otherwise, place them
along the bottom of the window.

You cannot change the color or alignment of text in a CommandButton.

If clicking the button opens a window that requires user interaction before any other action
takes place, use ellipsis points in the button text; for example, "Print...".

4.2.14.1.1 Specifying Default and Cancel buttons

You can specify that a CommandButton is the default button in a window by selecting
Default in the General property page in the button's Properties view.

When there is a default CommandButton and the user presses the Enter key:

Working with Windows

Page 342

• If the focus is not on another CommandButton, the default button's Clicked event is
triggered

• If the focus is on another CommandButton, the Clicked event of the button with focus is
triggered

Other controls affect default behavior

If the window does not contain an editable field, use the SetFocus function or the tab
order setting to make sure the default button behaves as described above.

A bold border is placed around the default CommandButton (or the button with focus if the
user explicitly tabs to a CommandButton).

You can define a CommandButton as being the cancel button by selecting Cancel
in the General property page in the button's Properties view. If you define a cancel
CommandButton, the cancel button's Clicked event is triggered when the user presses the Esc
key.

4.2.14.2 PictureButton

PictureButtons are identical to CommandButtons in their functionality. The only difference
is that you can specify a picture to display on the button. The picture can be a bitmap (BMP)
file, a GIF or animated GIF file, a JPEG file, a PNG file, a run-length encoded (RLE) file, or
an Aldus-style Windows metafile (WMF).

You can choose to display one picture if the button is enabled and a different picture if the
button is disabled.

Use these controls when you want to be able to represent the purpose of a button by using a
picture instead of text.

To specify a picture

1. Select the PictureButton to display its properties in the Properties view.

2. On the General tab page, enter the name of the image file you want to display when the
button is enabled, or use the Browse button and choose a file.

3. Enter the name of the image file you want to display when the button is disabled, or use
the Browse Disabled button and choose a file.

If the PictureButton is defined as initially enabled, the enabled picture displays in the
Layout view. If the PictureButton is defined as initially disabled, the disabled picture
displays in the Layout view.

To specify button text alignment

1. Select the PictureButton to display its properties in the Properties view.

2. On the General tab page, enter the text for the PictureButton in the Text box.

3. Use the HTextAlign and VTextAlign lists to choose how you want to display the button
text.

Working with Windows

Page 343

4.2.14.3 CheckBox

CheckBoxes are square boxes used to set independent options. When they are selected, they
contain a check mark; when they are not selected, they are empty.

Figure 4.7:

CheckBoxes are independent of each other. You can group them in a GroupBox or rectangle
to make the window easier to understand and use, but that does not affect the CheckBoxes'
behavior; they are still independent.

Using three states

CheckBoxes usually have two states: on and off. But sometimes you need to represent a third
state, such as Unknown. The third state displays as a grayed box with a check mark.

Figure 4.8:

To enable the third state

• Select the ThreeState property in the General page of the CheckBox Properties view.

To specify that a CheckBox's current state is the third state

• Select the ThreeState and the ThirdState properties in the General page of the CheckBox
Properties view.

4.2.14.4 RadioButton

RadioButtons are round buttons that represent mutually exclusive options. They always exist
in groups. Exactly one RadioButton is selected in each group.

When a RadioButton is selected, it has a dark center; when it is not selected, the center is
blank.

In the following example, the text can be either plain, bold, or italic (plain is selected):

Working with Windows

Page 344

Figure 4.9:

When the user clicks a RadioButton, it becomes selected and the previously selected
RadioButton in the group becomes deselected.

Use RadioButtons to represent the state of an option. Do not use them to invoke actions.

When a window opens, one RadioButton in a group must be selected. You specify which is
the initially selected RadioButton by selecting the Checked property in the General property
page in the RadioButton's Properties view.

Grouping RadioButtons

By default, all RadioButtons in a window are in one group, no matter what their location in
the window. Only one RadioButton can be selected at a time.

You use a GroupBox control to group related RadioButtons. All RadioButtons inside a
GroupBox are considered to be in one group. One button can be selected in each group.

Figure 4.10:

The Automatic property

When a window contains several RadioButtons that are outside of a GroupBox, the window
acts as a GroupBox. Only one RadioButton can be active at a time unless the check box for
the Automatic property on the RadioButton's General property page is cleared.

When the Automatic property is not set, you must use scripts to control when a button is
selected. Multiple RadioButtons can be selected outside of a group.

The Automatic property does not change how RadioButtons are processed inside a
GroupBox.

4.2.14.5 StaticText

You use a StaticText control to display text to the user or to describe a control that does not
have text associated with it, such as a list box or edit control.

The user cannot change the text, but you can change the text for a StaticText control in a
script by assigning a string to the control's Text property.

StaticText controls have events associated with them, but you will probably seldom write
scripts for them because users do not expect to interact with static text.

Working with Windows

Page 345

Indicating accelerator keys

One use of a StaticText control is to label a list box or edit control. If you assign an
accelerator key to a list box or edit control, you need to indicate the accelerator key in the text
that labels the control. Otherwise, the user would have no way of knowing that an accelerator
key is defined for the control. This technique is described in Defining accelerator keys.

Indicating a border style

You can select a border style using the BorderStyle property on the General property page.

Selecting the Border property

The BorderStyle property will affect only the StaticText control if the Border property
check box is selected.

4.2.14.6 StaticHyperLink

A StaticHyperLink is display text that provides a hot link to a specified Web page. When a
user clicks the StaticHyperLink in a window, the user's Web browser opens to display the
page.

The StaticHyperLink control has a URL property that specifies the target of the link. You
specify the text and URL on the StaticHyperLink control's General tab page in the Properties
view.

If you know that your users have browsers that support URL completion, you can enter
a partial address—for example, appeon.com instead of the complete address, https://
www.appeon.com.

When the StaticHyperLink control is in an MDI Frame window with MicroHelp, the URL
you specify displays in the status bar when the user's pointer is over the control.

A hand is the default pointer and blue underlined text is the default font. To change the
pointer, use the Other property page. To change the font, use the Font property page.

4.2.14.7 Picture

Pictures are PowerBuilder-specific controls that display a bitmap (BMP) file, a GIF or
animated GIF file, a JPEG file, a PNG file, a run-length encoded (.RLE) file, or an Aldus-
style Windows metafile (WMF).

To display a picture

1. Place a picture control in the window.

2. In the General tab page in the Properties view, enter in the PictureName text box the
name of the file you want to display, or click the ellipsis button to select a file from the
Select Image dialog box.

The picture displays.

You can choose to resize or invert the image.

If you try to insert a very large image into a picture control, the image may fail to display.
The maximum size that will display depends on the version of Windows, the graphics card
and driver, and the available memory. Compressed files must be decompressed to display.

Working with Windows

Page 346

Failure to display is most likely to occur with JPEG files because the JPEG standard supports
very high compression and the decompressed content may be many times larger than the size
of the JPEG file.

Be careful about how you use picture controls. They can serve almost any purpose. They
have events, so users can click on them, but you can also use them simply to display images.
Be consistent in their use so users know what they can do with them.

Select Image dialog box

The Select Image dialog box allows you to select from the custom image (in absolute or
relative path) or the built-in image. The built-in images are grouped by categories, and can be
filtered by size or searched by name, so it's much easier to find an image.

If you set a relative path for the custom image, make sure the path is relative to the target
(*.pbt file) location.

Figure 4.11:

4.2.14.8 PictureHyperLink

A PictureHyperLink is a picture that provides a hot link to a specified Web page. When a
user clicks the PictureHyperLink in a window, the user's Web browser opens to display the
page.

Working with Windows

Page 347

The PictureHyperLink control has a URL property that specifies the target of the link. You
specify the picture and URL in the PictureHyperLink control's Properties view in the General
tab page. If you know that your users have browsers that support URL completion, you can
enter a partial address—for example, appeon.com—instead of the complete address, https://
www.appeon.com.

When the PictureHyperLink control is in an MDI Frame window with MicroHelp, the URL
you specify appears in the status bar when the user's pointer is over the control.

A hand is the default pointer. To change the pointer, use the Other property page.

The PictureHyperLink control is a descendant of the Picture control. Like a Picture control,
a PictureHyperLink control can display a bitmap (BMP) file, a GIF or animated GIF file, a
JPEG file, a PNG file, a run-length encoded (RLE) file, or an Aldus-style Windows metafile
(WMF).

You display a picture in a PictureHyperLink control in the same way you display a picture in
a picture control. For more information, see Picture.

4.2.14.9 GroupBox

You use a GroupBox to group a set of related controls. When a user tabs from another control
to a GroupBox, or selects a GroupBox, the first control in the GroupBox gets focus. To tab
between controls in a GroupBox, set the tab value of the GroupBox to 0 and assign a tab
value to each control within it.

All RadioButtons in a GroupBox are considered to be in a group. For more information about
using RadioButtons in GroupBoxes, see RadioButton.

4.2.14.10 Drawing controls

PowerBuilder provides the following drawing controls: Line, Oval, Rectangle, and
RoundRectangle. Drawing controls are usually used only to enhance the appearance of a
window or to group controls. However, constructor and destructor events are available, and
you can define your own unmapped events for a drawing control. A drawing control does not
receive Windows messages, so a mapped event would not be useful.

You can use the following functions to manipulate drawing controls at runtime:

• Hide

• Move

• Resize

• Show

In addition, each drawing control has a set of properties that define its appearance. You can
assign values to the properties in a script to change the appearance of a drawing control.

Never in front

You cannot place a drawing control on top of another control that is not a drawing
control, such as a GroupBox. Drawing controls always appear behind other controls

Working with Windows

Page 348

whether or not the Bring to Front or Send to Back items on the pop-up menu are set.
However, drawing controls can be on top of or behind other drawing controls.

4.2.14.11 SingleLineEdit and MultiLineEdit

A SingleLineEdit is a box in which users can enter a single line of text. A MultiLineEdit is a
box in which users can enter more than one line of text.

SingleLineEdits and MultiLineEdits are typically used for input and output of data.

For these controls, you can specify many properties, including:

• Whether the box has a border (the Border property)

• Whether the box automatically scrolls as needed (AutoHScroll and, for MultiLineEdits,
AutoVScroll)

• For SingleLineEdits, whether the box is a Password box so asterisks are displayed instead
of the actual entry (Password)

• The case in which to accept and display the entry (TextCase)

• Whether the selection displays when the control does not have focus (Hide Selection)

For more information about properties of these controls, right-click in any tab page in the
Properties view and select Help from the pop-up menu.

4.2.14.12 EditMask

Sometimes users need to enter data that has a fixed format. For example, U.S. and Canadian
phone numbers have a three-digit area code, followed by three digits, followed by four digits.
You can use an EditMask control that specifies that format to make it easier for users to enter
values. Think of an EditMask control as a smart SingleLineEdit: it knows the format of the
data that can be entered.

An edit mask consists of special characters that determine what can be entered in the box. An
edit mask can also contain punctuation characters to aid the user.

For example, to make it easier for users to enter phone numbers in the proper format, you can
specify the following mask, where # indicates a number:

(###) ###-####

At runtime, the punctuation characters (the parentheses and dash) display in the box and the
cursor jumps over them as the user types.

Masks in EditMask controls in windows work in a similar way to masks in display formats
and in the EditMask edit style in DataWindow objects. For more information about
specifying masks, see the discussion of display formats in Displaying and Validating Data.

Edit mask character for Arabic and Hebrew

The b mask character allows the entry of Arabic characters when you run
PowerBuilder on an Arabic-enabled version of Windows and Hebrew characters when
running on a Hebrew-enabled version. It has no effect on other operating systems.

Working with Windows

Page 349

To use an EditMask control

1. Select the EditMask to display its properties in the Properties view.

2. Name the control on the General property page.

3. Select the Mask tab.

4. In the MaskDataType drop-down list, specify the type of data that users will enter into
the control.

5. In the Mask edit box, type the mask.

You can click the button on the right and select masks. The masks have the special
characters used for the specified data type.

6. Specify other properties for the EditMask control.

For information on the other properties, right-click in any tab page in the Properties
view and select Help from the pop-up menu.

Control size and text entry

The size of the EditMask control affects its behavior. If the control is too small for the
specified font size, users might not be able to enter text.

To correct this, either specify a smaller font size or resize the EditMask control.

Validation for EditMask controls

The EditMask control checks the validity of a date when you enter it, but if you change a date
so that it is no longer valid, its validity is not checked when you tab away from the control.
For example, if you enter the date 12/31/2016 in an EditMask control with the mask mm/dd/
yyyy, you can delete the 1 in 12, so that the date becomes 02/31/2016. To catch problems like
this, add validation code to the LoseFocus event for the control.

Keyboard behavior

Some keystrokes have special behavior in EditMask controls. For more information, see The
EditMask edit style.

Using a drop-down calendar

You can use a drop-down calendar that is similar to the DatePicker control in EditMask
controls that have a Date or DateTime edit mask. The user can choose to edit the date in the
control or to select a date from a drop-down calendar.

To specify that an EditMask control uses a drop-down calendar to display and set dates,
select the Drop-down Calendar check box on the Mask page in the Properties view. You can
set display properties for the calendar on the Calendar page. Users navigate and select dates
within the calendar as they do in the calendar in a DatePicker control.

Using spin controls

You can define an EditMask as a spin control, which is an edit control that contains up and
down arrows that users can click to cycle through fixed values. For example, assume you

Working with Windows

Page 350

want to allow your users to select how many copies of a report to print. You could define an
EditMask as a spin control that allows users to select from a range of values.

Figure 4.12:

To define an EditMask as a spin control

1. Name the EditMask and provide the data type and mask, as described above.

2. Select the Spin check box on the Mask property page.

3. Specify the needed information.

For example, to allow users to select a number from 1 to 20 in increments of 1, specify a
spin range of 1 to 20 and a spin increment of 1.

For more information on the options for spin controls, right-click in any tab page in the
Properties view and select Help from the pop-up menu.

4.2.14.13 HScrollBar and VScrollBar

You can place freestanding scroll bar controls within a window. Typically, you use these
controls to do one of the following:

• Act as a slider control with which users can specify a continuous value

• Graphically display information to the user

You can set the position of the scroll box by specifying the value for the control's Position
property. When the user drags the scroll box, the value of Position is automatically updated.

4.2.14.14 HTrackBar and VTrackBar

HTrackBars and VTrackBars are bars with sliders that move in discrete increments. Like a
scroll bar, you typically use a track bar as a slider control that allows users to specify a value
or see a value you have displayed graphically, but on a discrete scale rather than a continuous
scale. Clicking on the slider moves it in discrete increments instead of continuously.

Typically a horizontal trackbar has a series of tick marks along the bottom of the channel and
a vertical trackbar has tick marks on the right.

Figure 4.13:

Working with Windows

Page 351

Use a trackbar when you want the user to select a discrete value. For example, you might use
a trackbar to enable a user to select a timer interval or the size of a window.

You can set properties such as minimum and maximum values, the frequency of tick marks,
and the location where tick marks display.

You can highlight a range of values in the trackbar with the SelectionRange function. The
range you select is indicated by a black fill in the channel and an arrow at each end of the
range. This is useful if you want to indicate a range of preferred values. In a scheduling
application, the selection range could indicate a block of time that is unavailable. Setting a
selection range does not prevent the user from selecting a value either inside or outside the
range.

You can see an example of a window with a trackbar in the PowerBuilder Code Examples
sample application in the Examples subdirectory in your PowerBuilder directory. See the
w_trackbars window in PBEXAMW3.PBL.

4.2.14.15 HProgressBar and VProgressBar

HProgressBars and VProgressBars are rectangles that indicate the progress of a lengthy
operation, such as an installation program that copies a large number of files. The progress
bar gradually fills with the system highlight color as the operation progresses.

You can set the range and current position of the progress bar in the Properties view using the
MinPosition, MaxPosition, and Position properties. To specify the size of each increment, set
the SetStep property.

You can see an example of a window with a progress bar in the PowerBuilder Code
Examples sample application in the Examples subdirectory in your PowerBuilder directory.
See the w_progressbars window in PBEXAMW3.PBL.

4.2.14.16 DropDownListBox

DropDownListBoxes combine the features of a SingleLineEdit and a ListBox.

Figure 4.14:

There are two types of DropDownListBoxes:

• Noneditable

• Editable

Noneditable boxes

If you want your user to choose only from a fixed set of choices, make the
DropDownListBox noneditable.

Working with Windows

Page 352

In these boxes, the only valid values are those in the list.

There are several ways for users to pick an item from a noneditable DropDownListBox:

• Use the arrow keys to scroll through the list.

• Type a character. The ListBox scrolls to the first entry in the list that begins with the
typed character. Typing the character again scrolls to the next entry that begins with the
character, unless the character can be combined with the first to match an entry.

• Click the down arrow to the right of the edit control to display the list, then select the one
you want.

Editable boxes

If you want to give users the option of specifying a value that is not in the list, make the
DropDownListBox editable by selecting the AllowEdit check box on the General tab page.

With editable DropDownListBoxes, you can choose to have the list always display or not.
For the latter type, the user can display the list by clicking the down arrow.

Populating the list

You specify the list in a DropDownListBox the same way as for a ListBox. For information,
see ListBox.

Specifying the size of the drop-down box

To indicate the size of the box that drops down, size the control in the Window painter using
the mouse. When the control is selected in the painter, the full size—including the drop-down
box—is shown.

Other properties

As with ListBoxes, you can specify whether the list is sorted and whether the edit control is
scrollable.

For more information, right-click in any tab page in the Properties view and select Help from
the pop-up menu.

4.2.14.17 DropDownPictureListBox

DropDownPictureListBoxes are similar to DropDownListBoxes in the way they present
information. They differ in that DropDownListBoxes use only text to present information,
whereas DropDownPictureListBoxes add images to the information.

Figure 4.15:

Everything that you can do with DropDownListBoxes you can do with
DropDownPictureListBoxes. For more information, see DropDownListBox.

Working with Windows

Page 353

Adding images to a DropDownPictureListBox

You can choose from a group of stock images provided by PowerBuilder, or use
any bitmap (BMP), icon (ICO), GIF, JPEG, or PNG file when you add images to a
DropDownPictureListBox. You use the same technique that you use to add pictures to a
PictureListBox. For more information, see Adding images to a PictureListBox [354].

4.2.14.18 ListBox

A ListBox displays available choices. You can specify that ListBoxes have scroll bars if more
choices exist than can be displayed in the ListBox at one time.

ListBoxes are an exception to the rule that a control should either invoke an action or be used
for viewing and entering data. ListBoxes can do both. ListBoxes display data, but can also
invoke actions. Typically in Windows applications, clicking an item in the ListBox selects
the item. Double-clicking an item acts upon the item.

For example, in the PowerBuilder Open dialog box, clicking an object name in a ListBox
selects the object. Double-clicking a name opens the object's painter.

PowerBuilder automatically selects (highlights) an item when a user selects it at runtime.
If you want something to happen when users double-click an item, you must code a script
for the control's DoubleClicked event. The Clicked event is always triggered before the
DoubleClicked event.

Populating the list

To add items to a ListBox, select the ListBox to display its properties in the Properties view,
select the Items tab, and enter the values for the list. Press tab to go to the next line.

In the Items tab page, you can work with rows in this way:

Table 4.5:

To do this Do this

Select a row Click the row button on the left or with the cursor in the edit box,
press Shift+Space

Delete a row Select the row and press Delete

Move a row Click the row button and drag the row where you want it or press Shift
+Space to select the row and then press Ctrl+Up Arrow or Ctrl+Down
Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu

Changing the list at runtime

To change the items in the list at runtime, use the functions AddItem, DeleteItem, and
InsertItem.

Setting tab stops

You can set tab stops for text in ListBoxes (and in MultiLineEdits) by setting the TabStop
property on the General property page. You can define up to 16 tab stops. The default is a tab
stop every eight characters.

Working with Windows

Page 354

You can also define tab stops in a script. Here is an example that defines two tab stops and
populates a ListBox:

// lb_1 is the name of the ListBox.
string f1, f2, f3
f1 = "1"
f2 = "Emily"
f3 = "Foulkes"
// Define 1st tab stop at character 5.
lb_1.tabstop[1] = 5
// Define 2nd tab stop 10 characters after the 1st.
lb_1.tabstop[2] = 10
// Add an item, separated by tabs.
// Note that the ~t must have a space on either side
// and must be lowercase.
lb_1.AddItem(f1 + " ~t " + f2 + " ~t " + f3)

Note that this script will not work if it is in the window's Open event, because the controls
have not yet been created. The best way to specify this is in a user event that is posted in the
window's Open event using the PostEvent function.

Other properties

For ListBoxes, you can specify whether:

• Items in the ListBox are displayed in sorted order

• The ListBox allows the user to select multiple items

• The ListBox displays scroll bars if needed

For more information, right-click in any tab page in the Properties view for a ListBox and
select Help from the pop-up menu.

4.2.14.19 PictureListBox

A PictureListBox, like a ListBox, displays available choices in both text and images. You can
specify that PictureListBoxes have scroll bars if more choices exist than can be displayed in
the PictureListBox at one time.

Adding images to a PictureListBox

You can choose from a group of stock images provided by PowerBuilder, or use any bitmap
(BMP), icon (ICO), GIF, JPEG, or PNG file when you add images to a PictureListBox.

Keep in mind, however, that the images should add meaning to the list of choices. If you use
a large number of images in a list, they become meaningless.

You could, for example, use images in a long list of employees to show the department
to which each employee belongs, so you might have a list with 20 or 30 employees, each
associated with one of five images.

To add an image to a PictureListBox

1. Select the PictureListBox control to display its properties in the Properties view, and
then select the Pictures tab.

Working with Windows

Page 355

The Pictures property page displays.

2. Use the PictureName drop-down ListBox to select stock pictures to add to the
PictureListBox

or

Use the Browse button to select a bitmap (BMP), icon (ICO), GIF, JPEG, or PNG file to
include in the PictureListBox.

About cursor files

To use a cursor file, you must type the file name. You cannot select it.

3. Specify a picture mask color (the color that will be transparent for the picture).

4. Specify the height and width for the image in pixels or accept the defaults.

Figure 4.16:

5. Repeat the procedure for the number of images you plan to use in your PictureListBox.

6. Select the Items tab and change the Picture Index for each item to the appropriate
number.

Working with Windows

Page 356

Figure 4.17:

7. Click OK.

On the Items tab page, you can work with rows in this way:

Table 4.6:

To Do this

Select a row Click the row button on the left, or with the cursor in the edit
box, press Shift+Space

Delete a row Select the row and press Delete

Move a row Click the row button and drag the row where you want it or
press Shift+Space to select the row and then press Ctrl+Up
Arrow or Ctrl+Down Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu

On the Pictures tab page, you can work with rows in the same way, and also:

Table 4.7:

To Do this

Browse for a picture Select the row and click the Browse button
or press F2

For information about other properties, right-click in any tab page in the Properties view
and select Help from the pop-up menu.

Working with Windows

Page 357

4.2.14.20 ListView

A ListView control lets you display items and icons in a variety of arrangements. You
can display large or small icons in free-form lists. You can add columns, pictures, and
items to the ListView, and modify column properties, using PowerScript functions such
as AddColumn, AddLargePicture, SetItem, SetColumn, and so on. For information about
ListView functions, see Section 3.5.4, “Using ListView controls” in Application Techniques
and Section 2.51, “ListView control” in Objects and Controls.

The following illustration from the Code Examples application shows a ListView control
used in a sales order application.

Figure 4.18:

Adding ListView items and pictures

Adding images to a ListView control is the same as adding images to a PictureListBox.
The ListView control's Properties view has two tab pages for adding pictures: Large Picture
(default size 32 by 32 pixels) and Small Picture (16 by 16 pixels).

For more information, see Adding images to a PictureListBox [354].

To add ListView items

1. Select the ListView control to display its properties in the Properties view and then
select the Items tab.

2. Enter the name of the ListView item and the picture index you want to associate with
it. This picture index corresponds to the images you select on the Large Picture, Small
Picture, and State property pages.

3. On the Items tab page, you can work with rows in this way:

Table 4.8:

To Do this

Select a row Click the row button on the left, or with the cursor in the edit
box, press Shift+Space

Working with Windows

Page 358

To Do this

Delete a row Select the row and press Delete

Move a row Click the row button and drag the row where you want it, or
press Shift+Space to select the row and then press Ctrl+Up
Arrow or Ctrl+Down Arrow to move the row

Delete text Click the text and select Delete from the pop-up menu

Note

Setting the picture index for the first item to zero clears all the settings on the tab
page.

4. Set properties for the item on the Large Picture, Small Picture, and/or State tab pages as
you did on the Items tab page.

5. On these pages, you can also browse for a picture. To do so, click the browse button or
press F2.

6. Repeat until all the items are added to the ListView.

Choosing a ListView style

You can display a ListView in four styles:

• Large icon

• Small icon

• List

• Report

To select a ListView style

1. Select the ListView control to display its properties in the Properties view and then
select the General tab.

2. Select the type of view you want from the View drop-down list.

For more information about other properties, right-click in any tab page in the Properties
view and select Help from the pop-up menu.

Setting other properties

You can set other ListView properties.

To specify other ListView properties

1. Select the ListView control to display its properties in the Properties view.

Working with Windows

Page 359

2. Choose the tab appropriate to the property you want to specify:

Table 4.9:

To specify Choose this tab

The border style General

Whether the user can delete items General

The images for ListView items in Large
Icon view

Large Picture

The images for ListView items in Small
Icon, list, and report views

Small Picture

The state images for ListView items State

The names and associated picture index for
ListView items

Items

The font size, family, and color for
ListView items

Font

The size and position of the ListView Other

The icon for the mouse pointer in the
ListView

Other

The icon for a drag item, and whether
the drag-and-drop must be performed
programmatically

Other

For more information on the ListView control, see Section 3.5.4, “Using ListView controls”
in Application Techniques. For information about its properties, see Section 2.51, “ListView
control” in Objects and Controls.

4.2.14.21 TreeView

You can use TreeView controls in your application to represent relationships among
hierarchical data. An example of a TreeView implementation is PowerBuilder's Browser. The
tab pages in the Browser contain TreeView controls.

Working with Windows

Page 360

Figure 4.19:

Adding TreeView items and pictures

A TreeView consists of TreeView items that are associated with one or more pictures. You
add images to a TreeView in the same way that you add images to a PictureListBox.

For more information, see Adding images to a PictureListBox [354].

Dynamically changing image size

The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties when you create a TreeView.

For more information about PictureHeight and PictureWidth, see Section 3.212,
“PictureHeight” in Objects and Controls and Section 3.218, “PictureWidth” in
Objects and Controls.

To add items to a TreeView

• Write a script in the TreeView constructor event to create TreeView items.

For more information about populating a TreeView, see Section 3.4.2, “Populating
TreeViews” in Application Techniques and Section 2.140, “TreeView control” in Objects and
Controls.

Adding state pictures to TreeView items

A state picture is an image that appears to the left of the TreeView item indicating that the
item is not in its normal mode. A state picture could indicate that a TreeView item is being
changed, or that it is performing a process and is unavailable for action.

Working with Windows

Page 361

Figure 4.20:

To specify a state picture for a TreeView item

1. Select the TreeView control to display its properties in the Properties view and then
select the State tab.

2. Do one of the following:

• Use the StatePictureName drop-down list to select stock pictures to add to the
TreeView.

• Use the Browse button to select any bitmap (BMP), icon (ICO), GIF, JPEG or PNG
file.

To specify a cursor file

To use a cursor file, you must type the file name. You cannot select it.

Working in the Properties view with the rows in the State or Pictures tab page is the same as
working with them in a ListView control. For information, see ListView.

To activate a state picture for a TreeView item

• Write a script that changes the image when appropriate.

For example, the following script gets the current TreeView item and displays the state
picture for it.

long ll_tvi
treeviewitem tvi

ll_tvi = tv_foo.finditem(currenttreeitem!, 0)
tv_foo.getitem(ll_tvi, tvi)
tvi.statepictureindex = 1
tv_foo.setitem(ll_tvi, tvi)

For more information on the TreeView control, see Section 3.4, “Using TreeView Controls”
in Application Techniques.

Setting other properties

To specify other TreeView properties

1. Select the TreeView control to display its properties in the Properties view and then
select the General tab.

Working with Windows

Page 362

2. Enter a name for the TreeView in the Name text box and specify other properties as
appropriate. Among the properties you can specify on the General property page are:

• The border style

• Whether the TreeView has lines showing the item hierarchy

• Whether the TreeView includes collapse and expand buttons

• Whether the user can delete items

• Whether the user can drag and drop items into the TreeView

For more information, right-click in any tab page in the Properties view and select Help from
the pop-up menu.

For other options, choose the tab appropriate to the property you want to specify:

Table 4.10:

To specify Choose this tab

The images used to represent TreeView items Pictures

The state images for the TreeView items State

The font size, family, and color for TreeView
items

Font

The size and position of the TreeView Other

The icon for the mouse pointer in the
TreeView

Other

The icon for a drag item, and whether
the drag-and-drop must be performed
programmatically

Other

For more information on the TreeView control, see Section 3.4, “Using TreeView Controls”
in Application Techniques. For information about its properties, see Section 2.140,
“TreeView control” in Objects and Controls.

4.2.14.22 Tab

A Tab control is a container for tab pages that display other controls. You can add a Tab
control to a window in your application to present information that can logically be grouped
together but may also be divided into distinct categories. An example is the use of tab pages
in the Properties view for objects in PowerBuilder. Each tab page has a tab that displays the
label for the tab page and is always visible, whichever tab page is selected.

When you add a Tab control to a window, PowerBuilder creates a Tab control with one tab
page labeled "none". The control is rectangular.

Selecting Tab controls and tab pages

You may find that you select the control when you want to select the page and vice versa.
This Tab control has three tab pages. The TabPosition setting is tabsontopandbottom!, so that
the tab for the selected tab page and pages that precede it in the tab order display at the top of
the Tab control.

Working with Windows

Page 363

Figure 4.21:

To select the Tab control, click any of the tabs where the label displays, or in the area
adjacent to the tabs, shown in gray here.

To select a tab page, click its tab and then click anywhere on the tab page except the tab
itself.The handles at the corners of the white area indicate that the tab page is selected, not the
Tab control.

Adding tab pages to a Tab control

To add a new Tab control to a window, select Insert>Control>Tab and click in the window.
The control has one tab page when it is created. Use the following procedure to add
additional tab pages to the tab control.

To create a new tab page within a Tab control

1. Select the Tab control by clicking on the tab of the tab page or in the area to its right.

The handles that indicate that the Tab control is selected display at the corners of the
Tab control. If you selected the tab page, the handles display at the corners of the area
under the tab.

2. Choose Insert TabPage from the pop-up menu.

Figure 4.22:

Working with Windows

Page 364

3. Add controls to the new tab page.

Creating a reusable tab page

You can create reusable tab pages in the User Object painter by defining a tab page with
controls on it that is independent of a Tab control. Then you can add that tab page to one or
more Tab controls.

To define a tab page that is independent of a Tab control

1. Click the New button on the PowerBar and use the Custom Visual icon on the Object
tab page to create a custom visual user object.

2. Size the user object to match the size of the Tab controls in which you will use it.

3. Add the controls that you want to have appear on the tab page to the user object.

4. Select the user object (not one of the controls you added) and specify the information to
be used by the tab page on the TabPage page in the Properties view:

• Text—the text to be displayed on the tab

• PictureName—a picture to appear on the tab with or instead of the text

• PowerTipText—text for a pop-up message that displays when the user moves the
cursor to the tab

• Colors for the tab and the text on the tab

5. Save and close the user object.

Adding a reusable tab page to a Tab control

Once you have created a user object that can be used as a tab page, you can add it to a Tab
control. You cannot add the user object to a Tab control if the user object is open, and,
after you have added the user object to the control, you cannot open the user object and the
window that contains the Tab control at the same time.

To add a tab page that exists as an independent user object to a Tab control

1. In the Window painter, right-click the Tab control.

2. Choose Insert User Object from the pop-up menu.

3. Select a user object that you have set up as a tab page and click OK.

A tab page, inherited from the user object you selected, is inserted. You can select the
tab page, set its tab page properties, and write scripts for the inherited user object just as
you do for tab pages defined within the Tab control, but you cannot edit the content of
the user object within the Tab control. If you want to edit the controls, close the Window
painter and go back to the User Object painter to make changes.

Working with Windows

Page 365

Manipulating the Tab control

To change the name and properties of the Tab control

1. Click any of the tabs in the Tab control to display the Tab control properties in the
Properties view.

2. Edit the properties.

For more information, right-click in the Properties view and select Help from the pop-up
menu.

To change the scripts of the Tab control

1. With the mouse pointer on one of the tabs, double-click the Tab control, or display the
pop-up menu and select Script.

2. Select a script and edit it.

To resize a Tab control

• Grab a border of the control and drag it to the new size.

The Tab control and all tab pages are sized as a group.

To move a Tab control

• With the mouse pointer on one of the tabs, hold down the left mouse button and drag to
move the control to the new position.

The Tab control and all tab pages are moved as a group.

To delete a Tab control

• With the mouse pointer on one of the tabs, select Cut or Delete from the pop-up menu.

Manipulating the tab pages

To view a different tab page

• Click on the page's tab.

The selected tab page is brought to the front. The tabs are rearranged according to the
TabPosition setting you have chosen.

To change the name and properties of a tab page

1. Select the tab.

It might move to the position for a selected tab based on the TabPosition setting. For
example, if TabPosition is set to tabsonbottomandtop! and a tab displays at the top, it
moves to the bottom when you select it.

Working with Windows

Page 366

2. Click anywhere on the tab page except the tab.

3. Edit the properties.

To change the scripts of the tab page

1. Select the tab.

It may move to the position for a selected tab based on the Tab Position setting.

2. Click anywhere on the tab page except the tab.

3. Select Script from the tab page's pop-up menu.

4. Select a script and edit it.

To delete a tab page from a Tab control

• With the mouse pointer anywhere on the tab page except the tab, select Cut or Delete
from the pop-up menu.

Managing controls on tab pages

To add a control to a tab page

• Choose a control from the toolbar or the Control menu and click on the tab page, just as
you would add a control to a window.

You can add controls only to a tab page created within the Tab control. To add controls to an
independent tab page, open it in the User Object painter.

To move a control from one tab page to another

• Cut or copy the control and paste it on the destination tab page.

The source and destination tab pages must be embedded tab pages, not independent ones
created in the User Object painter.

To move a control between a tab page and the window containing the Tab control

• Cut or copy the control and paste it on the destination window or tab page.

Moving the control between a tab page and the window changes the control's parent,
which affects scripts that refer to the control.

For more information on the Tab control, see Section 3.3, “Using Tab Controls in a Window”
in Application Techniques.

4.2.14.23 MonthCalendar

A MonthCalendar control lets you display a calendar to your users to make it easy for them to
view and set date information. You can size the calendar to show from one to twelve months.

Working with Windows

Page 367

The following illustration shows a calendar with three months. Today's date is September 3,
2009, and the date November 28 has been selected.

Figure 4.23:

If a user selects a date or a range of dates in the calendar, you can use the GetSelectedDate
or GetSelectedRange functions to obtain them. You use the SetSelectedDate and
SetSelectedRange functions to select dates programmatically.

You can also:

• Set and get minimum and maximum dates that can be displayed in the calendar

• Display dates in bold

• Get the number of months currently displayed with the start and end dates

• Set and get the date the calendar uses as the current date

• Use properties to customize the appearance of the calendar

Users can navigate through the calendar using the arrow keys in the top corners. You can
specify how many months should scroll for each click using the ScrollRate property. If users
click on the name of the month in the title bar, a drop-down list displays, allowing them to
navigate to another month in the same year. Clicking on the year in the title bar displays a
spin control that lets users navigate quickly to a different year.

4.2.14.24 DatePicker

The DatePicker control provides an easy way for a user to select a single date. The user can
choose to edit the date in the control or to select a date from a drop-down calendar. The
calendar is similar to the MonthCalendar control, which can be used to select a range of
dates. As an alternative to the drop-down calendar, you can set the ShowUpDown property to
display up and down arrows that allow users to specify one element of the date at a time.

The drop-down calendar can only be used to select a date. The up and down arrows lets users
specify a time as well as a date. The following illustration shows three DatePicker controls.
The controls on the left have the ShowUpDown property set. One uses the standard date
format, and the other uses a custom format that displays the date and time. The control on the
right uses the default drop-down calendar option and the standard long date format.

Working with Windows

Page 368

Figure 4.24:

You can set initial properties for the appearance and behavior of the control in the Properties
view. Properties that apply to the drop-down calendar portion of the control are similar to the
properties that apply to the MonthCalendar control and display on the Calendar page in the
Properties view. For example, you can choose which day of the week displays as the first day
in the week, whether the current date is circled, and whether a "Today Section" showing the
current date displays at the bottom of the calendar.

Specifying a format

You can choose to display the date in the DatePicker control as a long date, a short date,
a time, or with a custom format. To set a custom format in the painter, select dtfCustom!
from the Format list and type the format in the Custom Format field. For example, the
second control on the left in the previous illustration uses the custom format yyyy/MM/dd
HH:mm:ss. The uppercase H for the hour format specifies a 24-hour clock. The following
statements set the Format property to use a custom format and set the CustomFormat
property to show the full name of the month, the day of the month followed by a comma, and
the four-digit year:

dp_1.Format = dtfCustom!
dp_1.CustomFormat = "MMMM dd, yyyy"

For a complete list of formats you can use, see the description of the CustomFormat property
in Section 3.59, “CustomFormat” in Objects and Controls.

Specifying maximum and minimum dates

The MaxDate and MinDate properties determine the range of dates that a user can enter or
pick in the control. If you set a restricted range, the calendar displays only the months in the
range you set, and if users type a date outside the range into the control, the date reverts to its
previous value.

Editing modes

When a user tabs into a DatePicker control, the control is in normal editing mode and
behaves in much the same way as an EditMask control with a Date or DateTime mask. Users
can edit the part of the date (year, month, day, hour, minutes, or seconds) that has focus using
the up/down arrow keys on the keyboard or, for numeric fields, the number keys. Use the left/
right arrow keys to move between parts of the date.

Working with Windows

Page 369

If the control has a drop-down calendar, users can navigate from one month or year to
another using the controls in the calendar and click to select a date. If the ShowUpDown
option is set, users can change the selected part of the date or time with the up and down keys
in the control. To navigate in the drop-down calendar, a user can:

• Click the arrows in the top corners to move from month to month

• Click the month to display a list of months, then click a month to select it

• Click the year to display a spin control, then use the spin control's arrows to select a year

• Click a date to select the date and close the calendar

• Press the Esc key to close the calendar without changing the selection

Allowing users to edit the date directly

You can give users a third way to change the date by setting the AllowEdit property to
"true". The user can then press F2 or click in the control to select all the text in the control
for editing. When the control loses focus, the control returns to normal editing mode and the
UserString event is fired. The UserString event lets you test whether the text the user entered
in the control is a valid date and set the value to the new date if it is valid. If it is valid, you
can use the event's dtm by reference argument to set the value to the new date. This code in
the UserString event tests whether the date is valid and within range:

Date d

IF IsDate(userstr) THEN
 d = Date(userstr)
 IF (this.maxdate >= d and this.mindate <= d) THEN
 dtm = DateTime(d)
 ELSE
 MessageBox("Date is out of range", userstr)
 END IF
ELSE
 MessageBox("Date is invalid", userstr)
END IF

The Value property

The Value property contains the date and time to which the control is set. If you do not
specify a date, the Value property defaults to the current date and time. You can set the
property in the painter or in a script. If you change the value at runtime, the display is updated
automatically. The Value property has two parts that can be obtained from the DateValue and
TimeValue properties. These properties should be used only to obtain the date and time parts
of the Value property; they cannot be used to set a date or time. The Text property and the
GetText function return the Value property as a string formatted according to your format
property settings.

You can use the SetValue function to set the Value property in a control using separate date
and time values or a single DateTime value. This example sets the property control using
separate date and time values:

date d
time t

d=date("2016/12/27")

Working with Windows

Page 370

t=time("12:00:00")

dp_1.SetValue(d, t)

This example sets the Value property using a DateTime value:

date d
time t
datetime dt
dt = DateTime(d, t)

dp_1.SetValue(dt)

Localizing the DatePicker control

The DatePicker control is designed to work in different locales. The string values in the
DatePicker control support non-English characters and the names of months and days of the
week in the calendar display in the local language. You can set the FirstDayOfWeek property
on the Calendar page in the Properties view to have the drop-down calendar use Monday or
any other day of the week as the first day.

The MaxDate and MinDate properties and the date part of the Value property use the Short
Date format specified in the regional settings in the Windows control panel of the local
computer, and the time part uses the local computer's time format. The three predefined
display formats—long date, short date, and time—also depend on the local computer's
regional settings.

4.2.14.25 Animation

Animation controls can display Audio-Video Interleaved (AVI) clips. An AVI clip is a series
of bitmap frames that can be played like a movie. The clip can come from an uncompressed
AVI file or from an AVI file compressed using run-length encoding (BI_RLE8). If you use
an AVI file that has a sound channel, the sound is not played.

You might display an AVI clip to show the user that some activity is occurring while a
lengthy operation such as a search or full build is completing. To specify which AVI clip
to use, specify the AVI file name in the control's AnimationName property. If you want the
control to display only when an event in your application starts to play the application, set its
Border and Visible properties to "false" and its Transparent property to "true".

4.2.14.26 InkEdit and InkPicture

InkEdit and InkPicture provide the ability to capture ink input from users of Tablet PCs.

The InkEdit control captures and recognizes handwriting and optionally converts it to text.
The InkPicture control captures signatures, drawings, and other annotations that do not need
to be recognized as text. You can place a background image in an InkPicture control, and
capture and save a user's annotations to the picture.

The ink controls are fully functional on Tablet PCs. On other computers, the InkEdit control
behaves like a multiline edit control. If the Microsoft Tablet PC Software Development Kit
(SDK) 1.7 is installed on the computer, InkPicture controls can accept ink input from the
mouse.

In the Windows Server operating system, InkEdit and InkPicture can work properly only after
the "Ink and Handwriting Services" features (from "Add Roles and Features") are installed.

InkEdit control

Working with Windows

Page 371

The InkEdit control on a Tablet PC is like a MultiLineEdit control that has the added ability
to accept ink input. On other PCs, the InkEdit control behaves as a normal MultiLineEdit
control and cannot collect ink.

On a Tablet PC, the InkEdit control collects ink from a user in the form of handwriting and
can handle single or multiple lines of text. It also recognizes gestures, which are specific pen
strokes that represent a keyboard action such as backspace, space, or tab. The InkEdit control
can convert ink to text, or leave it as handwriting.

InkPicture control

The InkPicture control behaves like a Picture control that accepts annotation. The InkPicture
control does not convert ink to text. You can associate a picture with the control so that the
user can draw annotations on the picture, then save the ink, the picture, or both. If you want
to use the control to capture and save signatures, you usually do not associate a picture with
it.

You might use an InkPicture control to display an image of a process flow chart or a floor
plan of a building, and capture suggested changes that users enter in the form of ink. Using
an image of a garden, for example, a user could mark trees and shrubs to be removed and
indicate where new plants should be added.

You can save the background image, the ink annotations, or both, to a file or to a blob.

4.3 Understanding Inheritance
About this chapter

This chapter describes how to use inheritance to build PowerBuilder objects.

4.3.1 About inheritance

One of the most powerful features of PowerBuilder is inheritance. It enables you to build
windows, user objects, and menus that derive from existing objects.

Using inheritance has a number of advantages:

• When you change an ancestor object, the changes are reflected in all the descendants. You
do not have to make manual changes in the descendants, as you would in a copy. This
saves you coding time and makes the application easier to maintain.

• The descendant inherits the ancestor's scripts, so you do not have to re-enter the code to
add to the script.

• You gain consistency in the code and objects in your applications.

This chapter describes how inheritance works in PowerBuilder and how to use it to maximize
your productivity.

Opening ancestors and descendants

To enforce consistency, PowerBuilder does not let you open an ancestor object until
you have closed any descendants that are open, or open a descendant object when its
ancestor is open.

Working with Windows

Page 372

4.3.2 Creating new objects using inheritance

You use the Inherit From Object dialog box to create a new window, user object, or menu
using inheritance.

To create a new object using inheritance:

1. Click the Inherit button in the PowerBar, or select File>Inherit from the menu.

2. In the Inherit From Object dialog box, select the object type (menu, user object, or
window) from the Objects of Type drop-down list, and then select the target as well as
the library or libraries you want to look in. Finally, select the object from which you
want to inherit the new object.

Displaying objects from many libraries

To find an object more easily, you can select more than one library in the Libraries
list. Use Ctrl+click to toggle selected libraries and Shift+click to select a range.

3. Click OK.

The new object, which is a descendant of the object you chose to inherit from, opens in
the appropriate painter.

4.3.3 The inheritance hierarchy

When you build an object that inherits from another object, you are creating a hierarchy (or
tree structure) of ancestor objects and descendant objects. Working with Windows, uses the
example of creating two windows, w_customer and w_employee, that inherit their properties
from a common ancestor, w_ancestor. In this example, w_employee and w_customer are the
descendants.

The object at the top of the hierarchy is a base class object, and the other objects are
descendants of this object. Each descendant inherits information from its ancestor. The base
class object typically performs generalized processing, and each descendant modifies the
inherited processing as needed.

Multiple descendants

An object can have an unlimited number of descendants, and each descendant can also be
an ancestor. For example, if you build three windows that are direct descendants of the
w_ancestor window and three windows that are direct descendants of the w_employee
window, the hierarchy looks like this:

Working with Windows

Page 373

Figure 4.25: Object hierarchy example

4.3.4 Browsing the class hierarchy

PowerBuilder provides a Browser that can show the hierarchy of the built-in PowerBuilder
system objects and the hierarchy of ancestor and descendant windows, menus, and user
objects you create. In object-oriented terms, these are called class hierarchies: each
PowerBuilder object defines a class.

Regenerating objects

The Browser also provides a convenient way to regenerate objects and their
descendants. For more information, see Regenerating library entries.

To browse the class hierarchy of PowerBuilder system objects:

1. Click the Browser button in the PowerBar.

2. Choose the System tab to show the built-in PowerBuilder objects.

3. In the left pane, scroll down the object list and select the powerobject.

4. Display the pop-up menu for the powerobject and choose Show Hierarchy.

5. Select Expand All from the pop-up menu and scroll to the top.

The hierarchy for the built-in PowerBuilder objects displays.

Working with Windows

Page 374

Figure 4.26:

Getting context-sensitive Help in the Browser

To get context-sensitive Help for an object, control, or function, select Help from its
pop-up menu.

To display the class hierarchy for other object types:

1. Choose the Menu, Window, or User Object tab.

If you choose any other object type, there is no inheritance for the object type, so you
cannot display a class hierarchy.

2. In the left pane, select an object and choose Show Hierarchy from its pop-up menu.

3. Select an object and choose Expand All from its pop-up menu.

PowerBuilder shows the selected object in the current application. Descendant objects
are shown indented under their ancestors.

For example, if your application uses the PBDOM PowerBuilder extension object, the
pbdom_object displays on the User Object page. You can select Show Hierarchy and
Expand All from its pop-up menu to display its descendant objects.

4.3.5 Working with inherited objects

This section describes:

• Working in a descendant object

• Working in an ancestor object

Working with Windows

Page 375

• Resetting properties in a descendant

Working in a descendant object

You can change descendant objects to meet specialized needs. For example, you can:

• Change properties of the descendant object

• Change properties of inherited controls in the object

• Add controls to a descendant window or user object

• Add menu items to a menu

You cannot copy a control on a descendant window or visual user object if the control
inherits from the ancestor object, because the resulting inheritance hierarchy cannot be
maintained consistently. You can copy a control on a descendant object if the control does
not inherit from the object's ancestor.

For specifics about what you can do in inherited windows, user objects, and menus, see
Working with Windows, Working with User Objects, and Working with Menus and
Toolbars.

Working in an ancestor object

When you use inheritance to build an object, the descendant is dependent on the definition of
the ancestor. Therefore you should not delete the ancestor without deleting the descendants.
You should also be careful when you change the definition of an ancestor object. You may
want to regenerate descendant objects if you do any of the following:

• Delete or change the name of an instance variable in the ancestor

• Modify a user-defined function in the ancestor

• Delete a user event in an ancestor

• Rename or delete a control in an ancestor

When you regenerate the descendants, the compiler will flag any references it cannot resolve
so you can fix them. For information about regenerating objects, see Working with Libraries.

About local changes

If you change a property in an ancestor object, the property also changes in all
descendants—if you have not already changed that property in a descendant, in which
case the property in the descendant stays the same. In other words, local changes
always override inherited properties.

4.3.6 Using inherited scripts

In the hierarchy formed by ancestors and descendants, each descendant inherits its event
scripts from its immediate ancestor. If an inherited event does not have a script, you can write
a script for the event in the descendant. If the inherited event does have a script, the ancestor
script will execute in the descendant unless you extend the script or override it. You can:

Working with Windows

Page 376

• Extend the ancestor script—build a script that executes after the ancestor script

• Override the ancestor script—build a script that executes instead of the ancestor script

You cannot delete or modify an ancestor script from within a descendant.

Extending or overriding a script

The Extend Ancestor Script item on the Edit menu or the pop-up menu in the Script view
determines whether the script is extended or overridden. If the menu item is selected (a
check mark displays next to it), the ancestor script is extended. If there is no check mark, the
ancestor script is overridden.

When there is no script for the descendant, the Extend Ancestor Script menu item is selected
and disabled. You cannot clear the menu item unless you add a script to the descendant.
When you have added a script, the menu item is enabled and you can choose to override the
ancestor script by clearing the menu item, or to extend it by leaving the menu item selected.

If you delete the script in the descendant

If, after adding a script to the descendant and clearing the Extend Ancestor Script
menu item, you delete the script, the menu item returns to its default state: selected
and disabled. A message displays in the status bar warning you that this has occurred.
If you then add a new script, the menu item is reenabled. You must remember to clear
the Extend Ancestor Script menu item if you want to override the ancestor script.

Executing code before the ancestor script

To write a script that executes before the ancestor script, first override the ancestor script and
then in the descendant script explicitly call the ancestor script at the appropriate place. For
more information, see Calling an ancestor script.

Getting the return value of the ancestor script

To get the return value of an ancestor script, you can use the AncestorReturnValue variable.
This variable is always available in descendant scripts that extend an ancestor script. It is
also available if you override the ancestor script and use the CALL syntax to call the ancestor
event script. For more information, see Section 2.2.5, “Return values from ancestor scripts”
in Application Techniques.

4.3.6.1 Viewing inherited scripts

If an inherited object or control has a script defined only in an ancestor, no script displays in
the Script view.

Script icons in the second drop-down list

The second drop-down list in the Script view indicates which events have scripts written for
an ancestor as follows:

• If the event has a script in an ancestor only, the script icon next to the event name in the
second drop-down list is displayed in color.

• If the event has a script in an ancestor as well as in the object you are working with, the
script icon is displayed half in color.

Working with Windows

Page 377

Script icons in the third drop-down list

The third drop-down list in the Script view shows the current object followed by each of its
ancestors in ascending order. The icons next to object names indicate whether the object has a
script for the event selected in the second drop-down list as follows:

• If an object is the highest class in the hierarchy to have a script, a transparent script icon
displays next to its name. No icon displays next to the names of any of its ancestors.

• If an object does not have a script for the event but it has an ancestor that has a script for
the event, the script icon next to its name is displayed in color.

• If an object has a script for the event, and it has an ancestor that also has a script for the
event, the script icon next to its name is displayed half in color.

To view an ancestor script

1. In the Script view for an inherited object, select the object itself or a control in the first
drop-down list, and the event whose script you want to see in the second drop-down list.

The Script view does not display the script for the ancestor. No script displays.

2. In the third drop-down list in the Script view, select an ancestor object that has a script
for the selected event.

The Script view displays any script defined in the ancestor object.

3. To climb the inheritance hierarchy, in the third drop-down list, select the script for the
grandparent of the current object, great-grandparent, and so on until you display the
scripts you want.

The Script view displays the scripts for each of the ancestor objects. You can traverse
the entire inheritance hierarchy using the third drop-down list.

4.3.6.2 Extending a script

When you extend an ancestor script for an event, PowerBuilder executes the ancestor script,
then executes the script for the descendant when the event is triggered.

To extend an ancestor script

1. In the first drop-down list in the Script view, select the object or a control, and in the
second drop-down list, select the event for which you want to extend the script.

2. Make sure that Extend Ancestor Script on the Edit menu or the pop-up menu in the
Script view is selected.

Extending the ancestor script is the default.

3. In the Script view, enter the appropriate statements.

You can call the script for any event in any ancestor as well as call any user-defined
functions that have been defined for the ancestor. For information about calling an
ancestor script or function, see Calling an ancestor script and Calling an ancestor
function.

Example of extending a script

Working with Windows

Page 378

If the ancestor script for the Clicked event in a button beeps when the user clicks the button
without selecting an item in a list, you might extend the script in the descendant to display a
message box in addition to beeping.

4.3.6.3 Overriding a script

To override an ancestor script

1. In the first drop-down list in the Script view, select the object or a control, and in the
second drop-down list, select the event for which you want to override the script.

2. Code a script for the event in the descendant.

You can call the script for any event in any ancestor as well as call any user-defined
functions that have been defined for the ancestor.

For information about calling an ancestor script or function, see Calling an ancestor
script and Calling an ancestor function.

Override but not execute

To override a script for the ancestor but not execute a script in the descendant, enter
only a comment in the Script view.

3. Select Extend Ancestor Script on the Edit menu or the pop-up menu to clear the check
mark.

Clearing the Extend Ancestor Script item means that you are overriding the script.

At runtime, PowerBuilder executes the descendant script when the event is triggered.
The ancestor script is not executed.

Example of overriding a script

If the script for the Open event in the ancestor window displays employee files and you want
to display customer files in the descendant window, select Override Ancestor Script and
create a new script for the Open event in the descendant to display customer files.

4.3.6.4 Calling an ancestor script

When you write a script for a descendant object or control, you can call scripts written for
any ancestor. You can refer by name to any ancestor of the descendant object in a script, not
just the immediate ancestor (parent). To reference the immediate ancestor (parent), you can
use the Super reserved word.

For more information about calling scripts for an event in an ancestor window, user object, or
menu, and about the Super reserved word, see Section 1.6.9, “Calling functions and events in
an object's ancestor” in PowerScript Reference.

4.3.6.5 Calling an ancestor function

When you write a script for a descendant window, user object, or menu, you can call user-
defined functions that have been defined for any of its ancestors. To call the first function up
the inheritance hierarchy, just call the function as usual:

function (arguments)

Working with Windows

Page 379

If there are several versions of the function up the inheritance hierarchy and you do not want
to call the first one up, you need to specify the name of the object defining the function you
want:

ancestorobject::function (arguments)

This syntax works only in scripts for the descendant object itself, not in scripts for controls
or user objects in the descendant object or in menu item scripts. To call a specific version
of an ancestor user-defined function in a script for a control, user object, or menu item in a
descendant object, do the following:

1. Define an object-level user-defined function in the descendant object that calls the
ancestor function.

2. Call the function you just defined in the descendant script.

For more information about calling an ancestor function, see the Section 1.6.9, “Calling
functions and events in an object's ancestor” in PowerScript Reference.

4.4 Working with RibbonBar
A RibbonBar control enables you to create ribbons which are a modern way of organizing
user commands in user interfaces. A ribbon can replace the traditional menu bar and toolbars
with tabbed pages (called Category); and each Category splits into Panels that contain
individual or groups of LargeButton (with or without RibbonMenu), SmallButton (with or
without RibbonMenu), CheckBox, ComboBox, TabButton (with or without RibbonMenu),
and Spin (currently unsupported).

4.4.1 Introduction to RibbonBar items

A RibbonBar control is composed of the following items. It is recommended that you use
the RibbonBar Builder to create the RibbonBar control (see the next section Creating a
RibbonBar using RibbonBar Builder for details). You can also write scripts to create the
RibbonBar control and the items that composes the control. For details, refer to Section 2.90,
“RibbonBar control” in Objects and Controls.

Category

The category is a tab page that organize the functions of the application.

A RibbonBar control can contain one or more categories; a category can contain one or more
panels:

RibbonBar > Category > Panel > ... (view ribbon hierarchy)

The following image shows that the RibbonBar control contains three categories: Home,
Workspaces, and View.

Figure 4.27:

Working with Windows

Page 380

For properties/functions of the Category, see Section 2.93, “RibbonCategoryItem control” in
Objects and Controls. This control has no events or user events.

Panel

The panel is used to split the commands in a category into different groups.

A panel must be placed in a category; and a panel can contain individual or groups of
CheckBox, ComboBox, LargeButton, and SmallButton:

RibbonBar > Category > Panel > [Group >] CheckBox/ComboBox/LargeButton/
SmallButton (view ribbon hierarchy)

The following image shows that the Home category contains four panels: Tabs, Boards,
Actions, and Print.

Figure 4.28:

A panel is collapsed automatically (with a drop-down arrow) if there is not enough space to
completely display all of the items in the panel, for example when the user shrinks the width
of the window. You cannot control when the panel should be collapsed (there is no property
or function to set the collapsed mode for a panel). But you can specify which picture will
display (using the PictureName property of the panel) when the panel is collapsed.

Figure 4.29:

For properties/functions of the Panel, see Section 2.100, “RibbonPanelItem control” in
Objects and Controls. This control has no events or user events.

Group

The group organizes related commands and controls within the same area.

A group must be placed in a panel, and a group can contain one or more CheckBox,
ComboBox, and SmallButton, but cannot contain LargeButton:

RibbonBar > Category > Panel > Group > CheckBox/ComboBox/SmallButton (view ribbon
hierarchy)

Working with Windows

Page 381

Figure 4.30:

For properties/functions of the Group, see Section 2.96, “RibbonGroupItem control” in
Objects and Controls. This control has no events or user events.

ComboBox

The combo box contains a list box that displays available choices.

A ComboBox can be placed in a group or panel: RibbonBar > Category > Panel [> Group] >
ComboBox (view ribbon hierarchy)

Figure 4.31:

For properties/functions of the ComboBox, see Section 2.95, “RibbonComboBoxItem
control” in Objects and Controls. The Ribbon ComboBox control has no events. But you can
create the Modified user event, the Selected user event, and the SelectionChanged user event
and bind them with this control. For details, see Modified in PowerScript Reference, Selected
in PowerScript Reference, and SelectionChanged in PowerScript Reference.

CheckBox

The check box provides a toggle state of an option.

A CheckBox can be placed in a group or panel: RibbonBar > Category > Panel [> Group] >
CheckBox (view ribbon hierarchy)

Figure 4.32:

For properties/functions of the CheckBox, see Section 2.94, “RibbonCheckBoxItem control”
in Objects and Controls. The Ribbon CheckBox control has no events. But you can create the
Clicked user event and the Selected user event and bind them with this control. For details,
see Clicked in PowerScript Reference and Selected in PowerScript Reference.

LargeButton

A large button displays an image of 32 * 32 pixels.

A LargeButton can be placed in the panel only; and it can be associated with a ribbon menu:

Working with Windows

Page 382

RibbonBar > Category > Panel > LargeButton [> RibbonMenu > RibbonMenuItem] (view
ribbon hierarchy)

Figure 4.33:

For properties/functions of the LargeButton, see Section 2.97, “RibbonLargeButtonItem
control” in Objects and Controls. The Ribbon LargeButton control has no events. But you
can create the Clicked user event and the Selected user event and bind them with this control.
For details, see Clicked in PowerScript Reference and Selected in PowerScript Reference.

SmallButton

A small button displays an image of 16 * 16 pixels.

A SmallButton can be placed in a group or panel; and it can be associated with a ribbon
menu:

RibbonBar > Category > Panel [> Group] > SmallButton [> RibbonMenu >
RibbonMenuItem] (view ribbon hierarchy)

Figure 4.34:

For properties/functions of the SmallButton, see Section 2.101, “RibbonSmallButtonItem
control” in Objects and Controls. The Ribbon SmallButton control has no events. But you
can create the Clicked user event and the Selected user event and bind them with this control.
For details, see Clicked in PowerScript Reference and Selected in PowerScript Reference.

RibbonMenu

A ribbon menu is a drop-down list of related commands for a button. A ribbon menu can be
associated with the large button, the small button, or the tab button:

RibbonBar > Category > Panel > [Group >] LargeButton/SmallButton > RibbonMenu >
RibbonMenuItem (view ribbon hierarchy)

RibbonBar > TabButton > RibbonMenu > RibbonMenuItem (view ribbon hierarchy)

The menu item with the "Normal" or "Separator" type (that is RibbonMenuItem with
ItemType 0 or 1) can be added to RibbonMenu. A "Separator" menu item is a horizontal line
used to visually distinguish between groups of menu items. RibbonMenu can contain menu
items in no more than two levels. If a RibbonMenu contains menu items in more than two
levels, the ribbon XML editor will display an error message similar to: "The element cannot
contain text. Content model is empty."

Working with Windows

Page 383

The following image shows that the History large button is associated with a menu.

Figure 4.35:

For properties/functions of the RibbonMenu, see Section 2.98, “RibbonMenu control” in
Objects and Controls. This control has no events or user events.

For properties/functions of the RibbonMenuItem, see Section 2.99, “RibbonMenuItem
control” in Objects and Controls. The RibbonMenuItem control has no events. But you can
create the Clicked user event and the Selected user event and bind them with this control. For
details, see Clicked in PowerScript Reference and Selected in PowerScript Reference.

TabButton

The tab button is normally displayed at the top right corner of the RibbonBar control which
provides access to the application-level settings such as minimize, help, etc. A tab button can
show text if you specify no picture for it.

A RibbonBar control can contain one or more tab buttons; and a tab button can be associated
with a ribbon menu:

RibbonBar > TabButton [> RibbonMenu > RibbonMenuItem] (view ribbon hierarchy)

Figure 4.36:

For properties/functions of the TabButton, see Section 2.102, “RibbonTabButtonItem
control” in Objects and Controls. The Ribbon TabButton control has no events. But you can
create the Clicked user event and the Selected user event and bind them with this control. For
details, see Clicked in PowerScript Reference and Selected in PowerScript Reference.

ApplicationButton

The application button is normally displayed at the top left corner of the RibbonBar control
which provides end users with easy access to the main menu of your application.

Only one application button is allowed in a ribbon bar, therefore, you can get, set, or remove
the application button without needing to insert the application button first or identify
the application button by its handle. The application button must be associated with an
application menu.

RibbonBar > ApplicationButton > ... (view ribbon hierarchy)

Working with Windows

Page 384

The following image shows that the RibbonBar control contains a "MyApp" application
button.

Figure 4.37:

For properties/functions of the ApplicationButton, see Section 2.91,
“RibbonApplicationButtonItem control” in Objects and Controls. This control has no events
or user events.

ApplicationMenu

The application menu is the main menu of your application; it usually contains two menus:
a master menu on the left and a recent menu on the right. The application menu is associated
with the application button.

RibbonBar > ApplicationButton > ApplicationMenu > RibbonMenuItem (view ribbon
hierarchy)

• Master menu -- The master menu is a pane in the application menu that displays the main
menu items for an application. The menu item with the "Normal" or "Separator" type
(that is RibbonMenuItem with ItemType 0 or 1) can be added as a master menu item. A
"Separator" menu item is a horizontal line used to visually distinguish between groups of
menu items.

The master menu can have no more than two levels. If the master contains menu items in
more than two levels, the ribbon XML editor will display an error message similar to: "The
element cannot contain text. Content model is empty."

• Recent menu -- The recent menu is a pane in the application menu that displays the most
recently used items for an application. You can specify a text title for the recent menu
(using the SetRecentTitle function), for example, "Recent Items", "Recently Opened
Windows" etc.

The menu item with the "Recent" type (that is RibbonMenuItem with ItemType 2) can
be added as a recent menu item. The recent menu item will not show picture even if you
have specified a picture for it (using the PictureName property of RibbonMenuItem). No
separator line can be added to the recent menu.

The recent menu can have only one level; and can contain no more than 9 items.

Working with Windows

Page 385

Figure 4.38:

For properties/functions of the ApplicationMenu, see Section 2.92, “RibbonApplicationMenu
control” in Objects and Controls. This control has no events or user events.

For properties/functions of the RibbonMenuItem, see Section 2.99, “RibbonMenuItem
control” in Objects and Controls. The RibbonMenuItem control has no events. But you can
create the Clicked user event and the Selected user event and bind them with this control. For
details, see Clicked in PowerScript Reference and Selected in PowerScript Reference.

RibbonBar Header

The RibbonBar header is not an individual control; it is the area composed of the application
button title, the category title, and the tab header on the same horizontal level.

The header can be set to invisible (by using the HideTabHeader property), and the RibbonBar
can be minimized to display the header only (by using the SetMinimized function). When
the RibbonBar is minimized, the HideTabHeader property cannot be set to TRUE. When the
HideTabHeader property is set to TRUE, the SetMinimized function will not take effect.

For more, see Section 2.4.743, “SetMinimized” in PowerScript Reference and Section 3.118,
“HideTabHeader” in Objects and Controls.

Figure 4.39:

4.4.2 Creating a RibbonBar using RibbonBar Builder

It is recommended that you use RibbonBar Builder to create the source of a RibbonBar
control and then use the source to create the RibbonBar control in the application.

RibbonBar Builder provides a graphical UI of the RibbonBar control template and the
corresponding XML scripts in an editor, to help you quickly create your own source of a
ribbon bar.

To launch the RibbonBar Builder, select Tools > RibbonBar Builder from the menu bar in
the PowerBuilder IDE.

Working with Windows

Page 386

To open the RibbonBar control template in the RibbonBar Builder, click the Open Template
button on the toolbar of the RibbonBar Builder.

Figure 4.40:

Figure 4.41:

4.4.2.1 Using the RibbonBar Builder

You can directly adjust the scripts in the XML editor to design your own RibbonBar control
and preview the UI on the fly. Every change you make to the XML script is immediately
reflected in the Preview pane. The RibbonBar Builder allows you to:

• Create or open the XML or JSON scripts of a RibbonBar control

To create a new XML file, click New File.

To open an existing XML file, click Open File.

To open the default XML template of RibbonBar, click Open Template.

To import XML scripts from a JSON file and display the XML scripts in the XML editor,
click Import from JSON.

• Save the current RibbonBar as an XML or JSON file, or as a PowerBuilder string.

Working with Windows

Page 387

To save the XML scripts to an XML file, click the Save File or Save As button.

To save the XML scripts to a JSON file, click the Export to JSON button.

To save the XML scripts to a PowerBuilder string, click the Copy as a PB String button.

• Search or replace text for the ribbon bar controls in the XML editor

Click the Search button from the toolbar or directly press Ctrl+F to display the search box.
You can search for or replace text in the search box.

• Set property values in the XML editor

Select to modify the property value, or input "=" after a property, the editor aromatically
displays a list of values for the property.

• Insert images

Method 1: Place the cursor in the value of the PictureName property, or double click to
select the value of the PictureName property, and then click the Select Image button from
the toolbar.

Method 2: In the Select Image dialog, select to use a custom image or a built-in image.
The selected image name will be inserted into the value of the PictureName property.

• Edit the ribbon bar controls

To insert a control, right click where you want to insert the control in the XML editor; the
editor will display a list of controls that can be inserted in the current position. As shown in
the following figure, if you right click after <RibbonItems>, you will be prompted to select
from the following options: ApplicationButton, Categories, and TabButtons.

Figure 4.42:

You can also copy/paste the corresponding XML node to reuse the XML scripts for a
control.

Working with Windows

Page 388

To remove a control, simply remove the corresponding XML node.

• Customize the RibbonBar Builder

The Option button on the toolbar provides a number of settings for you to customize the
RibbonBar Builder.

• Images Directory -- This directory will be ignored if a built-in image is selected. For a
custom image, you can specify a relative path of the custom image in the XML scripts
according to the directory specified here; or specify an absolute path if the custom image
is in a different directory.

• Enable word wrap -- Whether to break a long line into multiple lines based on the XML
editor view area.

• Show line numbers -- Whether to show line numbers on the left hand side of the XML
editor.

• Place the preview pane on the top -- Whether to place the preview pane on the top of the
XML editor.

• Dynamically refresh the preview -- Whether to dynamically refresh the preview pane
to reflect the changes made to the RibbonBar control. If this option is not selected, a
refresh icon will appear on the top right corner of the preview pane and you can click
this icon (or press Ctrl + R) to refresh the preview pane manually.

• Refresh interval -- When "Dynamically refresh the preview" option is selected, you can
determine how frequently should the preview pane be refreshed after a change is made.

Working with Windows

Page 389

Figure 4.43:

The XML editor also provides auto-completion to help you write XML elements, properties,
and property values easily.

• When you input "<", the editor automatically displays a list of possible elements

• When you enter a space in an element, the editor automatically displays a list of properties
for the current element.

• When you input "=" after a property, the editor aromatically displays a list of values for the
property.

The scripts will be validated against XML 1.0 Specification immediately after input. The
syntax error, if any, will be displayed in Error List pane at the bottom of the RibbonBar
Builder.

4.4.2.2 Creating a valid structure

You can right-click in the XML editor to add the nodes, and use the Error List pane to
analyze and fix any syntax error.

Here is a brief description to the main XML nodes of a RibbonBar control which can help
you understand what a valid structure looks like:

• <RibbonBar> -- This is the root node. It provides property values for the RibbonBar
controls.

• <RibbonItems> -- This is the only-one second-level node. Only one <RibbonItems> is
allowed here.

Working with Windows

Page 390

• <ApplicationButton> -- Only one <ApplicationButton> is allowed here. It provides
property values for the application button.

• <ApplicationMenu> -- Only one <ApplicationMenu> is allowed here.
<ApplicationMenu> can contain only one <Master> and only one <Recent>; and
<Master> and <Recent> can contain multiple <Item>.

• <Categories> -- This is the only-one node for all of the categories.

• <Category> -- Multiple <Category> are allowed.

• <Panel> -- Multiple <Panel> are allowed. <Panel> can contain multiple
<LargeButton>, <SmallButton>, <CheckBox>, <ComboBox>, and <Group>.

• <Group> -- Multiple <Group> are allowed. <Group> can contain multiple
<SmallButton>, <CheckBox>, and <ComboBox>, but cannot contain any
<LargeButton>.

• <SmallButton> -- Multiple <SmallButton> are allowed. <SmallButton> can
contain only one <Menu>; <Menu> can have multiple <Item>.

• <LargeButton> -- Multiple <LargeButton> are allowed. <LargeButton> can
contain only one <Menu>; <Menu> can have multiple <Item>.

• <CheckBox> -- Multiple <CheckBox> are allowed.

• <ComboBox> -- Multiple <ComboBox> are allowed. <ComboBox> can
contain multiple <Item>.

• <TabButtons> -- This is the only-one node for all of the tab buttons.

• <TabButton> -- Multiple <TabButton> are allowed. <TabButton> can contain only
one <Menu>; <Menu> can have multiple <Item>.

After you finalize the design, you can save the XML scripts of the RibbonBar control to an
XML or JSON file or as a string, and then load the file or string to create the RibbonBar in
the application.

• To load the XML file to create the RibbonBar, call the ImportFromXMLFile function

Lnv_RibbonBar1.ImportFromXMLFile ("D:\RibbonBarXML\RibbonBar.xml")

• To load the JSON file to create the RibbonBar, call the ImportFromJSONFile function

Lnv_RibbonBar1.ImportFromJSONFile ("D:\RibbonBarXML\RibbonBar.json")

• To load the XML string to create the RibbonBar, call the ImportXML function

Lnv_RibbonBar1.ImportXML (XMLData)

• To load the JSON string to create the RibbonBar, call the ImportJSON function

Lnv_RibbonBar1.ImportJSON (JSONData)

Working with Windows

Page 391

4.4.3 Accessing the RibbonBar items in the hierarchy

The RibbonBar control is a container. The RibbonBar control as well as the item controls
it contains have a hierarchical relationship. The item controls cannot exist independently
and must be placed on top of the parent object; therefore, to get an item control, you need
to search from the top level (RibbonBar control), or to search by tag. The control you get is
a copy (not a reference), and after the copy is modified, it needs to be set back to the parent
object, and then to the RibbonBar control, for the change to take effect.

To access a ribbon item, you need to understand the hierarchical structure of the RibbonBar
control and its item controls.

To get a copy of a ribbon item control, use the following two ways:

1. (Recommended) You can get a copy of a ribbon item through its tag value.

For example, suppose RibbonBar rbb_1 contains a Category and the Category contains
a Panel and the Panel contains a CheckBox (its Tag value is CheckBoxTag1). You can
access the CheckBox with the following scripts.

RibbonCheckBoxItem lr_CheckBox1
if rbb_1.GetItemByTag ("CheckBoxTag1", lr_CheckBox1) = 1 Then
 lr_CheckBox1.enabled = False
 ...
End If

2. You can get a copy of a ribbon item according to its hierarchical level:

RibbonBar > Category > Panel [> Group] > CheckBox/ComboBox

RibbonBar > Category > Panel [> Group] > LargeButton/SmallButton [> RibbonMenu >
MenuItem]

RibbonBar > TabButton [> RibbonMenu > MenuItem]

RibbonBar > ApplicationButton > ApplicationMenu > MenuItem (Master and/or Recent)

Panel can directly contain CheckBox, ComboBox, LargeButton, and SmallButton. Group
cannot contain LargeButton. ApplicationMenu can contain a list of master menu items and
a list of recent menu items. For more, see Introduction to RibbonBar items.

Working with Windows

Page 392

For example, suppose RibbonBar rbb_1 contains a Category and the Category contains
a Panel and the Panel contains a CheckBox. You first get a copy of the Category from
RibbonBar rbb_1, and then get a copy of the Panel from the copy of the Category, finally
get a copy of the CheckBox from the copy of the Panel. The code will look like this:

RibbonCategoryItem lr_Category
RibbonPanelItem lr_Panel
RibbonCheckBoxItem lr_CheckBox

If rbb_1.GetcategoryByIndex (1, lr_Category) = 1 Then
 If rbb_1.GetChildItemByIndex (lr_Category.itemhandle, 1, lr_panel) = 1 Then
 If rbb_1.GetChildItemByIndex (lr_panel.itemhandle, 1, lr_CheckBox) = 1
 Then
 lr_CheckBox.enabled = False
 ...
 End If
 End If
End If

To set changes for a ribbon item control, use different ways according to different item
controls:

• For items in the Generic Controls category in the chart, including ApplicationButton,
TabButton, Category, Panel, Group, CheckBox, ComboBox, LargeButton, and
SmallButton, you can directly apply changes to the RibbonBar.

For example, if you have changed the property of the CheckBox lr_CheckBox, to apply
this change to the RibbonBar rbb_1, you write scripts like this:

…
rbb_1.SetItem (lr_CheckBox)
…

Or

…
rbb_1.SetCheckBox (lr_CheckBox.ItemHandle, lr_CheckBox)
…

For differences between SetItem and SetCheckBox, refer to SetItem in PowerScript
Reference.

• For ApplicationMenu (its parent object is ApplicationButton) and RibbonMenu (its parent
object can be TabButton, LargeButton, or SmallButton) in the Menu Controls category in
the chart, you must first apply changes to the parent object and then to the RibbonBar.

For example, if you have changed the text of the application menu
lr_ApplicationMenu, to apply this change to the RibbonBar rbb_1, you write
scripts like this:

…
ApplicationButton1.SetMenu (lr_ApplicationMenu)
rbb_1.SetItem (ApplicationButton1) //or rbb_1.SetApplicationButton
 (ApplicationButton1)
…

Working with Windows

Page 393

• For MenuItem (its parent object can be ApplicationMenu or RibbonMenu) in the Menu
Controls category in the chart, you must first apply changes to the parent object, then to
the parent object at one level higher, and finally to the RibbonBar.

For example, if you have changed the text of the menu lr_MenuItem which is a
dropdown of a large button, to apply this change to the RibbonBar rbb_1, you write
scripts like this:

…
Menu1.SetItem (lr_MenuItem)
LargeButton1.SetMenu (Menu1)
rbb_1.SetItem (LargeButton1) //or rbb_1.SetLargeButton (LargeButton1.itemhandle,
 LargeButton1)
…

Example 1:

Suppose RibbonBar rbb_1 contains a Category and the Category contains a Panel and the
Panel contains a CheckBox (its Tag value is CheckBoxTag1). The following code gets the
CheckBox by tag and then changes its Enabled property:

RibbonCheckBoxItem lr_CheckBox1
if rbb_1.GetItemByTag ("CheckBoxTag1", lr_CheckBox1) = 1 Then
 //Changes the Enabled property of CheckBox
 lr_CheckBox1.enabled = False
 //For the change to take effect, sets the change to the RibbonBar control
 rbb_1.SetItem (lr_CheckBox1) //or rbb_1.SetCheckBox (lr_CheckBox1.itemhandle,
 lr_CheckBox1)
End If

Example 2:

Unlike the PowerBuilder traditional menu, to add/delete/modify a ribbon menu item, you
need to first get a copy of the menu item and its parent object, make changes to the menu
item, then set changes back to its parent object, and finally to the RibbonBar control.

The following code example changes the text of a menu item dynamically.

//Gets a copy of ApplicationButton from RibbonBar control rbb_1
rbb_1.GetApplicationButton(buttonitem)
//Gets a copy of ApplicationMenu from the copy of ApplicationButton
li_rc = buttonitem.getMenu(appmenu)
li_count = appmenu.GetMasterItemCount ()
FOR li_index = 1 TO li_count
 //Gets a copy of MenuItem from the copy of ApplicationMenu
 li_rc = appmenu.GetMasterItem(li_index, item)
 IF item.tag = 'Tools' THEN
 //Changes the text of a menu item
 item.Text = 'Tools Test'
 //For the change to take effect, sets the copy of MenuItem back to the copy
 of ApplicationMenu
 li_rc = appmenu.SetMasterItem(li_index, item)
 //Then sets the copy of ApplicationMenu back to the copy of
 ApplicationButton
 li_rc = buttonitem.Setmenu(appmenu)
 //Finally sets the copy of ApplicationButton back to the RibbonBar control
 li_rc = rbb_1.SetApplicationbutton(buttonitem)
 END IF
NEXT

Working with Windows

Page 394

4.4.4 Tutorial: How to Replace an Application Menu with a RibbonBar

4.4.4.1 Overview

The new RibbonBar control allows you to organize the navigation of your application in a
simple, structured way, and gives the application the look and feel of modern applications.
Because RibbonBar is provided in PowerBuilder as a control while Menu is a system object,
the way that a RibbonBar works in an application is different from the application menu. This
tutorial uses a demo application to walk you through the steps of replacing an application
menu with a RibbonBar.

The figure below shows what the menu looks like in the original demo application.

The figure below shows what the RibbonBar control looks like after you use it to replace the
menu in the application.

Figure 4.44:

Working with Windows

Page 395

This tutorial contains the following sections:

• Prerequisites

This explains how to set up the demo application used in the tutorial.

• Design and create a RibbonBar

You shall have a clear understanding of your application to know how to design and create
a RibbonBar for it.

• Add the RibbonBar to the application

The RibbonBar will replace the existing menu in the application. Therefore, you must
disable the existing menu before adding the RibbonBar.

• Initiate the RibbonBar

The RibbonBar needs to be initiated after created by XML/JSON, or PowerScript.

• Define and bind user events with RibbonBar items

The ribbon item controls have no events and must be bound with user events.

• Associate functions with RibbonBar items

Previously the application functions are all associated with menu items. You need to
decide which function to associate with which RibbonBar item.

• Summary notes

Finally, this section highlights the major points you should consider when you start to
replace the menu in your application with RibbonBar.

4.4.4.2 Prerequisites

Step 1: Install PowerBuilder 2019 R3.

Step 2: Download the RibbonBar demo application from here.

Step 3: Set up the sample database.

1. Get the database file "AppeonSample.db" from the downloaded demo application.

2. Set up the ODBC database connection.

i. Open Control Panel > System and Security > Administrative Tools > ODBC Data
Sources.

ii. Create a new Data Source in SQL Anywhere 17.

iii.Fill in the following data source configurations. Note that username and password for
data source connection is “dba” and "sql".

https://github.com/Appeon/PowerBuilder-RibbonBar-Example

Working with Windows

Page 396

iv. In PowerBuilder, setup and connect to the created ODBC data source.

Working with Windows

Page 397

4.4.4.3 Design and create a RibbonBar

As the first step, you shall design the RibbonBar, that is, deciding what items to contain in
the RibbonBar, what modern-looking image to use for each item, and how to group the items,
etc.

Once you know clearly how you want the RibbonBar to look like, you can start to create it.
We recommend you use the RibbonBar Builder tool to create the RibbonBar XML/JSON
file. Alternatively, you can choose to directly create a RibbonBar via PowerScript.

For detailed instructions on how to create a RibbonBar, refer to PowerBuilder Help >
RibbonBar control. In the Sales Demo application, for better illustration purpose, you will see
both the XML file and PowerScript code are provided for creating the RibbonBar. When the
application initiates the RibbonBar, it uses an argument in the wf_init_ribbonbar function to
decide which way (XML or PowerScript) to use for creating the RibbonBar (see Initiate the
RibbonBar).

Working with Windows

Page 398

Creating the XML for the RibbonBar in this demo (Recommended):

A dedicated tool, RibbonBar Builder, is available in PowerBuilder to assist you to create the
RibbonBar XML (or JSON). In the tool, you can use a template (RibbonBar.xml) to create
your own XML, and preview the RibbonBar UI while you work. This is the recommended
approach.

In the Sales Demo application:

1. Open Tools > RibbonBar Builder in PowerBuilder IDE, and open and edit the file created
for the RibbonBar: SalesApplicationDemo_RibbonBar.xml.

Creating the PowerScript for the RibbonBar in this demo:

In the Sales Demo application:

1. Open the function w_mdi.wf_init_ribbonbar, and you will see the PowerScript for the
RibbonBar in the function. The script is different from XML, but shall still be easy to
understand.

For example, the following script inserts File as a RibbonBar category, adds an orderview
panel in this category, and then adds buttons inside the panel.

//File menu
long ll_handle, ll_category, ll_panel, ll_group
RibbonSmallButtonItem lrs_item
Ribbonmenu lrm_menu
ribbonLargeButtonItem lrl_item
ribbongroupitem lrg_item
long ll_return, ll_tmp, ll_tmp2
ll_category = arbb.insertcategoryfirst ("File") //Insert a category
//orderview
ll_panel = arbb.insertpanellast (ll_category, "OrderView", "orderview.png") //
Insert a panel
arbb.insertLargebuttonlast (ll_panel, "Orders", "orderview.png",
 "ue_orderview") //Insert button
arbb.insertLargebuttonLast (ll_panel, "Print", "printbig.png",
 "ue_orderview_print")

4.4.4.4 Add the RibbonBar to the application

4.4.4.4.1 Replacing the existing menu with an empty one

After the RibbonBar is applied, the previous menu will no longer be used in the application.
You can create an empty menu and assign it to the MDI window, as a menu is required for all
MDI frame windows (the MenuName property for the MDI window must be set).

1. Use New > PB Object > Menu to create a new menu object. It is unnecessary to define any
menu item for the menu or attach any script to it. If you do add a menu item, make sure
the item shall be set to invisible.

2. Assign the empty menu to the MDI window.

In the Sales Demo application, we created the menu object m_mdi_none and assigned it to
the MDI window. The menu object contains one main menu and one submenu. Note that the
submenu item is set to invisible.

Working with Windows

Page 399

4.4.4.4.2 Inserting a RibbonBar control to the MDI window

Insert the RibbonBar control into the MDI window. Note that you must resize the width
and height for RibbonBar area in correspondence with the MDI client area to make sure the
RibbonBar fits well in the MDI window.

In the Sales Demo application:

1. Insert the RibbonBar control into the MDI window (from menu: Insert > Control >
RibbonBar in PowerBuilder IDE).

2. Add the following code to the Resize event of the MDI window:

//resize RibbonBar
rbb_1.move(0, newheight - this.workspaceheight())
rbb_1.width = newwidth
//resize mdi_1 based on RibbonBar
mdi_1.move (0, rbb_1.height + newheight - this.workspaceheight())
mdi_1.resize (newwidth, newheight - rbb_1.height - (newheight -
 this.workspaceheight()))

4.4.4.4.3 Disabling ControlMenu in sheet windows

Because the RibbonBar control applies to the whole application, and the RibbonBar control
usually contains a tab button to close the sheet window, it is no longer necessary to provide
the Control Menu in the sheet windows. Make sure to design the new RibbonBar to contain
a Close/Exit tab button so that the sheet window can be closed after the Control Menu is
disabled.

In the Sales Demo application:

1. Open every sheet window (for example, w_sheet), and uncheck the ControlMenu property
in the General tab of the Properties window.

2. Add the close/exit tab button to the RibbonBar top-right corner when we design and create
the RibbonBar.

4.4.4.5 Initiate the RibbonBar

In the Design and create a RibbonBar section, we create the RibbonBar for the application in
two ways: by XML/JSON or by PowerScript. We can initiate the RibbonBar created in either
way.

4.4.4.5.1 Initiating the RibbonBar created by XML

In the Sales Demo Application:

1. Add an instance variable in the MDI window.

String is_Ribbonbar_XML_Name = "SalesApplicationDemo_RibbonBar.xml"

Note

Make sure this XML file exists in the specified location at the client when the
PowerBuilder executable application is deployed and run at the client.

Working with Windows

Page 400

2. Initiate the RibbonBar control in the open() event of the MDI window. The second
argument must be True, indicating that the RibbonBar will be initiated using XML.

wf_init_ribbonbar (rbb_1, True)

3. In the wf_init_ribbonbar function of the MDI window, load the RibbonBar from
the XML file.

If ab_LoadXML Then
 arbb.ImportFromXMLFile(is_Ribbonbar_XML_Name)
 return
End If

4.4.4.5.2 Initiating the RibbonBar created by PowerScript

In the Sales Demo Application:

1. Initiate RibbonBar menu in the open() event of the MDI window. The second argument
must be False, indicating that the RibbonBar will be initiated using PowerScript.

wf_init_ribbonbar(rbb_1,False)

4.4.4.6 Define and bind user events with RibbonBar items

The ribbon item controls have no events, you should define a number of user events
accordingly, move the scripts from the original menu events to the user events, and then bind
the user events with the corresponding ribbon item control.

The ribbon item controls support the following user events:

• RibbonCheckBoxItem, RibbonLargeButtonItem, RibbonMenuItem,
RibbonSmallButtonItem and RibbonTabButtonItem: You can create and bind the clicked
and selected user events with them.

• RibbonComboBoxItem: You can create and bind the modified, selected, and selection
changed user events with it.

When defining a user event for the ribbon control, make sure the argument (quantities and
types) of the event is properly defined according to the requirement of the ribbon control. If
the number of arguments or the argument type does not match with the requirement of the
ribbon control, the event will not be triggered.

For example, in the Sales Demo Application, we want to create and bind the clicked user
event with the Order View large button. The RibbonLargeButtonItem control requires that
the clicked user event have a long-type argument and return no value. Therefore, in the
rbb_1 RibbonBar control, we create an event with its name as ue_orderview, argument
name as al_handle, argument type as long, and the following script:

// ue_orderview (long al_handle) returns (none)
opensheet (w_order_viewer, parent, 0, Original!)

And then we bind the ue_orderview user event with the clicked event of the Order View
large button using this script:

arbb.InsertLargeButtonFirst (ll_Itemhandle_Panel, wf_SetLargetButtonItem_Pro
 ("Order View", "OrderView", ".\picture\orderview.png", "ue_orderview", True, "",
 "", "ctrl+shift+O"))

Working with Windows

Page 401

You can also bind the ue_orderview user event with the clicked event of the Order View
large button using the XML file:

...
 <LargeButton Text="Order View" Tag="OrderView" PictureName=".\picture
\orderview.png" Clicked="ue_orderview" Shortcut="ctrl+shift+O" />
...

Different ribbon controls require different arguments and types for the user event. For details,
see the corresponding user events:

Clicked in PowerScript Reference

Selected in PowerScript Reference

Modified in PowerScript Reference

SelectionChanged in PowerScript Reference

4.4.4.7 Associate functions with RibbonBar items

Previously the application functions are all associated with menu items. You need to decide
which function to associate with which RibbonBar item now. In the Sales Demo application,
you can see clearly how a function that is previously associated with a menu item is now
associated with a RibbonBar item. In this tutorial, let’s explain two examples.

4.4.4.7.1 Example 1: Opening the “By Order Type” report

In the original application, the “By Order Type” report is opened from Report > Sales
Reports > By Order Type menu item.

The new application uses the Report > Sales Reports > By Order Type RibbonBar item to
open the report.

Working with Windows

Page 402

PowerScript in the previous menu item m_report1.m_salesreports.m_byordertype:

str_rptparm lstr_parm

lstr_parm.ftitle = 'Sales Report by Order Type'
lstr_parm.fdataobject = ""
opensheetWithParm (w_rpt_order_type, lstr_parm, parentwindow, 0, Original!)

PowerScript in the event ue_rep_ordertype of the RibbonBar:

str_rptparm lstr_parm

lstr_parm.ftitle = 'Sales Report by Order Type'
lstr_parm.fdataobject = ""
opensheetWithParm (w_rpt_order_type, lstr_parm, parent, 0, Original!)

iw_tmp = w_rpt_order_type
wf_setstyle("2D BarStacked")

Key points covered in the PowerScript change:

• opensheetWithParm (w_rpt_order_type, lstr_parm, parent, 0, Original!)

As the report item is placed in the RibbonBar panel, the parent object for this item is
changed; therefore, the mdiframe argument of OpenSheetWithParm must be
changed from parentwindow to parent. The Tag value is migrated into this RibbonBar
item. You can find more information for Tag migration in the next example.

• iw_tmp = w_rpt_order_type

The original toolbar items are migrated as RibbonBar items (small buttons), e.g. 2D
Pie, 3D Column, 2D BarStacked/Line and Grid Data items. The items may be enabled
or disabled depending on the activation of the sheet window. Here we add each opened
window into a buffer to track the activation status, so that it can control the status for the
RibbonBar items.

• wf_setstyle("2D BarStacked")

Identify if the report supports 2D BarStacked or 2D Line style. In this example, the small
button “2D Bar” is displayed when this report is actively opened.

4.4.4.7.2 Example 2: Opening the “2D BarStacked” report

In the original application, the “2D BarStacked” report is opened from the “2D BarStacked”
toolbar item.

Working with Windows

Page 403

The new application uses the Report > 2D Bar RibbonBar item to open the “2D Bar” report,
and then provides the 2D BarStacked option in the report for users to view the 2D Bar
Stacked report.

PowerScript in the previous toolbar item
m_report.m_settings.m_defaultsettings.m_reportstyle.m_item1:

Working with Windows

Page 404

ParentWindow.Dynamic Event ue_Settings(This.Tag)
If This.Checked Then Return
This.Checked = True
m_item2.Checked = False
m_item3.Checked = False
m_item4.Checked = False
m_item5.Checked = False

PowerScript in the event ue_report_style of the RibbonBar:

ribbonsmallbuttonitem lrs_item
this.getsmallbutton (al_handle, lrs_item)
string ls_tag
ls_tag = lrs_item.tag
if isvalid (iw_tmp) then
 iw_tmp.dynamic event ue_Settings(lrs_item.tag)
end if

Key points covered in the PowerScript change:

• The Checked status for the toolbar item is no longer applicable for RibbonBar item.

• ribbonsmallbuttonitem lrs_item
this.getsmallbutton (al_handle, lrs_item)
string ls_tag
ls_tag = lrs_item.tag

The Tag property is used as the identifier for some business logic of toolbar items. The
Tag value needs to be migrated into the RibbonBar item. In this example, we use handle
to obtain the Tag value from a RibbonBar item. The report style will be switched based on
the Tag value.

• if isvalid (iw_tmp) then
 iw_tmp.dynamic event ue_Settings(lrs_item.tag)
end if

The ParentWindow is not applicable for RibbonBar items. And the parent object is not
applicable for RibbonBar either, because the parent window is an MDI window instead of
a sheet window. The actual parent object will be the tracked sheet window in the buffer.
The buffer is maintained in the iw_tmp object.

4.4.4.7.3 Example 3: Replacing the Close/Exit in sheet windows

In the original MDI window application, the control menu provides the Close button to close
the sheet window, and the Exit button to close the application.

Working with Windows

Page 405

When using the RibbonBar, the open, close and refresh functions are now provided in the
RibbonBar, and the ControlMenu property should be disabled in the sheet windows.

PowerScript in the previous w_sheet object close() event:

parentwindow().post dynamic event ue_closesheet(this.classname())

PowerScript in the w_sheet object close() event of the RibbonBar:

Working with Windows

Page 406

parentwindow().post dynamic event ue_closesheet(this.classname())
if isvalid(w_mdi) then
 w_mdi.post function wf_refresh_ribbon()
end if
parentwindow().post function Arrangesheets(Layer!)

Key points covered in the PowerScript change:

• w_mdi.post function wf_refresh_ribbon()

In the Close event of the sheet window, call the wf_refresh_ribbon function to
refresh the RibbonBar buttons and controls in the MDI window at the closing of the sheet
window w_mdi function. For example, if the 2D BarStacked report window is closed, the
current active report supports 2D Line style. The style button in the RibbonBar is refreshed
to display the 2D Line button.

• parentwindow().post function Arrangesheets(Layer!)

In the Close event of the sheet window, call the ArrangeSheets function to re-
arrange all the remaining sheet windows via the Layer parameter.

4.4.4.7.4 Example 4: Adding the Application Menu category

The Application Menu category contains the generic application functions, including:

• Recent Windows, listing the recently opened windows;

• User, providing the user/group management, password setting, and sign out functions;

Working with Windows

Page 407

4.4.4.7.5 Example 5: Including special RibbonBar widgets

There are some special RibbonBar widgets that can further enhance user experience in the
application.

For example, the standard RibbonBar buttons for collapsing and expanding, help, and closing
functions, as shown below:

4.4.4.8 Summary notes

• The RibbonBar can be constructed by a standard XML/JSON file. PowerBuilder provides
RibbonBar Builder with preview functionality to assist you to create the XML/JSON file.

• When you apply a RibbonBar to an application, the previous menu in the application
shall be removed. It is recommended that you create an empty menu and assign it to the
MenuName property of the MDI window of the application.

• The ControlMenu property must be disabled for all windows in the application, so that the
Control Menu titlebar will not display when a sheet window is maximized.

• Remember to resize the width and height for RibbonBar area and the MDI client area
after the RibbonBar is added to the MDI window. This is to make sure the sheet windows
opened in the MDI window will display properly together with the RibbonBar.

Working with Windows

Page 408

• If some windows are inherited from an ancient window, you can follow the same way to
associate functions with the child windows as with the ancient window.

If previously some menu items with the same functionality are placed in different sheet
windows and you plan to put the menu items in the same panel in the RibbonBar, you can
consider to control the enable/disable statuses of the RibbonBar items depending on the
active status of the sheet windows.

• The window (including MDI window) that contains the RibbonBar control will have the
Deactivate event triggered 1) when you click the drop-down arrow to show the Ribbon
menu items, or 2) when you click the drop-down arrow to show the Ribbon panel items
(the drop-down arrow appears when the panel is resized to only show the panel title).
When the Window Deactivate event is triggered, the control within the window will lose
focus.

• The ribbon item controls have no events and must be bound with user events. For more,
see Section 3.48, “Clicked” in Objects and Controls, Section 3.253, “Selected” in Objects
and Controls, Section 3.193, “Modified” in Objects and Controls, and Section 3.257,
“SelectionChanged” in Objects and Controls.

• If the RibbonBar is created by XML (or JSON), make sure this XML (or JSON) exists
in the specified location at the client when the PowerBuilder executable application is
deployed and run at the client.

4.5 Working with WebBrowser

4.5.1 What can WebBrowser support?

The WebBrowser control uses the Chromium Embedded Framework (CEF), an open source
framework used in many applications to provide web browsing functionality. Therefore, the
WebBrowser control can be used to create a Web browser that can communicate between the
Web page and the PowerBuilder client.

The WebBrowser control:

• Supports browsing web page that contains JavaScript

• Supports accessing web page that requires basic or digest authentication

The WebBrowser control will automatically display a login window for the user to enter
the user name and password for authentication. If the authentication fails, this window
will display again until the authentication is successful or the authentication operation is
cancelled.

• Supports browsing HTML and HTML5 pages

• Supports browsing videos at common formats in web page (MPEG-4 ASP, H.264, and
H.265 formats are unsupported)

• Supports playing flash (with the flash plug-in installed by the user)

• Supports printing web pages as PDFs and responding to the print events

https://en.wikipedia.org/wiki/Chromium_Embedded_Framework

Working with Windows

Page 409

• Supports browsing web pages that support multiple languages

• Supports the various HTTPS protocols

• Supports the right-mouse context menus

• Supports browsing a PDF file online

• Supports web page zoom in/out

• Supports browsing local files (including htm, gif, jpg, jpeg, png, swf, txt, c, cpp, pdf, etc.)

• Supports responding to the error event from the server certificate

• Supports dynamically configuring the file download location and proxy settings

And does not support:

• callback of the popup window

• cookie manipulation interface

• request irrelevant to the browser

• responding to the keyboard actions (such as F5)

• receiving focus when the user tabs among controls within a window

• searching within the web page

• drag & drop in the web page

• Google Developer tools

• loading the local file from different origins via file:/// (you will have to use http or https)

For a complete list of properties/functions/events of the WebBrowser control, refer to
Section 2.150, “WebBrowser control” in Objects and Controls.

4.5.2 Configuring WebBrowser

Use the global functions WebBrowserSet and WebBrowserGet to configure the path, user
agent and proxy settings for the WebBrowser control.

Path settings:

• CachePath -- The folder that stores the web page cache, cookies etc.

• UserDataPath -- The folder that stores the user data dictionary.

• DownloadPath -- The default download path.

User agent settings:

Working with Windows

Page 410

• UserAgent -- The User-Agent request header that contains a characteristic string that
allows the network protocol peers to identify the application type, operating system,
software vendor or software version of the requesting software user agent.

Proxy settings:

• ProxyAuto -- Whether to use auto proxy detection. WebBrowser supports auto proxy
detection, PAC (proxy auto configuration) file setting, and manual proxy settings. The
priority order of the settings is: auto proxy detection > PAC file setting > manual proxy
settings. By default the IE proxy is used.

• ProxyPacUrl -- The URL of the server where the PAC file is located.

• ProxyAddress -- The address of the proxy server.

• ProxyPort -- The port of the proxy server.

• ProxyUser -- The user name that will be authenticated by the proxy server.

• ProxyPassword -- The password that will be authenticated by the proxy server.

Local file access:

• allow-file-access-from-files -- Whether to allow access to the local files (XML etc.).

• enable-media-stream -- Whether to allow access to the microphone or camera.

4.5.3 Defining user events for WebBrowser

You can define PowerBuilder user events for WebBrowser and then trigger the event in
JavaScript. User events must be defined with only one string-type parameter and string-type
return value (code example).

EventName (string parameter)

User events must be registered by RegisterEvent function before it can be triggered in
JavaScript.

It is not allowed to call any other WebBrowser functions in the user event.

4.5.4 Packaging WebBrowser

If the WebBrowser control is used in the application, the developer needs to select the
"WebBrowser Support" option in the PowerBuilder Runtime Packager to package the
WebBrowser components (and the "pbcef" folder) into the PowerBuilder runtime installer.

4.5.5 WebBrowser control vs. Microsoft Web Browser OLE control

This new WebBrowser control has the following advantages over the Microsoft Web
Browser OLE control:

• Supports HTML5

Working with Windows

Page 411

• Provides more control on download

• Able to set the default URL

• Shorter dot notation to access functions or properties

This new WebBrowser control has the following disadvantages compared to the Microsoft
Web Browser OLE control:

• Fewer options on the right-click popup menu

• Does not support the web page document interface

• Unable to get the current URL through properties or functions

For differences on properties/functions/events of WebBrowser control vs. Microsoft
Web Browser OLE control, refer to Section 2.150, “WebBrowser control” in Objects and
Controls.

4.6 Working with Menus and Toolbars
About this chapter

By adding customized menus and toolbars to your applications, you can make it easy and
intuitive for your users to select commands and options. This chapter describes how to define
and use menus and toolbars.

4.6.1 Menus and menu items

Usually, all windows in an application have menus except child and response windows.
Menus are lists of related commands or options (menu items) that a user can select in the
currently active window. Each choice in a menu is called a menu item. Menu items display in
a menu bar or in drop-down or cascading menus.

About Menu objects

Each item in a menu is defined as a Menu object in PowerBuilder. You can see the
Menu object in the list of objects in the Browser's System tab.

Using menus

You can use menus you build in PowerBuilder in two ways:

• In the menu bar of windows

Menu bar menus are associated with a window in the Window painter and display
whenever the window is opened.

• As pop-up menus

Pop-up menus display only when a script executes the PopMenu function.

Both uses are described in this chapter.

Designing menus

Working with Windows

Page 412

PowerBuilder gives you complete freedom in designing menus, but you should follow
conventions to make your applications easy to use. For example, you should keep menus
simple and consistent; group related items in a drop-down menu; make sparing use of
cascading menus and restrict them to one or two levels.

This chapter describes some guidelines you should follow when designing menus. A full
discussion of menu design is beyond the scope of this book. You should acquire a book that
specifically addresses design guidelines for graphical applications and apply the rules when
you use PowerBuilder to create your menus.

Building menus

When you build a menu, you:

1. Specify the appearance and behavior of the menu items by setting their properties.

2. Build scripts that determine how to respond to events in the menu items. To support these
scripts, you can declare functions, structures, and variables for the menu.

There are two ways to build a menu. You can:

1. Build a new menu from scratch. See Building a new menu.

2. Build a menu that inherits its style, functions, structures, variables, and scripts from an
existing menu. You use inheritance to create menus that are derived from existing menus,
thereby saving yourself coding and time. See Using inheritance to build a menu.

4.6.2 Using the Menu painter

The Menu painter has several views where you can specify menu items and how they look
and behave. For general information about views, how you use them, and how they are
related, see Views in painters that edit objects.

In addition to customizing the style of a menu in the Menu painter, you can also customize
the style of a toolbar associated with a menu. For information, see Providing toolbars.

4.6.2.1 Menu painter views

You use two views to specify menu items that display in the menu bar and under menu bar
items:

Table 4.11: Views in the Menu painter

This view Displays

Tree Menu view All the menu items at the same time when the tree is fully expanded.
To fully expand the tree or collapse the expanded tree, press Ctrl
+Shift+*.

WYSIWYG Menu
view

The menu as you will see it and use it in your application, with the
exception of invisible menu items that do display.

The Tree Menu view and the WYSIWYG Menu view are equivalent. You can use either view
to insert new menu items on the menu bar or on drop-down or cascading menus, or to modify
existing menu items. The menus in both views change when you make a change in either
view.

Working with Windows

Page 413

You specify menu properties in two views:

Table 4.12: Views in the Menu painter

This view Displays

Properties view (for the top-
level menu object)

General and Appearance tab pages for setting menu-wide
properties

Properties view (for submenu
items)

General and Toolbar tab pages for setting properties for
submenu items and toolbars

Views for the top level menu object

This Menu painter layout is for the top level menu object, m_main. The Tree Menu view
is in the top left and the WYSIWYG Menu view is in the top middle. The General and
Appearance tab pages display in the Properties view on the right. For more information about
these properties, see Setting menu style properties for contemporary menus.

Figure 4.45:

Views for submenu items

This Menu painter layout is for a menu item under the top level, in this case the Exit menu
item. The Tree Menu view is in the top left and the WYSIWYG Menu view is in the top
middle. The General and Toolbar tab pages display in the Properties view on the right. For
more information about these properties, see Setting General properties for menu items.

Working with Windows

Page 414

Figure 4.46:

4.6.2.2 Menu styles

A menu can have a contemporary or traditional style.

Table 4.13:

Menu style Description

Contemporary A 3D-style menu similar to Microsoft Office
2003 and Visual Studio 2005 menus

Traditional Window default menu style which has a flat
appearance

Menus that you import or migrate from earlier versions of PowerBuilder have the traditional
style, and new menus use the traditional menu style by default. The new contemporary
menu style has a three-dimensional menu appearance that can include images and menu
title bands. With a contemporary menu, you can set the MenuAnimation, MenuImage, and
MenuTitleText at runtime using scripts.

You select a menu style on the Appearance tab of the Properties view for the top-level menu
object in the Menu painter. You must select the top-level menu object in the Tree Menu view
of the Menu painter to display its Properties view.

To specify the menu style

1. Select the top-level menu object.

Working with Windows

Page 415

2. In the Appearance tab page, select the menu style you want, contemporarymenu! or
traditionalmenu!

Figure 4.47:

If you select contemporarymenu! in the Menu Style drop-down list, you can customize
the display properties for that style and have them apply to all menu items in the current
menu. If you select traditionalmenu! the rest of the menu style properties are grayed.

Images for menus and toolbars

Contemporary menus can include images. You can use icons, bitmaps, GIF files, and JPEG
files for both contemporary menus and traditional and contemporary toolbars.

All stock icons have a transparent background. Other icon and GIF files with transparent
backgrounds are always displayed with a transparent background. If you want a bitmap to
display with a transparent background, the bitmap must use button face as its background
color. This applies whatever the background color of the menu or toolbar is set to. There is
currently no property that allows you to specify that an image has a transparent background.

When an icon file includes several images

With the contemporary menu style and toolbar style, when an icon file includes several
images, PowerBuilder uses the following image selection rules:

Table 4.14:

If the images ... PowerBuilder displays ...

Are all the same size 8 bit, 16 bit, 24 bit, 32 bit, and 4 bit images in that order.

Working with Windows

Page 416

If the images ... PowerBuilder displays ...

Include 16 bit*16 bit images
and also other sized images

16 bit*16 bit images.

Do not include 16 bit*16 bit
images

The image with the image size closest to 16 bit. For example,
if one icon file contains 24*24 bit images and another icon
file contains 32*32 bit images, then PowerBuilder selects the
24*24 bit images.

Are greater than 16 bit
images

The image as 16*16 bit or 32*32 bit. If the icon image is
16*16, then it displays as 16*16. If the icon image is larger
than 16*16, it will be displayed as 32*32.

4.6.3 Building a new menu

This section describes how to build menus that are not based on existing menus. To create a
new menu using inheritance, see Using inheritance to build a menu.

4.6.3.1 Creating a new menu

You build a new menu by creating a new Menu object and then working on it in the Menu
painter.

To create a new menu

1. Click the New button in the PowerBar.

2. On the PB Object tab page, select Menu.

3. Click OK.

The Menu painter opens and displays the Tree Menu view and the WYSIWYG view
for defining the menu, and the General and Appearance tab pages for setting menu and
toolbar properties. For information about menu and toolbar properties, see Defining the
appearance and behavior of menu items.

Because you are creating a new menu and have not added menu items yet, the only
content in the Tree Menu view and the WYSIWYG view is an untitled top-level tree
view item in the TreeMenu view.

Font size of the menu bar and menu text

You can change the value of the TextSize property for submenu items, but not for the
main menu bar. The main menu bar has a fixed height that you cannot change.

4.6.3.2 Working with menu items

A menu consists of at least one menu item on the menu bar and menu items in a drop-down
menu. You can add menu items in three places:

• To the menu bar

• To a drop-down menu

Working with Windows

Page 417

• To a cascading menu

Using the pop-up menu

The procedures in this section use the Insert and Edit menus on the PowerBuilder
main menu to insert and edit menu items. You can also use the equivalent items on
the selected object's pop-up menu.

4.6.3.2.1 How menu items are named

When you add a menu item, PowerBuilder gives it a default name, which displays in the
Name box in the Properties view. This is the name by which you refer to a menu item in a
script.

About the default menu item names

The default name is a concatenation of the default prefix for menus, m_, and the valid
PowerBuilder characters and symbols in the text you typed for the menu item. If there are no
valid characters or symbols in the text you typed for the menu item, PowerBuilder creates
a unique name m_n, where n is the lowest number that can be combined with the prefix to
create a unique name.

Prefix might be different

The default prefix is different if it has been changed in the Design>Options dialog
box.

The complete menu item name (prefix and suffix) can be up to 79 characters. If the prefix and
suffix exceed this size, PowerBuilder uses only the first 79 characters without displaying a
warning message.

Duplicate menu item names

Menu items in the Tree Menu view and WYSIWYG Menu view can have the same names,
but they cannot have the same name in the Properties view. If you try to add a menu item
using the same name as an existing menu item, PowerBuilder displays a dialog box that
suggests a unique name for the menu item.For example, you might already have an Options
item on the Edit menu with the default name m_options. If you add an Options item to
another menu, PowerBuilder cannot give it the name m_options.

Menu item names are locked by default

After you add a menu item, the name that PowerBuilder assigns to the menu item is
locked.Even if you later change the text that displays for the menu item, PowerBuilder does
not rename the menu item. This allows you to change the text that displays in a menu without
having to revise all your scripts that reference the menu item. (Remember, you reference a
menu item through the name that PowerBuilder assigns to it.)

To rename a menu item after changing the text that displays for it, you can unlock the name.

To have PowerBuilder rename a menu item

1. On the General property page in the Properties view, clear the Lock Name check box.

2. Change the text that displays for the menu item.

Working with Windows

Page 418

4.6.3.2.2 Inserting menu items

There are three choices on the Insert menu: Menu Item, Menu Item At End, and Submenu
Item. Use the first two to insert menu items in the same menu as the selected item, and use
Insert>Submenu Item to create a new drop-down or cascading menu for the selected item.

For example, suppose you have created a File menu on the menu bar with two menu items:
Open and Exit. Here are the results of some insert operations:

• Select File and select Insert>Menu Item At End

A new item is added to the menu bar after the File menu.

• Select Open and select Insert>Menu Item

A new item is added to the File menu above Open.

• Select Open and select Insert>Menu Item At End

A new item is added to the File menu after Exit.

• Select Open and select Insert>Submenu Item

A new cascading menu is added to the Open menu item.

Getting the menu started

The first thing you do with a new menu is add the first item to the menu bar. After doing so,
you can continue adding new items to the menu bar or to the menu bar item you just created.
As you work, the changes you make display in both the WYSIWYG and Tree Menu views.

The first procedure in this section describes how to add a single first item to the menu bar.
Use this procedure if you want to add the menu bar item and then work on its drop-down
menu. Use the second procedure to add multiple items to the menu bar quickly.

To insert the first menu bar item in a new menu

1. Select the first menu item, and then select Insert>Submenu Item from the PowerBuilder
menu bar.

PowerBuilder displays an empty box on the menu bar in the WYSIWYG Menu view
and as a sub-item in the Tree Menu view.

2. Type the text you want for the menu item and press Enter.

To insert multiple menu bar items in a new menu

1. Select Insert>Submenu Item.

PowerBuilder displays an empty box on the menu bar in the WYSIWYG Menu view
and as a submenu item in the Tree Menu view.

2. Type the text you want for the menu item and press Tab.

PowerBuilder displays a new empty box on the menu bar in the WYSIWYG Menu view
and as a submenu item in the Tree Menu view.

Working with Windows

Page 419

3. Repeat step 2 until you have added all the menu bar items you need.

4. Press Enter to save the last menu bar item.

Adding additional menu items

After you have created the first menu bar item, you can add more items to the menu bar or
start building drop-down and cascading menus.

To insert additional menu items on the menu bar

1. Do one of the following:

• With any menu bar item selected, select Insert>Menu Item At End to add an item to
the end of the menu bar.

• Select a menu bar item and select Insert>Menu Item to add a menu bar item before
the selected menu bar item.

2. Type the text you want for the menu bar item, and then press Enter.

To add a drop-down menu to an item on the menu bar

1. Select the item in the menu bar for which you want to create a drop-down menu.

2. Select Insert>Submenu Item.

3. PowerBuilder displays an empty box.

4. Type the text you want for the menu item, and then press Tab.

5. Repeat Step 3 until you have added all the items you want on the drop-down menu.

6. Press Enter to save the last drop-down menu item.

To add a cascading menu to an item in a drop-down menu

1. Select the item in a drop-down menu for which you want to create a cascading menu.

2. Select Insert>Submenu Item.

PowerBuilder displays an empty box.

3. Type the text you want for the menu item, and then press Tab.

4. Repeat step 3 until you have added all the items you want on the cascading menu.

5. Press Enter to save the last cascading menu item.

To add an item to the end of any menu

1. Select any item on the menu.

Working with Windows

Page 420

2. Select Insert>Menu Item At End.

PowerBuilder displays an empty box.

3. Type the text you want for the second menu item in the box and press Enter.

To insert an item in any existing menu

1. Select the item that should follow the new menu item.

2. Select Insert>Menu Item.

An empty box displays above the item you selected.

3. Type the text you want for the menu item and press Enter.

4.6.3.2.3 Creating separation lines in menus

You should separate groups of related menu items with lines.

To create a line between items on a menu

1. Insert a new menu item where you want the separation line to display.

2. Type a single dash (-) as the menu item text and press Enter.

A separation line displays.

Figure 4.48:

4.6.3.2.4 Duplicating menu items

You might save time creating new menu items if you duplicate existing menu items. A
duplicate menu item has the same properties and script as the original menu item. You might
be able to modify a long script slightly to make it work for your duplicate menu item.

To duplicate a menu item or a submenu item

1. Select the menu item or the submenu item to duplicate.

Working with Windows

Page 421

2. Select Edit>Duplicate or press Ctrl+T.

The duplicate item displays at the same level of the menu, following the item you
selected. The name of the duplicate menu item is unique.

3. Change the text of the duplicate menu item.

4. Modify the properties and script associated with the duplicate item as needed.

4.6.3.2.5 Changing menu item text

It is often necessary to change the text of a menu item, and if you duplicate a menu item, you
need to change the text of the duplicate item.

To change the text of a menu item

1. Do one of the following:

• Click the item to select it, then click it again.

• Select the item and select Edit>Menu Item Text.

2. Select the item and open the general page in the Properties view.

3. Type the new text for the menu item in the box in the WYSIWYG Menu or Tree Menu
view or in the Text box in the Properties view.

4.6.3.2.6 Selecting menu items

You can select multiple menu items to move them, delete them, or change their common
properties.

To select multiple individual menu items

• Press Ctrl and select each item you want.

To select a range of menu items at the same level in the menu

• Select the first item, press Shift, and select the last item.

4.6.3.2.7 Navigating in the menu

As you work in a menu, you can move to another menu item by selecting it. You can also use
the Right Arrow, Left Arrow, Up Arrow, and Down Arrow keys on the keyboard to navigate.

4.6.3.2.8 Moving menu items

The easiest way to change the order of items in the menu bar or in a drop-down or cascading
menu is to drag the item you want to move and drop it where you want it to be. You can drag
items at the same level in a menu structure or to another level. For example, you can drag an
item in the menu bar to a drop-down menu or an item in a cascading menu to the menu bar.

Working with Windows

Page 422

WYSIWYG Menu and Tree Menu views

You can use drag and drop within each view. You can also drag from one view and
drop in another.

To move a menu item or submenu item using drag and drop

1. Select the item.

2. Press and hold the left mouse button and drag the item to a new location.

A feedback line appears at the new location to indicate where to drop the item.

3. Release the mouse button to drop the menu item.

The menu item displays in the new location.

Dragging to copy

To copy a menu item by dragging it, press and hold the Ctrl key while you drag and
drop the item. A copied menu item has the same properties and scripts as the original
menu item.

You can also copy or move a menu item by selecting the item and using the Cut,
Copy, and Paste items on the Edit menu or the pop-up menu.

4.6.3.2.9 Deleting menu items

To delete a menu item

1. Select the menu item you want to delete.

2. Click the Delete button in the PainterBar or select Edit>Delete from the menu bar.

4.6.3.3 Saving the menu

You can save the menu you are working on at any time. When you save a menu,
PowerBuilder saves the compiled menu items and scripts in the library you specify.

To save a menu

1. Select File>Save from the menu bar.

If you have previously saved the menu, PowerBuilder saves the new version in the same
library and returns you to the Menu painter. If you have not previously saved the menu,
PowerBuilder displays the Save Menu dialog box.

2. Name the menu in the Menus box (see Naming the menu [423]).

3. Write comments to describe the menu.

These comments display in the Select Menu dialog box and in the Library painter. It is
a good idea to use comments so you and others can easily remember the purpose of the
menu later.

Working with Windows

Page 423

4. Specify the library in which to save the menu and click OK.

Naming the menu

The menu name can be any valid PowerBuilder identifier of up to 40 characters. For
information about PowerBuilder identifiers, see the Section 1.1.2, “Identifier names” in
PowerScript Reference.

A common convention is to use m_ as a standard prefix, and a suffix that helps you identify
the particular menu. For example, you might name a menu used in a sales application
m_sales.

4.6.4 Defining the appearance and behavior of menu items

By setting menu properties, you can customize the display of menus in applications that you
create with PowerBuilder. You use the Menu painter to change the appearance and behavior
of your menu and menu items by choosing different settings in the tab pages in the Properties
view. For a list of all menu item properties, see Objects and Controls.

4.6.4.1 Setting General properties for menu items

This section describes the properties you can set when you select a menu item and then select
the General tab page in the Properties view.

Creating MicroHelp and tags

MicroHelp is a brief text description of the menu item that displays on the status bar at the
bottom of a Multiple Document Interface (MDI) application window. Type the text you want
to display in the MicroHelp box. For examples of MicroHelp text, select an item from a menu
in PowerBuilder and look at the text that displays in the status bar.

A tag is a text string that you can associate with an object and use in any way you want.

For information about defining MicroHelp text and tag properties, see Section 3.1, “Building
an MDI Application” in Application Techniques.

Setting the appearance of a menu item

On the General tab page in the Properties view, you can also specify how a menu item
appears at runtime.

Table 4.15: Setting display properties for menu items

Property Meaning

Visible Whether the menu item is visible. An invisible menu item still displays in
the WYSIWYG and Tree Menu views, but at runtime, it will not display.
In WYSIWYG Menu view, an invisible item has faded and dotted text.

Enabled Whether the menu item can be selected.

Checked Whether the menu item displays with a check mark next to it.

Default Whether the menu item text is bold. In a pop-up menu, Default indicates
what action occurs if the user double-clicks instead of right-clicks on
an item. In dragging, Default indicates what happens when an item is
dragged with the left mouse button instead of the right mouse button.

Working with Windows

Page 424

Property Meaning

ShiftToRight Whether the menu item shifts to the right (or down for a drop-down or
cascading menu) when you add menu items in a menu that is inherited
from this menu. Selecting this property allows you to insert menu items
in descendant menus, instead of being able to add them only to the end.

For more information, see Inserting menu items in a descendant menu.

MergeOption The way menus are modified when an OLE object is activated. Options
are: File, Edit, Window, Help, Merge, Exclude.

For more information, see Section 5.3, “Using OLE in an Application” in
Application Techniques.

MenuItemType Whether the menu item you are creating is Normal, About, Exit, or Help
type.

The settings you specify here determine how the menu items display by default. You can
change the values of the properties in scripts at runtime.

Assigning accelerator and shortcut keys

Every menu item should have an accelerator key, also called a mnemonic access key, which
allows users to select the item from the keyboard by pressing Alt+key when the menu is
displayed. Accelerator keys display with an underline in the menu item text.

You can also define shortcut keys, which are combinations of keys that a user can press to
select a menu item whether or not the menu is displayed.

For example, in the following menu all menu items have accelerator keys: the accelerator
key is U for Undo, T for Cut, and so on. New, Undo, Cut, Copy, Paste, and Clear each have
shortcut keys: the Ctrl key in combination with another key or keys.

Figure 4.49:

You should adopt conventions for using accelerator and shortcut keys in your applications.
All menu items should have accelerator keys, and commonly used menu items should have
shortcut keys.

If you specify the same shortcut for more than one MenuItem, the command that occurs later
in the menu hierarchy is executed.

Some shortcut key combinations, such as Ctrl+C, Ctrl+V, and Ctrl+X, are commonly used by
many applications. Avoid using these combinations when you assign shortcut keys for your
application.

Working with Windows

Page 425

To assign an accelerator key

• Type an ampersand (&) before the letter in the menu item text that you want to designate
as the accelerator key.

For example, &File designates the F in File as an accelerator key and Ma&ximize
designates the x in Maximize as an accelerator key.

Displaying an ampersand in the text

If you want an ampersand to display in the menu text, type two ampersands.
For example, Fish&&Chips displays as Fish&Chips with no accelerator key. To
display Fish&Chips as the menu text with the C underlined as the accelerator, type
Fish&&&Chips.

To assign a shortcut key

1. Select the menu item to which you want to assign a shortcut key.

2. Select the General tab in the Properties view.

3. Select a key from the Shortcut Key drop-down list.

Figure 4.50:

4. Select Shortcut Alt, Shortcut Ctrl, and/or Shortcut Shift to create a key combination.

PowerBuilder displays the shortcut key next to the menu item name.

4.6.4.2 Setting menu style properties for contemporary menus

Menus with a contemporary style have a three-dimensional menu appearance and can include
bitmap and menu title bands. The following figure shows a contemporary style menu:

Figure 4.51:

Working with Windows

Page 426

After you select the contemporary style, you can modify other menu style properties on the
top-level menu object and on all lower-level menu items. Since it is important to maintain a
consistent look across each menu and toolbar, very few style properties are modifiable at the
menu item level.

If you select the traditional menu style

If you select traditionalmenu! for the top-level menu object, you cannot modify any of
the menu style properties.

You can modify menu style properties only at design time. After you select the contemporary
menu style for a top-level menu object, you can select values for other style properties to
manipulate a menu's visual appearance. The following properties are modifiable for the top-
level menu object only; you cannot modify them for individual menu items:

Table 4.16:

Property Datatype Use to assign

MenuStyle Enumerated Overall menu style. Values are: contemporarymenu! and
traditionalmenu!

MenuTextColor Long Menu text color. (Default is the Windows menu text
color.)

MenuBackColorLong Background color of the menu.

MenuHighlightColorLong Menu highlight color. (Default is the default Windows
highlight color.)

FaceName String Font face name.

TextSize Integer Font character size in points for menu items. (Does not
apply to the main menu bar which has a fixed height.)

Bold Boolean Bold font.

Italic Boolean Italic font.

Underline Boolean Underline font.

TitleBackColor Long Background color of the title panel.

BitmapBackColorLong Background color of the bitmap band of the menu.
(Default is silver.)

MenuBitmaps Boolean Bitmap band for the menu.

BitmapGradient Boolean Background of the bitmap band to a gradient style.

MenuTitles Boolean Menu title band.

TitleGradient Boolean Background gradient style for the title panel.

4.6.4.3 Setting menu item style properties

Menu items have style properties that you set at design time. You cannot use these style
properties with a traditional style menu. Unlike the style properties on the Menu object
that display on the Appearance tab of the Properties view, the fields where you set these
properties are located on the General tab of the Properties view for each menu item.

Working with Windows

Page 427

Table 4.17:

Property Datatype Use to assign

MenuAnimation Boolean Visual sizing cue to the menu item bitmap when the
associated menu item is selected. This property is
ignored if the MenuImage property is not assigned.

MenuImage String Bitmap image to be used with the menu item. This
property is ignored if the MenuBitmaps property for the
menu object is not selected or is set to "false".

MenuTitleText String Label for menu item that has a cascading submenu. The
label text is set vertically in a column to the left of the
submenu items and the bitmaps for submenu items, if
any. If the vertical label text is longer than the height of
all the submenu items, the label text is cut from the end.
This property is ignored if the MenuTitles property for
the menu object is not selected.

You select or enter values for the menu item style properties on the General tab of the
Properties view for each menu item. You can make selections for the MenuAnimation and
MenuImage properties only if the MenuBitmaps check box for the current menu object is
selected. The MenuBitmaps check box is selected by default for the contemporary menu
style.

You can enter text for the MenuTitleText property only if the MenuTitles check box for the
current menu object is selected.

4.6.5 Providing toolbars

To make your application easier to use, you can add toolbars with buttons that users can click
as a shortcut for choosing an item from a menu. In PowerBuilder, you can associate a toolbar
with the window types listed in the following table.

Table 4.18: Window types that can use toolbars

Window type Description

Main window A main window is a standalone window that can be independent of
all other windows. You use the main window as the anchor for your
application. The first window your application opens is a main window
(unless you are building an MDI application, in which case the first
window is an MDI frame window).

MDI window A window in a Multiple Document Interface application, an application
in which users work within a frame window that lets them perform
activities on multiple sheets of information. This is useful in applications
where users require the ability to do several different things at a time. An
MDI frame window has a menu bar, a client area, sheets, and (usually)
a toolbar. An MDI sheet window is a window that can be opened in the
client area of an MDI frame.

MDI Help
window

An MDI window with a status area that can display MicroHelp.

Working with Windows

Page 428

Creating windows in PowerBuilder

You can create a main window, an MDI window, or an MDI Help window in PowerBuilder
by clicking the New button in the PowerBar and selecting Window on the PB Object tab
page. The new window's type is Main by default. To change it to MDI or MDI Help, select
the window type on the General page in the Properties view.

In MDI windows, you can associate a toolbar with the MDI frame and a toolbar with the
active sheet. This screen shows New, Print, and Exit buttons on the toolbar associated
with the MDI Frame, and window management buttons on the toolbar associated with
the sheet.The toolbar associated with the MDI frame is called the FrameBar. The toolbar
associated with the active sheet is called the SheetBar.

Figure 4.52:

This section provides you with the information you need to create and use toolbars. For
information about customizing toolbar behavior and saving and restoring toolbar settings, see
Section 3.1.5, “Using toolbars in MDI applications” in Application Techniques.

4.6.5.1 How toolbars work

Toolbars you add to a window behave like the toolbars provided in the PowerBuilder
development environment:

• Users can choose whether or not to display text in a toolbar, use PowerTips, float the
toolbar, move the toolbar around the frame, and dock it underneath or beside any other
toolbar. No coding is required to support these basic toolbar operations.

Working with Windows

Page 429

• Toolbar buttons map directly to menu items. Clicking a toolbar button is the same as
clicking its corresponding menu item (or pressing the accelerator key for that item).

• Toolbars work only in MDI frame, MDI sheet, and Main windows. If you open a pop-up
window with a menu that has a toolbar, the toolbar does not display.

• If both the MDI sheet and the frame have toolbars and the sheet is open, then the menu that
is displayed is the menu for the sheet, but both toolbars appear and are operative.

• If the currently active sheet does not have a menu, then the menu and toolbar for the
frame remain in place and are operative. This can be confusing to your user, because the
displayed menu is not for the active sheet. If any sheet has a menu, then all sheets should
probably have menus.

Menus with multiple toolbars

A single menu can have more than one toolbar. When you associate a menu that has multiple
toolbars with a window, PowerBuilder displays all the toolbars when you open the window.
This screen shows a sheet open in an MDI frame, with one FrameBar and two SheetBars:

Figure 4.53:

You can work with the toolbars independently. For example, you can float any of the
toolbars, move them around the window, and dock them at different locations within the
window.

Working with Windows

Page 430

The button associated with a menu item can appear on only one toolbar at a time. To indicate
which toolbar a menu item's button belongs to, you set the ToolbarItemBarIndex property for
the menu item. All items that have the same index number appear on the same toolbar.

4.6.5.2 Adding toolbars to a window

PowerBuilder provides an easy way to add toolbars to a window: when you are defining an
item in the Menu painter for a menu that will be associated with an MDI frame window, an
MDI sheet, or a main window, you simply specify that you want the menu item to display
in the toolbar with a specific picture. At runtime, PowerBuilder automatically generates a
toolbar for the window containing the menu.

To add toolbars to a window

1. In the Menu painter, specify the display characteristics of the menu items you want to
display in the toolbar.

For details, see Toolbar item display characteristics.

2. (Optional) In the Menu painter, specify drop-down toolbars for menu items.

3. In the Window painter, associate the menu with the window and turn on the display of
the toolbar.

4. (Optional) In the Window painter, specify other properties, such as the size and location
of a floating toolbar, on the Toolbar property page.

4.6.5.3 Selecting a toolbar style

You select a toolbar style on the Appearance tab of the Properties view for the top-level menu
object in the Menu painter.

A toolbar can have a contemporary or traditional style.

Table 4.19:

Menu style Description

Contemporary A 3D-style toolbar similar to Microsoft
Office 2003 and Visual Studio 2005 toolbars

Traditional A more traditional and older toolbar style

Toolbars that you import or migrate from earlier versions of PowerBuilder have the
traditional style, and new toolbars use the traditional toolbar style by default.

To specify the toolbar style

1. Select the top-level menu object.

2. At the bottom of the Appearance tab page, select the toolbar style you want,
contemporarytoolbar! or traditionaltoolbar!

Working with Windows

Page 431

Figure 4.54:

If you select traditionaltoolbar! in the Toolbar Style drop-down list, the rest of the
toolbar style properties are grayed. If you select contemporarytoolbar! style, you can
customize the display properties for that style and have them apply to all menu items
with associated toolbar buttons in the current menu.

Selecting the toolbar button style property. Unless you are using the traditional toolbar
style for the current menu object, you can select the ToolbarAnimation check box on the
Toolbar tab or the Properties view for each menu item. If you do not select an image for the
ToolbarItemName property of a menu item, the selection you make for the ToolbarAnimation
property is ignored.

4.6.5.4 Setting toolbar properties

You can customize the display of toolbars in applications that you create with PowerBuilder
by setting toolbar properties.

Working with Windows

Page 432

4.6.5.4.1 Toolbar style properties

In addition to customizing the style of a menu, you can customize the style of a toolbar
associated with the menu. For example, the following picture shows a contemporary style
toolbar with an expanded toolbar cascade and a highlighted Exit button:

Figure 4.55:

Toolbar style properties. Toolbars have style properties that you can change at design
time on the top-level menu object. You can modify these properties only if you select
contemporarytoolbar! as the toolbar style for the top-level menu object.

Table 4.20:

Property Datatype Use to assign

ToolbarBackColor Long Background color of the menu toolbar.

ToolbarGradient Boolean Gradient of the menu toolbar background.

ToolbarHighlightColorLong Highlight color for the toolbar buttons when they
are selected.

ToolbarStyle Enumerated Overall style of the menu toolbar. Values are:
contemporarytoolbar! and traditionaltoolbar!

ToolbarTextColor Long Color of the text in the menu toolbar.

Toolbar item style property. You can select the ToolbarAnimation property for a menu
item toolbar button. This property offsets the button image by two pixels to the upper left
when a user positions the cursor over the button. You cannot assign this property at the menu
object or toolbar level. You must assign it to individual toolbar items (buttons) at design
time. This property has a Boolean datatype. You can select it on the Toolbar tab for each
menu item below the top-level menu object. With a contemporary menu, you can set the
ToolbarAnimation property at runtime at runtime using scripts.

The customizable menu and toolbar styles can be used for MDI and main windows. Pop-up
menus can also use menu style properties. The styles do not affect existing PowerBuilder
applications that use a traditional style. You can, however, update an existing PowerBuilder
application to use the new styleproperties.

4.6.5.4.2 Toolbar item display characteristics

In the Menu painter, you specify the menu items you want to display in the toolbar, the
text for the toolbar button and tip, the pictures to use to represent the menu items, and other
characteristics of the toolbar.

Working with Windows

Page 433

To specify the display characteristics of a toolbar item:

1. Open the menu in the Menu painter and select the menu item you want to display in the
toolbar.

2. Select the Toolbar property page and set properties of the toolbar item as shown in the
following table.

Table 4.21: Toolbar properties in the Menu painter

Property What to specify

ToolbarItemText Specify two different text values for the toolbar button and PowerTip
with a comma-delimited string, as follows:

Text in button, PowerTip

ToolbarItemName Choose a stock picture from the drop-down list or browse to select
a bitmap, GIF, JPEG or icon file. If you choose a stock picture,
PowerBuilder uses the up version when the item is not clicked and
the down version when the item is clicked. (The up version appears
raised and the down version appears lowered.) For the best result,
use 16*16 icons on a toolbar. If you are specifying a file, the picture
should be 16 pixels wide and 16 pixels high.

ToolbarItemDownNameSpecify a different picture to display when the item is clicked
(optional).

ToolbarItemVisible Clear if you want the toolbar button to be hidden. The default is
visible.

ToolbarItemDown Check if you want the down version of the button to display initially.

ToolbarAnimation If you want the toolbar image to be animated when selected, select
the check box.

ToolbarItemSpace Specify any integer if you want to leave space before the picture in
the toolbar. Experiment with values to get the spacing the way you
want it. If you leave the value at 0, there will be no spacing before the
picture. (Spacing is used only when the toolbar is not displaying text.)

ToolbarItemOrder Specify the order in which the item displays in the toolbar. If you
leave the value 0, PowerBuilder places the item in the order in which
it goes through the menu to build the toolbar.

ToolbarItemBarIndex Specify a number other than 1 if you want multiple toolbars to
display for this menu. The number you specify determines which
toolbar the current menu item appears on. All items that have the
same index number appear on the same toolbar.

ObjectType Specify Menu or MenuCascade.

Columns (This property displays only if you choose MenuCascade in the
ObjectType drop-down list.) Indicate the number of columns you
want to display in the cascading toolbar.

Drop Down (This property displays only if you choose MenuCascade in the
ObjectType drop-down list.) If you want the button to be a drop-
down toolbar button, select the check box.

Working with Windows

Page 434

Menu items can have drop-down toolbars

A menu item can have a toolbar button associated with it that displays a drop-down toolbar.
When the user clicks on the button, PowerBuilder displays a drop-down toolbar that shows
all of the toolbar buttons for menu items defined at the next level. For example, if you define
a drop-down toolbar for the File menu item, the drop-down toolbar will show the buttons
defined for the items on the File menu (such as New, Open, Close, and Exit).

PowerBuilder displays a drop-down toolbar at runtime by default if the Object Type of the
menu item is MenuCascade. You can specify programmatically whether submenu items
display in a drop-down toolbar or as normal toolbar items by setting the DropDown property
of the menu item. For example, if you want a descendant menu item to have a drop-down
toolbar, but not its ancestor, clear the DropDown check box on the ancestor's Toolbar
property page, and set the DropDown property of the descendant menu item to "true" in a
script.

To specify a drop-down toolbar for a menu item

1. In the Menu painter, select the menu item for which you want to add a drop-down
toolbar.

2. On the Toolbar property page, change the Object Type to MenuCascade.

3. (Optional) Specify the number of columns you want to display in the Columns box.

The default is a single column. If there are many items on the submenu, as there are on
the toolbar item for inserting controls in the Window painter, you will probably want to
specify three or four columns.

4.6.5.5 Setting toolbar properties in the Window painter

In the Window painter, you associate the menu with the window on the window's General
property page. The window displays the toolbar by default. If you do not want the toolbar to
display, clear the ToolbarVisible check box on the window's Toolbar property page. You can
also specify the toolbar's alignment and position on this property page.

4.6.5.6 Setting toolbar properties in the Application painter

You can specify global properties for all toolbars in your application on the Toolbar property
page in the Application painter or by setting properties of the Application object in a script.
Typically you set these in the application's Open event, but you can set them anywhere.

Table 4.22: Toolbar properties in the Application painter

Property Meaning

ToolbarFrameTitle The text that displays as the title for the FrameBar when it is floating.

ToolbarSheetTitle The text that displays as the title for the SheetBar when it is floating.

ToolbarPopMenuText(String) Text to display on the pop-up menu for toolbars (see below).

ToolbarUserControl (Boolean) If TRUE (default), users can use the toolbar pop-up menu
to hide or show the toolbars, move toolbars, or show text. If FALSE,
users cannot manipulate the toolbar.

Working with Windows

Page 435

Property Meaning

ToolbarText (Boolean) If TRUE, text displays in the buttons. If FALSE (the
default), text does not display.

ToolbarTips (Boolean) If TRUE (default), PowerTips display when text is not
displayed in the buttons. If FALSE, PowerTips do not display.

Specifying the text in the toolbar's pop-up menu

By default, PowerBuilder provides a pop-up menu for the toolbar, which users can use to
manipulate the toolbar. It is similar to the pop-up menu you use to manipulate the PowerBar
and PainterBar.

You can change the text that displays in this menu, but you cannot change the functionality of
the menu items in the menu. Typically, you do this when you are building an application in a
language other than English.

You change the text as follows:

• The first two items in the pop-up menu display the titles set in ToolbarFrameTitle and
ToolbarSheetTitle (defaults: FrameBar and SheetBar).

• The remaining text items are specified by the property ToolbarPopMenuText. To specify
values for this property, use a comma-delimited list of values to replace the text "Left,"
"Top," "Right," "Bottom," "Floating," "Show Text," and "Show PowerTips":

ToolbarPopMenuText = "left, top, right, bottom, floating, showText,
 showPowerTips"

For example, to change the text for the toolbar pop-up menu to German and have hot keys
underlined for each, you would specify the following:

ToolbarPopMenuText = "&Links, &Oben, &Rechts, " + &
 "&Unten, &Frei positionierbar, &Text anzeigen, " &
 + "&PowerTips anzeigen"

4.6.6 Writing scripts for menu items

You write scripts for menu items in the Script view. The scripts specify what happens when
users select a menu item.

To write a script for a menu item:

• Double-click the menu item or select Script from the menu item's pop-up menu.

The Script view displays for the clicked event, which is the default event for a menu
item.

4.6.6.1 Menu item events

Menu items have the following events:

• Clicked

Working with Windows

Page 436

Typically, your application will contain Clicked scripts for each menu item in a drop-down
or cascading menu. For example, the script for the Clicked event for the Open menu item
on the File menu opens a file.

• Help

You can provide Help on a menu item when a user presses the F1 key, or when the user
clicks the context Help button [?] on the title bar of the window with which the menu is
associated, and then clicks on a menu item.

• Selected

You will probably use few Selected scripts since users do not expect things to happen
when they simply highlight a menu item. One use of Selected scripts is to change
MicroHelp displayed in an MDI application as the user scrolls through a menu.

About the Clicked event

The Clicked event is triggered whenever:

• The user clicks the menu item

• The user selects (highlights) the menu item using the keyboard and then presses ENTER

• The user presses the shortcut key for the menu item

• The menu containing the menu item is displayed and the user presses the accelerator key
Alt+key

• A script executes the PopMenu function and displays a pop-up menu

• A menu item responds to a mouse-click or the keyboard only if both its Visible and
Enabled properties are set to "true".

• If the menu item has a drop-down or cascading menu under it, the script for its Clicked
event (if any) is executed when the mouse button is pressed, and then the drop-down or
cascading menu displays. If the menu item does not have a menu under it, the script for the
Clicked event is executed when the mouse button is released.

Using the Clicked event to specify menu item properties

When the user clicks an item on the menu bar to display a drop-down menu, the
Clicked event for the menu item on the menu bar is triggered and then the drop-down
menu is displayed.

You can use the menu bar's Clicked event to specify the properties of the menu items
in the drop-down menu. For example, if you want to disable items in a drop-down
menu, you can disable them in the script for the Clicked event for the menu item in
the menu bar.

About the Help event

The Help event is triggered when the user presses F1 or clicks the context Help button [?] on
a window's title bar and then points and clicks on a menu item.

Working with Windows

Page 437

About the Selected event

The Selected event is triggered when the user selects a menu item.

4.6.6.2 Using functions and variables

You can use functions and variables in your scripts.

Using functions

PowerBuilder provides built-in functions that act on menu items. You can use these functions
in scripts to manipulate menu items at runtime. For example, to hide a menu, you can use the
built-in Hide function.

For a complete list of the menu-level built-in functions, look at the Function List view or use
the Browser.

Defining menu-level functions

You can define your own menu-level functions to make it easier to manipulate your
menus. One way you can do this is in the Function List view, by selecting Add from
the pop-up menu.

For more information, see Working with User-Defined Functions.

Using variables

Scripts for menu items have access to all global variables declared for the application.
You can also declare local variables, which are accessible only in the script where they are
declared.

You can declare instance variables for the menu when you have data that needs to be
accessible to scripts in several menu items in a menu. Instance variables are accessible to all
menu items in the menu.

For a complete description of variables and how to declare them, see the Section 1.3.1,
“Declaring variables” in PowerScript Reference.

Defining menu-level structures

If you need to manipulate a collection of related variables, you can define menu-level
structures using the Structure view. You do this by displaying the Structure List view and
then selecting Add from the pop-up menu. The Structure and Structure List views are not part
of the default layout.

For more information, see Working with Structures.

4.6.6.3 Referring to objects in your application

You can refer to any object in the application in scripts for menu items. You must fully
qualify the reference, using the object name, as follows.

Referring to windows

When referring to a window, you simply name the window. When referring to a property in a
window, you must always qualify the property with the window's name:

window.property

Working with Windows

Page 438

For example, this statement moves the window w_cust from within a menu item script:

w_cust.Move(300, 300)

This statement minimizes w_cust:

w_cust.WindowState = Minimized!

You can use the reserved word ParentWindow to refer to the window that the menu is
associated with at runtime. For example, the following statement closes the window the menu
is associated with:

Close(ParentWindow)

You can also use ParentWindow to refer to properties of the window a menu is associated
with, but not to refer to properties of controls or user objects in the window.

For example, the following statement is valid, because it refers to properties of the window
itself:

ParentWindow.Height = ParentWindow.Height/2

But the following statement is invalid, because it refers to a control in the window:

ParentWindow.sle_result.Text = "Statement invalid"

Referring to controls and user objects in windows

When referring to a control or user object, you must always qualify the control or user object
with the name of the window:

window.control.property

window.userobject.property

For example, this statement enables a CommandButton in window w_cust from a menu item
script:

w_cust.cb_print.Enabled = TRUE

Referring to menu items

When referring to a menu item, use this syntax:

menu.menu item
menu.menu item.property

Reference within the same menu

When referring to a menu item within the same menu, you do not have to qualify the
reference with the menu name.

When referring to a menu item in a drop-down or cascading menu, you must specify each
menu item on the path to the menu item you are referencing, separating the names with
periods.

For example, to place a check mark next to the menu item m_bold, which is on a drop-down
menu under m_text in the menu saved in the library as m_menu, use this statement:

m_menu.m_text.m_bold.Check()

Working with Windows

Page 439

If the previous script is for a menu item in the same menu (m_menu), you do not need to
qualify the menu item with the name of the menu:

m_text.m_bold.Check()

4.6.7 Using inheritance to build a menu

When you build a menu that inherits its style, events, functions, structures, variables, and
scripts from an existing menu, you save coding time. All you have to do is modify the
descendant object to meet the requirements of the current situation.

To use inheritance to build a descendant menu:

1. Click the Inherit button on the PowerBar.

2. In the Inherit From Object dialog box, select Menus from the Object Type drop-down
list, the library or libraries you want to look in, and the menu you want to use to create
the descendant, and click OK.

Displaying menus from many libraries

To find a menu more easily, you can select more than one library in the Application
Libraries list. Use Ctrl+click to toggle selected libraries and Shift+click to select a
range.

The selected menu displays in the WYSIWYG Menu view and the Tree Menu view
in the Menu painter. The title in the painter's title bar indicates that the menu is a
descendant.

3. Make the changes you want to the descendant menu as described in the next section.

4. Save the menu under a new name.

4.6.7.1 Using the inherited information

When you build and save a menu, PowerBuilder treats the menu as a unit that includes:

• All menu items and their scripts

• Any variables, functions, and structures declared for the menu

• When you use inheritance to build a menu, everything in the ancestor menu is inherited in
all of its descendants.

What you can do

You can do the following in a descendant menu:

• Add menu items to the end of a menu

• Insert menu items in a menu (with some restrictions)

Working with Windows

Page 440

For more information, see Where you can insert menu items in a descendant
menu [441].

• Modify existing menu items

For example, you can change the text displayed for a menu item or change its initial
appearance, such as making it disabled or invisible.

• Build scripts for menu items that do not have scripts in the ancestor menu

• Extend or override inherited scripts

• Declare functions, structures, and variables for the menu

What you cannot do

You cannot do the following in a descendant menu:

• Change the order of inherited menu items

• Delete an inherited menu item

• Insert menu items between inherited menu items that do not have the ShiftToRight
property set (see Modifying the ShiftToRight property [440])

• Change the name of an inherited menu item

• Change the type of an inherited menu item

Hiding a menu item

If you do not need a menu item in a descendant menu, you can hide it by clearing the
visible property in the Properties view or by using the Hide function.

About menu item names in a descendant

PowerBuilder uses the following syntax to show names of inherited menu items:

AncestorMenuName::MenuItemName

For example, in a menu inherited from m_update_file, you see m_update_file::m_file for the
m_file menu item, which is defined in m_update_file.

The inherited menu item name is also locked, so you cannot change it.

Understanding inheritance

The issues concerning inheritance with menus are similar to the issues concerning inheritance
with windows and user objects. For information, see Understanding Inheritance.

4.6.7.2 Inserting menu items in a descendant menu

Modifying the ShiftToRight property

Working with Windows

Page 441

When defining a descendant menu, you might want to insert menu items in the middle of
the menu bar or in the middle of a drop-down or cascading menu. To do this, you set the
ShiftToRight property in a menu item's Properties view on the General property page.

If the ancestor menu has no menu items with ShiftToRight set, you can add a new menu item
to the end of the descendant menu. To add new menu items elsewhere in the menu, set the
ShiftToRight property for the descendant menu items that will follow the new menu item.

The ShiftToRight property is used for menu items on the menu bar (where items need to shift
right if a new item is inserted) and for menu items in a drop-down or cascading menu (where
items might need to shift down if a new item is inserted). The property name is ShiftToRight,
but it means shift down in drop-down or cascading menus.

Where you set the ShiftToRight property

You set the ShiftToRight property in an ancestor menu only if you know that you will always
want a group of menu items to shift right (or down) when you inherit from the menu and add
a new menu item. For example, if you have File, Edit, Window, and Help menus on the menu
bar, set the ShiftToRight property for the Window and Help menu items if you are going to
inherit from this menu, because Window and Help are usually the last items on a menu bar.

Where you can insert menu items in a descendant menu

In a descendant menu, a group of menu items can be one of four types. Each type has an
insertion rule.

Table 4.23: Insertion rules for groups of menu items

Type of group Insertion rule

Inherited menu items without ShiftToRight
set

You cannot insert a new menu item before
any of these menu items

Inherited menu items with ShiftToRight set
in ancestor

You can insert before the first menu item in
the group but not before the others

New items without ShiftToRight set You can insert a new menu item before any
of these menu items

New items with ShiftToRight set You can insert a new menu item before any
of these menu items

The Example with no ShiftToRight in ancestor [442] and the Example with ShiftToRight
in ancestor [443] demonstrate some of these rules.

How to insert menu items in a descendant menu

If you can insert a menu item in a descendant menu, the Insert Menu Item option on the Insert
menu and the pop-up menu is enabled. The Insert Menu Item is enabled if ShiftToRight is set
in the selected item that will follow the item you are inserting and all menu items following
it.

To insert a menu item in a descendant, you use the same method you use to insert an item in a
new menu, whether the menu item is on the menu bar or on a drop-down or cascading menu.
For information about inserting menu items, see Working with menu items.

The following examples illustrate where you can insert menu items in a descendant menu and
demonstrate the rules that govern where you can insert them.

Working with Windows

Page 442

Example with no ShiftToRight in ancestor

Suppose you have a menu with File, Edit, Window, and Help items on the menu bar. The
menu is inherited from an ancestor frame menu with no items set as ShiftToRight in the
ancestor.

Figure 4.56:

Here is how you might add some new menu items. Since ShiftToRight is not set anywhere at
first, you can add a menu item only to the end.

Select any item in the menu bar and select Insert>Menu Item At End.

Name the new menu item New1 and press Enter.

The New1 menu item is added to the right of the Help menu.

Figure 4.57:

Now add a new Menu item before the New1 menu item. You can do this without setting
ShiftToRight on New1, because New1 is a new menu item in the inherited menu.

Select Insert Menu Item from the pop-up menu for New1.

Name the new menu item New2 and press Enter.

Figure 4.58:

Now add a new Menu item before the Help menu item. You cannot do this unless you set
ShiftToRight on the Help menu item, the New2 Menu item, and the New1 menu item,
because Help is an inherited menu item without ShiftToRight set in the ancestor menu. For
Help to shift right, New2 and New1 must also be able to shift right.

Select the Help menu item and in the Properties view, select the ShiftToRight property, and
then do the same for New1 and New2.

Working with Windows

Page 443

Order for setting ShiftToRight for the three menu items

You can set ShiftToRight in any order, but you see the items shifting only if you set
ShiftToRight from left to right.

Now you can add a new menu item before the Help menu item.

Select the Help menu item, then select Insert New Item from the pop-up menu, name the new
item New3, and then press Enter.

Figure 4.59:

If you want to add a new Menu item before the New3 menu item, you can do it without
setting ShiftToRight on New3, because New3 is a new menu item and ShiftToRight is set in
all items that follow.

However, if you want to add a new menu item before the Window menu item, you cannot do
this by working only in the descendant menu because the Window menu item is an ancestor
menu item and ShiftToRight is not set in the ancestor. To be able to do this, you must set
Window as ShiftToRight in the ancestor.

Example with ShiftToRight in ancestor

In this example, the inherited menu has the same four menu bar items, but ShiftToRight has
been set in the Window and Help menu items in the ancestor menu. Suppose you want to
insert a new menu item before the Help menu item and the Window menu item.

Select the Help menu item and display the pop-up menu.

The Insert Menu Item option is disabled because the Help item is not the first item in a group
of ancestor menu items (Window and Help) with ShiftToRight set in the ancestor.

Select the Window menu item and display the pop-up menu.

The Insert Menu Item option is enabled because the Window item is the first item in a group
of ancestor menu items with ShiftToRight set in the ancestor.

Select Insert Menu Item At End from the pop-up menu to insert a new menu item after Help,
name it New1, and press Enter.

The New1 item's ShiftToRight property is set automatically.

Now the Window, Help, and New1 items are set ShiftToRight. You can insert a new item
before Window and New1, but not before Help. This is because the Window and Help menu
items are a group for which ShiftToRight is set in the ancestor.

You cannot insert a new item before the Edit menu item because Edit is in a group (File and
Edit) that are inherited items with no ShiftToRight set in the ancestor.

Select the Edit menu item, select ShiftToRight in the Properties view, and then add a new
menu item.

Figure 4.60:

Working with Windows

Page 444

You could also have set the ShiftToRight property in the ancestor menu, but it is easier to
work just in the descendant.

4.6.8 Using menus in your applications

You can use menus in two ways:

• Place them in the menu bar of a window

• Display a menu as a pop-up menu

4.6.8.1 Adding a menu bar to a window

To have a menu bar display when a window is opened by a user, you associate a menu with
the window in the Window painter.

To associate a menu with a window

1. Click the Open button in the PowerBar, select the window with which you want to
associate the menu, and open the window.

2. Do one of the following:

• In the Properties view for the window, enter the name of the menu in the MenuName
text box on the General tab page.

• Click the Browse button and select the menu from the Select Object dialog box,
which lists all menus available to the application.

• In the Select Object dialog box, you can search for a menu by clicking the Browse
button.

3. Click Save to associate the selected menu with the window.

Identifying menu items in window scripts

You reference menu items in scripts in windows and controls using the following syntax:

menu.menu item

You must always fully qualify the menu item with the name of the menu.

When referring to a menu item in a drop-down or cascading menu, you must specify each
menu item on the path to the menu item you are referencing, separating the names with
periods.

For example, to refer to the Enabled property of menu item m_open, which is under the menu
bar item m_file in the menu saved in the library as m_menu, use:

m_menu.m_file.m_open.Enabled

Changing a window's menu at runtime

You can use the ChangeMenu function in a script to change the menu associated with a
window at runtime.

Working with Windows

Page 445

4.6.8.2 Displaying pop-up menus

To display a pop-up menu in a window, use the PopMenu function to identify the menu and
the location at which you want to display the menu.

If the menu is associated with the window

If the menu is currently associated with the window, you can simply call the PopMenu
function.

The following statement in a CommandButton script displays m_appl.m_help as a pop-up
menu at the current pointer position, assuming menu m_appl is already associated with the
window:

m_appl.m_help.PopMenu(PointerX(), PointerY())

If the menu is not associated with the window

If the menu is not already associated with the window, you must create an instance of the
menu before you can display it as a pop-up menu.

The following statements create an instance of the menu m_new, then pop up the menu
mymenu.m_file at the pointer location, assuming m_new is not associated with the window
containing the script:

m_new mymenu
mymenu = create m_new
mymenu.m_file.PopMenu(PointerX(), PointerY())

4.7 Working with User Objects

About this chapter

One of the features of object-oriented programming is reusability: you define a component
once, then reuse it as many times as you need to without any additional work. User objects
are one of the best ways to take advantage of reusability in PowerBuilder. This chapter
describes how to define and use user objects.

4.7.1 About user objects

Applications often have features in common. For example, you might often reuse features
like the following:

• A processing package that calculates commissions or performs statistical analysis

• A Close button that performs a certain set of operations and then closes the window

• DataWindow controls that perform standard error checking

• A list that includes all departments

• A predefined file viewer that you plug into a window

If you find yourself using the same application feature repeatedly, you should define a user
object: you define the user object once in the User Object painter and use it as many times as
you need.

Working with Windows

Page 446

There are two main types of user objects: class and visual. Class user objects are also called
nonvisual objects.

Examples of user objects

The PowerBuilder Code Examples contain many interesting user objects in
PBEXAMUO.PBL. Take a look at them to get an appreciation for the power of user
objects.

4.7.1.1 Class user objects

A class user object lets you reuse a set of business rules or other processing that acts as a
unit but has no visual component. For example, you might define a class that calculates
sales commissions or performs statistical analysis. Whenever you need to do this type of
processing, you instantiate the user object in a script and call its functions.

You build class user objects in the User Object painter, specifying instance variables
and object-level functions. Then you create an instance of the class user object in your
application, thereby making its processing available.

There are two kinds of class user objects:

• Custom class

• Standard class

Custom class user objects

Custom class user objects are objects of your own design that encapsulate properties and
functions not visible to the user. They are not derived from PowerBuilder objects. You define
them to create units of processing that have no visual component.

For example, to calculate commissions in an application, you can define an
n_CalculateCommission custom class user object that contains properties and user-defined
functions that do the processing to calculate commissions.

Whenever you need to use this processing, you create an instance of the user object in a
script, which then has access to the logic in the user object.

When you build components that you will deploy to a transaction server, you use custom
class user objects. For more information, see Section 4.1, “Using Transaction Objects” in
Application Techniques.

Standard class user objects

A standard class user object inherits its definition from one built-in, nonvisual PowerBuilder
object, such as the Transaction object or Error object. You modify the definition to make
the object specific to your application, and optionally add instance variables and functions
to enhance the behavior of the built-in object. Once you define a standard class user object,
you can go to the Application painter and specify that you want to use it instead of the
corresponding built-in system object in your application.

One important use of a standard class user object is employing one inherited from the built-in
Transaction object to do database remote procedure calls from within an application.

Working with Windows

Page 447

4.7.1.2 Visual user objects

A visual user object is a reusable control or set of controls that has a certain behavior. You
define it in the User Object painter, where you place controls in the user object and write
scripts for those controls. Then you can place the user object in windows you build in your
applications as often as needed.

There are three types of visual user objects:

• Custom visual

Most useful if you frequently group controls together in a window and always use the
controls to perform the same processing.

• External visual

Useful when you have a custom DLL.

• Standard visual

Most useful if you frequently use a PowerBuilder control to perform the same processing.

Custom visual user objects

Custom visual user objects are objects that have several controls that function as a unit. You
can think of a custom visual user object as a window that is a single unit and is used as a
control.

Assume you frequently use a group of buttons, each of which performs standard processing.
If you build a custom user object that contains all the buttons, you can place the buttons in the
window as a unit when you place the user object in a window.

External visual user objects

External visual user objects contain controls from objects in the underlying windowing
system that were created outside PowerBuilder. You can use a custom DLL in PowerBuilder
to create an external user object.

You must know what classes the DLL supports, the messages or events the DLL responds to,
and the style bits that you can set in the DLL.

Standard visual user objects

A standard visual user object inherits its definition from one standard PowerBuilder control.
You modify the definition to make the control specific to your applications.

Assume you frequently use a CommandButton named Close to display a message box and
then close the parent window. If you build a standard visual user object that derives from a
CommandButton to perform this processing, you can use the user object whenever you want
to display a message box and then close a window.

4.7.1.3 Building user objects

You can build a user object from scratch, or you can create a user object that inherits its style,
events, functions, structures, variables, and scripts from an existing user object.

For information on building a user object from scratch, see Building a new user object. To
find out more about creating a user object based on an existing PowerBuilder object, see
Using inheritance to build user objects.

Working with Windows

Page 448

4.7.2 About the User Object painter

The User Object painter has five implementations, depending on the type of user object you
are working with. It has several views where you specify how the user object behaves and,
for custom visual and standard visual user objects, how it looks. For details about the views,
how you use them, and how they are related, see Views in painters that edit objects.

Views for visual user objects

In this User Object painter for a custom visual user object, the Layout view and Script view
have been arranged to display at the same time:

Figure 4.61:

Most of your work in the User Object painter for visual objects is done in three views:

• The Layout view, where you design the appearance of the user object

• The Properties view, where you set user object properties and control properties

• The Script view, where you modify behavior by coding user object and control scripts

In the Layout view, you add controls to a visual user object in the same way you add controls
to a window.

For information about specifying user object properties, see Building a new user object. For
information about using the Script view, see Writing Scripts.

Views for nonvisual user objects

You do not need the Layout and Control List views for nonvisual user objects, but otherwise,
you use all the views that you use for visual objects.

Nonvisual user objects require no layout design work, but working in the User Object painter
on the behavior of a nonvisual object is otherwise similar to working on the behavior of a
visual user object.

Working with Windows

Page 449

4.7.3 Building a new user object

This section describes how to build a user object from scratch. You use this technique to
create user objects that are not based on existing user objects.

4.7.3.1 Creating a new user object

To create a new user object

1. Open the New dialog box.

2. On PB Object tab page, select the kind of user object you want to create.

The five user object choices display at the top of the tab page:

Figure 4.62:

3. Click OK.

What you do next depends on the type of user object you selected. For all user objects
except Standard Class and Standard Visual, the User Object painter opens.

The remainder of this section describes how to build each type of user object.

4.7.3.2 Building a custom class user object

On the PB Object tab page of the New dialog box, if you select Custom Class and click OK,
the User Object painter for custom class user objects opens.

Working with Windows

Page 450

To build the custom class user object

1. Declare functions, structures, or variables you need for the user object.

2. Create and compile scripts for the user object.

Custom class user objects have built-in constructor and destructor events.

3. Save the user object.

See Saving a user object.

Using AutoInstantiate

You can create custom class user objects that are autoinstantiated, which provides you with
the ability to define methods.

Autoinstantiated user objects do not require explicit CREATE or DESTROY statements
when you use them. They are instantiated when you call them in a script and destroyed
automatically.

To define an autoinstantiated custom class user object

• In the Properties view, select the AutoInstantiate check box.

For more information about autoinstantiation, see Section 1.5.3.3, “Assignment for
autoinstantiated user objects” in PowerScript Reference.

4.7.3.3 Building a standard class user object

On the PB Object tab page of the New dialog box, if you select Standard Class and click OK,
the Select Standard Class Type dialog box displays.

To build the standard class user object

1. In the Select Standard Class Type dialog box, select the built-in system object that you
want your user object to inherit from and click OK.

2. Declare functions, structures, or variables you need for the user object.

For a list of properties and functions

Use the Browser to list the built-in properties inherited from the selected system
object. Use the Function List view or the Browser to list the functions inherited from
the selected system object.

3. Declare any user events needed for the user object.

For information about user events, see Communicating between a window and a user
object.

4. In the Script view, create and compile scripts for the user object.

Class user objects have built-in constructor and destructor events.

5. Save the user object.

Working with Windows

Page 451

See Saving a user object.

4.7.3.4 Building a custom visual user object

On the PB Object tab page of the New dialog box, if you select Custom Visual and click
OK, the User Object painter for custom visual user objects opens. It looks like the Window
painter, but the empty box that displays in the Layout view is the new custom visual user
object.

Building a custom visual user object is similar to building a window, described in Working
with Windows The views available in the Window painter and the User Object painter for
custom visual user objects are the same.

To build the custom visual user object

1. Place the controls you want in the custom visual user object.

2. Work with the custom visual user object as you would with a window in the Window
painter:

• Define the properties of the controls

• Declare functions, structures, or variables as necessary

• Declare any events needed for the user object or its controls

For information about user events, see Communicating between a window and a user
object.

• In the Script view, create and compile the scripts for the user object or its controls

You can write scripts for each control in a custom visual user object.

For more information on events associated with custom visual user objects, see
Events in user objects.

3. Save the user object.

See Saving a user object.

4.7.3.5 Building an external visual user object

On the PB Object tab page of the New dialog box, if you select External Visual and click OK,
the User Object painter for external visual user objects opens.

To build an external visual user object

1. In the Properties view, click the Browse button next to the LibraryName box.

2. In the Select Custom Control DLL dialog box, select the DLL that defines the user
object and click OK.

3. In the Properties view, enter the following information, as necessary, and click OK:

• The class name registered in the DLL

Working with Windows

Page 452

Information about the class name is usually provided by the vendor of the purchased
DLL.

• Text in the Text box

This will be displayed only if the object has a text style property.

• Display properties (border and scroll bars)

• Decimal values for the style bits associated with the class

Information about style bits is usually provided by the vendor of the purchased DLL.
PowerBuilder will OR these values with the values selected in the display properties
for the control.

4. Declare any functions, structures, or variables you need to declare for the user object.

You can declare functions, structures, and variables for the user object in the Script
view. Information about functions is usually provided by the vendor of the purchased
DLL.

5. Declare any needed events for the user object.

For information about user events, see Communicating between a window and a user
object.

6. In the Script view, create and compile the scripts for the user object.

For more information on events associated with external visual user objects, see Events
in user objects.

7. Save the user object.

See Saving a user object.

4.7.3.6 Building a standard visual user object

On the PB Object tab page of the New dialog box, if you select Standard Visual and click
OK, the Select Standard Visual Type dialog box displays.

To build a standard visual user object

1. In the Select Standard Visual Type dialog box, select the PowerBuilder control you want
to use to build your standard visual user object and click OK.

The selected control displays in the workspace. Your visual user object will have the
properties and events associated with the PowerBuilder control you are modifying.

2. Work with the control as you do in the Window painter:

• Review the default properties and make any necessary changes

• Declare functions, structures, or variables as necessary

You can declare these in the Script view.

Working with Windows

Page 453

• Declare any user events needed for the user object

For information about user events, see Communicating between a window and a user
object.

• Create and compile the scripts for the user object

Standard visual user objects have the same events as the PowerBuilder control you
modified to create the object.

3. Save the user object.

See Saving a user object.

4.7.3.7 Events in user objects

When you build a user object, you can write scripts for any event associated with that user
object.

Events in class user objects

Most custom class user objects have only constructor and destructor events.

Table 4.24: Events for custom class user objects

Event Occurs when

Constructor The user object is created

Destructor The user object is destroyed

Standard class user objects have the same events as the PowerBuilder system object from
which they inherit.

Events in visual user objects

Standard visual user objects have the same events as the PowerBuilder control from which
they inherit. Custom and external visual user objects have a common set of events.

Table 4.25: Events for custom and external visual user objects

Event Occurs when

Constructor Immediately before the Open event of the window and when the user
object is dynamically placed in a window

Destructor Immediately after the Close event of the window and when the user
object is dynamically removed from a window

DragDrop A dragged object is dropped on the user object

DragEnter A dragged object enters the user object

DragLeave A dragged object leaves the user object

DragWithin A dragged object is moved within the user object

Help A user presses the F1 key or clicks the context Help button [?] on the
title bar of the window with which the menu is associated and then
points and clicks on a menu item

Working with Windows

Page 454

Event Occurs when

Other A Windows message occurs that is not a PowerBuilder event

RButtonDown The right mouse button is pressed

For more about drag and drop, see Application Techniques.

4.7.3.8 Saving a user object

To save a user object

1. In the User Object painter, select File>Save from the menu bar or click the Save button
in the painter bar.

If you have previously saved the user object, PowerBuilder saves the new version in the
same library and returns you to the User Object painter.

If you have not previously saved the user object, PowerBuilder displays the Save User
Object dialog box.

2. Enter a name in the User Objects box.

For naming considerations, see Naming the user object.

3. Enter comments to describe the user object.

These display in the Select User Object dialog box and in the Library painter, and will
document the purpose of the user object.

4. Specify the library in which to save the user object.

To make a user object available to all applications, save it in a common library and
include the library in the library search path for each application.

5. Click OK to save the user object.

Validation for .NET Web Service

In the User Object painter for a custom class user object, the Design menu has .NET
Web Service Validation items. If you select a validation menu item for .NET Web
Service to enable validation, a check displays next to the menu item. When you save
the object, you might see some error messages.

4.7.3.8.1 Naming the user object

A user object name can be any valid PowerBuilder identifier up to 40 characters. For
information about PowerBuilder identifiers, see Section 1.1.2, “Identifier names” in
PowerScript Reference.

Naming conventions

You should adopt naming conventions to make it easy to understand a user object's type and
purpose.

Working with Windows

Page 455

One convention you could follow is to use u_ as the prefix for visual user objects and n_ as
the prefix for class (nonvisual) user objects. For standard classes, include the standard prefix
for the object or control from which the class inherits in the name. For external user objects,
include ex_ in the name, and for custom class user objects, include cst_ in the name.

The following table shows some examples of this convention.

Table 4.26: Suggested naming conventions for user objects

Type of user object Format Example

Standard visual u_control_purpose u_cb_close, a CommandButton that
closes a window

Custom visual u_purpose u_toolbar, a toolbar

External visual u_ex_purpose u_ex_sound, outputs sound

Standard class n_systemobject_purpose n_trans_test, derived from the
Transaction object and used for testing

Custom class n_cst_purpose n_cst_commission, calculates
commissions

For a list of naming conventions, see Naming conventions in Working with Targets.

4.7.4 Using inheritance to build user objects

When you build a user object that inherits its definition (properties, events, functions,
structures, variables, controls, and scripts) from an existing user object, you save coding time.
All you must do is modify the inherited definition to meet the requirements of the current
application.

For example, suppose your application has a user object u_file_view that has three
CommandButtons:

• List—displays a list of files in a list

• Open—opens the selected file and displays the file in a MultiLineEdit control

• Close—displays a message box and then closes the window

If you want to build another user object that is exactly like the existing u_file_view except
that it has a fourth CommandButton, you can use inheritance to build the new user object,
and then all you need to do is add the fourth CommandButton.

To use inheritance to build a descendant user object:

1. Click the Inherit button in the PowerBar, or select File>Inherit from the menu bar.

2. In the Inherit From Object dialog box, select User Objects from the Objects of Type
drop-down list.

3. Select the target as well as the library or libraries you want to look in.

Working with Windows

Page 456

Displaying user objects from many libraries

To find a user object more easily, you can select more than one library in the Libraries
list. Use Ctrl+click to toggle selected libraries and Shift+click to select a range.

4. Select the user object you want to use to create the descendant, and click OK.

The selected object displays in the User Object painter and the title bar indicates that the
object is a descendant.

5. Make any changes you want to the user object.

6. Save the user object with a new name.

4.7.4.1 Using the inherited information

When you build and save a user object, PowerBuilder treats the object as a unit that includes:

• The object (and any controls within the object if it is a custom visual user object)

• The object's properties, events, and scripts

• Any variables, functions, or structures declared for the object

When you use inheritance to build a new user object, everything in the ancestor user object is
inherited in the direct descendant and in its descendants in turn.

Ancestor's instance variables display

If you create a user object by inheriting it from a custom class or standard class user object
that has public or protected instance variables with simple datatypes, the instance variables
display and can be modified in the descendant user object's Properties view.

All public instance variables with simple datatypes such as integer, boolean, character, date,
string, and so on display in the descendant. Instance variables with the any or blob datatype
or instance variables that are objects or arrays do not display.

What you can do in the descendant

You can do the following in a descendant user object:

• Change the values of the properties and the variables

• Build scripts for events that do not have scripts in the ancestor

• Extend or override the inherited scripts

• Add controls (in custom visual user objects)

• Reference the ancestor's functions and events

• Reference the ancestor's structures if the ancestor contains a public or protected instance
variable of the structure datatype

Working with Windows

Page 457

• Access ancestor properties, such as instance variables, if the scope of the property is public
or protected

• Declare variables, events, functions, and structures for the descendant

What you cannot do in the descendant

In a descendant user object, you cannot delete controls inherited from a custom visual user
object. If you do not need a control in a descendant user object, you can make it invisible.

Understanding inheritance

The issues concerning inheritance with user objects are the same as the issues concerning
inheritance with windows and menus. See Understanding Inheritance for more information.

4.7.5 Using user objects

Once you have built a user object, you are ready to use it in an application. This section
describes how to use:

• Visual user objects

• Class user objects

4.7.5.1 Using visual user objects

You use visual user objects by placing them in a window or in a custom visual user
object.The techniques are similar whether you are working in the Window painter or the User
Object painter.

To place a user object

1. Open the window or custom visual user object in which you want to place the visual
user object.

2. Click the User Object button in the PainterBar, or select Insert>Control from the menu
bar and then select User Object.

3. Select the user object you want to use and click the location where you want the user
object to display.

PowerBuilder creates a descendant user object that inherits its definition from the
selected user object and places it in the window or user object.

Dragging the user object from the System Tree

You can drag a user object from the System Tree to the Layout view in the Window
painter.

What you can do

After you place a user object in a window or a custom visual user object, you can name it,
size it, position it, write scripts for it, and do anything else you can do with a control.

Working with Windows

Page 458

When you place the user object in a window, PowerBuilder assigns it a unique name, just as
it does when you place a control. The name is a concatenation of the default prefix for a user
object control (initially, uo_) and a default suffix, which is a number that makes the name
unique.

You should change the default suffix to a suffix that has meaning for the user object in your
application.

For more information about naming, see Naming controls.

Writing scripts

When you place a user object in a window or a custom user object, you are actually creating
a descendant of the user object. All scripts defined for the ancestor user object are inherited.
You can choose to override or extend those scripts.

For more information, see Using inherited scripts.

You place a user object as a unit in a window (or another user object). You cannot write
scripts for individual controls in a custom user object after placing it in a window or custom
user object; you do that only when you are defining the user object itself.

Placing a user object at runtime

You can add a user object to a window at runtime using the PowerScript functions
OpenUserObject and OpenUserObjectWithParm in a script. You can remove a user object
from a window using the CloseUserObject function.

4.7.5.2 Using class user objects

How you insert a nonvisual object

There are two ways to use a class user object when the user object is not autoinstantiating:
you can create an instance of it in a script, or you can insert the user object in a window or
user object using the Insert menu.

For more information on autoinstantiation, see Using AutoInstantiate [450].

The nonvisual object you insert can be a custom class user object or a standard class user
object of most types.

To instantiate a class user object

1. In the window or user object in which you want to use the class user object, declare
a variable of the user object type and create an instance of it using the CREATE
statement. For example:

// declared instance variable:
// n_myobject invo_myobject
invo_myobject = CREATE n_myobject

2. Use the user object's properties and functions to do the required processing.

3. When you have finished using the user object, destroy it using the DESTROY statement.

If you select Autoinstantiate in the properties of the class user object, you cannot use the
CREATE and DESTROY statements.

Working with Windows

Page 459

To insert a class user object

1. Open the window or user object in which you want to insert the class user object.

2. Select Insert>Object from the menu bar.

3. Select User Object (at the bottom of the list) and then select the class user object you
want to insert.

PowerBuilder inserts the selected class user object.

4. Modify the properties and code the events of the nonvisual object as needed.

When the user object is created in an application, the nonvisual object it contains
is created automatically. When the user object is destroyed, the nonvisual object is
destroyed automatically.

Using the Non-Visual Object List view

You can use the same technique to insert standard class user objects. Since all class user
objects are nonvisual, you cannot see them, but if you look at the Non-Visual Object List
view, you see all the class user objects that exist in your user object.

Using the Non-Visual Object List view's pop-up menu, you can display a class user object's
properties in the Properties view, display the Script view for the object to code its behavior,
or delete the object.

4.7.5.3 Using global standard class user objects

Five of the standard class user object types are inherited from predefined global objects used
in all PowerBuilder applications:

• Transaction (SQLCA)

• DynamicDescriptionArea (SQLDA)

• DynamicStagingArea (SQLSA)

• Error

• Message

Replacing the built-in global object

If you want your standard class user object to replace the built-in global object, you tell
PowerBuilder to use your user object instead of the built-in system object that it inherits
from. You will probably use this technique if you have built a user object inheriting from the
Error or Message object.

To replace the built-in global object with a standard class user object

1. Open the Application object.

2. In the Properties view, click the Additional Properties button on the General tab page.

3. In the Application properties dialog box, select the Variable Types tab.

Working with Windows

Page 460

4. Specify the standard class user object you defined in the corresponding field and click
OK.

Figure 4.63:

After you have specified your user object as the default global object, it replaces the
built-in object and is created automatically when the application starts up. You do not
create it (or destroy it) yourself.

The properties and functions defined in the user object are available anywhere in
the application. Reference them using dot notation, just as you access those of other
PowerBuilder objects such as windows.

Supplementing the built-in global object

You can use a user object inherited from one of these global objects by inserting one in your
user object as described in Using class user objects. If you do, your user object is used in
addition to the built-in global object variable. Typically you use this technique with user

Working with Windows

Page 461

objects inherited from the Transaction object. You now have access to two Transaction
objects: the built-in SQLCA and the one you defined.

For more information

For more information about using the Error object, see Using the Error object [912].

For information about using the Message object, and about creating your own Transaction
object to support database remote procedure calls, see Section 5.5.4, “The Message object”
in Application Techniques and Section 4.1.3, “Using Transaction objects to call stored
procedures” in Application Techniques.

For more information about the DynamicDescriptionArea and DynamicStagingArea objects
used in dynamic SQL, see Section 2.2.2, “Using dynamic SQL” in PowerScript Reference.

4.7.6 Communicating between a window and a user object

Often you need to exchange information between a window and a visual user object in the
window. Consider these situations:

• You have a set of buttons in a custom user object. Each of the buttons acts upon a file that
is listed in a SingleLineEdit control in the window (but not in the user object).

• You need to pass the contents of the SingleLineEdit control from the window to the user
object.

• You have a user object color toolbar. When the user clicks one of the colors in the user
object, a control in the window changes to that color.

• You need to pass the color from the user object to the window control.

This section discusses two techniques for handling this communication and presents a simple
example.

Table 4.27: Techniques for communicating information in a window

Technique Advantages Disadvantages

Functions Easy to use

Supports parameters and
return types, so is not prone
to errors

Supports data encapsulation
and information hiding

Best for complex operations

Creates overhead, might
be unnecessary for simple
operations

User events Very flexible and powerful Uses no type checking, so is
prone to error

Communication with both techniques can be either synchronous (using Send for functions
and the EVENT keyword for events) or asynchronous (using Post for functions and the POST
keyword for events).

Directly referencing properties

Working with Windows

Page 462

Instead of using functions or user events, it is possible to reference properties of a user object
directly. If you have a user object control, uo_1, associated with a custom user object that has
a SingleLineEdit, sle_1, you can use the following in a script for the window:

uo_1.sle_1.Text = "new text"

However, it is better to communicate with user objects through functions and user events, as
described below, in order to maintain a clean interface between your user object and the rest
of your application.

The functions technique

Exchanging information using functions is straightforward. After a user object calls a
function, any return value is available to any control within that object.

For how to use this technique, see Example 1: using functions [464].

To pass information from a window to a user object:

1. Define a public, user object-level function that takes as arguments the information
needed from the window.

2. Place the user object in the window.

3. When appropriate, call the function from a script in the window, passing the needed
information as arguments.

To pass information from a user object to a window:

1. Define a public, window-level function that takes as parameters the information needed
from the user object.

2. Place the user object in the window.

3. When appropriate, call the function from a script in the user object, passing the needed
information as parameters.

The user events technique

You can define user-defined events, also called user events, to communicate between a
window and a user object. You can declare user events for any PowerBuilder object or
control.

A custom visual user object often requires a user event. After you place a custom visual user
object in a window or in another custom user object, you can write scripts only for events that
occur in the user object itself. You cannot write scripts for events in the controls in the user
object.

You can, however, define user events for the user object, and trigger those events in scripts
for the controls contained in that user object. In the Window painter, you write scripts for the
user events, referencing components of the window as needed.

For more information about user events, see Working with User Events, and Part I,
“Application Techniques”. For instructions for using this technique, see Example 2: using
user events [465].

Working with Windows

Page 463

To define and trigger a user event in a visual user object:

1. In the User Object painter, select the user object.

2. Make sure no control in the user object is selected.

3. In the Event List view, select Add from the pop-up menu.

4. In the Prototype window that displays, define the user event.

For how to do so, see Defining user events.

5. Use the Event keyword in scripts for a control to trigger the user event in the user object:

userobject.Event eventname ()

For example, the following statement in the Clicked event of a CommandButton
contained in a custom visual user object triggers the Max_requested event in the user
object:

Parent.Event Max_requested()

This statement uses the pronoun Parent, referring to the custom visual user object itself,
to trigger the Max_requested event in that user object.

6. Implement these user events in the Window painter.

To implement the user event in the window:

1. Open the window.

In the Window painter, select Insert>Control from the menu bar and place the custom
visual user object in the window.

2. Double-click the user object and then in the Script view, write scripts for the user events
you defined in the User Object painter.

4.7.6.1 Examples of user object controls affecting a window

To illustrate these techniques, consider a simple custom visual user object, uo_minmax, that
contains two buttons, Maximize and Minimize.

Figure 4.64:

If the user clicks the Maximize button in an application window containing this user object,
the current window becomes maximized. If the user clicks Minimize, the window closes to an
icon.

Working with Windows

Page 464

Because the user object can be associated with any window, the scripts for the buttons cannot
reference the window that has the user object. The user object must get the name of the
window so that the buttons can reference the window.

Example 1: using functions [464] shows how PowerBuilder uses functions to pass a
window name to a user object, allowing controls in the user object to affect the window the
user object is in.

Example 2: using user events [465] shows how PowerBuilder uses unmapped user events
to allow controls in a user object to affect the window the user object is in.

Example 1: using functions

1. In the Script view in the User Object painter, define an instance variable, mywin, of type
window.

window mywin

This variable will hold the name of the window that has the user object.

2. Define a user object-level function, f_setwin, with:

• Public access

• No return value

• One argument, win_param, of type window and passed by value

3. Type the following script for the function:

mywin = win_param

When f_setwin is called, the window name passed in win_param will be assigned to
mywin, where user object controls can reference the window that has the user object.

4. Write scripts for the two buttons:

cb_max: mywin.WindowState = Maximized!

cb_min: mywin.WindowState = Minimized!

5. Save the user object as uo_minmax and close the User Object painter.

6. Open the window, drag uo_minmax onto the window in the Layout view, and name it
uo_func in the Properties view.

7. In the Open event for the window, call the user object-level function, passing the name of
the window:

uo_func.f_setwin(This)

The pronoun This refers to the window's name, which will be passed to the user object's
f_setwin function.

What happens. When the window opens, it calls the user object-level function f_setwin,
which passes the window name to the user object. The user object stores the name in its

Working with Windows

Page 465

instance variable mywin. When the user clicks a button control in the user object, the control
references the window through mywin.

Example 2: using user events

In the Script view in the User Object painter, define two unmapped user events for the user
object: Max_requested and Min_requested.

Leave the Event ID fields blank to define them as unmapped.

Trigger user events of the user object in the scripts for the Clicked event of each
CommandButton:

• cb_max: Parent.Event Max_requested()

• cb_min: Parent.Event Min_requested()

Save the user object and name it uo_event and close the User Object painter.

Open the window and in the Window painter, select Insert>Object from the menu bar and
then place uo_event in the window.

Double-click uo_event to display its Script view.

The two new user events display in the second drop-down list in the Script view.

Write scripts for the two user events:

max_requested: Parent.WindowState = Maximized!

min_requested: Parent.WindowState = Minimized!

These scripts reference the window containing the user object with the pronoun Parent.

What happens

When a user clicks a button, the Clicked event script for that button triggers a user event in its
parent, the user object. The user object script for that event modifies its parent, the window.

Working with Databases

Page 466

5 Working with Databases
This part describes how to use PowerBuilder to manage your database and how to use the
Data Pipeline painter to copy data from one database to another.

5.1 Managing the Database

About this chapter

This chapter describes how to manage a database from within PowerBuilder.

Before you begin

You work with relational databases in PowerBuilder. If you are not familiar with relational
databases, you might want to consult an introductory text.

5.1.1 Working with database components

A database is an electronic storage place for data. Databases are designed to ensure that data
is valid and consistent and that it can be accessed, modified, and shared.

A database management system (DBMS) governs the activities of a database and enforces
rules that ensure data integrity. A relational DBMS stores and organizes data in tables.

How you work with databases in PowerBuilder

You can use PowerBuilder to work with the following database components:

• Tables and columns

• Keys

• Indexes

• Database views

• Extended attributes

• Additional database components

Tables and columns

A database usually has many tables, each of which contains rows and columns of data. Each
row in a table has the same columns, but a column's value for a particular row could be empty
or NULL if the column's definition allows it.

Tables often have relationships with other tables. For example, in the PB Demo DB included
with PowerBuilder, the Department table has a Dept_id column, and the Employee table also
has a Dept_id column that identifies the department in which the employee works. When you
work with the Department table and the Employee table, the relationship between them is
specified by a join of the two tables.

Keys

Relational databases use keys to ensure database integrity.

Working with Databases

Page 467

Primary keys. A primary key is a column or set of columns that uniquely identifies each
row in a table. For example, two employees may have the same first and last names, but
they have unique ID numbers. The Emp_id column in the Employee table is the primary key
column.

Foreign keys. A foreign key is a column or set of columns that contains primary key
values from another table. For example, the Dept_id column is the primary key column in the
Department table and a foreign key in the Employee table.

Key icons. In PowerBuilder, columns defined as keys are displayed with key icons that use
different shapes and colors for primary and foreign. PowerBuilder automatically joins tables
that have a primary/foreign key relationship, with the join on the key columns.

In the following illustration there is a join on the dept_id column, which is a primary key for
the department table and a foreign key for the employee table:

Figure 5.1:

For more information, see Working with keys.

Indexes

An index is a column or set of columns you identify to improve database performance when
searching for data specified by the index. You index a column that contains information you
will need frequently. Primary and foreign keys are special examples of indexes.

You specify a column or set of columns with unique values as a unique index, represented by
an icon with a single key.

Working with Databases

Page 468

You specify a column or set of columns that has values that are not unique as a duplicate
index, represented by an icon with two file cabinets.

For more information, see Working with indexes.

Database views

If you often select data from the same tables and columns, you can create a database view of
the tables. You give the database view a name, and each time you refer to it the associated
SELECT command executes to find the data.

Database views are listed in the Objects view of the Database painter and can be displayed in
the Object Layout view, but a database view does not physically exist in the database in the
same way that a table does. Only its definition is stored in the database, and the view is re-
created whenever the definition is used.

Database administrators often create database views for security purposes. For example,
a database view of an Employee table that is available to users who are not in Human
Resources might show all columns except Salary.

For more information, see Working with database views.

Extended attributes

Extended attributes enable you to store information about a table's columns in special
system tables. Unlike tables, keys, indexes, and database views (which are DBMS-specific),
extended attributes are PowerBuilder-specific. The most powerful extended attributes
determine the edit style, display format, and validation rules for the column.

For more information about extended attributes, see Specifying column extended attributes.
For more information about the extended attribute system tables, see Appendix A, The
Extended Attribute System Tables.

Additional database components

Depending on the database to which you are connected and on your user privileges, you
may be able to view or work with a variety of additional database components through
PowerBuilder. These components might include:

• Driver information

• Groups

• Metadata types

• Procedures and functions

• Users

• Logins

• Triggers

• Events

• Web services

Working with Databases

Page 469

For example, driver information is relevant to ODBC connections. It lists all the ODBC
options associated with the ODBC driver, allowing you to determine how the ODBC
interface will behave for a given connection. Login information is listed for Adaptive
Server® Enterprise database connections. Information about groups and users is listed for
several of the databases and allows you to add new users and groups and maintain passwords
for existing users.

You can drag most items in these folders to the Object Details view to display their
properties. You can also drag procedures, functions, triggers, and events to the ISQL view.

Trigger information is listed for Adaptive Server Enterprise and SQL Anywhere tables.
A trigger is a special form of stored procedure that is associated with a specific database
table. Triggers fire automatically whenever someone inserts, updates or deletes rows of
the associated table. Triggers can call procedures and fire other triggers, but they have no
parameters and cannot be invoked by a CALL statement. You use triggers when referential
integrity and other declarative constraints are insufficient.

Events can be used in a SQL Anywhere database to automate database administration tasks,
such as sending a message when disk space is low. Event handlers are activated when a
provided trigger condition is met. If any events are defined for a SQL Anywhere connection,
they display in the Events folder for the connection in the Objects view.

5.1.2 Managing databases

PowerBuilder supports many database management systems (DBMSs). For the most part,
you work the same way in PowerBuilder for each DBMS, but because each DBMS provides
some unique features (which PowerBuilder makes use of), there are some issues that are
specific to a particular DBMS. For complete information about using your DBMS, see Part I,
“Connecting to Your Database”.

What you can do

Using the Database painter, you can do the following in any DBMS to which you have been
given access by the database administrator:

• Modify local table and column properties

• Retrieve, change, and insert data

• Create new local tables or modify existing tables

Setting the database connection

When you open a painter that communicates with the database (such as the Database painter
or DataWindow painter), PowerBuilder connects you to the database you used last if you are
not already connected. If the connection to the default database fails, the painter still opens.

If you do not want to connect to the database you used last, you can deselect the Connect to
Default Profile option in the Database Preferences dialog box.

Changing the database connection

You can change to a different database at any time. You can have several database
connections open at a time, although only one connection can be active. The database
components for each open connection are listed in the Objects view.

Working with Databases

Page 470

The Database painter title bar displays the number of open connections and which is active.
The title bar for each view displays the connection with which it is currently associated. You
can change the connection associated with a view by dragging the profile name for a different
connection onto the view.

For more about changing the database you are connected to, see Chapter 4, Working with
Database Connections in Connecting to Your Database.

Creating and deleting databases

When you are connected to SQL Anywhere, you can create a new database or delete an
existing database using the Database painter.

For all other DBMSs, creating and deleting a database is an administrative task that you
cannot do within PowerBuilder.

5.1.3 Using the Database painter

To open the Database painter, click the Database button in the PowerBar.

About the painter

Like the other PowerBuilder painters, the Database painter contains a menu bar, customizable
PainterBars, and several views. All database-related tasks that you can do in PowerBuilder
can be done in the Database painter.

Figure 5.2:

Views in the Database painter

The following table lists the views available in the Database painter.

Working with Databases

Page 471

Table 5.1: Database painter views

View Description

Activity Log Displays the SQL syntax generated by the actions you execute.

Columns Used to create and/or modify a table's columns.

Extended Attributes Lists the display formats, edit styles, and validation rules defined for
the selected database connection.

Interactive SQL Used to build, execute, or explain SQL.

Object Details Displays an object's properties. For some objects, its properties
are read-only; for others, properties can be modified. This view is
analogous to the Properties view in other painters.

Object Layout Displays a graphical representation of tables and their relationships.

Objects Lists database interfaces and profiles. For an active database
connection, might also list all or some of the following objects
associated with that database: groups, metadata types, procedures
and functions, tables, columns, primary and foreign keys, indexes,
users, views, driver information, events, triggers, and utilities (the
database components listed depend on the database and your user
privileges).

Results Displays data in a grid, table, or freeform format.

Dragging and dropping

You can select certain database objects from the Objects view and drag them to the Object
Details, Object Layout, Columns, and/or ISQL views. Position the pointer on the database
object's icon and drag it to the appropriate view.

Table 5.2: Using drag and drop in the Database painter

Object Can be dragged to

Driver, group, metadata type, procedure or
function, table, column, user, primary or
foreign key, index, event trigger

Object Details view

Table or view Object Layout view

Table or column Columns view

Procedure or view ISQL view

Database painter tasks

The following table describes how to do some basic tasks in the Database painter. Most of
these tasks begin in the Objects view. Many can be accomplished by dragging and dropping
objects into different views. If you prefer, you can use buttons or menu selections from the
menu bar or from pop-up menus.

Table 5.3: Common tasks in the Database painter

To Do this

Modify a database
profile

Highlight a database profile and select Properties from the Object
or pop-up menu or use the Properties button.

Working with Databases

Page 472

To Do this
You can use the Import and Export Profiles menu selections to copy
profiles. For more information, see Section 4.1.5, “Importing and
exporting database profiles” in Connecting to Your Database.

Connect to a database Highlight a database profile and then select Connect from the
File or pop-up menu or use the Connect button. With File>Recent
Connections, you can review and return to earlier connections. You
can also make database connections using the Database Profile
button.

Create new profiles,
tables, views, columns,
keys, indexes, or
groups

Highlight the database object and select New from the Object or
pop-up menu or use the Create button.

Modify database
objects

Drag the object to the Object Details view.

Graphically display
tables

Drag the table icon from the list in the Objects view to the Object
Layout view, or highlight the table and select Add To Layout from
the Object or pop-up menu.

Manipulate data Highlight the table and select Grid, Tabular, or Freeform from the
Object>Data menu or the pop-up menu Edit Data item, or use the
appropriate Data Manipulation button.

Build, execute or
explain SQL

Use the ISQL view to build SQL statements. Use the Paste SQL
button to paste SELECT, INSERT, UPDATE, and DELETE
statements or type them directly into the view's workspace. To
execute or explain SQL, select Execute SQL and Explain SQL from
the Design or pop-up menu. (Explain SQL functionality is available
for Sybase databases only.)

Define or modify
extended attributes

Select from the Object>Insert menu the type of extended attribute
you want to define or modify, or highlight the extended attribute
from the list in the Extended Attributes view and select New or
Properties from the pop-up menu.

Specify extended
attributes for a column

Drag the column to the Object Details view and select the Extended
Attributes tab.

Access database
utilities

Double-click a utility in the Objects view to launch it.

Log your work Select Design>Start Log from the menu bar. To see the SQL syntax
generated, display the Activity Log view.

5.1.3.1 Modifying database preferences

To modify database preferences, select Design>Options from the menu bar. Some
preferences are specific to the database connection; others are specific to the Database
painter.

Preferences on the General property page

Working with Databases

Page 473

The Connect To Default Profile, Shared Database Profiles, Keep Connection Open, Use
Extended Attributes, and Read Only preferences are specific to the database connection.

The remaining preferences are specific to the Database painter. For information about
modifying these preferences, see Section 4.2.4, “Setting database preferences” in Connecting
to Your Database.

Table 5.4: Database painter preferences

Database preference What PowerBuilder does with the specified preference

Columns in the Table
List

When PowerBuilder displays tables graphically, eight table columns
display unless you change the number of columns.

SQL Terminator
Character

PowerBuilder uses the semicolon as the SQL statement terminator
unless you enter a different terminator character in the box. Make
sure that the character you choose is not reserved for another use
by your database vendor. For example, using the slash character (/)
causes compilation errors with some DBMSs.

Refresh Table List When PowerBuilder first displays a table list, PowerBuilder
retrieves the table list from the database and displays it. To save
time, PowerBuilder saves this list internally for reuse to avoid
regeneration of very large table lists. The table list is refreshed
every 30 minutes (1800 seconds) unless you specify a different
refresh rate.

Preferences on the Object Colors property page

You can set colors separately for each component of the Database painter's graphical table
representation: the table header, columns, indexes, primary key, foreign keys, and joins. Set a
color preference by selecting a color from a drop-down list.

You can design custom colors that you can use when you select color preferences. To design
custom colors, select Design>Custom Colors from the menu bar and work in the Custom
Colors dialog box.

5.1.3.2 Logging your work

As you work with your database, you generate SQL statements. As you define a new table,
for example, PowerBuilder builds a SQL CREATE TABLE statement internally. When
you save the table, PowerBuilder sends the SQL statement to the DBMS to create the table.
Similarly, when you add an index, PowerBuilder builds a CREATE INDEX statement.

You can see all SQL generated in a Database painter session in the Activity Log view. You
can also save this information to a file. This allows you to have a record of your work and
makes it easy to duplicate the work if you need to create the same or similar tables in another
database.

To start logging your work

1. Open the Database painter.

2. Select Start Log from the Design menu or the pop-up menu in the Activity Log view.

PowerBuilder begins sending all generated syntax to the Activity Log view.

Working with Databases

Page 474

To stop the log

• Select Stop Log from the Design menu or the pop-up menu in the Activity Log view.

PowerBuilder stops sending the generated syntax to the Activity Log view. Your work is
no longer logged.

To save the log to a permanent text file

1. Select Save or Save As from the File menu.

2. Name the file and click Save. The default file extension is SQL, but you can change that
if you want to.

Submitting the log to your DBMS

You can open a saved log file and submit it to your DBMS in the ISQL view. For
more information, see Building and executing SQL statements.

5.1.4 Creating and deleting a SQL Anywhere database

In PowerBuilder you work within an existing database. With one exception, creating or
deleting a database is an administrative task that is not performed directly in PowerBuilder.
The one exception is that you can create and delete a local SQL Anywhere database from
within PowerBuilder.

For information about creating and deleting other databases, see your DBMS documentation.

To create a local SQL Anywhere database:

1. From the Objects view, launch the Create SA Database utility included with the ODBC
interface.

The Create SQL Anywhere Database dialog box displays.

2. In the Database Name box, specify the file name and path of the database you are
creating.

If you do not provide a file extension, the database file name is given the extension DB.

3. Define other properties of the database as needed.

If you are using a non-English database, you can specify a code page in the Collation
Sequence box.

4. For complete information about filling in the dialog box, click the Help button in the
dialog box.

5. Click OK.

When you click OK, PowerBuilder does the following:

• Creates a database with the specified name in the specified directory or folder. If a
database with the same name exists, you are asked whether you want to replace it.

Working with Databases

Page 475

• Adds a data source to the ODBC.INI key in the registry. The data source has the same
name as the database unless one with the same name already exists, in which case a
suffix is appended.

• Creates a database profile and adds it to the registry. The profile has the same name as
the database unless one with the same name already exists, in which case a suffix is
appended.

• Connects to the new database.

To delete a local SQL Anywhere database:

1. Open the Database painter.

2. From the Objects view, launch the Delete SA Database utility included with the ODBC
interface.

3. Select the database you want to delete and select Open.

4. Click Yes to delete the database.

When you click Yes, PowerBuilder deletes the specified database.

5.1.5 Working with tables

When you open the Database painter, the Object view lists all tables in the current database
that you have access to (including tables that were not created using PowerBuilder). You can
create a new table or alter an existing table. You can also modify table properties and work
with indexes and keys.

5.1.5.1 Creating a new table from scratch

In PowerBuilder, you can create a new table in any database to which PowerBuilder is
connected.

To create a table in the current database

1. Do one of the following:

• Click the Create Table button.

• Right-click in the Columns view and select New Table from the pop-up menu.

• Right-click Tables in the Objects view and select New Table from the pop-up menu.

• Select Insert>Table from the Object menu.

The new table template displays in the Columns view. What you see in the view is
DBMS-dependent. You use this template to specify each column in the table. The
insertion point is in the Column Name box for the first column.

2. Enter the required information for this column.

Working with Databases

Page 476

For what to enter in each field, see Specifying column definitions.

As you enter information, use the Tab key to move from place to place in the column
definition. After defining the last item in the column definition, press the Tab key to
display the work area for the next column.

3. Repeat step 2 for each additional column in your table.

4. (Optional) Select Object>Pending Syntax from the menu bar or select Pending Syntax
from the pop-up menu to see the pending SQL syntax.

If you have not already named the table, you must provide a name in the dialog box that
displays. To hide the SQL syntax and return to the table columns, select Object>Pending
Syntax from the menu bar.

5. Click the Save button or select Save from the File or pop-up menu, then enter a name for
the table in the Create New Table dialog box.

PowerBuilder submits the pending SQL syntax statements it generated to the DBMS,
and the table is created. The new table is displayed in the Object Layout view.

About saving the table

If you make changes after you save the table and before you close it, you see the
pending changes when you select Pending SQL again. When you click Save again,
PowerBuilder submits a DROP TABLE statement to the DBMS, recreates the table,
and applies all changes that are pending. Clicking Save many times can be time
consuming when you are working with large tables, so you might want to save only
when you have finished.

6. Specify extended attributes for the columns.

For what to enter in each field, see Specifying column extended attributes.

5.1.5.2 Creating a new table from an existing table

You can create a new table that is similar to an existing table very quickly by using the Save
Table As menu option.

To create a new table from an existing table

1. Open the existing table in the Columns view by dragging and dropping it or selecting
Alter Table from the pop-up menu.

2. Right-click in the Columns view and select Save Table As from the pop-up menu.

3. Enter a name for the new table and then the owner's name, and click OK.

The new table appears in the Object Layout view and the Columns view.

4. Make whatever changes you want to the table definition.

5. Save the table.

Working with Databases

Page 477

6. Make changes to the table's properties in the Object Details view.

For more information about modifying table properties, see Specifying table and column
properties.

5.1.5.3 Specifying column definitions

When you create a new table, you must specify a definition for each column. The fields that
display for each column in the Columns view depend on your DBMS. You might not see all
of the following fields, and the values that you can enter are dependent on the DBMS.

For more information, see your DBMS documentation.

Table 5.5: Defining columns in the Columns view in the Database painter

Field What you enter

Column Name (Required) The name by which the column will be identified.

Data Type (Required) Select a datatype from the drop-down list. All datatypes
supported by the current DBMS are displayed in the list.

Width For datatypes with variable widths, the number of characters in the
field.

Dec For numeric datatypes, the number of decimal places to display.

Null Select Yes or No from the Null drop-down list to specify whether
NULLs are allowed in the column. Specifying No means the column
cannot have null values; users must supply a value. No is the default in
a new table.

Default The value that will be placed in a column in a row that you insert into
a DataWindow object. The drop-down list has built-in choices, but you
can type any other value. For an explanation of the built-in choices, see
your DBMS documentation.

5.1.5.4 Specifying table and column properties

After you create and save a table, you can specify the properties of the table and of any or its
columns. Table properties include the fonts used for headers, labels, and data, and a comment
that you can associate with the table. Column properties include the text used for headers
and labels, display formats, validation rules, and edit styles used for data (also known as a
column's extended attributes), and a comment you can associate with the column.

5.1.5.4.1 Specifying table properties

In addition to adding a comment to associate with the table, you can choose the fonts that will
be used to display information from the table in a DataWindow object. You can specify the
font, point size, color, and style.

To specify table properties

1. Do one of the following:

• Highlight the table in either the Objects view or the Object Layout view and select
Properties from the Object or pop-up menu.

Working with Databases

Page 478

• Click the Properties button.

• Drag and drop the table to the Object Details view.

The properties for the table display in the Object Details view.

2. Select a tab and specify properties:

Table 5.6:

Select this tab To modify this property

General Comments associated with the table

Data Font Font for data retrieved from the database and displayed in the
Results view by clicking a Data Manipulation button

Heading Font Font for column identifiers used in grid, tabular, and n-up
DataWindow objects displayed in the Results view by clicking a
Data Manipulation button

Label Font Font for column identifiers used in freeform DataWindow
objects displayed in the Results view by clicking a Data
Manipulation button

3. Right-click on the Object Details view and select Save Changes from the pop-up menu.

Any changes you made in the Object Details view are immediately saved to the table
definition.

5.1.5.4.2 Specifying column extended attributes

In addition to adding a comment to associate with a column, you can specify extended
attributes for each column. An extended attribute is information specific to PowerBuilder that
enhances the definition of the column.

To specify extended attributes

1. Do one of the following:

• Highlight the column in either the Objects view or the Object Layout view and select
Properties from the Object or pop-up menu.

• Click the Properties button.

• Drag and drop the column to the Object Details view.

2. Select a tab and specify extended attribute values:

Table 5.7:

Select this tab To modify these extended attributes

General Column comments.

Headers Label text used in free-form DataWindow objects.

Working with Databases

Page 479

Select this tab To modify these extended attributes
Header text used in tabular, grid, or n-up DataWindow objects.

Display How the data is formatted in a DataWindow object as well
as display height, width, and position. For example, you can
associate a display format with a Revenue column so that its
data displays with a leading dollar sign and negative numbers
display in parentheses.

Validation Criteria that a value must pass to be accepted in a DataWindow
object. For example, you can associate a validation rule with
a Salary column so that you can enter a value only within a
particular range.

The initial value for the column. You can select a value from
the drop-down list. The initial value must be the same datatype
as the column, must pass validation, and can be NULL only if
NULL is allowed for the column.

Edit Style How the column is presented in a DataWindow object. For
example, you can display column values as radio buttons or in a
drop-down list.

3. Right-click on the Column property sheet and select Save Changes from the pop-up
menu.

Any changes you made in the property sheet are immediately saved to the table
definition.

Overriding definitions

In the DataWindow painter, you can override the extended attributes specified in the
Database painter for a particular DataWindow object.

How the information is stored

Extended attributes are stored in the PowerBuilder system tables in the database.
PowerBuilder uses the information to display, present, and validate data in the Database
painter and in DataWindow objects. When you create a view in the Database painter, the
extended attributes of the table columns used in the view are used by default.

About display formats, edit styles, and validation rules

In the Database painter, you create display formats, edit styles, and validation rules.
Whatever you create is then available for use with columns in tables in the database. You
can see all the display formats, edit styles, and validation rules defined for the database in the
Extended Attributes view.

For more information about defining, maintaining, and using these extended attributes, see
Displaying and Validating Data.

About headings and labels

By default, PowerBuilder uses the column names as labels and headings, replacing any
underscore characters with spaces and capitalizing each word in the name. For example, the

Working with Databases

Page 480

default heading for the column Dept_name is Dept Name. To define multiple-line headings,
press Ctrl+Enter to begin a new line.

5.1.5.4.3 Specifying additional properties for character columns

You can also set two additional properties for character columns on the Display property
page: Case and Picture.

Specifying the displayed case

You can specify whether PowerBuilder converts the case of characters for a column in a
DataWindow object.

To specify how character data should be displayed

• On the Display property page, select a value in the Case drop-down list:

Table 5.8:

Value Meaning

Any Characters are displayed as they are
entered

UPPER Characters are converted to uppercase

lower Characters are converted to lowercase

Specifying a column as a picture

You can specify that a character column can contain names of picture files.

To specify that column values are names of picture files

1. On the Display property page, select the Picture check box.

When the Picture check box is selected, PowerBuilder expects to find picture file names
in the column and displays the contents of the picture file—not the name of the file—in
reports and DataWindow objects.

Because PowerBuilder cannot determine the size of the image until runtime, it sets both
display height and display width to 0 when you select the Picture check box.

2. Enter the size and the justification for the picture (optional).

5.1.5.5 Altering a table

After a table is created, how you can alter the table depends on your DBMS.

You can always:

• Add or modify PowerBuilder-specific extended attributes for columns

• Delete an index and create a new index

You can never:

• Insert a column between two existing columns

Working with Databases

Page 481

• Prohibit null values for an appended column

• Alter an existing index

Some DBMSs let you do the following, but others do not:

• Append columns that allow null values

• Increase or decrease the number of characters allowed for data in an existing column

• Allow null values

• Prohibit null values in a column that allowed null values

Database painter is DBMS aware

The Database painter grays out or notifies you about actions that your DBMS
prohibits.

For complete information about what you can and cannot do when you modify a table in your
DBMS, see your DBMS documentation.

To alter a table

1. Highlight the table and select Alter Table from the pop-up menu.

Opening multiple instances of tables

You can open another instance of a table by selecting Columns from the View menu.
Doing this is helpful when you want to use the Database painter's cut, copy, and paste
features to cut or copy and paste between tables.

The table definition displays in the Columns view (this screen shows the Employee
table).

Figure 5.3:

2. Make the changes you want in the Columns view or in the Object Details view.

Working with Databases

Page 482

3. Select Save Table or Save Changes.

PowerBuilder submits the pending SQL syntax statements it generated to the DBMS,
and the table is modified.

5.1.5.6 Cutting, copying, and pasting columns

In the Database painter, you can use the Cut, Copy, and Paste buttons in the PainterBar (or
Cut, Copy, and Paste from the Edit or pop-up menu) to cut, copy, and paste one column at a
time within a table or between tables.

To cut or copy a column within a table

1. Put the insertion point anywhere in the column you want to cut or copy.

2. Click the Cut or Copy button in the PainterBar.

To paste a column within a table

1. Put the insertion point in the column you want to paste to.

If you are changing an existing table, put the insertion point in the last column of the
table. If you try to insert a column between two columns, you get an error message. To
an existing table, you can only append a column. If you are defining a new table, you
can paste a column anywhere.

2. Click the Paste button in the PainterBar.

To paste a column to a different table

1. Open another instance of the Columns view and use Alter Table to display an existing
table or click New to create a new table.

2. Put the insertion point in the column you want to paste to.

3. Click the Paste button in the PainterBar.

5.1.5.7 Closing a table

You can remove a table from a view by selecting Close or Reset View from its pop-up menu.
This action only removes the table from the Database painter view. It does not drop (remove)
the table from the database.

5.1.5.8 Dropping a table

Dropping removes the table from the database.

To drop a table

1. Select Drop Table from the table's pop-up menu or select Object>Delete from the menu
bar.

2. Click Yes.

Working with Databases

Page 483

Deleting orphaned table information

If you drop a table outside PowerBuilder, information remains in the system tables about the
table, including extended attributes for the columns.

To delete orphaned table information from the extended attribute system tables

• Select Design>Synch Extended Attributes from the menu bar and click Yes.

If you try to delete orphaned table information and there is none, a message tells you
that synchronization is not necessary.

5.1.5.9 Viewing pending SQL changes

As you create or alter a table definition, you can view the pending SQL syntax changes that
will be made when you save the table definition.

To view pending SQL syntax changes

• Right-click the table definition in the Columns view and select Pending Syntax from the
pop-up menu.

PowerBuilder displays the pending changes to the table definition in SQL syntax:

Figure 5.4:

The SQL statements execute only when you save the table definition or reset the view
and then tell PowerBuilder to save changes.

Copying, saving, and printing pending SQL changes

When you are viewing pending SQL changes, you can:

• Copy pending changes to the clipboard

• Save pending changes to a file

Working with Databases

Page 484

• Print pending changes

To copy, save, or print only part of the SQL syntax

Select the part of the SQL syntax you want before you copy, save, or print.

To copy the SQL syntax to the clipboard

• In the Pending Syntax view, click the Copy button or select Select All and then Copy
from the pop-up menu.

To save SQL syntax for execution at a later time

1. In the Pending Syntax view, Select File>Save As.

The Save Syntax to File dialog box displays.

2. Navigate to the folder where you want to save SQL, name the file, and then click the
Save button.

At a later time, you can import the SQL file into the Database painter and execute it.

To print pending table changes

• While viewing the pending SQL syntax, click the Print button or select Print from the
File menu.

To display columns in the Columns view

• Select Object>Pending Syntax from the menu bar.

5.1.5.10 Printing the table definition

You can print a report of the table's definition at any time, whether or not the table has been
saved. The Table Definition Report contains information about the table and each column in
the table, including the extended attributes for each column.

To print the table definition

• Select Print or Print Definition from the File or pop-up menu or click the Print button.

5.1.5.11 Exporting table syntax

You can export the syntax for a table to the log. This feature is useful when you want to
create a backup definition of the table before you alter it or when you want to create the same
table in another DBMS.

To export to another DBMS, you must have the PowerBuilder interface for that DBMS.

To export the syntax of an existing table to a log

1. Select the table in the Objects or Object Layout view.

2. Select Export Syntax from the Object menu or the pop-up menu.

Working with Databases

Page 485

If you selected a table and have more than one DBMS interface installed, the DBMS
dialog box displays. If you selected a view, PowerBuilder immediately exports the
syntax to the log.

3. Select the DBMS to which you want to export the syntax.

If you selected ODBC, specify a data source in the Data Sources dialog box.

4. Supply any information you are prompted for.

PowerBuilder exports the syntax to the log. Extended attribute information (such as
validation rules used) for the selected table is also exported. The syntax is in the format
required by the DBMS you selected.

For more information about the log, see Logging your work.

5.1.5.12 About system tables

Two kinds of system tables exist in the database:

• System tables provided by your DBMS (for more information, see your DBMS
documentation)

• PowerBuilder extended attribute system tables

About PowerBuilder system tables

PowerBuilder stores extended attribute information you provide when you create or modify a
table (such as the text to use for labels and headings for the columns, validation rules, display
formats, and edit styles) in system tables. These system tables contain information about
database tables and columns. Extended attribute information extends database definitions.

In the Employee table, for example, one column name is Emp_lname. A label and a heading
for the column are defined for PowerBuilder to use in DataWindow objects. The column
label is defined as Last Name:. The column heading is defined as Last Name. The label and
heading are stored in the PBCatCol table in the extended attribute system tables.

The extended attribute system tables are maintained by PowerBuilder and only PowerBuilder
users can enter information into them. The following table lists the extended attribute system
tables. For more information, see Appendix A, The Extended Attribute System Tables.

Table 5.9: Extended attribute system tables

This system table Stores this extended attribute information

PBCatCol Column data such as name, header and label
for reports and DataWindow objects, and
header and label positions

PBCatEdt Edit style names and definitions

PBCatFmt Display format names and definitions

PBCatTbl Table data such as name, fonts, and
comments

PBCatVld Validation rule names and definitions

Working with Databases

Page 486

Opening and displaying system tables

You can open system tables like other tables in the Database painter.

By default, PowerBuilder shows only user-created tables in the Objects view. If you highlight
Tables and select Show System Tables from the pop-up menu, PowerBuilder also displays
system tables.

5.1.5.13 Creating and editing temporary tables

You can create and edit temporary tables in the Database painter, SQL Select painter, or
DataWindow painter when you use the ASE or SYC native driver to connect to an Adaptive
Server database, or the SNC native driver to connect to a Microsoft SQL Server 2005
database. Temporary tables persist for the duration of a database connection, residing in a
special database called "tempdb".

Creating temporary tables

You add a temporary table to the tempdb database by right-clicking the Temporary Tables
icon in the Objects view and selecting New. The table is designated as a temporary table by
assigning a name that starts with the # character. When you save the table, the Create New
Temporary Table dialog box displays. The # character is added automatically.

If there is no Temporary Tables icon in the Objects view, right-click the Tables icon and
select New. Assign a table name prefaced with the # character.

For SNC, use # for a local temporary table or ## for a global temporary table. Temporary
tables must start with the # character. Local temporary tables are visible only in the user's
current connection and are deleted when the user disconnects. Global temporary tables are
visible to any user connected to the instance of SQL Server, and they are deleted when all
users referencing the table disconnect.

Working with temporary tables

After you create a temporary table, you can create indexes and a primary key for the table
from the pop-up menu for the table in the Object Layout view. If you define a unique index
or primary key, you can perform insert, update, and delete operations in DataWindow
objects.

Selecting Edit Data from the pop-up menu of a temporary table retrieves data that you store
in that table. You can also select Drop Table, Add to Layout, Export Syntax, and properties
from the pop-up menu in the Objects view.

Accessing temporary tables at runtime

You can create DataWindow objects that access temporary tables in a PowerBuilder runtime
application, but your application must first explicitly create the temporary tables, along with
the appropriate keys and indexes, using the same database transaction object used by the
DataWindow.

You can use the EXECUTE IMMEDIATE PowerScript syntax to create temporary tables at
runtime:

string s1, s2, s3, s4
s1 = 'create table dbo.#temptab1 (id int not null, ' &
 + 'lname char(20) not null) '
s2 = 'alter table dbo.#temptab1 add constraint idkey' &

Working with Databases

Page 487

 + ' primary key clustered (id) '
s3 = 'create nonclustered index nameidx on ' &
 + 'dbo.#temptab1 (lname) '
s4 = 'insert into #temptab1 select emp_id, ' &
 + 'emp_lname from qadb_emp'
execute immediate :s1 using SQLca;
if SQLca.SQLcode = 0 then
 execute immediate :s2 using SQLca;
 execute immediate :s3 using SQLca;
 execute immediate :s4 using SQLca;
else
 messagebox("Create error", SQLca.SQLerrtext)
end if

5.1.6 Working with keys

If your DBMS supports primary and foreign keys, you can work with the keys in
PowerBuilder.

Why you should use keys

If your DBMS supports them, you should use primary and foreign keys to enforce the
referential integrity of your database. That way you can rely on the DBMS to make sure that
only valid values are entered for certain columns instead of having to write code to enforce
valid values.

For example, say you have two tables called Department and Employee. The Department
table contains the column Dept_Head_ID, which holds the ID of the department's manager.
You want to make sure that only valid employee IDs are entered in this column. The only
valid values for Dept_Head_ID in the Department table are values for Emp_ID in the
Employee table.

To enforce this kind of relationship, you define a foreign key for Dept_Head_ID that
points to the Employee table. With this key in place, the DBMS disallows any value for
Dept_Head_ID that does not match an Emp_ID in the Employee table.

For more about primary and foreign keys, consult a book about relational database design or
your DBMS documentation.

What you can do in the Database painter

You can work with keys in the following ways:

• Look at existing primary and foreign keys

• Open all tables that depend on a particular primary key

• Open the table containing the primary key used by a particular foreign key

• Create, alter, and drop keys

For the most part, you work with keys the same way for each DBMS that supports keys, but
there are some DBMS-specific issues. For complete information about using keys with your
DBMS, see your DBMS documentation.

Viewing keys

Keys can be viewed in several ways:

Working with Databases

Page 488

• In the expanded tree view of a table in the Objects view

• As icons connected by lines to a table in the Object Layout view

In the following picture, the sales_order table has three keys:

• A primary key (on id)

• Two foreign keys (on cust_id and fin_code_id)

Figure 5.5:

If you cannot see the lines

If the color of your window background makes it difficult to see the lines for the
keys and indexes, you can set the colors for each component of the Database painter's
graphical table representation, including keys and indexes. For information, see
Modifying database preferences.

Opening related tables

When working with tables containing keys, you can easily open related tables.

To open the table that a particular foreign key references:

1. Display the foreign key pop-up menu.

2. Select Open Referenced Table.

To open all tables referencing a particular primary key:

1. Display the primary key pop-up menu.

2. Select Open Dependent Table(s).

PowerBuilder opens and expands all tables in the database containing foreign keys that
reference the selected primary key.

Defining primary keys

If your DBMS supports primary keys, you can define them in PowerBuilder.

Working with Databases

Page 489

To create a primary key:

1. Do one of the following:

• Highlight the table for which you want to create a primary key and click the Create
Primary Key drop-down toolbar button in PainterBar1.

• Select Object>Insert>Primary Key from the main menu or New>Primary Key from
the pop-up menu.

• Expand the table's tree view, right-click Primary Key, and select New Primary Key
from the pop-up menu.

The Primary Key properties display in the Object Details view.

2. Select one or more columns for the primary key.

Columns that are allowed in a primary key

Only a column that does not allow null values can be included as a column in a
primary key definition. If you choose a column that allows null values, you get
a DBMS error when you save the table. In DBMSs that allow rollback for Data
Definition Language (DDL), the table definition is rolled back. In DBMSs that do not
allow rollback for DDL, the Database painter is refreshed with the current definition
of the table.

3. Specify any information required by your DBMS.

Naming a primary key

Some DBMSs allow you to name a primary key and specify whether it is clustered or
not clustered. For these DBMSs, the Primary Key property page has a way to specify
these properties.

For DBMS-specific information, see your DBMS documentation.

4. Right-click on the Object Details view and select Save Changes from the pop-up menu.

Any changes you made in the view are immediately saved to the table definition.

Completing the primary key

Some DBMSs automatically create a unique index when you define a primary key so
that you can immediately begin to add data to the table. Others require you to create
a unique index separately to support the primary key before populating the table with
data.

To find out what your DBMS does, see your DBMS documentation.

Defining foreign keys

If your DBMS supports foreign keys, you can define them in PowerBuilder.

Working with Databases

Page 490

To create a foreign key:

1. Do one of the following:

• Highlight the table and click the Create Foreign Key drop-down toolbar button in
PainterBar1.

• Select Object>Insert>Foreign Key from the main menu or New>Foreign Key from
the pop-up menu.

• Expand the table's tree view and right-click on Foreign Keys and select New Foreign
Key from the pop-up menu.

The Foreign Key properties display in the Object Details view. Some of the information
is DBMS-specific.

2. Name the foreign key in the Foreign Key Name box.

3. Select the columns for the foreign key.

4. On the Primary Key tab page, select the table and column containing the Primary key
referenced by the foreign key you are defining.

Key definitions must match exactly

The definition of the foreign key columns must match the primary key columns,
including datatype, precision (width), and scale (decimal specification).

5. On the Rules tab page, specify any information required by your DBMS.

For example, you might need to specify a delete rule by selecting one of the rules listed
for On Delete of Primary Table Row.

For DBMS-specific information, see your DBMS documentation.

6. Right-click on the Object Details view and select Save Changes from the pop-up menu.

Any changes you make in the view are immediately saved to the table definition.

Modifying keys

You can modify a primary key in PowerBuilder.

To modify a primary key:

1. Do one of the following:

• Highlight the primary key listed in the table's expanded tree view and click the
Properties button.

• Select Properties from the Object or pop-up menu.

2. Drag the primary key icon and drop it in the Object Details view.

Working with Databases

Page 491

3. Select one or more columns for the primary key.

4. Right-click on the Object Details view and select Save Changes from the pop-up menu.

Any changes you make in the view are immediately saved to the table definition.

Dropping a key

You can drop keys (remove them from the database) from within PowerBuilder.

To drop a key:

1. Highlight the key in the expanded tree view for the table in the Objects view or right-
click the key icon for the table in the Object Layout view.

2. Select Drop Primary Key or Drop Foreign Key from the key's pop-up menu.

3. Click Yes.

5.1.7 Working with indexes

You can create as many single- or multi-valued indexes for a database table as you need, and
you can drop indexes that are no longer needed.

Update limitation

You can update a table in a DataWindow object only if it has a unique index or
primary key.

Creating an index

In SQL Anywhere databases

In SQL Anywhere databases, you should not define an index on a column that is
defined as a foreign key, because foreign keys are already optimized for quick
reference.

To create an index:

1. Do one of the following:

• Highlight the table for which you want to create an index and click the Create Index
drop-down toolbar button in PainterBar1.

• Select Object>Insert>Index from the main menu or New>Index from the pop-up
menu.

• Expand the table's tree view, right-click on Indexes, and select New Index from the
pop-up menu.

The Index's properties display in the Object Details view.

2. Enter a name for the index in the Index box.

Working with Databases

Page 492

3. Select whether or not to allow duplicate values for the index.

4. Specify any other information required for your database.

For example, in Adaptive Server Enterprise specify whether the index is clustered, and
in SQL Anywhere specify the order of the index.

5. Click the names of the columns that make up the index.

6. Select Save Changes from the pop-up menu.

7. Right-click on the Object Details view and select Save Changes from the pop-up menu.

Any changes you made in the view are immediately saved to the table definition.

Modifying an index

You can modify an index.

To modify an index:

1. Do one of the following:

• Highlight the index listed in the table's expanded tree view and click the Properties
button.

• Select Properties from the Object or pop-up menu.

2. Drag the index icon and drop it in the Object Details view.

3. In the Object Details view, select or deselect columns as needed.

4. Right-click on the Object Details view and select Save Changes from the pop-up menu.

Any changes you made in the view are immediately saved to the table definition.

Dropping an index

Dropping an index removes it from the database.

To drop an index from a table:

1. In the Database painter workspace, display the pop-up menu for the index you want to
drop.

2. Select Drop Index and click Yes.

5.1.8 Working with database views

A database view gives a different (and usually limited) perspective of the data in one or more
tables. Although you see existing database views listed in the Objects view, a database view
does not physically exist in the database as a table does. Each time you select a database view
and use the view's data, PowerBuilder executes a SQL SELECT statement to retrieve the data
and creates the database view.

For more information about using database views, see your DBMS documentation.

Working with Databases

Page 493

Using database views in PowerBuilder

You can define and manipulate database views in PowerBuilder. Typically you use database
views for the following reasons:

• To give names to frequently executed SELECT statements.

• To limit access to data in a table. For example, you can create a database view of all the
columns in the Employee table except Salary. Users of the database view can see and
update all information except the employee's salary.

• To combine information from multiple tables for easy access.

In PowerBuilder, you can create single- or multiple-table database views. You can also use a
database view when you define data to create a new database view.

You define, open, and manipulate database views in the View painter, which is similar to the
SQL Select painter. For more information about the SQL Select painter, see Selecting a data
source.

Updating database views

Some database views are logically updatable and others are not. Some DBMSs do
not allow any updating of views. For the rules your DBMS follows, see your DBMS
documentation.

To open a database view:

1. In the Objects view, expand the list of Views for your database.

2. Highlight the view you want to open and select Add To Layout from the pop-up menu,
or drag the view's icon to the Object Layout view.

To create a database view:

1. Click the Create View button, or select View or New View from the Object>Insert or
pop-up menu.

The Select Tables dialog box displays, listing all tables and views that you can access in
the database.

2. Select the tables and views from which you will create the view by doing one of the
following:

• Click the name of each table or view you want to open in the list displayed in the
Select Tables dialog box, then click the Open button to open them. The Select Tables
dialog box closes.

• Double-click the name of each table or view you want to open. Each object is opened
immediately. Then click the Cancel button to close the Select Tables dialog box.

Representations of the selected tables and views display in the View painter workspace:

Working with Databases

Page 494

Figure 5.6:

3. Select the columns to include in the view and include computed columns as needed.

4. Join the tables if there is more than one table in the view.

For information, see Joining tables [495].

5. Specify criteria to limit rows retrieved (Where tab), group retrieved rows (Group tab),
and limit the retrieved groups (Having tab), if appropriate.

For information, see the section on using the SQL Select painter in Selecting a data
source. The View painter and the SQL Select painter are similar.

6. When you have completed the view, click the Return button.

7. Name the view.

8. Include view or some other identifier in the view's name so that you will be able to
distinguish it from a table in the Select Tables dialog box.

9. Click the Create button.

PowerBuilder generates a CREATE VIEW statement and submits it to the DBMS. The
view definition is created in the database. You return to the Database painter workspace
with the new view displayed in the workspace.

Displaying a database view's SQL statement

You can display the SQL statement that defines a database view. How you do it depends on
whether you are creating a new view in the View painter or want to look at the definition of
an existing view.

Working with Databases

Page 495

To display the SQL statement from the View painter:

• Select the Syntax tab in the View painter.

PowerBuilder displays the SQL it is generating. The display is updated each time you
change the view.

To display the SQL statement from the Database painter:

• Highlight the name of the database view in the Objects view and select Properties from
the pop-up menu, or drag the view's icon to the Object Details view.

The completed SELECT statement used to create the database view displays in the
Definition field on the General page:

Figure 5.7:

View dialog box is read-only

You cannot alter the view definition in the Object Details view. To alter a view, drop
it and create another view.

Joining tables

If the database view contains more than one table, you should join the tables on their
common columns. When the View painter is first opened for a database view containing
more than one table, PowerBuilder makes its best guess as to the join columns, as follows:

• If there is a primary/foreign key relationship between the tables, PowerBuilder
automatically joins them.

Working with Databases

Page 496

• If there are no keys, PowerBuilder tries to join tables based on common column names and
types.

To join tables:

1. Click the Join button.

2. Click the columns on which you want to join the tables.

In the following screen, the Employee and Department tables are joined on the dept_id
column:

Figure 5.8:

3. To create a join other than the equality join, click the join representation in the
workspace.

The Join dialog box displays:

Figure 5.9:

Working with Databases

Page 497

4. Select the join operator you want from the Join dialog box.

If your DBMS supports outer joins, outer join options also display in the Join
dialog box. For example, in the preceding dialog box (which uses the Employee and
Department tables), you can choose to include rows from the Employee table where
there are no matching departments, or rows from the Department table where there are
no matching employees.

For more about outer joins, see Using ANSI outer joins.

Dropping a database view

Dropping a database view removes its definition from the database.

To drop a view:

1. In the Objects view, select the database view you want to drop.

2. Click the Drop Object button or select Drop View from the pop-up menu.

PowerBuilder prompts you to confirm the drop, then generates a DROP VIEW
statement and submits it to the DBMS.

Exporting view syntax

You can export the syntax for a view to the log. This feature is useful when you want to
create a backup definition of the view before you alter it or when you want to create the same
view in another DBMS.

To export the syntax of an existing view to a log:

1. Select the view in the painter workspace.

2. Select Export Syntax from the Object menu or the pop-up menu.

For more information about the log, see Logging your work.

5.1.9 Manipulating data

As you work on the database, you often want to look at existing data or create some data for
testing purposes. You might also want to test display formats, validation rules, and edit styles
on real data.

PowerBuilder provides data manipulation for such purposes. With data manipulation, you
can:

• Retrieve and manipulate database information

• Save the contents of the database in a variety of formats (such as Excel, PDF, or XML)

5.1.9.1 Retrieving data

To retrieve data

1. In the Database painter, select the table or database view whose data you want to
manipulate.

2. Do one of the following:

Working with Databases

Page 498

• Click one of the three Data Manipulation buttons (Grid, Tabular, or Freeform) in the
PainterBar.

• Select Data or Edit Data from the Object or pop-up menu and choose one of the edit
options from the cascading menu that displays.

All rows are retrieved and display in the Results view. As the rows are being retrieved,
the Retrieve button changes to a Cancel button. You can click the Cancel button to stop
the retrieval.

Exactly what you see in the Results view depends on the formatting style you picked.
What you see is actually a DataWindow object. The formatting style you picked
corresponds to a type of DataWindow object (grid, tabular, or freeform). In a grid
display, you can drag the mouse on a column's border to resize the column.

This window is in the grid format:

Figure 5.10:

Only a few rows of data display at a time. You can use the First, Prior, Next, and Last
buttons or the pop-up menu to move from page to page.

5.1.9.2 Modifying data

You can add, modify, or delete rows. When you have finished manipulating the data, you can
apply the changes to the database.

If looking at data from a view

Some views are logically updatable and others are not. Some DBMSs do not allow
any updating of views.

For the rules your DBMS follows regarding updating of views, see your DBMS
documentation.

To modify data

1. Do one of the following:

• To modify existing data, tab to a field and enter a new value.

Working with Databases

Page 499

• To add a row, click the Insert Row button and enter data in the new row.

• To delete a row, click the Delete Row button.

When you add or modify data, the data uses the validation rules, display formats, and
edit styles that you or others have defined for the table in the Database painter.

2. Click the Save Changes button or select Rows>Update to apply changes to the database.

5.1.9.3 Sorting rows

You can sort the data, but any sort criteria you define are for testing only and are not saved
with the table or passed to the DataWindow painter.

To sort the rows

1. Select Rows > Sort from the menu bar.

The Specify Sort Columns dialog box displays.

2. Drag the columns you want to sort on from the Source Data box to the Columns box:

Figure 5.11:

A check box with a check mark in it displays under the Ascending heading to indicate
that the values will be sorted in ascending order. To sort in descending order, clear the
check box.

Precedence of sorting

The order in which the columns display in the Columns box determines the
precedence of the sorting. For example, in the preceding dialog box, rows would be
sorted by department ID. Within department ID, rows would be sorted by state.

To change the precedence order, drag the column names in the Column box into the
order you want.

3. (Optional) Double-click an item in the Columns box to specify an expression to sort on.

Working with Databases

Page 500

The Modify Expression dialog box displays.

4. Specify the expression.

For example, if you have two columns, Revenues and Expenses, you can sort on the
expression Revenues – Expenses.

5. Click OK to return to the Specify Sort Columns dialog box with the expression
displayed.

If you change your mind

You can remove a column or expression from the sorting specification by simply
dragging it and releasing it outside the Columns box.

6. When you have specified all the sort columns and expressions, click OK.

5.1.9.4 Filtering rows

You can limit which rows are displayed by defining a filter.

The filters you define are for testing only and are not saved with the table or passed to the
DataWindow painter.

To filter the rows

1. Select Rows>Filter from the menu bar.

The Specify Filter dialog box displays.

2. Enter a boolean expression that PowerBuilder will test against each row:

Figure 5.12:

If the expression evaluates to TRUE, the row is displayed. You can paste functions,
columns, and operators in the expression.

Working with Databases

Page 501

3. Click OK.

PowerBuilder filters the data. Only rows meeting the filter criteria are displayed.

To remove the filter

1. Select Rows>Filter from the menu bar.

The Specify Filter dialog box displays, showing the current filter.

2. Delete the filter expression, then click OK.

Filtered rows and updates

Filtered rows are updated when you update the database.

5.1.9.5 Viewing row information

You can display information about the data you have retrieved.

To display row information

• Select Rows>Described from the menu bar.

The Describe Rows dialog box displays showing the number of:

• Rows that have been deleted in the Database painter but not yet deleted from the
database

• Rows displayed in Preview

• Rows that have been filtered

• Rows that have been modified in the Database painter but not yet modified in the
database

All row counts are zero until you retrieve the data from the database or add a new row.
The count changes when you modify the displayed data or test filter criteria.

5.1.9.6 Importing data

You can import data from an external source and then save the imported data in the database.

To import data

1. Select Rows>Import from the menu bar.

The Select Import File dialog box displays.

2. Specify the file from which you want to import the data.

The types of files you can import into the Database painter are shown in the Files of
Type drop-down list.

3. Click Open.

PowerBuilder reads the data from the file. You can click the Save Changes button or
select Rows>Update to add the new rows to the database.

Working with Databases

Page 502

5.1.9.7 Printing data

You can print the data displayed by selecting File>Print from the menu bar. Before printing,
you can also preview the output on the screen.

To preview printed output before printing

1. Select File>Print Preview from the menu bar.

2. Preview displays the data as it will print. To display rulers around the page borders in
Print Preview, select File>Print Preview Rulers.

To change the magnification used in Print Preview, select File>Print Preview Zoom
from the menu bar.

The Zoom dialog box displays.

3. Select the magnification you want and click OK.

4. Preview zooms in or out as appropriate.

When you have finished looking at the print layout, select File>Print Preview from the
menu bar again.

5.1.9.8 Saving data

You can save the displayed data in an external file.

To save the data in an external file

1. Select File>Save Rows As from the menu bar.

The Save Rows As dialog box displays.

2. Choose a format for the file.

You can select from several formats, including Powersoft report (PSR), XML, PDF, and
HTML.

If you want the column headers saved in the file, select a file format that includes
headers, such as Excel With Headers. When you select a with headers format, the names
of the database columns (not the column labels) will also be saved in the file.

For more information, see Saving data in an external file.

For TEXT, CSV, SQL, HTML, and DIF formats, select an encoding for the file.

You can select ANSI/DBCS, Unicode LE (Little-Endian), Unicode BE (Big-Endian), or
UTF8.

3. Name the file and save it.

PowerBuilder saves all displayed rows in the file; all columns in the displayed rows are
saved. Filtered rows are not saved.

5.1.10 Creating and executing SQL statements

The Database painter's Interactive SQL view is a SQL editor in which you can enter and
execute SQL statements. The view provides all editing capabilities needed for writing and

Working with Databases

Page 503

modifying SQL statements. You can cut, copy, and paste text; search for and replace text; and
create SQL statements. You can also set editing properties to make reading your SQL files
easier.

5.1.10.1 Building and executing SQL statements

You can use the Interactive SQL view to build SQL statements and execute them
immediately. The view acts as a notepad in which you can enter SQL statements.

5.1.10.1.1 Creating stored procedures

You can use the Interactive SQL view to create stored procedures or triggers, but make
sure that the Database painter's SQL statement terminator character is not the same as the
terminator character used in the stored procedure language of your DBMS.

About the statement terminator

By default, PowerBuilder uses the semicolon as the SQL statement terminator. You can
override the semicolon by specifying a different terminator character in the Database painter.
To change the terminator character, select Design>Options from the Database painter's menu
bar.

Make sure that the character you choose is not reserved for another use by your database
vendor. For example, using the slash character (/) causes compilation errors with some
DBMSs.

5.1.10.1.2 Controlling comments

By default, PowerBuilder strips off comments when it sends SQL to the DBMS. You can
have comments included by clearing the check mark next to Strip Comments in the pop-up
menu of the Interactive SQL view.

5.1.10.1.3 Entering SQL

You can enter a SQL statement in four ways:

• Pasting the statement

• Typing the statement in the view

• Opening a text file containing the SQL

• Dragging a procedure or function from the Objects view

Pasting SQL

You can paste SELECT, INSERT, UPDATE, and DELETE statements to the view.
Depending on which kind of statement you want to paste, PowerBuilder displays dialog
boxes that guide you through painting the full statement.

To paste a SQL statement to the workspace

1. Click the Paste SQL button in the PainterBar, or select Paste Special>SQL from the Edit
or pop-up menu, then the statement type (Select, Insert, Update, or Delete).

The Select Table(s) dialog box displays.

Working with Databases

Page 504

2. Select the table(s) you will reference in the SQL statement.

You go to the Select, Insert, Update, or Delete painter, depending on the type of SQL
statement you are pasting. The Insert, Update, and Delete painters are similar to the
Select painter, but only the appropriate tabs display in the SQL toolbox at the bottom of
the workspace.

For more information about the SQL Select painter, see Selecting a data source.

3. Do one of the following:

• For a SELECT statement, define the statement exactly as in the SQL Select painter
when building a view.

You choose the columns to select. You can define computed columns, specify sorting
and joining criteria, and WHERE, GROUP BY, and HAVING criteria. For more
information, see Working with database views.

• For an INSERT statement, type the values to insert into each column. You can insert
as many rows as you want.

• For an UPDATE statement, specify the new values for the columns in the Update
Column Values dialog box. Then specify the WHERE criteria to indicate which rows
to update.

• For a DELETE statement, specify the WHERE criteria to indicate which rows to
delete.

4. When you have finished creating the SQL statement, click the Return button in the
PainterBar in the Select, Insert, Update, or Delete painter.

You return to the Database painter with the SQL statement pasted into the ISQL view.

Typing SQL

Rather than paste, you can simply type one or more SQL statements directly in the ISQL
view.

You can enter most statements supported by your DBMS. This includes statements you can
paint as well as statements you cannot paint, such as a database stored procedure or CREATE
TRIGGER statement.

You cannot enter certain statements that could destabilize the PowerBuilder development
environment. These include the SET statement and the USE database statement. However,
you might want to use a SET statement to change a default setting in the development
environment, such as SET NOCOUNT ON or SET ANSI_WARNINGS OFF. You can
enable SET commands in the ISQL view for database interfaces that support them by adding
the following line to the [Database] section in your PB.INI file:

EnableSet=1

SAP Adaptive Server Enterprise stored procedures

When you use the Database painter to execute an SAP Adaptive Server Enterprise
system stored procedure, you must start the syntax with the keyword EXEC or

Working with Databases

Page 505

EXECUTE. For example, enter EXEC SP_LOCK. You cannot execute the stored
procedure simply by entering its name.

Importing SQL from a text file

You can import SQL that has been saved in a text file into the Database painter.

To read SQL from a file

1. Put the insertion point where you want to insert the SQL.

2. Select Paste Special>From File from the Edit or pop-up menu.

3. Select the file containing the SQL, and click OK.

Dragging a procedure or function from the Objects view

From the tree view in the Objects view, you can select an existing procedure or function that
contains a SQL statement you want to enter, and drag it to the Interactive SQL view.

5.1.10.1.4 Explaining SQL

Sometimes there is more than one way to code SQL statements to obtain the results you
want. If you connect to an SAP database using an SAP native driver, or to a SQL Anywhere
database using the ODBC driver, you can select Explain SQL on the Design menu to help
you choose the most efficient coding method. Explain SQL displays information about the
path that PowerBuilder will use to execute the statements in the SQL Statement Execution
Plan dialog box. This is most useful when you are retrieving or updating data in an indexed
column or using multiple tables.

DBMS-specific information

The information displayed in the SQL Statement Execution Plan dialog box
depends on your DBMS. For more about the SQL execution plan, see your DBMS
documentation.

5.1.10.1.5 Executing SQL

When you have the SQL statements you want in the workspace, you can submit them to the
DBMS.

To execute the SQL

• Click the Execute button, or select Design>Execute SQL from the menu bar.

If the SQL retrieves data, the data appears in grid format in the Results view. If there is a
database error, you see a message box describing the problem.

For a description of what you can do with the data, see Manipulating data.

5.1.10.2 Customizing the editor

The Interactive SQL view provides the same editing capabilities as the file editor. It also has
Script, Font, and Coloring properties that you can change to make SQL files easier to read.

Working with Databases

Page 506

With no change in properties, SQL files have black text on a white background and a tab stop
setting of 3 for indentation.

Setting Script and Font properties

Select Design>Options from the menu bar to open the Database Preferences dialog box. The
Script and Font properties are the same as those you can set for the file editor.

For more information, see Using the file editor.

Editor properties apply elsewhere

When you set Script and Font properties for the Database painter, the settings also
apply to the Script view, the file editor, and the Debug window.

Setting Coloring properties

You can set the text color and background color for SQL styles (such as datatypes and
keywords) so that the style will stand out and the SQL code will be more readable. You set
Coloring properties on the Coloring tab page.

Enabling syntax coloring

Be sure the Enable Syntax Coloring check box is selected before you set colors for
SQL styles. You can turn off all Coloring properties by clearing the check box.

5.1.11 Controlling access to the current database

The Database painter's Design menu provides access to a series of dialog boxes you can use
to control access to the current database. In some DBMSs, for example, you can assign table
access privileges to users and groups.

Which menu items display on the Design menu and which dialog boxes display depend on
your DBMS.

For information about support for security options in your DBMS, see Part I, “Connecting to
Your Database” and your DBMS documentation.

5.1.12 Using the ASA MobiLink synchronization wizard

About MobiLink

MobiLink™ is a session-based synchronization system that allows two-way synchronization
between a main database, called the consolidated database, and multiple remote databases.
The ASA MobiLink Synchronization wizard on the Database tab of the New dialog box
creates objects that facilitate control of database synchronization from a PowerBuilder
application.

This section describes the MobiLink synchronization wizard and the objects it creates. For
more detailed information about synchronization from PowerBuilder applications, including
information about creating consolidated and remote databases, as well as synchronization
objects without using the wizard, see Section 4.2, “Using MobiLink Synchronization” in
Application Techniques.

Working with Databases

Page 507

5.1.12.1 What the wizard generates

You use the ASA MobiLink Synchronization wizard to create a nonvisual user object and
a global external function that invokes the MobiLink dbmlsync executable. By default, the
wizard also adds two windows and a second global function, but these objects are optional.

The wizard-generated objects make it easier to add database synchronization capabilities to
a PowerBuilder target. A structure that inherits from the PowerBuilder SyncParm object is
also instantiated by default by one of the wizard-generated global functions. The SyncParm
structure is used to hold sensitive database connection parameters entered by an end user in
the synchronization options window.

The following table shows objects that can be generated by the wizard, listed by their default
names, where appname stands for the name of the current application.

Table 5.10: Objects generated by MobiLink Synchronization wizard

Default name Description

nvo_appname_mlsync An instance of the MLSync standard class user object that starts
synchronization from the remote client.

gf_appname_sync Global function that instantiates nvo_appname_mlsync to start
the synchronization. This function includes the logic to start the
synchronization with or without a feedback window.

w_appname_syncprogressOptional feedback window that can be used to display
synchronization status to the client.

gf_appname_configure_syncOptional global function that calls the w_appname_sync_options
window, which allows the user to configure the dbmlsync client
before invoking the dbmlsync executable.

w_appname_sync_optionsWindow that allows the application user to change connection
arguments at runtime.

Using a desktop database profile

Some information that you enter in the wizard is optional, but other information is required.
The wizard prompts you for a database profile, which it uses to establish a connection to a
remote database on the development computer. If you are not testing a connection on the
desktop, you can select the option to proceed without a database connection and ignore the
database profile field.

A database profile is required for automatic retrieval of publication names in the database. A
publication is a database object describing data to be synchronized. A publication, along with
a synchronization user name and a synchronization subscription, is required for MobiLink
synchronization.

Selecting publication names

The wizard lets you select multiple publication names if they exist in the remote database
defined by the connection profile. There must be subscriptions associated with the
publication in order for them to display in the publication selection list.

If you selected the option to proceed without a database connection, the wizard prompts
you to type a publication name (or a comma-separated list of publication names) in the

Working with Databases

Page 508

MobiLink Client Publication wizard page instead of prompting you to select publication
names retrieved from the database.

For more information about publications, see MobiLink - Client Administration on the SQL
Anywhere online Help.

Overriding registry settings on the client computer

By default, information you enter in the wizard is saved in properties of the
nvo_appname_mlsync user object that the wizard generates. This information includes values
that you select for MobiLink logging and command line options and the MobiLink server
and port. Prior to synchronization, the values of these properties can be modified with values
entered by an application user in the w_appname_sync_options Options window.

The first time synchronization is run, user object property values are entered into the client
computer registry. The next time the application is run, this information is available for
retrieval from the registry.

The ASA MobiLink Synchronization wizard has an optional Override Registry Settings
screen that allows you to override client registry settings. When you enable runtime overrides
to the client registry settings, you must assign a build number to the objects generated by the
wizard.

The build number you assign can be any positive numeric value. To override the registry
settings, the build number you assign must be higher than the build number in the registry,
if there is one. Registry settings will be used if the build number in the registry is equal to
or lower than the build number in the ObjectRevision property of the nvo_appname_mlsync
user object that the wizard generates.

Security measure

For security reasons, the MobiLink user name and password, and the authentication
parameters and encryption key database settings are never saved to the registry.

The Override Registry Settings page of the wizard displays only if you do not change the
radio button option to prompt the application user for password and runtime changes on
the previous wizard page (Optional Runtime Configuration Objects). If, however, you
change the radio button selection to disallow runtime overrides to the synchronization,
the wizard does not display the Override Registry Settings page and does not generate the
w_appname_sync_options Options window.

5.1.12.2 Wizard options

Except for the object name settings, the following table lists the ASA MobiLink
Synchronization wizard options.

Table 5.11: ASA MobiLink Synchronization wizard options

Option Description

Destination library Lets you select the target PBL file where you want to generate the
MobiLink synchronization objects.

Desktop database
connection

Lets you select a PowerBuilder database profile or proceed without a
database connection.

Working with Databases

Page 509

Option Description

Publication name Lets you select a publication (or multiple publications) if you
specified a database profile for a desktop database connection. If
you did not, you can type the name of a publication you want to
synchronize.

Override registry
settings

Lets you override client registry settings with values that you (or
application users) select for MobiLink logging and command line
options, and the MobiLink server and port for the application

Client logging
options

Specifies what information gets written to the synchronization log and
whether you save the information to a log file.

Additional
command line
options

Adds the options you specify to the command line for starting the
MobiLink synchronization client. You can click the Usage button to
see a list of valid options.

Extended options Adds extended options you specify. You do not need to enter the "-
e" switch for extended options in this field. You can click the Usage
button to see a list of valid extended options.

Single quotes must be used for any extended option values requiring
quotation marks. You must separate multiple options with semicolons;
for example:

scn=on;adr='host=localhost;port=2439'

Host Sets the host information for connecting to the MobiLink
synchronization server. If you enter a value for this field, it overrides
any value set in synchronization subscriptions and in the Extended
Options field.

Port Sets the port for connecting to the MobiLink synchronization server.
The default port for MobiLink is 2439. The value you enter for this
field overrides any value set in synchronization subscriptions and in
the Extended Options field.

5.1.12.3 Trying out MobiLink synchronization

This section describes how to try out the ASA MobiLink Synchronization wizard in a sample
application. To get started, create a new workspace and a template application. You do not
need to create a SQL database connection, but you do need to create a project.

Before you use the wizard to generate objects for the application, you need to set up a
remote database and add at least one publication, user, and subscription to it, and create a
PowerBuilder database profile for the remote database. To test the synchronization objects
from your application, you need to set up a consolidated database. You can create your
own remote and consolidated databases, as described in Section 4.2, “Using MobiLink
Synchronization” in Application Techniques.

To test the synchronization objects, complete the following steps:

1. Run the wizard [510].

2. Call synchronization objects from your application [510].

Working with Databases

Page 510

3. Deploy the application and database files [510].

4. Start the MobiLink server [510].

5. Run the application [511].

Run the wizard

You start the wizard from the Database tab of the New dialog box. The wizard prompts you
for a database profile and a publication, although you can enter this information at a later
time after you generate synchronization objects.

To run the MobiLink synchronization wizard

1. Select File>New from the PowerBuilder menu bar.

2. Click the Database tab, select the ASA MobiLink Synchronization wizard, and click
OK.

3. Follow the instructions in the wizard, providing the information the wizard needs.

For help using the wizard, place the mouse pointer in any wizard field and press F1.

4. On the last page of the wizard, make sure the Generate To-Do List check box is selected
if you want the wizard to add items to the To-Do List to guide and facilitate your
development work.

5. When you are satisfied with your choices in the wizard, click Finish.

The wizard generates objects that you can use for database synchronization.

Call synchronization objects from your application

Open a menu for your application in the Menu painter and add two submenu items to the File
menu, called Synchronize and Sync Options. Add the following code to the Clicked event of
the Synchronize menu item (appname is the name of your application):

syncparm s_opt
gf_appname_sync(s_opt)

Add the following code to the Clicked event of the Sync Options menu item:

gf_appname_configure_sync()

Deploy the application and database files

Use the Project painter to deploy the application to the desktop and copy this to all computers
that will be connecting remotely to the MobiLink server. You need to copy the remote
database to all end-user computers, and either register the database as an ODBC database or
include connection parameters in a data source name (DSN) file.

For information on additional files and registry entries required on end-user computers, see
Section 4.2, “Using MobiLink Synchronization” in Application Techniques.

Start the MobiLink server

Select MobiLink Synchronization Server from the Utilities folder in the Database painter. Fill
in the required information and click OK to start the server.

For more information, see Starting the MobiLink synchronization server.

Working with Databases

Page 511

Run the application

Run the application on the remote computer and select the File>Synchronize and File>Sync
Options menu items to test their operation.

5.1.13 Managing MobiLink synchronization on the server

You can start the MobiLink synchronization server and SQL Central (formerly known as
Sybase Central) from the PowerBuilder UI.

5.1.13.1 Starting the MobiLink synchronization server

Before you synchronize remote databases with the consolidated database, you must start the
MobiLink synchronization server. You can start the server from the Database or the Database
Profile painter in PowerBuilder.

To start the MobiLink synchronization server

1. From the Objects view of the Database painter or from the Database Profile painter,
expand the ODBC Utilities folder and click MobiLink Synchronization server.

The MobiLink Synchronization Server Options dialog box displays.

2. Select the MobiLink version and enter the ODBC connection string for your
consolidated database.

The values that populate the MobiLink version drop-down list come from the SQL
Anywhere versions listed in the hkey_local_machine\software\odbc\odbcinst.ini registry
key.

The ODBC connection string should not contain any blank spaces that are not part of the
data source name. The following is an example of an ODBC connection string for the
SQL Anywhere demonstration database:

DSN=SQL Anywhere 11 Demo;UID=dba;PWD=SQL

3. Define other options as needed.

For information about filling in specific fields in the dialog box, click the Help button in
the dialog box. The Usage button opens a dialog box with information about command
line options.

4. Click OK.

When you click OK, PowerBuilder starts the MobiLink Synchronization server.

5.1.13.2 Using SQL Central

You can use SQL Central (formerly known as Sybase Central) to manage MobiLink
synchronization and create synchronization scripts that are held in the consolidated
database. You can also use the SQL Anywhere plug-in to SQL Central to add publications,
synchronization users, and synchronization subscriptions to remote databases.

To start SQL Central

• From the Objects view of the Database painter or from the Database Profile painter,
expand the ODBC Utilities folder, and click SQL Central.

Working with Databases

Page 512

SQL Central displays.

To work with the consolidated database in SQL Central

• Select Connections>Connect with MobiLink 11 from the SQL Central menu, enter
connection parameters in the Connect to Consolidated Database dialog box, and click
OK.

You can use SQL Central to add scripts for database tables and select synchronization
events that cause the script to be executed.

To work with remote databases in SQL Central

• Select Connections>Connect with SQL Anywhere 11 from the SQL Central menu, enter
connection parameters in the Connect dialog box, and click OK.

If you open the Publications and MobiLink Users folders in SQL Central, you can add
publications and synchronization users for the remote database.

After you add a publication and a synchronization user, you can create a synchronization
subscription by linking a publication to a synchronization user.

For more information, see Section 4.2, “Using MobiLink Synchronization” in
Application Techniques and the SQL Anywhere online Help. You can also use the Help
menu for the SQL Anywhere and MobiLink plug-ins to SQL Central.

5.2 Working with Data Pipelines
About this chapter

This chapter describes how to use the Data Pipeline painter to create data pipelines, which let
you reproduce database data in various ways.

5.2.1 About data pipelines

The Data Pipeline painter gives you the ability to reproduce data quickly within a database,
across databases, or even across DBMSs. To do that, you create a data pipeline which, when
executed, pipes the data as specified in the definition of the data pipeline.

What you can do

With the Data Pipeline painter, you can perform some tasks that would otherwise be very
time consuming. For example, you can:

• Pipe data (and extended attributes) from one or more tables to a table in the same DBMS
or a different DBMS

• Pipe an entire database, a table at a time, to another DBMS (and if needed, pipe the
database's extended attribute system tables)

• Create a table with the same design as an existing table but with no data

• Pipe corporate data from a database server to a SQL Anywhere database on your computer
so you can work on the data and report on it without needing access to the network

• Upload local data that changes daily to a corporate database

Working with Databases

Page 513

• Create a new table when a change (such as allowing or disallowing NULLs or changing
primary key or index assignments) is disallowed in the Database painter

Piping data in applications

You can also create applications that pipe data. For more information, see Section 4.6,
“Piping Data Between Data Sources” in Application Techniques.

Source and destination databases

You can use the Data Pipeline painter to pipe data from one or more tables in a source
database to one table in a destination database.

You can pipe all data or selected data in one or more tables. For example, you can pipe a few
columns of data from one table or data selected from a multitable join. You can also pipe
from a view or a stored procedure result set to a table.

When you pipe data, the data in the source database remains in the source database and is
reproduced in a new or existing table in the destination database.

Although the source and destination can be the same database, they are usually different ones,
and they can even have different DBMSs. For example, you can pipe data from an Adaptive
Server Enterprise database to a SQL Anywhere database on your computer.

5.2.1.1 Defining a data pipeline

When you use the Data Pipeline painter to create a pipeline, you define the:

• Source database

• Destination database

• Source of data

• Pipeline operation

• Destination table

After you create a pipeline, you can execute it immediately. If you want, you can also save it
as a named object to use and reuse. Saving a pipeline enables you to pipe the data that might
have changed since the last pipeline execution or to pipe the data to other databases later.

Datatype support

Each DBMS supports certain datatypes. When you pipe data from one DBMS to another,
PowerBuilder makes a best guess at the appropriate destination datatypes. You can correct
PowerBuilder's best guess in your pipeline definition as needed.

The Data Pipeline painter supports the piping of columns of any datatype, including columns
with blob data. For information about piping a column that has a blob datatype, see Piping
blob data.

5.2.1.2 Piping extended attributes

The first time PowerBuilder connects to a database, it creates five system tables called the
extended attribute system tables. These system tables initially contain default extended

Working with Databases

Page 514

attribute information for tables and columns. In PowerBuilder, you can create extended
attribute definitions such as column headers and labels, edit styles, display formats, and
validation rules.

For more information about the extended attribute system tables, see Appendix A, The
Extended Attribute System Tables.

Piping extended attributes automatically

When you pipe data, you can specify that you want to pipe the extended attributes associated
with the columns you are piping. You do this by selecting the Extended Attributes check box
in the Data Pipeline painter workspace:

Figure 5.13:

When the Extended Attributes check box is selected, the extended attributes associated with
the source database's selected columns automatically go into the extended attribute system
tables of the destination database, with one exception. When you pipe a column that has
an edit style, display format, or validation rule associated with it, the style, rule, or format
is not piped if one with the same name exists in the extended attribute system tables of the
destination database. In this situation, the column uses the style, rule, or format already
present in the destination database.

For example, for the Phone column in the Employee table, the display format with the name
Phone_format would be piped unless a display format with the name Phone_format already
exists in the destination database. If such a display format exists, the Phone column would
use the Phone_format display format in the destination database.

Piping the extended attribute system tables

Selecting the Extended Attributes check box never results in the piping of named display
formats, edit styles, and validation rules that are stored in the extended attribute system
tables but are not associated with columns in tables you are piping. If you want such
extended attribute definitions from one database to exist in another database, you can pipe the
appropriate extended attribute system table or a selected row or rows from the table.

Working with Databases

Page 515

Piping an entire database

If you want to reproduce an entire database, you can pipe all database tables and extended
attribute system tables, one table at a time.

5.2.2 Creating a data pipeline

You have a number of choices when creating a data pipeline. This section leads you through
them.

To create a data pipeline:

1. Click the New button in the PowerBar and then select the Database tab page.

2. Select Data Pipeline and click OK.

The New Data Pipeline dialog box displays.

Figure 5.14:

The Source Connection and Destination Connection boxes display database profiles that
have been defined. The last database you connected to is selected as the source. The first
database on the destination list is selected as the destination.

If you do not see the connections you need

To create a pipeline, the databases you want to use for your source and destination
must each have a database profile defined. If you do not see profiles for the databases
you want to use, select Cancel in the New Data Pipeline dialog box and then define

Working with Databases

Page 516

those profiles. For information about defining profiles, see Changing the destination
and source databases.

3. Select a data source.

The data source determines how PowerBuilder retrieves data when you execute a
pipeline:

Table 5.12:

Data source Use it if

Quick Select The data is from tables that have a primary/foreign key
relationship and you need only to sort and limit data

SQL Select You want more control over the SQL SELECT statement
generated for the data source or your data is from tables that
are not connected through a key

Query The data has been defined as a query

Stored Procedure The data is defined in a stored procedure

4. Select the source and destination connections and click OK.

5. Define the data to pipe.

How you do this depends on what data source you chose in step 3, and is similar to the
process used to define a data source for a DataWindow object. For complete information
about using each data source and defining the data, see Defining DataWindow Objects.

When you finish defining the data to pipe, the Data Pipeline painter workspace displays
the pipeline definition, which includes a pipeline operation, a check box for specifying
whether to pipe extended attributes, and source and destination items.

Figure 5.15:

The pipeline definition is PowerBuilder's best guess based on the source data you
specified.

Working with Databases

Page 517

6. Modify the pipeline definition as needed.

For information, see Modifying the data pipeline definition.

7. (Optional) Modify the source data as needed. To do so, click the Data button in the
PainterBar, or select Design>Edit Data Source from the menu bar.

For information about working in the Select painter, see Defining DataWindow Objects.

When you return to the Data Pipeline painter workspace, PowerBuilder reminds you that
the pipeline definition will change. Click OK to accept the definition change.

If you want to try the pipeline now, click the Execute button or select Design>Execute
from the menu bar.

PowerBuilder retrieves the source data and executes the pipeline. If you specified
retrieval arguments in the Select painter, PowerBuilder first prompts you to supply
them.

At runtime, the number of rows read and written, the elapsed execution time, and
the number of errors display in MicroHelp. You can stop execution yourself or
PowerBuilder might stop execution if errors occur.

For information about execution and how rows are committed to the destination table,
see When execution stops.

8. Save the pipeline definition if appropriate.

For information, see Saving a pipeline.

Seeing the results of piping data

You can see the results of piping data by connecting to the destination database and
opening the destination table.

5.2.3 Modifying the data pipeline definition

After you create a pipeline definition, you can modify it in a variety of ways. The changes
you make depend on what pipeline operation you select, the destination DBMS, and what
you are trying to accomplish by executing the pipeline.

The following table lists properties you can modify that apply to the destination table. These
properties display at the top of the Data Pipeline painter workspace.

Table 5.13: Pipeline properties for the destination table

Item Description Default How to edit

Table Name of the
destination table.

If source and
destination are
different, name of
first table specified
in the source data or
name of the stored
procedure. If the

For Create or
Replace, enter a
name.

For Refresh, Append,
or Update, select a
name from the drop-
down list.

Working with Databases

Page 518

Item Description Default How to edit
same, _copy is
appended.

Options Pipeline operation:
Create, Replace,
Refresh, Append, or
Update.

Create - Add Table. Select an option from
the drop-down list.
See The following
table.

Commit Number of rows
piped to the
destination database
before PowerBuilder
commits the rows to
the database.

100 rows. Select a number, All,
or None from the
drop-down list.

Key Key name for
the table in the
destination database.

If the source is only
one table, the table
name is followed by
_x.

(Create or Replace
only) Enter a name.

Max Errors Number of errors
allowed before the
pipeline stops.

100 errors. Select a number or
No Limit from the
drop-down list.

Extended Attributes (Create and Replace
only) Specifies
whether or not the
extended attributes
of the selected source
columns are piped to
the extended attribute
system tables of the
destination database.

Not checked. Click the check box.

The following table lists properties that you can modify that apply to the destination table's
columns and keys. These properties display under the properties that apply to the table itself
and most can be modified only for the Create and Replace pipeline operations.

Column names and datatypes that cannot be modified

You cannot modify the source column names and datatypes that display at the left of
the workspace.

Table 5.14: Pipeline properties for the destination table's columns and keys

Item Description Default How to edit

Destination Name Column name Source column name. Enter a name.

Type Column datatype If the DBMS is
unchanged, source
column datatype.

Select a type from the
drop-down list.

Working with Databases

Page 519

Item Description Default How to edit
If the DBMS is
different, a best-guess
datatype.

Key Whether the column
is a key column
(check means yes)

Source table's key
columns (if the source
is only one table and
all key columns were
selected).

Select or clear check
boxes.

Width Column width Source column width. Enter a number.

Dec Decimal places for
the column

Source column
decimal places.

Enter a number.

Nulls Whether NULL
is allowed for the
column (check means
yes)

Source column value. Select or clear check
boxes.

Initial Value Column initial value Source column initial
value. (If no initial
value, character
columns default to
spaces and numeric
columns default to 0.)

Select an initial value
from the drop-down
list.

Default Value Column default value None. Default values
stored in the source
database are not piped
to the destination
database.

Select a default value
from the drop-down
list or enter a default
value. Keyword
values depend on
destination DBMS.

5.2.3.1 Choosing a pipeline operation

When PowerBuilder pipes data, what happens in the destination database depends on which
pipeline operation you choose in the Options drop-down list at the top of the workspace.

Table 5.15: Effect of pipeline operations on the destination database

Pipeline
operation

Effect on destination database

Create - Add Table A new table is created and rows selected from the source tables are
inserted.

If a table with the specified name already exists in the destination
database, a message displays and you must select another option or
change the table name.

Replace - Drop/
Add Table

An existing table with the specified table name is dropped, a new table
is created, and rows selected from the source tables are inserted.

If no table exists with the specified name, a table is created.

Working with Databases

Page 520

Pipeline
operation

Effect on destination database

Refresh - Delete/
Insert Rows

All rows of data in an existing table are deleted, and rows selected from
the source tables are inserted.

Append - Insert
Rows

All rows of data in an existing table are preserved, and new rows
selected from the source tables are inserted.

Update - Update/
Insert Rows

Rows in an existing table that match the key criteria values in the rows
selected from the source tables are updated, and rows that do not match
the key criteria values are inserted.

5.2.3.2 Dependency of modifications on pipeline operation

The modifications you can make in the workspace depend on the pipeline operation you have
chosen.

When using Create or Replace

When you select the Create - Add Table option (the default) or the Replace - Drop/Add Table
option, you can:

• Change the destination table definition.

• Follow the rules of the destination DBMS.

• Specify or clear a key name and/or key columns.

• Specify key columns by selecting one or more check boxes to define a unique identifier for
rows. Neither a key name nor key columns are required.

• Allow or disallow NULLs for a column.

• If NULL is allowed, no initial value is allowed. If NULL is not allowed, an initial value is
required. The words spaces (a string filled with spaces) and today (today's date) are initial
value keywords.

• Modify the Commit and Max Errors values.

• Specify an initial value and a default value.

If you have specified key columns and a key name and if the destination DBMS supports
primary keys, the Data Pipeline painter creates a primary key for the destination table. If the
destination DBMS does not support primary keys, a unique index is created.

For Oracle databases

PowerBuilder generates a unique index for Oracle databases.

If you try to use the Create option, but a table with the specified name already exists in the
destination database, PowerBuilder tells you, and you must select another option or change
the table name.

Working with Databases

Page 521

When you use the Replace option, PowerBuilder warns you that you are deleting a table, and
you can choose another option if needed.

When using Refresh and Append

For the Refresh - Delete/Insert Rows or Append - Insert Rows options, the destination table
must already exist. You can:

• Select an existing table from the Table drop-down list.

• Modify the Commit and Max Errors values.

• Change the initial value for a column.

When using Update

For the Update - Update/Insert Rows option, the destination table must already exist. You
can:

• Select an existing table from the Table drop-down list.

• Modify the Commit and Max Errors values.

• Change the Key columns in the destination table's primary key or unique index, depending
on what the DBMS supports. Key columns must be selected; the key determines the
UPDATE statement's WHERE clause.

• Change the initial value for a column.

Bind variables and the Update option

If the destination database supports bind variables, the Update option takes advantage
of them to optimize pipeline execution.

5.2.3.3 When execution stops

Execution of a pipeline can stop for any of these reasons:

• You click the Cancel button

• During the execution of a pipeline, the Execute button in the PainterBar changes to a
Cancel button.

• The error limit is reached

If there are rows that cannot be piped to the destination table for some reason, those error
rows display once execution stops. You can correct error rows or return to the workspace
to change the pipeline definition and then execute it again. For information, see Correcting
pipeline errors.

5.2.3.3.1 Whether rows are committed

When rows are piped to the destination table, they are first inserted and then either committed
or rolled back. Whether rows are committed depends on:

Working with Databases

Page 522

• What the Commit and Max Errors values are

• When errors occur during execution

• Whether you click the Cancel button or PowerBuilder stops execution

When you stop execution

When you click Cancel, if the Commit value is a number, every row that was piped is
committed. If the Commit value is All or None, every row that was piped is rolled back.

For example, if you click the Cancel button when the 24th row is piped and the Commit
value is 20, then:

• 20 rows are piped and committed.

• 3 rows are piped and committed.

• Piping stops.

If the Commit value is All or None, 23 rows are rolled back.

When PowerBuilder stops execution

PowerBuilder stops execution if the error limit is reached. The following table shows how the
Commit and Max Errors values affect the number of rows that are piped and committed.

Table 5.16: Rows committed when PowerBuilder stops execution

Commit value Max Errors
value

Result

A number n No limit or a
number m

Rows are piped and committed n rows at a time until
the Max Errors value is reached.

All or None No limit Every row that pipes without error is committed.

All or None A number n If the number of errors is less than n, all rows are
committed.

If the number of errors is equal to n, every row that
was piped is rolled back. No changes are made.

For example, if an error occurs when the 24th row is piped and the Commit value is 10 and
the Max Errors value is 1, then:

• 10 rows are piped and committed.

• 10 rows are piped and committed.

• 3 rows are piped and committed.

• Piping stops.

If the Commit value is All or None, 23 rows are rolled back.

Working with Databases

Page 523

About transactions

A transaction is a logical unit of work done by a DBMS, within which either all the work
in the unit must be completed or none of the work in the unit must be completed. If the
destination DBMS does not support transactions or is not in the scope of a transaction, each
row that is inserted or updated is committed.

About the All and None commit values

In the Data Pipeline painter, the Commit values All and None have the same meaning.

The None commit value is most useful at runtime. For example, some PowerBuilder
applications require either all piped rows to be committed or no piped rows to be committed
if an error occurs. Specifying None allows the application to control the committing and
rolling back of piped rows by means of explicit transaction processing, such as the issuing of
commits and rollbacks in pipeline scripts using COMMIT and ROLLBACK statements.

5.2.3.4 Piping blob data

Blob data is data that is a binary large-object such as a Microsoft Word document or an Excel
spreadsheet. A data pipeline can pipe columns containing blob data.

The name of the datatype that supports blob data varies by DBMS. The following table
shows some examples.

Table 5.17: Examples of datatypes that support blob data

DBMS Datatypes that support blob data

SAP SQL Anywhere LONG BINARY, LONG VARCHAR (if
more than 32 KB)

SAP Adaptive Server Enterprise IMAGE, TEXT

Microsoft SQL Server IMAGE, TEXT

Oracle RAW, LONG RAW

Informix BYTE, TEXT

For information about the datatype that supports blob data in your DBMS, see your DBMS
documentation.

Adding blob columns to a pipeline definition

When you select data to pipe, you cannot select a blob column as part of the data source
because blobs cannot be handled in a SELECT statement. After the pipeline definition is
created, you add blob columns, one at a time, to the definition.

To add a blob column to a pipeline definition

1. Select Design>Database Blob from the menu bar.

If the Database Blob menu item is disabled

The Database Blob menu item is disabled if the pipeline definition does not contain
a unique key for at least one source table, or if the pipeline operation is Refresh,
Append, or Update and the destination table has no blob columns.

Working with Databases

Page 524

The Database Binary/Text Large Object dialog box displays. The Table box has a drop-
down list of tables in the pipeline source that have a primary key and contain blob
columns.

2. In the Table box, select the table that contains the blob column you want to add to the
pipeline definition.

For example, in the PB Demo DB, the ole table contains a blob column named Object
with the large binary datatype.

3. In the Large Binary/Text Column box, select a column that has a blob datatype.

4. In the Destination Column box, change the name of the destination column for the blob
if you want to.

5. If you want to add the column and see changes you make without closing the dialog box,
click Apply after each change.

When you have specified the blob source and destination as needed, click OK.

To edit the source or destination name of the blob column in the pipeline definition

• Display the blob column's pop-up menu and select Properties.

To delete a blob column from the pipeline definition

• Display the blob column's pop-up menu and select Clear.

Executing a pipeline with blob columns

After you have completed the pipeline definition by adding one or more blob columns, you
can execute the pipeline. When you do, rows are piped a block at a time, depending on the
Commit value. For a given block, Row 1 is inserted, then Row 1 is updated with Blob 1, then
Row 1 is updated with Blob 2, and so on. Then Row 2 is inserted, and so on until the block is
complete.

If a row is not successfully piped, the blob is not piped. Blob errors display, but the blob itself
does not display. When you correct a row and execute the pipeline, the pipeline pipes the
blob.

5.2.3.5 Changing the destination and source databases

Changing the destination

When you create a pipeline, you can change the destination database. If you want to pipe the
same data to more than one destination, you can change the destination database again and re-
execute.

To change the destination database

• Click the Destination button in the PainterBar, or select File>Destination Connect from
the menu bar.

Changing the source

Working with Databases

Page 525

Normally you would not change the source database, because your pipeline definition is
dependent on it, but if you need to (perhaps because you are no longer connected to that
source), you can.

To change the source database

• Select File>Source Connect from the menu bar.

Source changes when active profile changes

When you open a pipeline in the Data Pipeline painter, the source database becomes
the active connection. If you change the active connection in the Database painter
when the Data Pipeline painter is open, the source database in the Data Pipeline
painter changes to the new active connection automatically.

Working with database profiles

At any time in the Data Pipeline painter, you can edit an existing database profile or create a
new one.

To edit or create a database profile

• Click the Database Profile button in the PainterBar and then click the Edit button or the
New button.

For information about how to edit or define a database profile, see Section 1.1.4, “Using
database profiles” in Connecting to Your Database.

5.2.4 Correcting pipeline errors

If the pipeline cannot pipe certain rows to the destination table for some reason,
PowerBuilder displays the following information for the error rows:

• Name of the table in the destination database

• Pipeline operation you chose in the Option box

• Error messages to identify the problem with each row

• Data values in the error rows

• Source and destination column information

What you can do

You can correct the error rows by changing one or more of their column values so the
destination table will accept them, or you can ignore the error rows and return to the Data
Pipeline painter workspace. If you return to the workspace, you cannot redisplay the error
rows without re-executing the pipeline.

Before you return to the workspace

You might want to print the list of errors or save them in a file. Select File>Print or
File>Save As from the menu bar.

Working with Databases

Page 526

To return to the Data Pipeline painter workspace without correcting errors:

• Click the Design button.

To correct pipeline errors:

1. Change data values for the appropriate columns in the error rows.

2. Click the Update DB button, or select Design>Update Database from the menu bar.

PowerBuilder pipes rows in which errors were corrected to the destination table and
displays any remaining errors.

3. Repeat steps 1 and 2 until all errors are corrected.

The Data Pipeline painter workspace displays.

Viewing an error message

Sometimes you cannot see an entire error message because the column is not wide enough.
Move the pointer to the error message and press the Right Arrow key to scroll through it. You
can also drag the Error Message column border to the width needed.

Making the error messages shorter

For ODBC data sources, you can set the MsgTerse database parameter in the
destination database profile to make the error messages shorter. If you type MsgTerse
= 'Yes', then the SQLSTATE error number does not display. For more information on
the MsgTerse parameter, see Section 1.1.93, “MsgTerse” in Connection Reference.

5.2.5 Saving a pipeline

When you have generated a pipeline definition in the Data Pipeline painter workspace, you
should save the pipeline. You can then reuse it later.

To save a pipeline:

• Click the Save button, or select File>Save from the menu bar.

For a new pipeline

When you save a pipeline for the first time, you must specify a name. The name can be any
valid identifier with up to 80 characters. A common convention is to prefix the name with the
string pipe_. You can also specify the library in which the pipeline is saved.

5.2.6 Using an existing pipeline

If you save a pipeline, you can modify and execute it any time. You can also pipe data that
might have changed since the last pipeline execution or pipe data to other databases.

To use an existing pipeline:

1. Click the Open button in the PowerBar.

Working with Databases

Page 527

2. In the Open dialog box, select the Pipelines object type in the Object Type drop-down
list, select the library, select the pipeline you want to execute, and click OK.

In the Open dialog box, pipelines in the selected libraries are listed. If you do not see
the pipeline you want, close the dialog box and add the library you need to the target's
library search path.

If you want to change the pipeline operation, select a new option from the Options drop-
down list in the workspace.

3. Modify the pipeline definition as needed.

4. Execute and/or save the pipeline.

5.2.7 Pipeline examples

Updating data in a destination table

You might want to pipe data and then update the data often.

To update a destination table:

1. Click the Pipeline button, select an existing pipeline that you executed before, and click
OK.

The pipeline definition displays. Since this pipeline has been executed before, the table
exists in the destination database.

2. Select the Update option in the pipeline definition.

3. Execute the pipeline.

The destination table is updated with current data from the source database.

Reproducing a table definition with no data

You can force a pipeline to create a table definition and not pipe data. To do this, you must
use Quick Select, SQL Select, or Query as the data source. It is easiest to do it using SQL
Select.

To reproduce a table definition with no data:

1. Click the Pipeline button, click New, select SQL Select as the data source and specify
the source and destination databases, and click OK.

2. In the Select painter, open the table you want to reproduce and select all columns.

3. On the Where tab page, type an expression that will never evaluate to true, such as 1 = 2.

4. Click the SQL Select button to create the pipeline definition.

5. Select the Extended Attributes check box.

6. Click the Execute button to execute the pipeline.

Working with Databases

Page 528

The table definition is piped to the destination database, but no rows of data are piped.
You can open the new table in the Database painter and then click the Grid, Table, or
Freeform button to view the data. As specified, there is no data.

If you use a data source other than SQL Select, you can follow the previous procedure,
but you need to edit the data source of the pipeline to open the Select painter in step 2.

Piping a table to many databases

In the Data Pipeline painter workspace, you can execute a pipeline many times with a
different destination database each time.

To pipe a table to many databases:

1. Select File>Destination Connect from the menu bar to change the destination to the
database you want.

2. Execute the pipeline.

3. Repeat steps 1 and 2 for each database you want.

Working with DataWindows

Page 529

6 Working with DataWindows
This part describes how to build DataWindow objects to retrieve, present, and manipulate
data in your applications.

6.1 Defining DataWindow Objects

About this chapter

The applications you build are centered around your organization's data. This chapter
describes how to define DataWindow objects to display and manipulate the data.

6.1.1 About DataWindow objects

A DataWindow object is an object you use to retrieve, present, and manipulate data from a
relational database or other data source (such as an Excel worksheet or Web service).

DataWindow objects have knowledge about the data they are retrieving. You can specify
display formats, presentation styles, and other data properties so that users can make the most
meaningful use of the data.

6.1.1.1 DataWindow object examples

You can display the data in the format that best presents the data to your users.

Edit styles

If a column can take only a small number of values, you can have the data appear as radio
buttons in a DataWindow object so that users know what their choices are.

Figure 6.1:

Display formats

If a column displays phone numbers, salaries, or dates, you can specify the format
appropriate to the data.

Working with DataWindows

Page 530

Figure 6.2:

Validation rules

If a column can take numbers only in a specific range, you can specify a simple validation
rule for the data, without writing any code, to make sure users enter valid data.

Enhancing DataWindow objects

If you want to enhance the presentation and manipulation of data in a DataWindow object,
you can include computed fields, pictures, and graphs that are tied directly to the data
retrieved by the object.

6.1.1.2 How to use DataWindow objects

Before you can use a DataWindow object, you need to build the object. To do that you can
go to the DataWindow painter, which lets you create and edit DataWindow objects. It also
lets you make PSR (Powersoft report) files, which you might also want to use in applications.
A PSR file contains a report definition—essentially a nonupdatable DataWindow object—as
well as the data contained in that report when the PSR file was created.

This section describes the overall process for creating and using DataWindow objects. You
can use DataWindow objects in client/server, Web-based, and multitier applications. For
more information about using DataWindow objects in different kinds of applications and
writing code that interacts with DataWindow objects, see Section 1.2, “Using DataWindow
Objects” in DataWindow Programmers Guide.

To use DataWindow objects in an application

1. Create the DataWindow object using one of the DataWindow wizards on the
DataWindow tab page of the New dialog box.

The wizard helps you define the data source, presentation style, and other basic
properties of the object, and the DataWindow object displays in the DataWindow
painter. In this painter, you define additional properties for the DataWindow object, such
as display formats, validation rules, and sorting and filtering criteria.

Working with DataWindows

Page 531

2. For more information about creating a DataWindow object, see Building a DataWindow
object.

3. Place a DataWindow control in a window or user object.

It is through this control that your application communicates with the DataWindow
object you created in the DataWindow painter.

4. Associate the DataWindow control with the DataWindow object.

5. Write scripts in the Window painter to manipulate the DataWindow control and its
contents.

For example, you use the PowerScript Retrieve method to retrieve data into the
DataWindow control.

You can write scripts for the DataWindow control to deal with error handling, sharing
data between DataWindow controls, and so on.

Reports versus DataWindow objects

Reports and DataWindow objects are the same objects. You can open and modify both in
the DataWindow painter. However, a report is not updatable and can only be used to present
data. For information about how you can specify whether users can update the data in a
DataWindow object, see Controlling Updates in DataWindow objects.

6.1.2 Choosing a presentation style

The presentation style you select for a DataWindow object determines the format
PowerBuilder uses to display the DataWindow object in the Design view. You can use the
format as displayed or modify it to meet your needs.

When you create a DataWindow object, you can choose from the presentation styles listed in
the following table.

Table 6.1: DataWindow presentation styles

Using this DataWindow wizard You create a new DataWindow object

Composite That includes other DataWindow objects

Crosstab With summary data in a spreadsheet-like grid

Freeform With the data columns going down the page
and labels next to each column

Graph With data displayed in a graph

Grid With data in row and column format with
grid lines separating rows and columns

Group With data in rows that are divided into
groups

Label That presents data as labels

N-Up With two or more rows of data next to each
other

Working with DataWindows

Page 532

Using this DataWindow wizard You create a new DataWindow object

OLE 2.0 That is a single OLE object

RichText That combines input fields that represent
database columns with formatted text

Tabular With data columns going across the page and
headers above each column

TreeView With data grouped in rows in a TreeView;
the TreeView displays the data hierarchically
in a way that allows you to expand and
collapse it

6.1.2.1 Using the Tabular style

The Tabular presentation style presents data with the data columns going across the page and
headers above each column. As many rows from the database will display at one time as can
fit in the DataWindow object. You can reorganize the default layout any way you want by
moving columns and text:

Figure 6.3:

6.1.2.2 Using the Freeform style

The Freeform presentation style presents data with the data columns going down the page
and labels next to each column. You can reorganize the default layout any way you want by
moving columns and text. The Freeform style is often used for data entry forms.

Working with DataWindows

Page 533

Figure 6.4:

6.1.2.3 Using the Grid style

The Grid presentation style shows data in row-and-column format with grid lines separating
rows and columns. With other styles, you can move text, values, and other objects around
freely in designing the report. With the grid style, the grid lines create a rigid structure of
cells.

An advantage of the Grid style is that users can reorder and resize columns at runtime.

Original Grid report

This grid report shows employee information. Several of the columns have a large amount of
extra white space:

Figure 6.5:

Working with DataWindows

Page 534

Grid report with modified column widths

This grid report was created from the original one by decreasing the width of some columns:

Figure 6.6:

6.1.2.4 Using the Label style

The Label presentation style shows data as labels. With this style you can create mailing
labels, business cards, name tags, index cards, diskette labels, file folder labels, and many
other types of labels.

Mailing labels

Figure 6.7:

Working with DataWindows

Page 535

Figure 6.8: Business cards

Figure 6.9: Name tags

Specifying label properties

If you choose the Label style, you are asked to specify the properties for the label after
specifying the data source. You can choose from a list of predefined label types or enter your
own specifications manually.

Working with DataWindows

Page 536

Where label definitions come from

PowerBuilder gets the information about the predefined label formats from a preferences file
called pblab.ini.

6.1.2.5 Using the N-Up style

The N-Up style presents two or more rows of data next to each other. It is similar to the Label
style in that you can have information from several rows in the database across the page.
However, the information is not meant to be printed on labels. The N-Up presentation style is
useful if you have periodic data; you can set it up so that each period repeats in a row.

After you select a data source, you are asked how many rows to display across the page.

For each column in the data source, PowerBuilder defines n columns in the DataWindow
object (column_1 to column_n), where n is the number of rows you specified.

Table example

For a table of daily stock prices, you can define the DataWindow object as five across, so
each row in the DataWindow object displays five days' prices (Monday through Friday).
Suppose you have a table with two columns, day and price, that record the closing stock price
each day for three weeks.

In the following n-up DataWindow object, 5 was selected as the number of rows to display
across the page, so each line in the DataWindow object shows five days' stock prices. A
computed field was added to get the average closing price in the week:

Figure 6.10:

About computed fields in n-up DataWindow objects

You use subscripts, such as price[0], to refer to particular rows in the detail band in n-
up DataWindow objects.

For more information, see Enhancing DataWindow Objects.

Here is the DataWindow object in the Preview view:

Working with DataWindows

Page 537

Figure 6.11:

Another way to get multiple-column DataWindow objects

In an n-up DataWindow object, the data is displayed across and then down. If you
want your data to go down the page and then across in multiple columns, as in a
phone list, you should create a standard tabular DataWindow object, then specify
newspaper columns.

For more information on newspaper columns, see Enhancing DataWindow Objects.

6.1.2.6 Using the Group style

The Group presentation style provides an easy way to create grouped DataWindow objects,
where the rows are divided into groups, each of which can have statistics calculated for it.
Using this style generates a tabular DataWindow object that has grouping properties defined.

This Group style report groups by department and lists employees and salaries. It also
includes a subtotal and a grand total for the salary column:

Working with DataWindows

Page 538

Figure 6.12:

For more about the Group presentation style, see Filtering, Sorting, and Grouping Rows.

6.1.2.7 Using the Composite style

The Composite presentation style allows you to combine multiple DataWindow objects in the
same object. It is particularly handy if you want to print more than one DataWindow object
on a page.

This composite report consists of three nested tabular reports. One of the tabular reports
includes a graph:

Working with DataWindows

Page 539

Figure 6.13:

For more about the Composite presentation style, see Using Nested Reports.

6.1.2.8 Using the Graph and Crosstab styles

In addition to the (preceding) text-based presentation styles, PowerBuilder provides two
styles that allow you to display information graphically: Graph and Crosstab.

There is a graph report in the composite report in Using the Composite style. This crosstab
report counts the number of employees that fit into each cell. For example, there are three
employees in department 100 who make between $30,000 and $39,999:

Working with DataWindows

Page 540

Figure 6.14:

For more information about these two presentation styles, see Working with Graphs, and
Working with Crosstabs.

6.1.2.9 Using the OLE 2.0 style

The OLE presentation style lets you link or embed an OLE object in a DataWindow object.

For information about the OLE 2.0 presentation style, see Using OLE in a DataWindow
Object.

6.1.2.10 Using the RichText style

The RichText presentation style lets you combine input fields that represent database
columns with formatted text.

For more information about the RichText presentation style, see Working with Rich Text.

6.1.2.11 Using the TreeView style

The TreeView presentation style provides an easy way to create DataWindow objects that
display hierarchical data in a TreeView, where the rows are divided into groups that can be
expanded and collapsed. Icons (+ or –) show whether the state of a group in the TreeView is
expanded or collapsed, and lines connect parents and their children.

This TreeView style report groups by manager ID and state and lists employee information
and salaries:

Working with DataWindows

Page 541

Figure 6.15:

For more about the TreeView presentation style, see Working with TreeViews.

6.1.3 Building a DataWindow object

You use a wizard to build a new DataWindow object. To create a DataWindow object or
use the DataWindow painter, you must be connected to the database whose data you will
be accessing. When you open the DataWindow painter or select a data source in the wizard,
PowerBuilder connects you to the DBMS and database you used last. If you need to connect
to a different database, do so before working with a DataWindow object.

Column limit

There is a limit of 1000 on the number of columns in a DataWindow object.

For information about changing your database connection, see Chapter 4, Working with
Database Connections in Connecting to Your Database.

To create a new DataWindow object:

1. Select File>New from the menu bar and select the DataWindow tab.

Working with DataWindows

Page 542

If there is more than one target in the workspace, select the target where you want the
DataWindow to be created from the drop-down list at the bottom of the dialog box.

2. Choose a presentation style for the DataWindow object.

The presentation style determines how the data is displayed. See Choosing a
presentation style. When you choose the presentation style, the appropriate DataWindow
object wizard starts.

If you want data to be retrieved in the Preview view when the DataWindow object
opens, select the Retrieve on Preview check box.

3. Define the data source.

See Selecting a data source.

4. Choose options for the DataWindow object and click Next.

See Choosing DataWindow object-wide options.

5. Review your specifications and click Finish.

The DataWindow object displays in the Design view.

6. Save the DataWindow object in a library.

6.1.4 Selecting a data source

The data source you choose determines how you select the data that will be used in the
DataWindow object.

About the term data source

The term data source used here refers to how you use the DataWindow painter to
specify the data to retrieve into the DataWindow object. Data source can also refer
to where the data comes from, such as a SQL Anywhere data source (meaning a
database file) or an XML data source (meaning an XML file). Part I, “Connecting to
Your Database” uses the term data source in this second sense.

If the data is in the database

If the data for the DataWindow object will be retrieved from a database, choose one of the
data sources from the following table.

Table 6.2: Data source choices for data from a database

Data source Use when

Quick Select The data is from a single table (or from tables that are related
through foreign keys) and you need only to choose columns,
selection criteria, and sorting.

SQL Select You want more control over the SQL SELECT statement generated
for the data source or your data is from tables that are not connected
through a key. For example, you need to specify grouping,

Working with DataWindows

Page 543

Data source Use when
computed columns, or retrieval arguments within the SQL SELECT
statement.

Query The data has been defined as a query.

Stored Procedure The data is defined in a stored procedure.

If the data is not in a database

Web Service data source. Select the Web Service data source if you want to populate the
DataWindow object with data you obtain from a Web service.

For more information, see Using a Web service data source.

External data source. Select the External data source if:

• The DataWindow object will be populated programmatically.

• Data will be imported from a DDE application.

• Data will be imported from an external file, such as an XML, comma-separated values
(CSV), tab-separated text (TXT), or dBASE (DBF) file.

You can also use an ODBC driver to access data from a file.

For more information, see Section 2.1, “Using the ODBC Interface” in Connecting to Your
Database.

After you choose a data source in the various DataWindow wizards, you specify the data. The
data source you choose determines what displays in the wizards and how you define the data.

Why use a DataWindow if the data is not from a DBMS

Even when the data is not coming from the database, there are many times when you want to
take advantage of the intelligence of a DataWindow object:

• Data Validation

You have full access to validation rules for data

• Display Formats

You can use any existing display formats to present the data, or create your own

• Edit Styles

You can use any existing edit styles, such as radio buttons and edit masks, to present the
data, or create your own

6.1.5 Using Quick Select

The easiest way to define a data source is using Quick Select.

To define the data using Quick Select:

1. Click Quick Select in the Choose Data Source dialog box in the wizard and click Next.

Working with DataWindows

Page 544

2. Select the table that you will use in the DataWindow object.

For more information, see Selecting a table.

3. Select the columns to be retrieved from the database.

For more information, see Selecting columns.

4. (Optional) Sort the rows before you retrieve data.

For more information, see Specifying sorting criteria.

5. (Optional) Select what data to retrieve.

For more information, see Specifying selection criteria.

6. Click the OK button in the Quick Select dialog box.

You return to the wizard to complete the definition of the DataWindow object.

Quick Select limitations

When you choose Quick Select as your data source, you cannot:

• Specify grouping before rows are retrieved

• Include computed columns

• Specify retrieval arguments for the SELECT statement that are supplied at runtime.

To use these options when you create a DataWindow object, choose SQL Select as your data
source. If you decide later that you want to use retrieval arguments, you can define them by
modifying the data source. For more information, see Enhancing DataWindow Objects.

6.1.5.1 Selecting a table

When you choose Quick Select, the Quick Select dialog box displays. The Tables box lists
tables and views in the current database.

Displaying table comments

To display a comment about a table, position the pointer on the table and click the
right mouse button or select the table.

Which tables and views display?

The DBMS determines what tables and views display. For some DBMSs, all tables and views
display, whether or not you have authorization. If you select a table or view you are not
authorized to access, the DBMS issues a message.

For ODBC databases, the tables and views that display depend on the driver for the data
source. SQL Anywhere does not restrict the display, so all tables and views display, whether
or not you have authorization.

Tables with key relationships

Working with DataWindows

Page 545

When you select a table, the table's column names display in the Columns box, and any
tables having a key relationship with the selected table display in the Tables box. These
tables are indented and marked with an arrow to show their relationship to the selected table.
You can select any of these related tables if you want to include columns from them in the
DataWindow object.

Figure 6.16:

Meaning of the up and down arrows

An arrow displays next to a table to indicate its relationship to the selected table. The arrow
always points in the many direction of the relationship—toward the selected table (up) if
the selected table contains a foreign key in the relationship and away from the selected table
(down) if the selected table contains a primary key in the relationship:

Working with DataWindows

Page 546

Figure 6.17:

In this preceding illustration, the selected table is sales_order. The Up arrows indicate that
a foreign key in the sales_order table is mapped to the primary key in the customer and
fin_code tables. The Down arrow indicates that the sales_order_items table contains a foreign
key mapped to the primary key in the sales_order table.

How columns from additional tables display

The column names of selected tables display in the Columns box. If you select more than one
table, the column names are identified as:

tablename.columnname

For example, department.dept_name and employee.emp_id display when the Employee table
and the Department table are selected.

To return to the original table list

Click the table you first selected at the top of the table list.

6.1.5.2 Selecting columns

You can select columns from the primary table and from its related tables. Select the table
whose columns you want to use in the Tables box, and add columns from the Columns box:

• To add a column, select it in the Columns box.

• To add all the columns that display in the Columns box, click Add All.

• To remove a column, deselect it in the Columns box.

• To view comments that describe a table or column, position the pointer on a table or
column name, and press and hold the right mouse button.

As you select columns, they display in the grid at the bottom of the dialog box in the order
in which you select them. If you want the columns to display in a different order in the
DataWindow object, select a column name you want to move in the grid and drag it to the
new location.

Working with DataWindows

Page 547

6.1.5.3 Specifying sorting criteria

In the grid at the bottom of the Quick Select dialog box, you can specify if you want the
retrieved rows to be sorted. As you specify sorting criteria, PowerBuilder builds an ORDER
BY clause for the SELECT statement.

To sort retrieved rows on a column

1. Click in the Sort row for the column you want to sort on.

PowerBuilder displays a drop-down list:

Figure 6.18:

2. Select the sorting order for the rows: Ascending or Descending.

Multilevel sorts

You can specify as many columns for sorting as you want. PowerBuilder processes the
sorting criteria left to right in the grid: the first column with Ascending or Descending
specified becomes the highest level sorting column, the next column with Ascending or
Descending specified becomes the next level sorting column, and so on.

If you want to do a multilevel sort that does not match the column order in the grid, drag the
columns to the correct order and then specify the columns for sorting.

6.1.5.4 Specifying selection criteria

You can enter selection criteria in the grid to specify which rows to retrieve. For example,
instead of retrieving data about all employees, you might want to limit the data to employees
in Sales and Marketing, or to employees in Sales who make more than $80,000.

As you specify selection criteria, PowerBuilder builds a WHERE clause for the SELECT
statement.

To specify selection criteria

1. Click the Criteria row below the first column for which you want to select the data to
retrieve.

2. Enter an expression, or if the column has an edit style, select or enter a value.

3. If the column is too narrow for the criterion, drag the grid line to enlarge the column.
This enlargement does not affect the column size in a DataWindow object.

4. Enter additional expressions until you have specified the data you want to retrieve.

Working with DataWindows

Page 548

About edit styles

If a column has an edit style associated with it in the extended attribute system tables
(that is, the association was made in the Database painter), if possible, the edit style
is used in the grid. Drop-down list boxes are used for columns with code tables and
columns using the CheckBox and RadioButton edit styles.

SQL operators supported in Quick Select

You can use these SQL relational operators in the retrieval criteria:

Table 6.3: SQL relational operators used in retrieval criteria

Operator Meaning

= Is equal to (default operator)

> Is greater than

< Is less than

< > Is not equal to

> = Is greater than or equal to

< = Is less than or equal to

LIKE Matches this pattern

NOT LIKE Does not match this pattern

IN Is in this set of values

NOT IN Is not in this set of values

Because = is the default operator, you can enter the value 100 instead of = 100, or the value
New Hampshire instead of = New Hampshire.

Comparison operators

You can use the LIKE, NOT LIKE, IN, and NOT IN operators to compare expressions.

• Use LIKE to search for strings that match a predetermined pattern. Use NOT LIKE to find
strings that do not match a predetermined pattern. When you use LIKE or NOT LIKE, you
can use wildcards:

The percent sign (%), like the wildcard asterisk (*) used in many applications, matches
multiple characters. For example, Good% matches all names that begin with Good.

The underscore character (_) matches a single character. For example, Good _ _ _ matches
all seven-letter names that begin with Good.

• Use IN to compare and include a value that is in a set of values. Use NOT IN to compare
and include values that are not in a set of values. For example, the following clause selects
all employees in department 100, 200, or 500:

SELECT * from employee
WHERE dept_id IN (100, 200, 500)

• Using NOT IN in this clause would exclude employees in those departments.

Working with DataWindows

Page 549

Connection operators

You can use the OR and AND logical operators to connect expressions.

PowerBuilder makes some assumptions based on how you specify selection criteria. When
you specify:

• Criteria for more than one column on one line

PowerBuilder assumes a logical AND between the criteria. A row from the database is
retrieved if all criteria in the line are met.

• Two or more lines of selection criteria

PowerBuilder assumes a logical OR. A row from the database is retrieved if the criterion in
any of the lines is met.

To override these defaults, begin an expression with the AND or OR operator:

Table 6.4:

Operator Meaning

OR The row is selected if one expression OR
another expression is true

AND The row is selected if one expression AND
another expression are true

This technique is particularly handy when you want to retrieve a range of values in a column.
See example 6 below.

6.1.5.4.1 SQL expression examples

The first six examples in this section all refer to a grid that contains three columns from the
employee table: emp_id, dept_id, and salary.

Example 1

The expression <50000 in the Criteria row in the salary column in the grid retrieves
information for employees whose salaries are less than $50,000.

Figure 6.19:

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
 employee.dept_id,
 employee.salary

Working with DataWindows

Page 550

FROM employee
WHERE employee.salary < '50000'

Example 2

The expression 100 in the Criteria row in the DeptId column in the grid retrieves information
for employees who belong to department 100.

Figure 6.20:

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
 employee.dept_id,
 employee.salary
FROM employee
WHERE employee.dept_id ='100'

Example 3

The expression >300 in the Criteria row in the EmpId column and the expression <50000 in
the Criteria row in the Salary column in the grid retrieve information for any employee whose
employee ID is greater than 300 and whose salary is less than $50,000.

Figure 6.21:

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
 employee.dept_id,
 employee.salary
FROM employee
WHERE (employee.emp_id >'300') AND
 employee.salary <'50000'

Example 4

The expressions 100 in the Criteria row and >300 in the Or row for the DeptId column,
together with the expression <50000 in the Criteria row in the Salary column, retrieve
information for employees who belong to:

Working with DataWindows

Page 551

• Department 100 and have a salary less than $50,000

or

• A department whose ID is greater than 300, no matter what their salaries

Figure 6.22:

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
 employee.dept_id,
 employee.salary
FROM employee
WHERE (employee.dept_id = '100') AND
 (emplyee.salary < '50000')OR
 (employee.dept_id > '300')

Example 5

The expression IN(100,200) in the Criteria row in the DeptId column in the grid retrieves
information for employees who are in department 100 or 200.

Figure 6.23:

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
 employee.dept_id,
 employee.salary
FROM employee
WHERE employee.dept_id IN ('100,200')

Example 6

This example shows the use of the word AND in the Or criteria row. In the Criteria row,
>=500 is in the EmpId column and >=30000 is in the Salary column. In the Or row, AND
<=1000 is in the EmpId column and AND <=50000 is in the Salary column. These criteria
retrieve information for employees who have an employee ID from 500 to 1000 and a salary
from $30,000 to $50,000.

Working with DataWindows

Page 552

Figure 6.24:

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_id,
 employee.dept_id,
 employee.salary
FROM employee
WHERE (((employee.emp_id >='500') AND
 (employee.salary >='30000') AND
 (employee.emp_id <='1000') AND
 (employee.salary <='50000')))

Example 7

In a grid with three columns: emp_last_name, emp_first_name, and salary, the expressions
LIKE C% in the Criteria row and LIKE G% in the Or row in the emp_last_name column
retrieve information for employees who have last names that begin with C or G.

Figure 6.25:

The SELECT statement that PowerBuilder creates is:

SELECT employee.emp_last_name,
 employee.emp_first_name,
 employee.salary
FROM employee
WHERE (((employee.emp_last_name LIKE 'C%'))OR
 ((employee.emp_last_name LIKE 'G%')))

Providing SQL functionality to users

You can allow your users to specify selection criteria in a DataWindow object using these
techniques at runtime:

• You can automatically pop up a window prompting users to specify criteria each time, just
before data is retrieved.

For more information, see Enhancing DataWindow Objects.

• You can place the DataWindow object in query mode using the Modify method.

For more information, see Section 1.3.4, “Providing query ability to users” in DataWindow
Programmers Guide.

Working with DataWindows

Page 553

6.1.6 Using SQL Select

In specifying data for a DataWindow object, you have more options for specifying complex
SQL statements when you use SQL Select as the data source. When you choose SQL Select,
you go to the SQL Select painter, where you can paint a SELECT statement that includes the
following:

• More than one table

• Selection criteria (WHERE clause)

• Sorting criteria (ORDER BY clause)

• Grouping criteria (GROUP BY and HAVING clauses)

• Computed columns

• One or more arguments to be supplied at runtime

Saving your work as a query

While in the SQL Select painter, you can save the current SELECT statement as a
query by selecting File>Save As from the menu bar. Doing so allows you to easily
use this data specification again in other DataWindows.

For more information about queries, see Defining queries.

To define the data using SQL Select:

1. Click SQL Select in the Choose Data Source dialog box in the wizard and click Next.

The Select Tables dialog box displays.

2. Select the tables and/or views that you will use in the DataWindow object.

For more information, see Selecting tables and views.

3. Select the columns to be retrieved from the database.

For more information, see Selecting columns.

4. Join the tables if you have selected more than one.

For more information, see Joining tables.

5. Select retrieval arguments if appropriate.

For more information, see Using retrieval arguments.

6. Limit the retrieved rows with WHERE, ORDER BY, GROUP BY, and HAVING
criteria, if appropriate.

For more information, see Specifying selection, sorting, and grouping criteria.

7. If you want to eliminate duplicate rows, select Distinct from the Design menu. This adds
the DISTINCT keyword to the SELECT statement.

Working with DataWindows

Page 554

8. Click the Return button on the PainterBar.

You return to the wizard to complete the definition of the DataWindow object.

9. Click OK.

6.1.6.1 Selecting tables and views

After you have chosen SQL Select, the Select Tables dialog box displays in front of the
Table Layout view of the SQL Select painter.What tables and views display in the dialog box
depends on the DBMS. For some DBMSs, all tables and views display, whether or not you
have authorization. Then, if you select a table or view you are not authorized to access, the
DBMS issues a message.

For ODBC databases, the tables and views that display depend on the driver for the data
source. SQL Anywhere does not restrict the display, so all tables and views display, whether
or not you have authorization.

To select the tables and views

• Do one of the following:

• Click the name of each table or view you want to open.

Each table you select is highlighted. (To deselect a table, click it again.) Click the
Open button to close the Select Tables dialog box.

• Double-click the name of each table or view you want to open.

Each object opens immediately behind the Select Tables dialog box. Click the Cancel
button to close the Select Tables dialog box.

Representations of the selected tables and views display. You can move or size each
table to fit the space as needed.

Below the Table Layout view, several tabbed views also display by default. You use the
views (for example, Compute, Having, Group) to specify the SQL SELECT statement in
more detail. You can turn the views on and off from the View menu on the menu bar.

Figure 6.26:

Specifying what is displayed

You can display the label and datatype of each column in the tables (the label information
comes from the extended attribute system tables). If you need more space, you can choose to
hide this information.

Working with DataWindows

Page 555

To hide or display comments, datatypes, and labels

1. Position the pointer on any unused area of the Table Layout view and select Show from
the pop-up menu.

A cascading menu displays.

2. Select or clear Datatypes, Labels, or Comments as needed.

Colors in the SQL Select painter

The colors used by the SQL Select painter to display the Table Layout view background and
table information are specified in the Database painter. You can also set colors for the text
and background components in the table header and detail areas.

For more information about specifying colors in the Database painter, see Modifying
database preferences.

Adding and removing tables and views

You can add tables and views to your Table Layout view at any time.

Table 6.5: Adding tables and views in the SQL Select painter

To do this Do this

Add tables or views Click the Tables button in the PainterBar and
select tables or views to add

Remove a table or view Display its pop-up menu and select Close

Remove all tables and views Select Design>Undo All from the menu bar

You can also remove individual tables and views from the Table Layout view, or clear them
all at once and begin selecting a new set of tables.

How PowerBuilder joins tables

If you select more than one table in the SQL Select painter, PowerBuilder joins columns
based on their key relationship.

For information about joins, see Joining tables.

6.1.6.2 Selecting columns

You can click each column you want to include from the table representations in the Table
Layout view. PowerBuilder highlights selected columns and places them in the Selection List
at the top of the SQL Select painter.

To reorder the selected columns

• Drag a column in the Selection List with the mouse. Release the mouse button when the
column is in the proper position in the list.

Figure 6.27:

To select all columns from a table

• Move the pointer to the table name and select Select All from the pop-up menu.

Working with DataWindows

Page 556

To include computed columns

1. Click the Compute tab to make the Compute view available (or select View>Compute if
the Compute view is not currently displayed).

Each row in the Compute view is a place for entering an expression that defines a
computed column.

2. Enter one of the following:

• An expression for the computed column. For example: salary/12

• A function supported by your DBMS. For example, the following is a SQL Anywhere
function:

substr("employee"."emp_fname",1,2)

You can display the pop-up menu for any row in the Compute view. Using the pop-up
menu, you can select and paste the following into the expression:

• Names of columns in the tables used in the DataWindow or pipeline

• Any retrieval arguments you have specified

• Functions supported by the DBMS

About these functions

The functions listed here are provided by your DBMS. They are not PowerBuilder
functions. This is so because you are now defining a SELECT statement that will be
sent to your DBMS for processing.

3. Press the Tab key to get to the next row to define another computed column, or click
another tab to make additional specifications.

PowerBuilder adds the computed columns to the list of columns you have selected.

About computed columns and computed fields

Computed columns you define in the SQL Select painter are added to the SQL statement and
used by the DBMS to retrieve the data. The expression you define here follows your DBMS's
rules.

You can also choose to define computed fields, which are created and processed dynamically
by PowerBuilder after the data has been retrieved from the DBMS. There are advantages
to doing this. For example, work is offloaded from the database server, and the computed
fields update dynamically as data changes in the DataWindow object. (If you have many
rows, however, this updating can result in slower performance.) For more information, see
Enhancing DataWindow Objects.

6.1.6.3 Displaying the underlying SQL statement

As you specify the data for the DataWindow object in the SQL Select painter, PowerBuilder
generates a SQL SELECT statement. It is this SQL statement that will be sent to the DBMS

Working with DataWindows

Page 557

when you retrieve data into the DataWindow object. You can look at the SQL as it is being
generated while you continue defining the data for the DataWindow object.

To display the SQL statement

• Click the Syntax tab to make the Syntax view available, or select View>Syntax if the
Syntax view is not currently displayed.

You may need to use the scroll bar to see all parts of the SQL SELECT statement. This
statement is updated each time you make a change.

Editing the SELECT statement syntactically

Instead of modifying the data source graphically, you can directly edit the SELECT statement
in the SQL Select painter.

Converting from syntax to graphics

If the SQL statement contains unions or the BETWEEN operator, it may not be
possible to convert the syntax back to graphics mode. In general, once you convert the
SQL statement to syntax, you should maintain it in syntax mode.

To edit the SELECT statement

1. Select Design > Convert to Syntax from the menu bar.

PowerBuilder displays the SELECT statement in a text window.

2. Edit the SELECT statement.

3. Do one of the following:

• Select Design > Convert to Graphics from the menu bar to return to the SQL Select
painter.

• Click the Return button to return to the wizard if you are building a new DataWindow
object, or to the DataWindow painter if you are modifying an existing DataWindow
object.

6.1.6.4 Joining tables

If the DataWindow object will contain data from more than one table, you should join the
tables on their common columns. If you have selected more than one table, PowerBuilder
joins columns according to whether they have a key relationship:

• Columns with a primary/foreign key relationship are joined automatically.

• Columns with no key relationship are joined, if possible, based on common column names
and types.

PowerBuilder links joined tables in the SQL Select painter Table Layout view. PowerBuilder
joins can differ depending on the order in which you select the tables, and sometimes the

Working with DataWindows

Page 558

PowerBuilder best-guess join is incorrect, so you may need to delete a join and manually
define a join.

To delete a join

1. Click the join operator connecting the tables.

The Join dialog box displays.

2. Click Delete.

To join tables

1. Click the Join button in the PainterBar.

2. Click the columns on which you want to join the tables.

To create a join other than an equality join, click the join operator in the Table Layout
view.

The Join dialog box displays:

Figure 6.28:

3. Select the join operator you want and click OK.

If your DBMS supports outer joins, outer join options also display in the Join dialog
box.

6.1.6.4.1 Using ANSI outer joins

All PowerBuilder database interfaces provide support for ANSI SQL-92 outer join SQL
syntax generation. PowerBuilder supports both left and right outer joins in graphics mode
in the SQL Select painter, and full outer and inner joins in syntax mode. Depending on your
database interface, you might need to set the OJSyntax DBParm to enable ANSI outer joins.
For more information, see Section 1.1.102, “OJSyntax” in Connection Reference.

Working with DataWindows

Page 559

The syntax for ANSI outer joins is generated according to the following BNF (Backus Naur
form):

OUTER-join ::=
table-reference {LEFT | RIGHT} OUTER JOIN table-reference ON search-condition
table-reference ::=
table_view_name [correlation_name] | OUTER-join

Order of evaluation and nesting

In ANSI SQL-92, when nesting joins, the result of the first outer join (determined by order of
ON conditions) is the operand of the outer join that follows it. In PowerBuilder, an outer join
is considered to be nested if the table-reference on the left of the JOIN has been used before
within the same outer join nested sequence.

The order of evaluation for ANSI syntax nested outer joins is determined by the order of
the ON search conditions. This means that you must create the outer joins in the intended
evaluation order and add nested outer joins to the end of the existing sequence, so that the
second table-reference in the outer join BNF above will always be a table_view_name.

Nesting example

For example, if you create a left outer join between a column in Table1 and a column in
Table2, then join the column in Table2 to a column in Table3, the product of the outer join
between Table1 and Table2 is the operand for the outer join with Table3.

For standard database connections, the default generated syntax encloses the outer joins
in escape notation {oj ...} that is parsed by the driver and replaced with DBMS-specific
grammar:

SELECT Table1.col1, Table2.col1, Table3.col1
FROM {oj {oj Table1 LEFT OUTER JOIN Table2 ON Table1.col1 = Table2.col1}
LEFT OUTER JOIN Table3 ON Table2.col1 = Table3.col1}

Table references

Table references are considered equal when the table names are equal and there is either no
alias (correlation name) or the same alias for both. Reusing the operand on the right is not
allowed, because ANSI does not allow referencing the table_view_name twice in the same
statement without an alias.

Determining left and right outer joins

When you create a join condition, the table you select first in the painter is the left operand of
the outer join. The table that you select second is the right operand. The condition you select
from the Joins dialog box determines whether the join is a left or right outer join.

For example, suppose you select the dept_id column in the employee table, then select the
dept_id column in the department table, then choose the following condition:

employee.dept_id = department.dept_id and rows from department that have no
 employee

The syntax generated is:

SELECT employee.dept_id, department.dept_id
FROM {oj "employee" RIGHT OUTER JOIN "department" ON "employee"."dept_id" =
 "department"."dept_id"}

If you select the condition, rows from employee that have no department, you create a left
outer join instead.

Working with DataWindows

Page 560

Equivalent statements

The syntax generated when you select table A then table B and create a left outer join
is equivalent to the syntax generated when you select table B then table A and create a
right outer join.

For more about outer joins, see your DBMS documentation.

6.1.6.5 Using retrieval arguments

If you know which rows will be retrieved into the DataWindow object at runtime—that is, if
you can fully specify the SELECT statement without having to provide a variable—you do
not need to specify retrieval arguments.

Adding retrieval arguments

If you decide later that you need arguments, you can return to the SQL Select painter to
define the arguments.

Defining retrieval arguments in the DataWindow painter

You can select View>Column Specifications from the menu bar. In the Column
Specification view, a column of check boxes next to the columns in the data source
lets you identify the columns users should be prompted for. This, like the Retrieval
Arguments prompt, calls the Retrieve method.

See Enhancing DataWindow Objects.

If you want the user to be prompted to identify which rows to retrieve, you can define
retrieval arguments when defining the SQL SELECT statement. For example, consider these
situations:

• Retrieving the row in the Employee table for an employee ID entered into a text box. You
must pass that information to the SELECT statement as an argument at runtime.

• Retrieving all rows from a table for a department selected from a drop-down list. The
department is passed as an argument at runtime.

Using retrieval arguments at runtime

If a DataWindow object has retrieval arguments, call the Retrieve method of the
DataWindow control to retrieve data at runtime and pass the arguments in the method.

To define retrieval arguments

1. In the SQL Select painter, select Design > Retrieval Arguments from the menu bar.

2. Enter a name and select a datatype for each argument.

You can enter any valid SQL identifier for the argument name. The position number
identifies the argument position in the Retrieve method you code in a script that
retrieves to retrieve data into the DataWindow object.

3. Click Add to define additional arguments as needed and click OK when done.

Specifying an array as a retrieval argument

Working with DataWindows

Page 561

You can specify an array of values as your retrieval argument. Choose the type of array
from the Type drop-down list in the Specify Retrieval Arguments dialog box. You
specify an array if you want to use the IN operator in your WHERE clause to retrieve
rows that match one of a set of values. For example:

SELECT * from employee WHERE dept_id IN (100, 200, 500)

retrieves all employees in department 100, 200, or 500. If you want your user to specify
the list of departments to retrieve, you define the retrieval argument as a number array
(such as 100, 200, 500).

In the code that does the retrieval, you declare an array and reference it in the Retrieve
method., as in:

int x[3]
// Now populate the array with values
// such as x[1] = sle_dept.Text, and so on,
// then retrieve the data, as follows.
dw_1.Retrieve(x)
Integer x[]= new Integer[3];
x[0]=new Integer(100);
x[1]=new Integer(200);
x[2]=new Integer(500);
dw1.retrieve(x);

PowerBuilder passes the appropriate comma-delimited list to the method (such as 100,
200, 500 if x[1] = 100, x[2] = 200, and x[3] = 500 if x[0] = 100, x[1] = 200, and x[2] =
500).

When building the SELECT statement, you reference the retrieval arguments in the
WHERE or HAVING clause, as described in the next section.

6.1.6.6 Specifying selection, sorting, and grouping criteria

In the SELECT statement associated with a DataWindow object, you can add selection,
sorting, and grouping criteria that are added to the SQL statement and processed by the
DBMS as part of the retrieval.

Table 6.6: Adding selection, sorting, and grouping criteria to the SELECT statement

To do this Use this clause

Limit the data that is retrieved from the
database

WHERE

Sort the retrieved data before it is brought
into the DataWindow object

ORDER BY

Group the retrieved data before it is brought
into the DataWindow object

GROUP BY

Limit the groups specified in the GROUP BY
clause

HAVING

Dynamically selecting, sorting, and grouping data

Selection, sorting, and grouping criteria that you define in the SQL Select painter are
added to the SQL statement and processed by the DBMS as part of the retrieval. You

Working with DataWindows

Page 562

can also define selection, sorting, and grouping criteria that are created and processed
dynamically by PowerBuilder after data has been retrieved from the DBMS.

For more information, see Filtering, Sorting, and Grouping Rows.

Referencing retrieval arguments

If you have defined retrieval arguments, you reference them in the WHERE or HAVING
clause. In SQL statements, variables (called host variables) are always prefaced with a colon
to distinguish them from column names.

For example, if the DataWindow object is retrieving all rows from the Department table
where the dept_id matches a value provided by the user at runtime, your WHERE clause will
look something like this:

WHERE dept_id = :Entered_id

where Entered_id was defined previously as an argument in the Specify Retrieval Arguments
dialog box.

Referencing arrays

Use the IN operator and reference the retrieval argument in the WHERE or HAVING
clause.

For example, if you reference an array defined as deptarray, the expression in the
WHERE view might look like this:

"employee.de pt_id" IN (:deptarray)

You need to supply the parentheses yourself.

Defining WHERE criteria

You can limit the rows that are retrieved into the DataWindow object by specifying selection
criteria that correspond to the WHERE clause in the SELECT statement.

For example, if you are retrieving information about employees, you can limit the employees
to those in Sales and Marketing, or to those in Sales and Marketing who make more than
$50,000.

To define WHERE criteria

1. Click the Where tab to make the Where view available (or select View>Where if the
Where view is not currently displayed).

Each row in the Where view is a place for entering an expression that limits the retrieval
of rows.

2. Click in the first row under Column to display columns in a drop-down list, or select
Columns from the pop-up menu.

3. Select the column you want to use in the left-hand side of the expression.

The equality (=) operator displays in the Operator column.

Working with DataWindows

Page 563

Using a function or retrieval argument in the expression

To use a function, select Functions from the pop-up menu and click a listed function.
These are the functions provided by the DBMS.

To use a retrieval argument, select Arguments from the pop-up menu. You must have
defined a retrieval argument already.

4. (Optional) Change the default equality operator.

5. Enter the operator you want, or click to display a list of operators and select an operator.

6. Under Value, specify the right-hand side of the expression. You can:

• Type a value.

• Paste a column, function, or retrieval argument (if there is one) by selecting Columns,
Functions, or Arguments from the pop-up menu.

• Paste a value from the database by selecting Value from the pop-up menu, then
selecting a value from the list of values retrieved from the database. (It may take some
time to display values if the column has many values in the database.)

• Define a nested SELECT statement by selecting Select from the pop-up menu. In the
Nested Select dialog box, you can define a nested SELECT statement. Click Return
when you have finished.

7. Continue to define additional WHERE expressions as needed.

For each additional expression, select a logical operator (AND or OR) to connect the
multiple boolean expressions into one expression that PowerBuilder evaluates as true or
false to limit the rows that are retrieved.

8. Define sorting (Sort view), grouping (Group view), and limiting (Having view) criteria
as appropriate.

9. Click the Return button to return to the DataWindow painter.

Defining ORDER BY criteria

You can sort the rows that are retrieved into the DataWindow object by specifying columns
that correspond to the ORDER BY clause in the SELECT statement.

For example, if you are retrieving information about employees, you can sort on department,
and then within each department, you can sort on employee ID.

To define ORDER BY criteria

1. Click the Sort tab to make the Sort view available (or select View>Sort if the Sort view
is not currently displayed).

The columns you selected display in the order of selection. You might need to scroll to
see your selections.

Working with DataWindows

Page 564

2. Drag the first column you want to sort on to the right side of the Sort view.

This specifies the column for the first level of sorting. By default, the column is sorted
in ascending order. To specify descending order, clear the Ascending check box.

3. Continue to specify additional columns for sorting in ascending or descending order as
needed.

You can change the sorting order by dragging the selected column names up or down.
With the following sorting specification, rows will be sorted first by department ID, then
by employee ID:

Figure 6.29:

4. Define limiting (Where view), grouping (Group view), and limiting groups (Having
view) criteria as appropriate.

5. Click the SQL Select button to return to the DataWindow painter.

Defining GROUP BY criteria

You can group the retrieved rows by specifying groups that correspond to the GROUP BY
clause in the SELECT statement. This grouping happens before the data is retrieved into the
DataWindow object. Each group is retrieved as one row into the DataWindow object.

For example, if in the SELECT statement you group data from the Employee table by
department ID, you will get one row back from the database for every department represented
in the Employee table. You can also specify computed columns, such as total and average
salary, for the grouped data. This is the corresponding SELECT statement:

SELECT dept_id, sum(salary), avg(salary)
FROM employee
GROUP BY dept_id

If you specify this with the Employee table in the PB Demo DB, you get five rows back, one
for each department.

Figure 6.30:

Working with DataWindows

Page 565

For more about GROUP BY, see your DBMS documentation.

To define GROUP BY criteria

1. Click the Group tab to make the Group view available (or select View>Group if the
Group view is not currently displayed).

The columns in the tables you selected display in the left side of the Group view. You
might need to scroll to see your selections.

2. Drag the first column you want to group onto the right side of the Group view.

This specifies the column for grouping. Columns are grouped in the order in which they
are displayed in the right side of the Group view.

3. Continue to specify additional columns for grouping within the first grouping column as
needed.

To change the grouping order, drag the column names in the right side to the positions
you want.

4. Define sorting (Sort view), limiting (Where view), and limiting groups (Having view)
criteria as appropriate.

5. Click the Return button to return to the DataWindow painter.

Defining HAVING criteria

If you have defined groups, you can define HAVING criteria to restrict the retrieved groups.
For example, if you group employees by department, you can restrict the retrieved groups to
departments whose employees have an average salary of less than $50,000. This corresponds
to:

SELECT dept_id, sum(salary), avg(salary)
FROM employee
GROUP BY dept_id
HAVING avg(salary) < 50000

If you specify this with the Employee table in the PB Demo DB, you will get three rows
back, because there are three departments that have average salaries less than $50,000.

Figure 6.31:

To define HAVING criteria

• Click the Having tab to make the Having view available (or select View>Having if the
Having view is not currently displayed).

Working with DataWindows

Page 566

Each row in the Having view is a place for entering an expression that limits which
groups are retrieved. For information on how to define criteria in the Having view, see
the procedure in Defining WHERE criteria [562].

6.1.7 Using Query

When you choose Query as the data source, you select a predefined SQL SELECT statement
(a query) as specifying the data for your DataWindow object.

To define the data using Query:

1. While using any of the DataWindow wizards, click Query in the Choose Data Source
dialog box, and click Next.

The Select Query dialog box displays.

2. Type the name of a query or use the Browse button to find the query, then click Next.

3. Finish interacting with the DataWindow object wizard as needed for the presentation
style you are using.

To learn how to create queries, see Defining queries.

6.1.8 Using External

If the data for the DataWindow object does not come from a database (either through a native
SAP database interface or through a standard database interface), specify External as the
data source. You then specify the data columns and their types so PowerBuilder can build
the appropriate DataWindow object to hold the data. These columns make up the result set.
PowerBuilder places the columns you specified in the result set in the DataWindow object.

To define the data using External:

1. Click External in the Choose Data Source dialog box in the wizard and click Next.

The Define Result Set dialog box displays for you to specify the first column in the
result set.

2. Enter the name and type of the column.

Available datatypes are listed in the drop-down list. The number datatype is equivalent
to the PowerBuilder double datatype.

3. Click Add to enter the name and type of any additional columns you want in the result
set.

4. Click Next when you have added all the columns you want.

What you do next

In code, you need to tell PowerBuilder how to get data into the DataWindow object in your
application. Typically, you import data at runtime using a method (such as ImportFile or
ImportString) or do some data manipulation and use the SetItem method to populate the
DataWindow.

For more about these methods, see Part I, “DataWindow Reference”.

Working with DataWindows

Page 567

You can also import data values from an external file into the DataWindow object or report.

To import the data values from an external file:

1. Make sure the Preview view of the DataWindow object is selected.

2. Select Rows > Import from the menu bar.

The Select Import File dialog box displays.

3. Select the type of files to list from the List Files of Type drop-down list (an XML, CSV,
TXT, or DBF file).

4. Enter the name of the import file and click OK.

Alternatively, you can select the name from the file list. Use the Drives drop-down list
and the Directories box as needed to display the list of files that includes the one you
want.

6.1.9 Using Stored Procedure

A stored procedure is a set of precompiled and preoptimized SQL statements that performs
some database operation. Stored procedures reside where the database resides, and you can
access them as needed.

Defining data using a stored procedure

You can specify a stored procedure as the data source for a DataWindow object if your
DBMS supports stored procedures.

For information on support for stored procedures, see your database documentation.

If the Stored Procedure icon is not displayed

The icon for the Stored Procedure data source displays in the Choose Data Source
dialog box in the DataWindow object wizards only if the database to which you are
connected supports stored procedures.

To define the data using Stored Procedure:

1. Select Stored Procedure in the Choose Data Source dialog box in the wizard and click
Next.

The Select Stored Procedure dialog box displays a list of the stored procedures in the
current database.

2. Select a stored procedure from the list.

To list system procedures, select the System Procedure check box.

The syntax of the selected stored procedure displays below the list of stored procedures.

3. Specify how you want the result set description built:

• To build the result set description automatically, clear the Manual Result Set check
box and click Next.

Working with DataWindows

Page 568

PowerBuilder executes the stored procedure and builds the result set description for
you.

• To define the result set description manually, select the Manual Result Set check box
and click Next.

In the Define Stored Procedure Result Set dialog box:

• Enter the name and type of the first column in the result set.

• To add additional columns, click Add.

Your preference is saved

PowerBuilder records your preference for building result set descriptions for
stored procedure DataWindow objects in the variable Stored_Procedure_Build in
the PowerBuilder initialization file. If this variable is set to 1, PowerBuilder will
automatically build the result set; if the variable is set to 0, you are prompted to define
the result set description.

4. Continue in the DataWindow wizard as needed for the presentation style you are using.

When you have finished interacting with the wizard, you go to the DataWindow painter
with the columns specified in the result set placed in the DataWindow object.

For information about defining retrieval arguments for DataWindow objects, see
Enhancing DataWindow Objects.

For information about using a stored procedure to update the database, see Using stored
procedures to update the database.

Editing a result set description

After you create a result set that uses a stored procedure, you can edit the result set
description from the DataWindow painter.

To edit the result set description:

1. Select Design>Data Source from the menu bar.

This displays the Column Specification view if it is not already displayed.

2. Select Stored Procedure from the Column Specification view's pop-up menu.

The Modify Stored Procedure dialog box displays.

3. Edit the Execute statement, select another stored procedure, or add arguments.

The syntax is:

execute sp_procname;num arg1 = :arg1, arg2 = :arg2..., argn =:argn

where sp_procname is the name of the stored procedure, num is the stored procedure
group suffix, and arg1, arg2, and argn are the stored procedure's arguments.

Working with DataWindows

Page 569

The group suffix is an optional integer used in some DBMSs to group procedures of the
same name so that they can be dropped together with a single DROP PROCEDURE
statement. For other DBMSs the number is ignored.

4. When you have defined the entire result set, click OK.

You return to the DataWindow painter with the columns specified in the result set
placed in the DataWindow object.

For information about defining retrieval arguments for DataWindow objects, see
Enhancing DataWindow Objects.

6.1.10 Using a Web service data source (Obsolete)

Presentation style requirement

You can use a Web service as the data source for a DataWindow having any of the following
DataWindow presentation styles:

Table 6.7:

Composite Graph Label TreeView

Crosstab Grid N-Up

Freeform Group Tabular

Support for a Web service data source is not available for RichText and OLE presentation
styles.

Using the DataWindow wizard

After you select a supported DataWindow presentation style from the DataWindow tab of the
New dialog box, you select a data source for the DataWindow.

When you select Web Service as the data source and click Next, the DataWindow wizard
opens a page that prompts you to select a WSDL file. The file you select should be in a
publicly accessible location for all members of the development team. You can enter the
URL to a WSDL, ASMX, or XML file, or you can browse a mapped drive for these types of
files.

The Choose WSDL File page of the DataWindow wizard also lets you name the assembly
file that the wizard will create. The assembly file serves as an interface between the
DataWindow and the Web service. If you do not name the assembly file, the wizard will
select a name for you based on the name of the WSDL file entry.

The next step to access a Web service data source is to select a service described in the
WSDL, and then one of its public methods. You must then select a parameter for the
DataWindow to use as the result set for the method.

A DataWindow typically obtains its data from an array of structures. Because a Web service
method can pass an array of structures in one of its arguments rather than in a return value,
the wizard prompts you to select one of the method's arguments or its return value as the
designated result set for the method. If you want data for a single row and column only, you
can select a parameter that has a simple datatype. You can also select a parameter that is an
array of simple datatypes rather than an array of structures.

Working with DataWindows

Page 570

You complete the wizard as you would when using any other type of data source for your
DataWindow. After you complete the wizard, the DataWindow displays in the DataWindow
painter. However, there is no equivalent to the SQL painter for a DataWindow with a Web
service data source. For this type of DataWindow, you cannot select Design>Data Source
from the DataWindow painter menu to change selected columns or modify the DataWindow
syntax.

Runtime requirements on a deployment computer

To run the Web service DataWindow application from a deployment computer,
the assembly file that you generate with the wizard must be copied along with the
application executable and required PowerBuilder runtime DLLs for Web service
applications. For information on the required DLLs and the Runtime Packager tool
that you can use to deploy them, see Section 9.2, “Deploying Applications and
Components” in Application Techniques.

For information on rebuilding an assembly generated by the DataWindow wizard, see
Regenerating an assembly [652].

Datatype mappings

The following table lists .NET datatypes and the DataWindow datatypes to which they map
when you use a .NET Web service as a data source. Arrays are also supported for these
datatypes except for System.Byte.

Table 6.8: Datatype mapping for .NET datatypes

.NET datatype DataWindow datatype

System.Boolean long (Handled as a boolean at runtime.)

System.Byte ulong

System.DateTime datetime (Minimum and maximum dates
for .NET can be outside the range of dates
supported by PowerBuilder. PowerBuilder
does not support dates prior to the year 1000
or after the year 3000.)

System.Decimal decimal

System.Double number

System.Int16 long

System.Int32 long

System.Int64 decimal

System.SByte long

System.Single real

System.String string

System.UInt16 ulong

System.UInt32 ulong

System.UInt64 decimal

Working with DataWindows

Page 571

The DataWindow can also use a Web service data source that has structures for parameters,
as long as the structures are composed of the simple datatypes that can be mapped to
DataWindow datatypes. An array of structures can be mapped to n rows with x columns
where n is the size of the array and x is the number of members in the structure. Nested
structures are not supported.

Using parameters by reference

For a Web service that you create from a PowerBuilder nonvisual object, a result set must be
passed by reference, but it cannot be passed in a method return value. You must use a method
argument to pass the result set and then select that argument in any DataWindow object that
uses the method as its data source.

A parameter passed by reference is a bidirectional [IN,OUT] parameter by definition. The
Web Service DataWindow wizard lets you select a Web service method [OUT] or [IN,OUT]
parameter, instead of the method return value, to pass a result set to a DataWindow object.
However, the parameter you select cannot be used for both a return value and a retrieval
argument by the same DataWindow object.

Database-related functions and events

In the Web Service DataWindow, some database or transaction-related functions and events
are not supported and meaningless because the Web Service DataWindow has no direct
relation to the database. The following functions cannot be used with the Web Service
DataWindow: GetSQLPreview, GetSQLSelect, SetSQLPreview, SetSQLSelect, SetTrans,
and SetTransObject.

The DBError event is also not supported for the Web Service DataWindow. Instead, you can
use the WSError error event to handle errors during retrieve, insert, or update operations.

Using the WSConnection object

Some Web services support or require a user ID and password, and other session-related
properties like firewall settings. The WSConnection object can provide this information for
your DataWindow connections.

You use an instance of the WSConnection object to connect to a Web service by calling the
SetWSObject method.

The following code instantiates a WSConnection object with user-related and authentication
information, then sets the object as the connection object for a Web service data source:

int ii_return
wsconnection ws_1
ws_1 = create wsconnection
ws_1.username = "johndoe"
ws_1.password = "mypassword"
ws_1.endpoint = "myendpoint"
ws_1.authenticationmode = "basic"
ws_1.usewindowsintegratedauthentication = true
ii_return = dw_1.setwsobject (ws_1)

For more information about setting properties for a Web service connection, see
Section 2.152, “WSConnection object (Obsolete)” in Objects and Controls and
Section 9.201, “SetWSObject (Obsolete)” in DataWindow Reference.

For more information about updating the database with a Web service DataWindow, see
Using a Web service to update the database.

Working with DataWindows

Page 572

6.1.11 Using the OData Service (Obsolete)

Creating a DataWindow Using an OData Service

Select the OData Service data source in the DataWindow wizard:

1. Select File > New from the menu bar and select DataWindow.

If there is more than one target, select the target where you want the DataWindow to be
created from the drop-down list.

2. Choose the presentation style for the DataWindow object and click Next.

3. Select the OData Service datasource and click Next.

4. Select the OData profile and click Next.

In the SQL painter:

• You can select one table.

• The Sort, Group, and Having tabs are not available.

• The Results tab is obsolete, because it is used by PowerBuilder .NET.

• In the Where tab you can specify some selection criteria using the WHERE clause for
the SELECT statement.

5. When you complete the query, click OK.

6. Review your specifications and click Finish.

At runtime, the DataWindow or DataStore can manipulate OData service data, which
includes retrieving, updating, inserting, and deleting the data.

Setting the Connection Information for the OData Service

As with other databases, use the SQLCA Transaction object (or user-defined transaction
object) to retrieve and display data from the OData service in a DataWindow or DataStore.

Set the appropriate values for the transaction object.

Connect to the OData service.

Set the transaction object for the DataWindow or DataStore.

Retrieve and update the data.

When the processes are complete, disconnect from the OData service.

The code looks something like this:

SQLCA.DBMS = "ODT"
SQLCA.DBParm = "ConnectString='URI=http://esx2-appserver/TestDataService/
Employee.svc'"
//connect to the service
connect using SQLCA;
dw_1.SetTransObject(SQLCA)
dw_1.Retrieve()
...
//disconnect from the service

Working with DataWindows

Page 573

disconnect using SQLCA;

For more information on using the global Transaction object, see Section 4.1, “Using
Transaction Objects” in Application Techniques.

6.1.12 Choosing DataWindow object-wide options

You can set the default options, such as colors and borders, that PowerBuilder uses in
creating the initial draft of a DataWindow object.

DataWindow generation options are for styles that use a layout made up of bands,
which include Freeform, Grid, Label, N-Up, Tabular, Group, TreeView, and Crosstab.
PowerBuilder maintains a separate set of options for each of these styles.

When you first create any of these style DataWindow objects, you can choose options in the
wizard and save your choices as the future defaults for the style.

To specify default colors and borders for a style:

1. Select Design>Options from the menu bar.

The DataWindow Options dialog box displays.

2. Select the Generation tab page if it is not on top.

3. Select the presentation style you want from the Presentation Style drop-down list.

The values for properties shown on the page are for the currently selected presentation
style.

4. Change one or more of the following properties:

Table 6.9:

Property Meaning for the DataWindow object

Background color The default color for the background.

Text border and color The default border and color used for labels and headings.

Column border and
color

The default border and color used for data values.

Wrap Height
(Freeform only)

The height of the detail band.

When the value is None, the number of columns selected
determines the height of the detail band. The columns display
in a single vertical line.

When the value is set to a number, the detail band height is set
to the number specified and columns wrap within the detail
band.

5. Click OK.

About color selections

If you select Window Background, Application Workspace, Button Face, or Window
Text from the Color drop-down list, the DataWindow object uses the colors specified

Working with DataWindows

Page 574

in the Windows Control Panel on the computer on which the DataWindow object is
running.

Your choices are saved

PowerBuilder saves your generation option choices as the defaults to use when creating a
DataWindow object with the same presentation style.

6.1.13 Generating and saving a DataWindow object

When you have finished interacting with the wizard, PowerBuilder generates the
DataWindow object and opens the DataWindow painter.

When generating the DataWindow object, PowerBuilder might use information from a
set of tables called the extended attribute system tables. If this information is available,
PowerBuilder uses it.

6.1.13.1 About the extended attribute system tables and DataWindow objects

The extended attribute system tables are a set of tables maintained by the Database painter.
They contain information about database tables and columns. Extended attribute information
extends database definitions by recording information that is relevant to using database data
in screens and reports.

For example, labels and headings you defined for columns in the Database painter are used in
the generated DataWindow object. Similarly, if you associated an edit style with a column in
the Database painter, that edit style is automatically used for the column in the DataWindow
object.

When generating a DataWindow object, PowerBuilder uses the following information from
the extended attribute system tables:

Table 6.10:

For PowerBuilder uses

Tables Fonts specified for labels, headings, and data

Columns Text specified for labels and headingsDisplay
formatsValidation rulesEdit styles

If there is no extended attribute information for the database tables and columns you are
using, you can set the text for headings and labels, the fonts, and the display formats in
the DataWindow painter. The difference is that you have to do this individually for every
DataWindow object that you create using the data.

If you want to change something that came from the extended attribute system tables, you
can change it in the DataWindow painter. The changes you make in the DataWindow painter
apply only to the DataWindow object you are working on.

The advantage of using the extended attribute system tables is that it saves time and
ensures consistency. You only have to specify the information once, in the database. Since
PowerBuilder uses the information whenever anyone creates a new DataWindow object with
the data, it is more likely that the appearance and labels of data items will be consistent.

For more information about the extended attribute system tables, see Managing the Database,
and Appendix A, The Extended Attribute System Tables.

Working with DataWindows

Page 575

6.1.13.2 Saving the DataWindow object

When you have created a DataWindow object, you should save it. The first time you save it
you give it a name. As you work, you should save your DataWindow object frequently so that
you do not lose changes.

To save the DataWindow object

1. Select File > Save from the menu bar.

If you have previously saved the DataWindow object, PowerBuilder saves the new
version in the same library and returns you to the DataWindow painter.

If you have not previously saved the DataWindow object, PowerBuilder displays the
Save DataWindow dialog box.

2. (Optional) Enter comments in the Comments box to describe the DataWindow object.

3. Enter a name for the DataWindow object in the DataWindows box.

4. Specify the library in which the DataWindow object is to be saved and click OK.

6.1.13.2.1 Naming the DataWindow object

The DataWindow object name can be any valid PowerBuilder identifier up to 255 contiguous
characters.A common convention is to prefix the name of the DataWindow object with d_.

For information about PowerBuilder identifiers, see Section 1.1.2, “Identifier names” in
PowerScript Reference.

6.1.13.3 Modifying an existing DataWindow object

To modify an existing DataWindow object

1. Select File>Open from the menu bar.

The Open dialog box displays.

2. Select the object type and the library.

PowerBuilder lists the DataWindow objects in the current library.

3. Select the object you want.

PowerBuilder opens the DataWindow painter and displays the DataWindow object. You
can also open a DataWindow object by double-clicking it in the System Tree, or, if it has
been placed in a window or visual user object, selecting Modify DataWindow from the
control's pop-up menu.

To learn how you can modify an existing DataWindow object, see Enhancing
DataWindow Objects.

6.1.14 Defining queries

A query is a SQL SELECT statement created in the Query painter and saved with a name so
that it can be used repeatedly as the data source for a DataWindow object.

Working with DataWindows

Page 576

Queries save time, because you specify all the data requirements just once. For example, you
can specify the columns, which rows to retrieve, and the sorting order in a query. Whenever
you want to create a DataWindow object using that data, simply specify the query as the data
source.

To define a query:

1. Select File>New from the menu bar.

2. In the New dialog box, select the Database tab.

3. Select the Query icon and click OK.

4. Select tables in the Select Tables dialog box and click Open.

You can select columns, define sorting and grouping criteria, define computed columns,
and so on, exactly as you do when creating a DataWindow object using the SQL Select
data source.

For more about defining the SELECT statement, see Using SQL Select.

6.1.14.1 Previewing the query

While creating a query, you can preview it to make sure it is retrieving the correct rows and
columns.

To preview a query

1. Select Design > Preview from the menu bar.

PowerBuilder retrieves the rows satisfying the currently defined query in a grid-style
DataWindow object.

2. Manipulate the retrieved data as you do in the Database painter in the Output view.

You can sort and filter the data, but you cannot insert or delete a row or apply changes to
the database. For more about manipulating data, see Managing the Database.

3. When you have finished previewing the query, click the Close button in the PainterBar
to return to the Query painter.

6.1.14.2 Saving the query

To save a query

1. Select File > Save Query from the menu bar.

If you have previously saved the query, PowerBuilder saves the new version in the same
library and returns you to the Query painter. If you have not previously saved the query,
PowerBuilder displays the Save Query dialog box.

2. Enter a name for the query in the Queries box (see Naming the query [577]).

3. (Optional) Enter comments to describe the query.

These comments display in the Library painter. It is a good idea to use comments to
remind yourself and others of the purpose of the query.

Working with DataWindows

Page 577

4. Specify the library in which to save the query, and click OK.

Naming the query

The query name can be any valid PowerBuilder identifier up to 255 characters. When you
name queries, use a unique name to identify each one. A common convention is to use a
two-part name: a standard prefix that identifies the object as a query (such as q_) and a
unique suffix.For example, you might name a query that displays employee data q_emp_data.
For information about PowerBuilder identifiers, see Section 1.1.2, “Identifier names” in
PowerScript Reference.

6.1.14.3 Modifying a query

To modify a query

1. Select File>Open from the menu bar.

2. Select the Queries object type and then the query you want to modify, and click OK.

3. Modify the query as needed.

6.1.15 What's next

After you have generated your DataWindow object, you will probably want to preview it
to see how it looks. After that, you might want to enhance the DataWindow object in the
DataWindow painter before using it. PowerBuilder provides many ways for you to make
a DataWindow object easier to use and more informative for users. See the next section
Enhancing DataWindow Objects.

6.2 Enhancing DataWindow Objects
About this chapter

Before you put a DataWindow object into production, you can enhance it to make it easier to
use and interpret data. You do that in the DataWindow painter. This chapter describes basic
enhancements you can make to a DataWindow object.

Related topics

Other ways to enhance DataWindow objects are covered in later chapters:

Table 6.11:

Chapter Explains how to

Working with Controls in
DataWindow Objects

Add controls to a DataWindow object and reorganize,
position, and rotate them

Displaying and Validating Data Specify display formats, edit styles, and validation rules
for column data

Filtering, Sorting, and Grouping
Rows

Limit which rows are displayed, the order in which they
are displayed, and whether they are divided into groups

Highlighting Information in
DataWindow Objects

Highlight data by using conditional expressions to modify
the properties of controls in DataWindow objects

Working with DataWindows

Page 578

Chapter Explains how to

Using Nested Reports Place reports inside DataWindow objects

Working with Graphs Use graphs to visually present information retrieved in a
DataWindow object

Working with Crosstabs Use crosstabs to present analyses of data retrieved in a
DataWindow object

Working with TreeViews Use TreeViews to group data and display it hierarchically
in a way that allows you to expand and collapse it

Controlling Updates in
DataWindow objects

Control update capabilities

6.2.1 Working in the DataWindow painter

The DataWindow painter provides views related to the DataWindow object you are working
on. Interacting with these views is how you work in the DataWindow painter.

The following picture shows a DataWindow object in the DataWindow painter with the
default layout.

Figure 6.32:

Design view

The Design view at the top left shows a representation of the DataWindow object and its
controls. You use this view to design the layout and appearance of the DataWindow object.
Changes you make are immediately shown in the Preview view and the Properties view.

Working with DataWindows

Page 579

Preview view

The Preview view in the middle on the left shows the DataWindow object with data as it will
appear at runtime. If the Print Preview toggle (File>Print Preview) is selected, you see the
DataWindow object as it would appear when printed with an optional blue outline that shows
where the page margins are located.

Export/Import Template view for XML

The Export/Import Template view for XML at the bottom left shows a default template for
exporting and importing data in XML format. You can define custom templates for import
and export. The templates are saved with the DataWindow object. For more information, see
Exporting and Importing XML Data.

Export Template view for XHTML

The Export Template view for XHTML (not shown; see XHTML tab at the bottom left)
shows a default template for exporting data in XHTML format. You can define custom
XHTML export templates for customizing XML Web DataWindow generation. The
templates are saved with the DataWindow object.

Properties view

The Properties view at the top right displays the properties for the currently selected
control(s) in the DataWindow object, for the currently selected band in the DataWindow
object, or for the DataWindow object itself. You can view and change the values of
properties in this view.

Control List view

The Control List in the stacked pane at the bottom right view lists all controls in the
DataWindow object. Selecting controls in this view selects them in the Design view and the
Properties view. You can also sort controls by Control Name, Type, or Tag.

Data view

The Data view in the stacked pane at the bottom right displays the data that can be used to
populate a DataWindow object and allows manipulation of that data.

Column Specifications view

The Column Specifications view in the stacked pane at the bottom right shows a list of
the columns in the data source. For the columns, you can add, modify, and delete initial
values, validation expressions, and validation messages. You can also specify that you want
a column to be included in a prompt for retrieval criteria during data retrieval. To add a
column to the DataWindow object, you can drag and drop the column from the Column
Specifications view to the Design view. For external or stored procedure data sources, you
can add, delete, and edit columns (column name, type, and length).

6.2.1.1 Understanding the DataWindow painter Design view

For most presentation styles, the DataWindow painter Design view is divided into areas
called bands. Each band corresponds to a section of the displayed DataWindow object.

DataWindow objects with these presentation styles are divided into four bands: header, detail,
summary, and footer. Each band is identified by a bar containing the name of the band above
the bar and an Arrow pointing to the band.

Working with DataWindows

Page 580

These bands can contain any information you want, including text, drawing controls, graphs,
and computed fields containing aggregate totals.

The following picture shows the Design view for a tabular DataWindow object.

Figure 6.33:

Table 6.12: Bands in the DataWindow painter Design view

Band Used to display

Header Information at the top of every screen or
page, such as the name of the report or
current date

Detail Data from the database or other data source

Summary Summary information that displays after all
the data, such as totals and counts

Footer Information displayed at the bottom of every
page or screen, such as page number and
page count

6.2.1.1.1 The header band

The header band contains heading information that is displayed at the top of every screen or
page. The presentation style determines the contents of the header band:

• If the presentation style is Tabular, Grid, or N-Up, the headings defined for the columns in
the Database painter display in the header band and the columns display on a single line
across the detail band

• If the presentation style is Freeform, the header band is empty and labels display in the
detail band next to each column

You can specify additional heading information (such as a date) in the header band and you
can include pictures, graphic controls, and color to enhance the appearance of the band.

Displaying the current date

To include the current date in the header, you place a computed field that uses the
Today DataWindow expression function in the header band. For information, see
Adding computed fields to a DataWindow object.

Working with DataWindows

Page 581

6.2.1.1.2 The detail band

The detail band displays the retrieved data. It is also where the user enters new data and
updates existing data. The number of rows of data that display in the DataWindow object at
one time is determined by the following expression:

(Height of the DataWindow object– Height of headers and footers) / Height of the
 detail band

The presentation style determines the contents of the detail band:

If the presentation style is Tabular, Grid, N-Up, or Label, the detail band displays column
names, representing the columns

If the presentation style is Freeform, the labels defined for the columns in the Database
painter display in the detail band with boxes for the data to the right

How PowerBuilder names the columns in the Design view

If the DataWindow object uses one table, the names of the columns in the Design
view are the same as the names in the table.

If the DataWindow object uses more than one table, the names of the columns in the
Design view are tablename_columnname. PowerBuilder prefaces the name of the
column with the table name to prevent ambiguity, since different tables can have
columns with the same name.

When you design the detail band of a DataWindow object, you can specify display and
validation information for each column of the DataWindow object and add other controls,
such as text, pictures, graphs, and drawing controls.

6.2.1.1.3 The summary and footer bands

You use the summary and footer bands of the DataWindow object the same way you use
summary pages and page footers in a printed report:

• The contents of the summary band display at the end, after all the detail rows; this band
often summarizes information in the DataWindow object

• The contents of the footer band display at the bottom of each screen or page of the
DataWindow object; this band often displays the page number and name of the report

6.2.1.2 Using the DataWindow painter toolbars

The DataWindow painter contains three customizable PainterBars and a StyleBar.

For more information about using toolbars, see Using toolbars.

PainterBars

The PainterBars include buttons for standard operations (such as Save, Print, and Undo
on PainterBar1), for common formatting operations (such as Currency, Percent, and Tab
Order on PainterBar2), and for database operations (such as Retrieve and Insert Row on
PainterBar3).

They also include six drop-down toolbars, which are indicated by a small black triangle
on the right part of a button. The following table lists the drop-down toolbars that are

Working with DataWindows

Page 582

available.The Controls toolbar is on PainterBar1. The other drop-down toolbars are on
PainterBar2.

Table 6.13: Drop-down toolbars in the DataWindow painter

Toolbar Used to

Background Color Specify the background color of one or more
selected controls.

Borders Specify borders for one or more selected
controls.

Controls Specify controls to add to a DataWindow
object.

Foreground Color Specify the foreground color of one or
more selected controls. In a text control, the
foreground color specifies the color of the
text.

Layout Specify the alignment, sizing, and spacing of
selected controls.

Slide Specify sliding for controls.

StyleBar

The StyleBar includes buttons for applying properties (such as bold) to selected text
elements.

6.2.1.3 Using the Properties view in the DataWindow painter

Each part of the DataWindow object (such as text, columns, computed fields, bands, graphs,
even the DataWindow object itself) has a set of properties appropriate to the part. The
properties display in the Properties view.

You can use the Properties view to modify the parts of the DataWindow object.

To use the Properties view to modify the parts of the DataWindow object

1. Position the mouse over the part you want to modify.

2. Display the part's pop-up menu and select Properties.

If it is not already displayed, the Properties view displays. The view displays the
properties of the currently selected control(s), the band, or the DataWindow object itself.
The contents of the Properties view change as different controls are selected (made
current).

For example, the Properties view for a column has tabbed property pages of information
that you access by clicking the appropriate tab. If you want to choose an edit style
for the column, you click the Edit tab. This brings the Edit page to the front of the
Properties view.

Working with DataWindows

Page 583

6.2.1.4 Selecting controls in the DataWindow painter

The DataWindow painter provides several ways to select controls to act on. You can select
multiple controls and act on all the selected controls as a unit. For example, you can move all
of them or change the fonts used to display text for all of them.

Lasso selection

Use lasso selection when possible because it is fast and easy. Lasso selection is
another name for the method described below for selecting neighboring multiple
controls.

To select one control in a DataWindow object in the Design view

• Click it.

The control displays with handles on it. Previously selected controls are no longer
selected.

To select neighboring multiple controls in a DataWindow object in the Design view (lasso
selection)

1. Press and hold the left mouse button at one corner of the neighboring controls.

2. Drag the mouse over the controls you want to select.

A bounding box (the lasso) displays.

3. Release the mouse button.

All the controls in the bounding box are selected.

To select non-neighboring multiple controls in a DataWindow object in the Design view

1. Click the first control.

2. Press and hold the Ctrl key and click additional controls.

All the controls you click are selected.

To select controls by type in the DataWindow object

• Do one of the following:

• Select Edit>Select>Select All to select all controls

• Select Edit>Select>Select Text to select all text

• Select Edit>Select>Select Columns to select all columns

To select controls by position in the DataWindow object

• Do one of the following:

Working with DataWindows

Page 584

• Select Edit>Select>Select Above to select all controls above the currently selected
control

• Select Edit>Select>Select Below to select all controls below it

• Select Edit>Select>Select Left to select all controls to the left of it

• Select Edit>Select>Select Right to select all controls to the right of it

To select controls in a DataWindow object in the Control List view

1. Select View>Control List from the menu bar.

2. Click a control in the list.

3. Press and hold the Ctrl key and click additional controls if desired.

Displaying information about the selected control

The name, x and y coordinates, width, and height of the selected control are displayed in the
MicroHelp bar. If multiple controls are selected, Group Selected displays in the Name area
and the coordinates and size do not display.

6.2.1.5 Resizing bands in the DataWindow painter Design view

You can change the size of any band in the DataWindow object.

To resize a band in the DataWindow painter Design view

• Position the pointer on the bar representing the band and drag the bar up or down to
shrink or enlarge the band.

6.2.1.6 Using zoom in the DataWindow painter

You can zoom the display in and out in four views in the DataWindow painter: the Design
view, Preview view, Data view, and Column Specifications view. For example, if you are
working with a large DataWindow object, you can zoom out the Design view so you can see
all of it on your screen, or you can zoom in on a group of controls to better see their details.

To zoom the display in the DataWindow painter

1. Select the view you want to zoom (click in the view).

You can zoom the Design view, Preview view, Data view, and Column Specifications
view.

2. Select Design>Zoom from the menu bar.

3. Select a built-in zoom percentage, or set a custom zoom percentage by typing an integer
in the Custom box.

Working with DataWindows

Page 585

6.2.1.7 Undoing changes in the DataWindow painter

You can undo your change by pressing Ctrl+Z or selecting Edit>Undo from the menu bar.
Undo requests affect all views.

6.2.2 Using the Preview view of a DataWindow object

You use the Preview view of a DataWindow object to view it as it will appear with data and
test the processing that takes place in it.

To display the Preview view of a DataWindow object open in the DataWindow painter:

1. If the Preview view is not already displayed, select View > Preview from the menu bar.

In the Preview view, the bars that indicate the bands do not display, and, if you selected
Retrieve on Preview in the DataWindow wizard, PowerBuilder retrieves all the rows
from the database. You are prompted to supply arguments if you defined retrieval
arguments.

In external DataWindow objects

If the DataWindow object uses the External data source, no data is retrieved. You can
import data, as described in Importing data into a DataWindow object.

In DataWindow objects that have stored data

If the DataWindow object has stored data in it, no data is retrieved from the database.

As the rows are being retrieved, the Retrieve button in the toolbarPainterBar changes to
a Cancel button. You can click the Cancel button to stop the retrieval.

2. Test your DataWindow object.

For example, modify some data, update the database, re-retrieve rows, and so on, as
described below.

6.2.2.1 Retrieving data

Where PowerBuilder gets data

PowerBuilder follows this order of precedence to supply the data in your DataWindow
object:

• If you have saved data in the DataWindow object, PowerBuilder uses the saved rows from
the DataWindow object and does not retrieve data from the database.

• PowerBuilder uses the data in the cache, if there is any.

• If there is no data in the cache yet, PowerBuilder retrieves data from the database
automatically, with one exception. If the Retrieve on Preview option is off, you have to
request retrieval explicitly, as described next.

Previewing without retrieving data

Working with DataWindows

Page 586

If you do not want PowerBuilder to retrieve data from the database automatically when the
Preview view opens, you can clear the Retrieve on Preview option. The Preview view shows
the DataWindow object without retrieving data.

To be able to preview without retrieving data automatically

1. Select Design>Options from the menu bar.

The DataWindow Options dialog box displays.

2. Clear the Retrieve on Preview check box on the General page.

When this check box is cleared, your request to preview the DataWindow object does
not result in automatic data retrieval from the database.

Retrieve on Preview check box is available in the DataWindow wizards

During the initial creation of a DataWindow object, you can set the Retrieve on
Preview option.

PowerBuilder uses data caching

When PowerBuilder first retrieves data, it stores the data internally. When it refreshes the
Preview view, PowerBuilder displays the stored data instead of retrieving rows from the
database again. This can save you a lot of time, since data retrieval can be time consuming.

How using data from the cache affects you

Because PowerBuilder accesses the cache and does not automatically retrieve data every
time you preview, you might not have what you want when you preview. The data you see in
preview and the data in the database can be out of sync.

For example, if you are working with live data that changes frequently or with statistics based
on changing data and you spend time designing the DataWindow object, the data you are
looking at may no longer match the database. In this case, retrieve again just before printing.

Explicitly retrieving data

You can explicitly request retrieval at any time.

To retrieve rows from the database

• Do one of the following:

• Click the Retrieve button in the PainterBar.

• Select Rows>Retrieve from the menu bar.

• Select Retrieve from the Preview view's pop-up menu.

Supplying argument values or criteria

If the DataWindow object has retrieval arguments or is set up to prompt for criteria,
you are prompted to supply values for the arguments or to specify criteria.

Working with DataWindows

Page 587

PowerBuilder retrieves the rows. As PowerBuilder retrieves, the Retrieve button changes to a
Cancel button. You can click the Cancel button to stop the retrieval at any time.

Sharing data with the Data view

The Data view displays data that can be used to populate a DataWindow object. When the
ShareData pop-up menu item in the Data view is checked, changes you make in the Data
view are reflected in the Preview view and vice versa.

Other options that affect retrieval

These other options can affect retrieval:

• Retrieve Rows As Needed

Lets you specify that only the rows needed to display the current portion of the
DataWindow object should be retrieved. When you scroll downward, additional rows are
retrieved. This can speed up reporting in certain situations.

See Retrieving rows as needed.

• Retrieve Rows to Disk

Lets you specify that PowerBuilder should save retrieved data on your hard disk in a
temporary file rather than keep the data in memory. When you preview the DataWindow
object, PowerBuilder swaps rows of data from the temporary file into memory as needed.

For information, see Saving retrieved rows to disk.

6.2.2.2 Modifying data

You can add, modify, or delete rows in the Preview view. When you have finished
manipulating the data, you can apply the changes to the database.

Changing input language

You (and your users) can add or modify data in a DataWindow object in multiple input
languages. If you use multiple input languages, you can display a Language bar on your
desktop to change the current input language. In a DataWindow object, the input language in
effect the first time a column gets focus becomes the default input language for that column.
If you subsequently change the input language when that column has focus, the new input
language becomes the default for that column. This behavior does not apply to columns that
have the RightToLeft property set.

If looking at data from a view or from more than one table

By default, you cannot update data in a DataWindow object that contains a view or
more than one table. For more about updating DataWindow objects, see Controlling
Updates in DataWindow objects.

To modify existing data

• Tab to the field and enter a new value.

The Preview view uses validation rules, display formats, and edit styles that you have
defined for the columns, either in the Database painter or in this particular DataWindow
object.

Working with DataWindows

Page 588

To save the changes to the database, you must apply them, as described next.

To add a row

1. Click the Insert Row button.

PowerBuilder creates a blank row.

2. Enter data for a row.

To save the changes to the database, you must apply them, as described below.

Adding a row in an application

Clicking the Insert Row button in the Preview view is equivalent to calling the
InsertRow method and then the ScrollToRow method at runtime.

Selecting Insert Row is equivalent to calling the insertRow method and then the
scrollToRow method at runtime.

To delete a row

• Click the Delete Row button.

PowerBuilder removes the row from the display.

To save the changes to the database, you must apply them, as described below.

Deleting a row in an application

Clicking the Delete Row button in the Preview view is equivalent to calling the
DeleteRow method at runtime.

Selecting Delete Row is equivalent to calling the deleteRow method at runtime.

To apply changes to the database

• Click the Update Database button.

PowerBuilder updates the table with all the changes you have made.

Applying changes in an application

Clicking the Update Database button in the Preview view is equivalent to calling the
Update method at runtime.

Selecting Save is equivalent to calling the Update method at runtime.

6.2.2.3 Viewing row information

You can display information about the data you have retrieved.

To display the row information

• Select Rows>Described from the menu bar.

Working with DataWindows

Page 589

The Describe Rows dialog box displays, showing the number of:

• Rows that have been deleted in the painter but not yet deleted from the database

• Rows displayed in the Preview view

• Rows that have been filtered

• Rows that have been modified in the painter but not yet modified in the database

All row counts are zero until you retrieve the data from the database or add a new row.
The count changes when you modify the displayed data or test filter criteria.

6.2.2.4 Importing data into a DataWindow object

You can import and display data from an external source and save the imported data in the
database.

To import data into a DataWindow object

1. Select Rows>Import from the menu bar.

2. Specify the file from which you want to import the data.

The types of files that you can import into the painter display in the List Files of Type
drop-down list.

3. Click Open.

PowerBuilder reads the data from the file into the DataWindow painter. You can then
click the Update Database button in the PainterBar to add the new rows to the database.

Data from file must match DataWindow definition

When importing data from a file, the datatypes of the data must match, column for
column, all the columns in the DataWindow definition (the columns specified in
the SELECT statement), not just the columns that are displayed in the DataWindow
object.

For information about importing XML data, see Exporting and Importing XML Data.

6.2.2.5 Using print preview

You can print the data displayed in the Preview view. Before printing, you can preview
the output on the screen.Your computer must have a default printer specified, otherwise
properties handled by the printer driver, such as page orientation, are ignored.

To preview printed output before printing

1. Be sure the Preview view is selected (current) and then select File>Print Preview from
the menu bar.

2. Print Preview displays the DataWindow object as it will print.

Working with DataWindows

Page 590

Using the IntelliMouse pointing device

Using the IntelliMouse pointing device, users can scroll a DataWindow object by
rotating the wheel. Users can also zoom a DataWindow object larger or smaller by
holding down the Ctrl key while rotating the wheel.

Controlling the display of rulers

You can choose whether to display rulers around page borders.

To control the display of rulers in Print Preview

• Select/deselect File>Print Preview Rulers from the menu bar.

Changing margins

You can dynamically change margins while previewing a DataWindow object.

To change the margins in Print Preview

• Drag the margin boundaries on the rulers.

The following picture shows the left and top margin boundaries. There are also
boundaries for the right and bottom margins. The picture shows the outline of the
margin. If you do not want to see the outline, clear the Print Preview Shows Outline
check box on the Print Specifications page in the Properties view.

Figure 6.34:

Changing margins at runtime

Using the Modify method, you can display a DataWindow object in print preview
at runtime. While in print preview, users can also change margins by dragging
boundaries. A user event in the DataWindow control (pbm_dwnprintmarginchange)
is triggered when print margins are changed. Changing margins can affect the page
count, so if you use the Describe method to display the page count in your application
(for example, in MicroHelp), you must code a script for the user event to recalculate
the page count.

Working with DataWindows

Page 591

Zooming the page

You can reduce or enlarge the amount of the page that displays in the Print Preview view.
This does not affect the printed output.

To zoom the page on the display screen

1. Select File>Print Preview Zoom from the menu bar.

2. Select the magnification you want and click OK.

The display of the page zooms in or out as appropriate. The size of the contents of the
page changes proportionately as you zoom. This type of zooming affects your display
but does not affect printing.

Zooming the contents

In addition to zooming the display on the screen, you can also zoom the contents, affecting
the amount of material that prints on a page.

To zoom the contents of a DataWindow object with respect to the printed page

1. Select Design>Zoom from the menu bar.

2. Select the magnification you want and click OK.

The contents of the page zooms in or out as appropriate. If you enlarge the contents so
they no longer fit, PowerBuilder creates additional pages as needed.

6.2.2.6 Printing data

You can print a DataWindow object while the Preview view is displayed. You can print
all pages, a range of pages, only the current page, or only odd or even pages. You can also
specify whether you want multiple copies, collated copies, and printing to a file.

Avoiding large rows

To avoid multiple blank pages and other anomalies in printed reports, no row in the
DataWindow object should be larger than the size of the target page. The page boundary is
often reached in long text columns with AutoSizeHeight on. It can also be reached when
detail rows are combined with page and group headers and trailers, or when they contain
multiple nested DataWindow objects or a column that has been resized to be larger than the
page.

When a row contains large multiline edit columns, it can be broken into a series of rows, each
containing one text line. These text lines become the source for a nested DataWindow object.
The nested DataWindow object determines how many of its rows fit in the remaining page
space.

Page break before last row

The summary band in a report is always printed on the same page as the last row of data.
This means that you sometimes find a page break before the last row of data even if there
is sufficient space to print the row. If you want the last row to print on the same page as the
preceding rows, the summary band must be made small enough to fit on the page as well.

Working with DataWindows

Page 592

To change printers or settings before printing

• You can choose File>Printer Setup from the menu bar.

To print a DataWindow object

1. Select File>PrintReport from the menu bar to display the Print dialog box.

2. Specify the number of copies to print.

3. Specify the pages: select All or Current Page, or type page numbers and/or page ranges
in the Pages box.

4. Specify all pages, even pages, or odd pages in the Print drop-down list.

If you want to print to a file rather than to the printer, select the Print to File check box.

If you want to change the collating option, clear or select the Collate Copies check box
and click OK.

If you specified print to file, the Print to File dialog box displays.

5. Enter a file name and click OK.

The extension PRN indicates that the file is prepared for the printer. Change the drive,
the directory, or both, if you want.

6.2.2.7 Working in a grid DataWindow object

If you are viewing a grid-style DataWindow object in the Preview view, you can make the
following changes. Whatever you do in the Preview view is reflected in the Design view:

• Resize columns

• Reorder columns

• Split the display into two horizontal scrolling regions

You can use this feature to keep one or more columns stationary on the screen while
scrolling through other columns.

• Copy data to the clipboard

These features are also available to your users

Users of your application can also manipulate columns in these ways in a grid
DataWindow object at runtime.

To resize a column in a grid DataWindow object

1. Position the mouse pointer at a column boundary in the header.

The pointer changes to a two-headed arrow.

2. Press and hold the left mouse button and drag the mouse to move the boundary.

Working with DataWindows

Page 593

3. Release the mouse button when the column is the correct width.

To reorder columns in a grid DataWindow object

1. Press and hold the left mouse button on a column heading.

PowerBuilder selects the column and displays a line representing the column border.

2. Drag the mouse left or right to move the column.

3. Release the mouse button.

To use split horizontal scrolling in a grid DataWindow object

1. To divide the grid into two regions that can scroll independently of each other, position
the mouse pointer at the left end of the horizontal scroll bar.

Figure 6.35:

The pointer changes to a two-headed arrow.

2. Press and hold the left mouse button and drag the mouse to the right to create a new
horizontal scrolling border.

3. Release the mouse button.

You now have two independent scrolling regions in the grid DataWindow object.

To copy data to the clipboard from a grid DataWindow object

1. Select the cells whose data you want to copy to the clipboard:

• To select an entire column, click its header.

• To select neighboring columns, press and hold Shift, then click the headers.

• To select non-neighboring columns, press and hold Ctrl, then click the headers.

• To select cells, press the left mouse button on the bottom border of a cell and drag the
mouse.

Selected cells are highlighted.

2. Select Edit>Copy from the menu bar.

The contents of the selected cells are copied to the clipboard. If you copied the contents
of more than one column, the data is separated by tabs.

Working with DataWindows

Page 594

6.2.3 Saving data in an external file

While previewing, you can save the data retrieved in an external file. Note that the data and
headers (if specified) are saved. Information in the footer or summary bands is not saved
unless you are saving as PDF or as a PSR file.

To save the data in a DataWindow object in an external file:

1. Select File>Save Rows As from the menu bar.

The Save As dialog box displays.

2. Choose a format for the file from the Save As Type drop-down list.

If you want the column headers saved in the file, select a file format that includes
headers (such as Excel With Headers). When you select a with headers format, the
names of the database columns (not the column labels) are also saved in the file.

When you choose a format, PowerBuilder supplies the appropriate file extension.

For TEXT, CSV, SQL, HTML, and DIF formats, select an encoding for the file.

You can select ANSI/DBCS, Unicode LE (Little-Endian), Unicode BE (Big-Endian), or
UTF8.

3. Name the file and click Save.

PowerBuilder saves all displayed rows in the file; all columns in the displayed rows are
saved. Filtered rows are not saved.

The rest of this section provides more information about saving data in PDF, HTML,
and PSR formats.

For more information about saving data as XML, see Exporting and Importing XML
Data.

6.2.3.1 Saving the data as PDF

PowerBuilder provides three ways to save a DataWindow object or DataStore in Portable
Document Format (PDF).

Using PDFlib

Starting from PowerBuilder 2017, an alternative method is provided to directly print data to
PDF without needing to install any third-party tool or driver or make any configuration. This
method relies on a light-weight software called PDFlib which is automatically installed with
PowerBuilder at no cost. And the DLL file for PDFlib (PBPDF.dll) is automatically packaged
into the PowerBuilder application executable as well without requiring the developer to make
any configuration or selection during the building process.

Starting from PowerBuilder 2019 R3, for new DataWindows, this method is automatically
selected as the default PDF method (instead of the Distill! method with Ghostscript); but for
existing DataWindows, you may need to manually set this method as the default PDF method
using one of the ways described in section Saving as PDF using NativePDF! method with
PDFlib.

Using Ghostscript

Working with DataWindows

Page 595

Starting from PowerBuilder 2019 R3, the Distill! method with Ghostscript is no longer the
default method for new DataWindows when you select File>Save Rows As and select PDF
as the file type. But for existing DataWindows, the Distill! method is still the default option
in order to keep compatibility with the existing logics.

When using Ghostscript, the data is printed to a PostScript file first and then distilled to PDF
using Ghostscript.

Installing Ghostscript and PostScript drivers

For licensing reasons, Ghostscript and the PostScript drivers required to use
the Distill! method are not installed with PowerBuilder. You (and your users)
must download and install them before you can use this technique. See System
requirements for the Distill! method [600].

Using XSL-FO and Java printing

Building on the ability to save data as XML, PowerBuilder can also save the DataWindow
object's data and presentation to PDF by generating XSL Formatting Objects (XSL-FO).
This option provides a platform-independent solution by rendering the DataWindow using a
Java process rather than the Microsoft GDI. It also offers the possibility of customizing the
PDF file at the XSL-FO stage. Saving as PDF using XSL-FO is particularly useful if you
want to print DataWindow objects on a UNIX operating system by using Java printing. The
Ghostscript method and the PDFlib method are not supported on UNIX.

The XSL (Extensible Stylesheet Language) W3C Recommendation has two parts, XSLT
and XSL-FO. XSLT provides the transformation typically used to present XML documents
as HTML in a browser. XSL-FO provides extensive formatting capabilities that are not
dependent on the output format.

For more information about XSL, see the latest version of the Extensible Stylesheet
Language (XSL) at http://www.w3.org/TR/xsl/.

Limitations

The Ghostscript method and the PDFlib method currently do not support OLE DataWindow
objects. The XSL-FO method currently does not support OLE, graph, and composite
DataWindow objects.

The PDFlib method currently does not support the DataWindow object background.property.

The RichText DataWindow (no matter it uses the TX Text Control or the obsolete TE Edit
Control) can directly generate a PDF file (using the DataWindow SaveAs function) without
needing to specify the PDF method first, because it uses the PDF solution provided by
TX Text Control or TE Edit Control, rather than using PDFlib, Ghostscript, or XSL-FO.
Therefore, you can directly execute the following script to generate a PDF in the RichText
DataWindow: dw_1.SaveAs ("c:\dw_one.pdf", PDF!, false).

6.2.3.1.1 Saving as PDF using NativePDF! method with PDFlib

For new DataWindows, if you want to save to PDF using PDFlib, you do not need to change
any properties. The PDFlib method is used by default when you select Save Rows As from
the File menu in the DataWindow painter and select PDF as the file type, or when you use the
SaveAs method with PDF! as the file type.

http://www.w3.org/TR/xsl/

Working with DataWindows

Page 596

But for existing DataWindows which are kept the same as before to use the Distill! method
with Ghostscript as the default method, if you want to save to PDF using NativePDF! with
PDFlib, you must set one or more properties. There are several ways to set the property. #1
can set all DataWindows in the current application at one time; #2 or #3 requires you to set
each individual DataWindow one by one. These ways are listed in the order of precedence
from highest to lowest: #1 > #2 > #3.

Note: the PDF export settings in PB.INI file (added in version 2019) have been removed.

#1: In the Application properties dialog box

This way can set NativePDF! as the default method for all DataWindows in the current
application; instead of setting the DataWindows one by one. It has the highest priority over
the other ways.

To save PDF output using PDFlib in the Application properties dialog box

1. In the Application painter, select the General tab page.

2. On the General tab page, click the Additional Properties button to display the
Application properties dialog box.

3. In the Application properties dialog box, select the PDF Export tab, and then select
"Always use NativePDF! method for PDF export". It is not selected by default.

Packaging custom fonts in the generated PDF files -- If your DataWindow objects uses
many custom fonts, and these custom fonts are not supported well by the operating
system and Adobe Reader, you can consider packaging these custom fonts with your
application. Note that using custom fonts will increase the generated PDF file size. By
default, these custom fonts are not packaged with the application.

Specify the Application property of the generated PDF file -- Specify a value (normally
the application name) as the Application property of the generated PDF file.

Working with DataWindows

Page 597

Figure 6.36:

4. Click OK to save the settings.

#2: In a script

This way sets NativePDF! as the default method for an individual DataWindow.

In a script, set the Export.PDF.Method property to NativePDF! before saving the
DataWindow object as PDF using the SaveAs method with the SaveAsType PDF!.

There are two methods to set the orientation mode and the paper size.

Method 1: set the Export.PDF.NativePDF.UsePrintSpec property to true, and then set the
Print.Orientation and Print.Paper.Size properties. For example, to print the PDF file in the
landscape mode, set the Print.Orientation property to 1, and to print the file size to Letter, set
the Print.Paper.Size property to 1:

dw_1.Object.DataWindow.Export.PDF.NativePDF.UsePrintSpec = 'Yes'

Working with DataWindows

Page 598

dw_1.Object.DataWindow.Export.PDF.Method = NativePDF!
dw_1.Object.DataWindow.Export.PDF.NativePDF.PDFStandard = 1 //PDF/A-1a
dw_1.Object.DataWindow.Print.Orientation = 1 //Landscape!
dw_1.Object.DataWindow.Print.Paper.Size = 1 //1 – Letter 8 1/2 x 11 in

Method 2: set the Export.PDF.NativePDF.UsePrintSpec property to false, and then set
the Export.PDF.NativePDF.CustomOrientation and Export.PDF.NativePDF.CustomSize
properties. For example, to print the PDF file in the portrait mode, set the
Export.PDF.NativePDF.CustomOrientation property to 2 and to print the file size to A4, set
the Export.PDF.NativePDF.CustomSize property to 4:

dw_1.Modify ("DataWindow.Export.PDF.NativePDF.UsePrintSpec = No")
dw_1.Modify ("DataWindow.Export.PDF.Method = NativePDF!")
dw_1.Modify ("DataWindow.Export.PDF.NativePDF.PDFStandard = 1")
dw_1.Modify ("DataWindow.Export.PDF.NativePDF.CustomOrientation = 2")
dw_1.Modify ("DataWindow.Export.PDF.NativePDF.CustomSize = 4")

#3: In the DataWindow painter

This way sets NativePDF! as the default method for an individual DataWindow.

To save PDF output using PDFlib in the DataWindow painter

1. Select the Data Export tab in the Properties view for the DataWindow object.

2. Select PDF from the Format to Configure list and select NativePDF! from the Method
list.

For new DataWindows, PDF and NativePDF! will be selected as by default.

3. Select a standard from the PDF Conformance list.

4. Specify the Author, Subject, and/or Keywords (if needed) which will be used as the
property for the generated PDF file.

These properties (including the application name property) will not take effect when
RichText DataWindows are saved as PDF.

5. Select the paper size and orientation in two methods:

• method 1: select the "Use Paper Size and Orientation Settings from Print
Specification" check box, so it uses the paper size and orientation settings in the Print
Specification page;

• method 2: keep the "Use Paper Size and Orientation Settings from Print
Specification" check box unselected, and select from the Paper Size list and the
Orientation list in the current Data Export page;

Working with DataWindows

Page 599

Figure 6.37:

6. Save the DataWindow object, then select File>Save Rows As, select PDF as the Save
As Type, specify a file name, and click Save.

See also

See Section 9.2.8.2, “Using the PDFlib generator” in Application Techniques for how to
package the required files.

Section 3.3.63, “Export.PDF.Method” in DataWindow Reference

Section 3.3.64, “Export.PDF.NativePDF.Author” in DataWindow Reference

Section 3.3.65, “Export.PDF.NativePDF.CustomOrientation” in DataWindow Reference

Section 3.3.66, “Export.PDF.NativePDF.CustomSize” in DataWindow Reference

Section 3.3.68, “Export.PDF.NativePDF.Keywords” in DataWindow Reference

Section 3.3.67, “Export.PDF.NativePDF.ImageFormat” in DataWindow Reference

Section 3.3.70, “Export.PDF.NativePDF.PDFStandard” in DataWindow Reference

Section 3.3.72, “Export.PDF.NativePDF.Subject” in DataWindow Reference

Section 3.3.74, “Export.PDF.NativePDF.UsePrintSpec” in DataWindow Reference

Working with DataWindows

Page 600

6.2.3.1.2 Saving as PDF using the Distill! method with Ghostscript

PowerBuilder uses a PostScript printer driver specifically designed for distilling purposes to
configure the PDF output. You can choose to use a different PostScript printer driver if you
want to customize your PostScript settings for generating PDF. For more, see Section 9.2.8.1,
“Using the Ghostscript distiller” in Application Techniques.

In the DataWindow painter

To use a custom PostScript printer driver, you must set some properties.

To save customized distilled PDF output in the DataWindow painter

1. Select the Data Export tab in the Properties view for the DataWindow object.

2. Select PDF from the Format to Configure drop-down list, select Distill! from the
Method drop-down list, and select the Distill Custom PostScript check box.

3. Select the Print Specifications tab and specify the name of the printer whose settings you
want to use in the Printer Name box.

4. Save the DataWindow object, then select File>Save Rows As, select PDF as the Save
As Type, specify a file name, and click Save.

In a script

The properties you set in the DataWindow painter are saved with the DataWindow object and
are used by default when your application runs, but for more control, specify the properties in
a script before saving the DataWindow object. To specify a custom printer driver in a script,
set the Export.PDF.Distill.CustomPostScript property to Yes and specify a printer with the
DataWindow.Printer property:

int li_ret

dw_1.Object.DataWindow.Export.PDF.Method = Distill!
dw_1.Object.DataWindow.Printer = "\\prntsrvr\pr-6"
dw_1.Object.DataWindow.Export.PDF.Distill.CustomPostScript = "Yes"

li_ret = dw_1.SaveAs("custom.PDF", PDF!, true)

See also

Section 3.3.63, “Export.PDF.Method” in DataWindow Reference

Section 3.3.164, “Printer” in DataWindow Reference

Section 3.3.62, “Export.PDF.Distill.CustomPostScript” in DataWindow Reference

System requirements for the Distill! method

Users must have administrative privileges to create a PDF file.

To support saving as PDF using Ghostscript, you must download and install Ghostscript files
on your system as described in the chapter on deploying applications and components in
Application Techniques. You also need to install PostScript driver files.

If you have installed a PostScript printer on your computer, the PostScript driver
files required to create PDF files, PSCRIPT5.DLL, PS5UI.DLL, and pscript.ntf, are
already installed, typically in C:\Windows\System32\DriverStore\FileRepository
\ntprint.inf_1a216484\Amd64 on a 64-bit Windows system. You must use the version of

Working with DataWindows

Page 601

these files that is appropriate to the operating system where the PDF file is created. You
should copy the files to the %AppeonInstallPath%\PowerBuilder [version]\IDE\drivers
directory.

If you have never installed a PostScript printer, use the Printers and Faxes option in the
Windows control panel to install a generic PostScript printer. If the Pscript5.dll has never
been installed, you may be prompted to insert the Windows install CD.

Other related files are installed in %AppeonInstallPath%\PowerBuilder [version]\IDE
\drivers.

When you deploy applications that use the ability to save as PDF with the Distill! method,
you must make sure your users have installed Ghostscript and have access to the drivers
directory.

See Section 9.2.8.1, “Using the Ghostscript distiller” in Application Techniques for more
information about redistributing these files.

6.2.3.1.3 Saving as PDF using XSL-FO

If you want to save to PDF using XSL-FO, you must set one or more properties before
saving.

In the DataWindow painter

In the DataWindow painter, you set PDF export properties on the Data Export page in the
Properties view.

To save PDF output using XSL-FO in the DataWindow painter

1. Select the Data Export tab in the Properties view for the DataWindow object.

2. Select PDF from the Format to Configure drop-down list and select XSLFOP! from the
Method drop-down list.

3. (Optional) If you want simultaneously to send the output directly to a printer using
the Java printing option of the Apache FOP processor, select the Print Using XSLFOP
check box.

4. Save the DataWindow object, then select File>Save Rows As, select PDF as the Save
As Type, specify a file name, and click Save.

PowerBuilder saves the data in the DataWindow object to the file you specified. If you
selected the Print Using XSLFOP check box, it also sends the PDF file to the default
printer for your system.

In a script

In a script, set the Export.PDF.Method property to XSLFOP! before saving the DataWindow
object as PDF using the SaveAs method with the SaveAsType PDF!. To send the PDF file
directly to the default printer, set the Export.PDF.XSLFOP.Print property to 1 or Yes before
saving:

int li_ret
dw_1.Modify("DataWindow.Export.PDF.Method = XSLFOP! ")
dw_1.Modify("DataWindow.Export.PDF.xslfop.print = '1'")
li_ret = dw_1.SaveAs("printed.pdf", PDF!, true)

Working with DataWindows

Page 602

See also

Section 3.3.63, “Export.PDF.Method” in DataWindow Reference

Section 3.3.75, “Export.PDF.XSLFOP.Print” in DataWindow Reference

6.2.3.1.4 Saving as XSL-FO

You can also save a DataWindow object as XSL-FO, then use the processor of your choice
to convert the XSL-FO string to the format you want, applying your own customizations to
the conversion. Processors such as the Apache XSL Formatting Objects processor (FOP) can
convert XSL-FO documents into several output formats including PDF, PCL, and AWT.

In the DataWindow painter, select File>Save Rows As and select XSL-FO as the file type. In
a script, you can use the SaveAs method with the SaveAsType XSLFO!.

For a DataWindow named dwemp, the following command lines show the FOP syntax for
producing a PDF, a print preview rendered on screen (-awt), and printable output rendered
and sent to a printer (-print):

Fop dwemp.fo dwemp.pdf
 Fop dwemp.fo -awt
 Fop dwemp.fo -print

For more information about using FOP, see the FOP page of the Apache XML Project
website at http://xmlgraphics.apache.org/fop/.

6.2.3.1.5 System requirements for XSL-FO

The Apache XSL Formatting Objects processor (FOP) and the Oracle JDK are installed
with PowerBuilder to support saving as XSL-FO, saving as PDF using XSL-FO, and Java
printing.

When you deploy applications that use XSL-FO or Java printing, your users must have the
FOP directory and the Java Runtime Environment installed on their computers. For more
information, see Section 9.2, “Deploying Applications and Components” in Application
Techniques.

On Windows DBCS platforms, you also need to install a file that supports DBCS characters
to the Windows font directory, for example, C:\WINDOWS\fonts. To use these fonts, the
userconfig.xml file in the FOP conf directory must be modified to give the full path name of
the files you use, for example:

<font metrics-file="C:\Program%20Files\Appeon\PowerBuilder 19.0\IDE\fop-0.20.5\conf
\cyberbit.xml" kerning="yes" embed-file="C:\WINNT\Fonts\Cyberbit.ttf">

For more information about configuring fonts, see the Apache website at http://
xmlgraphics.apache.org/fop/.

6.2.3.2 Saving the data in HTML Table format

HTML Table format is one of the formats in which you can choose to save data. When you
save in HTML Table format, PowerBuilder saves a style sheet along with the data. If you
use this format, you can open the saved file in a browser such as Internet Explorer. Once you
have the file in HTML Table format, you can continue to enhance the file in HTML.

About the results

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Working with DataWindows

Page 603

Some presentation styles translate better into HTML than others. The Tabular, Group,
Freeform, Crosstab, and Grid presentation styles produce good results. The Composite,
RichText, OLE 2.0, and Graph presentation styles and nested reports produce HTML tables
based on the result set (data) only and not on the presentation style. DataWindows with
overlapping controls in them might not produce the results you want.

To save a report as an HTML table

1. Open a DataWindow object.

2. Open the Preview view if it is not already open.

3. Select File>Save Rows As from the menu bar.

4. Choose the HTML Table format for the file from the Save As Type drop-down list.

5. Name the file.

PowerBuilder creates a file using the name you supplied and the extension htm.

6. Open a Web browser.

7. Use the browser's file open command to open the HTML file.

For more information about working with DataWindow objects and HTML, see
Section 1.2, “Using DataWindow Objects” in DataWindow Programmers Guide.

6.2.3.3 Working with PSR files

A PSR file is a special file with the extension PSR created by PowerBuilder, InfoMaker, or
DataWindow Designer.

Windows and PSR files

When PowerBuilder is installed, the PSR file type is registered with Windows.

A PSR file contains a DataWindow definition (source and object) as well as the data
contained in the DataWindow object when the PSR file was created.

Figure 6.38: PSR file

Working with DataWindows

Page 604

About reports

A report is the same as a nonupdatable DataWindow object. For more information,
see Reports versus DataWindow objects [531].

You can use a PSR file to save a complete report (report design and data). This can be
especially important if you need to keep a snapshot of data taken against a database that
changes frequently.

PowerBuilder creates a PSR file when you save data in the Powersoft report file format.
See Saving data in an external file. PSR files are used primarily by InfoMaker, a reporting
tool. When an InfoMaker user opens a PSR file, InfoMaker displays the report in the
Report painter. If InfoMaker is not already running, opening a PSR file automatically starts
InfoMaker.

To open a PSR file in PowerBuilder, open any DataWindow object, then select File>Open
File and select the PSR file.

6.2.4 Modifying general DataWindow object properties

This section describes the general DataWindow object properties that you can modify.

6.2.4.1 Changing the DataWindow object style

The general style properties for a DataWindow object include:

• The unit of measure used in the DataWindow object

• A timer interval for events in the DataWindow object

• A background color for the DataWindow object

PowerBuilder assigns defaults when it generates the basic DataWindow object. You can
change the defaults.

To change the default style properties

1. Position the pointer in the background of the DataWindow object, display the pop-up
menu, and select Properties.

The Properties view displays with the General page on top.

2. Click the unit of measure you want to use to specify distances when working with the
DataWindow object:

• PowerBuilder units (PBUs) Normalized units

• Pixels (smallest element on the display monitor)

• Thousandths of an inch

• Thousandths of a centimeter

Working with DataWindows

Page 605

Choosing the unit of measure

If you plan to print the contents of the DataWindow object at runtime, change the
unit of measure to inches or centimeters to make it easier to specify the margin
measurements.

3. Specify the number of milliseconds you want between internal timer events in the
DataWindow object.

This value determines how often PowerBuilder updates the time fields in the
DataWindow object. (Enter 60,000 milliseconds to specify one minute.)

4. On the Background page, select a background color from the Color drop-down list. The
default color is the window background color.

6.2.4.2 Setting colors in a DataWindow object

You can set different colors for each element of a DataWindow object to enhance the display
of information.

To set a solid background color in a DataWindow object

1. Position the mouse on an empty spot in the DataWindow object, display the pop-up
menu, and select Properties.

2. On the Background page in the Properties view for the DataWindow object, select Solid
from the Brush Mode drop-down list and a color from the Color drop-down list.

To set a solid color for a band in a DataWindow object

1. Position the mouse pointer on the bar that represents the band, display the pop-up menu,
then select Properties.

2. On the Background page in the Properties view, select Solid from the Brush Mode drop-
down list and a color from the Color drop-down list.

The choice you make here overrides the background color for the DataWindow object.

To set solid colors in controls in a DataWindow object

• Position the mouse pointer on the control, display the pop-up menu, then select
Properties.

You can set colors in the Background page in the Properties view.

For controls that use text, you can set colors for text on the Font page in the Properties
view. For drawing controls, you can set colors on the General or Background page in the
Properties view.

6.2.4.3 Setting gradients and background pictures in a DataWindow object

You can use the background effects to give the DataWindow object more visual interest. For
example, you can set a vertical gradient on a header band to differentiate it from the other
bands in the DataWindow object:

Working with DataWindows

Page 606

Figure 6.39:

To set a gradient background in a DataWindow object

1. Position the mouse on an empty spot in the DataWindow object, display the pop-up
menu, and select Properties.

2. On the Background page in the Properties view for the DataWindow object, select a type
of gradient from the Brush Mode drop-down list.

3. Select the primary (background) color from the Color drop-down list.

4. Select the secondary (gradient) color from the Gradient group Color drop-down list.

Figure 6.40:

To set a picture as the background in a DataWindow object

1. Position the mouse on an empty spot in the DataWindow object, display the pop-up
menu, and select Properties.

2. On the Background page in the Properties view for the DataWindow object, select
Picture from the Brush Mode drop-down list.

3. Specify the image file in the File field in the Picture group.

4. From the Tile Mode drop-down list, select the style you want to use.

Selections from the drop-down list allow you to display the picture in its original size,
stretch the picture in different directions, or tile multiple copies of the picture in a
variety of possible patterns.

6.2.4.4 Setting transparency properties for a DataWindow object

You can change the transparency settings for colors and pictures.

Working with DataWindows

Page 607

To set the transparency of a gradient in a DataWindow object

1. Position the mouse on an empty spot in the DataWindow object, display the pop-up
menu, and select Properties.

2. On the Background page in the Properties view for the DataWindow object, locate the
Gradient group.

3. Move the Gradient group Transparency slider until the gradient (secondary) color is set
to the desired transparency.

You can see the appearance in the Design view. The more transparent the gradient color
is, the more you will see the primary (background) color.

To set the transparency of a background picture in a DataWindow object

1. Position the mouse on an empty spot in the DataWindow object, display the pop-up
menu, and select Properties.

2. On the Background page in the Properties view for the DataWindow object, locate the
Picture group.

3. Move the Picture group Transparency slider until the image is set to the desired
transparency.

You can see the appearance in the Design view.

6.2.4.5 Specifying properties of a grid DataWindow object

In grid DataWindow objects, you can specify:

• When grid lines are displayed

• How users can interact with the DataWindow object at runtime

To specify basic grid DataWindow object properties

1. Position the mouse pointer on the background in a grid DataWindow object, display the
pop-up menu, and select Properties.

2. Select the options you want in the Grid section on the General page in the Properties
view as described in the following table.

Table 6.14: Options for grid DataWindow objects

Option Result

On Grid lines always display

Off Grid lines never display (users cannot
resize columns at runtime)

Display Only Grid lines display only when the
DataWindow object displays online

Print Only Grid lines display only when the contents
of the DataWindow object are printed

Working with DataWindows

Page 608

Option Result

Column Moving Columns can be moved at runtime

Mouse Selection Data can be selected at runtime (and, for
example, copied to the clipboard)

Row Resize Rows can be resized at runtime

Width.AutoSize The AutoWidth property takes one of these
numeric values:

• 0 - No AutoWidth: This is the default
value.

• 1 - AutoWidth is computed for visible
rows (monotonic) and does not decrease
when the widest column is reduced
when scrolling.

• 2 - AutoWidth is computed for visible
rows (non-monotonic).

• 3 - AutoWidth is computed for all
retrieved rows.

You can set the AutoWidth property:

• In the painter - in the Properties view,
select one of the values in the drop-
down list for the AutoWidth property.

• In scripts - set the AutoWidth property
to one of the numeric values.

6.2.4.6 Specifying pointers for a DataWindow object

Just as with colors, you can specify different pointers to use when the mouse is over a
particular area of the DataWindow object. For example, you might want to change the pointer
when the mouse is over a column whose data cannot be changed.

To change the mouse pointer used at runtime

1. Position the mouse over the element of the DataWindow object whose pointer you want
to define, display the pop-up menu, and select Properties to display the appropriate
Properties view.

You can set a pointer for the entire DataWindow object, specific bands, and specific
controls.

2. Select the Pointer tab.

Either choose the pointer from the Stock Pointers list or, if you have a file containing
pointer definitions (CUR files), enter a pointer file name.

Working with DataWindows

Page 609

You can use the Browse button to search for the file.

3. Click OK.

6.2.4.7 Defining print specifications for a DataWindow object

When you are satisfied with the look of the DataWindow object, you can define its print
specifications.

To define print specifications for a DataWindow object

1. In the DataWindow painter, select Properties from the DataWindow object's pop-up
menu.

2. In the Units box on the General page, select a unit of measure.

It is easier to specify the margins when the unit of measure is inches or centimeters.

3. Select the Print Specifications tab.

The Print Specifications properties use the units of measure you specified on the General
page.

4. Specify print specifications for the current DataWindow object.

See the following table for more information.

Table 6.15: Setting print specifications for DataWindow objects

Setting Description

Document Name Specify a name to be used in the print queue to identify the
report.

Printer Name Specify the name of a printer to which this report should
be sent. If this box is empty, the report is sent to the default
system printer. If the specified printer cannot be found, the
report is sent to the default system printer if the Can Use
Default Printer check box is selected. If the specified printer
cannot be found and the Can Use Default Printer check box is
not selected, an error is returned.

Margins Specify top, bottom, left, and right margins. You can also
change margins in the Preview view while you are actually
looking at data. If you change margins in the Preview view, the
changes are reflected here on the Print Specifications page.

Paper Orientation Choose one of the following:

• Default: Uses the default printer setup.

• Portrait: Prints the contents of the DataWindow object across
the width of the paper.

• Landscape: Prints the contents of the DataWindow object
across the length of the paper.

Working with DataWindows

Page 610

Setting Description

Paper Size Choose a paper size or leave blank to use the default.

Paper Source Choose a paper source or leave blank to use the default.

Prompt Before
Printing

Select to display the standard Print Setup dialog box each time
users make a print request.

Can Use Default
Printer

Clear this check box if a printer has been specified in the
Printer Name box and you do not want the report to be sent
to the default system printer if the specified printer cannot
be found. This box is checked by default if a printer name is
specified.

Display Buttons -
Print Preview

Select to display Button controls in Print Preview. The default
is to hide them.

Display Buttons -
Print

Select to display Button controls when you print the report. The
default is to hide them.

Clip Text Select to clip static text to the dimensions of a text field when
the text field has no visible border setting. The text is always
clipped if the text field has visible borders.

Override Print Job When you print a series of reports using the PrintOpen,
PrintDataWindow, and PrintClose methods, all the reports
in the print job use the layout, fonts, margins, and other print
specifications defined for the computer. Select this check
box to override the default print job settings and use the print
settings defined for this report.

Collate Copies Select to collate copies when printing. Collating increases print
time because the print operation is repeated to produce collated
sets.

Print Preview Shows
Outline

Select to display a blue outline to show the location of the
margins.

Print Shows
Background

Whether the background settings of the DataWindow and
controls are included when the DataWindow is printed.

Preview Shows
Background

Whether the background settings of the DataWindow and
controls display in the print preview.

Newspaper Columns
Across and Width

If you want a multiple-column report where the data fills
one column on a page, then the second, and so on, as in a
newspaper, select the number and width of the columns in the
Newspaper Columns boxes. See Printing with newspaper-style
columns.

6.2.4.7.1 Printing with newspaper-style columns

When you define a DataWindow object, you can specify that it print in multiple columns
across the page, like a newspaper. A typical use of newspaper-style columns is a phone list,
where you want to have more than one column of names on a printed page.

Working with DataWindows

Page 611

Use Print Preview to see the printed output

Newspaper-style columns are used only when the DataWindow object is printed.
They do not appear when a DataWindow object runs (or in Preview). Therefore, to
see them in PowerBuilder, use Print Preview in the DataWindow painter.

To define newspaper-style columns for a DataWindow object

1. Build a tabular DataWindow object with the data you want.

2. Select Properties from the DataWindow object's pop-up menu.

3. Select the Print Specifications tab.

4. Specify the number of columns across the page and the width of columns in the
Newspaper Columns Across and Newspaper Columns Width properties.

For each control in the DataWindow object that you do not want to have appear multiple
times on the page (such as headers), select Properties from the control's pop-up menu
and select the HideSnaked check box on the General page in the Properties view.

Example

This example describes how to create a newspaper-style DataWindow object using the
Employee table in the PB Demo DB.

Create a tabular DataWindow object, selecting the last name, first name, and phone number
columns, and add a title, page number, and date.

The Emp_Fname column and the text control holding a comma are defined as Slide Left, so
they display just to the right of the Emp_Lname column.

Figure 6.41:

On the Print Specifications page of the DataWindow object's Properties view, specify two
columns across and a column width of 3.5 inches in the Newspaper Columns boxes. (Make
sure that Units is set to inches on the General property page.)

To view the DataWindow object as it will be printed, place the pointer in the Preview view
and select File>Print Preview.

Working with DataWindows

Page 612

The DataWindow object displays the result set in two columns. Everything above the column
headers (which includes page number, title, and date) also shows twice because of the 2-
column specification. This information should appear only once per page.

To specify that page number, title, and date appear only once on the page, you need to
suppress printing after the first column. For each of these controls, select Properties from the
control's pop-up menu. Then set the HideSnaked property.

The finished DataWindow object has one set of page heading information and two columns
of column header and detail information.

Figure 6.42:

6.2.4.8 Modifying text in a DataWindow object

When PowerBuilder initially generates the basic DataWindow object, it uses the following
attributes and fonts:

• For the text and alignment of column headings and labels, PowerBuilder uses the extended
column attributes made in the Database painter.

• For fonts, PowerBuilder uses the definitions made in the Database painter for the table.
If you did not specify fonts for the table, PowerBuilder uses the defaults set in the
Application painter.

You can override any of these defaults in a particular DataWindow object.

To change text in a DataWindow object

1. Select the text.

The first box in the StyleBar is now active.

Working with DataWindows

Page 613

2. Type the new text.

3. Use ~n~r to embed a newline character in the text.

To change the text properties for a text control in a DataWindow object

1. Select the text control.

2. Do one of the following:

• Change the text properties in the StyleBar.

• Select the Font page in the control's Properties view and change the properties there.

6.2.4.9 Defining the tab order in a DataWindow object

When PowerBuilder generates the basic DataWindow object, it assigns columns a default
tab order, the default sequence in which focus moves from column to column when a user
presses the Tab key at runtime. PowerBuilder assigns tab values in increments of 10 in left-
to-right and top-to-bottom order.

Tab order is not used in the Design view

Tab order is used when a DataWindow object runs, but it is not used in the
DataWindow painter Design view. In the Design view, the Tab key moves to the
controls in the DataWindow object in the order in which the controls were placed in
the Design view.

If the DataWindow object contains columns from more than one table

If you are defining a DataWindow object with more than one table, PowerBuilder assigns
each column a tab value of 0, meaning the user cannot tab to the column. This is because,
by default, multitable DataWindow objects are not updatable—users cannot modify
data in them. You can change the tab values to nonzero values to allow tabbing in these
DataWindow objects.

For more about controlling updates in a DataWindow object, see Controlling Updates in
DataWindow objects.

Tab order changes have no effect in grid DataWindow objects

In a grid DataWindow object, the tab sequence is always left to right (except on right-
to-left operating systems). Changing the tab value to any number other than 0 has no
effect.

To change the tab order

1. Select Format>Tab Order from the menu bar or click the Tab Order button on
PainterBar2.

The current tab order displays.

2. Use the mouse or the Tab key to move the pointer to the tab value you want to change.

Working with DataWindows

Page 614

3. Enter a new tab value in the range 0 to 9999.

0 removes the column from the tab order (the user cannot tab to the column). It does not
matter exactly what value you use (other than 0); all that matters is relative value. For
example, if you want the user to tab to column B after column A but before column C,
set the tab value for column B so it is between the value for column A and the value for
column C.

4. Repeat the procedure until you have the tab order you want.

5. Select Format>Tab Order from the menu bar or click the Tab Order button again.

PowerBuilder saves the tab order.

Each time you select Tab Order, PowerBuilder reassigns tab values to include any
columns that have been added to the DataWindow object and to allow space to insert
new columns in the tab order.

Changing tab order at runtime

To change tab order programmatically at runtime, use the SetTabOrder method.

6.2.4.10 Naming controls in a DataWindow object

You use names to identify columns and other controls in validation rules, filters, PowerScript
functions, and DataWindow expression functions.

The DataWindow painter automatically generates names for all controls in a DataWindow
object. To name columns, labels, and headings, the DataWindow painter uses database and
extended attribute information. To name all other controls, it uses a system of prefixes. You
can control the prefixes used for automatic name generation and you can specify the name of
any control explicitly.

To specify prefixes for naming controls systematically in a DataWindow object

1. Select Design>Options from the menu bar and then select the Prefixes tab.

2. Change prefixes as desired and click OK.

To specify a name of a control in a DataWindow object

1. Select Properties from the control's pop-up menu and then select the General tab in the
Properties view.

2. Type the name in the Name box.

6.2.4.11 Using borders in a DataWindow object

You can place borders around text, columns, graphs, and crosstabs to enhance their
appearance. PowerBuilder provides six types of borders: Underline, Box, ResizeBorder,
ShadowBox, Raised, and Lowered:

Figure 6.43:

Working with DataWindows

Page 615

Border appearance varies

Changing the border style may not have the same effect on all Windows operating
systems and display settings.

To add a border to a control in a DataWindow object

1. Select one or more controls.

2. Select the border you want from the Border drop-down toolbar in the PainterBar.

PowerBuilder places the border around the selected controls.

You can also specify a border for one or more controls in the Properties view on the
General page.

6.2.4.12 Specifying variable-height bands in a DataWindow object

Sometimes DataWindow objects contain columns whose data is of variable length. For
example, a Memo column in a table might be a character column that can take up to several
thousand characters. Reserving space for that much information for the column in the detail
band would make the detail band's height very large, meaning users could see few rows at a
time.

The detail band can resize based on the data in the Memo column. If the Memo column has
only one line of text, the detail band should be one line. If the Memo column has 20 lines of
text, the detail band should be 20 lines high.

To provide a band that resizes as needed, specify that the variable-length columns and the
band have Autosize Height.All bands in the DataWindow can be resized, but nested report
overflow is supported only in the Detail band. If autosizing would preclude the display of
at least one Detail band row per page, other bands cannot be autosized. Autosizing is not
supported with the Graph, RichText, OLE, or Label presentation styles.

To create a resizable band in a DataWindow object

1. Select Properties from the pop-up menu of a column that should resize based on the
amount of data.

2. Select the Autosize Height check box on the Position page.

3. Clear the Auto Horizontal Scroll check box on the Edit page.

PowerBuilder wraps text in the Preview view instead of displaying text on one scrollable
line.

4. Repeat steps 1 to 3 for any other columns that should resize.

5. Select Properties from the band's pop-up menu.

6. Select the Autosize Height check box on the General page.

In the Preview view, the band resizes based on the contents of the columns you defined
as having their height sized automatically.

Using the RowHeight function with Autosize Height

Working with DataWindows

Page 616

When a detail band has Autosize Height set to "true", you should avoid using the RowHeight
DataWindow expression function to set the height of any element in the row. Doing so can
result in a logical inconsistency between the height of the row and the height of the element.
If you need to use RowHeight, you must set the Y coordinate of the element to 0 on the
Position page in the Properties view, otherwise the bottom of the element might be clipped.
You must do this for every element that uses such an expression. If you move any elements in
the band, make sure that their Y coordinates are still set to 0.

You should not use an expression whose runtime value is greater than the value returned by
RowHeight. For example, you should not set the height of a column to rowheight() + 30.
Such an expression produces unpredictable results at runtime.

Clipping columns

You can have Autosize Height columns without an Autosize Height detail band. If
such a column expands beyond the size of the detail band in the Preview view, it is
clipped.

6.2.4.13 Modifying the data source of a DataWindow object

When modifying a DataWindow object, you might realize that you have not included all the
columns you need, or you might need to define retrieval arguments. You can modify the data
source from the DataWindow painter. How you do it depends on the data source.

6.2.4.13.1 Modifying SQL SELECT statements

If the data source is SQL (such as Quick Select, SQL Select, or Query), you can graphically
modify the SQL SELECT statement.

To modify a SQL data source

1. Select Design>Data Source from the menu bar.

PowerBuilder returns you to the SQL Select painter. (If you used Quick Select to define
the data source, this might be the first time you have seen the SQL Select painter.)

2. Modify the SELECT statement graphically using the same techniques as when creating
it.

For more information, see Using SQL Select.

Modifying the statement syntactically

Select Design>Convert to Syntax from the menu bar to modify the SELECT
statement syntactically.

3. Click the Return button to return to the painter.

Some changes you make (such as adding or removing columns) require PowerBuilder to
modify the update capabilities of the DataWindow object.

For more information about controlling updates in a DataWindow object, see
Controlling Updates in DataWindow objects.

Working with DataWindows

Page 617

Changing the table

If you change the table referenced in the SELECT statement, PowerBuilder maintains
the columns in the Design view (now from a different table) only if they match the
datatypes and order of the columns in the original table.

Modifying the retrieval arguments

You can add, modify, or delete retrieval arguments when modifying your data source.

To modify the retrieval arguments

1. In the SQL Select painter, select Design>Retrieval Arguments from the menu bar.

The Specify Retrieval Arguments dialog box displays, listing the existing arguments.

2. Add, modify, or delete the arguments.

3. Click OK.

You return to the SQL Select painter, or to the text window displaying the SELECT
statement if you are modifying the SQL syntactically.

Reference any new arguments in the WHERE or HAVING clause of the SELECT
statement.

For more information about retrieval arguments, see Defining DataWindow Objects.

6.2.4.13.2 Modifying the result set

If the data source is External or Stored Procedure, you can modify the result set description.

To modify a result set

1. If the Column Specification view is not open, select View>Column Specifications from
the menu bar.

2. Review the specifications and make any necessary changes.

If the data source is a stored procedure

If you are modifying the result set for a DataWindow object whose data source is a
stored procedure, the pop-up menu for the Column Specification view contains the menu
item Stored Procedure.

3. Select Stored Procedure from the Column Specification view's pop-up menu to edit the
Execute statement, select another stored procedure, or add retrieval arguments. For more
information about editing the Execute statement, see Using Stored Procedure.

6.2.5 Storing data in a DataWindow object using the Data view

Usually you retrieve data into a DataWindow object from the database, because the data is
changeable and you want the latest information. However, sometimes the data you display in
a DataWindow object never changes (as in a list of states or provinces), and sometimes you
need a snapshot of the data at a certain point in time. In these situations, you can store the
data in the DataWindow object itself. You do not need to go out to the database or other data
source to display the data.

Working with DataWindows

Page 618

The most common reason to store data in a DataWindow object is for use as a drop-down
DataWindow where the data is not coming from a database. For example, you might
want to display a list of postal codes for entering values in a State or Province column in
a DataWindow object. You can store those codes in a DataWindow object and use the
DropDownDataWindow edit style for the column.

For more information about using the DropDownDataWindow edit style, see Displaying and
Validating Data.

To store data in a DataWindow object:

1. If the Data view is not already displayed, select View > Data from the menu bar.

In the default layout for the DataWindow painter, the Data view displays in a stacked
pane under the Properties view. All columns defined for the DataWindow object are
listed at the top.

2. Do any of the following:

• Click the Insert Row button in the PainterBar to create an empty row and type a row
of data. You can enter as many rows as you want.

• Click the Retrieve button in the PainterBar to retrieve all the rows of data from the
database. You can delete rows you do not want to save or manually add new rows.

• Click the Delete button in the PainterBar to delete unwanted rows.

Data changes are local to the DataWindow object

Adding or deleting data here does not change the data in the database. It only
determines what data will be stored with the DataWindow object when you save it.
The Update DB button is disabled.

3. When you have finished, save the DataWindow object.

When you save the DataWindow object, the data is stored in the DataWindow object.

Sharing data with the Preview view

To see changes you make in the Data view reflected in the Preview view, select ShareData
from the pop-up menu in the Data view.The Preview view shows data from the storage buffer
associated with the Data view.

Saving the DataWindow object without data

If you saved the DataWindow object with data to obtain a snapshot, you usually need to save
it again without data. To do so, select Delete All Rows from the pop-up menu in the Data
view before saving.

Sharing DataWindow objects with other developers

Storing data in a DataWindow object is a good way to share data and its definition
with other developers. They can simply open the DataWindow object on their
computers to get the data and all its properties.

Working with DataWindows

Page 619

6.2.5.1 What happens at runtime

Data stored in a DataWindow object is stored within the actual object itself, so when a
window opens showing such a DataWindow, the data is already there. There is no need to
issue Retrieve to get the data.

PowerBuilder never retrieves data into a drop-down DataWindow that already contains data.
For all other DataWindow objects, if you retrieve data into a DataWindow object stored with
data, PowerBuilder handles it the same as a DataWindow object that is not stored with data:
PowerBuilder gets the latest data by retrieving rows from the database.

6.2.6 Retrieving data

In a DataWindow object, you can prompt for retrieval criteria, retrieve rows as needed, and
save retrieved rows to disk.

6.2.6.1 Prompting for retrieval criteria in a DataWindow object

You can define your DataWindow object so that it always prompts for retrieval criteria just
before it retrieves data. PowerBuilder allows you to prompt for criteria when retrieving data
for a DataWindow control, but not for a DataStore object.

To prompt for retrieval criteria in a DataWindow object

1. If the Column Specifications view is not already displayed, select View > Column
Specifications from the menu bar.

In the default layout for the DataWindow painter, the Column Specifications view
displays in a stacked pane under the Properties view. All columns defined for the
DataWindow object are listed in the view.

2. Select the Prompt check box next to each column for which you want to specify retrieval
criteria at runtime.

When you specify prompting for criteria, PowerBuilder displays the Specify Retrieval
dialog box just before a retrieval is to be done. (It is the last thing that happens before
the SQLPreview event.)

Each column you selected in the Column Specification view displays in the grid. Users
can specify criteria here exactly as in the grid in the Quick Select dialog box. Criteria
specified here are added to the WHERE clause for the SQL SELECT statement defined
for the DataWindow object.

Testing in PowerBuilder

You can test the prompting for criteria by retrieving data in the Preview view of the
DataWindow object.

Using edit styles

If a column uses a code table or the RadioButton, CheckBox, or DropDownListBox edit
style, an arrow displays in the column header and users can select a value from a drop-down
list when specifying criteria:

Working with DataWindows

Page 620

Figure 6.44:

If you do not want the drop-down list used for a column for specifying retrieval criteria to
display, select the Override Edit check box on the General page of the column's Properties
view.

Forcing the entry of criteria

If you have specified prompting for criteria for a column, you can force the entry of criteria
for the column by selecting the Equality Required check box on the Behavior page of the
column's Properties view. PowerBuilder underlines the column header in the grid during
prompting. Selection criteria for the specified column must be entered, and the = operator
must be used.

For more information

The section Using Quick Select describes in detail how you and your users can specify
selection criteria in the grid.

The chapter on dynamic DataWindow objects in the DataWindow Programmers Guide
describes how to write code to allow users to specify retrieval criteria at runtime.

6.2.6.2 Retrieving rows as needed

If a DataWindow object retrieves hundreds of rows, there can be a noticeable delay at
runtime while all the rows are retrieved and before control returns to the user. For these
DataWindow objects, PowerBuilder can retrieve only as many rows as it has to before
displaying data and returning control to the user.

For example, if a DataWindow object displays only 10 rows at a time, PowerBuilder only
needs to retrieve 10 or more rows before presenting the data. Then, as users page through the
data, PowerBuilder continues to retrieve what is necessary to display the new information.
There may be slight pauses while PowerBuilder retrieves the additional rows, but these
pauses are usually preferable to waiting a long time to start working with data.

To specify that a DataWindow object retrieve only as many rows as it needs to

• Select Rows > Retrieve Options > Rows As Needed from the menu bar.

With this setting, PowerBuilder presents data and returns control to the user when it has
retrieved enough rows to display in the DataWindow object.

Working with DataWindows

Page 621

Retrieve Rows As Needed is overridden if you have specified sorting or have used
aggregate functions, such as Avg and Sum, in the DataWindow object. This is because
PowerBuilder must retrieve every row before it can sort or perform aggregates.

In a multiuser situation, Retrieve Rows As Needed might lock other people out of the
tables.

6.2.6.3 Saving retrieved rows to disk

If you want to maximize the amount of memory available to PowerBuilder and other running
applications, PowerBuilder can save retrieved data on your hard disk in a temporary file
rather than keep the data in memory. PowerBuilder swaps rows of data from the temporary
file into memory as needed to display data.

To maximize available memory by saving retrieved rows to disk

• Select Rows > Retrieve Options > Rows to Disk from the menu bar.

With this setting, when displaying data, PowerBuilder swaps rows of data from the
temporary file into memory instead of keeping all the retrieved rows of data in memory.

6.3 Working with Controls in DataWindow Objects
About this chapter

One of the ways you can enhance a DataWindow object is to add controls, such as columns,
drawing objects, buttons, and computed fields. You can also change the layout of the
DataWindow object by reorganizing, positioning, and rotating controls. This chapter shows
you how.

6.3.1 Adding controls to a DataWindow object

This section describes adding controls to enhance your DataWindow object.

6.3.1.1 Adding columns to a DataWindow object

You can add columns that are included in the data source to a DataWindow object. When
you first create a DataWindow object, each of the columns in the data source is automatically
placed in the DataWindow object. Typically, you would add a column to restore one that you
had deleted from the DataWindow object, or to display the column more than once in the
DataWindow object.

Adding columns not previously retrieved to the data source

To specify that you want to retrieve a column not previously retrieved (that is, add a
column to the data source), you must modify the data source.

See Modifying the data source of a DataWindow object.

To add a column from the data source to a DataWindow object

1. Select Insert>Control>Column from the menu bar.

2. Click where you want to place the column.

Working with DataWindows

Page 622

The Select Column dialog box displays, listing all columns included in the data source
of the DataWindow object.

3. Select the column and click OK.

Insert columns instead of copying them

If you want to add a column from the DataWindow definition to a DataWindow, always use
Insert>Control>Column. You might see unexpected results if you copy a column from one
DataWindow object to another if they both reference the same column but the column order
is different. This is because copying a column copies a reference to the column's id in the
DataWindow definition.

Suppose d_first and d_second both have first_name and last_name columns, but first_name
is column 1 in d_first and column 2 in d_second. If you delete the first_name column in
d_second and paste column 1 from d_first in its place, both columns in d_second display the
last_name column in the Preview view, because both columns now have a column id of 1.

6.3.1.2 Adding text to a DataWindow object

When PowerBuilder generates a basic DataWindow object from a presentation style and data
source, it places columns and their headings in the DataWindow painter. You can add text
anywhere you want to make the DataWindow object easier to understand.

To add text to a DataWindow object

1. Select Insert>Control>Text from the menu bar.

2. Click where you want the text.

PowerBuilder places the text control in the Design view and displays the word text.

3. Type the text you want.

4. (Optional) Change the font, size, style, and alignment for the text using the StyleBar.

Displaying an ampersand character

If you want to display an ampersand character, type a double ampersand in the Text
field. A single ampersand causes the next character to display with an underscore
because it is used to indicate accelerator keys.

About the default font and style

When you place text in a DataWindow object, PowerBuilder uses the font and style (such as
boldface) defined for the application's text in the Application painter. You can override the
text properties for any text in a DataWindow object.

For more about changing the application's default text font and style, see Working with
Targets.

6.3.1.3 Adding drawing controls to a DataWindow object

You can add the following drawing controls to a DataWindow object to enhance its
appearance:

Working with DataWindows

Page 623

• Rectangle

• RoundRectangle

• Line

• Oval

To place a drawing control in a DataWindow object

1. Select the drawing control from the Insert>Control menu.

2. Click where you want the control to display.

3. Resize or move the drawing control as needed.

4. Use the drawing control's Properties view to change its properties as needed.

For example, you might want to specify a fill color for a rectangle or thickness for a line.

6.3.1.4 Adding a group box to a DataWindow object

To visually enhance the layout of a DataWindow object, you can add a group box. A group
box is a static frame used to group and label a set of controls in a DataWindow object.The
following example shows two group boxes in a report (nonupdatable DataWindow object).
The Address group box groups address information and the Phone/Fax group box groups
telephone numbers.

Figure 6.45:

To add a group box to a DataWindow object

1. Select Insert>Control>GroupBox from the menu bar and click in the Design view.

2. Click where you want the control to display.

Working with DataWindows

Page 624

3. With the group box selected, type the text to display in the frame in.

4. Move and resize the group box as appropriate.

6.3.1.5 Adding pictures to a DataWindow object

You can place pictures, such as your company logo, in a DataWindow object to enhance its
appearance. If you place a picture in the header, summary, or footer band of the DataWindow
object, the picture displays each time the content of that band displays. If you place the
picture in the detail band of the DataWindow object, it displays in each row.

To place a picture in a DataWindow object

1. Select Insert>Control>Picture from the menu bar.

2. Click where you want the picture to display.

The Select Picture dialog box displays.

3. Use the Browse button to find the file or enter a file name in the File Name box. Then
click Open.

The picture must be a bitmap (BMP), runlength-encoded (RLE), Windows metafile
(WMF), Graphics Interchange Format (GIF), or Joint Photographic Experts Group
(JPEG) file.

4. Display the pop-up menu and select Original Size to display the image in its original
size.

You can use the mouse to change the size of the image in the DataWindow painter.

5. Select the Invert Image check box on the Appearance page in the Properties view to
display the picture with its colors inverted.

Tips for using pictures

To display a different picture for each row of data, retrieve a column containing picture file
names from the database. For more information, see Specifying additional properties for
character columns.

To compute a picture name at runtime, use the Bitmap function in the expression defining
a computed field. If you change the image in the Picture control in a DataWindow object,
you need to reset the original size property. The property automatically reverts to the default
setting when you change the image.

To use a picture to indicate that a row has focus at runtime, use the SetRowFocusIndicator
function.

6.3.1.6 Adding computed fields to a DataWindow object

You can use computed fields in any band of the DataWindow object. Typical uses with
examples include:

• Calculations based on column data that change for each retrieved row

If you retrieve yearly salary, you can define a computed field in the detail band that
displays monthly salary: Salary / 12.

Working with DataWindows

Page 625

• Summary statistics of the data

In a grouped DataWindow object, you can use a computed field to calculate the totals of a
column, such as salary, for each group: sum (salary for group 1).

• Concatenated fields

If you retrieve first name and last name, you can define a computed field that concatenates
the values so they appear with only one space between them: Fname + " " + Lname.

• System information

You can place the current date and time in a DataWindow object's header using the built-in
functions Today() and Now() in computed fields.

6.3.1.6.1 Computed columns versus computed fields

When creating a DataWindow object, you can define computed columns and computed fields
as follows:

• In the SQL Select painter, you can define computed columns when you are defining the
SELECT statement that will be used to retrieve data into the DataWindow object.

• In the DataWindow painter, you can define computed fields after you have defined the
SELECT statement (or other data source).

The difference between the two ways

When you define the computed column in the SQL Select painter, the value is calculated by
the DBMS when the data is retrieved. The computed column's value does not change until
data has been updated and retrieved again.

When you define the computed field in the DataWindow painter, the value of the column is
calculated in the DataWindow object after the data has been retrieved. The value changes
dynamically as the data in the DataWindow object changes.

Example

Consider a DataWindow object with four columns: Part number, Quantity, Price, and Cost.
Cost is computed as Quantity * Price.

Table 6.16:

Part # Quantity Price Cost

101 100 1.25 125.00

If Cost is defined as a computed column in the SQL Select painter, the SELECT statement is
as follows:

SELECT part.part_num,
part.part_qty,
part.part_price,
part.part_qty * part.part_price
FROM part;

If the user changes the price of a part in the DataWindow object in this scenario, the cost does
not change in the DataWindow object until the database is updated and the data is retrieved
again. The user sees a display with the changed price but the unchanged, incorrect cost.

Working with DataWindows

Page 626

Table 6.17:

Part # Quantity Price Cost

101 100 2.50 125.00

If Cost is defined as a computed field in the DataWindow object, the SELECT statement is as
follows, with no computed column:

SELECT part.part_num,
part.part_qty,
part.part_price
FROM part;

The computed field is defined in the DataWindow object as Quantity * Price.

In this scenario, if the user changes the price of a part in the DataWindow object, the cost
changes immediately.

Table 6.18:

Part # Quantity Price Cost

101 100 2.50 250.00

Recommendation

If you want your DBMS to do the calculations on the server before bringing data down
and you do not need the computed values to be updated dynamically, define the computed
column as part of the SELECT statement.

If you need computed values to change dynamically, define computed fields in the
DataWindow painter Design view, as described next.

6.3.1.6.2 Defining a computed field in the DataWindow painter Design view

To define a computed field in the DataWindow painter Design view

1. Select Insert>Control>Computed Field from the menu bar.

2. Click where you want to place the computed field.

If the calculation is to be based on column data that changes for each row, make sure
you place the computed field in the detail band.

The Modify Expression dialog box displays, listing:

• DataWindow expression functions you can use in the computed field

• The columns in the DataWindow object

• Operators and parentheses

3. Enter the expression that defines the computed field as described in Entering the
expression [627].

4. (Optional) Click Verify to test the expression.

PowerBuilder analyzes the expression.

Working with DataWindows

Page 627

5. Click OK.

Entering the expression

You can enter any valid DataWindow expression when defining a computed field. You can
paste operators, columns, and DataWindow expression functions into the expression from
information in the Modify Expression dialog box. Use the + operator to concatenate strings.

You can use any built-in or user-defined global function in an expression. You cannot use
object-level functions.

DataWindow expressions

You are entering a DataWindow expression, not a SQL expression processed by
the DBMS, so the expression follows the rules for DataWindow expressions. For
complete information about DataWindow expressions, see Chapter 2, DataWindow
Expression Functions in DataWindow Reference.

Referring to next and previous rows

You can refer to other rows in a computed field. This is particularly useful in N-Up
DataWindow objects when you want to refer to another row in the detail band. Use this
syntax:

ColumnName[x]

where x is an integer. 0 refers to the current row (or first row in the detail band), 1 refers to
the next row, –1 refers to the previous row, and so on.

Examples

The following table shows some examples of computed fields.

Table 6.19: Computed field examples

To display Enter this expression In this band

Current date at top of each page Today() Header

Current time at top of each page Now() Header

Current page at bottom of each page Page() Footer

Total page count at bottom of each page PageCount() Footer

Concatenation of Fname and Lname columns
for each row

Fname + " " + Lname Detail

Monthly salary if Salary column contains
annual salary

Salary / 12 Detail

Four asterisks if the value of the Salary column
is greater than $50,000

IF(Salary> 50000,
"****", "")

Detail

Average salary of all retrieved rows Avg(Salary) Summary

Count of retrieved rows, assuming each row
contains a value for EmpID

Count(EmpID) Summary

For complete information about the functions you can use in computed fields in the
DataWindow painter, see Part I, “DataWindow Reference”.

Working with DataWindows

Page 628

Menu options and buttons for common functions

PowerBuilder provides a quick way to create computed fields that summarize values in the
detail band, display the current date, or show the current page number.

To summarize values

1. Select one or more columns in the DataWindow object's detail band.

2. Select one of the options at the bottom of the cascading menu: Average, Count, or Sum.

The same options are available at the bottom of the Controls drop-down toolbar on the
PainterBar.

PowerBuilder places a computed field in the summary band or in the group trailer
band if the DataWindow object is grouped. The band is resized automatically to hold
the computed field. If there is already a computed field that matches the one being
generated, it is skipped.

To insert a computed field for the current date or page number

1. Select Insert>Control from the menu bar.

2. Select Today() or Page n of n from the options at the bottom of the cascading menu.

The same options are available at the bottom of the Controls drop-down toolbar on the
PainterBar.

3. Click anywhere in the DataWindow object.

If you selected Today, PowerBuilder inserts a computed field containing this expression:
Today(). For Page n of n, the computed field contains this expression: 'Page ' + page() +
' of ' + pageCount().

Adding custom buttons that place computed fields

You can add buttons to the PainterBar in the DataWindow painter that place computed fields
using any of the aggregate functions, such as Max, Min, and Median.

To customize the PainterBar with custom buttons for placing computed fields

1. Place the mouse pointer over the PainterBar and select Customize from the pop-up
menu.

The Customize dialog box displays.

2. Click Custom in the Select palette group to display the set of custom buttons.

3. Drag a custom button into the Current toolbar group and release it.

The Toolbar Item Command dialog box displays.

4. Click the Function button.

The Function For Toolbar dialog box displays.

5. Select a function and click OK.

Working with DataWindows

Page 629

You return to the Toolbar Item Command dialog box.

6. Specify text and microhelp that displays for the button, and click OK.

PowerBuilder places the new button in the PainterBar. You can click it to add a
computed field to your DataWindow object the same way you use the built-in Sum
button.

6.3.1.7 Adding buttons to a DataWindow object

Buttons make it easy to provide command button actions in a DataWindow object. No
coding is required. The use of Button controls in the DataWindow object, instead of
CommandButton controls in a window, ensures that actions appropriate to the DataWindow
object are included in the object itself.

The Button control is a command or picture button that can be placed in a DataWindow
object. When clicked at runtime, the button activates either a built-in or user-supplied action.

For example, you can place a button in a report and specify that clicking it opens the Filter
dialog box, where users can specify a filter to be applied to the currently retrieved data.

To add a button to a DataWindow object

1. Select Insert>Control>Button from the menu bar.

2. Click where you want the button to display.

You may find it useful to put a Delete button or an Insert button in the detail band.
Clicking a Delete button in the detail band will delete the row next to the button clicked.
Clicking an Insert button in the detail band will insert a row following the current row.

Be careful when putting buttons in the detail band

Buttons in the detail band repeat for every row of data, which is not always desirable.
Buttons in the detail band are not visible during retrieval, so a Cancel button in the
detail band would be unavailable when needed.

With the button still selected, type the text to display on the button in the PainterBar or
on the General page of the Properties view.

3. Select the action you want to assign to the button from the Action drop-down list on the
General page of the Properties view.

For information about actions, see Actions assignable to buttons in DataWindow
objects.

If you want to add a picture to the button, select the Action Default Picture check box or
enter the name of the Picture file to display on the button.

If you want to suppress event processing when the button is clicked at runtime, select the
Suppress Event check box.

When this option has been selected for the button and the button is clicked at runtime,
only the action assigned to the button and the Clicked event are executed. The
ButtonClicking and the ButtonClicked events are not triggered.

Working with DataWindows

Page 630

What happens if Suppress Event is off

If Suppress Event is off and the button is clicked, the Clicked and ButtonClicking events are
fired. Code in the ButtonClicking event (if any) is executed. Note that the Clicked event is
executed before the ButtonClicking event.

If the return code from the ButtonClicking event is 0, the action assigned to the button is
executed and then the ButtonClicked event is executed.

If the return code from the ButtonClicking event is 1, neither the action assigned to the button
nor the ButtonClicked event are executed.

Do not use a message box in the Clicked event

If you call the MessageBox function in the Clicked event, the action assigned to the
button is executed, but the ButtonClicking and ButtonClicked events are not executed.

Example

For an example of a DataWindow object that uses buttons, see the d_button_report object in
the Code Examples application.

This DataWindow object has several buttons that have default actions, and two that have
user-defined actions. In the Properties view in the DataWindow painter, these buttons are
named cb_help and cb_exit. Suppress Event is off for all buttons.

In the Window painter, the Clicked and ButtonClicking events for the DataWindow control
that contains d_button_report are not scripted. This is the ButtonClicked event script:

string ls_Object
string ls_win

ls_Object = String(dwo.name)

If ls_Object = "cb_exit" Then
 Close(Parent)
ElseIf ls_Object = "cb_help" Then
 ls_win = parent.ClassName()
 f_open_help(ls_win)
End If

This script is triggered when any button in the DataWindow object is clicked.

6.3.1.7.1 Controlling the display of buttons in print preview and in printed output

You can choose whether to display buttons in print preview or in printed output. You control
this in the Properties view for the DataWindow object (not the Properties view for the
button).

To control the display of buttons in a DataWindow object in print preview and on printed
output

1. Display the DataWindow object's Properties view with the Print Specification page on
top.

2. Select the Display Buttons – Print check box.

The buttons are included in the printed output when the DataWindow object is printed.

Working with DataWindows

Page 631

3. Select the Display Buttons – Print Preview check box.

The buttons display on the screen when viewing the DataWindow object in print
preview.

6.3.1.7.2 Actions assignable to buttons in DataWindow objects

The following table shows the actions you can assign to a button in a DataWindow object.
Each action is associated with a numeric value (the Action DataWindow object property) and
a return code (the actionreturncode event argument).

The following code in the ButtonClicked event displays the value returned by the action:

MessageBox("Action return code", actionreturncode)

Table 6.20: Button actions for DataWindow objects

Action Effect ValueAction return code

User
Defined
(default)

Allows the developer to program
the ButtonClicked event with no
intervening action occurring.

0 The return code from the user's
coded event script.

Retrieve
(Yield)

Retrieves rows from the database.
Before retrieval occurs, the option
to yield is turned on; this will allow
the Cancel action to take effect
during a long retrieve.

1 Number of rows retrieved.

-1 if retrieve fails.

Retrieve Retrieves rows from the database.
The option to yield is not
automatically turned on.

2 Number of rows retrieved.

-1 if retrieve fails.

Cancel Cancels a retrieval that has been
started with the option to yield.

3 0

Page Next Scrolls to the next page. 4 The row displayed at the top of
the DataWindow control when the
scrolling is complete or attempts to
go past the first row.

-1 if an error occurs.

Page Prior Scrolls to the prior page. 5 The row displayed at the top of
the DataWindow control when the
scrolling is complete or attempts to
go past the first row.

-1 if an error occurs.

Page First Scrolls to the first page. 6 1 if successful.

-1 if an error occurs.

Page Last Scrolls to the last page. 7 The row displayed at the top of
the DataWindow control when the
scrolling is complete or attempts to
go past the first row.

Working with DataWindows

Page 632

Action Effect ValueAction return code
-1 if an error occurs.

Sort Displays Sort dialog box and sorts
as specified.

8 1 if successful.

-1 if an error occurs.

Filter Displays Filter dialog box and
filters as specified.

9 Number of rows filtered.

Number < 0 if an error occurs.

Delete Row If button is in detail band, deletes
row associated with button;
otherwise, deletes the current row.

10 1 if successful.

-1 if an error occurs.

Append Row Inserts row at the end. 11 Row number of newly inserted
row.

Insert Row If button is in detail band, inserts
row using row number associated
with the button; otherwise, inserts
row using the current row.

12 Row number of newly inserted
row.

Update Saves changes to the database. If
the update is successful, a Commit
will be issued; if the update fails, a
Rollback will be issued.

13 1 if successful.

-1 if an error occurs.

Save Rows
As

Displays Save As dialog box and
saves rows in the format specified.

14 Number of rows filtered.

Number < 0 if an error occurs.

Print Prints one copy of the
DataWindow object.

15 0

Preview Toggles between preview and print
preview.

16 0

Preview
With Rulers

Toggles between rulers on and off. 17 0

Query Mode Toggles between query mode on
and off.

18 0

Query Sort Allows user to specify sorting
criteria (forces query mode on).

19 0

Query Clear Removes the WHERE clause from
a query (if one was defined).

20 0

6.3.1.8 Adding graphs to a DataWindow object

Graphs are one of the best ways to present information. For example, if your application
displays sales information over the course of a year, you can easily build a graph in a
DataWindow object to display the information visually.

PowerBuilder offers many types of graphs and provides you with the ability to control the
appearance of a graph to best meet your application's needs.

For information on using graphs, see Working with Graphs.

Working with DataWindows

Page 633

6.3.1.9 Adding InkPicture controls to a DataWindow object

The InkPicture control is designed for use on a Tablet PC and provides the ability to capture
ink input from users of Tablet PCs. The control captures signatures, drawings, and other
annotations that do not need to be recognized as text.

The InkPicture control is fully functional on Tablet PCs. If the Microsoft Tablet PC
Software Development Kit (SDK) 1.7 is installed on other computers, InkPicture controls in
DataWindow objects can accept ink input from the mouse.

For more information about ink controls and the Tablet PC, and to download the Tablet
PC SDK, go to Microsoft Tablet PC website at http://msdn.microsoft.com/en-us/library/
ms840465.aspx.

You use an InkPicture control with a table that has a blob column to store the ink data, and
optionally a second blob column to provide a background image.

The InkPicture control behaves like a Picture control that accepts annotation. You can
associate a picture with the control so that the user can draw annotations on the picture, then
save the ink, the picture, or both.If you want to use the control to capture and save signatures,
you usually do not associate a picture with it.

To add an InkPicture control to a DataWindow object, select Insert>Control>InkPicture from
the menu. A dialog box displays to let you specify a blob column to store the ink data and
another to use as a background image. After you specify the columns in the dialog box, the
InkPicture control displays in the DataWindow and its Properties view includes a Definition
tab page where you can view or change the column definitions.

If you insert the InkPicture control into a N-Up DataWindow object, you should specify the
Row In Detail so the correct image displays. For example, if you have three rows in the detail
band, you might enter 1 for the ink picture associated with the first, 2 for the second, and 3
for the third.

InkPicture controls are not supported in Crosstab DataWindows.

6.3.1.10 Adding OLE controls to a DataWindow object

You can add the following to a DataWindow object:

• A column that contains a database binary large object (a blob object) using OLE 2.0

• OLE 2.0 objects

For information on using OLE in a DataWindow object, see Using OLE in a DataWindow
Object.

6.3.1.11 Adding reports to a DataWindow object

You can nest reports (nonupdatable DataWindow objects) in a DataWindow object.

For information on nesting reports, see Using Nested Reports.

6.3.1.12 Adding table blob controls to a DataWindow object

Use the table blob control to add rich text, image, or XPS blobs to the DataWindow object.

Working with DataWindows

Page 634

To add a table blob control to a DataWindow object

1. Select Insert>Control>Table Blob from the menu bar.

2. Click where you want to place the table blob.

In the Database Binary/Text Large Object dialog box:

a. Select the table

b. Select column

c. Enter the key clause

d. Select the type

e. Click OK.

6.3.1.13 Adding tooltips to a DataWindow control

Tooltips display text when the pointer pauses over a DataWindow column or control. This
text can be used to explain the purpose of the column or control. To use this feature, select
the column or control for which you want to create a tooltip and then select the Tooltip tab in
the Properties view. You can use the tab to specify:

• Text for the tooltip

• Title for the tooltip

• Color of the background and text

• Icon for the tooltip

• Delay before the tooltip appears and disappears

• Whether the tooltip appears as a rectangle or callout bubble

For more information, see Section 3.3.219, “Tooltip.property” in DataWindow Reference.

6.3.2 Reorganizing controls in a DataWindow object

You can change the layout and appearance of the controls in a DataWindow object.

6.3.2.1 Displaying boundaries for controls in a DataWindow object

When reorganizing controls in the Design view, it is sometimes helpful to see how large all
the controls are. That way you can easily check for overlapping controls and make sure that
the spacing around controls is what you want.

To display control boundaries in a DataWindow object

1. Select Design>Options from the menu bar.

The DataWindow Options dialog box displays.

Working with DataWindows

Page 635

2. Select the Show Edges check box.

PowerBuilder displays the boundaries of each control in the DataWindow object.

Boundaries display only in the Design view

The boundaries displayed for controls are for use only in the Design view. They do
not display in a running DataWindow object or in a printed report.

6.3.2.2 Using the grid and the ruler in a DataWindow object

The DataWindow painter provides a grid and a ruler to help you align controls.

To use the grid and the ruler

1. Select Design>Options from the menu bar.

The DataWindow Options dialog box displays. The Alignment Grid box contains the
alignment grid options.

2. Use the options as needed:

Table 6.21:

Option Meaning

Snap to Grid Make controls snap to a grid position when
you place them or move them.

Show Grid Show or hide the grid when the workspace
displays.

X Specify the size (width) of the grid cells.

Y Specify the size (height) of the grid cells.

Show Ruler Show a ruler. The ruler uses the units of
measurement specified in the Style dialog
box. See Changing the DataWindow object
style.

Your choices for the grid and the ruler are saved and used the next time you start
PowerBuilder.

6.3.2.3 Deleting controls in a DataWindow object

To delete controls in a DataWindow object

1. Select the controls you want to delete.

2. Select Edit>Delete from the menu bar or press the Delete key.

6.3.2.4 Moving controls in a DataWindow object

In all presentation styles except Grid

Working with DataWindows

Page 636

In all presentation styles except Grid, you can move all the controls (such as headings, labels,
columns, graphs, and drawing controls) anywhere you want.

To move controls in a DataWindow object

1. Select the controls you want to move.

2. Do one of the following:

• Drag the controls with the mouse.

• Press an arrow key to move the controls in one direction.

In grid DataWindow objects

You can reorder columns in a grid DataWindow object at runtime.

See Working in a grid DataWindow object.

6.3.2.5 Copying controls in a DataWindow object

You can copy controls within a DataWindow object and to other DataWindow objects. All
properties of the controls are copied.

To copy a control in a DataWindow object

1. Select the control.

2. Select Edit>Copy from the menu bar.

The control is copied to a private PowerBuilder clipboard.

3. Copy (paste) the control to the same DataWindow object or to another one:

• To copy the control within the same DataWindow object, select Edit>Paste from the
menu bar.

• To copy the control to another DataWindow object, open the desired DataWindow
object and paste the control.

PowerBuilder pastes the control at the same location as in the source DataWindow
object. If you are pasting into the same DataWindow object, you should move the pasted
control so it does not cover the original control. PowerBuilder displays a message box if
the control you are pasting is not valid in the destination DataWindow object.

6.3.2.6 Resizing controls in a DataWindow object

You can resize a control using the mouse or the keyboard. You can also resize multiple
controls to the same size using the Layout drop-down toolbar on PainterBar2.

Using the mouse

To resize a control using the mouse, select it, then grab an edge and drag it with the mouse.

Using the keyboard

To resize a control using the keyboard, select it and then do the following:

Working with DataWindows

Page 637

Table 6.22:

To make the control Press

Wider Shift+Right Arrow

Narrower Shift+Left Arrow

Taller Shift+Down Arrow

Shorter Shift+Up Arrow

In grid DataWindow objects

You can resize columns in grid DataWindow objects.

To resize a column in a grid DataWindow object

1. Position the mouse pointer at a column boundary.

The pointer changes to a two-headed arrow.

2. Press and hold the left mouse button and drag the mouse to move the boundary.

3. Release the mouse button when the column is the correct width.

6.3.2.7 Aligning controls in a DataWindow object

Often you want to align several controls or make them all the same size. You can use the grid
to align the controls or you can have PowerBuilder align them for you.

To align controls in a DataWindow object

1. Select the control whose position you want to use to align the others.

PowerBuilder displays handles around the selected control.

2. Extend the selection by pressing and holding the Ctrl key and clicking the controls you
want to align with the first one.

All the controls have handles on them.

3. Select Format>Align from the menu bar.

4. From the cascading menu, select the dimension along which you want to align the
controls.

For example, to align the controls along the left side, select the first choice on the
cascading menu. You can also use the Layout drop-down toolbar on PainterBar2 to align
controls.

PowerBuilder moves all the selected controls to align with the first one.

6.3.2.8 Equalizing the space between controls in a DataWindow object

If you have a series of controls and the spacing is fine between two of them but wrong for the
rest, you can easily equalize the spacing around all the controls.

To equalize the space between controls in a DataWindow object

1. Select the two controls whose spacing is correct.

Working with DataWindows

Page 638

2. To do so, click one control, then press Ctrl and click the second control.

3. Select the other controls whose spacing match that of the first two controls. To do so,
press Ctrl and click each control.

4. Select Format>Space from the menu bar.

5. From the cascading menu, select the dimension whose spacing you want to equalize.

You can also use the Layout drop-down toolbar on PainterBar2 to space controls.

6.3.2.9 Equalizing the size of controls in a DataWindow object

Suppose you have several controls in a DataWindow object and want their sizes to be the
same. You can accomplish this manually or by using the Format menu.

To equalize the size of controls in a DataWindow object

1. Select the control whose size is correct.

2. Press Ctrl and click to select the other controls whose size should match that of the first
control.

3. Select Format>Size from the menu bar.

4. From the cascading menu, select the dimension whose size you want to equalize.

You can also use the Layout drop-down toolbar on PainterBar2 to size controls.

6.3.2.10 Sliding controls to remove blank space in a DataWindow object

You can specify that you want to eliminate blank lines or spaces in a DataWindow object by
sliding columns and other controls to the left or up if there is blank space. You can use this
feature to remove blank lines in mailing labels or to remove extra spaces between fields (such
as first and last name).

Slide is used by default in nested reports

PowerBuilder uses slide options automatically when you nest a report to ensure that
the reports are positioned properly.

To use sliding columns or controls in a DataWindow object

1. Select Properties from the control's pop-up menu and then select the Position tab in the
Properties view.

2. Select the Slide options you want:

Table 6.23:

Option Description

Slide Left Slide the column or control to the left if there is nothing to the
left. Be sure the control does not overlap the control to the left.
Sliding left will not work if the controls overlap.

Working with DataWindows

Page 639

Option Description

Slide Up - All Above Slide the column or control up if there is nothing in the row
above. The row above must be completely empty for the
column or control to slide up.

Slide Up - Directly
Above

Slide the column or control up if there is nothing directly above
it in the row above.

You can also use the drop-down toolbar on PainterBar2 to slide controls.

If you are sliding columns up

Even blank columns have height; if you want columns to slide up, you need to specify
as Autosize Height all columns above them that might be blank and that you want to
slide other columns up through.

Example

In a mailing label that includes first and last names, as well as address information, you can
use sliding to combine the columns appropriately.

In the following label, emp_lname, the comma, state, and zip_code are specified as slide left.
Edges are shown to indicate the spacing between the columns. Notice that there is a small
amount of space between controls. This space is necessary for Slide Left to work properly:

Figure 6.46:

When you preview (run) the DataWindow object, the last name, comma, state, and zip code
slide left to remove the blank space:

Figure 6.47:

6.3.3 Positioning controls in a DataWindow object

The following table shows the properties for each control in a DataWindow object that
determine how it is positioned within the DataWindow object.

Working with DataWindows

Page 640

Table 6.24: Position properties for controls in a DataWindow object

Property Meaning

Background Control is behind other controls. It is not restricted to one
band. This is useful for adding a watermark (such as the word
CONFIDENTIAL) to the background of a report.

Band Control is placed within one band. It cannot extend beyond the
band's border.

Foreground Control is in front of other controls. It is not restricted to one band.

Moveable Control can be moved at runtime and in preview. This is useful for
designing layout.

Resizable Control can be resized at runtime and in preview. This is useful for
designing layout.

HideSnaked Control appears only in the first column on the page; in subsequent
columns the control does not appear. This is only for newspaper
columns, where the entire DataWindow object snakes from column
to column (set on the General page of the Properties view).

Default positioning

PowerBuilder uses the defaults shown in the following table when you place a new control in
a DataWindow object.

Table 6.25: Default position properties for controls in a DataWindow object

Control Default positioning

Graph Foreground, movable, resizable

All other controls Band, not movable, not resizable

To change the position of a control in a DataWindow object:

1. Select Properties from the control's pop-up menu and then select the Position tab.

2. From the Layer option drop-down list, select Background, Band, or Foreground.

3. Select Resizable or Moveable as appropriate.

6.3.4 Rotating controls in a DataWindow object

Controls that display text such as text controls and computed fields can be rotated from the
original baseline of the text. The Escapement property on the Font property page for the
control lets you specify the amount of rotation, also known as escapement.

Several other properties of a rotated control affect its final placement when the DataWindow
object runs. The location of the control in Design view, the amount of rotation specified for
it, and the location of the text within the control (for example, centered text as opposed to
left-aligned text) all contribute to what you see in the DataWindow object Preview view.

The following procedure includes design practices that help ensure that you get the final
results you want. As you become more experienced, you can drop or alter some of the steps.

Working with DataWindows

Page 641

The procedure recommends making the control movable in the Preview view, which is often
helpful.

To rotate a control in a DataWindow object:

1. Select the control in the Design view.

2. Make it movable (Position property page>Moveable check box).

3. In Design view, enlarge the area in which the control is placed.

For example, in a grid DataWindow object, make the band deeper and move the control
down into the center of the band.

4. Display the Modify expression dialog box for the Escapement property. (Click the
button next to the Escapement property on the Font property page.)

5. Specify the amount of rotation you want as an integer in tenths of a degree. (For
example, 450 means 45 degrees of rotation; 0 means horizontal or no rotation.)

The origin of rotation is the center of the top border of the box containing the text. It is
often helpful to use left-aligned text (General property page>Alignment>Left) because
it makes it easier to position the control correctly. This example shows left-aligned text
within two controls, a text control and a computed field.

Figure 6.48:

If the box that contains the text overlaps the border of the page or the border of a label
in a DataWindow object with the Label presentation style, the origin of rotation is the
center of the portion of the top border that is within the page or label, and the portion
that is outside the page or label is cut off. This can cause the text in the box to run to a
second line when it is rotated. If you want the text to display close to the border, you can
add one or more line breaks ("~r~n") before the text and adjust the size of the box.

To display the current rotation in Preview, close the Preview view and reopen it
(View>Preview on the menu bar).

Working with DataWindows

Page 642

Figure 6.49:

6. Drag and drop the control in the Design view until it is where you want it.

7. In the Design view, select the control that is being rotated and deselect the Moveable
check box.

If you are using a conditional expression for rotation

If you are specifying different rotations depending on particular conditions, you might
need to add conditions to the x and y properties for the control to move the control
conditionally to match the various amounts of rotation. An alternative to moving
the control around is to have multiple controls positioned exactly as you want them,
taking into account the different amounts of rotation. Then you can add a condition to
the visible property of each control to ensure that the correctly rotated control shows.

6.4 Controlling Updates in DataWindow objects
About this chapter

When PowerBuilder generates the basic DataWindow object, it defines whether the data is
updatable. This chapter describes the default settings and how you can modify them.

6.4.1 About controlling updates

When PowerBuilder generates the basic DataWindow object, it defines whether the data is
updatable by default as follows:

• If the DataWindow object contains columns from a single table and includes that table's
key columns, PowerBuilder defines all columns as updatable and specifies a nonzero tab
order for each column, allowing users to tab to the columns.

• If the DataWindow object contains columns from two or more tables or from a view,
PowerBuilder defines all columns as not being updatable and sets all tab orders to zero,
preventing users from tabbing to them.

Working with DataWindows

Page 643

You can accept the default settings or modify the update characteristics for a DataWindow
object.

If using a Stored Procedure or External data source

If the data source is Stored Procedure or External, you can use the GetNextModified
method to write your own update script. For more information, see Section 9.73,
“GetNextModified” in DataWindow Reference.

6.4.1.1 What you can do

You can:

• Allow updates in a DataWindow object associated with multiple tables or a view; you can
define one of the tables as being updatable

• Prevent updates in a DataWindow object associated with one table

• Prevent updates to specific columns in a DataWindow object that is associated with an
updatable table

• Specify which columns uniquely identify a row to be updated

• Specify which columns will be included in the WHERE clause of the UPDATE or
DELETE statement PowerBuilder generates to update the database

• Specify whether PowerBuilder generates an UPDATE statement, or a DELETE then an
INSERT statement, to update the database when users modify the values in a key column

Updatability of views

Some views are logically updatable; some are not. For the rules your DBMS follows
for updating views, see your DBMS documentation.

To specify update characteristics for a DataWindow object

1. Select Rows>Update Properties from the menu bar.

The Specify Update Properties dialog box displays.

2. To prevent updates to the data, make sure the Allow Updates box is not selected.

3. To allow updates, select the Allow Updates box and specify the other settings as
described below.

4. Click OK.

Changing tab values

PowerBuilder does not change the tab values associated with columns after you change the
update characteristics of the DataWindow object. If you have allowed updates to a table in a
multitable DataWindow object, you should change the tab values for the updatable columns
so that users can tab to them.

For more information, see Defining the tab order in a DataWindow object.

Working with DataWindows

Page 644

6.4.2 Specifying the table to update

Each DataWindow object can update one table, which you select from the Table to Update
box in the Specify Update Properties dialog box.

Figure 6.50:

6.4.3 Specifying the unique key columns

The Unique Key Columns box in the Specify Update Properties dialog box specifies which
columns PowerBuilder uses to identify a row being updated. PowerBuilder uses the column
or columns you specify here as the key columns when generating the WHERE clause to
update the database (as described below):

Figure 6.51:

The key columns you select here must uniquely identify a row in the table. They can be the
table's primary key, though they don't have to be.

Using the primary key

Clicking the Primary Key button cancels any changes in the Unique Key Columns
box and highlights the primary key for the updatable table.

6.4.4 Specifying an identity column

Many DBMSs allow you to specify that the value for a column in a new row is to be
automatically assigned by the DBMS. This kind of column is called an identity column.
Different DBMSs provide different types of identity columns.

For example, some DBMSs allow you to define autoincrement columns so that the column
for a new row is automatically assigned a value one greater than that of the previous
highest value. You could use this feature to specify that an order number be automatically
incremented when someone adds a new order:

Figure 6.52:

By specifying an identity column in the Specify Update Properties dialog box, you tell
PowerBuilder to bring back the value of a new row's identity column after an insert in the
DataWindow object so that users can see it.

Working with DataWindows

Page 645

For information about identity columns in your DBMS, see your DBMS documentation.

6.4.5 Specifying updatable columns

You can make all or some of the columns in a table updatable.

Updatable columns are displayed highlighted. Click a nonupdatable column to make it
updatable. Click an updatable column to make it nonupdatable.

Changing tab values

If you have changed the updatability of a column, you should change its tab value. If you
have allowed a column to be updated, you should change its tab value to a nonzero number so
users can tab to it.

6.4.6 Specifying the WHERE clause for update/delete

Sometimes multiple users are accessing the same tables at the same time. In these situations,
you need to decide when to allow your application to update the database. If you allow your
application to always update the database, it could overwrite changes made by other users:

Figure 6.53:

You can control when updates succeed by specifying which columns PowerBuilder includes
in the WHERE clause in the UPDATE or DELETE statement used to update the database:

UPDATE table...
SET column = newvalue
WHERE col1 = value1
AND col2 = value2 ...
DELETE
FROM table
WHERE col1 = value1
AND col2 = value2 ...

Using timestamps

Some DBMSs maintain timestamps so you can ensure that users are working with the
most current data. If the SELECT statement for the DataWindow object contains a
timestamp column, PowerBuilder includes the key column and the timestamp column
in the WHERE clause for an UPDATE or DELETE statement regardless of which
columns you specify in the Where Clause for Update/Delete box.

If the value in the timestamp column changes (possibly due to another user modifying
the row), the update fails.

To see whether you can use timestamps with your DBMS, see Part I, “Connecting to
Your Database”.

Working with DataWindows

Page 646

Choose one of the options in the following table in the Where Clause for Update/Delete box.
The results are illustrated by an example following the table.

Table 6.26: Specifying the WHERE clause for UPDATE and DELETE

Option Result

Key Columns The WHERE clause includes the key columns only. These are the
columns you specified in the Unique Key Columns box.

The values in the originally retrieved key columns for the row
are compared against the key columns in the database. No other
comparisons are done. If the key values match, the update succeeds.

Caution

Be very careful when using this option. If you tell PowerBuilder
only to include the key columns in the WHERE clause and
someone else modified the same row after you retrieved it, their
changes will be overwritten when you update the database (see
the example following this table).

Use this option only with a single-user database or if you are
using database locking. In other situations, choose one of the
other two options described in this table.

Key and
Updatable
Columns

The WHERE clause includes all key and updatable columns.

The values in the originally retrieved key columns and the originally
retrieved updatable columns are compared against the values in the
database. If any of the columns have changed in the database since the
row was retrieved, the update fails.

Key and Modified
Columns

The WHERE clause includes all key and modified columns.

The values in the originally retrieved key columns and the modified
columns are compared against the values in the database. If any of the
columns have changed in the database since the row was retrieved, the
update fails.

Example

Consider this situation: a DataWindow object is updating the Employee table, whose key is
Emp_ID; all columns in the table are updatable. Suppose the user has changed the salary of
employee 1001 from $50,000 to $65,000. This is what happens with the different settings for
the WHERE clause columns:

• If you choose Key Columns for the WHERE clause, the UPDATE statement looks like
this:

UPDATE Employee
SET Salary = 65000
WHERE Emp_ID = 1001

This statement will succeed regardless of whether other users have modified the row since
your application retrieved the row. For example, if another user had modified the salary to
$70,000, that change will be overwritten when your application updates the database.

Working with DataWindows

Page 647

• If you choose Key and Modified Columns for the WHERE clause, the UPDATE statement
looks like this:

UPDATE Employee
SET Salary = 65000
WHERE Emp_ID = 1001
 AND Salary = 50000

Here the UPDATE statement is also checking the original value of the modified column in
the WHERE clause. The statement will fail if another user changed the salary of employee
1001 since your application retrieved the row.

• If you choose Key and Updatable Columns for the WHERE clause, the UPDATE
statement looks like this:

UPDATE Employee
SET Salary = 65000
WHERE Emp_ID = 1001
 AND Salary = 50000
 AND Emp_Fname = original_value
 AND Emp_Lname = original_value
 AND Status = original_value
 ...

Here the UPDATE statement is checking all updatable columns in the WHERE clause.
This statement will fail if any of the updatable columns for employee 1001 have been
changed since your application retrieved the row.

6.4.7 Specifying update when key is modified

The Key Modification property determines the SQL statements PowerBuilder generates
whenever a key column—a column you specified in the Unique Key Columns box—is
changed. The options are:

• Use DELETE then INSERT (default)

• Use UPDATE

How to choose a setting

Consider the following when choosing the Key Modification setting:

• If multiple rows are changed, DELETE and INSERT always work. In some DBMSs,
UPDATE fails if the user modifies two keys and sets the value in one row to the original
value of the other row.

• You might choose the setting here based on your DBMS triggers. For example, if there is
an Insert trigger, select Use Delete then Insert.

• If only one row can be modified by the user before the database is updated, use UPDATE
because it is faster.

6.4.8 Using stored procedures to update the database

Updates to the database can be performed using stored procedures.

Working with DataWindows

Page 648

Why use stored procedures?

The DataWindow control submits updates to the database by dynamically generating
INSERT, DELETE, and UPDATE SQL statements after determining the status of each
row in the DataWindow object. You can also define procedural SQL statements in a
stored procedure for use by all applications accessing a database. Using stored procedures
to perform database updates allows you to enhance database security, integrity, and
performance. Since stored procedures provide for conditional execution, you can also use
them to enforce additional business rules.

Updating using stored procedures

The Stored Procedure Update dialog box only allows you to associate an existing stored
procedure with your DataWindow object. The stored procedure must have been previously
defined in the database.

Figure 6.54:

To use stored procedures to update the database

1. In the DataWindow painter, select Rows>Stored Procedure Update to display the Stored
Procedure Update dialog box.

2. Select the tab for the SQL update method (Delete, Insert, or Update) with which you
want to associate a stored procedure.

3. Click the Procedure button, select the stored procedure you want to have execute when
the SQL update method is generated, and click OK.

The parameters used in the stored procedure are displayed in the Argument Name list
in the order in which they are defined in the procedure. Column Name lists the columns
used in your DataWindow object.

4. Associate a column in the DataWindow object or an expression with a procedure
parameter.

If a stored procedure uses parameters that are not matched to column names, you can
substitute the value from a DataWindow object computed field or expression.

Working with DataWindows

Page 649

Matching a column to a procedure parameter

You must be careful to correctly match a column in the DataWindow object to a
procedure parameter, since PowerBuilder is able to verify only that datatypes match.

If the parameter is to receive a column value, indicate whether the parameter will receive the
updated column value entered through the DataWindow object or retain the original column
value from the database.

Typically, you select Use Original when the parameter is used in a WHERE clause in an
UPDATE or DELETE SQL statement. If you do not select Use Original, the parameter will
use the new value entered for that column. Typically, you would use the new value when the
parameter is used in an INSERT or UPDATE SQL statement.

What happens when the stored procedure is executed

The stored procedure you associate with a SQL update method in the Stored Procedure
Update dialog box is executed when the DataWindow control calls the UpdateData method.
The DataWindow control examines the table in the DataWindow object, determines the
appropriate SQL statement for each row, and submits the appropriate stored procedure (as
defined in the Stored Procedure Update dialog box) with the appropriate column values
substituted for the procedure arguments.

If a stored procedure for a particular SQL update method is not defined, the DataWindow
control submits the appropriate SQL syntax.

Return values from procedures cannot be handled by the DataWindow control. The
UpdateData method returns 1 if it succeeds and -1 if an error occurs. Additional information
is returned to SQLCA. Additional information is passed as a DBErrorException to the caller.

Using Describe and Modify

You can use the DataWindow Describe and Modify methods to access DataWindow
property values including the stored procedures associated with a DataWindow object.
For information, see the DataWindow object property Table.property in Section 3.3.209,
“Table.property” in DataWindow Reference.

Restrictions on the use of Modify

Since a database driver can only report stored procedure names and parameter names and
position, it cannot verify that changes made to stored procedures are valid. Consequently,
if you use Modify to change a stored procedure, be careful that you do not inadvertently
introduce changes into the database.

In addition, using Modify to enable a DataWindow object to use stored procedures to update
the database when it is not already using stored procedures requires that the type qualifier
be specified first. Calling the type qualifier ensures that internal structures are built before
subsequent calls to Modify. If a new method or method arguments are specified without a
preceding definition of type, Modify fails.

6.4.9 Using a Web service to update the database (Obsolete)

You can use a DataWindow with a Web service data source to update a database. Support for
updating data requires one or more WSDL files that describe methods and parameters that
can be called by the DataWindow engine for insert, delete, or update operations.

Working with DataWindows

Page 650

Generating or selecting an assembly

The WSDL files are not required on runtime computers. They are used to generate assembly
files that are deployed with the application. If you have an existing assembly file that allows
you to update data in your DataWindow objects, you can select that assembly instead of
generating a new one from the Web Services Update dialog box. You can generate or select
separate assemblies for insert, delete, and update operations.

Insert, delete, and update operations

The insert, delete, and update operations imply different things depending on the original
data source. When you insert a DataWindow row for an RDBMS, a new row is added to the
database; when the data source is an array of structures, a new structure instance is added to
the array; and when the data source is an array of simple types, a new instance of the simple
type is added to the array. The delete operation removes a database row or an instance in an
array, and the update operation modifies a database row or an instance in an array.

For each operation, you must map DataWindow column values or expressions to Web service
input parameters. At runtime when performing one of these operations, the DataWindow
binds column or expression values to parameters as instructed and calls the Web service
method. The DataWindow engine does not know what actually happens in the Web service
component (that is, how the component implements the update), only whether it returns a
success or failure message.

The following figure displays the Web Service Update dialog box. You use this dialog box to
bind to Web service parameters to DataWindow columns or expressions. Unlike the retrieve
call, DataWindow update operations can handle bidirectional parameters. However, you can
select an expression or computed column only for an update method input parameter.

Working with DataWindows

Page 651

Figure 6.55: Web Service Update dialog box

To use a Web service to update the database

1. In the DataWindow painter, select Rows>Web Service Update to display the Web
Service Update dialog box.

2. Select the tab for the Web service update method (Update, Insert, or Delete) with which
you want to associate a Web service.

3. Click the browse button next to the WSDL Filename text box to browse to a WSDL file
describing the Web service you want to use to update the DataWindow, and click OK.

You use a WSDL file to generate an assembly that you can deploy with your Web
service DataWindow application. You can override the default assembly name that will
be generated if you enter an existing assembly in the following step of this procedure.

If you already have an assembly that you want to use to update the DataWindow, you
can skip the current step and select the assembly that you want in step 4.

You can use the Reset button to clear all entries in the Web Service Update dialog box.

4. (Optional) Type an assembly name in the Assembly Name text box to override a default
assembly name that you want to generate from a WSDL file, or browse to an existing
assembly file that describes the Web service you want to use to update the DataWindow,
and click OK.

Although you can browse to any mapped directory to find an assembly file for update
operations, you must make sure to copy the assembly under the current target directory.

Working with DataWindows

Page 652

All assemblies for retrieving and updating a Web service DataWindow must be
deployed to the same directory as the application executable file, or retrieve and update
operations will not be able to work at runtime.

5. Click Generate if you want to generate and load an assembly file, or click Load if you
entered an existing assembly file name in step 4.

After you click Generate, an assembly file is created with a default name from the
WSDL file or from a name that you entered in the previous step.

After you generate the assembly from a WSDL file or load an existing assembly, the
Web services in that file are added to the Web Service Name drop-down list and the
methods for the Web services are added to the Method Name drop-down list.

6. Select a Web service name and method name from the list of Web services and methods.

The parameters used in the Web service method are displayed in the Argument Name
list in the order in which they are defined. Column Name lists the columns used in your
DataWindow object.

7. Associate a column in the DataWindow object or an expression with a method
parameter.

If a Web service method uses parameters that are not matched to column names, you can
substitute the value from a DataWindow object computed field or expression.

Matching a column to a Web service method parameter

You must be careful to correctly match a column in the DataWindow object to a
method parameter, since PowerBuilder is able to verify only that datatypes match.

If the parameter is to receive a column value, indicate whether the parameter will receive the
updated column value entered through the DataWindow object or retain the original column
value from the database.

Typically, you select Use Original when the Web service parameter is used in the WHERE
clause of an UPDATE or DELETE SQL statement for a Web service method. If you do not
select Use Original, the parameter uses the new value entered for that column. Typically, you
would use the new value when the Web service parameter is needed for an INSERT SQL
statement for the method, or if it is set in an UPDATE SQL statement.

Regenerating an assembly

If you need to regenerate an assembly for a DataWindow that uses a Web service data source
for retrieval, update, insert, or delete operations, you must add the following line to the
[DataWindow] section of the PB.INI file:

GenerateWSAssembliesOnCompile=YES

After you set this property in the PB.INI file, PowerBuilder regenerates the assembly on each
compilation of the target containing the DataWindow.

Using the WSError event

Because a DataWindow with a Web service data source does not pass back failure messages
in a return code during retrieve, insert, or update operations, you must use the WSError event
to obtain such error information.

Working with DataWindows

Page 653

For more information on the WSError event, see Section 8.61, “WSError (Obsolete)” in
DataWindow Reference.

The WebServiceException object

Because a DataWindow with a Web service data source does not pass back failure
messages in a return code during retrieve, insert, or update operations, you must use the
WebServiceException object to obtain such error information. The parameters in the
following table are exposed in the WebServiceException object when an error occurs:

Table 6.27:

Argument Description

operation String for the type of operation (Retrieve, Update, Insert, Delete,
Connect, or Disconnect)

rowNumber Int32 for the row number or 0 if not applicable, such as when an
error occurs during connection to the Web service

buffername String for the name of the buffer being accessed while the error
occurred (Primary, Filter, or Delete)

assembly String for the name of the assembly being used

method String for the name of the Web service method invoked

returnCode Int32 for the return code from the Web service

6.5 Displaying and Validating Data

About this chapter

This chapter describes how to customize your DataWindow object by modifying the display
values in columns and specifying validation rules.

6.5.1 About displaying and validating data

When PowerBuilder generates a basic DataWindow object, it uses the extended attributes
defined for the data and stored in the extended attribute system tables.

For more information about the extended attribute system tables, see Appendix A, The
Extended Attribute System Tables.

In the Database painter, you can create the extended attribute definitions that specify a
column's display format, edit style, and validation rules.

In the DataWindow painter, you can override these extended attribute definitions for a
column in a DataWindow object. These overrides do not change the information stored with
the column definition in the extended attribute system tables.

6.5.1.1 Presenting the data

When you generate a new DataWindow object, PowerBuilder presents the data according to
the properties already defined for a column, such as a column's display format and edit style.

Display formats

Working with DataWindows

Page 654

Display formats embellish data values while still displaying them as letters, numbers, and
special characters. Using display formats, for example, you can:

• Change the color of numbers to display a negative value

• Add parentheses and dashes to format a telephone number

• Add a dollar sign and period to indicate a currency format

For information, see About display formats.

Edit styles

Edit styles usually take precedence over display formats and specify how column data is
presented. For example, using edit styles, you can:

• Display valid values in a drop-down list

• Indicate that a single value is selected by a check box

• Indicate which of a group of values is selected with radio buttons

• Edit styles affect not only the way data displays, they also affect how the user interacts
with the data at runtime.

For more information, see About edit styles.

About display format masks and EditMask masks

The differences between display format masks and EditMask masks can be confusing. A
display format mask determines the appearance of the column when the focus is off the
column, or when the DataWindow object is in print preview mode. When you apply an
EditMask edit style, the mask you use determines the appearance of the column when focus is
on the column.

If you want data to display differently depending on whether the focus is on or off the
column, specify an edit mask (on the Edit property page for the column) as well as a display
format (on the Format property page for the column), then check the Use Format check box
on the Format property page. The Use Format check box displays only when an edit mask has
been specified.

If you want the data to display in the same way whether focus is on or off the column and you
have defined an edit mask, you do not need to define a display format. The edit mask is used
for display if the Use Format box is not checked (the default).

6.5.1.2 Validating data

When data is entered in the Database painter or in a DataWindow object, PowerBuilder
evaluates the data against validation rules defined for that column. If the data is valid,
PowerBuilder accepts the entry; otherwise, PowerBuilder displays an error message and does
not accept the entry.

For more information, see About validation rules.

Working with DataWindows

Page 655

6.5.2 About display formats

You can use display formats to customize the display of column data in a DataWindow
object. Display formats are masks in which certain characters have special significance. For
example, you can display currency values preceded by a dollar sign, show dates with month
names spelled out, and use a special color for negative numbers. PowerBuilder comes with
many predefined display formats. You can use them as is or define your own.

Here the Phone, Salary, and Start Date columns use display formats so the data is easier to
interpret:

Figure 6.56:

Display formats not used for data entry

When users tab to a column containing a display format, PowerBuilder removes the
display format and displays the raw value for users to edit.

If you want to provide formatting used for data entry, you need to specify edit masks,
as described in The EditMask edit style.

6.5.3 Working with display formats

You work with display formats in the Database painter and the DataWindow painter.

What you do in the Database painter

In the Database painter, you can:

• Create, modify, and delete named display formats

The named display formats are stored in the extended attribute system tables. When you
have defined a display format, it can be used by any column of the appropriate datatype in
the database.

• Assign display formats to columns and remove them from columns

These formats are used by default when you place the column in a DataWindow object in
the DataWindow painter.

What you do in the DataWindow painter

Working with DataWindows

Page 656

In the DataWindow painter, you can:

• Accept the default display format assigned to a column in the Database painter

• Override the default display format with another named format stored in the extended
attribute system tables

• Create an ad hoc, unnamed format to use with one specific column

Display formats and the extended attribute system tables

When you have placed a column in a DataWindow object and have given it a display format
(either the default format from the assignment made in the Database painter for the column
or a format assigned in the DataWindow painter), there is no longer any link to the named
format in the extended attribute system tables.

If the definition of the display format later changes in the extended attribute system tables,
the format for the column in a DataWindow object does not change. If you want to use the
modified format, you can reapply it to the column in the DataWindow painter.

6.5.3.1 Working with display formats in the Database painter

Typically, you define display formats and associate them with columns in the Database
painter, because display formats are properties of the data itself. Once you have associated
a display format with a column in the Database painter, it is used by default each time the
column is placed in a DataWindow object.

Edit style takes precedence

If a column has an associated edit style, the edit style takes precedence over a display
format unless you use an EditMask edit style and check the Use Format box on the
Format property page.

For more information, see About edit styles.

To create a new display format

1. In the Database painter, open the Extended Attributes view, right-click Display Formats,
and select Add from the pop-up menu.

The Display Format view displays.

2. Name the display format and specify a datatype.

3. Define the display format using masks.

For information, see Defining display formats.

You can use this display format with any column of the appropriate datatype in the
database.

To modify an existing display format

1. In the Database painter, open the Extended Attributes view.

Working with DataWindows

Page 657

2. In the Extended Attributes view, open the list of display formats.

3. Position the pointer on the display format you want to modify, display the pop-up menu,
and select Properties.

4. In the Display Format view, modify the display format as desired.

For information, see Defining display formats.

To associate a display format with a column in the Database painter

1. In the Database painter Objects view, position the pointer on the column, select
Properties from the pop-up menu, and select the Display tab in the Properties view.

2. Select a format from the list in the Display Format box.

The column now has the selected format associated with it in the extended attribute
system tables.

To remove a display format from a column in the Database painter

1. In the Database painter Objects view, position the pointer on the column, select
Properties from the pop-up menu, and select the Display tab in the Properties view.

2. Select (None) from the list in the Display Format box.

The display format is no longer associated with the column.

6.5.3.2 Working with display formats in the DataWindow painter

Display formats you assign to a column in the Database painter are used by default when
you place the column in a DataWindow object. You can override the default format in the
DataWindow painter by choosing another format from the extended attribute system tables or
defining an ad hoc format for one specific column.

About computed fields

You can assign display formats to computed fields using the same techniques as for
columns in a table.

To specify a display format for a column in the DataWindow painter

1. In the DataWindow painter, move the pointer to the column, select Properties from the
column's pop-up menu, and then select the Format tab.

Information appropriate to the datatype of the selected column displays. The currently
used format displays in the Format box. All formats for the datatype defined in the
extended attribute system tables are listed in the pop-up list (displayed by clicking the
button).

2. Do one of the following:

• Delete the display format.

Working with DataWindows

Page 658

• Select a format in the extended attribute system tables from the pop-up list.

• Create a format for the column by typing it in the Format box. For more information,
see Defining display formats.

Format not saved in the extended attribute system tables

If you create a format here, it is used only for the current column and is not saved in
the extended attribute system tables.

Shortcuts

To assign the Currency or Percent display format to a numeric column in a report,
select the column, then click the Currency or Percent button in the PainterBar or
select Format>Currency or Format>Percent from the menu bar.

Customizing the toolbar

You can add buttons to the PainterBar that assign a specified display format to selected
columns in reports.

For more information, see Customizing toolbars.

6.5.4 Defining display formats

Display formats are represented through masks, where certain characters have special
significance. PowerBuilder supports four kinds of display formats, each using different mask
characters:

• Numbers

• Strings

• Dates

• Times

For example, in a string format mask, each @ represents a character in the string and all other
characters represent themselves. You can use the following mask to display phone numbers:

(@@@) @@@-@@@@

Combining formats

You can include different types of display format masks in a single format. Use a space
to separate the masks. For example, the following format section includes a date and time
format:

mmmm/dd/yyyy h:mm

Using sections

Each type of display format can have multiple sections, with each section corresponding to a
form of the number, string, date, or time. Only one section is required; additional sections are

Working with DataWindows

Page 659

optional and should be separated with semicolons (;).You cannot use sections in edit masks.
Semicolons can be used only in display formats.

The following format specifies different displays for positive and negative numbers—
negative numbers are displayed in parentheses:

$#,##0;($#,##0)

Using keywords

Enclose display format keywords in square brackets. For example, you can use the keyword
[General] when you want PowerBuilder to determine the appropriate format for a number.

Using colors

You can define a color for each display format section by specifying a color keyword before
the format. The color keyword is the name of the color, or a number that represents the color,
enclosed in square brackets: [RED] or [255]. The number is usually used only when a color is
required that is not provided by name. The named color keywords are:

• [BLACK]

• [BLUE]

• [CYAN]

• [GREEN]

• [MAGENTA]

• [RED]

• [WHITE]

• [YELLOW]

The formula for combining primary color values into a number is:

256*256*blue + 256*green + red=number

where the amount of each primary color is specified as a value from 0 to 255. For example, to
specify cyan, substitute 255 for blue, 255 for green, and 0 for red. The result is 16776960.

If you want to add text to a numeric display format and use a color attribute, you must
include the escape character (\) before each literal in the mask. For example:

[red]\D\e\p\t\: ###

The following table lists the blue, green, and red values you can use in the formula to create
other colors.

Table 6.28: Numeric values used to create colors

Blue Green Red Number Color

0 0 255 255 Red

Working with DataWindows

Page 660

Blue Green Red Number Color

0 255 0 65280 Green

0 128 0 32768 Dark green

255 0 0 16711680 Blue

0 255 255 65535 Yellow

0 128 128 32896 Brown

255 255 0 16776960 Cyan

192 192 192 12632256 Light gray

Using special characters

To include a character in a mask that has special meaning in a display format, such as [,
precede the character with a backslash (\). For example, to display a single quotation mark,
enter \'.

Setting display formats at runtime

In scripts, you can use GetFormat to get the current format for a column and SetFormat to
change the format for a column at runtime.

6.5.4.1 Number display formats

A number display format can have up to four sections. Only the first is required. The three
other sections determine how the data displays if its value is negative, zero, or NULL. The
sections are separated by semi-colons:

Positive-format;negative-format;zero-format;null-format

Special characters

The following table lists characters that have special meaning in number display formats.

Table 6.29: Characters with special meaning in display formats

Character Meaning

A number

0 A required number; a number will display for
every 0 in the mask

Percent signs, decimal points, parentheses, and spaces display as entered in the mask.

Use at least one 0

In general, a number display format should include at least one 0. If users enter 0 in
a field with the mask ###, the field will appear to be blank if you do not provide a
zero-format section. If the mask is ###.##, only the period displays. If you want two
decimal places to display even if both are 0, use the mask ##0.00.

Number keywords

Working with DataWindows

Page 661

You can use the following keywords as number display formats when you want
PowerBuilder to determine an appropriate format to use:

• [General]

• [Currency]

Note that [Currency] and [Currency(n)] are legal edit masks, but they are not legal display
formats.

Percentages

Use caution when defining an edit mask for a percentage. When you enter a number in a
column with a percent edit mask and tab off the column, PowerBuilder divides the number by
100 and stores the result in the buffer. For example, if you enter 23, PowerBuilder passes .23
to the buffer. When you retrieve from the database, PowerBuilder multiplies the number by
100 and, if the mask is ##0%, displays 23%.

The datatype for the column must be numeric or decimal to handle the result of a division by
100. If the column has an integer datatype, a percentage entered as 333 is retrieved from the
database as 300, and 33 is retrieved as 0.

If you use an edit mask with decimals, such as ##0.00%, the datatype must have enough
decimal places to handle the division. For example, if you enter 33.33, the datatype for the
column must have at least four decimal places because the result of the division is .3333. If
the datatype has only three decimal places, the percentage is retrieved as 33.30.

Examples

The following table shows how the values 5, –5, and .5 display when different format masks
are applied.

Table 6.30: Number display format examples

Format 5 -5 .5

[General] 5 -5 0.5

0 5 -5 1

0.00 5.00 -5.00 0.50

#,##0 5 -5 1

#,##0.00 5.00 -5.00 0.50

$#,##0;($#,##0) $5 ($5) $1

$#,##0;-$#,##0 $5 -$5 $1

$#,##0;[RED]
($#,##0)

$5 ($5) $1

[Currency] $5.00 ($5.00) $0.50

$#,##0.00;
($#,##0.00)

$5.00 ($5.00) $0.50

$#,##0.00;[RED]
($#,##0.00)

$5.00 ($5.00) $0.50

Working with DataWindows

Page 662

Format 5 -5 .5

##0% 500% -500% 50%

##0.00% 500.00% -500.00% 50.00%

0.00E+00 5.00E+00 -5.00E+00 5.00E-01

6.5.4.2 String display formats

String display formats can have two sections. The first is required and contains the format for
strings; the second is optional and specifies how to represent NULLs:

string-format;null-format

In a string format mask, each at-sign (@) represents a character in the string and all other
characters represent themselves.

Special characters for string edit masks

String edit masks use different special characters. See The EditMask edit style.

Example

This format mask:

[red](@@@) @@@-@@@@

displays the string 800YESCELT in red as:

YES-CELT

6.5.4.3 Date display formats

Date display formats can have two sections. The first is required and contains the format for
dates; the second is optional and specifies how to represent NULLs:

date-format;null-format

Special characters

The following table shows characters that have special meaning in date display formats.

Table 6.31: Characters with special meaning in data display formats

Character Meaning Example

d Day number with no leading
zero

9

dd Day number with leading
zero if appropriate

09

ddd Day name abbreviation Mon

dddd Day name Monday

m Month number with no
leading zero

6

Working with DataWindows

Page 663

Character Meaning Example

mm Month number with leading
zero if appropriate

06

mmm Month name abbreviation Jun

mmmm Month name June

yy Two-digit year 97

yyyy Four-digit year 1997

Colons, slashes, and spaces display as entered in the mask.

About 2-digit years

If users specify a 2-digit year in a DataWindow object, PowerBuilder assumes the
date is the 20th century if the year is greater than or equal to 50. If the year is less than
50, PowerBuilder assumes the 21st century. For example:

1/1/85 is interpreted as January 1, 1985.

1/1/40 is interpreted as January 1, 2040.

Date keywords

You can use the following keywords as date display formats when you want PowerBuilder to
determine an appropriate format to use:

• [ShortDate]

• [LongDate]

The format used is determined by the regional settings for date in the registry. Note that
[Date] is not a valid display format.

Examples

The following table shows how the date Friday, January 30, 1998, displays when different
format masks are applied.

Table 6.32: Date display format examples

Format Displays

[red]m/d/yy 1/30/98 in red

d-mmm-yy 30-Jan-98

dd-mmmm 30-January

mmm-yy Jan-98

dddd, mmm d, yyyy Friday, Jan 30, 1998

6.5.4.4 Time display formats

Time display formats can have two sections. The first is required and contains the format for
times; the second is optional and specifies how to represent NULLs:

Working with DataWindows

Page 664

time-format;null-format

Special characters

The following table shows characters that have special meaning in time display formats.

Table 6.33: Characters with special meaning in time display formats

Character Meaning

h Hour with no leading zero (for example, 1)

hh Hour with leading zero if appropriate (for
example, 01)

m Minute with no leading zero (must follow h
or hh)

mm Minute with leading zero if appropriate (must
follow h or hh)

s Second with no leading zero (must follow m
or mm)

ss Second with leading zero (must follow m or
mm)

ffffff Microseconds with no leading zeros. You
can enter one to six f's; each f represents a
fraction of a second (must follow s or ss)

AM/PM Two-character, uppercase abbreviation (AM
or PM as appropriate)

am/pm Two-character, lowercase abbreviation (am
or pm as appropriate)

A/P One-character, uppercase abbreviation (A or
P as appropriate)

a/p One-character, lowercase abbreviation (a or p
as appropriate)

Colons, slashes, and spaces display as entered in the mask.

24-hour format is the default

Times display in 24-hour format unless you specify AM/PM, am/pm, A/P, or a/p.

Time keyword

You can use the following keyword as a time display format to specify the format specified in
the Windows control panel:

[Time]

Examples

The following table shows how the time 9:45:33:234567 PM displays when different format
masks are applied.

Working with DataWindows

Page 665

Table 6.34: Time display format examples

Format Displays

h:mm AM/PM 9:45 PM

hh:mm A/P 09:45 P

h:mm:ss am/pm 9:45:33 pm

h:mm 21:45

h:mm:ss 21:45:33

h:mm:ss:f 21:45:33:2

h:mm:ss:fff 21:45:33:234

h:mm:ss:ffffff 21:45:33:234567

m/d/yy h:mm 1/30/98 21:45

6.5.5 About edit styles

You can define edit styles for columns. Edit styles specify how column data is presented in
DataWindow objects. Unlike display formats, edit styles do not only affect the display of
data; they also affect how users interact with the data at runtime. Once you define an edit
style, it can be used by any column of the appropriate datatype in the database.

When edit styles are used

If both a display format and an edit style have been assigned to a column, the edit style is
always used, with one exception. When you assign an EditMask edit style to a column, you
can check the Use Format check box on the Format property page for the column to use the
edit mask format when focus is on the column, and the display format mask when focus is off
the column.

Edit styles

The following table shows the available edit styles.

Table 6.35: Edit styles

Edit style What the edit style does Example

Edit box (default) Displays a value in the box

For data entry, type a value

DropDownListBox Displays a value from the
drop-down list

For data entry, select or enter
a value

CheckBox Displays a check box selected
or cleared

For data entry, select or clear
the check box

Working with DataWindows

Page 666

Edit style What the edit style does Example

RadioButtons Displays radio buttons, one of
which is selected

For data entry, select one of
the radio buttons

EditMask Displays formatted data

For data entry, type a value

DropDownDataWindow Displays a value from a drop-
down DataWindow

For data entry, select a value

RichText Allows display of data in rich
text formats.

InkEdit On Tablet PCs, displays an
InkEdit control so the user
can enter data with the stylus.

For example, suppose you have a column Status that takes one of three values: the letters A,
T, and L, each representing a status (Active, Terminated, or On Leave). If you assign it the
RadioButton edit style, users can simply click a button instead of having to type A, T, or L.
You do not have to create a validation rule to validate typed input.

6.5.6 Working with edit styles

You work with edit styles in the Database painter and DataWindow painter.

What you do in the Database painter

In the Database painter, you can:

• Create, modify, and delete named edit styles

The edit styles are stored in the extended attribute system tables. Once you define an edit
style, it can be used by any column of the appropriate datatype in the database.

• Assign edit styles to columns

These styles are used by default when you place the column in a DataWindow object in the
DataWindow painter.

What you do in the DataWindow painter

In the DataWindow painter, you can:

• Accept the default edit style assigned to a column in the Database painter

• Override the default edit style with another named style stored in the extended attribute
system tables

Working with DataWindows

Page 667

• Create an ad hoc, unnamed edit style to use with one specific column

Edit styles and the extended attribute system tables

When you have placed a column in a DataWindow object and have given it an edit style
(either the default style from the assignment made in the Database painter for the column or a
style assigned in the DataWindow painter), PowerBuilder records the name and definition of
the edit style in the DataWindow object.

However, if the definition of the edit style later changes in the extended attribute system
tables, the edit style for the column in a DataWindow object will not change automatically.
You can update the column by reassigning the edit style to it in the DataWindow object.

6.5.6.1 Working with edit styles in the Database painter

Typically, you define edit styles in the Database painter, because edit styles are properties of
the data itself. Once defined in the Database painter, the styles are used by default each time
the column is placed in a DataWindow object.

To create a new edit style

1. In the Database painter, select Object>Insert>Edit Style from the menu bar.

2. In the Object Details view, select the edit style type from the Style drop-down list.

3. Specify the properties of the edit style.

For information, see Defining edit styles.

You can use the new edit style with any column of the appropriate datatype in the
database.

To modify an existing edit style

1. In the Database painter, open the Extended Attributes view.

2. In the Extended Attributes view, open the list of edit styles.

3. Position the pointer on the Edit style you want to modify, display the pop-up menu, then
select Properties.

4. In the Object Details view, modify the edit style as desired and click OK.

For information, see Defining edit styles.

You can use the modified edit style with any column of the appropriate datatype in the
database.

To associate an edit style with a column in the Database painter

1. In the Database painter (Objects view), position the pointer on the column, select
Properties from the pop-up menu, then select the Edit Style tab in the Properties view.

2. Select a style for the appropriate datatype from the list in the Style Name box.

Working with DataWindows

Page 668

PowerBuilder associates the selected edit style with the column in the extended attribute
system tables.

To remove an edit style from a column in the Database painter

1. In the Database painter (Objects view), position the pointer on the column, select
Properties from the pop-up menu, then select the Edit Style tab in the Properties view.

2. Select (None) from the list in the Style Name box.

The edit style is no longer associated with the column.

6.5.6.2 Working with edit styles in the DataWindow painter

An edit style you assign to a column in the Database painter is used by default when
you place the column in a DataWindow object. You can override the edit style in the
DataWindow painter by choosing another edit style from the extended attribute system tables
or defining an ad hoc style for one specific column.

To specify an edit style for a column

1. In the DataWindow painter, move the pointer to the column, select Properties from the
column's pop-up menu, and then select the Edit tab.

2. Select the type of edit style you want from the Style Type drop-down list.

The information in the Edit page changes to be appropriate to the type of edit style you
selected.

3. Do one of the following:

• Select an edit style from the Style Name list.

• Create an ad hoc edit style for the column, as described in Defining edit styles.

6.5.7 Defining edit styles

This section describes how to specify each type of edit style.

6.5.7.1 The Edit edit style

By default, columns use the Edit edit style, which displays data in an edit control. You can
customize the appearance and behavior of the edit control by modifying a column's Edit edit
style.

To do so, select Edit in the Style Type drop-down listand specify the properties for that style:

• To restrict the number of characters users can enter, enter a value in the Limit box.

• To convert the case of characters upon display, enter an appropriate value in the Case box.

• To have entered values display as asterisks for sensitive data, check the Password box.

Working with DataWindows

Page 669

• To allow users to tab to the column but not change the value, check the Display Only box.

• To define a code table to determine which values are displayed to users and which values
are stored in the database, check the Use Code Table box and enter display and data values
for the code table.

See Defining a code table.

To use the Edit edit style

1. Select Edit from the Style Type list, if it is not already selected.

2. Select the properties you want.

Date columns and regional settings

Using the Edit edit style, or no edit style, with a date column can cause serious data
entry and validation problems if a user's computer is set up to use a nonstandard date
style, such as yyyy/dd/mm. For example, if you enter 2001/03/05 in the Retrieval
Arguments dialog box for a date column when the mask is yyyy/dd/mm, the date
is interpreted as March 5 instead of May 3. To ensure that the order of the day and
month is interpreted correctly, use an EditMask edit style.

6.5.7.2 The DropDownListBox edit style

You can use the DropDownListBox edit style to have columns display as drop-down lists at
runtime:

Figure 6.57:

Typically, this edit style is used with code tables, where you can specify display values
(which users see) and shorter data values (which are stored in the database).

In the DropDownListBox edit style, the display values of the code table display in the
ListBox portion of the DropDownListBox. The data values are the values that are put in the
DataWindow buffer (and sent to the database when an Update is issued) when the user selects
an item in the ListBox portion of the drop-down list.

In the preceding example, when users see the value Business Services, the corresponding data
value could be 200.

To use the DropDownListBox edit style

1. Select DropDownListBox from the Style Type list.

Working with DataWindows

Page 670

2. Select the appropriate properties.

3. Enter the value you want to have appear in the Display Value box and the corresponding
data value in the Data Value box.

At runtime

You can define and modify a code table for a column in a script code by using the SetValue
method at runtime. To obtain the value of a column at runtime, use the GetValue method. To
clear the code table of values, use the ClearValues method.

For more about code tables, see Defining a code table.

6.5.7.3 The CheckBox edit style

If a column can take only one of two (or perhaps three) values, you might want to display
the column as a check box; users can select or clear the check box to specify a value. In the
following entry from a DataWindow object, users can simply check or clear a box to indicate
whether an employee has health insurance:

Figure 6.58:

To use the CheckBox edit style

1. Select CheckBox from the Style Type list and specify properties for that style.

2. In the Text box, enter the text you want displayed next to the check box.

Using accelerator keys

If the CheckBox has an accelerator key, enter an ampersand (&) before the letter in
the text that represents the accelerator key.

3. In the Data Value For boxes, enter the values you want put in the DataWindow buffer
when the CheckBox is checked (on) or unchecked (off).

If you selected the 3 States box, an optional third state box (other) appears, for the case
when the condition is neither on nor off.

What happens

The value you enter in the Text box becomes the display value, and values entered for On,
Off, and Other become the data values.

When users check or clear the check box at runtime, PowerBuilder enters the appropriate data
value in its buffer. When the Update method is called, PowerBuilder sends the corresponding
data values to the database.

Centering check boxes and text

Working with DataWindows

Page 671

You may find it useful to center check boxes used for columns of information. First make the
text control used for the column header and the column control the same size and left aligned.
Then you can center the check boxes and the column header.

To center check boxes and text

1. In the Edit property page for the column, make sure the Left Text check box is not
selected.

2. In the General property page, specify centering (Alignment>Center) or specify centering
using the StyleBar.

6.5.7.4 The RadioButtons edit style

If a column can take one of a small number of values, you might want to display the column
as radio buttons:

Figure 6.59:

To use the RadioButtons edit style

1. Select RadioButtons from the Style Type list and specify properties for that style.

2. Specify how many radio buttons will display in the Columns Across box.

3. Enter a set of display and data values for each button you want to display.

The display values you enter become the text of the buttons; the data values are put in
the DataWindow buffer when the button is clicked.

Using accelerator keys

To use an accelerator key on a radio button, enter an ampersand (&) in the Display
Value before the letter that will be the accelerator key.

What happens

Users select values by clicking a radio button. When the Update method is issued, the data
values are sent to the database.

6.5.7.5 The EditMask edit style

Sometimes users need to enter data that has a fixed format. For example, in North America
phone numbers have a 3-digit area code, followed by three digits, followed by four digits.
You can define an edit mask that specifies the format to make it easier for users to enter
values:

Working with DataWindows

Page 672

Figure 6.60:

Edit masks consist of special characters that determine what can be entered in the column.
They can also contain punctuation characters to aid users.

For example, to make it easier for users to enter phone numbers in the proper format, specify
this mask:

(###) ###-####

At runtime, the punctuation characters display in the box and the cursor jumps over them as
the user types:

Figure 6.61:

Special characters and keywords

Most edit masks use the same special characters as display formats, and there are special
considerations for using numeric, string, date, and time masks. For information, see Defining
display formats.

The special characters you can use in string edit masks are different from those you can use
in string display formats.

Table 6.36: Special characters for string edit masks

Character Meaning

! Uppercase – displays all characters with
letters in uppercase

^ Lowercase – displays all characters with
letters in lowercase

Number – displays only numbers

a Alphanumeric – displays only letters and
numbers

X Any character – displays all characters

If you use the "#" or "a" special characters in a mask, Unicode characters, spaces, and other
characters that are not alphanumeric do not display.

Semicolons invalid in EditMask edit styles

In a display format, you can use semicolons to separate sections in number, date, time,
and string formats. You cannot use semicolons in an EditMask edit style.

Working with DataWindows

Page 673

Keyboard behavior

Note the following about how certain keystrokes behave in edit masks:

• Both Backspace and Shift + Backspace delete the preceding character.

• Delete deletes everything that is selected.

• Non-numeric edit masks treat any characters that do not match the mask pattern as
delimiters.

Also, note certain behavior in Date edit masks:

Entering zero for the day or month causes the next valid date to be entered. For example,
if the edit mask is DD/MM/YY, typing 00/11/01 results in 01/11/01. You can override this
behavior in the development environment by adding the following lines to your PB.INI file:

[Edit Mask Behaviors]AutocompleteDates=no

For deployed applications, the date is completed automatically unless you provide a file
called PB.INI in the same directory as the executable file that contains these lines. Note that
this section must be in a file called PB.INI. Adding the section to a different INI file shipped
with the application will have no effect.

You cannot use a partial mask, such as dd or mmm, in a date edit mask. Any mask that does
not include any characters representing the year will be replaced by a mask that does.

The strings 00/00/00 or 00/00/0000 are interpreted as the NULL value for the column.

Using the Mask pop-up menu

Click the button to the right of the Mask box on the Mask property page to display a list
that contains complete masks that you can click to add to the mask box, as well as special
characters that you can use to construct your own mask. For example, the menu for a Date
edit mask contains complete masks such as mm/dd/yy and dd/mmm/yyyy. It also has
components such as dd and jjj (for a Julian day). You might use these to construct a mask like
dd-mm-yy, typing in the hyphens as separators.

Using masks with "as is" characters

You can define a mask that contains "as is" characters that always appear in the control or
column. For example, you might define a numeric mask such as Rs0000.00 to represent
Indian rupees in a currency column.

However, you cannot enter a minus sign to represent negative numbers in a mask that
contains "as is" characters, and the # special character is treated as a 0 character. As a
result, if you specify a mask such as ###,##0.00EUR, a value such as 45,000 Euros would
display with a leading zero: 045,000.00EUR. Note that you must always specify a mask
that has enough characters to display all possible data values. If the mask does not have
enough characters, for example if the mask is #,##0.00 and the value is 45000, the result is
unpredictable.

The preferred method of creating a currency editmask is to use the predefined [currency]
- International mask. You can change the number in parentheses, which is the number of
characters in the mask including two decimal places. When you use this mask, PowerBuilder

Working with DataWindows

Page 674

uses the currency symbol and format defined in the regional settings section of the Windows
control panel. You can enter negative values in a column that uses a currency mask.

Using spin controls

You can define an edit mask as a spin control, a box that contains up and down arrows that
users can click to cycle through fixed values. For example, you can set up a code table that
provides the valid entries in a column; users simply click an arrow to select an entry. Used
this way, a spin control works like a drop-down list that displays one value at a time:

Figure 6.62:

For more about code tables, see Defining a code table.

To use an EditMask edit style

1. Select EditMask in the Style Type box if it is not already selected.

2. Define the mask in the Mask box. Click the special characters in the pop-up menu to use
them in the mask. To display the pop-up menu, click the button to the right of the Mask
box.

3. Specify other properties for the edit mask.

When you use your EditMask, check its appearance and behavior. If characters do
not appear as you expect, you might want to change the font size or the size of the
EditMask.

Using a drop-down calendar

You can use a drop-down calendar option on any DataWindow column with an EditMask edit
style and a Date, DateTime, or TimeStamp datatype. The DDCalendar EditMask property
allows for separate selections of the calendar month, year, and date. This option can be set
in a check box on the Edit page of the DataWindow painter Properties view when a column
with the EditMask edit style is selected. It can also be set in code, as in this example for the
birth_date column:

Working with DataWindows

Page 675

dw1.Modify("birth_date.EditMask.DDCalendar='Yes'")

6.5.7.6 The DropDownDataWindow edit style

Sometimes another data source determines which data is valid for a column.

Consider this situation: the Department table includes two columns, Dept_id and Dept_name,
to record your company's departments. The Employee table records your employees. The
Department column in the Employee table can have any of the values in the Dept_id column
in the Department table.

As new departments are added to your company, you want the DataWindow object
containing the Employee table to automatically provide the new departments as choices when
users enter values in the Department column.

In situations such as these, you can specify the DropDownDataWindow edit style for a
column: it is populated from another DataWindow object. When users go to the column, the
contents of the DropDownDataWindow display, showing the latest data:

Figure 6.63:

To use the DropDownDataWindow edit style

1. Create a DataWindow object that contains the columns in the detail band whose values
you want to use in the column.

You will often choose at least two columns: one column that contains values that the
user sees and another column that contains values to be stored in the database. In the
example above, you would create a DataWindow object containing the dept_id and
dept_name columns in the Department table. Assume this DataWindow object is named
d_dddw_dept.

For the column in a second DataWindow getting its data from the d_dddw_dept
DataWindow object, select the DropDownDW edit style.

In the example, you would specify the DropDownDataWindow edit style for the dept_id
column that you want to display with the department name as well as the department ID:

Working with DataWindows

Page 676

Figure 6.64:

2. Click the browse button next to the DataWindow box and select the DataWindow object
that contains the data for the column from the list (in the example, d_dddw_dept). The
list includes all the DataWindow objects in the current target.

Working with DataWindows

Page 677

3. In the Display Column box, select the column containing the values that will display in
the DataWindow object (in the example, dept_name).

4. In the Data Column box, select the column containing the values that will be stored in
the database (in the example, dept_id).

5. Specify other properties for the edit style.

What happens

At runtime, when data is retrieved into the DataWindow object, the column whose edit style
is DropDownDataWindow will itself be populated as data is retrieved into the DataWindow
object serving as the drop-down DataWindow object.

When the user goes to the column and drops it down, the contents of the drop-down
DataWindow object display. When the user selects a display value, the corresponding data
value is stored in the DataWindow buffer and is stored in the database when an Update is
issued.

Limit on size of data value

The data value for a column that uses the DropDownDataWindow edit style is limited
to 511 characters.

6.5.7.7 The RichText edit style

You can use the RichText edit style to display column data in a rich text format, and to use
different fonts and colors in the same data field.

Note

The RichText edit style column performs slowly in the Grid and Tabular
DataWindows. It is recommended to use the RichText edit style column in the
Freeform DataWindow only.

Columns that you format with the RichText edit style require considerably more storage
space than columns with plain text edit styles. Therefore you should set a minimum of 1 KB
for the column width. Otherwise, you can use the RichText edit style with columns that have
large text datatypes.

Maximum text length

By default, the maximum text length for a DataWindow column is 32 KB.
However, for most database drivers, you can set this length to a higher value.
For the PowerBuilder ODBC driver, you can set the maximum text length in the
pbodbxxx.ini file, where xxx is the PowerBuilder version number. If you add
"PBMaxTextSize=1024000" to the section of the INI file for the database to which
you are connecting, you change the maximum text length for a DataWindow column
to 1 MB.

By default, whenever a column with the RichText edit style is edited in the Preview view or
at runtime, a font toolbar displays. The font toolbar disappears when the column loses focus.

Working with DataWindows

Page 678

The following picture shows the default font toolbar available for columns with the RichText
edit style:

Figure 6.65:

You can modify the RichTextToolbarActivation constant on a DataWindow control to
display the font toolbar whenever a DataWindow object containing columns with the
RichText edit style has focus—whether or not this type of column is selected. You can also
modify the constant so that the font toolbar never appears.

For more information, see Section 6.19, “RichTextToolbarActivation” in DataWindow
Reference.

The RichText edit style is not available for columns in a DataWindow object with the Graph,
OLE, or RichText presentation styles.

Note

The SP1, SP2, and SP3 of TX Text Control ActiveX 2400 do not support the
RichText edit style any more. You should use TX Text Control ActiveX 2400 or TX
Text Control ActiveX 28.0 provided by PowerBuilder.

6.5.7.8 The InkEdit edit style

The InkEdit edit style is designed for use on a Tablet PC and provides the ability to capture
ink input from users of Tablet PCs.

You can specify InkEdit as a style type on the Edit page in the Properties view for columns.
When the column gets focus, an InkEdit control displays so that the user can enter text with
the stylus or mouse. The text is recognized and displayed, then sent back to the database
when the column loses focus.

The InkEdit edit style is fully functional on Tablet PCs. On other computers, it behaves like
the Edit edit style.

For more information about ink controls and the Tablet PC, and to download the Tablet PC
SDK, go to the Microsoft Tablet PC website at http://msdn.microsoft.com/en-us/library/
ms950406.aspx.

6.5.8 Defining a code table

To reduce storage needs, frequently you might want to store short, encoded values in the
database, but these encoded values might not be meaningful to users. To make DataWindow
objects easy to use, you can define code tables.

Each row in a code table is a pair of corresponding values: a display value and a data value.
The display values are those users see at runtime. The data values are those that are saved in
the database.

Limit on size of data value

The data value you specify for the Checkbox, DropDownListBox, Edit, EditMask,
and RadioButtons edit styles is limited to 255 characters.

Working with DataWindows

Page 679

6.5.8.1 How code tables are implemented

You can define a code table as a property of the following column edit styles:

• Edit

• DropDownListBox

• RadioButtons

• DropDownDataWindow

• EditMask, using spin control

The steps to specify the code table property for each edit style are similar: you begin by
defining a new edit style in the Database painter. Once you select an edit style, use the
specific procedure that follows to define the code table property.

For how to create an edit style, see About edit styles.

Allowing null values

An internal PowerBuilder code, NULL!, indicates null values are allowed. To use this
code, specify NULL! as the data value, then specify a display format for nulls for the
column.

To define a code table as a property of the Edit edit style

1. Select the Use Code Table check box.

2. Enter the display and data values for the code table.

3. If you want to restrict input in the column to values in the code table, select the Validate
check box.

For more information, see Validating user input.

To define a code table as a property of the DropDownListBox edit style

1. Enter the display and data values for the code table.

2. If you want to restrict input in the column to values in the code table, clear the Allow
Editing check box.

For more information, see Validating user input.

To define a code table as a property of the RadioButtons edit style

• Enter the display and data values for the code table.

To define a code table as a property of the DropDownDataWindow edit style

1. Specify the column that provides the display values in the Display Column box.

Working with DataWindows

Page 680

2. Specify the column that provides the data values in the Data Column box.

3. If you want to restrict input in the column to values in the code table, clear the Allow
Editing check box.

To define a code table as a property of the EditMask edit style

1. Select the Spin Control check box.

2. Select the Code Table check box.

3. Enter the display and data values for the code table.

6.5.8.2 How code tables are processed

When data is retrieved into a DataWindow object column with a code table, processing
begins at the top of the data value column. If the data matches a data value, the corresponding
display value displays. If there is no match, the actual value displays.

Consider the example in the following table.

Table 6.37: Data values and display values

Display values Data values

Massachusetts MA

Massachusetts ma

ma MA

Mass MA

Rhode Island RI

RI RI

If the data is MA or ma, the corresponding display value (Massachusetts) displays. If the data
is Ma, there is no match, so Ma displays.

Case sensitivity

Code table processing is case sensitive.

If the code table is in a DropDownListBox edit style, and if the column has a code table that
contains duplicate display values, then each value displays only once. Therefore, if this code
table is defined for a column in a DataWindow object that has a DropDownListBox edit style,
Massachusetts and Rhode Island display in the ListBox portion of the DropDownListBox.

6.5.8.3 Validating user input

When users enter data into a column in a DataWindow object, processing begins at the top of
the display value column of the associated code table.

If the data matches a display value, the corresponding data value is put in the internal buffer.
For each display value, the first data value is used. Using the sample code table, if the user
enters Massachusetts, ma, or Mass, the data value is MA.

Working with DataWindows

Page 681

You can specify that only the values in the code table are acceptable:

• For a column using the Edit edit style, select the Validate check box.

If you have requested validation for the Edit edit style, an ItemError event is triggered
whenever a user enters a value not in the code table. Otherwise, the entered value is
validated using the column's validation rule, if any, and put in the DataWindow buffer.

• For the DropDownListBox and DropDownDataWindow edit styles, clear the Allow
Editing check box: users cannot type a value.

Although users cannot type a value when Allow Editing is false, they can search for a row
in the drop-down list or DataWindow by typing in the initial character for the row display
value. The search is case sensitive. For the DropDownDataWindow edit style, the initial
character for a search cannot be an asterisk or a question mark. This restriction does not
apply to the DropDownListBox edit style.

When the code table processing is complete, the ItemChanged or ItemError event is
triggered.

Code table data

The data values in the code table must pass validation for the column and must have
the same datatype as the column.

6.5.9 About validation rules

When users enter data in a DataWindow object, you want to be sure the data is valid before
using it to update the database. Validation rules provide one way to do this.

You usually define validation rules in the Database painter. To use a validation rule, you
associate it with a column in the Database painter or DataWindow painter.

Another technique

You can also perform data validation through code tables, which are implemented
through a column's edit style.

For more information, see About edit styles.

6.5.9.1 Understanding validation rules

Validation rules are criteria that a DataWindow object uses to validate data entered into a
column by users. They are PowerBuilder-specific and therefore not enforced by the DBMS.

Validation rules assigned in the Database painter are used by default when you place columns
in a DataWindow object. You can override the default rules in the DataWindow painter.

A validation rule is an expression that evaluates to either "true" or "false". If the expression
evaluates to "true" for an entry into a column, PowerBuilder accepts the entry. If the
expression evaluates to "false", the entry is not accepted and the ItemError event is triggered.
By default, PowerBuilder displays a message box to the user. You can customize the message
displayed when a value is rejected.

Working with DataWindows

Page 682

You can also code the ItemError event to cause different processing to happen.

For more information, see Section 1.2, “Using DataWindow Objects” in DataWindow
Programmers Guide.

At runtime

In scripts, you can use the GetValidate method to obtain the validation rule for a
column and the SetValidate method to change the validation rule for a column.

For information about the GetValidate and SetValidate methods, see Section 9.91,
“GetValidate” in DataWindow Reference and Section 9.198, “SetValidate” in
DataWindow Reference.

6.5.10 Working with validation rules

You work with validation rules in the Database painter and DataWindow painter.

What you do in the Database painter

In the Database painter, you can:

• Create, modify, and delete named validation rules

The validation rules are stored in the extended attribute system tables. Once you define a
validation rule, it can be used by any column of the appropriate datatype in the database.

• Assign validation rules to columns and remove them from columns

These rules are used by default when you place the column in a DataWindow object in the
DataWindow painter.

What you do in the DataWindow painter

In the DataWindow painter, you can:

• Accept the default validation rule assigned to a column in the Database painter

• Create an ad hoc, unnamed rule to use with one specific column

Validation rules and the extended attribute system tables

Once you have placed a column that has a validation rule from the extended attribute system
tables in a DataWindow object, there is no longer any link to the named rule in the extended
attribute system tables.

If the definition of the validation rule later changes in the extended attribute system tables,
the rule for the column in a DataWindow object will not change.

6.5.11 Defining validation rules

Typically, you define validation rules in the Database painter, because validation rules
are properties of the data itself. Once defined in the Database painter, the rules are used
by default each time the column is placed in a DataWindow object. You can also define a
validation rule in the DataWindow painter that overrides the rule defined in the Database
painter.

Working with DataWindows

Page 683

6.5.11.1 Defining a validation rule in the Database painter

This section describes the ways you can manipulate validation rules in the Database painter.

To create a new validation rule

1. In the Extended Attributes view in the Database painter, right-click Validation Rules and
select New from the pop-up menu.

The Validation Rule view displays in the Properties view.

2. Assign a name to the rule, select the datatype of the columns to which it applies, and
customize the error message (if desired).

For information, see Customizing the error message.

3. Click the Definition tab and define the expression for the rule.

For information, see Defining the expression.

Figure 6.66:

You can use this rule with any column of the appropriate datatype in the database.

To modify a validation rule

1. In the Database painter, open the Extended Attributes view.

2. In the Extended Attributes view, open the list of validation rules.

3. Double-click the validation rule you want to modify.

4. In the Validation Rule view, modify the validation rule as desired.

Working with DataWindows

Page 684

For information, see Defining the expression and Customizing the error message.

To associate a validation rule with a column in the Database painter

1. In the Database painter (Objects view), position the pointer on the column, select
Properties from the column's pop-up menu, and select the Validation tab.

2. Select a validation rule from the Validation Rule drop-down list.

The column now has the selected validation rule associated with it in the extended
attribute system tables. Whenever you use this column in a DataWindow object, it will
use this validation rule unless you override it in the DataWindow painter.

To remove a validation rule from a column in the Database painter

1. In the Database painter (Objects view), position the pointer on the column, select
Properties from its pop-up menu, and select the Validation tab in the Properties view.

2. Select (None) from the list in the Validation Rule drop-down list.

The validation rule is no longer associated with the column.

6.5.11.1.1 Defining the expression

A validation rule is a boolean expression. PowerBuilder applies the boolean expression to an
entered value. If the expression returns "true", the value is accepted. Otherwise, the value is
not accepted and an ItemError event is triggered.

What expressions can contain

You can use any valid DataWindow expression in validation rules.

Validation rules can include most DataWindow expression functions. A DataWindow object
that will be used in PowerBuilder can also include user-defined functions. DataWindow
expression functions are displayed in the Functions list and can be pasted into the definition.

For information about these functions, see Chapter 2, DataWindow Expression Functions in
DataWindow Reference.

Use the notation @placeholder (where placeholder is any group of characters) to indicate
the current column in the rule. When you define a validation rule in the Database painter,
PowerBuilder stores it in the extended attribute system tables with the placeholder name. At
runtime, PowerBuilder substitutes the value of the column for placeholder.

Pasting the placeholder

The @col can be easily used as the placeholder. A button in the Paste area is labeled with
@col. You can click the button to paste the @col into the validation rule.

An example

For example, to make sure that both Age and Salary are greater than zero using a single
validation rule, define the validation rule as follows:

@col > 0

Then associate the validation rule with both the Age and Salary columns. At runtime,
PowerBuilder substitutes the appropriate values for the column data when the rule is applied.

Working with DataWindows

Page 685

6.5.11.1.2 Using match values for character columns

If you are defining the validation rule for a character column, you can use the Match button
on the Definition page of the Validation Rule view. This button lets you define a match
pattern for matching the contents of a column to a specified text pattern (for example, ^[0-9]+
$ for all numbers and ^[A-Za-z]+$ for all letters).

To specify a match pattern for character columns

1. Click the Match button on the Definition page of the Validation Rule view.

The Match Pattern dialog box displays.

2. Enter the text pattern you want to match the column to, or select a displayed pattern.

3. (Optional) Enter a test value and click the Test button to test the pattern.

4. Click OK when you are satisfied that the pattern is correct.

For more on the Match function and text patterns, see Section 2.4.73, “Match” in
DataWindow Reference.

6.5.11.1.3 Customizing the error message

When you define a validation rule, PowerBuilder automatically creates the error message that
displays by default when users enter an invalid value:

'Item ~'' + @Col + '~' does not pass validation test.'

You can edit the string expression to create a custom error message.

Different syntax in the DataWindow painter

If you are working in the DataWindow painter, you can enter a string expression for the
message, but you do not use the @ sign for placeholders. For example, this is the default
message:

'Item ~'' + ColumnName + '~' does not pass validation test.'

A validation rule for the Salary column in the Employee table might have the following
custom error message associated with it:

Please enter a salary greater than $10,000.

If users enter a salary less than or equal to $10,000, the custom error message displays.

6.5.11.1.4 Specifying initial values

As part of defining a validation rule, you can supply an initial value for a column.

To specify an initial value for a column in the Database painter

1. Select Properties from the column's pop-up menu and select the Validation tab.

2. Specify a value in the Initial Value box.

Working with DataWindows

Page 686

6.5.11.2 Defining a validation rule in the DataWindow painter

Validation rules you assign to a column in the Database painter are used by default when
you place the column in a DataWindow object. You can override the validation rule in the
DataWindow painter by defining an ad hoc rule for one specific column.

To specify a validation rule for a column in the DataWindow painter

1. In the DataWindow painter, select View>Column Specifications from the menu bar.

The Column Specification view displays.

Figure 6.67:

2. Create or modify the validation expression. To display the Modify Expression dialog
box, display the pop-up menu for the box in which you want to enter a Validation
Expression and select Expression. Follow the directions in Specifying the expression.

3. (Optional) Enter a string or string expression to customize the validation error message.

For more information, see Customizing the error message.

4. (Optional) Enter an initial value.

Used for current column only

If you create a validation rule here, it is used only for the current column and is not
saved in the extended attribute system tables.

6.5.11.2.1 Specifying the expression

Since a user might have just entered a value in the column, validation rules refer to the
current data value, which you can obtain through the GetText DataWindow expression
function.

Using GetText ensures that the most recent data entered in the current column is evaluated.

PowerBuilder does the conversion for you

If you have associated a validation rule for a column in the Database painter,
PowerBuilder automatically converts the syntax to use GetText when you place the
column in a DataWindow object.

GetText returns a string. Be sure to use a data conversion function (such as Integer or Real) if
you want to compare the entered value with a datatype other than string.

Working with DataWindows

Page 687

For more on the GetText function and text patterns, see Section 2.4.47, “GetText” in
DataWindow Reference and Section 2.4.73, “Match” in DataWindow Reference.

Referring to other columns

You can refer to the values in other columns by specifying their names in the validation rule.
You can paste the column names in the rule using the Columns box.

6.5.11.2.2 Examples

Here are some examples of validation rules.

Example 1. To check that the data entered in the current column is a positive integer, use
this validation rule:

Integer(GetText()) > 0

Example 2. If the current column contains the discounted price and the column named
Full_Price contains the full price, you could use the following validation rule to evaluate the
contents of the column using the Full_Price column:

Match(GetText(),"^[0-9]+$") AND
Real(GetText()) < Full_Price

To pass the validation rule, the data must be all digits (must match the text pattern ^[0-9]+$)
and must be less than the amount in the Full_Price column.

Notice that to compare the numeric value in the column with the numeric value in the
Full_Price column, the Real function was used to convert the text to a number.

Example 3. In your company, a product price and a sales commission are related in the
following way:

• If the price is greater than or equal to $1000, the commission is between 10 percent and 20
percent

• If the price is less than $1000, the commission is between 4 percent and 9 percent

The Sales table has two columns, Price and Commission. The validation rule for the
Commission column is:

(Number(GetText()) >= If(price >= 1000, .10, .04))
AND
(Number(GetText()) <= If(price >= 1000, .20, .09))

A customized error message for the Commission column is:

"Price is " + if(price >= 1000,
"greater than or equal to","less than") +
" 1000. Commission must be between " +\
If(price >= 1000,".10", ".04") + " and " +
If(price >= 1000, ".20.", ".09.")

6.5.12 How to maintain extended attributes

PowerBuilder provides facilities you can use to create, modify, and delete display formats,
edit styles, and validation rules independently of their association with columns. The
following procedure summarizes how you do this.

Working with DataWindows

Page 688

To maintain display formats, edit styles, and validation rules:

1. Open the Database painter.

2. Select View>Extended Attributes.

The Extended Attributes view displays listing all the entities in the extended attribute
system tables.

3. Do one of the following:

• To create a new entity, display the pop-up menu for the type you want to add, then
select New.

• To modify an entity, display its pop-up menu, then select Properties.

• To delete an entity, display its pop-up menu, then select Delete.

Caution

If you delete a display format, edit style, or validation rule, it is removed from the
extended attribute system tables. Columns in the database are no longer associated
with the entity.

6.6 Filtering, Sorting, and Grouping Rows

About this chapter

This chapter describes how you can customize your DataWindow object by doing the
following in the DataWindow painter:

• Defining filters to limit which of the retrieved rows are displayed in the DataWindow
object

• Sorting rows after they have been retrieved from the database

• Displaying the rows in groups and calculating statistics on each group

6.6.1 Filtering rows

You can use WHERE and HAVING clauses and retrieval arguments in the SQL SELECT
statement for the DataWindow object to limit the data that is retrieved from the database.
This reduces retrieval time and space requirements at runtime.

However, you may want to further limit the data that displays in the DataWindow object. For
example, you might want to:

• Retrieve many rows and initially display only a subset (perhaps allowing the user to
specify a different subset of rows to display at runtime)

• Limit the data that is displayed using DataWindow expression functions (such as If) that
are not valid in the SELECT statement

Working with DataWindows

Page 689

Using filters

In the DataWindow painter, you can define filters to limit the rows that display at runtime.
Filters can use most DataWindow expression functions or user-defined functions.

Filters do not affect which rows are retrieved

A filter operates against the retrieved data. It does not re-execute the SELECT
statement.

Defining a filter

To define a filter:

1. In the DataWindow painter, select Rows>Filter from the menu bar.

The Specify Filter dialog box displays:

Figure 6.68:

2. In the Specify Filter dialog box, enter a boolean expression that PowerBuilder will test
against each retrieved row.

If the expression evaluates to true, the row is displayed. You can specify any valid
expression in a filter. Filters can use any non-object-level PowerScript function,
including user-defined functions. You can paste commonly used functions, names of
columns, computed fields, retrieval arguments, and operators into the filter.

International considerations

The formatting that you enter for numbers and currency in filter expressions display
the same way in any country. Changing the regional settings of the operating system
does not modify the formatting displayed for numbers and currency at runtime.

For information about expressions for filters, see Section 1.1, “Where you use
DataWindow expressions” in DataWindow Reference.

Working with DataWindows

Page 690

3. (Optional) Click Verify to make sure the expression is valid.

4. Click OK.

Only rows meeting the filter criteria are displayed in the Preview view.

Filtered rows and updates

Modifications of filtered rows are applied to the database when you issue an update
request.

Removing a filter

To remove a filter:

1. Select Rows>Filter from the menu bar.

2. Delete the filter expression from the Specify Filter dialog box, then click OK.

Examples of filters

Assume that a DataWindow object retrieves employee rows and three of the columns are
Salary, Status, and Emp_Lname. The following table shows some examples of filters you
might use.

Table 6.38: Sample filters

To display these rows Use this filter

Employees with salaries over $50,000 Salary > 50000

Active employees Status = 'A'

Active employees with salaries over $50,000 Salary > 50000 AND Status = 'A'

Employees whose last names begin with H left(Emp_Lname, 1) = 'H'

Setting filters dynamically

You can use the SetFilter and Filter methods in a script to dynamically modify a filter
that was set in the DataWindow painter. For information about SetFilter and Filter,
see Section 9.166, “SetFilter” in DataWindow Reference and Section 9.31, “Filter” in
DataWindow Reference.

6.6.2 Sorting rows

You can use an ORDER BY clause in the SQL SELECT statement for the DataWindow
object to sort the data that is retrieved from the database. If you do this, the DBMS itself does
the sorting and the rows are brought into PowerBuilder already sorted.

However, you might want to sort the rows after they are retrieved. For example, you might
want to:

• Offload the processing from the DBMS

• Sort on an expression, which might not be allowed in the SELECT statement but is
allowed in PowerBuilder

Working with DataWindows

Page 691

To sort the rows:

1. Select Rows>Sort from the menu bar.

Figure 6.69:

2. Drag to the Columns box the columns on which you want to sort the rows, and specify
whether you want to sort in ascending or descending order.

The order of the columns determines the precedence of the sort. To reorder the columns,
drag them up or down in the list. To delete a column from the sort columns list, drag the
column outside the dialog box.

You can also specify expressions to sort on: for example, if you have two columns,
Revenues and Expenses, you can sort on the expression Revenues – Expenses.

3. To specify an expression to sort on, double-click a column name in the Columns box,
modify the expression in the Modify Expression dialog box, and click OK.

You return to the Specify Sort Columns dialog box with the expression displayed.

If you change your mind

You can remove a column or expression from the sorting specification by simply
dragging it and releasing it outside the Columns box.

4. Click OK when you have specified all the sort columns and expressions.

6.6.2.1 Suppressing repeating values

When you sort on a column, there might be several rows with the same value in one column.
You can choose to suppress the repeating values in that column.

When you suppress a repeating value, the value displays at the start of each new page and, if
you are using groups, each time a value changes in a higher group.

For example, if you have sorted employees by department ID, you can suppress all but the
first occurrence of each department ID in the DataWindow object:

Working with DataWindows

Page 692

Figure 6.70:

To suppress repeating values

1. Select Rows>Suppress Repeating Values from the menu bar.

The Specify Repeating Value Suppression List dialog box displays:

Working with DataWindows

Page 693

Figure 6.71:

2. Drag the columns whose repeated values you want to suppress from the Source Data box
to the Suppression List box, and click OK.

If you change your mind

You can remove a column from the suppression list simply by dragging it and
releasing it outside the Suppression List box.

6.6.3 Grouping rows

You can group related rows together and, optionally, calculate statistics for each group
separately. For example, you might want to group employee information by department and
get total salaries for each department.

How groups are defined

Each group is defined by one or more DataWindow object columns. Each time the value in a
grouping column changes, a break occurs and a new section begins.

For each group, you can:

• Display the rows in each section

• Specify the information you want to display at the beginning and end of each section

• Specify page breaks after each break in the data

• Reset the page number after each break

Grouping example

The following DataWindow object retrieves employee information. It has one group defined,
Dept_ID, so it groups rows into sections according to the value in the Dept_ID column. In
addition, it displays:

Working with DataWindows

Page 694

• Department ID before the first row for that department

• Totals and averages for salary and salary plus benefits (a computed column) for each
department

• Grand totals for the company at the end

The following screenshot shows the DataWindow object.

Figure 6.72:

Working with DataWindows

Page 695

How to do it

You can create a grouped DataWindow object in three ways:

• Use the Group presentation style to create a grouped DataWindow object from scratch
(Using the Group presentation style).

• Take an existing tabular DataWindow object and define grouping (Defining groups in an
existing DataWindow object).

• Use the TreeView presentation style (Working with TreeViews).

Making the DataWindow control large enough

If a DataWindow object has grouped rows, each page contains all group headers (including
zero-height headers) at the top of the page. Your DataWindow control must be large enough
to accommodate all the group headers that display on each page of the report.

The last row of a group displays on the same page as that row's group trailer and each
applicable higher-level group trailer. If the DataWindow object has a summary band, it
displays on the same page as the last row of the report. If the control is not large enough, you
might see anomalies when scrolling through the DataWindow object, particularly in the last
row of the report, which needs room to display the report's header band, all group headers, all
group trailers, the summary band, and the footer band.

If you cannot increase the height of the DataWindow control so that it has room for all the
headers and trailers, you can change the design of the DataWindow object so that they require
less space.

Scrolling through a grouped DataWindow

When you scroll through a grouped DataWindow object, you might see the group header
repeated where you do not expect it. This is because the data is paginated in a fixed layout
based on the size of the DataWindow control. You can scroll to a point that shows the bottom
half of one page and the top of the next. When you use the arrow keys to page through the
data, you scroll one row at a time.

6.6.3.1 Using the Group presentation style

One of the DataWindow object presentation styles, Group, is a shortcut to creating a grouped
DataWindow object. It generates a tabular DataWindow object that has one group level and
some other grouping properties defined. You can then further customize the DataWindow
object.

To create a basic grouped DataWindow object using the Group presentation style

1. Select File>New from the menu bar.

The New dialog box displays.

2. Choose the DataWindow tab page and the Group presentation style, and click OK.

3. Choose a data source and define the data.

Working with DataWindows

Page 696

You are prompted to define the grouping column(s).

4. Drag the column(s) you want to group on from the Source Data box to the Columns box.

Multiple columns and multiple group levels

You can specify more than one column, but all columns apply to group level one. You
can define one group level at this point. Later you can define additional group levels.

In the following example, grouping will be by department, as specified by the dept_id
column:

Figure 6.73:

If you want to use an expression, you can define it when you have completed the wizard.
See Using an expression for a group [698].

5. Click Next.

PowerBuilder suggests a header based on your data source. For example, if your
data comes from the Employee table, PowerBuilder uses the name Employee in the
suggested header.

6. Specify the Page Header text.

If you want a page break each time a grouping value changes, select the New Page On
Group Break box.

If you want page numbering to restart at 1 each time a grouping value changes, select
the Reset Page Number On Group Break box and the New Page On Group Break box.

7. Click Next.

Working with DataWindows

Page 697

8. Select Color and Border settings and click Next.

9. Review your specification and click Finish.

The DataWindow object displays with the basic grouping properties set.

This is an example of a Group style DataWindow object:

Figure 6.74:

What PowerBuilder does

As a result of your specifications, PowerBuilder generates a tabular DataWindow object and:

• Creates group header and trailer bands

• Places the column you chose as the grouping column in the group header band

• Sorts the rows by the grouping column

• Places the page header and the date (as a computed field) in the header band

• Places the page number and page count (as computed fields) in the footer band

• Creates sum-computed fields for all numeric columns (the fields are placed in the group
trailer and summary bands)

Here is the preceding DataWindow object in the Preview view:

Working with DataWindows

Page 698

Figure 6.75:

Using an expression for a group

If you want to use an expression for one or more column names in a group, you can enter an
expression as the Group Definition on the General page in the Properties view after you have
finished using the Group wizard.

To use an expression for a group

1. Open the Properties view and select the group header band in the Design view.

2. Click the ellipsis button next to the Group Definition box on the General page to open
the Specify Group Columns dialog box.

3. In the Columns box, double-click the column that you want to use in an expression.

The Modify Expression dialog box opens. You can specify more than one grouping
item expression for a group. A break occurs whenever the value concatenated from each
column/expression changes.

What you can do

You can use any of the techniques available in a tabular DataWindow object to modify
and enhance the grouped DataWindow object, such as moving controls, specifying display
formats, and so on. In particular, see Defining groups in an existing DataWindow object
to learn more about the bands in a grouped DataWindow object and how to add features

Working with DataWindows

Page 699

especially suited for grouped DataWindow objects (for example, add a second group level,
define additional summary statistics, and so on).

DataWindow Object is not updatable by default

When you generate a DataWindow object using the Group presentation style,
PowerBuilder makes it not updatable by default. If you want to be able to update
the database through the grouped DataWindow object, you must modify its update
characteristics. For more information, see Controlling Updates in DataWindow
objects.

6.6.3.2 Defining groups in an existing DataWindow object

Instead of using the Group presentation style to create a grouped DataWindow object from
scratch, you can take an existing tabular DataWindow object and define groups in it.

To add grouping to an existing DataWindow object

1. Start with a tabular DataWindow object that retrieves all the columns you need.

2. Specify the grouping columns.

3. Sort the rows.

4. (Optional) Rearrange the DataWindow object.

5. (Optional) Add summary statistics.

6. (Optional) Sort the groups.

7. Steps 2 through 6 are described next.

6.6.3.2.1 Specifying the grouping columns

To specify the grouping columns

1. In the DataWindow painter, Select Rows>Create Group from the menu bar.

The Specify Group Columns dialog box displays.

2. Specify the group columns, as described in Using the Group presentation style.

3. Set the Reset Page Count and New Page on Group Break properties on the General page
in the Properties view.

Creating subgroups

After defining your first group, you can define subgroups, which are groups within the group
you just defined.

Working with DataWindows

Page 700

To define subgroups

1. Select Rows>Create Group from the menu bar and specify the column/expression for
the subgroup.

2. Repeat step 1 to define additional subgroups if you want.

You can specify as many levels of grouping as you need.

How groups are identified

PowerBuilder assigns each group a number (or level) when you create the group. The first
group you specify becomes group 1, the primary group. The second group becomes group 2,
a subgroup within group 1, and so on.

For example, suppose you define two groups. The first group uses the dept_id column and the
second group uses the status column.

The rows are grouped first by department (group 1). Within department, rows are grouped by
status (group 2). If you specify page breaks for the groups, a page break will occur when any
of these values changes.

You use the group's number to identify it when defining summary statistics for the group.
This is described in Adding summary statistics.

6.6.3.2.2 Sorting the rows

PowerBuilder does not sort the data when it creates a group. Therefore, if the data source
is not sorted, you must sort the data by the same columns (or expressions) specified for the
groups.

For example, if you are grouping by dept_name then state, select Rows>Sort from the menu
bar and specify dept_name and then state as sorting columns:

Figure 6.76:

You can also sort on additional rows. For example, if you want to sort by employee ID within
each group, specify emp_id as the third sorting column.

Working with DataWindows

Page 701

For more information about sorting, see Sorting rows.

6.6.3.2.3 Rearranging the DataWindow object

When you create a group, PowerBuilder creates two new bands for each group:

• A group header band

• A group trailer band

The bar identifying the band contains:

• The number of the group

• The name of the band

• The name of each column that defines the group

• An arrow pointing to the band

Figure 6.77:

You can include any control in the DataWindow object (such as columns, text, and computed
fields) in the header and trailer bands of a group.

Using the group header band

The contents of the group header band display at the top of each page and after each break in
the data.

Typically, you use this band to identify each group. You might move the grouping column
from the detail band to the group header band, since it now serves to identify one group rather
than each row.

Working with DataWindows

Page 702

For example, if you group the rows by department and include the department in the group
header, the department will display before the first line of data each time the department
changes.

At runtime, you see this:

Figure 6.78:

Suppressing group headers

If you do not want a group header to display at the top of each page when you print or display
a report, select the Suppress Group Header check box on the General property page for the
header. If none of the headers are suppressed, they all display at the top of each page. When a
page break coincides with a group break, the group header and any group headers that follow
it display even if the Suppress Group Header property is set, but higher level headers are
suppressed if the property is set for those headers.

For example, suppose a report has three groups: division, sales region, and sales manager.
If all three group headers are suppressed, and a sales region group break coincides with a
page break, the division header is suppressed but the sales region and sales manager headers
display.

Using the group trailer band

The contents of the group trailer display after the last row for each value that causes a break.

In the group trailer band, you specify the information you want displayed after the last line of
identical data for each value in the group. Typically, you include summary statistics here, as
described next.

6.6.3.2.4 Adding summary statistics

One of the advantages of creating a grouped DataWindow object is that you can have
PowerBuilder calculate statistics for each group. To do that, you place computed fields that
reference the group. Typically, you place these computed fields in the group's trailer band.

Working with DataWindows

Page 703

To add a summary statistic

1. Select Insert>Control>Computed Field from the menu bar.

2. Click in the Design view where you want the statistic.

The Modify Expression dialog box displays.

3. Specify the expression that defines the computed field (see below).

4. Click OK.

A shortcut to sum values

If you want to sum a numeric column, select the column in Design view and click the
Sum button in the Controls drop-down toolbar. PowerBuilder automatically places a
computed field in the appropriate band.

Specifying the expression

Typically, you use aggregate and other functions in your summary statistic. PowerBuilder
lists functions you can use in the Functions box in the Modify Expression dialog box.
When you are defining a computed field in a group header or trailer band, PowerBuilder
automatically lists forms of the functions that reference the group:

Figure 6.79:

You can paste these templates into the expression, then replace the #x that is pasted in as the
function argument with the appropriate column or expression.

For example, to count the employees in each department (group 1), specify this expression in
the group trailer band:

Count(Emp_Id for group 1)

To get the average salary of employees in a department, specify:

Avg(Salary for group 1)

To get the total salary of employees in a department, specify:

Sum(Salary for group 1)

The group trailer band in this example shows the average and total salary for the group.

Working with DataWindows

Page 704

Figure 6.80:

At runtime, the average and total salaries are calculated and displayed:

Figure 6.81:

6.6.3.2.5 Sorting the groups

You can sort the groups in a DataWindow object. For example, in a DataWindow object
showing employee information grouped by department, you might want to sort the
departments (the groups) by total salary.

Working with DataWindows

Page 705

Typically, this involves aggregate functions, as described in Adding summary statistics. In
the department salary example, you would sort the groups using the aggregate function Sum
to calculate total salary in each department.

To sort the groups

1. Place the mouse pointer on the group header bar (not inside the band) until the pointer
becomes a double-headed arrow.

2. Click.

The General property page for the group displays in the Properties view.

3. Click the ellipsis button next to the Group Sort property.

Figure 6.82:

The Specify Sort Columns dialog box displays.

4. Drag the column you want to sort the groups by from the Source Data box into the
Columns box.

If you chose a numeric column, PowerBuilder uses the Sum function in the expression;
if you chose a non-numeric column, PowerBuilder uses the Count function.

For example, if you chose the Salary column, PowerBuilder specifies that the groups
will be sorted by the expression sum(salary for group 1):

Working with DataWindows

Page 706

Figure 6.83:

5. Select ascending or descending sort as appropriate.

6. If you want to modify the expression to sort on, double-click the column in the Columns
box.

The Modify Expression dialog box displays.

7. Specify the expression to sort on.

For example, to sort the department group (the first group level) on average salary,
specify avg(salary for group 1).

8. Click OK.

You return to the Specify Sort Columns dialog box with the expression displayed.

9. Click OK again.

At runtime, the groups will be sorted on the expression you specified.

6.7 Highlighting Information in DataWindow Objects

About this chapter

This chapter describes how you modify the way information displays in DataWindow objects
and reports based on the conditions you specify. The conditions are usually related to data
values, which are not available until runtime.

6.7.1 Highlighting information

Every control in a DataWindow object has a set of properties that determines what the control
looks like and where it is located. For example, the values in a column of data display in a
particular font and color, in a particular location, with or without a border, and so on.

Working with DataWindows

Page 707

6.7.1.1 Modifying properties when designing

You define the appearance and behavior of controls in DataWindow objects in the
DataWindow painter. As you do that, you are specifying the controls' properties. For
example, when you place a border around a column, you are setting that column's Border
property.

In most cases, the appearance and behavior of controls is fixed; you do not want them to
change at runtime. When you make headings bold when designing them, you want them to be
bold at all times.

In the following DataWindow object, the Salary Plus Benefits column has a Shadow box
border around every data value in the column. To display the border, you set the border
property for the column:

Figure 6.84:

6.7.1.2 Modifying properties at runtime

In some cases, however, you might want some properties of controls in DataWindow objects
to be driven by the data, which is not known when you are defining the DataWindow object
in the painter. For these situations you can define property conditional expressions, which are
expressions that are evaluated at runtime.

You can use these expressions to conditionally and dynamically modify the appearance and
behavior of your DataWindow object at runtime. The results of the expressions set the values
of properties of controls in the DataWindow object.

Working with DataWindows

Page 708

In the following DataWindow object, the Salary Plus Benefits column has a Shadow box
border highlighting each data value that is greater than $60,000:

Figure 6.85:

To control the display of the border, you define a property conditional expression for the
column's Border property. When users run the DataWindow object, PowerBuilder changes
the border of individual data values based on the condition (value greater than $60,000).

Defining an expression

The following illustration shows the Salary_Plus_Benefits column selected in the Design
view. To the right of the Design view, the Properties view shows properties for the column,
including the Border property. Next to the Border property is a button for accessing the
dialog box where you enter the expression. The button displays an equals sign with a slash
through it when no expression has been entered, and an equals sign without a slash when it
has.

Working with DataWindows

Page 709

Figure 6.86:

In this example the Border property is set to NoBorder in the Properties view. However, the
expression defined for the property overrides that setting at runtime.

A closer look at the expression

The expression you enter almost always begins with If. Then you specify three things: the
condition, what happens if it is true, and what happens if it is false. Parentheses surround the
three things and commas separate them:

If(expression, true, false)

The following expression is used in the example. Because the expression is for the Border
property, the values for true and false indicate particular borders. The value 1 means Shadow
box border and the value 0 means no border:

If(salary_plus_benefits > 60000, 1, 0)

When users run the DataWindow object, PowerBuilder checks the value in the computed
column called salary_plus_benefits to see if it is greater than 60,000. If it is (true),
PowerBuilder displays the value with the Shadow box border. If not (false), PowerBuilder
displays the value with no border.

About specifying properties

Usually you specify a number to indicate what you want for a particular property. For
example, the following list shows all of the borders you can specify and the numbers you use.
If you want the border property to be Shadow box, you specify 1 in the If statement, for either
true or false.

0—None

1—Shadow box

2—Box

3—Resize

4—Underline

Working with DataWindows

Page 710

5—3D Lowered

6—3D Raised

In the Properties view, the list of choices for setting a property includes the values that
correspond to choices in parentheses. This makes it easier to define an expression for a
property; you do not need to look up the values. For example, if you want to specify the
ResizeBorder in your expression, you use the number 3, as shown in the drop-down list.

Figure 6.87:

For details on the values of properties that can be set using expressions, see Supplying
property values.

For complete information about what the valid values are for all properties associated with
a DataWindow object, see the discussion of DataWindow object properties in Chapter 3,
DataWindow Object Properties in DataWindow Reference.

About modifying properties programmatically

You can also programmatically modify the properties of controls in a DataWindow
object at runtime. For more information, see Part I, “DataWindow Reference” and Part I,
“DataWindow Programmers Guide”.

6.7.2 Modifying properties conditionally at runtime

Modifying properties at runtime described how you can use conditional expressions that are
evaluated at runtime to highlight information in a DataWindow object.This section presents a
procedure for modifying properties at runtime and some examples.

To modify properties conditionally at runtime:

1. Position the pointer on the control, band, or DataWindow object background whose
properties you want to modify at runtime.

2. Select Properties from the pop-up menu, then select the page that contains the property
you want to modify at runtime.

3. Click the button next to the property you want to change.

Working with DataWindows

Page 711

4. Scroll the list of functions in the Functions box until you see the IF function, and then
select it:

Figure 6.88:

5. Replace the b (boolean) with your condition (for example, salary>40000).

You can select columns and functions and use the buttons to add the symbols shown on
them.

6. Replace the t (true) with the value to use for the property if the condition is true.

Values to use for properties are usually numbers. They are different for each property.
For more information about property values that can be set on the Expressions page, see
Supplying property values.

Set Font.Weight property to 700 for bold

Font properties such as Italic, Strikethrough, and Underline take a boolean value, but
to specify a value for bold, you use the Font.Weight property, which takes a range of
values. For values and an example, see Font.Weight.

For complete information about what the valid values are for all properties of controls
in the DataWindow object, see the discussion of DataWindow object properties in
Chapter 3, DataWindow Object Properties in DataWindow Reference.

7. Replace the f (false) with the value to use for the property if the condition is false.

8. Click OK.

For examples, see Example 1: creating a gray bar effect, Example 2: rotating controls,
Example 3: highlighting rows of data, and Example 4: changing the size and location of
controls.

Working with DataWindows

Page 712

6.7.2.1 Example 1: creating a gray bar effect

The following DataWindow object shows alternate rows with a light gray bar. The gray bars
make it easier to track data values across the row:

Figure 6.89:

To create the gray bar effect:

1. Add a rectangle control to the detail band and size it so that it surrounds the controls you
want highlighted.

2. To make sure that you have selected the detail band, select the Position tab in the
Properties view and select Band from the Layer drop-down list.

3. To make it easier to see what you are doing in the Design view, select the General tab
and set the Brush Color to White and the Pen Color to Black. A narrow black line forms
a boundary around the rectangle.

4. Select Send to Back from the rectangle's pop-up menu.

5. To hide the border of the rectangle, set the Pen Style to No Visible Line.

6. Click the button next to the Brush Color property on the General page.

7. In the Modify Expression dialog box, enter the following expression for the Brush.Color
property:

If(mod(getrow(),2)=1, rgb(255, 255, 255), rgb(240, 240, 240))

The mod function takes the row number (getrow()), divides it by 2, then returns the
remainder. The remainder can be either 0 or 1. If the row number is odd, mod returns 1;
if the row number is even, mod returns 0.

Working with DataWindows

Page 713

The expression mod(getrow(),2)=1 distinguishes odd rows from even rows.

The rgb function specifies maximum amounts of red, green, and blue: rgb (255, 255,
255). Specifying 255 for red, green, and blue results in the color white.

If the row number is odd (the condition evaluates as true), the rectangle displays as
white. If the row number is even (the condition evaluates as false), the rectangle displays
as light gray (rgb (240, 240, 240)).

6.7.2.2 Example 2: rotating controls

The following DataWindow object shows the column headers for Health Insurance, Life
Insurance, and Day Care rotated 45 degrees.

Figure 6.90:

To rotate each of these three text controls:

1. Select one of the controls, then use Ctrl + click to select the other two controls.

The Properties view changes to show the properties that are common to all selected
controls.

2. On the Font page in the Properties view, click the button next to the Escapement
property.

3. Enter the number 450 in the Modify Expression dialog box and click OK.

The value entered for font escapement is in tenths of degrees, so the number 450 means
45 degrees. You do not have to specify a condition. Typically, you do not specify a
condition for control rotation.

The rotation of the controls does not change in the Design view.

4. To see the change, close and reopen the Preview view.

Working with DataWindows

Page 714

6.7.2.3 Example 3: highlighting rows of data

The following DataWindow object is an employee phone list for a company in
Massachusetts. Out-of-state (not in Massachusetts) employees are shown in bold and
preceded by two asterisks (**):

Figure 6.91:

This DataWindow object uses newspaper columns. To understand how to create this
DataWindow object without highlighting data, see Printing with newspaper-style columns.

In the Design view, the detail band includes four controls: the employee last name, a comma,
the employee first name, and the phone number:

Figure 6.92:

To make these controls display in bold with two asterisks if the employee is not from
Massachusetts:

1. Select one of the controls, then use Ctrl + click to select the other three controls.

The Properties view changes to show the properties that are common to all selected
controls.

Working with DataWindows

Page 715

2. On the Font page in the Properties view, click the button next to the Bold property.

3. Enter the following expression in the Modify Expression dialog box and click OK:

If(state = 'MA', 400, 700)

The expression states that if the value of the state column is MA, use 400 as the font
weight. This means employees from Massachusetts display in the normal font. For any
state except MA, use 700 as the font weight. This means all other employees display in
bold font.

Logic that relies on the state column

To use logic that relies on the state column, you need to include the column in the
data source. You can add the column after creating the DataWindow object by
modifying the data source. Notice that the state column does not actually appear
anywhere in the DataWindow object. Values must be available but do not need to be
included in the DataWindow object.

4. To insert two asterisks (**) in front of the employee name if the employee is not from
Massachusetts, add a text control to the left of the employee name with the two asterisks
in bold.

5. With the text control selected, click the button next to its Visible property on the
General page in the Properties view.

6. In the Modify Expression dialog box that displays, enter the following expression and
click OK:

If(state = 'MA', 0, 1)

This expression says that if the state of the employee is MA (the true condition), the
Visible property of the ** control is off (indicated by 0). If the state of the employee is
not MA (the false condition), the Visible property of the ** control is on (indicated by
1). The asterisks are visible next to that employee's name.

Tip

You can use underlines, italics, strikethrough, borders, and colors to highlight
information.

6.7.2.4 Example 4: changing the size and location of controls

The following DataWindow object shows city and state columns enclosed in a rectangle and
underlined. The columns change location if the current row contains data for a customer from
the state of New York. The rectangle and the line change both location and size.

Working with DataWindows

Page 716

Figure 6.93:

This example shows how to move the rectangle and line. The process for columns is similar.

In the Design view, the rectangle and line display in one location, with a single set of
dimensions. The expressions you specify are used only in Preview view and at runtime and
all have the following syntax:

If (state='NY', true value, false value)

The false value is the same as the value in Design view. All of the values used in this
example are in PowerBuilder Units (PBUs), the default unit of measure used for the
DataWindow object.

To change properties of the rectangle and the line for rows with the state column equal to New
York:

1. Select the rectangle, display the Position page in the Properties view, and specify
expressions for the following properties:

Table 6.39:

Property Expression

X if (state = 'NY', 2890, 1865)

Width if (state = 'NY', 500, 1000)

Height if (state = 'NY', 160, 120)

2. Select the line, display the Position page in the Properties view, and specify expressions
for the following properties:

Table 6.40:

Property Expression

X1 if (state = 'NY', 2890, 1865)

Y1 if (state = 'NY', 168, 132)

X2 if (state = 'NY', 3400, 2865)

Working with DataWindows

Page 717

Property Expression

Y2 if (state = 'NY', 168, 132)

3. On the General page for the line, specify this expression for Pen Width:

if (state = 'NY', 10, 4)

At runtime, the rectangle is taller and narrower, and the line is shorter and has a wider
pen width.

6.7.3 Supplying property values

Each property has its own set of property values that you can use to specify the true and false
conditions in the If expression. Usually you specify a number to indicate what you want. For
example, if you are working with the Border property, you use the number 0, 1, 2, 3, 4, 5, or
6 to specify a border.

The following table summarizes the properties available. A detailed description of each
property follows the table. For a complete list of properties for each control, see Part I,
“Objects and Controls”.

Valid values of properties are shown in parentheses in the Properties view
wherever possible.

For example, the drop-down list showing border selections includes the correct
number for specifying each border in parentheses after the name of the border
(ShadowBox, Underline).

Table 6.41: Properties for controls in the DataWindow painter

Property Painter option in Properties
view

Description

Background.Color Background Color on
Background page or Font
page

Background color of a control

Border Border on General page Border of a control

Brush.Color Brush Color on General page Color of a graphic control

Brush.Hatch Brush Hatch on General page Pattern used to fill a graphic
control

Color Text Color on Font page;
Color on General page; Line
Color on General page

Color of text for text controls,
columns, and computed
fields; background color for
the DataWindow object; line
color for graphs

Font.Escapement (for rotating
controls)

Escapement on Font page Rotation of a control

Font.Height Size on Font page Height of text

Font.Italic Italic on Font page Use of italic font for text

Working with DataWindows

Page 718

Property Painter option in Properties
view

Description

Font.Strikethrough Strikeout on Font page Use of strikethrough for text

Font.Underline Underline on Font page Use of underlining for text

Font.Weight Bold on Font page Weight (for example, bold) of
text font

Format Format on Format page Display format for columns
and computed fields

Height Height on Position page Height of a control

Pen.Color Pen Color on General page Color of a line or the line
surrounding a graphic control

Pen.Style Pen Style on General page Style of a line or the line
surrounding a graphic control

Pen.Width Pen Width on General page Width of a line or the line
surrounding a graphic control

Pointer Pointer on Pointer page Image to be used for the
pointer

Protect Protect on General page Whether a column can be
edited

Timer_Interval Timer Interval on General
page

How often time fields are to
be updated

Visible Visible on General page Whether a control is visible

Width Width on Position page Width of a control

X X on Position page X position of a control

X1, X2 X1, X2 on Position page X coordinates of either end of
a line

Y Y on Position page Y position of a control
relative to the band in which
it is located

Y1, Y2 Y1, Y2 on Position page Y coordinates of either end of
a line

6.7.3.1 Background.Color

Description

Setting for the background color of a control.

In the painter

Background Color on the Background page or Font page in the Properties view.

Value

A number that specifies the control's background color.

For information on specifying colors, see Specifying colors.

Working with DataWindows

Page 719

The background color of a line is the color that displays between the segments of the line
when the pen style is not solid.

If Background.Mode is transparent, Background.Color is ignored.

Example

The following statement specifies that if the person represented by the current row uses
the day care benefit, the background color of the control is set to light gray. If not, the
background color is set to white:

If(bene_day_care = 'Y', 15790320, 16777215)

In this example, the condition is applied to the Background.Color property for three controls:
the emp_id column, the emp_fname column, and the emp_lname column.

The following is a portion of the resulting DataWindow object. Notice that the employee ID,
first name, and last name have a gray background if the employee uses the day care benefit:

Figure 6.94:

6.7.3.2 Border

Description

The type of border for the control.

In the painter

Border on the General page in the Properties view.

Value

A number that specifies the type of border. Values are:

• 0—None

• 1—Shadow box

Working with DataWindows

Page 720

• 2—Box

• 3—Resize

• 4—Underline

• 5—3D Lowered

• 6—3D Raised

Example

The following statement specifies that if the person represented by the current row has a
status of L (on leave), the status column displays with a Shadow box border:

If(status = 'L', 1, 0)

In this example, the condition is applied to the Border property of the status column.

The following is a portion of the resulting DataWindow object. Notice that the status On
Leave displays with a Shadow box border:

Figure 6.95:

About the value L and the value On Leave

The status column uses an edit style. The internal value for on leave is L and the
display value is On Leave. The conditional expression references the internal value L,
which is the actual value stored in the database. The DataWindow object shows the
value On Leave, which is the display value assigned to the value L in the code table
for the Status edit style.

6.7.3.3 Brush.Color

Description

Working with DataWindows

Page 721

Setting for the fill color of a graphic control.

In the painter

Brush Color on the General page in the Properties view.

Value

A number that specifies the color that fills the control.

For information on specifying colors, see Specifying colors.

Example

See the example for Brush.Hatch.

6.7.3.4 Brush.Hatch

Description

Setting for the fill pattern of a graphic control.

In the painter

Brush Hatch on the General page in the Properties view.

Value

A number that specifies the pattern that fills the control. Values are:

• 0—Horizontal

• 1—Bdiagonal (lines from lower left to upper right)

• 2—Vertical

• 3—Cross

• 4—Fdiagonal (lines from upper left to lower right)

• 5—DiagCross

• 6—Solid

• 7—Transparent

• 8—Background (use the values on the Background tab)

Example

In this example, statements check the employee's start date to see if the month is the current
month or the month following the current month. Properties of a rectangle control placed
behind the row of data are changed to highlight employees with months of hire that match the
current month or the month following the current month.

The Design view includes columns of data and a rectangle behind the data. The rectangle has
been changed to black in the following picture to make it stand out:

Working with DataWindows

Page 722

Figure 6.96:

The following statement is for the Brush.Color property of the rectangle. If the month of the
start date matches the current month or the next one, Brush.Color is set to light gray. If not, it
is set to white, which means it will not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1),
12632256, 16777215)

The following statement is for the Brush.Hatch property of the rectangle. If the month of the
start date matches the current month or the next one, Brush.Hatch is set to Bdiagonal. If not,
it is set to Transparent, which means it will not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1),
1, 7)

Expressions are also provided for Pen.Color and Pen.Style.

For more about these properties and a picture, see Pen.Style.

6.7.3.5 Color

Description

The color of text for text controls, columns, and computed fields; background color for the
DataWindow object; line color for graphs.

In the painter

In the Properties view, Text Color on the Font property page; Color on the Background
property page; Line Color on the General property page.

Value

A number that specifies the color used for text.

For information on specifying colors, see Specifying colors.

Example

The following statement is for the Color property of the emp_id, emp_fname, emp_lname,
and emp_birth_date columns:

If(month(birth_date) = month (today()), 255, 0)

Working with DataWindows

Page 723

If the employee has a birthday in the current month, the information for the employee
displays in red. Otherwise, the information displays in black.

The Font.Underline property has the same conditional expression defined for it so that the
example shows clearly on paper when printed in black and white.

6.7.3.6 Font.Escapement (for rotating controls)

Description

The angle of rotation from the baseline of the text.

In the painter

Escapement on the Font page in the Properties view.

Value

An integer in tenths of degrees. For example, 450 means 45 degrees. 0 is horizontal.

The alignment of the text affects the point of rotation.

Left—Rotates on the bottom left of the control

Right—Rotates on the top right of the control

Center—Rotates on the center of the control

Example

To enter rotation for a control, select the control in the Design view and click the button next
to the Escapement property in the Properties view. In the dialog box that displays, enter the
number of tenths of degrees.

The following picture shows the Design view with a number of text controls. Each text
control shows the Font.Escapement value entered and the number of degrees of rotation. In
the Design view, you do not see rotation; it looks as if the controls are all mixed up. Some
controls seem to overlie each other:

Figure 6.97:

Working with DataWindows

Page 724

The next picture shows the same controls at runtime. Each control is rotated appropriately,
based on the Font.Escapement and Alignment values:

Figure 6.98:

How to position controls that are rotated

Make the controls movable. To do so, display each control and select the Moveable
check box in the Position page. Then in the Preview view, click the rotated text
control until a gray box displays (try the center of the text). Drag the rotated control
where you want it. In the Design view, the controls will be wherever you dragged
them. They may look incorrectly positioned in the Design view, but they will be
correctly positioned when you run the DataWindow object. When you are satisfied
with the positioning, you can clear the Moveable check box for the controls to ensure
that they stay where you want them.

6.7.3.7 Font.Height

Description

The height of the text.

In the painter

Size on the Font page in the Properties view.

Value

An integer in the unit of measure specified for the DataWindow object. Units of measure
include PowerBuilder units, thousandths of an inch (1000 = 1 inch), thousandths of a

Working with DataWindows

Page 725

centimeter (1000 = 1 centimeter), or pixels. To specify size in points, specify a negative
number.

Example

The following statement is specified for the Font.Height property of a text control. Note that
the DataWindow object is defined as using thousandths of an inch as its unit of measure.
The statement says that if the control is in the first row, show the text 1/2-inch high (500
1/1000ths of an inch) and if it is not the first, show the text 1/5-inch high (200 1/1000ths of
an inch):

If(GetRow() = 1, 500, 200)

The boundaries of the control might need to be extended to allow for the increased size of the
text. At runtime, the first occurrence of the text control is big (1/2 inch); subsequent ones are
small (1/5 inch).

6.7.3.8 Font.Italic

Description

A number that specifies whether the text should be italic.

In the painter

Italic on the Font page in the Properties view.

Value

Values are:

• 0—Not italic

• 1—Italic

Example

The following statements are specified for the Font.Italic, Font.Underline, and Font.Weight
properties, respectively. If the employee has health insurance, the employee's information
displays in italics. If not, the employee's information displays in bold and underlined:

If(bene_health_ins = 'Y', 1, 0)
If(bene_health_ins = 'N', 1, 0)
If(bene_health_ins = 'N', 700, 400)

Statements are specified in this way for four controls: the emp_id column, the emp_fname
column, the emp_lname column, and the emp_salary column. In the resulting DataWindow
object, those with health insurance display in italics. Those without health insurance are
emphasized with bold and underlining:

Working with DataWindows

Page 726

Figure 6.99:

6.7.3.9 Font.Strikethrough

Description

A number that specifies whether the text should be crossed out.

In the painter

Strikeout on the Font page in the Properties view.

Value

Values are:

• 0—Not crossed out

• 1—Crossed out

Example

The following statement is for the Font.Strikethrough property of the emp_id, emp_fname,
emp_lname, and emp_salary columns. The status column must be included in the data source
even though it does not appear in the DataWindow object itself. The statement says that if the
employee's status is L, which means On Leave, cross out the text in the control:

If(status = 'L', 1, 0)

An extra text control is included to the right of the detail line. It becomes visible only if the
status of the row is L (see Visible).

The following is a portion of the resulting DataWindow object. It shows two employees who
are On Leave. The four columns of information show as crossed out:

Working with DataWindows

Page 727

Figure 6.100:

6.7.3.10 Font.Underline

Description

A number that specifies whether the text should be underlined.

In the painter

Underline on the Font page in the Properties view.

Value

Values are:

• 0—Not underlined

• 1—Underlined

Example

The following statement, when applied to the Font.Underline property of columns of
employee information, causes the information to be underlined if the employee does not have
health insurance:

If(bene_health_ins = 'N', 1, 0)

For pictures of this example, see Font.Italic.

6.7.3.11 Font.Weight

Description

The weight of the text.

In the painter

Bold on the Font page in the Properties view.

Value

Working with DataWindows

Page 728

Values are:

• 100—Thin

• 200—Extra light

• 300—Light

• 400—Normal

• 500—Medium

• 600—Semibold

• 700—Bold

• 800—Extrabold

• 900—Heavy

Most commonly used values

The most commonly used values are 400 (Normal) and 700 (Bold). Your printer
driver might not support all of the settings.

Example

The following statement, when applied to the Font.Weight property of columns of employee
information, causes the information to be displayed in bold if the employee does not have
health insurance:

If(bene_health_ins = 'N', 700, 400)

For pictures of this example, see Font.Italic.

6.7.3.12 Format

Description

The display format for a column.

In the painter

Format on the Format page in the Properties view.

Values

A string specifying the display format.

Example

The following statement, when applied to the Format property of the Salary column, causes
the column to display the word Overpaid for any salary greater than $60,000 and Underpaid
for any salary under $60,000:

If(salary>60000, 'Overpaid', 'Underpaid')

Working with DataWindows

Page 729

Edit Mask edit style change

The Edit Mask edit style assigned to the salary column had to be changed. Because
edit styles take precedence over display formats, it was necessary to change the edit
style assigned to the salary column (an Edit Mask edit style) to the Edit edit style.

6.7.3.13 Height

Description

The height of the column or other control.

In the painter

Height on the Position page in the Properties view.

Value

An integer in the unit of measure specified for the DataWindow object. Units of measure
include PowerBuilder units, thousandths of an inch (1000 = 1 inch), thousandths of a
centimeter (1000 = 1 centimeter), or pixels.

Example

The following statement causes the height of a rectangle to be 160 PowerBuilder units if the
state column for the row has the value NY. Otherwise, the rectangle is 120 PowerBuilder
units high:

if (state = 'NY', 160, 120)

For more details and pictures, see Example 4: changing the size and location of controls.

6.7.3.14 Pen.Color

Description

The color of the line or the outline of a graphic control.

In the painter

Pen Color on the General page in the Properties view.

Value

A number that specifies the color of the line or outline.

For information on specifying colors, see Specifying colors.

Example

See the example for the Pen.Style property.

6.7.3.15 Pen.Style

Description

The style of the line or the outline of a graphic control.

In the painter

Pen Style on the General page in the Properties view.

Working with DataWindows

Page 730

Value

Values are:

• 0—Solid

• 1—Dash

• 2—Dotted

• 3—Dash-dot pattern

• 4—Dash-dot-dot pattern

• 5—Null (no visible line)

Example

In this example, statements check the employee's start date to see if the month is the current
month or the month following the current month. Properties of a rectangle control placed
behind the row of data are changed to highlight employees with months of hire that match the
current month or the month following the current month.

The Design view includes columns of data and a rectangle behind the data. The rectangle has
been changed to black in the following picture to make it stand out:

Figure 6.101:

The following statement is for the Pen.Color property of the line around the edge of the
rectangle. If the month of the start date matches the current month or the next one, Pen.Color
is set to light gray. If not, it is set to white, which means it will not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1), 12632256, 16777215)

The following statement is for the Pen.Style property of the rectangle. If the month of the
start date matches the current month or the next one, Pen.Style is set to Solid. If not, it is set
to NULL, which means it will not show:

If(month(start_date) = month(today())
or month(start_date) = month(today())+1
or (month(today()) = 12 and month(start_date)=1), 0, 5)

Expressions are also defined for Brush.Color and Brush.Hatch.

Working with DataWindows

Page 731

For more about these properties, see Brush.Color and Brush.Hatch.

The following is a portion of the resulting DataWindow object. A rectangle with light gray
cross-hatching highlights employees whose reviews are due soon. The line enclosing the
rectangle is Light Gray and uses the pen style Solid:

Figure 6.102:

6.7.3.16 Pen.Width

Description

The width of the line or the outline of a graphic control.

In the painter

Pen Width on the General page in the Properties view.

Value

An integer in the unit of measure specified for the DataWindow object. Units of measure
include PowerBuilder units, thousandths of an inch (1000 = 1 inch), thousandths of a
centimeter (1000 = 1 centimeter), or pixels.

Example

The following statement causes the width of a line to be 10 PowerBuilder units if the state
column for the row has the value NY. Otherwise, the line is 4 PowerBuilder units wide:

If(state = 'NY', 10, 4)

For more details and pictures, see Example 4: changing the size and location of controls.

Working with DataWindows

Page 732

6.7.3.17 Pointer

Description

The image used for the mouse pointer when the pointer is over the specified control.

In the painter

Pointer on the Pointer page in the Properties view.

Value

A string that specifies a value of the Pointer enumerated data type or the name of a cursor file
(CUR) used for the pointer.

Values of the Pointer enumerated data type are:

• Arrow!

• Cross!

• HourGlass!

• IBeam!

• Icon!

• Size!

• SizeNESW!

• SizeNS!

• SizeNWSE!

• SizeWE!

• UpArrow!

Example

The following condition, entered for the Pointer property of every control in a row of expense
data, changes the pointer to a column every time the value in the expense column exceeds
$100,000. Note that the pointer has no meaning in a printed report. The pointer is for use on
the screen display of a DataWindow object:

If(expense 100000, 'pbcolumn.cur', 'arrow!')

6.7.3.18 Protect

Description

The protection setting of a column.

In the painter

Protect on the General page in the Properties view.

Working with DataWindows

Page 733

Value

Values are:

• 0—False, the column is not protected

• 1—True, the column is protected

6.7.3.19 Timer_Interval

In the painter

Timer Interval on the General page in the Properties view.

Description

The number of milliseconds between the internal timer events.

Value

The default is 0 (which is defined to mean 60,000 milliseconds or one minute).

6.7.3.20 Visible

Description

Whether the control is visible in the DataWindow object.

In the painter

Visible on the General page in the Properties view.

Value

Values are:

• 0—Not visible

• 1—Visible

Example

The following statement is for the Visible property of a text control with the words On Leave
located to the right of columns of employee information. The statement says that if the
current employee's status is L, which means On Leave, the text control is visible. Otherwise,
it is invisible:

If(status = 'L', 1, 0)

The status column must be retrieved

The status column must be included in the data source even though it does not appear
in the DataWindow object itself.

The Design view includes the text control at the right-hand end of the detail line. The text
control is visible at runtime only if the value of the status column for the row is L.

In the resulting DataWindow object, the text control is visible only for the two employees on
leave. For a picture, see Font.Strikethrough.

Working with DataWindows

Page 734

6.7.3.21 Width

Description

The width of the control.

In the painter

Width on the Position page in the Properties view.

Value

An integer in the unit of measure specified for the DataWindow object. Units of measure
include PowerBuilder units, thousandths of an inch (1000 = 1 inch), thousandths of a
centimeter (1000 = 1 centimeter), or pixels.

Example

The following statement causes the width of a rectangle to be 500 PowerBuilder units if the
state column for the row has the value NY. Otherwise, the rectangle is 1000 PowerBuilder
units wide:

if (state = 'NY', 500, 1000)

For more details and pictures, see Example 4: changing the size and location of controls.

6.7.3.22 X

Description

The distance of the control from the left edge of the DataWindow object. At runtime, the
distance from the left edge of the DataWindow object is calculated by adding the margin to
the x value.

In the painter

X on the Position page in the Properties view.

Value

An integer in the unit of measure specified for the DataWindow object. Units of measure
include PowerBuilder units, thousandths of an inch (1000 = 1 inch), thousandths of a
centimeter (1000 = 1 centimeter), or pixels.

Example

The following statement causes a rectangle to be located 6.250 inches from the left if the state
column for the row has the value NY. Otherwise, the rectangle is 4.000 inches from the left:

If(state = 'NY', 6250, 4000)

For more details and pictures, see Example 4: changing the size and location of controls.

6.7.3.23 X1, X2

Description

The distance of each end of the line from the left edge of the DataWindow object as
measured in the Design view. At runtime, the distance from the left edge of the DataWindow
object is calculated by adding the margin to the x1 and x2 values.

Working with DataWindows

Page 735

In the painter

X1, X2 on the Position page in the Properties view.

Value

Integers in the unit of measure specified for the DataWindow object. Units of measure
include PowerBuilder units, thousandths of an inch (1000 = 1 inch), thousandths of a
centimeter (1000 = 1 centimeter), or pixels.

Example

The following statements for the X1 and X2 properties of a line cause the line to extend
from 6.250 to 7.150 inches from the left if the state column for the row has the value NY.
Otherwise, the line extends from 4.000 to 6.000 inches from the left:

If(state = 'NY', 6250, 4000)
If(state = 'NY', 7150, 6000)

For more details and pictures, see Example 4: changing the size and location of controls.

6.7.3.24 Y

Description

The distance of the control from the top of the band in which the control is located.

In the painter

Y on the Position page in the Properties view.

Value

An integer in the unit of measure specified for the DataWindow object. Units of measure
include PowerBuilder units, thousandths of an inch (1000 = 1 inch), thousandths of a
centimeter (1000 = 1 centimeter), or pixels.

Example

For information, see Example 4: changing the size and location of controls.

6.7.3.25 Y1, Y2

Description

The distance of each end of the specified line from the top of the band in which the line is
located.

In the painter

Y1, Y2 on the Position page in the Properties view.

Value

Integers in the unit of measure specified for the DataWindow object. Units of measure
include PowerBuilder units, thousandths of an inch (1000 = 1 inch), thousandths of a
centimeter (1000 = 1 centimeter), or pixels.

Example

The following statements for the Y1 and Y2 properties of a line cause the line to be
located .400 inches (Y1 and Y2 equal .400 inches) from the top of the detail band, if the state

Working with DataWindows

Page 736

column for the row has the value NY. Otherwise, the line is located .250 inches (Y1 and Y2
equal .250 inches) from the top of the detail band:

If(state = 'NY', 400, 250)
If(state = 'NY', 400, 250)

For more details and pictures, see Example 4: changing the size and location of controls.

6.7.4 Specifying colors

You specify a color by specifying a number that represents the color. You can specify the
number explicitly or by using an expression that includes the RGB (r, g, b) function.

For the numbers and expressions that specify common colors, see the following table.

How the number is calculated

The formula for combining color values into a number is:

red + 256*green + 256*256*blue

where the amount of each primary color (red, green, and blue) is specified as a value from 0
to 255.

The RGB function calculates the number from the amounts of red, green, and blue specified.

Sample numeric calculation

To create cyan, you use blue and green, but no red. If you wanted to create the most saturated
(bright) cyan, you would use maximum amounts of blue and green in the formula, which is
indicated by the number 255 for each. The following statements show the calculation:

red + 256*green + 256*256*blue
0 + 256*255 + 256*256*255
0 + 65280 + 16711680
16776960

Sample expression using the RGB function

The following expression specifies the brightest cyan:

RGB (0,255,255)

Notice that the expression specifies the maximum for green and blue and 0 for red. The
expression returns the value 16776960. To specify cyan, entering the expression RGB(0, 255,
255) is the same as entering the number 16776960.

Numbers and expressions to enter for the common colors

The following table shows the numbers and expressions to enter for some common colors.
The number and expression for a color are equivalent. You can use either.

Table 6.42: Numbers and expressions for common colors

Color Expression to enter Number to enter How the number is
calculated

Black RGB (0, 0, 0) 0 0 (no color)

Blue RGB (0, 0, 255) 16711680 256*256*255 (blue
only)

Working with DataWindows

Page 737

Color Expression to enter Number to enter How the number is
calculated

Cyan RGB (0, 255, 255) 16776960 256*255 +
256*256*255 (green
and blue)

Dark Green RGB (0, 128, 0) 32768 256*128 (green only)

Green RGB (0, 255, 0) 65280 256*255 (green only)

Light Gray RGB (192, 192, 192) 12632256 192 + 256*192 +
256*256*192 (some
red, green, and blue in
equal amounts)

Lighter Gray RGB (224, 224, 224) 14737632 224 + 256*224 +
256*256*224 (some
red, green, and blue in
equal amounts)

Lightest Gray RGB (240, 240, 240) 15790320 240 + 256*240 +
256*256*240 (some
red, green, and blue in
equal amounts)

Magenta RGB (255, 0, 255) 16711935 255 + 256*256*255
(red and blue)

Red RGB (255, 0, 0) 255 255 (red only)

White RGB (255, 255, 255) 16777215 255 + 256*255 +
256*256*255 (red,
green, and blue in
equal amounts at the
maximum of 255)

Yellow RGB (255, 255, 0) 65535 255 + 256*255 (red
and green)

6.8 Using Nested Reports
About this chapter

This chapter provides information about creating reports that have other reports nested in
them.

About reports and DataWindow objects

A report is the same as a nonupdatable DataWindow object.

This chapter shows the process of nesting reports using the Report painter in InfoMaker, but
you can do the same things in the DataWindow painter with the same results.

6.8.1 About nested reports

A nested report is a report within another report.

There are two ways to create reports containing nested reports:

Working with DataWindows

Page 738

• Create a composite report using the Composite presentation style

• Place a nested report in another report

About creating a composite report

You can choose the Composite presentation style to create a new report that consists entirely
of one or more nested reports. This type of report is called a composite report. A composite
report is a container for other reports.

You can use composite reports to print more than one report on a page.

Composite report

For example, the following composite report consists of three tabular reports. One of the
tabular reports includes a graph:

Figure 6.103:

Composite report in the Design view

Working with DataWindows

Page 739

In the Design view, you see three boxes that represent the individual tabular reports that are
included in the composite report. The only additional controls in this example are a title, date,
and page number:

Figure 6.104:

About placing a nested report within another report

You can place one or more reports within another report. The report you place is called the
nested report. You can place a nested report in any type of report except crosstab. Most of the
time you will place nested reports in freeform or tabular reports.

Often, the information in the nested report depends on information in the report in which it
is placed (the base report). The nested report and the base report are related to each other by
some common data. The base report and the nested report have a master/detail relationship.

Freeform report with a related nested report

For example, the following freeform report lists all information about a customer and then
includes a related nested report (which happens to be a tabular report). The related nested
report lists every order that the customer has ever placed. The base report supplies the
customer ID to the nested report, which requires a customer ID as a retrieval argument. This
is an example of a master/detail relationship—one customer has many orders:

Figure 6.105:

Working with DataWindows

Page 740

What you see in the Design view

In the Design view, you see everything in the base report plus a box that represents the
related nested report:

Figure 6.106:

The difference between nested and composite reports

There are two important differences between nesting using the Composite style and nesting a
report within a base report.

Data sources. The composite report does not have a data source—it is just a container
for nested reports. In contrast, a base report with a nested report in it has a data source. The
nested report has its own data source.

Related nesting. The composite report cannot be used to relate reports to each other in
the database sense. One report cannot feed a value to another report, which is what happens
in a master/detail report. If you want to relate reports to each other so that you can create a
master/detail report, you need to place a nested report within a base report.

How retrieval works

When you preview (run) a composite report, PowerBuilder retrieves all the rows for one
nested report, and then for another nested report, and so on until all retrieval is complete.Your
computer must have a default printer specified, because composite reports are actually
displayed in print preview mode.

When you preview (run) a report with another related report nested in it, PowerBuilder
retrieves all the rows in the base report first. Then PowerBuilder retrieves the data for all
nested reports related to the first row. Next, PowerBuilder retrieves data for nested reports
related to the second row, and so on, until all retrieval is complete for all rows in the base
report.

Working with DataWindows

Page 741

For information about efficiency and retrieval, see Supplying retrieval arguments to relate a
nested report to its base report.

Limitations on nesting reports

For the most part you can nest the various types of report styles. However, limitations apply
to two of them.

Crosstabs. You cannot place a crosstab with retrieval arguments within another report as a
related nested report. However, you can include a crosstab in a Composite report.

RichText reports. You cannot nest a RichText report in any way. You cannot place a
RichText report in another report, and you cannot include a RichText report in a Composite
report.

6.8.2 Creating a report using the Composite presentation style

To create a report using the Composite presentation style:

1. Select File>New from the menu bar.

The New Report dialog box displays.

2. Choose the DataWindow tab page and the Composite presentation style, and click OK.

The wizard displays all reports (DataWindow objects) that are in the current target's
library search path.

3. Click the reports you want to include in the composite report and then click Next.

The wizard lists your choices.

4. Click Finish.

PowerBuilder places boxes for the selected reports in the Design view. In this example,
you see three reports:

Figure 6.107:

5. Select File>Save from the menu bar and assign a name to the composite report.

6. Look at the Preview view of the report:

Working with DataWindows

Page 742

Figure 6.108:

Notice that you are in print preview (which is read-only).

Working with composite reports

Many of the options available for working with reports, such as Rows>Filter,
Rows>Import, and Rows>Sort, are disabled for a composite report. If you want to use
any of these options, you need to access the nested report(s), where these options are
available.

7. Continue to enhance the composite report (for example, add a date and title).

6.8.3 Placing a nested report in another report

When you place a nested report in another report, the two reports can be independent of each
other, or they can be related in the database sense by sharing some common data such as a
customer number or a department number. If the reports are related, you need to do some
extra things to both the base report and the related nested report.

Usually, when you place a report within a report rather than create a composite report, you
want to relate the reports. Those instructions are first.

Working with DataWindows

Page 743

6.8.3.1 Placing a related nested report in another report

Typically, a related nested report provides the details for a master report. For example, a
master report might provide information about customers. A related nested report placed in
the master report could provide information about all the orders that belong to each customer.

To place a related nested report in another report

1. Create the nested report (DataWindow object) that you plan to place in the base report.

2. Define a retrieval argument for the nested report.

For example, suppose the nested report lists orders and you want to list orders for a
particular customer. To define a retrieval argument, you would:

a. Select Design>Data Source to go to the SQL Select painter.

b. Select Design>Retrieval Arguments from the menu bar in the SQL Select painter.

c. Define a retrieval argument in the Specify Retrieval Arguments dialog box. In the
example, customerID is the name assigned to the retrieval argument.

d. Specify the retrieval argument in a WHERE clause for the SELECT statement.

The WHERE clause in this example tells the DBMS to retrieve rows where the
value in the column cust_id equals the value of the argument :customerid:

Figure 6.109:

At this point, when you run the report to retrieve data, you are prompted to enter
a value for :customerid. Later in these steps, you will specify that the base report
supply the values for :customerid instead of prompting for values.

3. Open or create the report you want to have as the base report.

In the example, the base report is one that lists customers and has a place for the order
history of each customer:

Working with DataWindows

Page 744

Figure 6.110:

4. Select Insert>Control>Report from the menu bar.

5. In the Design view, click where you want to place the report.

6. The Select Report dialog box displays, listing defined reports (DataWindow objects) in
the current target's library search path.

7. Select the report you want, and click OK.

A box representing the report displays in the Design view.

8. With the report still selected, select the General page of the Properties view.

The Arguments box lists arguments defined for the nested report and provides a way for
you to specify how information from the base report will be used to supply the values of
arguments to the nested report.

Working with DataWindows

Page 745

Figure 6.111:

9. Supply the base report column or the expression that will supply the argument's value.
To do this, click the button in the Expression column.

The Modify Expression dialog box displays. In this dialog box, you can easily select one
of the columns or develop an expression. In the example, the column named id from the
base report will supply the value for the argument :customerid in the nested report.

10. Select File>Save from the menu bar and assign a name to the report.

In the Preview view, you can see what your report looks like:

Figure 6.112:

Working with DataWindows

Page 746

6.8.3.2 Placing an unrelated nested report in another report

When you place an unrelated nested report in a base report, the entire nested report appears
with each row of the base report.

To place an unrelated nested report in another report

1. Create or open the report you want as the base report.

2. Select Insert>Control>Report from the menu bar.

3. In the Design view, click where you want to place the report.

The Select Report dialog box displays, listing defined reports (DataWindow objects) in
the current target's library search path.

4. Select the report you want to nest in the base report, and click OK.

A box representing the nested report displays in the Design view.

5. Select File>Save from the menu bar and if the base report is newly created, assign a
name to it.

6.8.4 Working with nested reports

When you use nested reports either in composite reports or in other base reports, several
enhancements and options are available. An easy way to see what you can do is to select the
nested report and look at the Properties view for it.

Many of the options in the Properties view are described in Enhancing DataWindow Objects
For example, using borders on nested reports is like using borders on any control.

This section describes activities that apply only to nested reports or that have special meaning
for nested reports. It covers:

• Adjusting nested report width and height

• Changing a nested report from one report to another

• Modifying the definition of a nested report

• Adding another nested report to a composite report

• Supplying retrieval arguments to relate a nested report to its base report

• Specifying criteria to relate a nested report to its base report

• Using options for nested reports

6.8.4.1 Adjusting nested report width and height

When you preview a report with nested reports, the width of the nested report may be
unacceptable. This can happen, for example, if you change the design of the nested report
or if you use newspaper columns in a nested report.The width of the nested report is not

Working with DataWindows

Page 747

adjusted to fit its contents at runtime; if the report is too narrow, some columns may be
truncated. For example, if the size of the nested report is set to 6 inches wide in the parent
report, columns in the nested report that exceed that width are not displayed in the parent
report.

To adjust report width

1. In the Design view, position the pointer near a vertical edge of the nested report and
press the left mouse button.

2. Drag the edge to widen the nested report.

3. Check the new width in the Preview view.

When you Print preview a DataWindow that contains a nested N-Up report with
newspaper columns across the page, you might find that blank pages display (and print)
when the nested report in the detail band fills the page. This is because any white space
at the bottom of the band is printed to a second page. You can usually solve this problem
by dragging up the detail band to eliminate the white space between the nested report
and the band, or even to overlap the bottom of the representation of the nested report.

6.8.4.2 Changing a nested report from one report to another

You can change the nested report that is used. For example, you may work on several
versions of a nested report and need to update the version of the nested report that the
composite or base report uses.

To change the nested report to a different report

1. Select the nested report in the Design view.

2. In the Properties view, General property page, click the button next to the Report box.

3. Select the report you want to use, and click OK.

The name of the report that displays in the box in the Design view changes to the new
one.

6.8.4.3 Modifying the definition of a nested report

You can modify the definition of the nested report. You can do this directly from the
composite report or base report that contains the nested report.

To modify the definition of a nested report from the composite report or base report

1. Position the pointer on the nested report whose definition you want to modify, and
display the pop-up menu.

2. Select Modify Report from the pop-up menu.

The nested report opens and displays in the painter. Both the composite or base report
and the nested report are open.

Working with DataWindows

Page 748

3. Modify the report.

4. Select File>Close from the menu bar.

You are prompted to save your changes.

5. Click OK.

You return to the composite report or to the base report that includes the nested report.

6.8.4.4 Adding another nested report to a composite report

After you have created a composite report, you might want to add another report. The
following procedure describes how. For information on adding a nested report to a report that
is not a composite report, see Placing a related nested report in another report or Placing an
unrelated nested report in another report.

To add another nested report to a composite report

1. Open the composite report.

2. Select Insert>Control>Report from the menu bar.

3. Click in the Design view where you want to place the report.

The Select Report dialog box displays, listing defined reports (DataWindow objects) in
the current target's library search path.

4. Select the report you want and click OK.

A box representing the report displays in the Design view.

6.8.4.5 Supplying retrieval arguments to relate a nested report to its base report

The most efficient way to relate a nested report to its base report is to use retrieval arguments.
If your nested report has arguments defined, you use the procedure described in this section
to supply the retrieval argument value from the base report to the nested report. (The
procedure described is part of the whole process covered in Placing a related nested report in
another report.)

Why retrieval arguments are efficient

Some DBMSs have the ability to bind input variables in the WHERE clause of the
SELECT statement. When you use retrieval arguments, a DBMS with this capability sets up
placeholders in the WHERE clause and compiles the SELECT statement once. PowerBuilder
retains this compiled form of the SELECT statement for use in subsequent retrieval requests.

Requirements for reusing the compiled SELECT statement

To enable PowerBuilder to retain and reuse the compiled SELECT statement:

• The database interface must support binding of input variables.

• You must enable binding support by setting the DisableBind database parameter to 0,
which is the default.

Working with DataWindows

Page 749

• You must enable caching in the database profile. Set the SQLCache database parameter to
the number of levels of nesting plus 5.

For more information, see the description of the SQLCache and DisableBind database
parameters in Section 1.1.157, “SQLCache” in Connection Reference and Section 1.1.44,
“DisableBind” in Connection Reference.

Nested reports in composite reports

If the base report is a composite report, you need to define retrieval arguments for the
composite report before you can supply them to the nested report.

In the Properties view for the composite report, select the General page. Then define
the retrieval arguments that the nested report needs, taking care to specify the correct
type.

To supply a retrieval argument value from the base report to the nested report

1. Make sure that the nested report has been set up to take one or more retrieval arguments.

See Placing a nested report in another report.

2. Select the nested report and then select the General page of the Properties view.

The Arguments box lists arguments defined for the nested report and provides a way
for you to specify how information from the base report will supply the value of the
argument to the nested report.

Figure 6.113:

3. Supply the base report column or the expression that will supply the argument's value.
To do this, click the button in the Expression column.

The Modify Expression dialog box displays. In this dialog box, you can easily select one
of the columns or develop an expression. In the example, the column named id from the
base report will supply the value for the argument :customerid in the nested report.

Working with DataWindows

Page 750

When you run the report now, you are not prompted for retrieval argument values for the
nested report. The base report supplies the retrieval argument values automatically.

6.8.4.6 Specifying criteria to relate a nested report to its base report

If you do not have arguments defined for the nested report and if database efficiency is not an
issue, you can place a nested report in another report and specify criteria to pass values to the
related nested report.

How the DBMS processes SQL if you use the specify criteria technique

If you use the specify criteria technique, the DBMS repeatedly recompiles the SELECT
statement and then executes it. The recompilation is necessary for each possible variation of
the WHERE clause.

To specify criteria to relate a nested report to its base report

1. Select the nested report and then select the Criteria page in the Properties view.

The Criteria property page provides a way for you to specify how information from the
base report will supply the retrieval criteria to the nested report.

2. Click the button next to the criteria box.

The Specify Retrieval Criteria dialog box displays.

3. Enter the retrieval criteria and click OK.

The rules for specifying criteria are the same as for specifying criteria in the Quick
Select data source. Multiple criteria in one line are ANDed together. Criteria entered on
separate lines are ORed together.

In this example, the customer ID (the id column) is the retrieval criterion being supplied
to the nested report.

Notice that the id column is preceded by a colon (:), which is required:

Figure 6.114:

When you run the report now, PowerBuilder retrieves rows in the nested report based
on the criteria you have specified. In the example, the customer ID column in the base
report determines which rows from the sales_order table are included for each customer.

Working with DataWindows

Page 751

6.8.4.7 Using options for nested reports

Using the Autosize Height option

Autosize Height should be on for all nested reports except graphs. This option ensures that
the height of the nested report can change to accommodate the rows that are returned.

This option is on by default for all nested reports except graphs. Usually there is no reason
to change it. If you do want to force a nested report to have a fixed height, you can turn this
option off.

Note that all bands in the DataWindow also have an Autosize Height option. The option is
off by default and must be on for the Autosize Height option for the nested report to work
properly.

To change the Autosize Height option for a nested report

1. In the Design view, select the nested report.

2. In the Properties view, select the Position properties page.

3. Select/clear the Autosize Height check box.

Handling large rows

To avoid multiple blank pages or other anomalies in printed reports, never create a
DataWindow object with a data row greater than the size of the target page. To handle
large text-string columns, break the large string into a series of small strings. The
smaller strings are used to populate individual data rows within a nested report instead
of using a single text column with an autosized height.

Using the Slide options

PowerBuilder determines the appropriate Slide options when positioning the nested report(s)
and assigns default values. Usually, you should not change the default values:

• The Slide Left option is on by default for grid and crosstab style reports and off by default
for all others. Having Slide Left on for grid and crosstab ensures that these reports break
horizontally on whole columns and not in the middle of a column.

• The Slide Up All Above and Directly Above options ensure that the nested report uses
just as much vertical space as it needs. One of these options is on by default for all nested
reports.

For more information, see Sliding controls to remove blank space in a DataWindow object.

Using the New Page option (composite only)

The New Page option forces a new page for a nested report used in a composite report. By
default, this option is off.

To specify that a nested report in a composite report should begin on a new page

1. In the Design view, select the nested report.

Working with DataWindows

Page 752

2. In the Properties view, select the General properties page.

3. Select the New Page check box.

Using the Trail Footer option (composite only)

The Trail Footer option controls the placement of the footer for the last page of a nested
report in a composite report. By default, this option is on. The footer appears directly under
the contents of the nested report and not at the bottom of the page.

To specify that the footer should appear at the bottom of the page

1. In the Design view, select the nested report.

2. In the Properties view, select the General properties page.

3. Clear the Trail Footer check box.

The footer appears at the bottom of the page on all pages of the nested report, including
the last page. Note that if another nested report begins on the same page, the footer from
the earlier report might be misleading or confusing.

6.9 Working with Graphs

About this chapter

This chapter describes how to build and use graphs in PowerBuilder.

6.9.1 About graphs

Often the best way to display information is graphically. Instead of showing users a series of
rows and columns of data, you can present information as a graph in a DataWindow object or
window. For example, in a sales application, you might want to present summary information
in a column graph.

PowerBuilder provides many types of graphs and allows you to customize your graphs in
many ways. Probably most of your use of graphs will be in a DataWindow object. The source
of the data for your graphs will be the database.

You can also use graphs as standalone controls in windows (and user objects) and populate
the graphs with data through scripts.

The way you define graphs is the same whether you are using them in a DataWindow object
or directly in a window. However, the way you manipulate graphs in a DataWindow object is
different from the way you manipulate them in a window.

Before using graphs in an application, you need to understand the parts of a graph and the
kinds of graphs that PowerBuilder provides.

6.9.1.1 Parts of a graph

Here is a column graph created in PowerBuilder that contains most major parts of a graph. It
shows quarterly sales of three products: Stellar, Cosmic, and Galactic printers:

Working with DataWindows

Page 753

Figure 6.115:

6.9.1.1.1 How data is represented

Graphs display data points. To define graphs, you need to know how the data is represented.
PowerBuilder organizes data into three components.

Table 6.43: Components of a graph

Component Meaning

Series A set of data points

Each set of related data points makes up one series. In the preceding
graph, there is a series for Stellar sales, another series for Cosmic
sales, and another series for Galactic sales. Each series in a graph is
distinguished by color, pattern, or symbol.

Categories The major divisions of the data

Series data are divided into categories, which are often non-numeric.
In the preceding graph, the series are divided into four categories:
Q1, Q2, Q3, and Q4. Categories represent values of the independent
variable(s).

Values The values for the data points (dependent variables).

6.9.1.1.2 Organization of a graph

The following table lists the parts of a typical graph.

Table 6.44: Organization of a graph

Part of graph What it is

Title An optional title for the graph. The title appears at the top of the
graph.

Value axis The axis of the graph along which the values of the dependent
variable(s) are plotted. In a column graph, as shown in the

Working with DataWindows

Page 754

Part of graph What it is
preceding graph, the Value axis corresponds to the y axis in an XY
presentation. In other types of graphs, such as a bar graph, the Value
axis can be along the x dimension.

Category axis The axis along which are plotted the major divisions of the data,
representing the independent variable(s). In the preceding graph,
the Category axis corresponds to the x axis. It plots four categories:
Q1, Q2, Q3, and Q4. These form the major divisions of data in the
graph.

Series A set of data points. There are three series in the preceding graph:
Stellar, Cosmic, and Galactic. In bar and column charts, each series
is represented by bars or columns of one color or pattern.

Series axis The axis along which the series are plotted in three-dimensional
(3D) graphs.

Legend An optional listing of the series. The preceding graph contains a
legend that shows how each series is represented in the graph.

6.9.1.2 Types of graphs

PowerBuilder provides many types of graphs for you to choose from. You choose the type
on the Define Graph Style page in the DataWindow wizard or in the General page in the
Properties view for the graph.

Figure 6.116:

Working with DataWindows

Page 755

6.9.1.2.1 Area, bar, column, and line graphs

Area, bar, column, and line graphs are conceptually very similar. They differ only in how
they physically represent the data values—whether they use areas, bars, columns, or lines to
represent the values. All other properties are the same. Typically you use area and line graphs
to display continuous data and use bar and column graphs to display noncontinuous data.

The only difference between a bar graph and a column graph is the orientation: in column
graphs, values are plotted along the y axis and categories are plotted along the x axis. In bar
graphs, values are plotted along the x axis and categories are plotted along the y axis.

6.9.1.2.2 Pie graphs

Pie graphs typically show one series of data points with each data point shown as a
percentage of a whole. The following pie graph shows the sales for Stellar printers for each
quarter. You can easily see the relative values in each quarter. (PowerBuilder automatically
calculates the percentages of each slice of the pie.)

Figure 6.117:

You can have pie graphs with more than one series if you want; the series are shown in
concentric circles. Multiseries pie graphs can be useful in comparing series of data.

6.9.1.2.3 Scatter graphs

Scatter graphs show xy data points. Typically you use scatter graphs to show the relationship
between two sets of numeric values.Non-numeric values, such as string and DateTime
datatypes, do not display correctly.

Working with DataWindows

Page 756

Scatter graphs do not use categories. Instead, numeric values are plotted along both axes—
as opposed to other graphs, which have values along one axis and categories along the other
axis.

For example, the following data shows the effect of speed on the mileage of a sedan:

Table 6.45:

Speed Mileage

10 12

20 18

30 21

40 23

50 26

60 26

70 24

80 20

Here is the data in a scatter graph:

Figure 6.118:

Working with DataWindows

Page 757

You can have multiple series of data in a scatter graph. You might want to plot mileage
versus speed for several makes of cars in the same graph.

6.9.1.2.4 Three-dimensional graphs

Traditional 3D graphs

You can also create 3-dimensional (3D) graphs of area, bar, column, line, and pie graphs. In
3D graphs (except for 3D pie graphs), series are plotted along a third axis (the Series axis)
instead of along the Category axis. You can specify the perspective to use to show the third
dimension:

Figure 6.119:

DirectX 3D graphs

DirectX 3D rendering allows you to display the 3D graphs (Pie3D, Bar3D, Column3D,
Line3D, and Area3D) with a more sophisticated look. You can use data item or series
transparency with the DirectX graph styles to improve the presentation of data.

The DirectX graph rendering style is supported for standalone graph controls and for graph
controls in a DataWindow object. PowerBuilder uses the following functions to support the
DirectX graph styles:

Table 6.46:

GetDataLabelling SetDataLabelling

GetDataTransparency SetDataTransparency

GetSeriesLabelling SetSeriesLabelling

Working with DataWindows

Page 758

GetDataLabelling SetDataLabelling

GetSeriesTransparency SetSeriesTransparency

DirectX runtime. The DirectX 3D rendering depends on the DirectX runtime. The first
time you select the Render3D check box on the General tab of the Properties view for a 3D
graph, PowerBuilder launches the DirectX installer. If you opt out of the installation, the
Render3D property is ignored. End users of PowerBuilder applications must also have the
DirectX runtime installed on their computers.

If you install DirectX on the runtime computer, but selecting the Render3D check box does
not change the appearance of the graph, it is possible that the graphics card does not support
DirectX.

You can check whether DirectX is supported by running dxdiag.exe. This file is typically
installed in the Windows\System32 directory. The Display tab of the DirectX Diagnostic
Tool that opens when you run dxdiag.exe indicates whether Direct3D is enabled.

6.9.1.2.5 Stacked graphs

In bar and column graphs, you can choose to stack the bars and columns. In stacked graphs,
each category is represented as one bar or column instead of as separate bars or columns for
each series:

Figure 6.120:

6.9.1.3 Using graphs in applications

You can use graphs in DataWindow objects and in windows. You specify the properties of a
graph, such as its type and title, the same way in a DataWindow object as in a window.

Working with DataWindows

Page 759

Using graphs in user objects

You can also use graphs in user objects. Everything in this chapter about using graphs
in windows also applies to using graphs in user objects.

The major differences between using a graph in a DataWindow object and using a graph in a
window (or user object) are:

• Specifying the data for the graph

In DataWindow objects, you associate columns in the database with the axes of a graph. In
windows, you write scripts containing PowerScript functions to populate a graph.

• Specifying the location of the graph

In DataWindow objects, you can place a graph in the foreground and allow users to move
and resize the graph at runtime, or you can place a graph in a band and prevent movement.
In windows, graphs are placed like all other window controls.

6.9.2 Using graphs in DataWindow objects

Graphs are used most often in DataWindow objects—the data for the graph comes from
tables in the database.

Graphs in DataWindow objects are dynamic

Graphs in DataWindow objects are tied directly to the data that is in the DataWindow object.
As the data changes, the graph is automatically updated to reflect the new values.

Two techniques

You can use graphs in DataWindow objects in two ways:

• By including a graph as a control in a DataWindow object

The graph enhances the display of information in a DataWindow object, such as a tabular
or freeform DataWindow object. This technique is described in Placing a graph in a
DataWindow object.

• By using the Graph presentation style

The entire DataWindow object is a graph. The underlying data is not visible. This
technique is described in Using the Graph presentation style.

6.9.2.1 Placing a graph in a DataWindow object

To place a graph in a DataWindow object

1. Open or create the DataWindow object that will contain the graph.

2. Select Insert>Control>Graph from the menu bar.

3. Click where you want the graph.

PowerBuilder displays the Graph Data dialog box:

Working with DataWindows

Page 760

Figure 6.121:

4. Specify which columns contain the data and the type of graph you want, and click OK.

For more information, see Associating data with a graph.

The Design view now contains a representation of the graph:

Figure 6.122:

5. Specify the graph's properties in the Properties view.

6.9.2.2 Using the graph's Properties view

A graph has a Properties view in which you can specify the data as well as the other
properties of the graph.

Working with DataWindows

Page 761

To display the graph's Properties view

• Select Properties from the graph's pop-up menu.

The Properties view for a graph has several property pages in which you specify
information about the graph. The following table lists the property pages that contain
properties that are specific to graphs, and describes what each property page specifies.

Table 6.47: Property page for graphs

Property page What it specifies

Axis Labels, scale, information about major and minor divisions for the
category axes.

Data Where to get the graph's data.

General Various general graph properties, including border, graph colors,
whether to size the graph to the full screen display, suppression in
newspaper columns.

Graph type, title, legend location.

For 3D graphs, perspective, rotation, elevation, and render3D.

For bar graphs, overlap, spacing and depth of bars.

Pointer The pointer to use when the mouse is positioned over the graph.

Position The x,y location of the upper left corner of the graph, its width
and height, sliding options, the layer in which the graph is to be
positioned.

Whether the graph can be resized and moved at runtime.

Text Text properties for text controls that display on the graph, including
title, axis text, axis label, and legend.

Text properties include font, font style, font size, alignment,
rotation, color, display expression, display format.

Other Descriptions and label for use by assistive technology tools.

6.9.2.3 Changing a graph's position and size

When you first place a graph in a DataWindow object, it is in the foreground—it sits above
the bands in the DataWindow object. Unless you change this setting, the graph displays in
front of any retrieved data.

The initial graph is also moveable and resizable, so users have complete flexibility as to the
size and location of a graph at runtime. You can change these properties.

To specify a graph's position and size

1. Select Properties from the graph's pop-up menu and then select the Position page or the
General page in the Properties view.

2. Select the settings for the following options on the Position property page:

Working with DataWindows

Page 762

Table 6.48: Settings on the Position property page for graphs

Setting Meaning

Layer Background — The graph displays behind other elements in the
DataWindow object.

Band — The graph displays in one particular band. If you choose
this setting, you should resize the band to fit the graph. Often
you will want to place a graph in the Footer band. As users scroll
through rows in the DataWindow object, the graph remains at the
bottom of the screen as part of the footer.

Foreground — (Default) The graph displays above all other
elements in the DataWindow object. Typically, if you choose this
setting, you also make the graph movable so it will not obscure data
while users display the DataWindow object.

Moveable The graph can be moved in the Preview view and at runtime.

Resizable The graph can be resized in the Preview view and at runtime.

Slide Left, Slide
Up

The graph slides to the left or up to remove extra white space. For
more information, see Sliding controls to remove blank space in a
DataWindow object.

X, Y The location of the upper-left corner of the graph.

Width, Height The width and height of the graph.

3. Select the settings for the following options on the General property page:

Table 6.49: Size and position settings on the General property page

Setting Meaning

Size To Display The graph fills the DataWindow object and resizes when users
resize the DataWindow object. This setting is used with the Graph
presentation style.

HideSnaked Do not repeat graph after the first column in a DataWindow object
using newspaper-style columns.

6.9.2.4 Associating data with a graph

When using a graph in a DataWindow object, you associate axes of the graph with columns
in the DataWindow object.

The only way to get data into a graph in a DataWindow object is through columns in the
DataWindow object. You cannot add, modify, or delete data in the graph except by adding,
modifying, or deleting data in the DataWindow object.

You can graph data from any columns retrieved into the DataWindow object. The columns
do not have to be displayed.

Working with DataWindows

Page 763

About the examples

The process of specifying data for a graph is illustrated below using the Printer table
in the PB Demo DB.

To specify data for a graph

1. If you are creating a new graph, the Graph Data dialog box displays. Otherwise, select
Properties from the graph's pop-up menu and select the Data page in the Properties view.

2. Fill in the boxes as described in the sections that follow, and click OK.

6.9.2.4.1 Specifying which rows to include in a graph

The Rows drop-down list allows you to specify which rows of data are graphed at any one
time:

Table 6.50: Specifying which rows to include in a graph

Setting Meaning

All Graphs the data from all the rows that have been retrieved but not
filtered or deleted (that is, the rows in the primary buffer of the
DataWindow object)

Page Graphs only the data from the rows that are currently displayed on the
page

Group n Graphs only the data in the specified group (in a grouped DataWindow
object)

If you select Group

If you are graphing data in the current group in a grouped DataWindow object and
have several groups displayed at the same time, you should localize the graph in
a group-related band in the Design view. This makes clear which group the graph
represents. Usually, the group header band is the most appropriate band.

6.9.2.4.2 Specifying the categories

Specify the column or expression whose values determine the categories. In the Graph Data
page in the Graph dialog box and on the Data page in the Properties view, you can select a
column name from a drop-down list.

Working with DataWindows

Page 764

Figure 6.123:

There is an entry along the Category axis for each different value of the column or expression
you specify.

Using display values of data

If you are graphing columns that use code tables, when data is stored with a data
value but displayed to users with more meaningful display values, by default the
graph uses the column's data values. To have the graph use a column's display values,
use the LookupDisplay DataWindow expression function when specifying Category
or Series. LookupDisplay returns a string that matches the display value for a column:

LookupDisplay (column)

For more about code tables, see Defining a code table. For more about
LookupDisplay, see Section 2.4.71, “LookUpDisplay” in DataWindow Reference.

6.9.2.4.3 Specifying the values

PowerBuilder populates the Value drop-down list. The list includes the names of all the
retrieved columns as well as the following aggregate functions:

• Count for all non-numeric columns

• Sum for all numeric columns

Select an item from the drop-down list or type an expression (in the Properties view). For
example, if you want to graph the sum of units sold, you can specify:

sum(units for graph)

To graph 110 percent of the sum of units sold, you can specify:

Working with DataWindows

Page 765

sum(units*1.1 for graph)

6.9.2.4.4 Specifying the series

Graphs can have one or more series.

Single-series graphs

If you want only one series (that is, if you want to graph all retrieved rows as one series of
values), leave the Series box empty.

Multiple-series graphs

If you want to graph more than one series, select the Series check box and specify the column
that will provide the series values.You can select column names from the drop-down list.

Figure 6.124:

There is a set of data points for each different value of the column you specify here. For
example, if you specify a column that has 10 values, then your graph will have 10 series: one
set of data points for each different value of the column.

Using expressions

You can also specify expressions for Series (on the Data page of the Properties view). For
example, you could specify the following for Series:

Units / 1000

In this case, if a table had unit values of 10,000, 20,000, and 30,000, the graph would show
series values of 10, 20, and 30.

Specifying multiple entries

You can specify more than one of the retrieved columns to serve as series. Separate multiple
entries by commas.

Working with DataWindows

Page 766

You must specify the same number of entries in the Value box as you do in the Series box.
The first value in the Value box corresponds to the first series identified in the Series box, the
second value corresponds to the second series, and so on. The example about graphing actual
and projected sales in Examples [837] illustrates this technique.

6.9.2.4.5 Examples

This section shows how to specify the data for several different graphs of the data in the
Printer table in the PB Demo DB. The table records quarterly unit sales of three printers by
three sales representatives.

Table 6.51: The Printer table in the PB Demo DB

Rep Quarter Product Units

Simpson Q1 Stellar 12

Jones Q1 Stellar 18

Perez Q1 Stellar 15

Simpson Q1 Cosmic 33

Jones Q1 Cosmic 5

Perez Q1 Cosmic 26

Simpson Q1 Galactic 6

Jones Q1 Galactic 2

Perez Q1 Galactic 1

… … … …

Simpson Q4 Stellar 30

Jones Q4 Stellar 24

Perez Q4 Stellar 36

Simpson Q4 Cosmic 60

Jones Q4 Cosmic 52

Perez Q4 Cosmic 48

Simpson Q4 Galactic 3

Jones Q4 Galactic 3

Perez Q4 Galactic 6

Graphing total sales

To graph total sales of printers in each quarter, retrieve all the columns into a DataWindow
object and create a graph with the following settings on the Data page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph)

Working with DataWindows

Page 767

• Leave the Series check box and text box empty.

The Quarter column serves as the category. Because the Quarter column has four values (Q1,
Q2, Q3, and Q4), there will be four categories along the Category axis. You want only one
series (total sales in each quarter), so you can leave the Series box empty, or type a string
literal to identify the series in a legend. Setting Value to sum(units for graph) graphs total
sales in each quarter.

Here is the resulting column graph. PowerBuilder automatically generates the category text
based on the data in the table:

Figure 6.125:

In the preceding graph, there is one set of data points (one series) across four quarters (the
category values).

The following is a pie graph, which has exactly the same properties as the preceding column
graph except for the type, which is Pie:

Working with DataWindows

Page 768

Figure 6.126:

In pie graphs, categories are shown in the legend.

Graphing unit sales of each printer

To graph total quarterly sales of each printer, retrieve all the columns into a DataWindow
object and create a graph with the following settings on the Data page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph)

• Select the Series check box

• Set Series to product

You want a different series for each printer, so the column Product serves as the series.
Because the Product column has three values (Cosmic, Galactic, and Stellar), there will be
three series in the graph. As in the first example, you want a value for each quarter, so the
Quarter column serves as the category, and you want to graph total sales in each quarter, so
the Value box is specified as sum(units for graph).

Here is the resulting graph. PowerBuilder automatically generates the category and series
labels based on the data in the table. The series labels display in the graph's legend:

Working with DataWindows

Page 769

Figure 6.127:

Graphing unit sales by representative

To graph quarterly sales made by each representative, create a graph with the following
settings on the Data page in the Properties view:

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph)

• Select the Series check box

• Set Series to rep

Here is the resulting graph:

Working with DataWindows

Page 770

Figure 6.128:

Graphing unit sales by representative and total sales

To graph quarterly sales made by each representative, plus total sales for each printer, create
a graph with the following settings on the Data page in the Properties view:

• Set Rows to All

• Set Category to quarter, "Total"

• Set Value to sum(units for graph), sum(units for graph)

• Select the Series check box

• Set Series to rep, rep

Working with DataWindows

Page 771

Figure 6.129:

Here you have two types of categories: the first is Quarter, which shows quarterly sales, as
in the previous graph. You also want a category for total sales. There is no corresponding
column in the DataWindow object, so you can simply type the literal "Total" to identify the
category. You separate multiple entries with a comma.

For each of these category types, you want to graph the sum of units sold for each
representative, so the Value and Series values are repeated.

Here is the resulting graph:

Figure 6.130:

Notice that PowerBuilder uses the literal "Total" supplied in the Category box in the Graph
Data window as a value in the Category axis.

Working with DataWindows

Page 772

Graphing actual and projected sales

To graph total quarterly sales of all printers and projected sales for next year, create a graph
with the following settings on the Data page in the Properties view (you assume that sales
will increase by 10% next year):

• Set Rows to All

• Set Category to quarter

• Set Value to sum(units for graph), sum(units*1.1 for graph)

• Select the Series check box

• Set Series to 'Actual','Projected'

You are using labels to identify two series, Actual and Projected. Note the single quotation
marks around the literals. For Values, you enter the expressions that correspond to Actual
and Projected sales. For Actual, you use the same expression as in the examples above,
sum(units for graph). For Projected sales, you multiply each unit sale by 1.1 to get the 10
percent increase. Therefore, the second expression is sum(units*1.1 for graph).

Here is the resulting graph. PowerBuilder uses the literals you typed for the series as the
series labels in the legend:

Figure 6.131:

6.9.3 Using the Graph presentation style

Instead of embedding a graph in a DataWindow object, you can use the Graph presentation
style to create a DataWindow object that is only a graph—the underlying data is not
displayed.

Working with DataWindows

Page 773

One advantage of the Graph presentation style is that the graph resizes automatically if users
resize the DataWindow control associated with the graph DataWindow object at runtime.

To use the Graph presentation style:

1. Select File>New from the menu bar.

The New dialog box displays.

2. Select the DataWindow tab.

3. Select the Graph presentation style, then click OK.

4. On the Choose Data Source for Graph DataWindow page, specify the data you want
retrieved into the DataWindow object.

For more information, see Defining DataWindow Objects.

5. On the Define Graph Data page, enter the definitions for the series, categories, and
values, as described in Associating data with a graph, and click Next.

Note that when using the Graph presentation style, the graph always graphs all rows;
you cannot specify page or group.

6. On the Define Graph Style page, enter a title for the graph, select a graph type, and click
Next.

7. On the Ready to Create Graph DataWindow page, review your specifications and click
Finish.

A model of the graph displays in the Design view.

8. Specify the properties of the graph, as described in Defining a graph's properties.

9. Save the DataWindow object in a library.

10. Associate the graph DataWindow object with a DataWindow control on a window or
user object.

At runtime, the graph fills the entire control and resizes when the control is resized.

6.9.4 Defining a graph's properties

This section describes properties of a graph that are used regardless of whether the graph is in
a DataWindow object or in a window.To define the properties of a graph, you use the graph's
Properties view. For general information about the property pages, see Using the graph's
Properties view.

6.9.4.1 Using the General page in the graph's Properties view

You name a graph and define its basic properties on the General page in the graph's
Properties view.

Working with DataWindows

Page 774

To specify the basic properties of a graph

• Select Properties from the graph's pop-up menu and then select the General page in the
Properties view.

About the model graph in the Design view

As you modify a graph's properties, PowerBuilder updates the model graph shown in the
Design view so that you can get an idea of the graph's basic layout:

• PowerBuilder uses the graph title and axis labels you specify.

• PowerBuilder uses sample data (not data from your DataWindow object) to illustrate
series, categories, and values.

In Preview view, PowerBuilder displays the graph with data.

Naming a graph

You can modify graphs at runtime. To reference a graph in code, you use its name. By
default, the graph is named gr_n.

To name a graph

• On the General properties page for the graph, assign a meaningful name to the graph in
the Name box.

Defining a graph's title

The title displays at the top of the graph.

To specify a graph's title

• On the General properties page for the graph, enter a title in the Title box.

Multiline titles

You can force a new line in a title by embedding ~n.

For information about specifying properties for the title text, see Specifying text
properties for titles, labels, axes, and legends.

Specifying the type of graph

You can change the graph type at any time in the development environment. (To change the
type at runtime, modify a graph's GraphType property.)

To specify the graph type

• On the General properties page for the graph, select a graph type from the Graph Type
drop-down list.

Using legends

A legend provides a key to your graph's series.

Working with DataWindows

Page 775

To include a legend for a series in a graph

• On the General properties page for the graph, specify where you want the legend to
appear by selecting a value in the Legend drop-down list.

For information on specifying text properties for the legend, see Specifying text
properties for titles, labels, axes, and legends.

Specifying point of view in 3D graphs

If you are defining a 3D graph, you can specify the point of view that PowerBuilder uses
when displaying the graph.

To specify a 3D graph's point of view

1. On the General properties page for the graph, adjust the point of view along the three
dimensions of the graph:

• To change the perspective, move the Perspective slider.

• To rotate the graph, move the Rotation slider.

• To change the elevation, move the Elevation slider.

2. Define the depth of the graph (the percent the depth is of the width of the graph) by
using the Depth slider.

6.9.4.2 Sorting data for series and categories

You can specify how to sort the data for series and categories. By default, the data is sorted in
ascending order.

To specify how to sort the data for series and categories in a graph

1. Select Properties from the graph's pop-up menu and then select the Axis page in the
Properties view.

2. Select the axis for which you want to specify sorting.

3. Scroll to Sort, the last option on the Axis page, and select Ascending, Descending, or
Unsorted.

6.9.4.3 Specifying text properties for titles, labels, axes, and legends

A graph can have four text elements:

• Title

• Labels for the axes

• Text that shows the values along the axes

• Legend

Working with DataWindows

Page 776

Figure 6.132:

You can specify properties for each text element.

To specify text properties for the title, labels, axis values, and legend of a graph

1. Select Properties from the graph's pop-up menu and then select the Text page in the
Properties view.

2. Select a text element from the list in the Text Object drop-down list.

Figure 6.133:

3. Specify the font and its characteristics.

Using Auto Size

With Auto Size in effect, PowerBuilder resizes the text appropriately whenever the graph is
resized. With Auto Size disabled, you specify the font size of a text element explicitly.

Working with DataWindows

Page 777

To have PowerBuilder automatically size a text element in a graph

1. On the Text properties page for the graph, select a text element from the list in the Text
Object drop-down list.

2. Select the Autosize check box (this is the default).

To specify a font size for a text element in a graph

1. On the Text properties page for the graph, select a text element from the list in the Text
Object drop-down list.

2. Clear the Autosize check box.

3. Select the Font size in the Size drop-down list.

Rotating text

For all the text elements, you can specify the number of degrees by which you want to rotate
the text.

To specify rotation for a text element in a graph

1. On the Text properties page for the graph, select a text element from the list in the Text
Object drop-down list.

2. Specify the rotation you want in the Escapement box using tenths of a degree (450
means 45 degrees).

Changes you make here are shown in the model graph in the Design view and in the
Preview view.

Using display formats

To use a display format for a text element in a graph

1. On the Text properties page for the graph, select a text element from the list in the Text
Object drop-down list.

2. Type a display format in the Format box or choose one from the pop-up menu. To
display the pop-up menu, click the button to the right of the Format box.

Modifying display expressions

You can specify an expression for the text that is used for each graph element. The
expression is evaluated at execution time.

To specify an expression for a text element in a graph

1. On the Text properties page for the graph, select a text element from the list in the Text
Object drop-down list.

2. Click the button next to the Display Expression box.

The Modify Expression dialog box displays.

3. Specify the expression.

Working with DataWindows

Page 778

You can paste functions, column names, and operators. Included with column names in
the Columns box are statistics about the columns, such as counts and sums.

4. Click OK to return to the graph's Properties view.

Example

By default, when you generate a pie graph, PowerBuilder puts the title at the top and labels
each slice of the pie with the percentage each slice represents of the whole. Percentages are
accurate to two decimal places.

The following graph has been enhanced as follows:

• The current date displays in the title

• The percentages are rounded to integers

• The raw data for each slice is shown in addition to the percentages

Figure 6.134:

To accomplish this, the display expressions were modified for the title and pie graph labels:

Table 6.52:

Element Original expression Modified expression

Title title title + " as of " +
date(today())

Pie graph labels if(seriescount > 1, series,
string(percentofseries,
"0.00%"))

if(seriescount > 1, series,
string(percentofseries,"0%")
+ " (" + value + ")")

Working with DataWindows

Page 779

6.9.4.4 Specifying overlap and spacing

With bar and column charts, you can specify the properties in the following table.

Table 6.53: Overlap and spacing properties for bar and column charts

Property Meaning

Overlap The percentage by which bars or columns overlap each other. The
default is 0 percent, meaning no overlap.

Spacing The amount of space to leave between bars or columns. The default
is 100 percent, which leaves a space equal to the width of a bar or
column.

To specify overlap and spacing for the bars or columns in a graph

1. Select Properties from the graph's pop-up menu and then select the Graph tab.

2. Specify a percentage for Overlap (% of width) and Spacing (% of width).

6.9.4.5 Specifying axis properties

Graphs have two or three axes. You specify the axes' properties in the Axis page in the
graph's Properties view.

To specify properties for an axis of a graph

1. Select Properties from the graph's pop-up menu and then select the Axis page in the
Properties view.

2. Select the Category, the Value, or the Series axis from the Axis drop-down list.

If you are not working with a 3D graph, the Series Axis options are disabled.

3. Specify the properties as described next.

Specifying text properties

You can specify the characteristics of the text that displays for each axis. The following table
shows the two kinds of text associated with an axis.

Table 6.54: Text types associated with each axis of a graph

Type of text Meaning

Text Text that identifies the values for an axis.

Label Text that describes the axis. You specify the label text in a painter.
You can use ~n to embed a new line within a label.

For information on specifying properties for the text, see Specifying text properties for titles,
labels, axes, and legends.

Specifying datatypes

The data graphed along the Value, Category, and Series axes has an assigned datatype.
The Series axis always has the datatype String. The Value and Category axes can have the
datatypes listed in the following table.

Working with DataWindows

Page 780

Table 6.55: Datatypes for Value and Category axes

Axis Possible datatypes

Both axes (for scatter graph) Number, Date, Time

Value (other graph types) Number, Date, DateTime, Time

Category (other graph types) String, Number, Date, DateTime, Time

For graphs in DataWindow objects, PowerBuilder automatically assigns the datatypes based
on the datatype of the corresponding column; you do not specify them.

For graphs in windows, you specify the datatypes yourself. Be sure you specify the
appropriate datatypes so that when you populate the graph (using the AddData method), the
data matches the datatype.

Scaling axes

You can specify the properties listed in the following table to define the scaling used along
numeric axes.

Table 6.56: Properties for scaling on numeric axes

Property Meaning

Autoscale If selected (the default), PowerBuilder automatically assigns a scaling
for the numbers along the axis.

RoundTo,
RoundToUnit

Specifies how to round the end points of the axis (note that this just
rounds the range displayed along the axis; it does not round the data
itself).

You can specify a number and a unit. The unit is based on the datatype;
you can specify Default as the unit to have PowerBuilder decide for
you. For example, if the Value axis is a Date column, you can specify
that you want to round the end points of the axis to the nearest five
years. In this case, if the largest data value is the year 1993, the axis
extends up to 1995, which is 1993 rounded to the next highest five-year
interval.

MinimumValue,
MaximumValue

The smallest and largest numbers to appear on the axis (disabled if you
have selected Autoscale).

ScaleType Specifies linear or logarithmic scaling (common or natural).

ScaleValue Specifies whether values are displayed as actual values or as a
cumulative value, a percentage, or a cumulative percentage.

Using major and minor divisions

You can divide axes into divisions. Each division is identified by a tick mark, which is a short
line that intersects an axis. In the Sales by Printer graphs shown in Examples [837], the
graph's Value axis is divided into major divisions of 50 units each. PowerBuilder divides the
axes automatically into major divisions.

To define divisions for an axis of a graph

1. To divide an axis into a specific number of major divisions, type the number of divisions
you want in the MajorDivisions box.

Working with DataWindows

Page 781

2. Leave the number 0 to have PowerBuilder automatically create divisions. PowerBuilder
labels each tick mark in major divisions. If you do not want each tick mark labeled, enter
a value in the DisplayEveryNLabels box. For example, if you enter 2, PowerBuilder
labels every second tick mark for the major divisions.

3. To use minor divisions, which are divisions within each major division, type the
appropriate number in the MinorDivisions box. To use no minor divisions, leave the
number 0.

When using logarithmic axes

If you want minor divisions, specify 1; otherwise, specify 0.

Representing divisions with grid and drop lines

You can specify lines to represent the divisions as described in the following table and
illustrated in the following figure.

Table 6.57: Representing graph divisions with grid and drop lines

Line Meaning

Grid line A line that extends from a tick mark across
the graph. Grid lines make graphs easier to
read.

Drop line A line that extends vertically from a data
point to its axis (not available for all graph
types).

Figure 6.135: Grid and drop lines in a graph

Working with DataWindows

Page 782

Using line styles

You can define line styles for the components of a graph listed in The following table.

Table 6.58: Components of a graph that can have line styles

Component Meaning

PrimaryLine The axis itself

SecondaryLine The axis parallel to and opposite the primary
axis

OriginLine A grid line that represents the value zero

Frame The frame for the axis in 3D graphs (disabled
for 2D graphs)

6.9.4.6 Specifying a pointer

You can specify a pointer to use when the mouse is over a graph at runtime.

To specify a pointer for a graph

1. Select Properties from the graph's pop-up menu and then select the Pointer page in the
Properties view.

2. Select a stock pointer from the list, or select a CUR file containing a pointer.

6.9.5 Using graphs in windows

In addition to using graphs in DataWindow objects, you can also place graphs directly in
windows and visual user objects. You define properties for a graph control in the Window
painter and use scripts to populate the graph with data and to modify properties for the graph
at runtime.

This section describes procedures unique to using graphs in windows and visual user objects.
For general graph properties, see Defining a graph's properties.

Placing a graph in a window

This procedure for placing a graph in a window in the Window painter can also be used for
placing a graph on a user object in the User Object painter.

To place a graph in a window:

1. Open the Window painter and select the window that will contain the graph.

2. Select Insert>Control>Graph from the menu bar.

3. Click where you want the graph.

PowerBuilder displays a model of the graph in the window.

4. Specify properties for the graph, such as type, title, text properties, and axis properties.

Working with DataWindows

Page 783

See Defining a graph's properties.

5. Write one or more scripts to populate the graph with data.

See Section 4.4, “Manipulating Graphs” in Application Techniques and Section 1.5,
“Manipulating Graphs” in DataWindow Programmers Guide.

Using the graph's Properties view in the Window painter

A graph's Properties view in the Window and User Object painters is similar to the one in the
DataWindow painter except that the Properties view in the Window and User Object painter:

• Does not have buttons for specifying property conditional expressions next to properties

• Does not have Data, Position, and Pointer property pages

• Does have an Other page, which you use to specify drag-and-drop, position, and pointer
properties for the graph control

For more information, see Using the graph's Properties view.

6.10 Working with Crosstabs

About this chapter

This chapter describes how to build crosstabs.

6.10.1 About crosstabs

Cross tabulation is a useful technique for analyzing data. By presenting data in a spreadsheet-
like grid, a crosstab lets users view summary data instead of a long series of rows and
columns. For example, in a sales application you might want to summarize the quarterly unit
sales of each product.

In PowerBuilder, you create crosstabs by using the Crosstab presentation style. When data
is retrieved into the DataWindow object, the crosstab processes all the data and presents the
summary information you have defined for it.

An example

Crosstabs are easiest to understand through an example. Consider the Printer table in the PB
Demo DB. It records quarterly unit sales of printers made by sales representatives in one
year. (This is the same data used to illustrate graphs in Working with Graphs)

Table 6.59: The Printer table in the PB Demo DB

Rep Quarter Product Units

Simpson Q1 Stellar 12

Jones Q1 Stellar 18

Perez Q1 Stellar 15

Simpson Q1 Cosmic 33

Working with DataWindows

Page 784

Rep Quarter Product Units

Jones Q1 Cosmic 5

Perez Q1 Cosmic 26

Simpson Q1 Galactic 6

Jones Q1 Galactic 2

Perez Q1 Galactic 1

. . . .

. . . .

. . . .

Simpson Q4 Stellar 30

Jones Q4 Stellar 24

Perez Q4 Stellar 36

Simpson Q4 Cosmic 60

Jones Q4 Cosmic 52

Perez Q4 Cosmic 48

Simpson Q4 Galactic 3

Jones Q4 Galactic 3

Perez Q4 Galactic 6

This information can be summarized in a crosstab. Here is a crosstab that shows unit sales by
printer for each quarter:

Figure 6.136:

The first-quarter sales of Cosmic printers displays in the first data cell. (As you can see from
the data in the Printer table shown before the crosstab, in Q1 Simpson sold 33 units, Jones

Working with DataWindows

Page 785

sold 5 units, and Perez sold 26 units—totaling 64 units.) PowerBuilder calculates each of the
other data cells the same way.

To create this crosstab, you only have to tell PowerBuilder which database columns
contain the raw data for the crosstab, and PowerBuilder does all the data summarization
automatically.

What crosstabs do

Crosstabs perform two-dimensional analysis:

• The first dimension is displayed as columns across the crosstab.

In the preceding crosstab, the first dimension is the quarter, whose values are in the
Quarter column in the database table.

• The second dimension is displayed as rows down the crosstab.

In the preceding crosstab, the second dimension is the type of printer, whose values are in
the Product column in the database table.

Each cell in a crosstab is the intersection of a column (the first dimension) and a row (the
second dimension). The numbers that appear in the cells are calculations based on both
dimensions. In the preceding crosstab, it is the sum of unit sales for the quarter in the
corresponding column and printer in the corresponding row.

Crosstabs also include summary statistics. The preceding crosstab totals the sales for each
quarter in the last row and the total sales for each printer in the last column.

How crosstabs are implemented in PowerBuilder

Crosstabs in PowerBuilder are implemented as grid DataWindow objects. Because crosstabs
are grid DataWindow objects, users can resize and reorder columns at runtime (if you let
them).

Import methods return empty result

A crosstab report takes the original result set that was retrieved from the database,
sorts it, summarizes it, and generates a new summary result set to fit the design of
the crosstab. The ImportFile, ImportClipboard, and ImportString methods can handle
only the original result set, and they return an empty result when used with a crosstab
report.

6.10.1.1 Two types of crosstabs

There are two types of crosstabs:

• Dynamic

• Static

Dynamic crosstabs

With dynamic crosstabs, PowerBuilder builds all the columns and rows in the crosstab
dynamically when you run the crosstab. The number of columns and rows in the crosstab
match the data that exists at runtime.

Working with DataWindows

Page 786

Using the preceding crosstab as an example, if a new printer was added to the database after
the crosstab was saved, there would be an additional row in the crosstab when it is run.
Similarly, if one of the quarter's results was deleted from the database after the crosstab was
saved, there would be one less column in the crosstab when it is run.

By default, crosstabs you build are dynamic.

Static crosstabs

Static crosstabs are quite different from dynamic crosstabs.With static crosstabs,
PowerBuilder establishes the columns in the crosstab based on the data in the database
when you define the crosstab. (It does this by retrieving data from the database when you
initially define the crosstab.) No matter what values are in the database when you later run
the crosstab, the crosstab always has the same columns as when you defined it.

Using the preceding crosstab as an example, if there were four quarters in the database when
you defined and saved the crosstab, there would always be four columns (Q1, Q2, Q3, and
Q4) in the crosstab at runtime, even if the number of columns changed in the database.

Advantages of dynamic crosstabs

Dynamic crosstabs are used more often than static crosstabs, for the following reasons:

• You can define dynamic crosstabs very quickly because no database access is required at
definition time.

• Dynamic crosstabs always use the current data to build the columns and rows in the
crosstab. Static crosstabs show a snapshot of columns as they were when the crosstab was
defined.

• Dynamic crosstabs are easy to modify: all properties for the dynamically built columns are
replicated at runtime automatically. With static crosstabs, you must work with one column
at a time.

6.10.2 Creating crosstabs

To create a crosstab:

1. Select File>New from the menu bar.

The New dialog box displays.

2. Select the DataWindow tab.

3. Select the Crosstab presentation style, then click OK.

4. On the Choose Data Source for Crosstab DataWindow page, specify the data you want
retrieved into the DataWindow object.

For more information, see Defining DataWindow Objects.

5. In the Define Crosstab Rows, Columns, Values page, enter the definitions for the
columns, rows, and cell values in the crosstab.

See Associating data with a crosstab.

Working with DataWindows

Page 787

6. Click Next.

7. Choose Color and Border settings and click Next.

8. Review your specifications and click Finish.

PowerBuilder creates the crosstab.

9. (Optional) Specify other properties of the crosstab.

See Enhancing crosstabs.

10. Save the DataWindow object in a library.

6.10.3 Associating data with a crosstab

You associate crosstab columns, rows, and cell values with columns in a database table or
other data source.

To associate data with a crosstab:

If you are defining a new crosstab, the Define Crosstab Rows, Columns, Values dialog box
displays after you specify the data source.

Figure 6.137:

1. Specify the database columns that will populate the columns, rows, and values in the
crosstab, as described below.

2. To build a dynamic crosstab, make sure the Rebuild columns at runtime check box is
selected.

Working with DataWindows

Page 788

For information about static crosstabs, see Creating static crosstabs.

3. Click Next.

6.10.3.1 Specifying the information

To define the crosstab, drag the column names from the Source Data box in the Crosstab
Definition dialog box (or Wizard page) into the Columns, Rows, or Values box, as
appropriate.

If you change your mind or want to edit the DataWindow object later, select
Design>Crosstab from the menu bar and drag the column name out of the Columns, Row, or
Values box and drop it. Then specify a different column.

Dynamic crosstab example

The process is illustrated using the following dynamic crosstab. The columns in the database
are Rep, Quarter, Product, and Units. The crosstab shows the number of printers sold by
Quarter:

Figure 6.138:

Specifying the columns

You use the Columns box to specify one or more of the retrieved columns to provide the
columns in the crosstab. When users run the crosstab, there is one column in the crosstab for
each unique value of the database column(s) you specify here.

To specify the crosstab's columns

1. Drag the database column from the Source Data box into the Columns box.

2. Using the printer example, to create a crosstab where the quarters form the columns,
specify Quarter as the Columns value. Because there are four values in the table for
Quarter (Q1, Q2, Q3, and Q4), there are four columns in the crosstab.

Specifying the rows

Working with DataWindows

Page 789

You use the Rows box to specify one or more of the retrieved columns to provide the rows
in the crosstab. When users run the crosstab, there is one row in the crosstab for each unique
value of the database column(s) you specify here.

To specify the crosstab's rows

• Drag the database column from the Source Data box into the Rows box.

Using the printer example, to create a crosstab where the printers form the rows, specify
Product as the Rows value. Because there are three products (Cosmic, Galactic, and
Stellar), at runtime there are three rows in the crosstab.

Columns that use code tables

If you specify columns in the database that use code tables, where data is stored with
a data value but displayed with more meaningful display values, the crosstab uses the
column's display values, not the data values. For more information about code tables,
see Displaying and Validating Data.

Specifying the values

Each cell in a crosstab holds a value. You specify that value in the Values box. Typically you
specify an aggregate function, such as Sum or Avg, to summarize the data. At runtime, each
cell has a calculated value based on the function you provide here and the column and row
values for the particular cell.

To specify the crosstab's values

• Drag the database column from the Source Data box into the Values box.

PowerBuilder displays an aggregate function for the value. If the column is numeric,
PowerBuilder uses Sum. If the column is not numeric, PowerBuilder uses Count.

If you want to use an aggregate function other than the one suggested by PowerBuilder,
double-click the item in the Values box and edit the expression. You can use any of the
other aggregate functions supported in the DataWindow painter, such as Max, Min, and
Avg.

Using the printer example, you would drag the Units column into the Values box and
accept the expression sum(units for crosstab).

Using expressions

Instead of simply specifying database columns, you can use any valid DataWindow
expression to define the columns, rows, and values used in the crosstab. You can use any
non-object-level DataWindow expression function in the expression.

For example, say a table contains a date column named SaleDate, and you want a column
in the crosstab for each month. You could enter the following expression for the Columns
definition:

Month(SaleDate)

The Month function returns the integer value (1–12) for the specified month. Using this
expression, you get columns labeled 1 through 12 in the crosstab. Each database row for

Working with DataWindows

Page 790

January sales is evaluated in the column under 1, each database row for February sales is
evaluated in the column under 2, and so on.

To specify an expression for columns, rows, or values

1. In the Crosstab Definition dialog box (or wizard page), double-click the item in the
Columns, Rows, or Values box.

The Modify Expression dialog box displays.

2. Specify the expression and click OK.

6.10.3.2 Viewing the crosstab

After you have specified the data for the crosstab's columns, rows, and values, PowerBuilder
displays the crosstab definition in the Design view.

For example, to create the dynamic crosstab shown as the Dynamic crosstab
example [788], you would:

1. Drag the quarter column from the Source Data box to the Columns box.

2. Drag the product column from the Source Data box to the Rows box.

3. Drag the units column from the Source Data box to the Values box and accept the
expression sum(units for crosstab).

4. Select the Rebuild columns at runtime check box.

Figure 6.139:

In the Design view, the crosstab looks like this:

Working with DataWindows

Page 791

Figure 6.140:

Notice that in the Design view, PowerBuilder shows the quarter entries using the symbolic
notation @quarter (with dynamic crosstabs, the actual data values are not known at definition
time). @quarter is resolved into the actual data values (in this case, Q1, Q2, Q3, and Q4)
when the crosstab runs.

The crosstab is generated with summary statistics: the rows and columns are totaled for you.

At this point, the crosstab looks like this in the Preview view with data retrieved:

Figure 6.141:

Because quarter was selected as the Columns definition, there is one column in the crosstab
for each unique quarter (Q1, Q2, Q3, and Q4).

Because product was selected as the Rows definition, there is one row in the crosstab for each
unique product (Cosmic, Galactic, and Stellar).

Because sum(units for crosstab) was selected as the Values definition, each cell contains the
total unit sales for the corresponding quarter (the Columns definition) and product (the Rows
definition).

PowerBuilder displays the grand totals for each column and row in the crosstab.

Working with DataWindows

Page 792

6.10.3.3 Specifying more than one row or column

Typically you specify one database column as the Columns definition and one database
column for the Rows definition, as in the printer crosstab. But you can specify as many
columns (or expressions) as you want.

For example, consider a crosstab that has the same specification as the crosstab in Viewing
the crosstab, except that two database columns, quarter and rep, have been dragged to the
Columns box.

PowerBuilder displays this in the Design view:

Figure 6.142:

This is what you see at runtime:

Figure 6.143:

For each quarter, the crosstab shows sales of each printer by each sales representative.

6.10.4 Previewing crosstabs

When you have defined the crosstab, you can see it with data in the Preview view.

To preview the crosstab:

1. If the Preview view is not open, select View>Preview from the menu bar to display the
Preview view.

2. Click on the Preview view to be sure it is current.

Working with DataWindows

Page 793

3. Select Rows>Retrieve from the menu bar.

PowerBuilder retrieves the rows and performs the cross tabulation on the data.

Retrieve on Preview makes retrieval happen automatically

If the crosstab definition specifies Retrieve on Preview, retrieval happens
automatically when the Preview view first displays.

4. Continue enhancing your DataWindow object and retrieve again when necessary to see
the results of your enhancements.

6.10.5 Enhancing crosstabs

When you have provided the data definitions, the crosstab is functional, but you can enhance
it before using it. Because a crosstab is a grid DataWindow object, you can enhance a
crosstab using the same techniques you use in other DataWindow objects. For example, you
can:

• Sort or filter rows

• Change the column headers

• Specify fonts, colors, mouse pointers, and borders

• Specify column display formats

For more on these and the other standard enhancements you can make to DataWindow
objects, see Enhancing DataWindow Objects.

The rest of this section covers topics either unique to crosstabs or especially important when
working with crosstabs:

• Specifying basic properties

• Modifying the data associated with the crosstab

• Changing the names used for the columns and rows

• Defining summary statistics

• Cross-tabulating ranges of values

• Creating static crosstabs

• Using property conditional expressions

6.10.5.1 Specifying basic properties

Crosstabs are implemented as grid DataWindow objects, so you can specify the following
grid properties for a crosstab:

• When grid lines are displayed

Working with DataWindows

Page 794

• How users can interact with the crosstab at runtime

To specify the crosstab's basic properties

1. In the Properties view, select the General tab.

2. Specify basic crosstab properties.

The following table lists basic crosstab properties.

Table 6.60: Basic properties for crosstabs

Option Result

Display On – Grid lines always display.

Off – Grid lines never display (columns cannot be resized at
runtime).

Display Only – Grid lines display only when the crosstab displays
online.

Print Only – Grid lines display only when the contents of the
crosstab are printed.

Column Moving Columns can be moved at runtime.

Mouse Selection Data can be selected at runtime (and, for example, copied to the
clipboard).

Row Resize Rows can be resized at runtime.

6.10.5.2 Modifying the data associated with the crosstab

When you initially define the crosstab, you associate the crosstab rows and columns with
columns in a database table or other data source. You can change the associated data at any
time in the Crosstab Definition dialog box.

To open the Crosstab Definition dialog box

1. Position the mouse below the footer band in the workspace and display the pop-up
menu.

2. Select Crosstab from the pop-up menu.

The Crosstab Definition dialog box displays.

To modify the data associated with a crosstab

1. In the Crosstab Definition dialog box, fill in the boxes for Columns, Rows, and Values
as described in Associating data with a crosstab.

2. Click OK.

6.10.5.3 Changing the names used for the columns and rows

Sometimes names of columns in the database might not be meaningful. You can change
the names that are used to label rows and columns in crosstabs so that the data is easier to
understand.

Working with DataWindows

Page 795

To change the names used in crosstabs

1. In the Crosstab Definition dialog box, double-click the name of the column in the
Source Data box.

The New Name dialog box displays.

2. Specify the name you want used to label the corresponding column. You can have
multiple-word labels by using underscores: underscores are replaced by spaces in the
Design view and at runtime.

3. Click OK.

PowerBuilder changes the column name in the Source Data box and anywhere else the
column is used.

Example

For example, if you want the product column to be labeled Printer Model, double-click
product in the Crosstab Definition dialog box and specify printer_model in the New Name
dialog box.

When the crosstab runs, you see this:

Figure 6.144:

6.10.5.4 Defining summary statistics

When you generate a crosstab, the columns and rows are automatically totaled for you. You
can include other statistical summaries in crosstabs as well. To do that, you place computed
fields in the workspace.

To define a column summary

1. Enlarge the summary band to make room for the summaries.

2. Select Insert>Control > Computed Field from the menu bar.

3. Click the cell in the summary band where you want the summary to display.

The Modify Expression dialog box displays.

4. Define the computed field.

Working with DataWindows

Page 796

For example, if you want the average value for a column, specify avg(units for all),
where units is the column providing the values in the crosstab.

For example, this is a crosstab that has been enhanced to show averages and maximum
values for each column. This is the Design view:

Figure 6.145:

This is the crosstab at runtime:

Figure 6.146:

To define a row summary

1. Select Insert>Control > Computed Field from the menu bar.

Working with DataWindows

Page 797

2. Click the empty cell to the right of the last column in the detail band.

The Modify Expression dialog box displays.

3. Define the computed field. You should use one of the crosstab functions, described next.

6.10.5.4.1 Using crosstab functions

There are nine special functions you can use only in crosstabs: CrosstabAvg,
CrosstabAvgDec, CrosstabCount, CrosstabMax, CrosstabMaxDec, CrosstabMin,
CrosstabMinDec, CrosstabSum, and CrosstabSumDec.

These functions are listed in the Functions box when you define a computed field in a
crosstab:

Figure 6.147:

Each of these functions returns the corresponding statistic about a row in the crosstab
(average, count, maximum value, minimum value, or sum). You place computed fields using
these functions in the detail band in the Design view. Use the functions with the Dec suffix
when you want to return a decimal datatype.

By default, PowerBuilder places CrosstabSum and CrosstabSumDec in the detail band, which
returns the total for the corresponding row.

How to specify the functions

Each of these functions takes one numeric argument, which refers to the expression defined
for Values in the Crosstab Definition dialog box. The first expression for Values is numbered
1, the second is numbered 2, and so on.

Generally, crosstabs have only one expression for Values, so the argument for the crosstab
functions is 1. So, for example, if you defined sum(units for crosstab) as your Values
expression, PowerBuilder places CrosstabSum in the detail band.

Working with DataWindows

Page 798

If you want to cross-tabulate both total unit sales and a projection of future sales, assuming a
20 percent increase in sales (that is, sales that are 1.2 times the actual sales), you define two
expressions for Values:

sum(units for crosstab)
sum(units * 1.2 for crosstab)

Here CrosstabSum returns the total of sum(units for crosstab) for the corresponding row.
CrosstabSum returns the total for sum(units * 1.2 for crosstab).

For more information

For complete information about defining computed fields, see Enhancing DataWindow
Objects.

For more about the crosstab functions, see Section 2.4, “Alphabetical list of DataWindow
expression functions” in DataWindow Reference.

6.10.5.5 Cross-tabulating ranges of values

You can build a crosstab where each row tabulates a range of values, instead of one discrete
value, and you can make each column in the crosstab correspond to a range of values.

For example, in cross-tabulating departmental salary information, you might want one row
in the crosstab to count all employees making between $30,000 and $40,000, the next row to
count all employees making between $40,000 and $50,000, and so on.

To cross-tabulate ranges of values

1. Determine the expression that results in the raw values being converted into one of a
small set of fixed values.

Each of those values will form a row or column in the crosstab.

2. Specify the expression in the Columns or Rows box in the Crosstab Definition dialog
box.

You choose the box depending on whether you want the columns or rows to correspond
to the range of values.

3. In the Values column, apply the appropriate aggregate function to the expression.

Example

This is best illustrated with an example.

You want to know how many employees in each department earn between $30,000 and
$40,000, how many earn between $40,000 and $50,000, how many earn between $50,000
and $60,000, and so on. To do this, you want a crosstab where each row corresponds to a
$10,000 range of salary.

The first step is to determine the expression that, given a salary, returns the next smaller
salary that is a multiple of $10,000. For example, given a salary of $34,000, the expression
would return $30,000, and given a salary of $47,000, the expression would return $40,000.
You can use the Int function to accomplish this, as follows:

Working with DataWindows

Page 799

int(salary/10000) * 10000

That expression divides the salary by 10,000 and takes the integer portion, then multiplies the
result by 10,000. So for $34,000, the expression returns $30,000, as follows:

34000/10000 = 3.4
int(3.4) = 3
3 * 10000 = 30000

With this information you can build the crosstab. The following uses the Employee table in
the PB Demo DB:

a. Build a crosstab and retrieve the dept_id and salary columns.

b. In the Crosstab Definition dialog box, drag the dept_id column to the Columns box.

c. Drag the salary column to the Rows box and to the Values box and edit the expressions.

d. In the Rows box, use:

int(salary/10000) * 10000

e. In the Values box, use:

count(int(salary/10000) * 10000 for crosstab)

For more on providing expressions in a crosstab, see Using expressions [789].

f. Click OK.

This is the result in the Design view:

Figure 6.148:

This is the crosstab at runtime:

Working with DataWindows

Page 800

Figure 6.149:

You can see, for example, that 2 people in department 400 and 5 in department 500 earn
between $20,000 and $30,000.

Displaying blank values as zero

In the preceding crosstab, several of the cells in the grid are blank. There are no employees
in some salary ranges, so the value of those cells is null. To make the crosstab easier to read,
you can add a display format to fields that can have null values so that they display a zero.

To display blank values in a crosstab as zero

1. Select the column you want to modify and click the Format tab in the Properties view.

2. Replace [General] in the Format box with ###0;###0;0;0.

The fourth section in the mask causes a null value to be represented as zero.

6.10.5.6 Creating static crosstabs

By default, crosstabs are dynamic: when you run them, PowerBuilder retrieves the data and
dynamically builds the columns and rows based on the retrieved data. For example, if you
define a crosstab that computes sales of printers and a new printer type is entered in the
database after you define the crosstab, you want the new printer to be in the crosstab. That is,
you want PowerBuilder to build the rows and columns dynamically based on current data, not
the data that existed when the crosstab was defined.

Working with DataWindows

Page 801

Occasionally, however, you might want a crosstab to be static. That is, you want its columns
to be established when you define the crosstab. You do not want additional columns to
display in the crosstab at runtime; no matter what the data looks like, you do not want the
number of columns to change. You want only the updated statistics for the predefined
columns. The following procedure shows how to do that.

To create a static crosstab

1. In the wizard page or in the Crosstab Definition dialog box, clear the Rebuild columns at
runtime check box.

2. Define the data for the crosstab as usual, and click OK.

What happens

With the check box cleared, instead of immediately building the crosstab's structure,
PowerBuilder first retrieves the data from the database. Using the retrieved data,
PowerBuilder then builds the crosstab structure and displays the workspace. It places all the
values for the column specified in the Columns box in the workspace. These values become
part of the crosstab's definition.

For example, in the following screenshot, the four values for Quarter (Q1, Q2, Q3, and Q4)
are displayed in the Design view:

Figure 6.150:

At runtime, no matter what values are in the database for the column, the crosstab shows
only the values that were specified when the crosstab was defined. In the printer example, the
crosstab always has the four columns it had when it was first defined.

Making changes

You can modify the properties of any of the columns in a static crosstab. You can modify the
properties of each column individually, since each column is displayed in the workspace as
part of the crosstab's definition. For example, in the printer crosstab you can directly modify
the way values are presented in each individual quarter, since each quarter is represented in
the Design view. (The values are shown as units, units_1, units_2, and units_3.)

Working with DataWindows

Page 802

6.10.5.7 Using property conditional expressions

As with other DataWindow objects, you can specify property conditional expressions to
modify properties at runtime. You can use them with either dynamic or static crosstabs. With
dynamic crosstabs, you specify an expression once for a column or value, and PowerBuilder
assigns the appropriate properties when it builds the individual columns at runtime. With
static crosstabs, you have to specify an expression for each individual column or value,
because the columns are already specified at definition time.

Example

In the following crosstab, an expression has been specified for Units:

Figure 6.151:

The expression is for the Font.Weight property of the units column:

if (units > 100, 700, 400)

The expression specifies to use bold font (weight = 700) if the number of units is greater than
100. Otherwise, use normal font (weight = 400).

This is the crosstab at runtime:

Figure 6.152:

Working with DataWindows

Page 803

Values larger than 100 are shown in bold.

For more information about property conditional expressions, see Highlighting Information
in DataWindow Objects.

6.11 Working with TreeViews

About this chapter

This chapter describes how to build and use DataWindow objects in PowerBuilderusing the
TreeView presentation style.

6.11.1 TreeView presentation style

The TreeView presentation style provides an easy way to create DataWindow objects that
display hierarchical data in a TreeView, where the rows are divided into groups that can be
expanded and collapsed.

The TreeView DataWindow displays a hierarchy of nodes, similar to the way:

• The left pane of Windows Explorer displays folders and files

• The PowerBuilder System Tree displays workspaces and their contents

In the TreeView DataWindow, each parent node contains other nodes called child nodes. You
can display parent nodes—nodes that contain child nodes—in expanded or collapsed form.

With the TreeView DataWindow presentation style, you can group data in a hierarchy that
allows users to browse the data and expand nodes to view details. Each TreeView level or
node has an icon that users can click to expand or collapse the node.

You use the TreeView DataWindow wizard to create a TreeView DataWindow object. For
information, see Creating a new TreeView DataWindow.

Example

This sample TreeView DataWindow uses the department and employee tables in the PB
Demo DB database and has two TreeView levels. The first level is the department name. The
second level is the city where each employee resides. The detail data for each employee is
grouped in TreeView leaf nodes under these two levels.

Working with DataWindows

Page 804

Figure 6.153:

Similarities to the Group presentation style

Creating and using a TreeView DataWindow is similar to creating and using a Group
DataWindow. However, with the TreeView DataWindow, you can click the state icon to
expand and collapse nodes.

The state icon in a TreeView DataWindow is a plus sign (+) when the node is collapsed and
a minus sign (-) when the node is expanded. When a node is expanded, connecting lines
display by default to show more detail and indicate how the parent data connects with the
child data. When a node is collapsed, only the parent data displays; the detail data does not.

6.11.2 Creating a new TreeView DataWindow

You use the TreeView wizard and the DataWindow painter to create a TreeView
DataWindow.

6.11.2.1 TreeView creation process

A TreeView DataWindow has multiple levels, each of which is a node in the TreeView.
You use the TreeView wizard to create a TreeView DataWindow, but the wizard produces a
DataWindow that includes only the top level of the TreeView.

Creating a complete TreeView DataWindow involves three steps:

• Using the TreeView DataWindow wizard to create the top level (level 1) of the TreeView
DataWindow.

• Using the DataWindow painter to add additional levels to the TreeView DataWindow.

Working with DataWindows

Page 805

• Setting TreeView DataWindow properties to customize the TreeView style.

For information about adding and deleting TreeView levels, see Adding and deleting
TreeView levels.For information about setting properties in the DataWindow painter, see
Setting properties for the TreeView DataWindow.

You can use TreeView DataWindow methods to expand and collapse TreeView nodes, and
you can write code for TreeView DataWindow events that are fired when a node is expanded
or collapsed. For detailed information about using TreeView DataWindow properties,
methods, and events, see Part I, “DataWindow Reference”.

6.11.2.2 Creating a TreeView DataWindow

To create a TreeView DataWindow

1. Select File>New from the menu bar and select the DataWindow tab.

2. If there is more than one target in the workspace, select the target where you want to
create the DataWindow from the drop-down list at the bottom of the dialog box.

3. Choose the TreeView presentation style for the DataWindow and click OK.

Figure 6.154:

4. Select the data source you want to use.

You are prompted to specify the data.

5. Define the tables and columns you want to use.

You are prompted to specify the TreeView grouping columns.

Working with DataWindows

Page 806

Multiple columns and multiple TreeView levels

You can specify more than one column, but all columns apply to TreeView level one.
At this point, you can define only one TreeView level. You define additional levels
later.

In the following example, TreeView grouping will be by department, as specified by the
dept_id column:

Figure 6.155:

If you want to use an expression, you can define it when you have completed the wizard.
See Using an expression for a column name [808].

The sample DataWindow shown in Example [836] uses the department and employee
tables in the PB Demo DB database.

6. Specify the column or columns that will be at the top level (level 1) of the TreeView
DataWindow.

The sample DataWindow uses the department name as the top level. If you want to
display both the department ID and department name, you specify that both columns are
at the top level.

7. If you want the TreeView DataWindow to display grid lines, select the Grid Style check
box.

When you select the Grid Style check box, the TreeView DataWindow displays grid
lines for rows and columns. You can drag the grid lines to resize rows and columns.

8. Click Next.

Working with DataWindows

Page 807

9. Modify the default color and border settings if needed, and then click Next.

10. Review the TreeView DataWindow characteristics.

11. Click Finish.

The DataWindow painter Design view displays. For information about the Design view,
see TreeView DataWindow Design view. For information about adding additional
levels, see Adding and deleting TreeView levels.

What PowerBuilder does

As a result of your specifications, PowerBuilder generates a TreeView DataWindow object
and creates:

• A TreeView header band with controls that include the heading text of the detail band
columns

• The first TreeView level band with the TreeView level columns you chose in the wizard

• The detail (leaf node) band that includes all the column controls except for first-level
columns you selected in the wizard

• A level 1 trailer band.

• A summary band, and a footer band.

Here is the sample TreeView DataWindow object in the Design view:

Figure 6.156:

If you selected the Grid Style check box, vertical and horizontal grid lines display:

Working with DataWindows

Page 808

Figure 6.157:

Here is the sample TreeView DataWindow object in the Preview view:

Figure 6.158:

Using an expression for a column name

If you want to use an expression for one or more column names in a TreeView, you can enter
it as the TreeView definition on the General page in the Properties view after you finish using
the TreeView wizard.

To use an expression for a TreeView column name

1. Open the Properties view and click the TreeView level band in the Design view.

2. Click the ellipsis button next to the TreeView Level Definition box on the General page
in the Properties view to open the Specify Group Columns dialog box.

Working with DataWindows

Page 809

3. In the Columns box, double-click the column you want to use in an expression.

The Modify Expression dialog box opens. You can specify more than one grouping
item expression for a group. A break occurs whenever the value concatenated from each
column/expression changes.

What you can do

All of the techniques available in a tabular DataWindow object, such as moving controls
and specifying display formats, are available for modifying and enhancing TreeView
DataWindow objects. See Adding and deleting TreeView levels to read more about the
bands in a TreeView DataWindow object and see how to add features especially suited for
TreeView DataWindow objects, such as additional TreeView levels or summary statistics.

DataWindow Object is not updatable by default

When you generate a DataWindow object using the TreeView presentation style,
PowerBuilder makes it not updatable by default. If you want to be able to update
the database through the TreeView DataWindow object, you must modify its update
characteristics. For more information, see Controlling Updates in DataWindow
objects.

6.11.3 Adding and deleting TreeView levels

You add and delete TreeView levels using the Rows menu in the DataWindow painter.

To create an additional level in a TreeView DataWindow:

1. Open the TreeView DataWindow if it is not already open.

2. Select Rows>Create TreeView Level from the menu bar.

The Specify Group Columns dialog box displays.

3. Specify the columns you want to set as the next TreeView level by dragging them from
the Source Data pane to the Columns pane.

In the sample DataWindow shown in Example [836], the second level has a single
column, the employee_city column.

Working with DataWindows

Page 810

Figure 6.159:

4. Click OK.

The new TreeView level and a Trailer band for that level are created in the TreeView
Design view. For information on how to set properties for a TreeView level, see Setting
TreeView level properties.

To delete a level in a TreeView DataWindow:

1. Select Rows>Delete TreeView Level from the menu bar.

2. Select the number of the level to delete from the list of levels that displays.

The level in the TreeView DataWindow is deleted immediately.

If you delete a level by mistake

If you unintentionally delete a level, close the TreeView DataWindow without saving
changes, then reopen it and continue working.

6.11.4 Selecting a tree node and navigating the tree

You can select a tree node in the TreeView DataWindow in the following ways:

• Use the SelectTreeNode method to select a tree node.

• Set the Select Node By Mouse property to "true" and then click a tree node to select it with
the mouse.

After you select a tree node in the TreeView DataWindow, you can navigate the tree using
the up, down, left, and right keys.

Working with DataWindows

Page 811

Table 6.61:

Use this key To do this

Up Select a tree node prior to the currently selected node.

Down Select a tree node next to the currently selected node.

Left Collapse the currently selected node. If the current tree node is a leaf node
or the node has been collapsed, the DataWindow just scrolls to the left,
which is its normal behavior.

Right Expand the currently selected node. If the current tree node is a leaf node
or the node has been expanded, the DataWindow just scrolls to the right,
which is its normal behavior.

For detailed information about TreeView DataWindow properties, methods and events, see
Part I, “DataWindow Reference”.

6.11.5 Sorting rows in a TreeView DataWindow

To sort the rows within levels in a TreeView DataWindow:

1. Select Rows>Sort from the menu bar.

2. Drag the columns that you want to sort the rows on from the Source Data box to the
Columns box.

The order of the columns determines the precedence of the sort. The sort order is
ascending by default. To sort in descending order, clear the Ascending check box.

For example, the sample DataWindow shown in Example [836] has department name
as the first level and the employee's city of residence as the second level.

Figure 6.160:

Other actions you can take

To reorder the columns, drag them up or down in the list. To delete a column from the sort
columns list, drag the column outside the dialog box. To specify an expression to sort on,
double-click a column name in the Columns box and modify the expression in the Modify
Expression dialog box.

Working with DataWindows

Page 812

6.11.6 TreeView DataWindow Design view

The Design view for the TreeView DataWindow differs from the traditional Design view for
most DataWindow presentation styles.

Figure 6.161:

The Design view has a header band, a TreeView level band for each added level, a detail
band, a Trailer band for each level, a summary band, and a footer band.

By default, the controls in the header band are the heading text of the detail band columns,
and the controls in the detail (leaf node) band are all the column controls except for the first-
level columns (in the 1:Treeview level band) that you selected when you used the TreeView
wizard. Columns that you specify as additional levels remain in the detail band.

The minimum height of each TreeView level band is the height of the tree node icon.

Icons in the Design view

There are three icons in the Design view that represent the locations of nodes, icons, and
connecting lines in the tree to help you design the DataWindow. Columns must always
display to the right of the state and tree node icons:

• A square icon with a plus sign (+) in each TreeView level band represents the position of
the state icon, the icon that indicates whether a node is expanded or collapsed.

• A shaded square icon in the detail band and in each TreeView level band represents the
position of the image you specify as a tree node icon.

Figure 6.162:

• When there is no tree node icon specified, a shaded square icon in the detail band and in
each TreeView level band represents where the connecting line ends.

Working with DataWindows

Page 813

Figure 6.163:

The position of all the icons changes when you change the indent value.

For more information about specifying icons and the indent value, see Setting properties for
the TreeView DataWindow.

6.11.7 Setting properties for the TreeView DataWindow

You can set three types of properties for the TreeView DataWindow:

• General properties

• TreeView level properties

• Detail band properties

Specifying images for tree node icons

In the sample DataWindow shown in Creating a new TreeView DataWindow, different tree
node icons display for collapsed and expanded levels. The icons are also different for each
level. You specify images for these icons as TreeView level band properties.

The sample DataWindow also displays a tree node icon next to every row in the detail band.
You specify an image for this icon as a detail band property.

Tree node icons do not display by default. After specifying images for icons, select the Use
Tree Node Icon general property.

6.11.7.1 Setting general TreeView properties

You set most TreeView DataWindow properties on the General page in the Properties view
for the DataWindow object.

Working with DataWindows

Page 814

Figure 6.164:

The properties that are specific to a TreeView DataWindow are the TreeView properties and
the Grid properties. The grid-related properties display only if you select the Grid Style check
box when you define the TreeView DataWindow.

Table 6.62:

Property Description

Display On – Grid lines always display.

Off – Grid lines never display (columns cannot be resized at runtime).

Working with DataWindows

Page 815

Property Description
Display Only – Grid lines display only when the DataWindow object
displays online.

Print Only – Grid lines display only when the contents of the
DataWindow object are printed.

Column Moving Columns can be moved at runtime.

Mouse Selection Data can be selected at runtime and, for example, copied to the
clipboard.

Row Resize Rows can be resized at runtime.

Indent Value The indent value of the child node from its parent in the units specified
for the DataWindow. The indent value defines the position of the state
icon. The X position of the state icon is the X position of its parent
plus the indent value.

Expand To Level
By Default

Expand to TreeView level 1, 2, or 3.

State Icon Align
Mode

Align the state icon in the middle, at the top, or at the bottom.

Show Lines Whether lines display that connect parent nodes and child nodes. If
you want to display lines that connect the rows in the detail band to
their parent, select Connect Leaf Nodes.

Connect Leaf Nodes Whether lines display that connect the leaf nodes in the detail band
rows.

Use Tree Node Icon Whether an icon for the tree node displays. This applies to icons in
the level and detail bands. For how to specify icon images, see Setting
TreeView level properties and Setting detail band properties.

Select Node By
Mouse

Whether a Tree node is selected by clicking the Tree node with the
mouse.

6.11.7.2 Setting TreeView level properties

In the Properties view for a band, you can specify expanded and collapsed icons for each
TreeView level. You access the Properties view by clicking the bar identifying the band for
that level in the Design view in the DataWindow painter. You can also access the Properties
view from the Rows menu, or by clicking any of the icons in the Design view that represent
the locations of nodes, icons, and connecting lines. (See Icons in the Design view [812].)

To modify properties for a level in a TreeView DataWindow

1. Select Rows>Edit TreeView Level from the menu bar and then select the number of the
level from the list of levels, or click the bar identifying the band for that level or any of
the icons in that band.

2. Use the DataWindow TreeView Level properties view that displays to edit the properties
for the level you selected.

Working with DataWindows

Page 816

Figure 6.165:

The properties that are specific to a TreeView level band are at the bottom of the
Properties view:

Table 6.63:

Property Description

Tree Node Icon File The file name of the tree node icon in
a TreeView level band when it is in the
expanded state.

Collapsed Tree Node Icon File The file name of the tree node icon in
a TreeView level band when it is in the
collapsed state.

You set the tree node icon file name separately for each TreeView level band. You can
use a quoted expression for the tree node icon file.

Working with DataWindows

Page 817

6.11.7.3 Setting detail band properties

You can specify an icon for the rows in the detail band by clicking the detail band in the
DataWindow painter to display the Properties view.

Figure 6.166:

If you want to hide tree nodes in the detail band, set the Height property to 0. The only
property that is specific to the TreeView DataWindow is located at the bottom of the
Properties view:

Table 6.64:

Property Description

Tree Node Icon File The file name of the tree node icon in the
detail band. You can use a quoted expression.

For more information

For reference information about TreeView DataWindow properties, methods and events, see
Part I, “DataWindow Reference”.

6.11.8 TreeView DataWindow examples

The examples in this section demonstrate how you might use the TreeView DataWindow.

The Data Explorer uses a TreeView DataWindow to display sales-related data in a Windows
Explorer-like interface and allows users to update the data.

The Data Linker uses a TreeView DataWindow on the left for data navigation, linked
to four DataWindows on the right for updating the data. The Data Linker demonstrates
populating a TreeView DataWindow with data and linking each TreeView level to a separate
DataWindow.

Tables and database

Both examples use the employee, sales_order, sales_order_items, customer, and product
tables in the PB Demo DB database.

Working with DataWindows

Page 818

TreeView DataWindows

The TreeView DataWindows are d_sales_report and d_sales_report2. Each TreeView
DataWindow has three TreeView levels:

• The first level (level 1) is the sales representative's name.

You create the first level using the TreeView DataWindow wizard.

• The second level (level 2) is the name of the customer's company.

You create the second level using the Rows>Create TreeView Level menu item in the
DataWindow painter.

• The third level (level 3) is the sales order ID.

You also create the third level using the Rows>Create TreeView Level menu item in the
DataWindow painter.

6.11.8.1 Data Explorer sample

Clicking on each TreeView level displays details in a DataWindow on the right. For example,
if you click a name in the TreeView DataWindow on the left, detailed customer data displays
in the DataWindow on the right.

Figure 6.167:

You can click on any TreeView level in the Data Explorer. If you click a company name in
the TreeView DataWindow on the left (for example, Able Inc., under Catherine Pickett),
order information displays on the right.

Working with DataWindows

Page 819

Figure 6.168:

If you click an order ID in the TreeView DataWindow on the left (for example, order ID
2400, under Bilhome Industries, under Alison Clark), the customer order information
displays on the right.

Figure 6.169:

Data Explorer TreeView DataWindow

Here is the TreeView DataWindow used in the Data Explorer.

Working with DataWindows

Page 820

Figure 6.170:

One TreeView DataWindow

The Data Explorer uses one TreeView DataWindow, but DataWindows that are not
TreeView DataWindows also support the Data Explorer's functionality.

Data Explorer code

The code in the Clicked event uses GetBandAtPointer to determine which DataWindow to
display. Clicking on some editable items in the detail DataWindow opens a window in which
you can manipulate the data.

The PopMenu menu object has two menu items that call the CollapseAll and ExpandAll
methods to collapse or expand all the nodes in the TreeView.

6.11.8.2 Data Linker sample

When you first run the Data Linker, no data displays on the right side of the window.

Working with DataWindows

Page 821

Figure 6.171:

To use the Data Linker, you first expand an employee name and a company's data in the
TreeView DataWindow.

Figure 6.172:

Expanding the TreeView displays the company names, the orders for the company you select,
and in the detail band, the icon and name for each item in the order.

You can click on each of the TreeView levels in order, and then click in the detail band to
display the details in the four DataWindows on the right.

For example, if you click first on Catherine Pickett, then on Avon Inc., then on 2073, and last
on Baseball Cap, the data in each of the related DataWindows displays on the right. You can
also update the data in each of the DataWindows.

Working with DataWindows

Page 822

Figure 6.173:

Data Linker TreeView DataWindow

Here is the TreeView DataWindow used in the Data Linker sample.

Working with DataWindows

Page 823

Figure 6.174:

One TreeView DataWindow

The Data Linker uses one TreeView DataWindow, but other DataWindows that are
not TreeView DataWindows also support the Data Linker's functionality.

Data Linker code

The code in the Clicked event uses GetBandAtPointer to determine which DataWindow to
display.

6.12 Exporting and Importing XML Data

About this chapter

The row data in a DataWindow can be exported and imported in the Extensible Markup
Language (XML). This chapter describes how to create and use templates that control the
export and import of data in XML format.

Working with DataWindows

Page 824

6.12.1 About XML

Like Hypertext Markup Language (HTML), Extensible Markup Language (XML) is a subset
of Standardized General Markup Language (SGML) and has been designed specifically for
use on the Web. XML is defined in the W3C Recommendation published by the World Wide
Web Consortium. The latest version of this document is available at http://www.w3.org/TR/
REC-xml.

XML is more complete and disciplined than HTML, and it is also a framework for creating
markup languages—it allows you to define your own application-oriented markup tags.

XML provides a set of rules for structuring data. Like HTML, XML uses tags and attributes,
but the tags are used to delimit pieces of data, allowing the application that receives the data
to interpret the meaning of each tag. These properties make XML particularly suitable for
data interchange across applications, platforms, enterprises, and the Web. The data can be
structured in a hierarchy that includes nesting.

An XML document is made up of declarations, elements, comments, character references,
and processing instructions, indicated in the document by explicit markup.

The simple XML document that follows contains an XML declaration followed by the start
tag of the root element, <d_dept_list>, nested row and column elements, and finally the end
tag of the root element. The root element is the starting point for the XML processor.

<?xml version="1.0">
 <d_dept_list>
 <d_dept_list_row>
 <dept_id>100</dept_id>
 <dept_name>R &D</dept_name>
 <dept_head_id>501</dept_head_id>
 </d_dept_list_row>
 ..
 </d_dept_list>

This section contains a brief overview of XML rules and syntax. For more detailed
information, see the W3C XML page at http://www.w3.org/XML/, the XML Cover Pages at
http://xml.coverpages.org/xml.html, or one of the many books about XML.

6.12.1.1 Valid and well-formed XML documents

An XML document must be valid, well-formed, or both.

Valid documents

To define a set of tags for use in a particular application, XML uses a separate document
named a document type definition (DTD). A DTD states what tags are allowed in an XML
document and defines rules for how those tags can be used in relation to each other. It defines
the elements that are allowed in the language, the attributes each element can have, and the
type of information each element can hold. Documents can be verified against a DTD to
ensure that they follow all the rules of the language. A document that satisfies a DTD is said
to be valid.

If a document uses a DTD, the DTD must immediately follow the declaration.

XML Schema provides an alternative mechanism for describing and validating XML data. It
provides a richer set of datatypes than a DTD, as well as support for namespaces, including
the ability to use prefixes in instance documents and accept unknown elements and attributes

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/XML/
http://xml.coverpages.org/xml.html

Working with DataWindows

Page 825

from known or unknown namespaces. For more information, see the W3C XML Schema
page at http://www.w3.org/XML/Schema.

Well-formed documents

The second way to specify XML syntax is to assume that a document is using its language
properly. XML provides a set of generic syntax rules that must be satisfied, and as long as a
document satisfies these rules, it is said to be well-formed. All valid documents must be well-
formed.

Processing well-formed documents is faster than processing valid documents because the
parser does not have to verify against the DTD or XML schema. When valid documents
are transmitted, the DTD or XML schema must also be transmitted if the receiver does not
already possess it. Well-formed documents can be sent without other information.

XML documents should conform to a DTD or XML schema if they are going to be used by
more than one application. If they are not valid, there is no way to guarantee that various
applications will be able to understand each other.

6.12.1.2 XML syntax

There are a few more restrictions on XML than on HTML; they make parsing of XML
simpler.

Tags cannot be omitted

Unlike HTML, XML does not allow you to omit tags. This guarantees that parsers know
where elements end.

The following example is acceptable HTML, but not XML:

<table>
 <tr>
 <td>Dog</td>
 <td>Cat
 <td>Mouse
</table>

To change this into well-formed XML, you need to add all the missing end tags:

<table>
 <tr>
 <td>Dog</td>
 <td>Cat</td>
 <td>Mouse</td>
 </tr>
</table>

Representing empty elements

Empty elements cannot be represented in XML in the same way they are in HTML. An
empty element is one that is not used to mark up data, so in HTML, there is no end tag. There
are two ways to handle empty elements:

• Place a dummy tag immediately after the start tag. For example:

• Use a slash character at the end of the initial tag:

http://www.w3.org/XML/Schema

Working with DataWindows

Page 826

This tells a parser that the element consists only of one tag.

XML is case sensitive

XML is case sensitive, which allows it to be used with non-Latin alphabets. You must ensure
that letter case matches in start and end tags: <MyTag> and </Mytag> belong to two different
elements.

White space

White space within tags in XML is unchanged by parsers.

All elements must be nested

All XML elements must be properly nested. All child elements must be closed before their
parent elements close.

6.12.1.3 XML parsing

There are two major types of application programming interfaces (APIs) that can be used to
parse XML:

• Tree-based APIs map the XML document to a tree structure. The major tree-based API is
the Document Object Model (DOM) maintained by W3C. A DOM parser is particularly
useful if you are working with a deeply-nested document that must be traversed multiple
times.

For more information about the DOM parser, see the W3C Document Object Model page
at http://www.w3c.org/DOM.

PowerBuilder provides the PowerBuilder Document Object Model (PBDOM) extension to
enable you to manipulate complex XML documents. For more information about PBDOM,
see Section 4.3, “Using PowerBuilder XML Services” in Application Techniques and
Chapter 4, PowerBuilder Document Object Model in PowerBuilder Extension Reference.

• Event-based APIs use callbacks to report events, such as the start and end of elements,
to the calling application, and the application handles those events. These APIs provide
faster, lower-level access to the XML and are most efficient when extracting data from an
XML document in a single traversal.

For more information about the best-known event-driven parser, SAX (Simple API for
XML), see the SAX page at http://sax.sourceforge.net/.

Xerces parser

PowerBuilder includes software developed by the Apache Software Foundation (http://
www.apache.org/). The XML services for DataWindow objects are built on the Apache
Xerces-C++ parser, which conforms to both DOM and SAX specifications and is portable
across Windows and UNIX platforms. For more information about SAX, see the Xerces C++
Parser page at http://xerces.apache.org/xerces-c/index.html.

6.12.2 XML support in the DataWindow painter

PowerBuilder supports both the export and import of XML in DataStore and DataWindow
objects using XML template objects. You construct XML templates for export and import
graphically in the Export/Import Template view for XML. Each template you create is

http://www.w3c.org/DOM
http://sax.sourceforge.net/
http://www.apache.org/
http://www.apache.org/
http://xerces.apache.org/xerces-c/index.html

Working with DataWindows

Page 827

encapsulated in the DataWindow object. A template enables you to specify the XML logical
structure of how the row data iterates inside the root element of the XML document.

The possible uses of this feature include the following:

• You can code events in data entry or data reporting applications to export selected data
values, or the entire contents of a DataWindow object, to a structured XML document. The
structure of the XML document can be customized for use by other internal or external
applications, processes, or systems.

• You can add a method to a custom class user object that uses DataStore objects for server-
side database processing or middle-tier management of a client-side DataWindow object.
The method would export data to XML, which could then be processed by a different
component or subsystem, such as an Enterprise JavaBeans component or a Web service.

XML services

In addition to the support for XML in the DataWindow painter, PowerBuilder
also provides the PowerBuilder Document Object Model (PBDOM). For more
information, see Section 4.3, “Using PowerBuilder XML Services” in Application
Techniques.

Export templates

An XML export template lets you customize the XML that is generated.

You can specify optional XML and document type declarations that precede the root
element in the exported XML, as well as the logical structure and nesting level of iterative
DataWindow row data inside the root element. The children of the root element can contain
elements, character references, and processing instructions as well as the row data, using
explicit markup. For more information, see Header and Detail sections.

If the exported XML is used by different applications or processes, you can define a separate
export template for each use.

Import templates

You need to create an import template if you want to import data that does not match the
DataWindow column definition or is associated with a schema, or if you want to import
attribute values.

Only the mapping of column names to element and attribute names is used for import. All
other information in the template is ignored.

Validating XML

XML export and import do not validate the data after export or before import. You can use
the XMLParseFile and XMLParseString functions to validate an XML file or string against a
DTD or XML schema before proceeding with additional processing.

If no DTD or schema is included or referenced, XMLParseFile and XMLParseString check
whether the content is well-formed XML.

6.12.3 The Export/Import Template view for XML

You define and edit templates for export and import in the Export/Import Template view for
XML in the DataWindow painter. The view uses a tree view to represent the template.

Working with DataWindows

Page 828

When you create a new DataWindow object, PowerBuilder displays a default template in the
Export/Import Template view. You can edit only one template at a time in the view, but you
can create multiple templates and save them with the DataWindow object. Each template is
uniquely associated with the DataWindow object open in the painter.

The default template has one element for each column in the DataWindow object.

Figure 6.175:

Creating, opening, and saving templates

From the pop-up menu for the Export/Import Template view (with nothing selected), you can
create new templates with or without default contents, open an existing template, save the
current template, or delete the current template. You can only open and edit templates that are
associated with the current DataWindow object.

Working with DataWindows

Page 829

Figure 6.176:

Representing tree view items

Each item in the template displays as a single tree view item with an image and font color
that denotes its type. The end tags of elements and the markup delimiters used in an XML
document do not display.

The following table shows the icons used in the Export/Import Template view.

Table 6.65: Icons used in the Export/Import Template view

Icon Description

XML declaration or document type
declaration

Root or child element

Group header element

DataWindow column reference

Static text control reference

Computed field or DataWindow expression
reference

Working with DataWindows

Page 830

Icon Description

Literal text

Comment

Processing instruction

CDATA section

Nested report

6.12.3.1 Creating templates

To create a template, select the New menu item or the New Default menu item from the pop-
up menu in the Export/Import Template view.

Creating new base templates

The New menu item creates a template that is empty except for the XML declaration, the
root element, and the first element of the row data section, referred to as the Detail Start
element. The name of the root element is the same as the name of the DataWindow object,
and the default name for the Detail Start element is the name of the root element with _row
appended.

For example, if the DataWindow object is named d_name, the default template has this
structure:

<?xml version="1.0"?>
 <d_name>
 <d_name_row>
 </d_name_row>
 </d_name>

Creating new default templates

The New Default menu item creates a template with the same contents as the New menu
item, as well as a flat structure of child elements of the Detail Start element. A child element
is created for each DataWindow column name, in the order in which the columns appear in
the SELECT statement, with the exception of blob and computed columns. The default tag
for the element is the column's name.

If the names of the column and the control are the same, the content of the child element
displays with a control reference icon. If there is no control name that matches the column
name, the content of the child element displays using the DataWindow expression icon. For
example, consider a DataWindow object in which the dept_id column is used as a retrieval
argument and does not display:

Working with DataWindows

Page 831

Figure 6.177:

The SQL syntax is:

SELECT "employee"."dept_id",
 "employee"."emp_lname",
 "employee"."emp_fname",
 "employee"."salary"
 FROM "employee"
 WHERE employee.dept_id = :deptnum
ORDER BY "employee"."emp_lname" ASC

In the default template, dept_id uses the DataWindow expression icon. All the other columns
used the column control reference icon.

6.12.3.2 Saving templates

To save a new template, select Save from the pop-up menu in the Export/Import Template
view, and give the template a name and optionally a comment that identifies its use.

Working with DataWindows

Page 832

Figure 6.178:

The template is stored inside the DataWindow object in the PBL.

After saving a template with a DataWindow object, you can see its definition in the Source
editor for the DataWindow object. For example, this is part of the source for a DataWindow
that has two templates. The templates have required elements only:

export.xml(usetemplate="t_address"
 template=(comment="Employee Phone Book"
 name="t_phone" xml="<d_emplist><d_emplist_row
 __pbband=~"detail~"</d_emplist>")
 template=(comment="Employee Address Book"
 name="t_address" xml="<d_emplist><d_emplist_row
 __pbband=~"detail~"</d_emplist>"))

6.12.3.3 Header and Detail sections

An XML template has a Header section and a Detail section, separated graphically by a line
across the tree view.

The items in the Header section are generated only once when the DataWindow is exported
to XML, unless the DataWindow is a group DataWindow. For group DataWindow objects,
you can choose to generate the contents of the header section iteratively for each group. For
more information, see Generating group headers.

The Detail section contains the row data, and is generated iteratively for each row in the
DataWindow object.

Working with DataWindows

Page 833

Figure 6.179:

The Detail Start element

A line across the Export/Import Template view separates the Header section from the Detail
section. The first element after this line, d_dept_list_row in the previous screenshot, is called
the Detail Start element.

There can be only one Detail Start element, and it must be inside the document's root
element. By default, the first child of the root element is the Detail Start element. It usually
wraps a whole row, separating columns across rows. When the DataWindow is exported
to XML, this element and all children and/or siblings after it are generated iteratively for
each row. Any elements in the root element above the separator line are generated only once,
unless the DataWindow is a group DataWindow and the Iterate Group Headers check box has
been selected.

The Detail Start element can be a nested (or multiply-nested) child of an element from
the Header section, permitting a nested detail. This might be useful for DataStores being
packaged for submission to external processes, such as B2B, that require company and/or
document information, date, or other master data preceding the detail.

Moving the separator

You can change the location of the separator line by selecting the element that you want as
the Detail Start element and selecting Starts Detail from its pop-up menu. The separator line
is redrawn above the new Detail Start element. When you export the data, the Detail Start
element and the children and siblings after it are generated iteratively for each row.

If no Detail Start element is specified (that is, if the Starts Detail option has been deselected),
the template has only a Header section. When you export the data, only one iteration of row
data is generated.

6.12.3.3.1 Header section

The Header section can contain the items listed in the following table. Only the root element
is required:

Working with DataWindows

Page 834

Table 6.66: Items permitted in the Header section of an XML document

Item Details

XML declaration This must be the first item in the tree view if it exists. See XML
declaration.

Document type
declaration

If there is an XML declaration, the document type declaration must
appear after the XML declaration and any optional processing
instructions and comments, and before the root element. Otherwise,
this must be the first item in the tree view. See Document type
declaration.

Comments See Comments.

Processing
instructions

See Processing instructions.

Root element (start
tag)

See Root element.

Group header
elements

See Generating group headers.

Child elements Child elements in the Header section cannot be iterative except in
the case of group DataWindows.

Detail section in root element

The root element displays in the Header section, but the entire content of the Detail
section is contained in the root element.

6.12.3.3.2 Detail section

The Detail section, which holds the row data, can contain the items listed in The following
table.

Table 6.67: Items permitted in the Detail section of an XML document

Item Details

Detail Start element See The Detail Start element [833].

Child or sibling elements
to the Detail Start
element

To add a sibling to the Detail Start element, add a child to its
parent (the root element by default).

Control references These references are in text format and can include references to
column, text, computed field, and report controls. See Controls.
Nested report controls can only be referenced as child elements.
See Composite and nested reports.

DataWindow expressions See DataWindow expressions.

Literal text Literal text does not correspond to a control in the DataWindow
object.

Comments See Comments.

Working with DataWindows

Page 835

Item Details

Processing instructions See Processing instructions.

CDATA sections See CDATA sections.

Attributes You can assign attributes to all element types. See Attributes.

6.12.4 Editing XML templates

Using templates for data import

If you use a template created for data export, DataWindow expressions, text,
comments, and processing instructions are ignored when data is imported. If you are
creating a template specifically for import, do not add any of these items. You need
only map column names to element and attribute names.

Every item in the Export/Import Template view has a pop-up menu from which you can
perform actions appropriate to that item, such as editing or deleting the item, adding or
editing attributes, adding child elements or other items, and inserting elements, processing
instructions, CDATA sections, and so forth, before the current item.

Figure 6.180:

If an element has no attributes, you can edit its tag in the Export/Import Template view by
selecting it and left-clicking the tag or pressing F2. Literal text nodes can be edited in the
same way. You can delete items (and their children) by pressing the Delete key.

The examples in this section show the delimiters used in the XML document. When you edit
the template in dialog boxes opened from the Export/Import Template view for XML, you do
not need to type these delimiters in text boxes.

The rest of this section describes some of the items in the template. For more information, see
the XML specification at http://www.w3.org/TR/REC-xml.

http://www.w3.org/TR/REC-xml

Working with DataWindows

Page 836

6.12.4.1 XML declaration

The XML declaration specifies the version of XML being used. You may need to change
this value for a future version of XML. It can also contain an encoding declaration and a
standalone document declaration. From the pop-up menu, you can edit the declaration, and,
if the document is well-formed, delete it. If you have deleted the XML declaration, you can
insert one from the Insert Before item on the pop-up menu for the next item in the template.

Encoding declaration

The encoding declaration specifies the character-set encoding used in the document, such as
UTF-16 or ISO-10646-UCS-4.

If there is no encoding declaration, the value defaults to UTF-16LE encoding in ASCII
environments. In DBCS environments, the default is the default system encoding on the
computer where the XML document is generated. This ensures that the document displays
correctly as a plain text file. However, since the DBCS data is serialized to Unicode, XML
documents that use UTF-16LE, UTF-16 Big Endian, or UTF-16 Little Endian can all be
parsed or generated correctly on DBCS systems.

Several other encodings are available, including ASCII, UCS4 Big Endian, UCS4 Little
Endian, EBCDIC code pages IBM037 and IBM1140, ISO Latin-1, and Latin 1 Windows
(code page 1252). You can select these values from a drop-down list box in the XML
Declaration dialog box.

Standalone document declaration

The standalone document declaration specifies whether the document contains no external
markup that needs to be processed and can therefore stand alone (Yes), or that there are,
or might be, external markup declarations in the document (No). The value in the default
template is No, and if there is no standalone document declaration, the value is assumed to be
No.

Example

This is an XML declaration that specifies XML version 1.0, UTF-16LE encoding, and that
the document can stand alone:

<?xml version="1.0" encoding="UTF-16LE" standalone="yes"?>

6.12.4.2 Document type declaration

The document type declaration contains or points to markup declarations that provide a
grammar for a class of documents. This grammar is known as a document type definition,
or DTD. The document type declaration defines constraints on the sequence and nesting of
tags, attribute values, names and formats of external references, and so forth. You can edit the
document type declaration to change its name, but the name must always be the same as the
name of the root element. Changing the name in either the document type declaration or the
root element automatically changes the name in the other.

Adding DTDs

You can add an identifier pointing to an external DTD subset, and you can add an internal
DTD subset. If you supply both external and internal subsets, entity and attribute-list
declarations in the internal subset take precedence over those in the external subset.

Public identifiers

Working with DataWindows

Page 837

An external identifier can include a public identifier that an XML processor can use to
generate an alternative URI. If an alternative URI cannot be generated, the URI provided
in the system identifier is used. External identifiers without a public identifier are preceded
by the keyword SYSTEM. External identifiers with a public identifier are preceded by the
keyword PUBLIC.

Exporting metadata

If you specify a system or public identifier and/or an internal subset in the Document
Type Declaration dialog box, a DTD cannot be generated when the data is exported
to XML. A MetaDataType of XMLDTD! is ignored. For more information about the
properties that control the export of metadata, see Exporting metadata.

Examples

These are examples of valid document type declarations.

An external system identifier:

<!DOCTYPE d_dept_listing SYSTEM "d_dept_listing.dtd">

An external system identifier with a public identifier:

<!DOCTYPE d_test PUBLIC "-//MyOrg//DTD Test//EN"
 "http://www.mysite.org/mypath/mytest.dtd">

An external system identifier with an internal DTD. The internal DTD is enclosed in square
brackets:

<!DOCTYPE d_orders
 SYSTEM "http://www.acme.com/dtds/basic.dtd"[
 <!ELEMENT Order (Date, CustID, OrderID, Items*)>
 <!ELEMENT Date (#PCDATA)>
 <!ELEMENT CustID (#PCDATA)>
 <!ELEMENT OrderID (#PCDATA)>
 <!ELEMENT Items (ItemID, Quantity)>
 <!ELEMENT ItemID (#PCDATA)>
 <!ELEMENT Quantity (#PCDATA)>
]>

6.12.4.3 Root element

You can change the name of the root element, add attributes and children, and insert
comments, instructions, and, if they do not already exist, XML and/or document type
declarations before it.

Changing the name of the root element changes the name of its start and end tags. You can
change the name using the Edit menu item, or in the Element Attributes dialog box. Changing
the name of the document type declaration, if it exists, also changes the name of the root
element, and vice versa. The root element name is always the same as the document type
declaration name.

You can add the following kinds of children to the root element:

• Elements

• Text

• Control references

Working with DataWindows

Page 838

• DataWindow expressions (including column references)

• CDATA sections

• Comments

• Processing instructions

6.12.4.4 Controls

Adding a DataWindow control reference opens a dialog box containing a list of the columns,
computed fields, report controls, and text controls in the document.

Control references can also be added to empty attribute values or element contents using
drag-and-drop from the Control List view. Column references can also be added using drag-
and-drop from the Column Specifications view.

Drag-and-drop cannot replace

You cannot drag-and-drop an item on top of another item to replace it. For example,
if you want to replace one control reference with another control reference, or with
a DataWindow expression, you first need to delete the control reference you want to
replace.

6.12.4.5 DataWindow expressions

Adding a DataWindow expression opens the Modify Expression dialog box. This enables
you to create references to columns from the data source of the DataWindow object. One use
of this feature is to return a fragment of XML to embed, providing another level of dynamic
XML generation.

Using Date and DateTime with strings

If you use a control reference or a DataWindow expression that does not include a string
to represent Date and DateTime columns in a template, the XML output conforms to ISO
8601 date and time formats. For example, consider a date that displays as 12/27/2016 in the
DataWindow object, using the display format mm/dd/yyyy. If the export template does not
use an expression that includes a string, the date is exported to XML as 2016-12-27.

However, if the export template uses an expression that combines a column with a Date or
DateTime datatype with a string, the entire expression is exported as a string and the regional
settings in the Windows registry are used to format the date and time.

Using the previous example, if the short date format in the registry is MM/dd/yy, and the
DataWindow expression is: "Start Date is " + start_date, the XML output is Start Date is
12/27/16.

6.12.4.6 Attributes

Controls or expressions can also be referenced for element attribute values. Select Edit/Add
Attribute from the pop-up menu for elements to edit an existing attribute or add a new one.

For each attribute specified, you can select a control reference from the drop-down list or
enter a literal text value. A literal text value takes precedence over a control reference. You
can also use the expression button to the right of the Text box to enter an expression.

Working with DataWindows

Page 839

Figure 6.181:

The expression button and entry operates similarly to DataWindow object properties in the
Properties view. The button shows an equals sign if an expression has been entered, and a
not-equals sign if not. A control reference or text value specified in addition to the expression
is treated as a default value. In the template, this combination is stored with the control
reference or text value, followed by a tab, preceding the expression. For example:

attribute_name=~"text_val~~tdw_expression~"

6.12.4.7 Composite and nested reports

Report controls can be referenced in the Detail section of export templates as children of an
element.

Nested reports supported for XML export only

Import does not support nested reports. If you attempt to import data in any format,
including XML, CSV, DBF, and TXT, that contains a nested report, the nested report
is not imported and the import may fail with errors.

Composite reports

For composite reports that use the Composite presentation style, the default template has
elements that reference each of its nested reports.

If a composite DataWindow contains two reports that have columns with identical names,
you must use the procedure that follows if you want to generate an XML document with a
DTD or schema. If you do not follow the procedure, you will receive a parsing error such as
"Element ‘identical_column_name' has already been declared."

1. Create a template in the first report and select this template in the Use Template list on the
Data Export property page.

2. Create a template in the second report.

If any element name is used in the template in the first report, change it to another name in
the template in the second report.

Working with DataWindows

Page 840

3. Select the template for the second report in the Use Template list.

4. Generate the XML document.

These steps are necessary because you cannot use a given element name more than once in
a valid DTD or schema.

Nested reports

For report controls added to the detail band of a base report that is related to the inserted
report with retrieval arguments or criteria, the report control is available to the export
template in two ways:

• Select an element in the template or add a new element, then select Add
Child>DataWindow Control Reference. Any report controls inserted in the detail band are
available for selection in the dialog box that displays.

• Drag a report control from the Control List view and drop it on an existing empty element.

When you export XML using a template that has a reference to a report control, the export
template assigned to the nested report with the Use Template property is used, if it exists, to
expand the XML for the nested report. If no template is specified for the nested report, the
default template is used.

The relationship between the nested report and the base report, for example a Master/Detail
relationship, is reflected in the exported XML.

6.12.4.8 CDATA sections

You can export the name of a column in a CDATA section using the syntax <!
[CDATA[columnname]]>. You can export the value of a column using the syntax <!
[CDATA[~t columnname]]>. The ~t is used to introduce a DataWindow expression, in the
same way that it is used in the Modify method. You can also use an expression such as ~t
columnname*columnname to export a computed value to the XML.

You can import a value into a column using the syntax <![CDATA[columnname]]>. Note
that this syntax in a template has different results for import and export: it imports the column
value but exports the column name.

You cannot import an XML file that has a ~t expression in a CDATA section.

Everything else inside a CDATA section is ignored by the parser. If text contains characters
such as less than or greater than signs (< or >) or ampersands (&) that are significant to
the parser, it should be defined as a CDATA section. A CDATA section starts with <!
[CDATA[and ends with]]>. CDATA sections cannot be nested, and there can be no white
space characters inside the]]> delimiter—for example, you cannot put a space between the
two square brackets.

Example

<![CDATA[do not parse me]]>

This syntax in an export template exports the value of the column emp_salary:

<![CDATA[~t emp_salary]]>

Working with DataWindows

Page 841

This syntax in an import template imports the value of the column emp_salary:

<![CDATA[emp_salary]]>

6.12.4.9 Comments

Comments can appear anywhere in a document outside other markup. They can also appear
within the document type declaration in specific locations defined by the XML specification.

Comments begin with <!-- and end with -->. You cannot use the string -- (a double hyphen)
in a comment, and parameter entity references are not recognized in comments.

Example

<!-- this is a comment -->

6.12.4.10 Processing instructions

Processing instructions (PIs) enable you to provide information to the application that uses
the processed XML. Processing instructions are enclosed in <? and ?> delimiters and must
have a name, called the target, followed by optional data that is processed by the application
that uses the XML. Each application that uses the XML must process the targets that it
recognizes and ignore any other targets.

The XML declaration at the beginning of an XML document is an example of a processing
instruction. You cannot use the string xml as the name of any other processing instruction
target.

Example

In this example, usething is the name of the target, and thing=this.thing is the data to be
processed by the receiving application:

<?usething thing=this.thing?>

6.12.5 Exporting to XML

You can export the data in a DataWindow or DataStore object to XML using any of the
techniques used for exporting to other formats such as PSR or HTML:

• Using the SaveAs method:

ds1.SaveAs("C:\TEMP\Temp.xml", Xml!, true)

• Using PowerScript dot notation or the Describe method:

ls_xmlstring = dw1.Object.DataWindow.Data.XML
ls_xmlstring = dw1.Describe(DataWindow.Data.XML)

• Using the Save Rows As menu item in the DataWindow painter.

With the Preview view open, select File>Save Rows As, select XML from the Files
of Type drop-down list, provide a file name, and click Save. You can use this in the
development environment to preview the XML that will be generated at runtime.

When you export data, PowerBuilder uses an export template to specify the content of the
generated XML.

Working with DataWindows

Page 842

Default export format

If you have not created or assigned an export template, PowerBuilder uses a default
export format. This is the same format used when you create a new default export
template. See Creating templates.

OLE DataWindow objects cannot be exported using a template. You must use the
default format.

6.12.5.1 Setting data export properties

The Data Export page in the Properties view lets you set properties for exporting data to
XML.

In addition to the properties that you can set on this page, PowerBuilder provides two
properties that you can use to let the user of an application select an export template at
runtime. See Selecting templates at runtime.

6.12.5.1.1 The Use Template property

The names of all templates that you create and save for the current DataWindow object
display in the Use Template drop-down list.

Figure 6.182:

The template you select from the list is used to conform the XMLgenerated by any of the
methods for saving as XML to the specifications defined in the named template. Selecting a
template from the list box sets the DataWindow object's Export.XML.UseTemplate property.
You can also modify the value of the UseTemplate property dynamically in a script. For
example, an XML publishing engine would change templates dynamically to create different
presentations of the same data.

When you open a DataWindow, the Export/Import Template view displays the template
specified in the DataWindow's Use Template property. (If the view is not visible in the

Working with DataWindows

Page 843

current layout, select View>Export/Import Template>XML from the menu bar.) If the
property has not been set, the first saved template displays or, if there are no saved templates,
the default structured template displays as a basis for editing.

Template used when saving

When the DataWindow is saved as XML, PowerBuilder uses the template specified in the
Use Template property. If the property has not been set, PowerBuilder uses the default
template.

When you are working on a template, you might want to see the result of your changes.
The template specified in the Use Template property might not be the template currently
displayed in the Export/Import Template view, so you should check the value of the Use
Template property to be sure you get the results you expect.

To save to XML using the current template

1. Right-click in the Export/Import template view and select Save or Save As from the
pop-up menu to save the current template.

2. On the Data Export page in the properties view, select the current template from the Use
Template drop-down list.

3. Select File>Save Rows As, select XML from the Files of Type drop-down list, enter a
file name, and click Save.

6.12.5.1.2 Generating group headers

To generate the contents of the header section iteratively for each group in a
group DataWindow, check the Iterate Header for Groups check box, or set the
Export.XML.HeadGroups DataWindow property. This property is on by default.

For example, consider a group DataWindow object that includes the columns sales_order_id
and sales_order_order_date. The following screenshot shows the template for this
DataWindow object:

Figure 6.183:

Working with DataWindows

Page 844

The root element in the Header section of the template, Orders, has a child element, Order.
Order has an id attribute whose value is a control reference to the column sales_order_id.
Order also has a child element, OrderDate, that contains a column reference to the
sales_order_order_date column. These elements make up the header section that will be
iterated for each group.

The Detail Start element, Item, has an id attribute whose value is a control reference to the
column sales_order_items_line_id. It also has three child elements that contain column
references to the line items for product ID, quantity, and ship date.

When the DataWindow is exported with the Export.XML.HeadGroups property on, the order
ID and date iterate for each group. The following XML output shows the first three iterations
of the group header:

<?xml version="1.0" encoding="UTF-16LE" standalone="no"?>
<Orders>
 <Order id="2001">
 <OrderDate>2002-03-14</OrderDate>
 <Item id="1">
 <Product>300</Product>
 <Quantity>12</Quantity>
 <ShipDate>2005-09-15</ShipDate>
 </Item>
 <Item id="2">
 <Product>301</Product>
 <Quantity>12</Quantity>
 <ShipDate>2005-09-14</ShipDate>
 </Item>
 <Item id="3">
 <Product>302</Product>
 <Quantity>12</Quantity>
 <ShipDate>2005-09-14</ShipDate>
 </Item>
 </Order>
 <Order id="2002">
 <OrderDate>2002-03-18</OrderDate>
 <Item id="2">
 <Product>401</Product>
 <Qty>24</Qty>
 <ShipDate>2002-09-18</ShipDate>
 </Item>
 <Item id="1">
 <Product>400</Product>
 <Qty>24</Qty>
 <ShipDate>2002-09-18</ShipDate>
 </Item>
 </Order>
 <Order id="2003">
 <OrderDate>2002-03-21</OrderDate>
 <Item id="3">
 <Product>400</Product>
 <Qty>12</Qty>
 <ShipDate>2002-09-23</ShipDate>
 </Item>
 ...

For DataWindow objects with more than one group, when you generate a new default
template, each group after the first is identified with a special icon and a check on the pop-up
menu next to the Starts Group Header item.

Working with DataWindows

Page 845

Figure 6.184:

When the Iterate Header for Groups check box is selected, each XML fragment in the header
section between a Group Header element and the next Group Header element or Detail Start
element is iterated.

In the template shown in the previous illustration, sales are grouped by customer ID, then
by order ID. The customer group header has attributes for the customer's ID and first and
last names. The order group header has attributes for the order ID and date. The following
illustration shows the DataWindow in the Design view:

Figure 6.185:

The following XML output shows the first iteration of the customer group header and the
first and second iterations of the order group header:

<?xml version="1.0" encoding="UTF-16LE" standalone="no"?>
<d_customer>
 <customer id="101" fname="Michaels" lname="Devlin">
 <order id="2001" date="1996-03-14">
 <order_item>
 <sales_order_items_line_id>1</sales_order_items_line_id>
 <sales_order_items_prod_id>300</sales_order_items_prod_id>

Working with DataWindows

Page 846

 <sales_order_items_quantity>12</sales_order_items_quantity>
 </order_item>
 <order_item>
 <sales_order_items_line_id>2</sales_order_items_line_id>
 <sales_order_items_prod_id>301</sales_order_items_prod_id>
 <sales_order_items_quantity>12</sales_order_items_quantity>
 </order_item>
 <order_item>
 <sales_order_items_line_id>3</sales_order_items_line_id>
 <sales_order_items_prod_id>302</sales_order_items_prod_id>
 <sales_order_items_quantity>12</sales_order_items_quantity>
 </order_item>
 </order>
 <order id="2005" date="1996-03-24">
 <order_item>
 <sales_order_items_line_id>1</sales_order_items_line_id>
 <sales_order_items_prod_id>700</sales_order_items_prod_id>
 <sales_order_items_quantity>12</sales_order_items_quantity>
 </order_item>
 </order>

6.12.5.1.3 Formatting the exported XML

By default, the XML is exported without formatting. If you want to view or verify
the exported XML in a text editor, check the Include Whitespace check box or set the
Export.XML.IncludeWhitespace property in a script. Turning this property on causes the
export process to insert tabs, carriage returns, and linefeed characters into the XML so that it
is easier to read. Most of the examples in this chapter were exported with this property turned
on.

Do not import formatted XML

You should not try to import XML formatted with white space characters, because the
white space between data element tags is considered to be part of the element.

6.12.5.1.4 Exporting metadata

You can specify that metadata in the form of a DTD or schema should be exported when you
save the DataWindow object. You can choose to save the metadata with the XML or in a
separate file.

If you export metadata as a schema, you can associate it with a namespace. See Associating a
namespace with an exported schema [848].

To specify how metadata should be saved, select a value from the Meta Data Type drop-
down list or set the Export.XML.MetaDataType property. The possible values are:

• XMLNone!—No metadata is generated

• XMLSchema!—An XML schema is generated

• XMLDTD!—A DTD is generated

If the data item for a column is null or an empty string, an empty element is created. If
you select XMLSchema!, child elements with null data items are created with the content
"xsi:nil='true'".

Working with DataWindows

Page 847

The metadata is saved into the exported XML itself or into an associated file, depending on
the setting in the SaveMeta Data drop-down list or the Export.XML.SaveMetaData property.
The possible values are:

• MetaDataInternal!—The metadata is saved into the generated XML document or string. To
save metadata using the .Data.XML expression syntax, you must use this value.

• MetaDataExternal!—The metadata is saved as an external file with the same name as the
XML document but with the extension .xsd (for a schema) or .dtd (for a DTD). A reference
to the name of the metadata file is included in the output XML document.

Example: internal metadata

For example, if you select XMLDTD! and MetaDataInternal!, the header and first row of the
exported XML would look like this for a simple grid DataWindow for the contact table in the
PB Demo DB. The Include Whitespace property has also been selected and the file name is
dtdinternal.xml:

<?xml version="1.0" encoding="UTF-16LE" standalone="yes"?>
<!DOCTYPE dtdinternal [<!ELEMENT dtdinternal (dtdinternal_row*)>
<!ELEMENT dtdinternal_row (id, last_name, first_name, title, street, city, state,
 zip, phone, fax)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
]>
<dtdinternal>
 <dtdinternal_row>
 <id>1</id>
 <last_name>Hildebrand</last_name>
 <first_name>Jane</first_name>
 <title>ma</title>
 <street>1280 Washington St.</street>
 <city>Emeryville</city>
 <state>MI</state>
 <zip>94608</zip>
 <phone>5105551309</phone>
 <fax>5105554209</fax>
 </dtdinternal_row>

Example: external metadata

If you select MetaDataExternal! instead, the generated XML in dtdexternal.xml looks like
this:

<?xml version="1.0" encoding="UTF-16LE"?>
<!DOCTYPE dtdexternal SYSTEM "dtdexternal.dtd">
<dtdexternal>
 <dtdexternal_row>
 <id>1</id>
 <last_name>Hildebrand</last_name>
 <first_name>Jane</first_name>
 <title>ma</title>

Working with DataWindows

Page 848

 <street>1280 Washington St.</street>
 <city>Emeryville</city>
 <state>MI</state>
 <zip>94608</zip>
 <phone>5105551309</phone>
 <fax>5105554209</fax>
 </dtdexternal_row>

The DTD is in dtdexternal.dtd:

<?xml version="1.0" encoding="UTF-16LE"?><!ELEMENT dtdexternal (dtdexternal_row*)>
<!ELEMENT dtdexternal_row (id, last_name, first_name, title, street, city, state,
 zip, phone, fax)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT fax (#PCDATA)>

MetaDataExternal! not supported for dot notation

The metadata cannot be saved in an external file if you use dot notation to generate
the XML.

Associating a namespace with an exported schema

If you export metadata in the form of a schema, you can associate a namespace with the
schema. To do so, right-click the root element in the Export/Import template view and select
Schema Options from the pop-up menu. In the dialog box, specify the namespace prefix and
URI.

When the Meta Data Type property is XMLSchema! and the Save Meta Data property is
MetaDataInternal!, so that the XML schema is generated inline, you can specify a name for
the root element. If the root element name is specified, it appears in the generated XML.

In the following example, the root element name is Contacts, the namespace prefix is po, and
the URI is http://www.example.com/PO1.

The example shows the header and the first row of the generated XML:

<?xml version="1.0" encoding="UTF-16LE" standalone="no"?>
<Contacts>
 <xs:schema xmlns:po="http://www.example.com/PO1"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com/PO1"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="d_contact_list">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="d_contact_list_row"
 maxOccurs="unbounded" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="d_contact_list_row">

Working with DataWindows

Page 849

 <xs:complexType>
 <xs:sequence>
 <xs:element ref="id"/>
 <xs:element ref="last_name"/>
 <xs:element ref="first_name"/>
 <xs:element ref="city"/>
 <xs:element ref="state"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="id" type="xs:int"/>
 <xs:element name="last_name" type="xs:string"/>
 <xs:element name="first_name" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="state" type="xs:string"/>
 </xs:schema>
 <po:d_contact_list xmlns:po=
 "http://www.example.com/PO1" xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-instance">
 <po:d_contact_list_row>
 <po:id>1</po:id>
 <po:last_name>Hildebrand</po:last_name>
 <po:first_name>Jane</po:first_name>
 <po:city>Emeryville</po:city>
 <po:state>MI</po:state>
 </po:d_contact_list_row>

By default, the generated XML is not associated with a namespace.

6.12.5.2 Selecting templates at runtime

Two DataWindow properties, Export.XML.TemplateCount and
Export.XML.Template[].Name, enable you to provide a list of templates from which the user
of the application can select at runtime.

The TemplateCount property gets the number of templates associated with a DataWindow
object. You can use this number as the upper limit in a FOR loop that populates a drop-down
list with the template names. The FOR loop uses the Template[].Name property.

string ls_template_count, ls_template_name
long i

ls_template_count=dw_1.Describe
 ("DataWindow.Export.XML.TemplateCount")

for i=1 to Long(ls_template_count)
 ls_template_name=
 dw_1.Object.DataWindow.Export.XML.Template[i].Name
 ddlb_1.AddItem(ls_template_name)
next

Before generating the XML, set the export template using the text in the drop-down list box.

dw_1.Object.DataWindow.Export.XML.UseTemplate = ddlb_1.text

6.12.6 Importing XML

You can select XML as a file type in the dialog box that displays when you select
Rows>Import in the DataWindow painter. (The Preview view must be open to enable the
Rows>Import menu item.)

Working with DataWindows

Page 850

You can also import data from an XML document or string using the ImportFile,
ImportString, or ImportClipboard methods. These methods have an optional first parameter
that enables you to specify the type of data to be imported.

Data can be imported with or without a template. To import data without a template, the
data must correspond to the DataWindow column definition. The text content of the XML
elements must match the column order, column type, and validation requirements of the
DataWindow columns.

Composite, OLE, and Graph DataWindow objects

Composite, OLE, and Graph DataWindow objects cannot be imported using a
template. You must use the default format. Graph controls must also be imported
using the default format.

6.12.6.1 Importing with a template

If the XML document or string from which you want to import data does not correspond to
the DataWindow column definition, or if you want to import attribute values, you must use a
template.

If a schema is associated with the XML to be imported, you must create a template that
reflects the schema.

For complex, nested XML with row data in an iterative structure, you may need to design
a structure that uses several linked DataWindow definitions to import the data. Each
DataWindow must define the structure of a block of iterative data with respect to the root
element. Importing the data into the DataWindow objects would require multiple import
passes using different import templates.

For data that does not conform to an iterative row data structure or has additional
complexities, you can use the PBDOM parser to handle the data on a node-by-node basis.
For more information, see Section 4.3, “Using PowerBuilder XML Services” in Application
Techniques and Chapter 4, PowerBuilder Document Object Model in PowerBuilder
Extension Reference.

Defining import templates

The XML import template can be defined in the Export/Import Template view for XML. If
you are defining a template for use only as an import template, do not include DataWindow
expressions, text, comments, and processing instructions. These items are ignored when data
is imported.

Only mappings from DataWindow columns to XML elements and attributes that follow the
Starts Detail marker in the template are used for import. Element and attribute contents in
the header section are also ignored. If the Starts Detail marker does not exist, all element and
attribute to column mappings within the template are used for import. For more information
about the Starts Detail marker, see The Detail Start element [833].

Matching template structure to XML

An XML import template must map the XML element and attribute names in the XML
document to DataWindow column names, and it must reflect the nesting of elements and
attributes in the XML.

Working with DataWindows

Page 851

The order of elements and attributes with column reference content in the template does
not have to match the order of columns within the DataWindow, because import values are
located by name match and nesting depth within the XML. However, the order of elements
and attributes in the template must match the order in which elements and attributes occur in
the XML. Each element or attribute that has column reference content in the template must
occur in each row in the XML document or string. The required elements and attributes in the
XML can be empty.

If an element or attribute does not occur in the XML document, the DataWindow import
column remains empty.

The data for the DataWindow is held in the columns of the data table. Some data columns,
such as those used for computed fields, may not have an associated control. To import data
into a column that has no control reference, add a child DataWindow expression that contains
the column name.

Remove tab characters

When you select a column name in the DataWindow expression dialog box, tab
characters are added before and after the name. You should remove these characters
before saving the expression.

Importing data with group headers

For XML import using a template, element and attribute contents in the header section
are ignored. However, if the Starts Detail marker does not exist, all element and attribute
to column mappings within the template are used for import. This has the following
implications for DataWindow objects with group headers:

• If data is imported to a Group DataWindow using a template that has a Starts Detail
marker, the group header data is not imported because import starts importing from the
Starts Detail location.

• If the Group DataWindow has one group and the import template has no Starts Detail
marker, all the data is imported successfully.

Nested groups cannot be imported

If the Group DataWindow has nested groups, the data cannot be imported
successfully even if the Starts Detail marker in the import template is turned off.

Restrictions

DataWindow columns cannot be referenced twice for import. A second column reference to a
DataWindow column within an XML import template is ignored.

An XML element or attribute name whose content references a DataWindow column for
import must be unique within the level of nesting. It cannot occur twice in the template at the
same nesting level.

Setting the import template

The names of all templates for the current DataWindow object display in the Use Template
drop-down list on the Data Import page in the Properties view.

Working with DataWindows

Page 852

Figure 6.186:

Using export templates for import

If you have already defined an export template for a DataWindow object, you can use
it as an import template, but only the mapping of column names to element attribute
names is used for import. All other information in the template is ignored.

The template you select in the list box is used to conform the XML imported to the
specifications defined in the named template. Selecting a template from the list sets the
DataWindow object's Import.XML.UseTemplate property. You can also modify the value of
the Import.XML.UseTemplate property dynamically in a script.

The Data Import page also contains a property that enables you to create a trace log of the
import. See Tracing import.

6.12.6.1.1 Example

This example uses a DataWindow object that includes the columns emp_id, emp_fname,
emp_lname, and dept_id. The template used in this example includes only these columns.
Any other columns in the DataWindow remain empty when you import using this template.

To illustrate how template import works, create a new template that has one element in the
header section, called before_detail_marker. This element contains a column reference to the
emp_id column.

The Detail Start element, employee, has an attribute, dept_id, whose value is a control
reference to the column dept_id. It also has three children:

• The emp_id element contains a column reference to the emp_id column.

• The emp_fname element contains static text.

Working with DataWindows

Page 853

• The name element has two children, emp_fname and emp_lname, that contain column
references to those columns.

Figure 6.187:

The template exports and imports the dept_id DataWindow column using the attribute of the
employee element. It exports and imports the emp_id, emp_fname, and emp_lname columns
using the column references in the elements. The following shows the beginning of the XML
exported using this template:

<?xml version="1.0" encoding="UTF-16LE" standalone="no"?>

<employee_list>
 <before_detail_marker>102</before_detail_marker>
 <employee dept_id="100">
 <emp_id>102</emp_id>
 <emp_fname>static text content</emp_fname>
 <name>
 <emp_fname>Fran</emp_fname>
 <emp_lname>Whitney</emp_lname>
 </name>
 </employee>
 <employee dept_id="100">
 <emp_id>105</emp_id>
 <emp_fname>static text content</emp_fname>
 <name>
 <emp_fname>Matthew</emp_fname>
 <emp_lname>Cobb</emp_lname>
 </name>
 </employee>
 ...

The exported XML can be reimported into the DataWindow columns dept_id, emp_id,
emp_fname, and emp_lname. Before importing, you must set the import template on the
Data Import page in the Properties view or in a script using the DataWindow object's
Import.XML.UseTemplate property.

The following items are exported, but ignored on import:

Working with DataWindows

Page 854

• The before_detail_marker element is ignored because it is in the header section.

• The first occurrence of the element tag name emp_fname is ignored because it does not
contain a mapping to a DataWindow column name.

If you change the nesting of the emp_fname and emp_lname elements inside the name
element, the import fails because the order of the elements and the nesting in the XML and
the template must match.

6.12.6.2 Default data import

When there is no import template assigned to a DataWindow object with the UseTemplate
property, PowerBuilder attempts to import the data using the default mechanism described in
this section.

Elements that contain text

The text between the start and end tags for each element can be imported if the XML
document data corresponds to the DataWindow column definition. For example, this is the
case if the XML was exported from PowerBuilder using the default XML export template.

The text content of the XML elements must match the column order, column type, and
validation requirements of the DataWindow columns. (The same restriction applies when you
import data from a text file with the ImportFile method).

All element text contents are imported in order of occurrence. Any possible nesting is
disregarded. The import process ignores tag names of the elements, attributes, and any other
content of the XML document.

Empty elements

Empty elements (elements that have no content between the start and end tags) are imported
as empty values into the DataWindow column. If the element text contains only white space,
carriage returns, and new line or tab characters, the element is treated as an empty element.

Any attributes of empty elements are ignored.

Elements with non-text content

If the element has no text content, but does contain comments, processing instructions, or any
other content, it is not regarded as an empty element and is skipped for import.

6.12.6.2.1 Example with no empty elements

The three XML documents that follow all show the same result when you select
Rows>Import in the DataWindow painter of if ImportFile is called with or without default
arguments for start and end column, start and end row, and DataWindow start column.

The DataWindow object has five columns: emp_id, emp_fname, emp_lname, phone, and
birth_date.

Working with DataWindows

Page 855

Figure 6.188:

Example 1

This example contains two rows, each with five elements that match the column order, type,
and validation requirements for the DataWindow object.

<?xml version="1.0"?>
<d_emp_birth_listing>
 <d_emp_birth_row>
 <element_1>105</element_1>
 <element_2>Matthew</element_2>
 <element_3>Cobb</element_3>
 <element_4>6175553840</element_4>
 <element_5>04/12/1960</element_5>
 </d_emp_birth_row>
 <d_emp_birth_row>
 <element_1>148</element_1>
 <element_2>Julie</element_2>
 <element_3>Jordan</element_3>
 <element_4>6175557835</element_4>
 <element_5>11/12/1951</element_5>
 </d_emp_birth_row>
</d_emp_birth_listing>

Example 2

In this example, the elements are not contained in rows, but they still match the DataWindow
object.

<?xml version="1.0"?>
<root_element>
 <element_1>105</element_1>
 <element_2>Matthew</element_2>
 <element_3>Cobb</element_3>
 <element_4>6175553840</element_4>
 <element_5>04/12/1960</element_5>
 <element_6>148</element_6>

Working with DataWindows

Page 856

 <element_7>Julie</element_7>
 <element_8>Jordan</element_8>
 <element_9>6175557835</element_9>
 <element_10>11/12/1951</element_10>
</root_element>

Example 3

The comments and processing instructions in this example are not imported. The nesting of
the <first> and <last> elements within the <Name> element is ignored.

<?xml version="1.0"?>
<root_element>
<!-- some comment -->
<row_element><?process me="no"?>105<name Title="Mr">
<first>Matthew</first>
<last>Cobb</last>
</name>
<!-- another comment -->
<phone>6175553840</phone>
<birthdate>04/12/1960</birthdate>
</row_element>
<row_element>148<name Title="Ms">
<first>Julie</first>
<last>Jordan</last>
</name>
<phone>6175557835</phone>
<birthdate>11/12/1951</birthdate>
</row_element>
</root_element>

Result

All three XML documents produce this result:

Table 6.68:

emp_id emp_fname emp_lname phone birth_date

105 Matthew Cobb 6175553840 04/12/1960

148 Julie Jordan 6175557835 11/12/1951

6.12.6.2.2 Example with empty elements

Example 4

This example uses the same DataWindow object, but there are two empty elements in the
XML document. The first has no content, and the second has an attribute but no content. Both
are imported as empty elements.

<?xml version="1.0"?>
<root_element>
<!-- some comment -->
<row_element>
<?process me="no"?>105<name Title="Mr">
<first>Matthew</first>
<!-- another comment -->
<last>Cobb</last>
</name>
<empty></empty>
<birthdate>04/12/1960</birthdate>

Working with DataWindows

Page 857

</row_element>
<row_element>148<name Title="Ms">
<empty attribute1 = "blue"></empty>
<last>Jordan</last>
</name>
<phone>6175557835</phone>
<birthdate>11/12/1951</birthdate>
</row_element>
</root_element>

Result

The XML document produces this result:

Table 6.69:

emp_id emp_fname emp_lname phone birth_date

105 Matthew Cobb 04/12/1960

148 Jordan 6175557835 11/12/1951

6.12.6.3 Tracing import

When you import data from XML with or without a template, you can create a trace log to
verify that the import process worked correctly. The trace log shows whether a template was
used and if so which template, and it shows which elements and rows were imported.

To create a trace log, select the Trace XML Import check box on in the Data Import page in
the Properties view and specify the name and location of the log file in the Trace File Name
box. If you do not specify a name for the trace file, PowerBuilder generates a trace file with
the name pbxmtrc.log in the current directory.

You can also use the Import.XML.Trace and Import.XML.TraceFile DataWindow object
properties.

If you use ImportClipboard or ImportStringan import method to import the data, you must
specify XML! as the importtype argument. For example:

ImportString(XML!, ls_xmlstring)

If you omit the importtype argument, the trace file is not created. You do not need to specify
the importtype argument if you use ImportFile.

Example: default import

The following trace log shows a default import of the department table in the PB Demo
database:

/*--*/
/* 09/10/2005 18:26 */
/*--*/
CREATING SAX PARSER.
NO XML IMPORT TEMPLATE SET - STARTING XML DEFAULT IMPORT.
DATAWINDOW ROWSIZE USED FOR IMPORT: 3

ELEMENT: dept_id: 100
ELEMENT: dept_name: R & D
ELEMENT: dept_head_id: 501
--- ROW
ELEMENT: dept_id: 200

Working with DataWindows

Page 858

ELEMENT: dept_name: Sales
ELEMENT: dept_head_id: 902
--- ROW
ELEMENT: dept_id: 300
ELEMENT: dept_name: Finance
ELEMENT: dept_head_id: 1293
--- ROW
ELEMENT: dept_id: 400
ELEMENT: dept_name: Marketing
ELEMENT: dept_head_id: 1576
--- ROW
ELEMENT: dept_id: 500
ELEMENT: dept_name: Shipping
ELEMENT: dept_head_id: 703
--- ROW

Example: template import

The following trace log shows a template import of the department table. The template used
is named t_1. Notice that the DataWindow column dept_id is referenced twice, as both
an attribute and a column. The second occurrence is ignored for the template import, as
described in Restrictions [851]. The Detail Start element has an implicit attribute named
__pbband which is also ignored.

/*---*/
/* 09/10/2005 18:25 */
/*---*/
CREATING SAX PARSER.
USING XML IMPORT TEMPLATE: t_1

XML NAMES MAPPING TO DATAWINDOW IMPORT COLUMNS:
ATTRIBUTE: /d_dept/d_dept_row NAME: '__pbband'
>>> RESERVED TEMPLATE NAME - ITEM WILL BE IGNORED
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id'
DATAWINDOW COLUMN: 1, NAME: 'dept_id'
ELEMENT: /d_dept/d_dept_row/dept_id_xml_name
>>> DUPLICATE DATAWINDOW COLUMN REFERENCE: 1, NAME: 'dept_id' - ITEM WILL BE
 IGNORED
ELEMENT: /d_dept/d_dept_row/dept_head_id
DATAWINDOW COLUMN: 3, NAME: 'dept_head_id'
ELEMENT: /d_dept/d_dept_row/dept_name
DATAWINDOW COLUMN: 2, NAME: 'dept_name'

ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 100
ELEMENT: /d_dept/d_dept_row/dept_head_id: 501
ELEMENT: /d_dept/d_dept_row/dept_name: R & D
--- ROW
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 200
ELEMENT: /d_dept/d_dept_row/dept_head_id: 902
ELEMENT: /d_dept/d_dept_row/dept_name: Sales
--- ROW
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 300
ELEMENT: /d_dept/d_dept_row/dept_head_id: 1293
ELEMENT: /d_dept/d_dept_row/dept_name: Finance
--- ROW
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 400
ELEMENT: /d_dept/d_dept_row/dept_head_id: 1576
ELEMENT: /d_dept/d_dept_row/dept_name: Marketing
--- ROW
ATTRIBUTE: /d_dept/d_dept_row/dept_id_xml_name NAME: 'dept_id': 500
ELEMENT: /d_dept/d_dept_row/dept_head_id: 703
ELEMENT: /d_dept/d_dept_row/dept_name: Shipping
--- ROW

Working with DataWindows

Page 859

6.13 Working with Rich Text

About this chapter

This chapter explains how to create DataWindow objects using the RichText presentation
style and how to use the RichTextEdit control.

6.13.1 About rich text

Rich text format (RTF) is a standard for specifying formatting instructions and document
content in a single ASCII document. An editor that supports rich text format interprets the
formatting instructions and displays formatted content. If you look at rich text in a plain
ASCII editor, you see complex instructions that are not very readable. The actual text of the
document is obscured by the formatting instructions:

{\par}\pard\ql{\f2\fs18\cf0\up0\dn0 A RichText piece of text}

The same sample displayed without the commands looks like this:

A RichText piece of text

Elements of rich text

Rich text in PowerBuilder can have:

• Margins and tab settings for each paragraph

• Character formatting such as italic, bold, underline, or superscripts for each character

• Named input fields associated with database columns or other data

• Bitmaps

• A header and footer for the document

The user can use toolbars, editing keys, and a pop-up menu to specify formatting. A print
preview lets users view a reduced image of the document to see how it fits on the page.

Rich text support in PowerBuilder

In PowerBuilder you can use rich text as a DataWindow presentation style. You can also add
a RichTextEdit control to a window or visual user object.

What is not supported

PowerBuilder supports version 1.6 of the RTF standard, except for the following features:

• Formatted tables

• Drawing objects

6.13.2 Using the RichText presentation style

The RichText presentation style allows you to combine input fields that represent database
columns with formatted text. This presentation style is useful for display-only reports,

Working with DataWindows

Page 860

especially mail-merge documents. However, if you want to use the RichText DataWindow
object for data entry, you can specify validation rules and display formats for the input fields.

In the Design view, you see the text along with placeholders called input fields:

{FNAME} {LNAME}
{COMPANY_NAME}
{ADDRESS}
{CITY}, {STATE} {ZIP}

Dear {FNAME}:
...

In the Preview view, the text is the same, but PowerBuilder replaces the input fields with
values from the database:

Beth Reiser
AMF Corp.
1033 Whippany Road
New York, NY 10154

Dear Beth:
...

Document template

The formatted text acts like a document template. There is only one copy of the text. As the
user scrolls from row to row, the data for the current row is inserted in the input fields and the
user sees the document with the current data. If the user edits the text, the changes show up in
every row of data.

Input fields

In the RichText presentation style, an input field is associated with a column or computed
field. It gets its value from the retrieved data or from the computed field's expression.

If an input field is not a computed field and its name does not match a column, there is no
way to specify data for the input field.

There can be more than one copy of an input field in the rich text. In the sample above, there
are two instances of the field FNAME. Each instance of the field displays the same data.

Unavailable settings

Not all the settings available in other DataWindow styles are available. You cannot apply
code tables and edit styles, such as a DropDownDataWindow or EditMask, to input fields.
You cannot use slide left and slide up settings to reposition input fields automatically.
However, you can set the LineRemove property at runtime to achieve a similar effect.

6.13.2.1 Creating the DataWindow object

To create a RichText DataWindow object

1. In the New dialog box, select RichText from the DataWindow tab and click OK.

2. Select data for the DataWindow object as you do for any DataWindow object.

3. If you want data to be retrieved into the Preview view automatically, select the Retrieve
on Preview check box. For more information, see Building a DataWindow object.

Working with DataWindows

Page 861

4. Specify settings for the DataWindow object on the Specify RichText Settings screen,
click Next, and then click Finish.

Figure 6.189:

Available settings

The following table describes the types of settings you can make for the RichText
DataWindow object in the wizard.

Table 6.70: Wizard settings for RichText DataWindow objects

You can specify With these settings

Tools available to the user Rich text bars: Tool, Status, Ruler, and
PopUp Menu

Whether there will be a header and footer for
the printed DataWindow object

Header/Footer

Whether users are prevented from editing
input fields and text

Display Only

Colors for the whole background and the
background of input fields

Background Color: General and Input Field

Editing the content

After you click Finish in the wizard, you see input fields with their labels in the detail band in
the Design view:

Working with DataWindows

Page 862

Figure 6.190:

You can:

• Begin editing text in the detail, header, or footer bands, building a report around the input
fields. You can delete, move, copy, and paste text and input fields as needed.

• Include a rich text file you have already prepared. If you include a rich text file created in
PowerBuilder that contains input fields, those names should match the columns selected in
the DataWindow object.

For information about creating rich text files, see Section 4.5, “Implementing Rich Text”
in Application Techniques.

• Add computed fields that will appear as input fields in the report and whose values come
from the computed field expression.

This sample shows how you might rearrange the input fields in a sales letter:

Working with DataWindows

Page 863

Figure 6.191:

Editing text

You can add text by typing directly in the Design view. You do not have to create text objects
as you do for other DataWindow object styles. The DataWindow painter's StyleBar lets you
apply formatting to selected text. The RichText toolbars are not available in the painter.

Preview mode and editing text

You cannot edit text in the Preview view, but you can edit it when you preview the
DataWindow object by selecting File>Run/Preview from the menu bar. It may seem
convenient to edit text in Preview mode because the toolbars are available. However,
any changes you make to the text when previewing are temporary. They are discarded
as soon as you return to the Design view.

Inserting a file

If you have a rich text file, you can include it in the DataWindow object. In the Design view,
you can insert text from a file into the detail, header, or footer band.

To insert a file

Click in the text in any band to set the insertion point for the file.

1. Right-click in the Design view and select Insert File from the pop-up menu.

2. In the file selection dialog box, select the file you want to insert.

Only the body of the file is used. If the file has a header or footer, it is ignored.

Headers and footers

Working with DataWindows

Page 864

You decide whether your RichText DataWindow object has a header and footer by checking
Header/Footer in the wizard or Rich Text Object dialog box (described in Formatting for
RichText objects within the DataWindow object).The decision to include a header and footer
must be made at design time; it cannot be changed at runtime.

To display a page number or a date in the header or footer, you can insert the predefined
computed fields Page n of n or Today(). You do not need to write scripts to set the values of
these fields for each page, as you do for the RichTextEdit control.

6.13.2.2 Formatting for RichText objects within the DataWindow object

Each type of object in a RichText DataWindow object has its own dialog box. When you
select Properties from the pop-up menu, the dialog box you get depends on what is selected.

Properties and Control List views

The Properties and Control List views are not available for RichText DataWindow
objects. The painter uses the same property sheets as are available to users when they
run the DataWindow object, and controls in RichText DataWindow objects cannot be
manipulated in the same way as in other DataWindow objects.

Most of the objects in a RichText DataWindow object correspond to familiar objects like
bitmaps, columns, and computed fields. You can also specify formatting for a temporary
selected text object. In a RichText DataWindow object, the objects are:

• The whole document

• Selected text and paragraphs

• Input fields (associated with columns or computed fields)

• Pictures

This section describes how to select each type of object and access its dialog box. The user
can access the property sheets too if you enable the Popup Menu option on the Rich Text
Object's General dialog box.

6.13.2.2.1 The whole RichText DataWindow

Settings for the whole RichText DataWindow object include the values you specified in the
wizard, as well as:

• Whether pictures are displayed or represented by empty frames

• Whether newly entered text will wrap within the display

• Whether various nonprinting characters, such as tabs, returns, and spaces, are visible

• Standard DataWindow object settings such as units of measurement and the pointer

• Print specifications

Working with DataWindows

Page 865

Use the following procedure to change settings:

To set values for the RichText DataWindow object

1. Make sure nothing is selected in the Design view by clicking to set the insertion point.

2. Right-click in the Design view and select Properties from the pop-up menu.

3. Click Help to get more information about a specific setting.

6.13.2.2.2 Selected text and paragraphs

You can specify detailed font formatting for selected text. The selected text can be one
character or many paragraphs.

If an input field is part of the selection, the font settings apply to it, too. A picture that is part
of the selection ignores settings for the selected text object.

To specify formatting for selected text

1. Select the text you want to format.

2. Right-click in the Design view and select Properties from the pop-up menu.

The Selected Text Object dialog box displays. You can set:

• Paragraph alignment

The alignment setting on the Selected Text page applies to all paragraphs in the
selection.

• Font formatting

Settings on the Font page apply to text in the selection, including input fields.

Paragraphs

There are also settings for selected paragraphs. You can display the Paragraph dialog box by
pressing Ctrl+Shift+S. The user can double-click the ruler bar or press the key combination to
display the same dialog box.

Default font

The user can change the default font by double-clicking on the toolbar or pressing Ctrl+Shift
+D. You cannot change the default font in the painter.

6.13.2.2.3 Input fields

An input field can be either a column or a computed field. Before you retrieve data, its value
is shown as two question marks (??).

The text can include many copies of a named input field. The same data will appear in each
instance of the input field.

Column input fields

Working with DataWindows

Page 866

The columns you select for the DataWindow object become input fields in the rich text.
Because the input field's name matches the column name, PowerBuilder displays the
column's data in the input field.

If an input field exists in the text, you can copy and paste it to create another copy. If you
need to recreate a column input field that you deleted, use this procedure.

To insert a column input field in the text

1. Select Insert>Control>Column from the menu bar.

2. Click in the text where you want the column input field to appear.

PowerBuilder displays a list of the columns selected for the DataWindow object.

3. Select a column for the input field.

Properties for input fields

You select an input field by clicking inside it. A computed input field is selected when the
whole field is highlighted.

To set properties for an input field

1. Click in the input field in Design view.

2. Display the pop-up menu and select Properties.

3. On the Font page, specify text formatting.

4. On the Format page, specify a display format.

5. On the Validation page, specify a validation rule for the column.

If there are multiple copies of an input field, the validation and format settings apply
to all the copies. Background color on the Font page applies to all input fields. Other
settings on the Font page apply to individual instances.

The user cannot change the format or validation rule. At runtime, these pages are not
available in the dialog box.

Computed field input fields. When you display the dialog box for a computed field, the
settings are a little different. You can specify the input field name and its expression on the
Compute page and there is no validation.

Data Value in preview. For both columns and computed fields, you see a value in the
Data Value box when you preview the DataWindow object. The user sees a value in the Data
Value box when the current row has a value. For columns, users can change the value.

Computed fields

Computed fields have an expression that specifies the value of the computed field. In rich
text, they are represented as input fields, too. You specify a name and an expression. The data
value comes from evaluating the expression and cannot be edited.

Working with DataWindows

Page 867

To define a computed field:

1. Select Insert>Control>Computed Field.

Predefined computed fields

You can also select one of the predefined computed fields at the bottom of the
menu. PowerBuilder provides several predefined computed fields, but in a RichText
DataWindow object, only the page number (Page n of n) and today's date (Today())
are available.

2. Click in the text where you want the computed field to appear.

If you do not select a predefined computed field, PowerBuilder displays the dialog box
for the computed field:

Figure 6.192:

3. On the Compute page, name the computed field and specify its expression.

Working with DataWindows

Page 868

4. (Optional) On the Font page, specify text formatting.

5. (Optional) On the Format page, specify a display format.

If there are multiple copies of a computed field input field, the expression and format
settings apply to all the copies. Font settings apply to individual instances. For more
about computed field expressions and display formats, see Enhancing DataWindow
Objects.

6.13.2.2.4 Pictures

Inserting a picture

You can include bitmaps (BMP, GIF, JPG, RLE, or WMF files) in a RichText DataWindow.

To insert a picture in the rich text

1. Select Insert>Control>Picture from the menu bar.

2. Click in the text where you want the picture to appear.

PowerBuilder displays the Select Picture dialog box.

3. Select the file containing the picture.

Specifying picture size

A picture is selected when you can see a dashed outline in Design or Preview view. When the
picture is part of a text selection, it displays with inverted colors.

You can change the size of a picture as a percentage of the original picture size. The
allowable range for a size percent change is between 10 and 250 percent.

To specify size settings for the picture

1. Click on the picture in the Design or Preview view so you see its dashed-outline frame.

2. Right-click in the Design or Preview view and select Properties from the pop-up menu.

The Rich Text - Picture Object dialog box displays.

3. Change the percent of the original picture size in the Width and Height text boxes.

The picture expands or contracts according to the size percentage you selected.

6.13.2.3 Previewing and printing

To see what the RichText DataWindow object looks like with data, you can preview it in the
Preview view or in preview mode.

To preview the DataWindow object in preview mode

1. Select File>Run/Preview from the menu bar, or click the Run/Preview button on the
PowerBar.

2. Select Rows>Retrieve from the menu bar.

Working with DataWindows

Page 869

Retrieve on Preview

If the RichText definition specifies Retrieve on Preview, data is retrieved
automatically when you open the Preview view or preview the DataWindow object in
preview mode.

Changes in preview

Datax. While previewing the DataWindow object in preview mode, or when focus is in
the Preview view, you can use the scroll buttons in the Preview toolbar to move from row to
row, and you can change data in the input fields. If you choose the Save Changes button on
the toolbar, you will update the data in the database.

Text. Any changes you make to the rich text in the Preview view will not be reflected in
the Design view. Any changes that you want to keep must be made in the Design view, not in
preview.

If the Display Only setting is checked, you cannot change text or data in the Preview view.

Print Preview

Print Preview displays a reduced view of one row of data as it would appear when printed.

To see the DataWindow object in Print Preview:

1. Click in the Preview view to make it the current view.

2. Select File>Print Preview.

In Print Preview, you can test different margin settings and scroll through the pages of
the document.

You cannot scroll to view other rows of data.

Any changes you make to settings in Print Preview are discarded when you return to the
Design view.

Setting margins

To specify permanent margin settings for the RichText DataWindow object, use the
Print Specifications page of the Rich Text Object dialog box.

6.13.3 Using the RichTextEdit control

You can add a RichTextEdit control to a window to enhance your application with word
processing capabilities.

Users can enter text in a RichTextEdit control, format it, save it to a file, and print it. You can
also enable a pop-up menu from which users can control the appearance of the control and
import documents.

To add a RichTextEdit control to a window:

• In the Window painter, select Insert>Control>RichTextEdit and click the window.

Working with DataWindows

Page 870

Controlling the appearance of a RichTextEdit control

You modify the appearance of a RichTextEdit control by setting its properties. Some of the
properties you can set are:

• The toolbars that appear in the control

• The visibility of nonprinting characters and graphics

To control the appearance of a RichTextEdit control:

1. Select the control, then select the Document tab in the Properties view.

2. Choose the appropriate properties to display toolbars.

3. Choose the appropriate properties if you want to display nonprinting characters such as
tabs, spaces, and returns.

For information about other options on the Document properties page, select Help from
the property page's pop-up menu.

Making a RichTextEdit control read-only

There are times when you might want to import a file into the RichTextEdit control and not
give the user the opportunity to alter it. You can make a control read-only by setting the
Enabled and Popup Menu properties.

To make a RichTextEdit control read-only:

1. Select the control, then select the General tab in the Properties view.

2. Make sure the Enabled check box is cleared.

3. Select the Document tab.

4. Make sure the PopMenu check box is cleared.

Enabling the pop-up menu

If you enable the pop-up menu property, users can customize the appearance of the
RichTextEdit control.

From the pop-up menu, users can:

• Perform editing tasks (cut, copy, paste, and clear)

• Insert a file into the RichTextEdit control

• Display and modify the Rich Text Object dialog box

Working with DataWindows

Page 871

Figure 6.193:

The General property page on the user's Rich Text Object dialog box presents many of the
same options as the Document property page in the development environment.

For more information about the RichTextEdit control, see Section 4.5, “Implementing Rich
Text” in Application Techniques.

6.13.4 Formatting keys and toolbars

When the toolbar is visible, you can use its buttons to format text. The changes you make in
preview are temporary.

The keystrokes listed in the following tables also assign formatting to selected text.

Keyboard shortcuts do not work in the painter

These keystrokes work only when you are running the DataWindow object or the
window containing the RichTextEdit control. In PowerBuilder, only keyboard
shortcuts defined for menu items in the painter can be used.

Working with DataWindows

Page 872

Table 6.71: Keyboard shortcuts for RichText DataWindow objects

Category Action Key

Cut Ctrl+X

Paste Ctrl+V, Shift+Insert

Copy Ctrl+C

Using the clipboard

Undo Ctrl+Z

Bold Ctrl+B

Italic Ctrl+I

Underline Ctrl+U

Subscript Ctrl+=

Superscript Ctrl+Shift+=

Strikeout Ctrl+U

Assigning font attributes

Change font Ctrl+Shift+U

Single space Ctrl+1

Double space Ctrl+2

Setting line spacing

One and a half space Ctrl+5

Justify Ctrl+J

Center Ctrl+E

Left Ctrl+L

Right Ctrl+R

Aligning text

Set paragraph formatting Ctrl+Shift+S

Insert a new paragraph Enter

Insert an empty line Ctrl+N

Delete character to right of
insertion point

Delete

Editing

Delete character to left of
insertion point

Backspace

Select the input field at the
insertion point

Enter

Activate the input field at the
insertion point

Space

When input field is active,
accept data and exit field

Enter

When input field is active,
exit field without changing
data

Esc

Move to next input field Ctrl+Tab

Input fields

Move to previous input field Shift+Ctrl+Tab

Working with DataWindows

Page 873

Category Action Key

Select All Ctrl+A

Print Ctrl+P

Undo Ctrl+Z

Toggle display of nonprinting
characters

Ctrl+*

Miscellaneous

Toggle preview mode Ctrl+F2

Navigating and selecting text

Table 6.72: Keyboard shortcuts for navigating and selecting text

Move or select Navigating key Selection key

A character to the right or left Right Arrow or Left Arrow Shift+Right Arrow or Shift
+Left Arrow

A word to the right or left Ctrl+Right Arrow or Ctrl
+Left Arrow

Ctrl+Shift+Right Arrow or
Ctrl+Shift+Left Arrow

A line up or down Up Arrow or Down Arrow Shift+Up Arrow or Shift
+Down Arrow

To start of line Home Shift+Home

To end of line End Shift+End

To start of document Ctrl+Home Ctrl+Shift+Home

To end of document Ctrl+End Ctrl+Shift+End

To next input field Ctrl+Tab

To previous input field Shift+Ctrl+Tab

6.14 Using OLE in a DataWindow Object

About this chapter

This chapter describes how to use OLE in DataWindow objects.

6.14.1 About using OLE in DataWindow objects

A DataWindow object can include a control that is a container for an OLE object. The
container stores information about the application that created the object and it can launch the
application to display or modify the OLE object.

The container can fill the whole DataWindow object, when you create a new DataWindow
object using the OLE presentation style, or it can exist alongside other controls in a
DataWindow object, when you add an OLE object to an existing DataWindow object. You
can also read OLE data from a blob column in a database and display the objects in the
DataWindow object.

You can use OLE objects in DataWindow objects in the following ways:

• OLE object in a DataWindow object

Working with DataWindows

Page 874

The OLE object is displayed in its container control with the DataWindow data and other
controls, such as bitmaps or text. You can associate it with data in a particular row, the
rows on a page, or with all rows. You choose which columns in the DataWindow object
are transferred to the OLE object. You can add an OLE container control to a DataWindow
object that uses any presentation style that supports multiple DataWindow objects. (This
does not include the graph and RichText presentation styles.)

• OLE presentation style

The OLE presentation style is similar to an OLE object in a DataWindow object. The
difference is that the OLE container is the only control in the DataWindow object. The
underlying data is not presented in column controls and there are no other controls, such as
bitmaps or text. The OLE object is always associated with all the rows in the DataWindow
object.

• OLE database blob column

OLE objects that are stored in the database in a blob column are displayed in each row of
the DataWindow object.

You can also add ActiveX controls (also called OLE custom controls or OCXs) to
DataWindow objects. ActiveX controls range from simple visual displays, such as meters and
clocks, to more complex controls that perform spell checking or image processing.

The behavior of OLE objects in DataWindow objects is similar to the behavior of OLE
controls in windows.

For more information about linked and embedded objects and automation, see Section 5.3,
“Using OLE in an Application” in Application Techniques.

Activating OLE objects

When you are working in the DataWindow painter, you can start the server application for an
OLE object by selecting Open from the pop-up menu. Once the server application has started,
you can use the tools provided by the server to edit the initial presentation of the object.

If the OLE object is associated with all rows retrieved and is in the foreground or background
layer, not the band layer, users can activate the object. If the object is associated with a
single row or page or is in the band layer, users can see the object but cannot activate it.
DataWindows created using the OLE presentation style are always associated with all rows.

Unlike OLE objects, ActiveX controls are always active. They do not contain objects that
need to be opened or activated.

Editing OLE objects

When an OLE object is activated, you can edit the presentation of the data. Changes made to
DataWindow data affect the OLE object. Changes made to the OLE object do not affect the
data the DataWindow object retrieved.

Each OLE object stored in the database in a blob column can be activated and changed.
When the DataWindow object updates the database, the changes are saved.

What's next

Whether you are inserting an OLE object into a DataWindow object or using the OLE
presentation style, you use the same procedures to define, preview, and specify data for

Working with DataWindows

Page 875

the OLE object. Because of their similarities, the next section discusses both OLE objects
in DataWindow objects and the OLE presentation style. The last section discusses OLE
database blob columns.

6.14.2 OLE objects and the OLE presentation style

Whether you insert an OLE object into a DataWindow object or create a new DataWindow
object using the OLE presentation style, you are working with an OLE container object
within the DataWindow object.

Similarities

They have these characteristics in common:

• Icon or contents

The DataWindow object can display the OLE object as an icon, or it can display an image
of the contents when display of contents is supported by the server.

• Data from the DataWindow object

You specify which DataWindow columns you want to transfer to the OLE object. The data
that is sent to the OLE server replaces the OLE object template specified in the painter.

Differences

The OLE object in a DataWindow object and the OLE presentation style have these main
differences:

• Associating the object with rows

When the OLE object is added to a DataWindow object, you can associate it with
individual rows, groups of rows, or all rows. In the presentation style, the OLE object is
always associated with all rows.

• Properties view

The Properties view for an OLE object has different pages and some different properties
from the OLE DataWindow object. For example, the Properties view for an OLE object in
a DataWindow object does not contain detailed print specification settings because these
are set in the DataWindow object's own Properties view. However, it does have settings
related to the position of the OLE object within the DataWindow object.

Not all servers are appropriate

The features of the OLE server application determine whether it can provide useful
information in a DataWindow object.

If the server does not support display of contents, it is not useful for objects associated
with rows. The user sees only the icon. Some servers support the display of contents,
but the view is scaled too small to be readable even when the object is activated.

In this section

This section includes procedures for:

Working with DataWindows

Page 876

1. Adding an OLE object to a DataWindow object

2. Using the OLE presentation style

3. Defining the OLE object

4. Previewing the DataWindow object

5. Specifying DataWindow data for the OLE object

6.14.2.1 Adding an OLE object to a DataWindow object

To add an OLE object to a DataWindow object, you begin by specifying where you want the
OLE object and opening the Insert Object dialog box so you can define the OLE object.

Adding an ActiveX control

Adding an ActiveX control to a DataWindow object is similar to adding an OLE
object. Both exist within the DataWindow object with other controls, such as
columns, computed fields, and text controls.Use the following procedure whether you
want to add an OLE object or an ActiveX control to an existing DataWindow object.

To place an OLE object in a DataWindow object

1. Open the DataWindow object that will contain the OLE object.

2. Select Insert>Control>OLE Object from the menu bar, or from the toolbar, click the
Object drop-down arrow and select the OLE button (not OLE Database Blob).

3. Click where you want to place the OLE object.

PowerBuilder displays the Insert Object dialog box.

To use the Insert Object dialog box, see Defining the OLE object.

6.14.2.2 Using the OLE presentation style

Use the OLE presentation style to create a DataWindow object that consists of a single OLE
object. The following procedure creates the new DataWindow object and opens the Insert
Object dialog box.

To create a new DataWindow object using the OLE presentation style

1. In the New dialog box, select OLE 2.0 from the DataWindow tab and click OK.

2. Select data for the DataWindow object as you do for any DataWindow object.

For more information about selecting data, see Defining DataWindow Objects.

3. Specify how the OLE object will use the DataWindow object's data on the Specify OLE
Data page:

Working with DataWindows

Page 877

Figure 6.194:

You can drag the columns you want the OLE object to use to the Target Data box. You
can also control the grouping of data and edit the expression for a column. If necessary,
you can change these specifications later.

For more information, see Specifying data for the OLE object.

4. Click Next, and then click Finish.

PowerBuilder displays the Insert Object dialog box in which you define the OLE object.

To use the Insert Object dialog box, see Defining the OLE object.

6.14.2.3 Defining the OLE object

You define the OLE object in the Insert Object dialog box. It has three tab pages:

Table 6.73:

If you want to Select this tab page

Embed an OLE server object in the
DataWindow object

Create New

Link or embed the contents of an existing file
as an OLE object so that it can be activated
using the application that created it

Create From File

Insert an ActiveX control in the DataWindow
object

Insert Control

This section contains procedures for each of these selections.

Create New

Working with DataWindows

Page 878

Use the following procedure if you want to embed a new OLE server object.

To embed a new OLE server object using the Create New tab

1. Select the Create New tab.

2. In the Object Type box, highlight the OLE server you want to use.

You can click Browse to get information about the server from the registry.

Optionally display the OLE object as an icon by doing one of the following:

• Check Display as Icon to display the server application's default icon in the control.

• Check Display as Icon and then select Change Icon to supply a nondefault icon and
icon label.

3. Click OK.

The OLE object is inserted in your DataWindow object and the OLE server is activated.
Depending on the OLE server and whether or not you have already specified how the
OLE object will use the DataWindow object's data, the object may be empty or may
show an initial presentation of the OLE object. Close the server application and, if you
are inserting an OLE object in a DataWindow object, specify the object's properties (see
Specifying properties for OLE objects [879]).

Create From File

Use the following procedure if you want to link or embed the contents of an existing file as
an OLE object so that it can be activated using the application that created it. Most of the
steps in this procedure are the same as those for embedding a new OLE server object.

A server application must be available

You (and the user) must have an application that can act as a server for the type of
object you link or embed. For example, if you insert a BMP file, it displays because
an application that can handle bitmaps is installed with Windows. If you insert a GIF
or JPEG file, it displays only if you have a third-party graphics application installed.

To link or embed an existing object using the Create From File tab

1. Select the Create From File tab.

2. Specify the file name in the File Name box. If you do not know the name of the file,
click the Browse button and select a file in the dialog box.

3. To create a link to the file, rather than embed a copy of the object in the control, select
the Link check box.

4. Click OK.

The OLE object is inserted in your DataWindow object and the OLE server is activated.
Depending on the OLE server and whether or not you have already specified how the

Working with DataWindows

Page 879

OLE object will use the DataWindow object's data, the object might be empty or might
show an initial presentation of the OLE object. Close the server application and, if you
are inserting an OLE object in a DataWindow object, specify the object's properties (see
Specifying properties for OLE objects [879]).

Insert Control

Use the following procedure if you want to insert an ActiveX control (OLE custom control)
in the DataWindow object.

To insert an ActiveX control using the Insert Control tab

1. Select the Insert Control tab.

2. In the Control Type box, highlight the ActiveX control you want to use, or, if the
ActiveX control you want has not been registered, click Register New.

If you select an existing ActiveX control, you can click Browse to get more information
about it. ActiveX controls are self documenting. PowerBuilder gets the property, event,
and function information from the ActiveX control itself from the registry.

If you click Register New, you are prompted for the file that contains the registration
information for the ActiveX control.

3. Click OK.

If you did not specify how the OLE object will use the DataWindow object's data when
you created the DataWindow object, do so on the Data property page.

If you have inserted an ActiveX control that does not display data, such as the Clock
control, you do not need to transfer data to it.

For more information, see Specifying data for the OLE object.

Specifying properties for OLE objects

For OLE objects, you need to specify how the OLE object will use the DataWindow object's
data. If you used the OLE presentation style, you did this when you created the DataWindow
object.

If you are inserting an OLE object in an existing DataWindow object, you can also associate
the object with the current row. If you are using the OLE presentation style, the OLE object is
always associated with all rows.

To specify properties for an OLE object

1. Select the Data property page in the Properties view.

2. Specify how the OLE object will use the DataWindow object's data.

For more information, see Specifying data for the OLE object.

3. (Optional) To associate the object with the current row, select the Position property page
and change the value in the Layer box to Band.

4. Click OK when you have finished.

Working with DataWindows

Page 880

6.14.2.4 Specifying data for the OLE object

You set data specifications for an OLE object in a DataWindow object on the Data property
page in the Properties view. You can also use the Data property page to modify the data
specifications you made in the wizard for a DataWindow object using the OLE presentation
style.

What the data is for

When an OLE object is part of a DataWindow object, you can specify that some or all of
the data the DataWindow object retrieves be transferred to the OLE object too. You can
specify expressions instead of the actual columns so that the data is grouped, aggregated, or
processed in some way before being transferred.

The way the OLE object uses the data depends on the server. For example, data transferred to
Microsoft Excel is displayed as a spreadsheet. Data transferred to Microsoft Graph populates
its datasheet, which becomes the data being graphed.

Some ActiveX controls do not display data, so you would not transfer any data to them. For
an ActiveX control such as Visual Speller, you would use automation to process text when
the user requests it.

Group By and Target Data boxes

Two boxes on the Data property page list data columns or expressions:

• Group By

Specifies how PowerBuilder groups the data it transfers to the OLE object. Aggregation
functions in the target data expressions use the groupings specified here.

• Target Data

Specifies the data that you want to transfer to the OLE object.

Populating the Group By and Target Data boxes

If you are using the OLE presentation style, you populated the Group By and Target Data
boxes when you created the DataWindow object. If you placed an OLE object in an existing
DataWindow object, the boxes are empty. You use the browse buttons next to the Group By
and Target Data boxes to open dialog boxes where you can select the data you want to use or
modify your selections.

Modifying source data

You cannot modify the source data for the DataWindow object on the Data property
page. Select Design>Data Source from the menu bar if you need to modify the data
source.

To select or modify how data will be grouped in the OLE object

1. Click the Browse button next to the Group By box.

2. In the Modify Group By dialog box, drag one or more columns from the Source Data
box to the Group By box.

You can rearrange columns and specify an expression instead of the column name if you
need to. For more information, see the next procedure.

Working with DataWindows

Page 881

To select or modify which data columns display in the OLE object

1. Click the Browse button next to the Target Data box.

2. In the Modify Target Data dialog box, drag one or more columns from the Source Data
box to the Target Data box.

The same source column can appear in both the Group By and Target Data box.

3. If necessary, change the order of columns by dragging them up or down within the
Target Data box.

The order of the columns and expressions is important to the OLE server. You need to
know how the server will use the data to choose the order.

4. Double-click an item in the Target Data box to specify an expression instead of a
column.

In the Modify Expression dialog box, you can edit the expression or use the Functions
or Columns boxes and the operator buttons to select elements of the expression. For
example, you may want to specify an aggregation function for a column. Use the range
for object if you use an aggregation function; for example, sum (salary for object).

For more information about using operators, expressions, and functions, see Part I,
“DataWindow Reference”.

Example of a completed Data property page. This example of the Data property page
specifies two columns to transfer to Microsoft Graph: city and salary. Graph expects the first
column to be the categories and the second column to be the data values. The second column
is an aggregate so that the graph will show the sum of all salaries in each city:

Figure 6.195:

Specifying a value for Rows

Working with DataWindows

Page 882

The last setting on the Data property page specifies how the OLE object is associated with
rows in the DataWindow object. The selection (all rows, current row, or page) usually
corresponds with the band where you placed the OLE object, as explained in this table. If
you used the OLE presentation style to create the DataWindow object, this setting does not
display on the property page: the OLE object is always associated with all the rows in the
DataWindow object.

Table 6.74: Associating an OLE object with rows in the DataWindow

Range of
rows

When to use it

All When the OLE object is in the summary, header, or footer band, or the
foreground or background layer.

Rows must be All and Layer must be Foreground or Background if you want
the user to be able to activate the object.

Target data for all rows is transferred to the object.

Current Row When the OLE object is in the detail band.

There is an instance of the OLE object for every row. Target data for a single
row is transferred to each object.

Because ActiveX controls must be in the foreground or background layer,
they cannot be associated with individual rows in the detail band.

Page When the OLE object is in the group header or trailer, foreground, or
background.

Target data for the rows on the current page is transferred to the OLE object.

Range of rows and activating the object

When the range of rows is Current Row or Page, the user cannot activate the OLE
object. The user can see contents of the object in the form of an image presented by
the server but cannot activate it.

If you want the user to activate the object, Rows must be set to All and Layer on the
Position property page must be Foreground or Background.

Additional settings in the Properties view

The Options property page in the OLE object's Properties view has some additional settings.
They are similar to the settings you can make for the OLE control in a window. These
settings display on the General property page for OLE DataWindow objects. The following
table describes the settings you can make.

Table 6.75: Settings on the OLE object's Options property page

Property Effect

Client
Name

A name for the OLE object that some server applications use in the title bar of
their window.

Corresponds to the ClientName DataWindow property.

Working with DataWindows

Page 883

Property Effect

Activation How the OLE object is activated. Choices are:

Double click

When the user double-clicks on the object, the server application is activated.

Manual

The object can only be activated programmatically.

The object can always be activated programmatically, regardless of the
Activation setting.

Contents Whether the object in the OLE container is linked or embedded. The default is
Any, which allows either method.

Display
Type

What the OLE container displays. You can choose:

Manual

Display a representation of the object, reduced to fit within the container.

Icon

Display the icon associated with the data. This is usually an icon provided by
the server application.

Link
Update

When the object in the OLE container is linked, the method for updating link
information. Choices are:

Automatic

If the link is broken and PowerBuilder cannot find the linked file, it displays a
dialog box in which the user can specify the file.

Manual

If the link is broken, the object cannot be activated.

You can let the user re-establish the link in a script using the
UpdateLinksDialog function.

6.14.2.5 Previewing the DataWindow object

Previewing the DataWindow object lets you see how the OLE object displays the data from
the DataWindow object. You can preview in the Preview view or in preview mode

To preview the DataWindow object with the OLE object in preview mode

1. Select File>Run/Preview from the menu bar, or click the Run/Preview button on the
PowerBar.

2. Select Rows>Retrieve from the menu bar.

The DataWindow object retrieves rows from the database and replaces the initial
presentation of the OLE object with an image of the data that the OLE server provides.

If you associated the OLE object with all rows, activate the OLE object by double-
clicking on it.

Working with DataWindows

Page 884

Although you can edit the presentation or the data in the server, your changes do not
affect the DataWindow object's data.

You cannot always activate the OLE object

If the OLE object is associated with individual rows in the detail band or with the
page, you (and the user) cannot activate it; you can only view it.

3. Close the preview window.

Closing the preview window or the Preview view deactivates the OLE object.

6.14.2.6 Activating and editing the OLE object

In the Design view

PowerBuilder stores an initial presentation of the OLE object that it displays before data is
retrieved and in newly inserted rows. When you activate the OLE object in the Design view,
you are editing the initial presentation of the OLE object. Any changes you make and save
affect only this initial presentation. After rows are retrieved and data transferred to the OLE
object, an object built using the data replaces the initial presentation.

In preview or at execution time

PowerBuilder displays the initial presentation of the OLE object while it is retrieving rows
and then replaces it with the retrieved data.

After you activate the OLE object in preview or at execution time, you can edit the
presentation of the data. However, you cannot save these changes. The object is recreated
whenever data from retrieved rows is transferred to the OLE object.

For more information, see Activating OLE objects [874].

Saving as a PSR

You can save the object with its data by saving the DataWindow object as a
Powersoft report (PSR). Select File>Save As File or File>Save Rows As from the
menu bar.

To activate the OLE object in the container in the Design view

• Select Open from the container's pop-up menu.

Selecting Open from an ActiveX control's pop-up menu has no effect. ActiveX controls
are always active.

6.14.2.7 Changing the object in the control

In the DataWindow painter, you can change or remove the OLE object in the OLE container
object.

To delete the OLE object in the container

• Select Delete from the container's pop-up menu.

The container object is now empty and cannot be activated.

Working with DataWindows

Page 885

To change the OLE object in the container

1. Select Insert from the container's pop-up menu.

PowerBuilder displays the Insert Object dialog box.

2. Choose one of the tabs and specify the type of object you want to insert, as you did
when you defined the object.

3. Click OK.

6.14.3 Using OLE columns in a DataWindow object

You can create OLE columns in a DataWindow object. An OLE column allows you to:

• Store blob (binary large-object) data, such as Microsoft Excel worksheets or Microsoft
Word documents, in the database

• Retrieve blob data from a database into a DataWindow object

• Use an OLE server application, such as Microsoft Excel or Microsoft Word, to modify the
data

• Store the modified data back in the database

You can modify the document in the server, then update the data in the DataWindow object.
When the database is updated, the OLE column, which contains the modified document, is
stored in the database.

Database support for OLE columns

If your database supports a blob datatype, then you can implement OLE columns
in a DataWindow object. The name of the datatype that supports blob data varies.
For information on which datatypes your DBMS supports, see your DBMS
documentation.

6.14.3.1 Creating an OLE column

This section describes how to create an OLE column in a DataWindow object. The steps are
illustrated using a table that you can create in the Database painter. It must contain at least
two columns, id and object:

• The id column is an integer and serves as the table's key.

• The object column is a blob datatype and contains OLE objects associated with several
OLE servers.

To create the database table

1. In the Database painter, create a table to hold the blob (binary large-object) data.

The table must have at least two columns: a key column and a column with the blob
datatype. The actual datatype you choose depends on your DBMS. For example, in SQL
Anywhere, choose long binary as the datatype for the blob column. For information
about datatypes, see your DBMS documentation.

Working with DataWindows

Page 886

2. Define the blob columns as allowing NULLs (this allows you to store a row that does
not contain a blob).

Adding a blob column to the DataWindow object

The following procedure describes how to add a blob column to a DataWindow object.

To add a blob column to a new DataWindow object

1. Create a new DataWindow object.

2. Specify the table containing the blob as the data source for the DataWindow object.

Be sure to include the key column in the data source. You cannot include the blob
column in the data source; if you try, a message tells you that its datatype requires the
use of an embedded SQL statement. You add the blob column later in the DataWindow
painter workspace. (If you use Quick Select, the blob column is not listed in the dialog
box.)

3. Select Insert>Control>OLE Database Blob and click where you want the blob column in
the Design view.

The Database Binary/Text Large Object dialog box displays:

Figure 6.196:

Working with DataWindows

Page 887

Setting properties for the blob column

The following procedure describes the properties you need to set for the blob column.

To set properties for a blob column

1. (Optional) Enter the client class in the Client Class box. The default is DataWindow.

This value is used in some OLE server applications to build the title that displays at the
top of the server window.

2. (Optional) Enter the client name in the Client Name box. The default is Untitled.

This value is used in some OLE server applications to build the title that displays in the
title bar of the server window.

3. In the Table box, select the database table that contains the blob database column you
want to place in the DataWindow object.

The names of the columns in the selected table display in the Large Binary/Text
Columns list.

4. In the Large Binary/Text Columns box, select the column that contains the blob datatype
from the list.

5. If necessary, change the default key clause in the Key Clause box.

PowerBuilder uses the key clause to build the WHERE clause of the SELECT statement
used to retrieve and update the blob column in the database. It can be any valid WHERE
clause.

6. Use colon variables to specify DataWindow columns. For example, if you enter this key
clause:

id = :id

the WHERE clause will be:

WHERE id = :id

7. Identify the OLE server application by doing one of the following:

• If you always want to open the same file in the OLE server application, enter the
name of the file in the File Template box.

For example, to specify a particular Microsoft Word document, enter the name of the
DOC file. If the file is not on the current path, enter the fully qualified name.

Use the Browse button to find the file

If you do not know the name of the file you want to use, click the Browse button to
display a list of available files. Select the file you want from the resulting window.

• If you do not want to open the same file each time, select an OLE server application
from the OLE Class: Description drop-down list.

Working with DataWindows

Page 888

When the server does not match the OLE blob data

If you specify a server that does not match the OLE blob object or if your database
contains objects belonging to different servers, the OLE mechanism can usually
handle the situation. It looks for the server specified in the object and starts it instead
of the server you specified.

8. Enter text or an expression that evaluates to a string in the Client Name Expression box.

The server might use this expression in the title of the window in the OLE server
application. The expression you specify can identify the current row in the DataWindow
object.

Use an expression to make sure the name is unique

To make sure the name is unique, you should use an expression. For example, you
might enter the following expression to identify a document (where id is the integer
key column):

"Document " + String(id)

9. Click OK.

PowerBuilder closes the dialog box. The blob column is represented by a box labeled
Blob in the Design view.

10. Save the DataWindow object.

The following screenshot shows what a completed Definition page for a Blob object in a
table called ole looks like in the Properties view:

Working with DataWindows

Page 889

Figure 6.197:

Making the blob column visible

If the blob column is invisible in the DataWindow object until you activate the OLE server,
you can make it easy to find the blob column by adding a border to the object.

Previewing an OLE column

Before using the DataWindow object in an application, you should preview it in the Preview
view or in preview mode to see how it works.

To preview an OLE column in preview mode

1. Select File>Run/Preview from the menu bar and select the DataWindow object.

2. Click the Insert Row button.

PowerBuilder adds a blank row.

3. In the blank row, enter a value in the key column.

4. Double-click the column that contains the blob datatype.

The OLE server application starts and displays the file you specified in the File
Template box, or an empty workspace if you specified only the OLE server name.

Working with DataWindows

Page 890

5. Review the file in the OLE server application and make changes if you want.

When you use an OLE column to access an OLE server application, the server
application adds an item to its File menu that allows you to update the data in the
server application and in the client (the DataWindow object). The text of the menu item
depends on the OLE server application. In most applications, it is Update.

6. Select the menu item in the OLE server that updates the OLE client with the
modifications.

In the example, you would select Update from the File menu in Microsoft Word. The
OLE server application sends the updated information to the DataWindow object.

7. Close the file in the server application (typically by selecting Close from the File menu).

8. To save the blob data in the database, click the Save Changes button in the PainterBar.

The new row, including the key value and the blob, is stored in the database.

Later, after you retrieve the rows from the database, you can view and edit the blob
by double-clicking it, which invokes the OLE server application and opens the stored
document. If you make changes and then update the database, all the modified OLE
columns are stored in the database.

Running Your Application

Page 891

7 Running Your Application
This part describes the ways in which your application can be run. The first chapter describes
how to run your application from within PowerBuilder: in debug mode, where you can
set breakpoints and examine the state of your application as it executes, and in regular
mode, where the application runs until you stop it or an error occurs. The second chapter
describes how to collect trace information so that you can analyze performance and evaluate
your application's structure. The third chapter describes how to build your application for
distribution to users.

7.1 Debugging and Running Applications

About this chapter

This chapter describes how to debug and run an application in PowerBuilder. The chapter
also lists the errors that can occur at runtime.

7.1.1 Overview of debugging and running applications

After you build all or part of an application and compile and save its objects, you can run
the application. The PowerBuilder development environment provides two ways to run an
application: in debug mode and in regular mode.

Debug mode

In debug mode, you can insert breakpoints (stops) in scripts and functions, single-step
through code, and display the contents of variables to locate logic errors that will result in
errors at runtime.

Regular mode

In regular mode, the application responds to user interaction and runs until the user stops
it or until a runtime error occurs. This is the mode you and your users will use to run the
completed application.

You can also collect trace information while you run your application in regular mode, then
use the trace data to profile your application. For more information, see Tracing and Profiling
Applications.

This chapter describes:

• Running applications in debug mode

• Running applications in regular mode

7.1.2 Debugging an application

Sometimes an application does not behave the way you think it will. Perhaps a variable is
not being assigned the value you expect, or a script does not perform as desired. In these
situations, you can examine your application by running it in debug mode.

When you run the application in debug mode, PowerBuilder stops execution before it
executes a line containing a breakpoint (stop). You can then step through the application and
examine its state.

Running Your Application

Page 892

To debug an application:

1. Open the debugger.

2. Set breakpoints at places in the application where you have a problem.

3. Run the application in debug mode.

4. When execution is suspended at a breakpoint, look at the values of variables, examine
the properties of objects in memory and the call stack, or change the values of variables.

5. Step through the code line by line.

6. As needed, add or modify breakpoints as you run the application.

When you uncover a problem, fix your code and run it in the debugger again.

7.1.2.1 Starting the debugger

To open the debugger

• Do one of the following:

• In the System Tree, highlight a target and select Debug from the pop-up menu

• Click the Debug or Select and Debug button on the PowerBar

• Select Run>Debug or Run>Select and Debug from the menu bar

The Debug button opens the debugger for the current target. The current target displays
in bold in the System Tree and its name displays in the Debug button tool tip. The Select
and Debug button opens a dialog box that lets you select the target to be debugged.

Views in the debugger

The debugger contains several views. Each view shows a different kind of information
about the current state of your application or the debugging session. The following table
summarizes what each view shows and what you can do from that view.

Table 7.1: Views in the debugger

View What it shows What you can do

BreakpointsA list of breakpoints with indicators
showing whether the breakpoints are
currently active or inactive

Set, enable, disable, and clear
breakpoints, set a condition for a
breakpoint, and show source for a
breakpoint in the Source view.

Call Stack The sequence of function calls leading
up to the function that was executing
at the time of the breakpoint, shown
as the script and line number from
which the function was called

Examine the context of the application
at any line in the call stack.

Running Your Application

Page 893

View What it shows What you can do

Instances Instances of remote objects and their
current status

Change the context of the debugging
session to a different instance. This
view has content only if you are
debugging a remote component.

Objects in
Memory

An expandable list of objects
currently in memory

View the names and memory locations
of instances of each memory object and
property values of each instance. This
view is not used if you are debugging a
remote component.

Source The full text of a script Go to a specific line in a script, find a
string, open another script, including
ancestor and descendant scripts, manage
breakpoints, and use TipWatch and
QuickWatch.

Source
Browser

An expandable hierarchy of objects in
your application

Select any script in your application and
display it in the Source view.

Source
History

A list of the scripts that have been
displayed in the Source view

Select any script in the Source History
and display it in the Source view.

Variables An expandable list of all the variables
in scope

Select which kinds of variables are
shown in the view, change the value of
a variable, and set a breakpoint when a
variable changes. You cannot change
the value of a variable in a remote
component.

Watch A list of variables you have selected
to watch as the application proceeds

Change the value of a variable, set a
breakpoint when a variable changes,
and add an arbitrary expression to the
Watch view.

Changing Variable views

The default debugger layout contains a separate view for each variable type in a stacked pane.
You can combine two or more Variables views in a single pane. For example, you might
want to combine local and global variables in a single view that you keep at the top of the
stacked pane.

To display multiple variable types in a single view

1. Display the pop-up menu for a pane that contains a Variables view you want to change.

2. Click the names of the variable types you want to display.

A check mark displays next to selected variable types. The pop-up menu closes each
time you select a variable type or clear a check mark, so you need to reopen the menu to
select an additional variable type.

When you select or clear variable types, the tab for the pane changes to show the
variable types displayed on that pane.

Running Your Application

Page 894

Figure 7.1:

7.1.2.2 Setting breakpoints

A breakpoint is a point in your application code where you want to interrupt the normal
execution of the application while you are debugging. If you suspect a problem is occurring
in a particular script or function call, set a breakpoint at the beginning of the script or at the
line where the function is called.

When you close the debugger, any breakpoints you set are written to a file called
targetname.usr.opt in the same directory as the target, where targetname is the name
of the target. The breakpoints are available when you reopen the debugger. When you
clear breakpoints, they are permanently removed from the usr.opt file (if it is not marked
readonly).

Sharing targets

If multiple developers use the same target without using source control (a practice
that is not recommended) individual developers can save the breakpoints they set in a
separate file by adding the following entry to the [pb] section of their pb.ini file:

UserOptionFileExt=abc

where abc might be the developer's name or initials. Breakpoints set by the developer
would be saved in a file called appname_abc.usr.opt.

Setting a simple breakpoint

This procedure describes setting a breakpoint in the Source view in the debugger. You can
also set a breakpoint by selecting Add Breakpoint from the pop-up menu in the Script view
when you are not running the debugger.

To set a breakpoint on a line in a script

1. Display the script in a Source view and place the cursor where you want to set the
breakpoint.

For how to change the script shown in the Source view, see Using the Source view.

2. Double-click the line or select Add Breakpoint from the pop-up menu.

PowerBuilder sets a breakpoint and a red circle displays at the beginning of the line. If
you select a line that does not contain executable code, PowerBuilder sets the breakpoint
at the beginning of the next executable statement.

Setting special breakpoints

Running Your Application

Page 895

Breakpoints can be triggered when a statement has been executed a specified number of times
(an occasional breakpoint), when a specified expression is true (a conditional breakpoint), or
when the value of a variable changes.

You use the Edit Breakpoints dialog box to set and edit occasional and conditional
breakpoints. You can also use it to set a breakpoint when the value of a variable changes. The
Edit Breakpoints dialog box opens when you:

1. Click the Edit Stop button on the PainterBar

2. Select Breakpoints from the pop-up menu in the Source, Variables, Watch, or Breakpoints
view

3. Select Edit>Breakpoints from the menu bar

4. Double-click a line in the Breakpoints view

Setting occasional and conditional breakpoints

If you want to check the progress of a loop without interrupting execution in every iteration,
you can set an occasional breakpoint that is triggered only after a specified number of
iterations. To specify that execution stops only when conditions you specify are met, set a
conditional breakpoint. You can also set both occasional and conditional breakpoints at the
same location.

• If you specify an occurrence

Each time PowerBuilder passes through the specified location, it increments a counter by
one. When the counter reaches the number specified, it triggers the breakpoint and resets
the counter to zero.

• If you specify a condition

Each time PowerBuilder passes through the specified location, it evaluates the expression.
When the expression is true, it triggers the breakpoint.

• If you specify both an occurrence and a condition

Each time PowerBuilder passes through the specified location, it evaluates the expression.
When the expression is true, it increments the counter. When the counter reaches the
number specified, it triggers the breakpoint and resets the counter to zero.

For example, if you specify an occurrence of 3 and the condition notisNull(val),
PowerBuilder checks whether val is NULL each time the statement is reached. The
breakpoint is triggered on the third occurrence of a non-NULL val, then again on the sixth
occurrence, and so forth.

To set an occasional or conditional breakpoint

1. On the Location tab in the Edit Breakpoints dialog box, specify the script and line
number where you want the breakpoint.

You can select an existing location or select New to enter a new location.

Running Your Application

Page 896

Set a simple breakpoint first

You must specify a line that contains executable code. Set a simple breakpoint on
the line before opening the Edit Breakpoints dialog box to ensure the format and line
number are correct.

2. Specify an integer occurrence, a condition, or both.

The condition must be a valid boolean PowerScript expression (if it is not, the
breakpoint is always triggered). PowerBuilder displays the breakpoint expression in the
Edit Breakpoints dialog box and in the Breakpoints view. When PowerBuilder reaches
the location where the breakpoint is set, it evaluates the breakpoint expression and
triggers the breakpoint only when the expression is true.

Setting a breakpoint when a variable changes

You can interrupt execution every time the value of a variable changes. The variable must be
in scope when you set the breakpoint.

To set a breakpoint when a variable changes

• Do one of the following:

• Select the variable in the Variables view or Watch view and select Break on Change
from the pop-up menu.

• Drag the variable from the Variables view or Watch view to the Breakpoints view.

• Select New on the Variable tab in the Edit Breakpoints dialog box and specify the
name of a variable in the Variable box.

The new breakpoint displays in the Breakpoints view and in the Edit Breakpoints dialog
box if it is open. PowerBuilder watches the variable at runtime and interrupts execution
when the value of the variable changes.

Disabling and clearing breakpoints

If you want to bypass a breakpoint for a specific debugging session, you can disable it and
then enable it again later. If you no longer need a breakpoint, you can clear it.

To disable a breakpoint

• Do one of the following:

• Click the red circle next to the breakpoint in the Breakpoints view or Edit Breakpoints
dialog box

• Select Disable Breakpoint from the pop-up menu in the Source view

• Select Disable from the pop-up menu in the Breakpoints view

The red circle next to the breakpoint is replaced with a white circle.

Running Your Application

Page 897

You can enable a disabled breakpoint from the pop-up menus or by clicking the white
circle.

Disabling all breakpoints

To disable all breakpoints, select Disable All from the pop-up menu in the
Breakpoints view.

To clear a breakpoint

• Do one of the following:

• Double-click the line containing the breakpoint in the Source view

• Select Clear Breakpoint from the pop-up menu in the Source view

• Select Clear from the pop-up menu in the Breakpoints view

• Select the breakpoint in the Edit Breakpoints dialog box and select Clear

The red circle next to the breakpoint disappears.

Clearing all breakpoints

To clear all breakpoints, select Clear All in the Edit Breakpoints dialog box or from
the pop-up menu in the Breakpoints view.

7.1.2.3 Running in debug mode

After you have set some breakpoints, you can run the application in debug mode. The
application executes normally until it reaches a statement containing a breakpoint. At this
point it stops so that you can examine the application. After you do so, you can single-step
through the application, continue execution until execution reaches another breakpoint, or
stop the debugging run so that you can close the debugger and change the code.

To run an application in debug mode

1. If necessary, open the debugger by clicking the Debug or Select and Debug button.

The Debug button opens the debugger for the target you last ran or debugged. Use the
Select and Debug button if you want to debug a different target in the workspace.

2. Click the Start button in the PainterBar or select Debug>Start from the menu bar.

The application starts and runs until it reaches a breakpoint. PowerBuilder displays the
debugger, with the line containing the breakpoint displayed in the Source view. The
yellow arrow cursor indicates that this line contains the next statement to be executed.
You can now examine the application using debugger views and tools.

For more information, see Examining an application at a breakpoint and Stepping
through an application.

Running Your Application

Page 898

To continue execution from a breakpoint

• Click the Continue button in the PainterBar or select Debug>Continue from the menu
bar

Execution begins at the statement indicated by the yellow arrow cursor and continues
until the next breakpoint is hit or until the application terminates normally.

To terminate a debugging run at a breakpoint

• Click the Stop Debugging button in the PainterBar or select Debug>Stop from the menu
bar

PowerBuilder resets the state of the application and all the debugger views to their state
at the beginning of the debugging run. You can now begin another run in debug mode,
or close the debugger.

Cleaning up

When you terminate a debugging run or close the debugger without terminating the
run, PowerBuilder executes the application's close event and destroys any objects,
such as autoinstantiated local variables, that it would have destroyed if the application
had continued to run and exited normally.

7.1.2.4 Examining an application at a breakpoint

When an application is suspended at a breakpoint, use QuickWatch, TipWatch, and the
Variables, Watch, Call Stack, and Objects in Memory views to examine its state.

About icons used in debugging views

The Variables, Watch, and Objects in Memory views use many of the icons used in
the PowerBuilder Browser as well as some additional icons: I represents an Instance;
F, a field; A, an array; and E, an expression.

7.1.2.4.1 Examining variable values

The debugger provides three different ways to examine the values of variables: TipWatch,
QuickWatch, and the Variables view.

TipWatch

TipWatch is a quick way to get the current value of a variable of a simple datatype. When
execution stops at a breakpoint, you can place the edit cursor over a variable in the Source
view to display a pop-up tip window that shows the current value of that variable. You can
also select a simple expression to display its current value.

TipWatch has some limitations: if the variable you select is an object type, the tip window
shows only an internal identifier. For array types, it shows {...} to indicate that more
information is available. To show complete information for object type and array type
variables, use QuickWatch instead.

TipWatch does not evaluate function, assignment, or variable value modification expressions.
If TipWatch cannot parse the string you select, the pop-up window does not display.

Running Your Application

Page 899

Remote debugging

When you are debugging a remote component, Tip Watch does not evaluate
expressions or indirect variables.

QuickWatch

QuickWatch provides the current value of simple variables and detailed information about
object variables, including the values of all fields in the variable. QuickWatch can also
evaluate function expressions, and you can use it to change the values of variables, evaluate
expressions, and add variables and expressions to the Watch view.

Exercise caution when evaluating expressions

QuickWatch evaluates all kinds of expressions, including functions, in local
debugging. If you select a function and activate QuickWatch, the function is executed.
This may have unexpected results. For example, if you select dw_1.print() and
activate QuickWatch, the DataWindow is printed.

To open the QuickWatch dialog box

• When execution stops at a breakpoint, move the edit cursor to a variable or select an
expression in the Source view, and do one of the following:

• Select QuickWatch from the Debug or pop-up menu

• Press Shift+F9

To change the value of a variable from the QuickWatch dialog box

1. Select an item in the tree view and do one of the following:

• Click Change Value

• Double-click the tree view item

2. In the Modify Variable dialog box, type a new value for the variable in the New Value
box, or select the Null check box to set the value of the variable to null, and click OK.

3. Close the QuickWatch dialog box and continue debugging the application with the
variable set to the new value.

To evaluate an expression in the QuickWatch dialog box and add it to the Watch view

1. Change the variable or expression in the Expression box.

2. Click Reevaluate to display the new value in the tree view.

3. (Optional) Click Add Watch to add the expression to the Watch view.

Remote debugging

When you are debugging a remote component, expressions and indirect variables are
not evaluated, and you cannot modify variable values.

Running Your Application

Page 900

Using Variables views

Each Variables view shows one or more types of variables in an expandable outline. Double-
click the variable names or click on the plus and minus signs next to them to expand and
contract the hierarchy. If you open a new Variables view, it shows all variable types.

Table 7.2: Variable views in the debugger

Variable
type

What the Variables view shows

Local Values of variables that are local to the current script or function

Global Values of all global variables defined for the application and properties of all
objects (such as windows) that are open

Instance Properties of the current object instance (the object to which the current script
belongs) and values of instance variables defined for the current object

Parent Properties of the parent of the current instance

Shared Objects, such as application, window, and menu objects, that have been opened
and the shared variables associated with them

About Instance and Parent variables

In the following illustration, an application has stopped at a breakpoint in the script for the
Clicked event for the Close menu item on a frame's File menu. The Instance Variables view
shows the properties of the current instance of the Close menu item. The Parent Variables
view shows the properties of its parent, an instance of the File menu. Navigating through the
hierarchy in the Global Variables view shows the same objects.

Figure 7.2:

7.1.2.4.2 Watching variables and expressions

The Watch view lets you monitor the values of selected variables and expressions as the
application runs.

Running Your Application

Page 901

If the variable or expression is in scope, the Watch view shows its value. Empty quotes
indicate that the variable is in scope but has not been initialized. A pair of glasses in the
Watch view indicates that the variable or expression is not in scope.

Figure 7.3:

Setting variables and expressions in the Watch view

You can select variables you want to watch as the application runs by copying them from a
Variables view. You can also set a watch on any PowerScript expression. When you close the
debugger, any watch variables and expressions you set are saved.

Using QuickWatch

You can also add variables and expressions to the Watch view from the QuickWatch
dialog box. See QuickWatch [899].

To add a variable to the Watch view

1. Select the variable in the Variables view.

2. Do one of the following:

• Drag the variable to the Watch view

• Click the Add Watch button on the PainterBar

• Select Debug>Add Watch from the menu bar

PowerBuilder adds the variable to the watch list.

To add an expression to the Watch view

1. Select Insert from the pop-up menu.

2. Type any valid PowerScript expression in the New Expression dialog box and click OK.

PowerBuilder adds the expression to the watch list.

To edit a variable in the Watch view

1. Select the variable you want to edit.

Running Your Application

Page 902

2. Double-click the variable, or select Edit Variable from the pop-up menu.

3. Type the new value for the variable in the Modify Variable dialog box and click OK.

To edit an expression in the Watch view

1. Select the expression you want to edit.

2. Double-click the expression, or select Edit Expression from the pop-up menu.

3. Type the new expression in the Edit Expression dialog box and click OK.

To clear variables and expressions from the Watch view

1. Select the variable or expression you want to delete.

2. Do one of the following:

• Select Clear from the pop-up menu

• Click the Remove Watch button on the PainterBar

• Select Debug>Remove Watch from the menu bar

To clear all variables and expressions from the Watch view

• Select Clear All from the pop-up menu

7.1.2.4.3 Monitoring the call stack

The Call Stack view shows the sequence of function calls leading up to the script or function
that was executing at the time of the breakpoint. Each line in the Call Stack view displays
the name of the script and the line number from which the call was made. The yellow arrow
shows the script and line where execution was suspended.

You can examine the context of the application at any line in the call stack.

To show a different context from the Call Stack view

1. Select a line in the Call Stack view.

2. Do one of the following:

• Double-click the line

• Select Set Context from the pop-up menu

• Drag the line into the Source view

A green arrow indicates the script that you selected. The Source view shows the script
and line number you selected, and the Variables and Watch views show the variables
and expressions in scope in that context.

Running Your Application

Page 903

Figure 7.4:

7.1.2.4.4 Examining objects in memory

The Objects in Memory view shows an expandable list of objects currently in memory.
Double-click the name of an object or click the plus sign next to it to view the names and
memory locations of instances of each object and property values of each instance.

Figure 7.5:

7.1.2.4.5 Using the Source view

The Source view displays the full text of a script. As you run or step through the application,
the Source view is updated to show the current script with a yellow arrow indicating the next
statement to be executed.

Running Your Application

Page 904

Multiple Source views

You can open more than one source view. If there are multiple source views open, only the
first one opened is updated to show the current script when the context of an application
changes.

Copying from the Source view

When text is selected in the Source view, you can select Copy from the pop-up menu in the
Source view to copy the string to the clipboard. You can then paste the string into another
dialog box to search for the string, insert a watch, or add a conditional breakpoint.

Changing the Source view

From the pop-up menu, you can navigate backward and forward through the scripts that
have been opened so far, open ancestor and dependent scripts, and go to a specific line in the
current script. There are several other ways to change the script from other views or from the
menu bar.

To change the script displayed in a Source view

• Do one of the following:

• Drag the name of a script to the Source view from the Call Stack, Source Browser, or
Source History views

• Select a line and then select Open Source from the pop-up menu in the Breakpoints,
Source Browser, or Source History views

• Select Edit>Select Script from the menu bar

To find a specified string in the Source view

1. Select Find from the pop-up menu, or select Edit>Find from the menu bar.

The Find Text dialog box opens.

2. Type the string in the Find box and check the search options you want.

7.1.2.4.6 Using the Source Browser view

The Source Browser shows all the objects in your application in an expandable hierarchy. It
provides a view of the structure of the application and a quick way to open any script in the
Source view.

To open a script from the Source Browser

1. Double-click the object that the script belongs to or click the plus sign next to the object
to expand it.

2. Do one of the following:

• Double-click the script

• Select the script and select Open Source from the pop-up menu

• Drag the script onto a Source view

Running Your Application

Page 905

When you double-click or select Open Source, a new Source view opens if there was
none open. If several Source views are open, the script displays in the view that was
used last.

7.1.2.4.7 Using the Source History view

The Source History view lists all the scripts that have been opened in the current debugging
session. Use the same techniques as in the Source Browser view to display a selected script in
the Source view.

Source History limit

The Source History view shows up to 100 scripts and is not cleared at the end of each
debugging run. It is cleared when you close the debugger, or you can clear the list
from the pop-up menu.

7.1.2.5 Stepping through an application

When you have stopped execution at a breakpoint, you can use several commands to step
through your application code and use the views to examine the effect of each statement. As
you step through the code, the debugger views change to reflect the current context of your
application and a yellow arrow cursor indicates the next statement to be executed.

Updating the Source view

When the context of your application changes to another script, the Source view is
updated with the new context. If you have multiple Source views open, only the first
one opened is updated.

Single-stepping through an application

You can use either Step In or Step Over to step through an application one statement at a
time. They have the same result except when the next statement contains a call to a function.
Use Step In if you want to step into a function and examine the effects of each statement in
the function. Use Step Over to execute the function as a single statement.

To step through an application entering functions

• Click the Step In button in the PainterBar, or select Debug>Step In from the menu bar.

To step through an application without entering functions

• Click the Step Over button in the PainterBar, or select Debug>Step Over from the menu
bar.

Using shortcut keys

To make it easier to step through your code, the debugger has standard keyboard
shortcuts for Step In, Step Out, Step Over, Run To Cursor, and Continue. If you
prefer to use different shortcut key combinations, select Tools>Keyboard Shortcuts to
define your own.

Running Your Application

Page 906

Stepping out of a function

If you step into a function where you do not need to step into each statement, use Step Out to
continue execution until the function returns.

To step out of a function

• Click the Step Out button in the PainterBar, or select Debug>Step Out from the menu
bar.

Stepping through multiple statements

As you step through an application, you might reach sections of code that you are not
interested in examining closely. The code might contain a large loop, or it might be well-
tested code that you are confident is free of errors. You can use Run To Cursor to select a
statement further down in a script or in a subsequent script where you want execution to stop.

To step through multiple statements

1. Click on the line in the script where you want to resume single stepping.

2. Click the Run To Cursor button in the PainterBar, or select Debug>Run To Cursor from
the menu bar.

PowerBuilder executes all intermediate statements and the yellow arrow cursor displays
at the line where you set the cursor.

Bypassing statements

You can use Set Next Statement to bypass a section of code that contains a bug, or to test part
of an application using specific values for variables. Execution continues from the statement
where you place the cursor. Be cautious when you use Set Next Statement, because results
may be unpredictable if, for example, you skip code that initializes a variable.

To set the next statement to be executed

1. Click on the line in the script where you want to continue execution.

2. Click the Set Next Statement button in the PainterBar, or select Debug>Set Next
Statement from the menu bar.

3. If necessary, change the values of variables.

4. Continue execution using Continue, Step In, or Step Over.

If you select Continue, PowerBuilder begins execution at the statement you specified
and continues to the next breakpoint. If you select Step In or Step Over, PowerBuilder
sets the next statement and displays the yellow arrow cursor at the line where you set the
cursor.

Changing a variable's value

As you step through the application, you can change the values of variables that are in scope.
You may want to do this to examine different flows through the application, to simulate a
condition that is difficult to reach in normal testing, or if you are skipping code that sets a
variable's value.

Running Your Application

Page 907

Limitations

You cannot change the values of enumerated variables, and you cannot change the
value of any variable when you are debugging a remote component.

To change the value of a variable

1. Select the variable in the Variables view or the Watch view.

2. From the pop-up menu, select Edit Variable.

3. Type a value for the variable or select the Null check box and click OK.

The value you enter must conform to the type of the variable. If the variable is a string,
do not enclose the string in quotes. When you continue execution, the new value is used.

Fixing your code

If you find an error in a script or function during a debugging session, you must close the
debugger before you fix it. After you have fixed the problem, you can reopen the debugger
and run the application again in debug mode. The breakpoints and watchpoints set in your
last session are still defined.

7.1.2.6 Debugging windows opened as local variables

One way to open a window is by declaring a local variable of type window and opening it
through a string. For example:

window mywin
string named_window
named_window = sle_1.Text
Open(mywin, named_window)

The problem

Normally, you cannot debug windows opened this way after the script ends because the local
variable (mywin in the preceding script) goes out of scope when the script ends.

The solution

If you want to debug windows opened this way, you can declare a global variable of type
window and assign it the local variable. If, for example, GlobalWindow is a global window
of type window, you could add the following line to the end of the preceding script:

GlobalWindow = mywin

You can look at and modify the opened window through the global variable. When you
have finished debugging the window, you can remove the global variable and the statement
assigning the local to the global.

7.1.2.7 Just-in-time debugging

If you are running your application in regular mode (using the Run button) and you notice
that the application is behaving incorrectly, just-in-time debugging lets you switch to debug
mode without terminating the application.

When you open the debugger while running an application, the application does not stop
executing. The Source, Variables, Call Stack, and Objects in Memory views are all empty

Running Your Application

Page 908

because the debugger does not have any context. To suspend execution and examine the
context in a problem area, open an appropriate script and set breakpoints, then initiate the
action that calls the script.

If just-in-time debugging is enabled and a system error occurs while an application is running
in regular mode, the debugger opens automatically, showing the context where the error
occurred.

You can also use the DebugBreak function to break into the debugger.

You must enable just-in-time debugging before you run your application to take advantage of
this feature.

To enable just-in-time debugging

1. Select Tools>System Options.

2. Check the Just In Time Debugging check box and click OK.

To debug an application while running in regular mode

1. Enable just-in-time debugging.

2. Run the application.

3. Click the PowerBuilder button on the Windows Taskbar.

4. Click the Debug button in the dialog box that displays.

5. Open a script in the Source view and set breakpoints.

The application is suspended when it hits a breakpoint and the Source, Variable, Call
Stack, and Objects in Memory views show the current context. You can now debug the
application.

7.1.2.8 Using the DEBUG preprocessor symbol

You can use the syntax #IF DEFINED followed by a predefined preprocessor symbol to mark
a block of code for specialized processing before it is compiled. The block of conditional
code is automatically parsed by a PowerBuilder preprocessor before it is passed to the
compiler. Most of the predefined preprocessor symbols are used only for .NET targets, but
the DEBUG symbol can be used in standard PowerBuilder targets as well.

The symbol is useful if you want to add code to your application to help you debug while you
are testing the application. For example, you might add a block like the following:

#if defined DEBUG then
 MessageBox("Debugging","Ctr value is " + string(i))
#end if

When you run or debug the application in the development environment, the code is always
parsed and you always see the message box. When you run the executable file, the code is
parsed only if the DEBUG symbol is enabled on the General page in the Project painter.
While you are still testing the application, turning the DEBUG symbol can help you find
differences in behavior in the development environment and the executable file.

Running Your Application

Page 909

Although you would not typically enable the DEBUG symbol in a release build, if a problem
is reported in a production application, you can redeploy the release build with the DEBUG
symbol enabled to help determine the nature or location of the problem.

Adding breakpoints in a DEBUG block

When you use the DEBUG symbol, you can add breakpoints in the DEBUG block only
for lines of code that are not in an ELSE clause that removes the DEBUG condition. If you
attempt to add a breakpoint in the ELSE clause, the debugger automatically switches the
breakpoint to the last line of the clause defining the DEBUG condition. Consider this code:

#if defined DEBUG then
 /*debugging code*/
#else
 /* other action*/
#end if

In this example, if you add a breakpoint to the line /* other action*/, the breakpoint would
automatically switch to the line /*debugging code*/.

Code in ELSE clause is parsed

Note that any code that you place in the ELSE clause will be parsed by the compiler
when you build an executable file with the DEBUG symbol disabled.

Pasting a DEBUG block into a script

You can use the Paste Special>Preprocessor>#If Defined DEBUG Then pop-up menu item in
the Script view to paste a template into a script.

Figure 7.6:

Running Your Application

Page 910

Limitations

Conditional compilation is not supported in DataWindow syntax, structure or menu objects.
You cannot edit the source code for an object to include conditional compilation blocks that
span function, event, or variable definition boundaries.

You must rebuild your application after you add a DEBUG conditional block.

7.1.2.9 Breaking into the debugger when an exception is thrown

When an application throws an exception while it is being debugged, the debugger sees the
exception before the program has a chance to handle it.The debugger can allow the program
to continue or it can handle the exception. This is usually referred to as the debugger's first
chance to handle the exception. If the debugger does not handle the exception, the program
sees the exception. If the program does not handle the exception, the debugger gets a second
chance to handle it.

You can control whether the debugger handles first chance exceptions in the Exception
Setting dialog box. To open the dialog box, open the Debugger and select Exceptions
from the Debug menu. By default, all exceptions inherit from their parent and all are set
to Continue. In the following illustration, the DivideByZeroError and DWRuntimeError
exceptions have been set to "Break into the debugger."

Figure 7.7:

When one of these exceptions is thrown, a dialog box displays so that you can choose
whether to open the debugger (Break) or pass the exception to the program (Ignore).

Running Your Application

Page 911

7.1.3 Running an application

When the application seems to be working correctly, you are ready to run it in regular mode.
In regular mode, the application responds to user interaction and continues to run until the
user exits the application or a runtime error occurs. You can rely on the default runtime error
reporting by PowerBuilder or write a script that specifies your own error processing. You can
also generate a diagnostic trace of your application's execution.

For how to analyze your application's logic and performance, see Tracing and Profiling
Applications.

7.1.3.1 Running the application

To run an application

• Do one of the following:

• In the System Tree, highlight a target and select Run from the pop-up menu

• Click the Run or Select and Run button on the PowerBar

• Select Run>Run or Run>Select and Run from the menu bar

The Run button runs the current target. The current target displays in bold in the System
Tree and its name displays in the Run button tool tip. The Select and Run button opens a
dialog box that lets you select the target to run.

PowerBuilder becomes minimized and a button displays on the Taskbar. Your
application executes.

To stop a running application

• End the application normally, or double-click the minimized PowerBuilder button or
icon to open a response window from which you can terminate the application.

7.1.3.2 Handling errors at runtime

A serious error at runtime (such as attempting to access a window that has not been opened)
will trigger the SystemError event in the Application object if you have not added exception
handling code to take care of the error.

If there is no SystemError script

If you do not write a SystemError script to handle these errors, PowerBuilder displays a
message box containing the following information:

• The number and text of the error message

• The line number, event, and object in which the error occurred

There is also an OK button that closes the message box and stops the application.

If there is a SystemError script

If there is a script for the SystemError event, PowerBuilder executes the script and does not
display the message box. Whether or not you have added TRY/CATCH blocks to your code
to trap errors, it is a good idea to build an application-level script for the SystemError event

Running Your Application

Page 912

to trap and process any runtime errors that have not been handled, as described in Using the
Error object [912].

For more information about handling exceptions, see Section 2.2.9, “Exception handling in
PowerBuilder” in Application Techniques.

Using the Error object

In the script for the SystemError event, you can access the built-in Error object to determine
which error occurred and where it occurred. The Error object contains the properties shown
in the following table.

Table 7.3: Properties of the Error object

Property Data type Description

Number Integer Identifies the PowerBuilder error.

Text String Contains the text of the error message.

WindowMenu String Contains the name of the window or menu in which
the error occurred.

Object String Contains the name of the object in which the error
occurred. If the error occurred in a window or
menu, the Object property will be the same as the
WindowMenu property

ObjectEvent String Contains the event for which the error occurred.

Line Integer Identifies the line in the script at which the error
occurred.

Defining your own Error object

You can customize your own version of the Error object by defining a class user
object inherited from the built-in Error object. You can add properties and define
object-level functions for your Error object to allow for additional processing.
In the Application painter, you can then specify that you want to use your user
object inherited from Error as the global Error object in your application. For more
information, see Building a standard class user object.

Runtime error numbers

The following table lists the runtime error numbers returned in the Number property of the
Error object and the meaning of each number:

Table 7.4: PowerBuilder runtime errors

Number Meaning

1 Divide by zero.

2 Null object reference.

3 Array boundary exceeded.

4 Enumerated value is out of range for function.

5 Negative value encountered in function.

6 Invalid DataWindow row/column specified.

Running Your Application

Page 913

Number Meaning

7 Unresolvable external when linking reference.

8 Reference of array with null subscript.

9 DLL function not found in current application.

10 Unsupported argument type in DLL function.

11 Object file is out of date and must be converted to current version.

12 DataWindow column type does not match GetItem type.

13 Unresolved property reference.

14 Error opening DLL library for external function.

15 Error calling external function name.

16 Maximum string size exceeded.

17 DataWindow referenced in DataWindow object does not exist.

18 Function does not return value.

19 Cannot convert name in Any variable to name.

20 Database command not successfully prepared.

21 Bad runtime function reference.

22 Unknown object type.

23 Cannot assign object of type name to variable of type name.

24 Function call does not match its definition.

25 Double or Real expression has overflowed.

26 Field name assignment not supported.

27 Cannot take a negative to a noninteger power.

28 VBX Error: name.

29 Nonarray expected in ANY variable.

30 External object does not support data type name.

31 External object data type name not supported.

32 Name not found calling external object function name.

33 Invalid parameter type calling external object function name.

34 Incorrect number of parameters calling external object function name.

35 Error calling external object function name.

36 Name not found accessing external object property name.

37 Type mismatch accessing external object property name.

38 Incorrect number of subscripts accessing external object property name.

39 Error accessing external object property name.

40 Mismatched ANY datatypes in expression.

41 Illegal ANY data type in expression.

Running Your Application

Page 914

Number Meaning

42 Specified argument type differs from required argument type at runtime in
DLL function name.

43 Parent object does not exist.

44 Function has conflicting argument or return type in ancestor.

45 Internal table overflow; maximum number of objects exceeded.

46 Null object reference cannot be assigned or passed to a variable of this
type.

47 Array expected in ANY variable.

48 Size mismatch in array-to-object conversion.

49 Type mismatch in array-to-object conversion.

50 Distributed Service Error: name.

51 Bad argument list for function/event: name.

52 Distributed Communications Error: name.

53 The server name could not be located. It was probably not started.

54 The server name is rejecting new messages. It is in the process of shutting
down.

55 The request caused an abnormal termination. The connection has been
closed.

56 A message was not fully transmitted.

57 This connection object is not connected to a server.

58 Object instance does not exist.

59 Invalid column range.

60 Invalid row range.

61 Invalid conversion of number dimensional array to object.

62 The server name is busy and not accepting new connections.

63 Function/event with no return value used in expression.

64 Object array expected on left side of assignment.

65 Dynamic function not found. Possible causes include: pass by value/
reference mismatch.

66 Invalid subscript for array index operation.

67 Null object reference cannot be assigned or passed to an autoinstantiate.

68 Null object reference cannot be passed to external DLL function name.

69 Function name cannot be called from a secured runtime session.

70 External DLL function name cannot be called from a secured runtime
session.

71 General protection fault occurred.

72 name failed with an operating system error code of number.

Running Your Application

Page 915

Number Meaning

73 Reference parameters cannot be passed to an asynchronous shared/remote
object method.

74 Reference parameters cannot be passed to a shared object method.

75 The server has forced the client to disconnect.

76 Passing null as a parameter to external function name.

77 Object passed to shared/remote object method is not a nonvisual user
object.

78 Listening works only in the Enterprise version of PowerBuilder.

79 The argument to name must be an array.

80 The server has timed out the client connection.

81 Function argument file creator must be a four-character string.

82 Function argument file type must be a four-character string.

83 Attempt to invoke a function or event that is not accessible.

84 Wrong number of arguments passed to function/event call.

85 Error in reference argument passed in function/event call.

86 Ambiguous function/event reference.

87 The connection to the server has been lost.

88 Cannot ask for ClassDefinition Information on open painter: name.

89 5.0 style proxy objects are not supported. Copy the new style proxy that
was generated at migration time.

90 Cannot assign array of type name to variable of type array of name.

91 Cannot convert name in Any variable to name. Possible cause:
uninitialized value.

92 Required property name is missing.

93 CORBA User Exception: exceptionname.

94 CORBA System Exception: exceptionname.

95 CORBA Objects cannot be created locally.

96 Exception Thrown has not been handled.

97 Cannot save name because of a circular reference problem. Possible
causes:

• This object references another class, which in turn references this object.

• Some other circular reference is pointing back to this object, causing a
deadlock condition.

Suggested actions:

1. Temporarily remove the circular reference from the referenced object.

Running Your Application

Page 916

Number Meaning
2. Make your required changes to this object to refer to that object.

3. Add back the circular reference you removed in step 1.

4. Perform a full rebuild (recommended).

98 Obsolete object reference.

99 Error calling method of a PBNI object.

100 Error loading library containing a PBNI object.

101 Error unloading library containing a PBNI object.

102 Error creating a PBNI object.

103 Error destroying a PBNI object.

104 Error calling PowerBuilder system function functionname.

105 Executing a HALT statement in a server component is strictly forbidden.

106 Function is reserved or not yet implemented.

107 Argument is out of range.

108 Not enough memory to execute the operation.

109 Cannot assign a null value to array variables.

201 General app error.

220 General session error.

221 Session not created.

222 Cannot connect to the server when creating the session.

223 The session is empty.

224 The session is invalid because the session ID does not comply with rules
and cannot be decrypted.

225 The session does not exist. Possible reasons: The session has expired,
or has been killed, or has lost some data due to system reboot or power
failure.

226 The session status is changed to timeout expired or killed.

230 License error.

231 Failed to verify the license.

240 Unauthorized.

Some errors terminate the application immediately. They do not trigger the SystemError
event.

SystemError event scripts

A typical script for the SystemError event includes a CHOOSE CASE control structure to
handle specific errors. To stop the application, include a HALT statement in the SystemError
script.

Running Your Application

Page 917

Caution

You can continue your application after a SystemError event, but doing so can cause
unpredictable and undesirable effects. Where the application will resume depends on
what caused the error. Typically, you are better off reporting the problem to the user,
then stopping the application with HALT.

To test the SystemError event script

1. Assign values to the properties of the Error object with the PopulateError function.

2. Call the SignalError function to trigger the SystemError event.

The script for the SystemError event executes.

7.2 Tracing and Profiling Applications

About this chapter

This chapter describes how to generate trace information that you can use to improve your
application's performance.

7.2.1 About tracing and profiling an application

You use tracing and profiling to debug and tune an application. When you run an application,
you can generate an execution trace file. You use the trace file to create a profile of your
application.

The profile shows you which functions and events were called by which other functions and
events, how often they were called, when garbage collection occurred, when objects were
created and destroyed, and how long each activity took to complete. This information helps
you find errors in the application's logic and identify areas that you should rewrite to improve
performance.

PBDebug tracing

You can also generate a simple text trace file without timer values by checking Enable
PBDebug Tracing in the System Options dialog box.

For more about PBDebug, see Generating a trace file without timing information.

When you can trace an application

You can create a trace file when you run an application in the PowerBuilder environment,
and when you run an executable outside PowerBuilder. For machine-code executable files,
the trace file is generated only if you check the Trace Information check box when you build
the executable.

When you run an application with tracing turned on, PowerBuilder records a timer value in a
data file every time a specific activity occurs. You control when logging begins and ends and
which activities are recorded.

Running Your Application

Page 918

Creating profiles

After you have generated a trace file, you can create several different profiles or views of the
application by extracting different types of information from the trace file.

PowerBuilder provides three profiling tools that create profiles (views) of the application for
you, but you can also create your own analysis tools.

Using profiling to tune an application

Examining the profiles generated by the profiling tools tells you where the application is
spending the most time. You can also find routines that are being called too often, routines
being called that you did not expect to call, or routines that are not being called at all. Follow
these suggestions for tuning an application:

• The database connection process is often slow. Although you might not be able to speed
this up, you might be able to enhance the user's perception of performance by moving the
database connection process to a different place in your application.

• Use profiling to tune algorithms. Algorithmic fixes will yield greater performance
enhancements than changing single lines of code.

Optimizing an inefficient function is not as effective as removing unneeded calls to that
function.

• Focus on optimizing the routines that are called most often.

If you cannot speed up a routine, consider adding some user feedback, such as updating
MicroHelp or displaying a progress bar.

7.2.2 Collecting trace information

There are three ways to collect trace information. You can use:

• The Profiling tab on the System Options dialog box

• A window similar to the Profiling tab

• Trace objects and functions

Use the Profiling tab if you want to trace an entire application run in the development
environment. For more information, see Tracing an entire application in PowerBuilder.

Use a window or trace objects and functions if you want to create a trace file for selected
parts of the application or the entire application, either in the development environment or
when running an executable file. See Using a window and Collecting trace information using
PowerScript functions.

Collection time

The timer values in the trace file exclude the time taken to collect the trace data.
Because an application can be idle (while displaying a MessageBox, for example),
percentage metrics are most meaningful when you control tracing programmatically,

Running Your Application

Page 919

which can help minimize idle time. Percentages are less meaningful when you create
a trace file for a complete application.

Whichever method you use, you can specify:

• The name and location of the trace file and optional labels for blocks of trace data

• The kind of timer used in the trace file

• The activities you want recorded in the trace file

Trace file names and labels

The default name of the trace file is the name of the application with the extension PBP. The
trace file is saved in the directory where the PBL or executable file resides and overwrites
any existing file of the same name. If you run several different tests on the same application,
you should change the trace file name for each test.

You can also associate a label with the trace data. If you are tracing several different parts of
an application in a single test run, you can associate a different label with the trace data (the
trace block) for each part of the application.

Timer kinds

There are three kinds of timer: clock, process, and thread. If your analysis does not require
timing information, you can omit timing information from the trace file to improve
performance.

If you do not specify a timer kind, the time at which each activity begins and ends is recorded
using the clock timer, which measures an absolute time with reference to an external activity,
such as the computer's start-up time. The clock timer measures time in microseconds.
Depending on the speed of your computer's central processing unit, the clock timer can offer
a resolution of less than one microsecond. A timer's resolution is the smallest unit of time the
timer can measure.

You can also use process or thread timers, which measure time in microseconds with
reference to when the process or thread being executed started. You should always use
the thread timer for distributed applications. Both process and thread timers exclude the
time taken by any other running processes or threads so that they give you a more accurate
measurement of how long the process or thread is taking to execute, but both have a lower
resolution than the clock timer.

Trace activities

You can choose to record in the trace file the time at which any of the following activities
occurs. If you are using the System Options dialog box or a window, you select the check
boxes for the activities you want. If you are using PowerScript functions to collect trace
information, you use the TraceActivity enumerated type to identify the activity.

Table 7.5: Trace activities

Trace Activities check box What is recorded TraceActivity value

Routine Entry/Exit Routine entry or exit ActRoutine!

Running Your Application

Page 920

Trace Activities check box What is recorded TraceActivity value

Routine Line Hits Execution of any line in any
routine

ActLine!

Embedded SQL Use of an embedded SQL
verb

ActESQL!

Object Creation/Destruction Object creation or destruction ActObjectCreate!,
ActObjectDestroy!

User Defined Activities A user-defined activity that
records an informational
message

ActUser!

System Errors A system error or warning ActError!

Garbage Collection Garbage collection ActGarbageCollect!

Not available Routine entry and exit,
embedded SQL verbs, object
creation and destruction, and
garbage collection

ActProfile!

Not available All except ActLine! ActTrace!

When you begin and end tracing, an activity of type ActBegin! is automatically recorded in
the trace file. User-defined activities, which you use to log informational messages to the
trace file, are the only trace activities enabled by default.

7.2.2.1 Tracing an entire application in PowerBuilder

Use the Profiling tab on the System Options dialog box if you want to collect trace data for
an entire application run in the PowerBuilder development environment.

To trace an entire application in PowerBuilder

1. Select Tools>System Options from the PowerBar and select the Profiling tab.

2. Specify a name for the trace file, select the trace options you want, and click OK.

When you run the application, the activities you selected are logged in the trace file.

7.2.2.2 Using a window

You can create a window that is similar to the Profiling tab on the System Options dialog box
and add it to any application that is under development, so that you can start and stop tracing
when testing specific actions.

The w_profiler window is available in the PB Code Profiler sample in the PowerBuilder
Code Samples at https://www.appeon.com/developers/library/code-samples-for-pb. This
sample also shows the code used to create the profiling tools described in Analyzing trace
information using profiling tools.

The w_profiler window lets you specify a trace file name, label, and timer kind, as well as
which activities you want to trace:

https://www.appeon.com/developers/library/code-samples-for-pb

Running Your Application

Page 921

Figure 7.8:

The following instance variables are defined for the window:

TimerKind itk_kind
string is_title = 'Trace Options '
string is_starttext

The open event for the window sets some defaults:

application lapp_current
lapp_current = getapplication()
itk_kind = Clock!
is_starttext = cb_startstop.text
sle_filename.text = classname(lapp_current)+'.pbp'

Running Your Application

Page 922

The following code shows the script for the Clicked event of the Start Trace button. The text
for the button is set to Start Trace in the painter. When the user clicks Start Trace, the button
label changes to Stop Trace. The Clicked event script checks the text on the button before
either starting or stopping tracing. This script uses the functions described in Collecting trace
information using PowerScript functions:

// instance variables:
// errorreturn le_errorreturn
integer li_key

// Check that the button label is Start Trace
// and a trace file name has been entered
if this.text = is_starttext then

 if len(trim(sle_filename.text)) = 0 then
 messagebox(parent.title, &
 'Trace file name is required',information!)
 sle_filename.setfocus()
 return
 end if

 // If Prompt for overwrite is checked and the
 // file exists, pop up a response window
 if cbx_prompt.checked and &
 fileexists(sle_filename.text) then
 li_key = messagebox(parent.title, &
 'OK to overwrite '+sle_filename.text, &
 question!,okcancel!,1)
 if li_key = 2 then return
 end if

 // Open the trace file
 TraceOpen(sle_filename.text, itk_kind)

 // Enable tracing for checked activities
 // For each activity, check for errors and close
 // the trace file if an error occurs
 if cbx_embeddedSQL.checked then
 le_errorreturn = TraceEnableActivity(ActESQL!)
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn, &
 'TraceEnableActivity(ActESQL!)')
 le_errorreturn = Traceclose()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceClose')
 end if
 return
 end if
 end if

 if cbx_routineentry.checked then
 le_errorreturn =TraceEnableActivity(ActRoutine!)
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn, &
 'TraceEnableActivity(ActRoutine!)')
 Traceclose()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceClose')
 end if
 return
 end if
 end if

Running Your Application

Page 923

 if cbx_userdefined.checked then
 le_errorreturn = TraceEnableActivity(ActUser!)
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn, &
 'TraceEnableActivity(ActUser!)')
 Traceclose()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceClose')
 end if
 return
 end if
 end if

 if cbx_systemerrors.checked then
 le_errorreturn = TraceEnableActivity(ActError!)
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn, &
 'TraceEnableActivity(ActError!)')
 Traceclose()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceClose')
 end if
 return
 end if
 end if

 if cbx_routineline.checked then
 le_errorreturn = TraceEnableActivity(ActLine!)
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn, &
 ' TraceEnableActivity(ActLine!)')
 Traceclose()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceClose')
 end if
 return
 end if
 end if
 if cbx_objectcreate.checked then
 le_errorreturn = &
 TraceEnableActivity(ActObjectCreate!)
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn, &
 'TraceEnableActivity(ActObject!)')
 Traceclose()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceClose')
 end if
 return
 end if
 le_errorreturn = &
 TraceEnableActivity(ActObjectDestroy!)
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn, &
 'TraceEnableActivity(ActObjectDestroy!)')
 Traceclose()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceClose')
 end if
 return
 end if
 end if

 if cbx_garbagecoll.checked then

Running Your Application

Page 924

 le_errorreturn = &
 TraceEnableActivity(ActGarbageCollect!)
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn, &
 'TraceEnableActivity(ActGarbageCollect!)')
 Traceclose()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceClose')
 end if
 return
 end if
 end if

 // Start tracing
 le_errorreturn =TraceBegin(sle_tracelabel.text)
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceBegin')
 return
 end if

 // Change the title of the window and the
 // text of the Start Trace button
 parent.title = is_title + '(Tracing)'
 this.text = 'Stop &Tracing'

// If the button label is Stop Trace, stop tracing
// and close the trace file
else
 le_errorreturn =TraceEnd()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceEnd')
 return
 end if

 le_errorreturn =TraceClose()
 if le_errorreturn <> Success! then
 of_errmsg(le_errorreturn,'TraceClose')
 end if
 this.text = is_starttext
 parent.title = is_title
end if

of_errmsg function

The window uses two functions to handle error messages. The of_errmsg function displays a
message box:

// of_errmsg
Messagebox(this.title,'Error executing '+ as_msg + &
 '. Error code : '+ of_converterror(ae_error))

of_converterror function

The of_converterror function converts the ErrorReturn parameter to a string:

// of_converterror: convert enumerated type
// ErrorReturn parameter to text.
String ls_result
choose case a_error
 Case Success!
 ls_result = "Success!"
 Case FileCloseError!
 ls_result = "FileCloseError!"
 Case FileOpenError!

Running Your Application

Page 925

 ls_result = "FileOpenError!"
 Case FileReadError!
 ls_result = "FileReadError!"
 Case FileWriteError!
 ls_result = "FileWriteError!"
 Case FileNotOpenError!
 ls_result = "FileNotOpenError!"
 Case FileAlreadyOpenError!
 ls_result = "FileAlreadyOpenError!"
 Case FileInvalidFormatError!
 ls_result = "FileInvalidFormatError!"
 Case FileNotSetError!
 ls_result = "FileNotSetError!"
 Case EventNotExistError!
 ls_result = "EventNotExistError!"
 Case EventWrongPrototypeError!
 ls_result = "EventWrongPrototypeError!"
 Case ModelNotExistsError!
 ls_result = "ModelNotExistsError!"
 Case ModelExistsError!
 ls_result = "ModelExistsError!"
 Case TraceStartedError!
 ls_result = "TraceStartedError!"
 Case TraceNotStartedError!
 ls_result = "TraceNotStartedError!"
 Case TraceNoMoreNodes!
 ls_result = "TraceNoMoreNodes!"
 Case TraceGeneralError!
 ls_result = "TraceGeneralError!"
 Case FeatureNotSupportedError!
 ls_result = "FeatureNotSupportedError!"
 Case else
 ls_result = "Unknown Error Code"
end choose
return ls_result

7.2.2.3 Collecting trace information using PowerScript functions

You use the PowerScript system functions listed in the following table to collect information
in a trace file. Each of these functions returns a value of type ErrorReturn, an enumerated
datatype.

Table 7.6: PowerScript trace functions

Use this PowerScript
function

To do this

TraceOpen Open a named trace file and set the timer kind.

TraceEnableActivity Enable logging of the specified activity.

TraceBegin Start logging all enabled activities. You can pass an optional
label for the trace block.

TraceError Log a severity level and error message to the trace file.

TraceUser Log a reference number and informational message to the trace
file.

TraceEnd Stop logging all enabled activities.

TraceDisableActivity Disable logging of the specified activity.

TraceClose Close the open trace file.

Running Your Application

Page 926

In general, you call the functions in the order shown in the table. That is, you must call
TraceOpen before you call any other trace functions. You call TraceClose when you have
finished tracing.

TraceEnableActivity and TraceDisableActivity can be called only when a trace file is open
but tracing has not begun or has stopped—that is, before you call TraceBegin or after you call
TraceEnd.

TraceUser and TraceError can be called only when the trace file is open and tracing is active
—that is, after you call TraceBegin and before you call TraceEnd.

About TraceUser and TraceError

You can use TraceUser to record specific events in the trace file, such as the beginning and
end of a body of code. You can also record the execution of a statement you never expected
to reach, such as the DEFAULT statement in a CHOOSE CASE block. TraceError works just
like TraceUser, but you can use it to signal more severe problems.

Both TraceUser and TraceError take a number and text string as arguments. You can use a
simple text string that states what activity occurred, or you can build a string that provides
more diagnostic information by including some context, such as the current values of
variables. Run the application with only ActUser! or ActError! tracing turned on and then use
the Profiling Trace View to pinpoint problems quickly.

Example: trace data collection

In this example, the user selects a timer kind from a drop-down list and enters a name for the
trace file in a single-line edit box. Typically you would use the ErrorReturn return value from
every trace call to return an error message if the call fails. For brevity, the example shows this
only for the TraceOpen call.

Several trace activities are disabled for a second trace block. The activities that are not
specifically disabled remain enabled until TraceClose is called.

ErrorReturn le_err
integer li_key
TimerKind ltk_kind

CHOOSE CASE ddlb_timerkind.Text
 CASE "None"
 ltk_kind = TimerNone!
 CASE "Clock"
 ltk_kind = Clock!
 CASE "Process"
 ltk_kind = Process!
 CASE "Thread"
 ltk_kind = Thread!
END CHOOSE

// Open the trace file and return an error message
// if the open fails
le_err = TraceOpen(sle_fileName.Text, ltk_kind)
IF le_err <> Success! THEN &
 of_errmsg(le_err, 'TraceOpen failed')
 RETURN
END IF

// Enable trace activities. Enabling ActLine!
// enables ActRoutine! implicitly
TraceEnableActivity(ActESQL!)

Running Your Application

Page 927

TraceEnableActivity(ActUser!)
TraceEnableActivity(ActError!)
TraceEnableActivity(ActLine!)
TraceEnableActivity(ActObjectCreate!)
TraceEnableActivity(ActObjectDestroy!)
TraceEnableActivity(ActGarbageCollect!)

TraceBegin("Trace_block_1")
// first block of code to be traced
// this block has the label Trace_block_1
…

TraceEnd()

// disable trace activities not needed for
// second block
TraceDisableActivity(ActLine!)
TraceDisableActivity(ActObjectCreate!)
TraceDisableActivity(ActObjectDestroy!)
TraceDisableActivity(ActGarbageCollect!)

TraceBegin("Trace_block_2")
// second block of code to be traced
…

TraceEnd()
TraceClose()

7.2.3 Analyzing trace information using profiling tools

After you have created a trace file, the easiest way to analyze it is to use the profiling tools
provided on the Tool tab of the New dialog box. There are three tools:

• The Profiling Class View shows information about the objects that were used in the
application

• The Profiling Routine View shows information about all the routines (functions and
events) that were used in the application

• The Profiling Trace View shows the elapsed time taken by each activity in chronological
order

Using the profiling tools as a model

Even if you want to develop your own analysis tools, using the profiling tools is a good way
to learn about these models and about profiling in PowerBuilder. When you are ready to
develop your own tools, see Analyzing trace information programmatically for an overview
of the approaches you can take.

7.2.3.1 Profiling Class View

The Class view uses a TreeView control to display statistics for PowerBuilder objects, their
functions, and their events. It displays statistics only for those objects that were active while
tracing was enabled. The Class view has three tabs:

• Numbers

Shows statistics only

Running Your Application

Page 928

• Graph

Shows statistics in a bar graph

• Source

Shows statistics and source code for those routines that originated in PowerScript source

For each object, the Class view shows all the routines called from each class with the
number of times each routine was called (hit) as well as timing information for each call. The
following illustration shows part of a Class view. Embedded SQL commands are shown as
being called from a pseudo class called ESQL.

Figure 7.9:

The Class view includes both PowerBuilder system-level objects (such as DataWindow and
SystemFunction) and user-defined classes (such as windows and user objects). Each top-level
node is a PowerBuilder class. As you expand the TreeView control, each node represents a
routine and each subnode represents a called routine.

The Class view uses the call graph model to show cumulative statistics for objects, routines,
and called routines. The information displayed on the right side of the display differs
depending on the current node on the left.

Table 7.7: Statistics displayed in the Profiling Class View by node

Current node Statistics displayed

Application Statistics for each object

Object Cumulative statistics for the object and detailed statistics for the
object's routines

Routine Cumulative statistics for the routine and detailed statistics for called
routines

You can sort items on the right by clicking the heading.

Running Your Application

Page 929

Class view metrics

The Class view displays five metrics. The profiling tool accesses these metrics from instances
of the ProfileCall and ProfileRoutine objects. The time scale you specified in the Preferences
dialog box determines how times are displayed.

Table 7.8: Metrics in the Profiling Class View

Metric What it means

Hits The number of times a routine executed in a particular context.

Self The time spent in the routine or line itself. If the routine or line was
executed more than once, this is the total time spent in the routine
or line itself; it does not include time spent in routines called by this
routine.

%Self Self as a percentage of the total time the calling routine was active.

Self+Called The time spent in the routine or line and in routines or lines called
from the routine or line. If the routine or line was executed more than
once, this is the total time spent in the routine or line and in called
routines or lines.

%Self+Called Self+Called as a percentage of the total time that tracing was
enabled.

About percentages

The percentages captured in the trace file are based on the total time tracing was
enabled. Because an application can be idle (while displaying a MessageBox,
for example), percentage metrics are most meaningful when you control tracing
programmatically, which can help to minimize idle time. Percentages are least
meaningful when you create a trace file for a complete application.

7.2.3.2 Profiling Routine View

The Routine view displays statistics for a routine, its calling routines, and its called routines.
It uses multiple DataWindow objects to display information for a routine:

• Called routines

The top DataWindow lists functions and events called by the current routine.

• Current routine

The middle DataWindow and the DataWindow on the right highlight the current routine
and show detailed statistics.

• Calling routines

The bottom DataWindow lists functions and events that call the routine displayed in the
middle DataWindow.

The Routine view has two tabs:

• Detail

Running Your Application

Page 930

Shows statistics only

• Source

Shows statistics and source code for those routines that originated in PowerScript source

The Routine view uses the call graph model to show the call chain and cumulative statistics
for routines and called routines.

Figure 7.10:

You can specify the current routine by clicking in the various DataWindows.

Table 7.9: Specifying the current routine in the Profiling Routine View

To do this Click here

Establish a new current routine in
the current routine DataWindow

On the routine. The profiling tool updates the top and
bottom DataWindows with information on called and
calling routines.

Select a calling routine as the new
routine

On the routine in the top DataWindow. The profiling
tool makes it the current routine in the middle
DataWindow.

Select a called routine as the new
routine

On the routine in the bottom DataWindow. The
profiling tool makes it the current routine in the middle
DataWindow.

You can sort items by clicking the column headings.

Running Your Application

Page 931

Routine view metrics

The Routine view displays nine metrics. The profiling tool accesses these metrics from
instances of the ProfileCall and ProfileRoutine objects. The time scale you specified in the
Preferences dialog box determines how times are displayed.

Table 7.10: Metrics in the Profiling Routine View

Metric What it means

Hits (Called on
Detail tab)

The number of times a routine executed in a particular context.

Self The time spent in the routine or line itself. If the routine or line was
executed more than once, this is the total time spent in the routine
or line itself; it does not include time spent in routines called by this
routine.

%Self Self as a percentage of the total time the calling routine was active.

Self Min The shortest time spent in the routine or line itself. If the routine or line
was executed only once, this is the same as AbsoluteSelfTime.

Self Max The longest time spent in the routine or line itself. If the routine or line
was executed only once, this is the same as AbsoluteSelfTime.

Self+Called The time spent in the routine or line and in routines or lines called from
the routine or line. If the routine or line was executed more than once,
this is the total time spent in the routine or line and in called routines or
lines.

%Self+Called Self+Called as a percentage of the total time that tracing was enabled.

Self+Called Min The shortest time spent in the routine or line and in called routines or
lines. If the routine or line was executed only once, this is the same as
AbsoluteTotalTime.

Self+Called Max The longest time spent in the routine or line and in called routines or
lines. If the routine or line was executed only once, this is the same as
AbsoluteTotalTime.

7.2.3.3 Profiling Trace View

The Trace view uses a TreeView control to display the events and functions in the trace file.
The initial display shows top-level routines. Each node expands to show the sequence of
routine execution. The fully expanded TreeView shows the complete sequence of executed
instructions for the trace file.

The Trace view uses the trace tree model to show the sequence of execution. It includes
statistics and (for those routines that originated in PowerScript source) source code.

You can use the Trace View Options section of the Preferences dialog box to control the
display:

• System routines

This option controls whether the Trace view includes information for lines that execute
PowerBuilder system routines.

Running Your Application

Page 932

• Line information

This option controls whether the Trace view includes line numbers.

The following screen shows a Trace view with several nodes expanded. The number to the
right of each item is the execution time for that item.

Figure 7.11:

Trace view metrics

The Trace view displays two metrics. The profiling tool accesses these metrics from instances
of the TraceTree and TraceTreeNode objects.

Table 7.11: Metrics in the Profiling Trace View

Entry What it means

Routine or line
number

The routine or line number that was executed.

Execution time Total execution time for the Tree view entry. This is total time from
the start of the entry to the end of the entry. For example, if you call the
MessageBox function, this value reflects the elapsed time from when the
message box was opened until the user provided some kind of response.

About preferences

The specifications you make in the Preferences dialog box control whether the Trace
view displays system functions and line numbers.

7.2.3.4 Setting call aggregation preferences

You can control how the profiling tools display information using the Preferences dialog box.
To open it, select Options>Preferences from any profiling view's menu bar.

Running Your Application

Page 933

In both Class and Routine views, you can choose how functions and events that are called
more than once are displayed. Select the Aggregate Calls check box if you want the view to
display a single line for each called function or event that represents a sum of all the times it
was called. If you do not select the check box, the view displays statistics for each call on a
separate line.

For example, if aggregation is enabled and a function calls another function five times, you
see one entry with five hits; with no aggregation, you see five separate entries for the same
function.

Internally, the profiling tool controls aggregation by using the
AggregateDuplicateRoutineCalls boolean argument to the OutgoingCallList and
IncomingCallList functions on the ProfileRoutine object.

7.2.4 Analyzing trace information programmatically

PowerBuilder provides three ways to analyze trace information using built-in system objects
and functions:

• Analyze performance by building a call graph model

A call graph model contains information about all the routines in the trace file: how many
times each routine was called, which routines called it and which routines it called, and the
execution time taken by the routine itself and any routines it called.

• Analyze program structure and logical flow by building a trace tree model

A trace tree model contains information about all recorded activities in the trace file in
chronological order, with the elapsed time for each activity.

• Access the data in the trace file directly

Trace objects and functions let you build your own model and analysis tools by giving you
access to all the data in the trace file.

The profiling tools use the first two ways. The Class and Routine views are based on a call
graph model, and the Trace view is based on a trace tree model.

Supporting files needed

To create a profile from a trace file, PowerBuilder must also access the PBL, PBD, or
executable file used to create the trace file, and the PBL, PBD, or executable file must
be in the same location as when the trace file was created.

7.2.4.1 Analyzing performance with a call graph model

You use the PowerScript functions and PowerBuilder objects listed in The following table to
analyze the performance of an application.

Table 7.12: Functions for analyzing performance

Use this
function

With this
object

To do this

SetTraceFileNameProfiling Set the name of the trace file to be analyzed.

Running Your Application

Page 934

Use this
function

With this
object

To do this

BuildModel Profiling Build a call graph model based on the trace file. You can
pass optional parameters that let you track the progress of
the build.

RoutineList Profiling and
ProfileClass

Get a list of routines in the model or in a class.

ClassList Profiling Get a list of classes in the model.

SystemRoutineProfiling Get the name of the routine node that represents the root of
the model.

IncomingCallListProfileRoutine Get a list of routines that called a specific routine.

OutgoingCallListProfileRoutine
and ProfileLine

Get a list of routines called by a specific routine or from a
specific line.

LineList ProfileRoutine Get a list of lines in the routine in line order.

DestroyModelProfiling Destroy the current performance analysis model and all the
objects associated with it.

Each of these functions returns a value of the enumerated datatype ErrorReturn. The objects
contain information such as the number of times a line or routine was executed, and the
amount of time spent in a line or routine and in any routines called from that line or routine.

7.2.4.1.1 Using the BuildModel function to build a call graph model

The call graph model that you create with the BuildModel function contains all the routines
in the trace file and can take a long time to build. If you want to monitor the progress of
the build or you want to be able to interrupt it while the model is being built, you can pass
optional arguments to BuildModel.

BuildModel arguments

BuildModel takes three arguments: the name of an object of type PowerObject, the name of
a user event, and a long value representing how often the user event should be triggered as a
percentage of the build completed.

The user event returns a boolean value and has two arguments: the number of the current
activity, and the total number of activities in the trace file.

Destroying existing models

Before you call BuildModel, you can call DestroyModel to clean up any objects remaining
from an existing model.

Example: building a call graph model

In the following example, the user event argument to BuildModel is called ue_progress and
is triggered each time five percent of the activities have been processed. The progress of the
build is shown in a window called w_progress that has a cancel button.

Profiling lpro_model
lpro_model = CREATE Profiling
ib_cancel = FALSE
lpro_model.SetTraceFileName(is_fileName)

Running Your Application

Page 935

open(w_progress)
// call the of_init window function to initialize
// the w_progress window
w_progress.of_init(lpro_model.numberofactivities, &
 'Building Model', this, 'ue_cancel')

// Build the call graph model
lpro_model.BuildModel(this, 'ue_progress', 5)

// clicking the cancel button in w_progress
// sets ib_cancel to TRUE and
// returns FALSE to ue_progress
IF ib_cancel THEN &
 close(w_progress)
 RETURN -1
END IF

7.2.4.1.2 Extracting information from the call graph model

After you have built a call graph model of the application, you can extract detailed
information from it.

For routines and lines, you can extract the timing information shown in the following table
from the ProfileRoutine and ProfileLine objects.

Table 7.13: Timing information in the call graph model

Property What it means

AbsoluteSelfTimeThe time spent in the routine or line itself. If the routine or line was
executed more than once, this is the total time spent in the routine or line
itself.

MinSelfTime The shortest time spent in the routine or line itself. If the routine or line was
executed only once, this is the same as AbsoluteSelfTime.

MaxSelfTime The longest time spent in the routine or line itself. If the routine or line was
executed only once, this is the same as AbsoluteSelfTime.

AbsoluteTotalTimeThe time spent in the routine or line and in routines or lines called from the
routine or line. If the routine or line was executed more than once, this is the
total time spent in the routine or line and in called routines or lines.

MinTotalTime The shortest time spent in the routine or line and in called routines or
lines. If the routine or line was executed only once, this is the same as
AbsoluteTotalTime.

MaxTotalTime The longest time spent in the routine or line and in called routines or
lines. If the routine or line was executed only once, this is the same as
AbsoluteTotalTime.

PercentSelfTimeAbsoluteSelfTime as a percentage of the total time tracing was active.

PercentTotalTimeAbsoluteTotalTime as a percentage of the total time tracing was active.

Example: extracting information from a call graph model

The following function extracts information from a call graph model about the routines called
from a specific routine. You would use similar functions to extract information about the
routines that called the given routine and about the routine itself.

Running Your Application

Page 936

The function takes a ProfileCall object and an index as arguments and returns a structure
containing the number of times the called routine was executed and execution times for the
called routine.

str_func_detail lstr_result
ProfileClass lproclass_class
ProfileRoutine lprort_routine

// get the name of the called routine
// from the calledroutine property of
// the ProfileCall object passed to the function
lprort_routine = a_pcall.Calledroutine
lstr_result.Name = ""
lproclass_class = a_pcall.Class
IF isValid(lproclass_class) THEN &
 lstr_result.Name += lproclass_class.Name + "."
lstr_result.name += a_pcall.Name

lstr_result.hits = a_pcall.HitCount
lstr_result.selfTime = a_pcall. &
 AbsoluteSelfTime * timeScale
lstr_result.totalTime = a_pcall. &
 AbsoluteTotalTime * timeScale
lstr_result.percentSelf = a_pcall.PercentSelfTime
lstr_result.percentTotal= a_pcall.PercentTotalTime
lstr_result.index = al_index

RETURN lstr_result

7.2.4.2 Analyzing structure and flow using a trace tree model

You use the PowerScript functions and PowerBuilder objects listed in the following table to
build a nested trace tree model of an application.

Table 7.14: Functions for analyzing program structure and flow

Use this
function

With this object To do this

SetTraceFileNameTraceTree Set the name of the trace file to be analyzed.

BuildModel TraceTree Build a trace tree model based on the trace file. You can
pass optional parameters that let you track the progress of
the build.

EntryList TraceTree Get a list of the top-level entries in the trace tree model.

GetChildrenListTraceTreeRoutine,
TraceTreeObject,
and
TraceTreeGarbageCollect

Get a list of the children of the routine or object—that
is, all the routines called directly by the routine, or the
destructor called as a result of the object's deletion.

DestroyModelTraceTree Destroy the current trace tree model and all the objects
associated with it.

Each of these functions returns a value of type ErrorReturn.

Each TraceTreeNode object returned by the EntryList and GetChildrenList functions
represents a single node in the trace tree model and contains information about the parent of
the node and the type of activity it represents.

Running Your Application

Page 937

Inherited objects

The following objects inherit from TraceTreeNode and contain additional information,
including timer values:

• TraceTreeError

• TraceTreeESQL

• TraceTreeGarbageCollect

• TraceTreeLine

• TraceTreeObject

• TraceTreeRoutine

• TraceTreeUser

7.2.4.2.1 Using BuildModel to build a trace tree model

You use the same approach to building a trace tree model as you do to building a call graph
model, except that you build a model of type TraceTree instead of type Profiling.

For example:

TraceTree ltct_treemodel
ltct_treemodel = CREATE TraceTree
ltct_treeModel.SetTraceFileName(is_fileName)
ltct_treeModel.BuildModel(this, 'ue_progress', 1)

For more about using BuildModel, see Using the BuildModel function to build a call graph
model.

7.2.4.2.2 Extracting information from the trace tree model

To extract information from a tree model, you can use the EntryList function to create a list
of top-level entries in the model and then loop through the list, extracting information about
each node. For each node, determine its activity type using the TraceActivity enumerated
datatype, and then use the appropriate TraceTree object to extract information.

Example: trace tree model

The following simple example extracts information from an existing trace tree model and
stores it in a structure:

TraceTreeNode ltctn_list[], ltctn_node
long ll_index, ll_limit
string ls_line
str_node lstr_node

ltct_treemodel.EntryList(ltctn_list)
ll_limit = UpperBound(ltctn_list)
FOR ll_index = 1 to ll_limit
 ltctn_node = ltctn_list[ll_index]
 of_dumpnode(ltctn_node, lstr_node)
 // insert code to handle display of
 // the information in the structure here
 …
NEXT

Running Your Application

Page 938

The of_dumpnode function takes a TraceTreeNode object and a structure as arguments and
populates the structure with information about each node. The following code shows part of
the function:

string ls_exit, ls_label, ls_routinename
long ll_node_cnt
TraceTreeNode ltctn_list[]
errorreturn l_err

astr_node.Children = FALSE
astr_node.Label = ''
IF NOT isvalid(atctn_node) THEN RETURN
CHOOSE CASE atctn_node.ActivityType
 CASE ActRoutine!
 TraceTreeRoutine ltctrt_routin
 ltctrt_routine = atctn_node
 IF ltctrt_routine.Classname = '' THEN &
 ls_routinename = ltctrt_routine.ClassName + "."
 END IF
 ls_routinename += ltctrt_routine.Name
 ltctrt_routine.GetChildrenList(ltctn_list)
 ll_node_cnt = UpperBound(ltctn_list)

 ls_label = "Execute " + ls_routinename + ' :' + &
 space(ii_offset) + String(l_timescale * &
 (ltctrt_routine.ExitTimerValue - &
 ltctrt_routine.EnterTimerValue), '0.000000')
 astr_node.Children = (ll_node_cnt > 0)
 astr_node.Label = ls_label
 astr_node.Time = ltctrt_routine.EnterTimerValue
 RETURN
 CASE ActLine!
 TraceTreeLine tctln_treeLine
 tctln_treeLine = atctn_node
 ls_label = LINEPREFIX + &
 String(tctln_treeLine.LineNumber)
 astr_node.time = tctln_treeLine.Timervalue
 ...
 // CASE statements omitted
 ...
 CASE ELSE
 ls_label = "INVALID NODE"
 END CHOOSE

 astr_node.label = ls_label
 RETURN

7.2.4.3 Accessing trace data directly

You use the PowerScript functions and PowerBuilder objects listed in the following table to
access the data in the trace file directly so that you can develop your own analysis tools.

Table 7.15: Functions for direct access to trace data

Use this
function

With this
object

To do this

Open TraceFile Opens the trace file to be analyzed.

NextActivity TraceFile Returns the next activity in the trace file. The value returned is
of type TraceActivityNode.

Reset TraceFile Resets the next activity to the beginning of the trace file.

Running Your Application

Page 939

Use this
function

With this
object

To do this

Close TraceFile Closes the open trace file.

With the exception of NextActivity, each of these functions returns a value of type
ErrorReturn. Each TraceActivityNode object includes information about the category of the
activity, the timer value when the activity occurred, and the activity type.

Timer values

The category of the activity is either TraceIn! or TraceOut! for activities that have separate
beginning and ending points, such as routines, garbage collection, and tracing itself. Each
such activity has two timer values associated with it: the time when it began and the time
when it completed.

Activities that have only one associated timer value are in the category TraceAtomic!.
ActLine!, ActUser!, and ActError! are all atomic activities.

Inherited objects

The following objects inherit from TraceActivityNode and contain data about the associated
activity type:

• TraceBeginEnd

• TraceError

• TraceESQL

• TraceGarbageCollect

• TraceLine

• TraceObject

• TraceRoutine

• TraceUser

TraceTreeNode and TraceActivityNode objects

The objects that inherit from TraceActivityNode are analogous to those that inherit
from TraceTreeNode, and you can use similar techniques when you write applications
that use them.

For a list of activity types, see Trace activities [919].

7.2.4.3.1 Using the TraceFile object

To access the data in the trace file directly, you create a TraceFile object, open a trace file,
and then use the NextActivity function to access each activity in the trace file sequentially.
For each node, determine what activity type it is by examining the TraceActivity enumerated
datatype, and then use the appropriate trace object to extract information.

Example: direct access to trace data

Running Your Application

Page 940

The following example creates a TraceFile object, opens a trace file called ltcf_file, and then
uses a function called of_dumpActivityNode to report the appropriate information for each
activity depending on its activity type.

string ls_fileName
TraceFile ltcf_file
TraceActivityNode ltcan_node
string ls_line

ls_fileName = sle_filename.Text
ltcf_file = CREATE TraceFile
ltcf_file.Open(ls_fileName)
ls_line = "CollectionTime = " + &
 String(Truncate(ltcf_file.CollectionTime, 6)) &
 + "~r~n" + "Number of Activities = " + &
 String(ltcf_file.NumberOfActivities) + "~r~n" + &
 "Time Stamp " + "Activity" + "~r~n"

mle_output.text = ls_line

ltcan_node = ltcf_file.NextActivity()
DO WHILE IsValid(ltcan_node)
 ls_line += of_dumpActivityNode(ltcan_node)
 ltcan_node = ltcf_file.NextActivity()
LOOP

mle_output.text = ls_line
ltcf_file.Close()

The following code shows part of of_dumpActivityNode:

string lstr_result

lstr_result = String(Truncate(atcan_node. &
 TimerValue, 6)) + " "
CHOOSE CASE atcan_node.ActivityType
 CASE ActRoutine!
 TraceRoutine ltcrt_routine
 ltcrt_routine = atcan_node
 IF ltcrt_routine.IsEvent THEN
 lstr_result += "Event: "
 ELSE
 lstr_result += "Function: "
 END IF
 lstr_result += ltcrt_routine.ClassName + "." + &
 ltcrt_routine.name + "(" + &
 ltcrt_routine.LibraryName + ") " &
 + String(ltcrt_routine.ObjectId) + "~r~n"
 CASE ActLine!
 TraceLine ltcln_line
 ltcln_line = atcan_node
 lstr_result += "Line: " + &
 String(ltcln_line.LineNumber) + "~r~n"
 CASE ActESQL!
 TraceESQL ltcSQL_eSQL
 ltcSQL_eSQL = atcan_node
 lstr_result += "ESQL: " + ltcSQL_eSQL.Name &
 + "~r~n"

 // CASE statements and code omitted
 ...
 CASE ActBegin!
 IF atcan_node.Category = TraceIn! THEN
 lstr_result += "Begin Tracing~r~n"

Running Your Application

Page 941

 ELSE
 lstr_result += "End Tracing~r~n"
 END IF
 CASE ActGarbageCollect!
 lstr_result += "Garbage Collection~r~n"
 CASE else
 lstr_result += "Unknown Activity~r~n"
END CHOOSE

RETURN lstr_result

7.2.5 Generating a trace file without timing information

If you want to generate an activity log with no timing information in a text file, you can turn
on PBDebug tracing in the System Options dialog box. The PBDebug trace file contains a log
showing which object functions and instructions and system DLL functions were executed in
chronological order.

To generate a simple trace file:

1. Select Tools>System Options and check the Enable PBDebug Tracing check box.

2. Check the Prompt Before OverWriting PBDebug Output File box if you want to retain
existing trace output when you run or debug the application.

3. (Optional) Specify a pathname for the PBDebug output file.

4. Run your application.

If you do not check the Prompt Before OverWriting PBDebug Output File box,
PowerBuilder overwrites the existing trace file every time you run the application
or click the Start button in the debugger. If you check the box, it displays a response
window. You can choose to overwrite the file, append new trace output to the existing
file, or cancel the run or debug session.

If you want to retain the trace file, save it with a different name before running the
application, or specify a new file name in the System Options dialog box.

If you do not specify an output file path, PowerBuilder creates an output file in the same
directory as the PowerBuilder executable file. The output file has the same name as the
PowerBuilder executable with the extension DBG. If you do not have write permission
to this directory, you must specify a value for the output file path.

Turning PBDebug off

Running your application with PBDebug on will slow down execution. Be sure to
clear the Enable PBDebug Tracing check box on the System Options dialog box if
you do not need this trace information.

For information on creating the same kind of diagnostic trace file when you run your
compiled application outside PowerBuilder, see Tracing execution.

7.3 Creating Executables and Components
About this chapter

Running Your Application

Page 942

This chapter describes how to create an executable version of your target. It also provides
an overview of how you use the PowerBuilder Project painter to build other kinds of
components.

7.3.1 About building PowerBuilder targets

You can build many types of targets with PowerBuilder. For traditional client/server
applications, you need to create an executable version of your target that you can deploy
to users' computers. If you are building a distributed application with PowerBuilder, you
typically build a client executable file and a server component that you can deploy to a
transaction server. For some types of distributed applications, you need to build proxy
objects.

Building executable files

If you are building an executable file, there are two basic ways to package the application:

• As one standalone executable file that contains all the objects in the application

• As an executable file and one or more dynamic libraries that contain objects that are linked
at runtime

Read Section 9.1, “Packaging an Application for Deployment” in Application Techniques
to get an understanding of the best way for you to package the application. Then follow the
procedures in Defining an executable application project to implement your strategy.

Building other types of targets

For an overview of how you use the Project painter to build different types of components,
see Building proxies and .NET targets.

Providing other resources

You might need to provide additional resources that your target uses, such as bitmaps and
icons. There are two ways to provide resources:

• Distribute them separately

• Include them in a PowerBuilder resource file (PBR) and build an executable, a dynamic
library, or a component using the resource file

For more information, see Distributing resources.

Building the workspace

You can build and deploy all the targets in your workspace using buttons on the PowerBar,
pop-up menus in the System Tree, or a command line. For more information, see Building
workspaces.

7.3.2 Using the Project painter

You use the Project painter to create and maintain PowerBuilder projects that build all these
different objects. The Project painter allows you to streamline the generation of the files your
target needs and to rebuild easily when you make changes. There is a wizard to help you set
up each project type.

Running Your Application

Page 943

The following table lists the types of projects you can create and what you can build using the
project.

Table 7.16: Project types

Project What it builds

Application An executable file and optional dynamic libraries.

PowerClient An application that can be installed/updated from a server and can be run
independently as an executable application.

PowerServer An installable cloud application that is running in n-tier architecture.

EJB Client
Proxy
(obsolete)

Enterprise JavaBeans components are obsolete technology, and will be
removed in a future release.

One or more proxy objects (stubs) that can be used by a PowerBuilder
client to access functions in an EJB component on an application server.

.NET
Assembly
(obsolete)

A .NET assembly containing one or more custom class user objects.

.NET Web
Service
(obsolete)

A .NET Web service containing one or more custom class user objects.

Web Service
Proxy
(obsolete)

A proxy object that can be used by a PowerBuilder client to invoke a Web
service defined in a WSDL (Web Services Description Language) file.

For how to create a new project, see Creating a project.

7.3.2.1 Creating a project

You can create a new project when you create a new target using most Target wizards. You
can also create a project at any time from the Project page in the New dialog box if you have
already created a target of the appropriate type.

The Project page has two kinds of icons: icons that open wizards that help you set up a
project, and icons that open the Project painter. Wizard icons display next to the icon for the
same project type. The following procedure describes how to create a new project from the
Project page.

To create a new project object from the Project page:

1. Select File>New or click the New button in the PowerBar to open the New dialog box.

2. Select the Project tab.

3. Select the target in which you want to create the project from the Target drop-down list.

4. Select the wizard or project type you need and click OK.

If you select a wizard, complete the wizard screens to create a new project with most of
its properties specified. Use the context-sensitive Help if you are not sure what to enter.
You can open the Project painter now or later to modify the properties if necessary and
to build the project.

Running Your Application

Page 944

If you do not select a wizard, the Project painter for the type of object you selected
opens so that you can specify properties of the project object.

Once you have created a project, you can open it from the System Tree.

Projects can be modified only in the painter

Unlike most other PowerBuilder objects, a project object cannot be edited in the
Source editor.

Target-relative paths and shared projects

All paths used in projects are stored as target-relative paths, if possible. If you later move the
application to a different location in the file system, or another user copies or checks out the
application, the paths are adjusted relative to the new target location.

For example, suppose user A has an application target stored in the following directory
structure, where pbl_1.pbl contains the application object:

C:\target1\target1.pbt
C:\target1\pbls\pbl_1.pbl
C:\target1\pbls\pbl_2.pbl
C:\target1\res\target1.pbr
C:\target1\out\target1.exe

When user B copies the application to the following directory structure, no changes need to
be made in the Project painter, because the paths reflect the new directory structure:

D:\PB\My Targets\Target 1\target1.pbt
D:\PB\My Targets\Target 1\pbls\pbl_1.pbl
D:\PB\My Targets\Target 1\pbls\pbl_2.pbl
D:\PB\My Targets\Target 1\res\target1.pbr
D:\PB\My Targets\Target 1\out\target1.exe

A projects that was created in an earlier version of PowerBuilder using hard-coded paths
must be opened and resaved before the files it references are modified with target-relative
paths.

If a path is not on the drive where the target is stored, then the path is stored as an absolute
path. For example, the path to image files stored on a shared network directory such as J:\res
\images\common is stored as an absolute path in the project file.

References to files outside the target path

If a project references a PBL or another file on a local drive that is outside the path of
the target, make sure that the PBL or file is copied to the new target location and that
it is referenced correctly in the project.

7.3.3 Using dynamic libraries

You can store the objects used in your PowerBuilder application in more than one library
and, when you run the application, dynamically load any objects that are not contained in the
application's executable file. This allows you to break the application into smaller units that
are easier to manage and makes the executable file smaller. You do this by using dynamic
libraries. If you compile using Pcode, PowerBuilder builds PowerBuilder dynamic libraries

Running Your Application

Page 945

(PBD files). If you use machine code, PowerBuilder builds Dynamic Link Libraries (DLL
files).

When you distribute your application to users, you distribute the executable, the dynamic
libraries, and PowerBuilder runtime DLLs. For more information about deployment and a list
of PowerBuilder runtime DLLs, see Section 9.2, “Deploying Applications and Components”
in Application Techniques.

Dynamic library names

PowerBuilder dynamic libraries are given the name of the PBL with the extension .pbd. For
example, the Pcode library built from test.pbl is named test.pbd.

Machine-code dynamic libraries are given the extension .dll. For example, the machine-code
library built from test.pbl is named test.dll.

Reducing the size of dynamic libraries

When PowerBuilder builds a dynamic library, it copies the compiled versions of all objects
from the source library (PBL file) into the dynamic library.

The easiest way to specify source libraries is simply to use your standard PowerBuilder
libraries as source libraries. However, using this technique can make your dynamic libraries
larger than they need to be, because they include all objects from the source library, not just
the ones used in your application. You can create a PowerBuilder library that contains only
the objects that you want in a dynamic library.

To create a source library to be used as a dynamic library:

1. In the Library painter, place in one standard PowerBuilder library (a PBL file) all the
objects that you want in the dynamic library.

2. If you need to create a new library, select Entry>Library>Create from the menu bar,
then drag or move the objects into the new library.

3. Make sure the application's library search path includes the new library.

Multiple dynamic libraries

You can use as many dynamic libraries as you want in an application. To do so, create
a source library (PBL file) for each of them.

Specifying the dynamic libraries in your project

When you define your project, you tell PowerBuilder which of the libraries in the
application's library search path will be dynamic by checking the PBD or DLL check box
next to the library name in the Project painter.

Including additional resources for a dynamic library

When building a dynamic library, PowerBuilder does not inspect the objects; it simply
copies the compiled form of the objects into the dynamic library. Therefore, if any of the
objects in the library use resources (pictures, icons, and pointers)—either specified in a
painter or assigned dynamically in a script—and you do not want to provide these resources
separately, you must list the resources in a PowerBuilder resource (PBR) file. Doing so
enables PowerBuilder to include the resources in the dynamic library when it builds it.

Running Your Application

Page 946

To reference additional resources:

1. List the resources in a PBR file, as described in Using PowerBuilder resource files.

2. Use the Resource File Name box in the Project painter workspace to reference the PBR
file in the dynamic library.

7.3.4 Attaching or embedding manifest files

If you want to deploy an application to the Windows operating system that meets the
certification requirements of the Windows logo program, you must follow User Account
Control (UAC) guidelines. The executable file must have an embedded manifest that defines
the execution level and specifies whether access to the user interface of another window is
required. The Application Information Service (AIS) checks the manifest file to determine
the privileges with which to launch the process. Use the Security tab page in the Project
painter to specify these properties.

Generate options

Select Embedded manifest if your application needs to be certified for Windows. A manifest
file with the execution level you select is embedded in the application's executable file.

You can also select External manifest to generate a standalone manifest file in XML format
that you ship with your application's executable file, or No manifest if you do not need to
distribute a manifest file.

Execution level

Select As Invoker if the application does not need elevated or administrative privileges.
Selecting a different execution level will probably require that you modify your application to
isolate administrative features in a separate process to receive Windows certification.

Select Require Administrator if the application process must be created by a member of the
Administrators group. If the application user does not start the process as an administrator, a
message box displays so that the user can enter the appropriate credentials.

Select Highest Available to have the AIS retrieve the highest available access privileges for
the user who starts the process.

UI access

If the application needs to drive input to higher privilege windows on the desktop, such as an
on-screen keyboard, select the "Allow access to protected system UI" check box. For most
applications you should not select this check box. Microsoft provides this setting for user
interface Assistive Technology (Section 508) applications.

Authenticode signing required

If you check this box, the application must be Authenticode signed and must reside in
a protected location, such as Program Files or Windows\system32.

7.3.5 Distributing resources

You can choose to distribute your resources (pictures, pointers, and icons) separately or
include them in your executable file or dynamic library.

Running Your Application

Page 947

7.3.5.1 Distributing resources separately

When a resource is referenced at runtime, if the resource has not been included in the
executable file or in a dynamic library, PowerBuilder looks for it in the search path. You need
to distribute resources with your application and make sure they get installed in the user's
search path.

For example, assume you use two bitmap files as in the following script:

IF Balance < 0 THEN
 p_logo.PictureName = "frown.bmp"
ELSE
 p_logo.PictureName = "smile.bmp"
END IF

You can distribute the files frown.bmp and smile.bmp with your application. If the files are
on the search path at runtime, the application can load them when they are needed.

The Windows search path is as follows:

• The current directory

• The Windows directory

• The Windows system directory

• All directories in the PATH environment variable

7.3.5.2 Using PowerBuilder resource files

Instead of distributing resources separately, you can create a PowerBuilder resource file (a
PBR file) that lists all dynamically assigned resources.

A PBR file is an ASCII text file in which you list resource names (such as BMP, CUR, GIF,
ICO, JPEG, RLE, WMF, and PNG files) and DataWindow objects. To create a PBR file, use
a text editor. List the name of each resource, one resource on each line, then save the list as a
file with the extension PBR.

Here is a sample PBR file:

ct_graph.ico
document.ico
codes.ico
button.bmp
next1.bmp
prior1.bmp
background.png

PowerBuilder compiles the listed resources into the executable file or a dynamic library file,
so the resources are available directly at runtime.

Using DataWindow objects

If the objects in one PBL reference DataWindow objects, either statically or
dynamically, that are in a different PBL, you must either specify a PowerBuilder
resource file that includes the DataWindow objects, or define the library that includes
them as a PBD or DLL that you distribute with your application. You cannot
distribute them separately as you can image files.

Running Your Application

Page 948

For more information about creating and using PBR files, see Section 9.1, “Packaging an
Application for Deployment” in Application Techniques.

7.3.5.3 What happens at runtime

When a resource such as a bitmap is referenced at runtime, PowerBuilder first looks in the
executable file for it. Failing that, it looks in the PBDs that are defined for the application.
Failing that, it looks in directories in the search path for the file.

7.3.6 Creating an executable application

7.3.6.1 Creating an executable app project

To create an executable application project:

1. Select File>New or click the New button in the PowerBar to open the New dialog box.

2. Select the Project tab.

3. Select the target in which you want to create the project from the Target drop-down list.

4. Select the Application Wizard or Application project type and click OK.

If you select Application Wizard, complete the wizard screens to create a new project
with most of its properties specified. Use the context-sensitive Help if you are not sure
what to enter. You can open the Project painter now or later to modify the properties if
necessary and to build the project.

If you select Application, the Project painter for the executable application opens so that
you can specify properties of the project object.

7.3.6.2 Defining an executable app project

The Project painter for executable applications allows you to streamline the generation of
executable files and dynamic libraries. When you build a project object, you specify the
following components of your application:

• Executable file name

• Which of the libraries you want to distribute as dynamic libraries

• Which PowerBuilder resource files (if any) should be used to build the executable file and
the dynamic libraries

• Which build options you want to use in your project

• Which code generation options you want to use

• Version information for your application

If you do not use the Template Application Target wizard to create a new application project,
you need to define the project using a Project wizard or by setting project properties in the
Project painter. After you have created a project, you might need to update it later because
your library list has changed or you want to change your compilation options.

Running Your Application

Page 949

To define or modify an executable application project

1. Select the Application project icon on the Project tab in the New dialog box to create a
new application project, or select File>Open to open an existing application project.

The Project painter workspace displays.

Figure 7.12:

2. Specify or modify options as needed.

If you opened an existing project or a project created using the wizard, the options
already selected display in the workspace. For information about each option, see
Executable application project options [949].

When you have finished defining the project object, save the object by selecting
File>Save from the menu bar.

PowerBuilder saves the project as an independent object in the specified library. Like
other objects, projects are displayed in the System Tree and the Library painter.

Executable application project options

Running Your Application

Page 950

The following table describes each of the options you can specify in the Project painter for
executable applications. You can also specify most of these options in the Application Project
wizard.

Table 7.17: Options for executable application projects

Option What you specify

Executable file
name

Specify a name for the executable. The name must have the extension
EXE. If you do not want the executable saved to your current directory,
click the Browse (...) button next to the box to navigate to a different
directory.

Resource file
name

(Optional) Specify a PowerBuilder resource file (PBR) for your executable
if you dynamically reference resources (such as bitmaps and icons) in your
scripts and you want the resources included in the executable file instead of
having to distribute the resources separately.

You can type the name of a resource file in the box or click the button
next to the box to browse your directories for the resource file you want to
include.

For more about PBRs, see Distributing resources.

Prompt for
overwrite

Select this if you want PowerBuilder to prompt you before overwriting
files. PowerBuilder overwrites any files it creates when building your
application.

Windows
classic style

Select this to add a manifest file to the application that specifies the
appearance of the controls as an application resource.

By default, this option is not selected, which means the Windows flat style
is used and the 3D effect of some controls will be removed to have a "flat"
look, for example, the 3D lowered border of Column and Computed Field
in the DataWindow object, the background color of Button, the BackColor
and TextColor of tooltip, and the TabBackColor of tab header will not
take effect. If you still want the 3D effect, you should select the "Windows
classic style" option when deploying the application.

Note

If you have applied a theme to the application, you should not
check the "Enable Windows Classic Style in the IDE" option in the
System Options or the "Windows classic style" option in the project
painter and the PB.INI file (if any) should not contain such setting,
otherwise, the application UI will be rendered in the Windows
classic style instead of the selected theme.

Rebuild Specify either Full or Incremental to indicate whether you want
PowerBuilder to regenerate all objects in the application libraries before it
creates the executable and dynamic libraries. If you choose Incremental,
PowerBuilder regenerates only objects that have changed, and objects that
reference any objects that have changed, since the last time you built your
application.

Running Your Application

Page 951

Option What you specify
As a precaution, regenerate all objects before rebuilding your project.

Platform Select if the executable can run on 32-bit or 64-bit machines.

Machine Code Select this if you want to generate compiled code instead of Pcode. For
more information about compiled code and Pcode, see Section 9.1.2.1,
“Compiler basics” in Application Techniques.

Selecting Machine Code enables the other code generation options in the
Project painter. They cannot be set in the wizard.

Trace
Information

Select this if you want to create a trace file when you run your compiled
code executable. You can use the trace file to troubleshoot or profile your
application. For more information on obtaining trace information, see
Tracing execution.

Error Context
Information

Select this if you want PowerBuilder to display context information (such
as object, event, and script line number) for runtime errors.

Optimization Select an optimization level. You can build your application with no
optimizations, or you can optimize for speed or space.

Enable
DEBUG
symbol

Select to enable any code that you placed in DEBUG conditional code
blocks. For more information, see Using the DEBUG preprocessor symbol.

PBC runtime
parameters

Directly copy the runtime parameters which are automatically displayed
here according to the options selected, and execute them with the
PowerBuilder Complier.

For more information about PowerBuilder Complier, see About OrcaScript
or the standalone PBC user guide (pbc.pdf) in the PBC folder after
installation.

Libraries page The label for the PBD or DLL check box depends on whether you are
building a Pcode or machine code executable. Select the check box
to define a library as a dynamic library to be distributed with your
application.

If you are generating Pcode, you create PBD files. If you are generating
machine code, you create DLL files. For more about dynamic libraries, see
Using dynamic libraries.

Specify a resource file for a dynamic library if it uses resources (such as
bitmaps and icons) and you want the resources included in the dynamic
library instead of having to distribute the resources separately. The file
name cannot be specified in the wizard.

Version page Specify your own values for the Product Name, Company Name,
Description, Copyright, Product Version, and File Version fields associated
with the executable file and with machine-code DLLs. These values
become part of the Version resource associated with the executable file,
and most of them display on the Version tab page of the Properties dialog
box for the file in Windows Explorer. The Product and File version string
fields can have any format.

Running Your Application

Page 952

Option What you specify
The Product and File version numeric fields in the "Executable version
used by installer" group box are used by Microsoft Installer to determine
whether a file needs to be updated when a product is installed.

The Product Version final value will automatically include the runtime
version to help users easily identify which runtime version is used by the
executable file, for example, if you input "1.0.2" to the Product Version
field, the Product Version displayed in the executable file properties will
look like this "1.0.0.2 (Runtime: 19.2.0.2670)".

The four numbers can be used to represent the major version, minor
version, point release, and build number of your product. They must all be
present. If your file versioning system does not use all these components,
you can replace the unused numbers with zeros. The maximum value for
any of the numbers is 65535.

Security page Use the Security tab page to generate a manifest file (either external or
embedded) and to set the execution level of the application. To meet the
certification requirements of the Windows logo program the application
executable must have an embedded manifest that defines the execution
level and specifies whether access to the user interface of another window
is required.

For further information, see Attaching or embedding manifest files.

Run page Specify command-line arguments, the application's working directory, and
the runtime path (a relative or absolute path) that will be displayed in the
application XML file.

The Application field displays the name and location of the executable file
and is not editable. You can change these properties on the General page.

Location of temporary files

The machine code generation process puts temporary files in a temporary directory, such
as the TEMP directory. You can specify a different location in the [PB] section of your
PowerBuilder initialization file with the CODEGENTEMP variable. You might want to do
this if you have limited space on your local system.

For example:

CODEGENTEMP=e:\pbtempdir

7.3.6.3 Tracing execution

You can trace execution of an executable file built with PowerBuilder. By tracing execution,
you can troubleshoot your application if it does not behave the same way when run as an
executable file as it does when run in the PowerBuilder development environment. You can
also use the trace output to profile your application: for example, you can see how many
times particular scripts and functions are being executed.

Two kinds of trace files

You can generate two kinds of trace files:

Running Your Application

Page 953

• With timing information

You collect trace information by adding code to the scripts in the application or adding
a window that lets users turn tracing on and off. PowerBuilder generates a binary trace
file that you analyze using a comprehensive set of objects and functions or the Profiling
tools. For more information about tracing and profiling, see About tracing and profiling an
application.

• Without timing information

You collect information by running the application with the /pbdebug command-line
switch. PowerBuilder generates a text file that logs the creation and destruction of objects
and the execution of scripts and functions.

Tracing execution using /pbdebug

You generate PBDebug trace information for an executable file by invoking the executable
with a command-line switch.

To generate PBDebug trace information:

• Invoke the executable file using the /pbdebug command-line switch:

EXEFILE /pbdebug

As the application executes, PowerBuilder records the trace output in a file called
exefile.dbg, which is a text file that you can read in any editor. For information about
PBDebug tracing in the development environment, see Generating a trace file without
timing information.

Enabling tracing

If you are compiling machine code, you must enable tracing at compile time by
selecting Trace Information in the Project painter Compile Options group. If you
have not enabled tracing when you compile for machine code, no trace information is
generated and the /pbdebug switch has no effect.

If you compile your project in Pcode, the compiler automatically adds the information
needed to enable tracing.

7.3.6.4 Building an executable file and dynamic libraries

Once you have completed development and defined your project, you build the project to
create the executable files and all specified dynamic libraries. You can build your project
whenever you have made changes to the objects and want to test or deploy another version of
your application.

This section describes building a single project in the Project painter. You can build all the
targets in your workspace at any time using buttons on the PowerBar, pop-up menus in the
System Tree, or a command line. For more information, see Building workspaces.

To build the application:

1. Open the project you built in the Project painter.

Running Your Application

Page 954

2. Click the Build button in the PainterBar, or select Design>Build Project.

If the target's library list has changed

When you click Build, PowerBuilder checks your target's library list. If it has changed
since you defined your project, PowerBuilder updates the Project painter workspace
with the new library list. Make whatever changes you need in the workspace, then
click Build again.

PowerBuilder builds the executable and all specified dynamic libraries.

The next two sections describe in detail how PowerBuilder builds the project and finds
the objects used in the target.

When PowerBuilder has built the target, you can check which objects are included in the
target. See Listing the objects in a project.

7.3.6.4.1 How PowerBuilder builds the project

When PowerBuilder builds your application project:

• If you selected Rebuild: Full, PowerBuilder regenerates all the objects in the libraries.

• If you selected Prompt for Overwrite, PowerBuilder displays a message box asking for
confirmation before overwriting the executable file and each dynamic library.

To create the executable file you specified, PowerBuilder searches through your target and
copies into the executable file the compiled versions of referenced objects from the libraries
in the target's library search path that are not specified as dynamic libraries. For more details,
see How PowerBuilder searches for objects.

PowerBuilder creates a dynamic library for each of the libraries you specified for the target
and maintains a list of these library files. PowerBuilder maintains the unqualified file names
of the dynamic library files; it does not save the path name.

PowerBuilder does not copy objects that are not referenced in the application to the
executable file, nor does it copy objects to the executable file from libraries you declared to
be dynamic libraries. These objects are linked to the target at runtime and are not stored in the
executable file.

What happens at runtime

When an object such as a window is referenced in the application, PowerBuilder first looks
in the executable file for the object. If it does not find it there, it looks in the dynamic library
files that are defined for the target. For example, if you specified that a dynamic library
should be generated from test.pbl, PowerBuilder looks for test.pbd or test.dll at runtime. The
dynamic library files must be in the search path. If PowerBuilder cannot find the object in
any of the dynamic library files, it reports a runtime error.

7.3.6.4.2 How PowerBuilder searches for objects

When searching through the target, PowerBuilder does not find all the objects that are used in
your target and copy them to the executable file. This section describes which objects it finds
and copies and which it does not.

Running Your Application

Page 955

Which objects are copied to the executable file

PowerBuilder finds and copies the following objects to the executable file.

Objects that are directly referenced in scripts

PowerBuilder copies objects directly referenced in scripts to the executable file. For example:

• If a window script contains the following statement, w_continue is copied to the executable
file:

Open(w_continue)

• If a menu item script refers to the global function f_calc, f_calc is copied to the executable
file:

f_calc(EnteredValue)

• If a window uses a pop-up menu using the following statements, m_new is copied to the
executable file:

m_new mymenu
mymenu = create m_new
mymenu.m_file.PopMenu(PointerX(), PointerY())

Objects that are referenced in painters

PowerBuilder copies objects referenced in painters to the executable file. For example:

• If a menu is associated with a window in the Window painter, the menu is copied to the
executable file.

• If a DataWindow object is associated with a DataWindow control in the Window painter,
the DataWindow object is copied to the executable file.

• If a window contains a custom user object that includes another user object, both user
objects are copied.

• If a resource is assigned in a painter, it is copied to the executable file. For example,
when you place a Picture control in a window in the Window painter, the bitmap file you
associate with it is copied.

Which objects are not copied to the executable file

When creating the executable file, PowerBuilder can identify the associations you made in
the painter, because those references are saved with the object's definition in the library, and
direct references in scripts, because the compiler saves this information.

However, it cannot identify objects that are referenced dynamically through string variables.
To do so, it would have to read through all the scripts and process all assignment statements
to uncover all the referenced objects. The following examples show objects that are not
copied to the executable file:

• If the DataWindow object d_emp is associated with a DataWindow control dynamically
using the following statement, d_emp is not copied:

dw_info.DataObject = "d_emp"

Running Your Application

Page 956

• The bitmap files assigned dynamically in the following script are not copied:

IF Balance < 0 THEN
 p_logo.PictureName = "frown.bmp"
ELSE
 p_logo.PictureName = "smile.bmp"
END IF

• The reference to window w_go in a string variable in the following window script is not
found by PowerBuilder when building the executable file, so w_go is not copied to the
executable file:

window mywin
string winname = "w_go"
Open(mywin,winname)

Which objects are not copied to the dynamic libraries

When building a dynamic library, PowerBuilder does not inspect the objects; it simply copies
the compiled form of the objects. Therefore, the DataWindow objects and resources (pictures,
icons, and pointers) used by any of the objects in the library—either specified in a painter or
assigned dynamically in a script—are not copied into the dynamic library.

For example, suppose test_dw.pbl contains DataWindow objects and test_w.pbl contains
window objects that reference them, either statically or dynamically. If you build a dynamic
library from test_w.pbl, you must either include the DataWindow objects in a PowerBuilder
resource file that is referenced by test_w.pbl, or build a dynamic library from test_dw.pbl, as
described in How to include the objects that were not found.

How to include the objects that were not found

If you did not use any of the types of references described in the preceding sections, you do
not need to do anything else to ensure that all objects get distributed: they are all built into the
executable file. Otherwise, you have the following choices for how to include the objects that
were not found.

Distributing graphic objects

For graphic objects such as icons and bitmaps, you have two choices:

• Distribute them separately

• Include them in a PowerBuilder resource file (PBR), then build an executable file or
dynamic PowerBuilder library that uses the resource file

Distributing DataWindow objects

For DataWindow objects, you have two choices:

• Include them in a PBR, then build an executable file or dynamic PowerBuilder library that
uses the resource file

• Build and distribute a dynamic library from the PBL that contains the DataWindow objects

Distributing other objects

All other objects, such as windows referenced only in string variables, must be included
directly in a dynamic library.

Running Your Application

Page 957

The following table summarizes resource distribution possibilities.

Table 7.18: Summary: options for distributing resources

Distribution method Graphic objects DataWindow objects Other objects

As a separate file Yes No No

In an executable or
dynamic library that
references a PBR

Yes Yes No

Directly in a dynamic
library

No Yes Yes

7.3.6.4.3 Listing the objects in a project

After you have built your project, you can display a list of objects in the project in a grid
DataWindow object with three columns showing:

• The source library that contains the object

• The name of the object

• The type of the object

The report lists the objects that PowerBuilder placed in the executable file and the dynamic
libraries it created when it built the project.

Because the report is a grid DataWindow object, you can resize and reorder columns just as
you can in other grid DataWindow objects. You can also sort the rows and print the report
using the Sort and Print buttons.

To list the objects in a project

1. Build your project.

2. Select Design>List Objects from the menu bar.

7.3.7 Creating a PowerClient project

7.3.7.1 Configuring a deployment server

The applications deployed with PowerClient will be installed and updated through a Web
server. Therefore, you will need to configure a Web server for deployment.

To configure a deployment server:

1. Set up a Web server according to the documents provided by the vendor.

Any type of Web server (such as IIS, Apache, Nginx etc.) is supported. You can set up
FTP on the server, so that you can remotely deploy the app to the server. For how to
configure FTP on a server running against IIS, refer to Configure an FTP server. For
how to configure SSL on a server running against IIS, refer to Configure an SSL-based
FTP server.

2. Select Tools>Web Server Profile from the menu bar to open the Server Configuration
window.

https://docs.appeon.com/pb2019r3/powerserver_toolkit_user_guide/Managing_server_profiles.html#configuring_an_FTP_server
https://docs.appeon.com/pb2019r3/powerserver_toolkit_user_guide/Managing_server_profiles.html#configuring_an_SSL-based_FTP_server
https://docs.appeon.com/pb2019r3/powerserver_toolkit_user_guide/Managing_server_profiles.html#configuring_an_SSL-based_FTP_server

Running Your Application

Page 958

Figure 7.13:

3. In the Server Configuration window, configure a local or remote Web server where the
application will be deployed.

• To configure a local Web server, select the Local Server tab and specify the Web
root of the Web server (for example %systemdrive%\inetpub\wwwroot for IIS) or a
subdirectory under the Web root. Click Test File Path to make sure the specified path
is valid for deployment.

Note

If you intend to deploy to a local Web server, make sure you run PowerBuilder as
administrator or have write permissions to the specified directory (administrator rights
are required when transferring files to a local Web server).

• To configure a remote Web server, select the Remote Server tab, click Add to create
a server profile. You will need to specify the profile name and the following FTP

Running Your Application

Page 959

settings: host name, port number, user name, password, and encryption settings. Click
Test FTP Connection to make sure the specified settings are correct for deployment.

Figure 7.14:

The server configuration will be used by all PowerClient projects; therefore if you have
changed the server settings, you will need to upload the app launcher if no launcher has
been uploaded to that server or directory.

Note

If you intend to deploy to the Web server through a proxy server, make sure the
proxy server and the FTP server have the same encoding, otherwise, the multi-byte
characters in the file/folder name will become unrecognizable after deployed to the
server.

7.3.7.2 Uploading the app launcher and runtime files

The app launcher and the runtime files must be uploaded to the server, and then installed to
the client when the application is run for the first time. The app launcher and the runtime files
will be used by all apps that are deployed to the same server and directory.

Note that there will be only one app launcher in the specified server and directory, although
there can be multiple versions of runtime files. The app launcher will be overwritten without
notice by the one uploaded later to the same server and directory.

You can determine which type of the app launcher you want to upload to the server:

Running Your Application

Page 960

• Launcher without background service: This launcher program does NOT use a background
service. As such, it should be easier to install and use and does not require administration
rights. However, it has certain dependency on the browser, which may result in different
installation experience depending on the browser used and its configuration.

• Launcher with background service: The launcher program uses a background service. If
there are multiple users on a client machine, the launcher requires administrator rights to
install and will work together with the background service. This launcher type does NOT
have dependency on the browser.

To upload the app launcher and runtime files:

1. Select Tools>Upload Cloud App Launcher from the menu bar. The Upload Cloud
App Launcher and Runtime window appears.

Running Your Application

Page 961

Figure 7.15:

2. In the Upload Cloud App Launcher and Runtime window, select whether to directly
upload the app launcher and runtime files to the server or only create a zip package and
manually upload it to the server later.

Running Your Application

Page 962

• To directly upload the app launcher and runtime files to the server, select a local
server or a remote server where the app launcher and the runtime files will be
uploaded.

• To create a zip package which will be manually uploaded later, specify where the zip
package will be created.

IMPORTANT: the app launcher and runtime files must be uploaded to the same server
and directory where the application will be deployed. If you have not configured the
server yet, follow instructions in Configuring a deployment server to configure the
server first.

3. Select the runtime files (32-bit and/or 64-bit) to upload.

The version of runtime files is determined by the runtime version selected in the IDE >
System Options. Multiple versions of runtime files can co-exist on the same server and
directory.

4. Select or create an app launcher to upload.

You can select an existing app launcher from the Launcher profile list:

• Default_WithoutService -- This profile specifies the launcher without the background
service. It contains the following default settings:

• Launcher without background service is selected.

• Default_WithServiceSingle -- This profile specifies the launcher with the background
service which supports single Windows user by default. It contains the following
default settings:

• Launcher with background service is selected.

• Single user is selected.

• Default_WithServiceMulti -- This profile specifies the launcher with the background
service which supports multiple Windows users by default. It contains the following
default settings:

• Launcher with background service is selected.

• Multiple users is selected.

• Default_Both_WithServiceSingle -- This profile specifies the launcher with the
background service and the launcher without the background service; and the
launcher with the background service supports single Windows user by default. This
profile contains the following default settings:

• Launcher without background service is selected.

• Launcher with background service is selected.

Running Your Application

Page 963

• Single user is selected.

• Default_Both_WithServiceMulti -- This profile specifies the launcher with the
background service and the launcher without the background service; and the
launcher with the background service supports multiple Windows users by default.
This profile contains the following default settings:

• Launcher without background service is selected.

• Launcher with background service is selected.

• Multiple users is selected.

Or you can create your own launcher by clicking the Create button, if you want to
customize the launcher settings.

• Specify a profile name for your new launcher.

• Specify where to save your new launcher on the local machine.

• On the General tab, specify the title and the logo (ICO format) that will be shown in
the launcher.

• On the Advanced Options tab, specify where to install the application on the client.
The path in the App path field will be used as the default installation path. If you
want to allow the user to select where to install the application during the installation
process, you can select "Allow the user to change the path".

IMPORTANT: If you want to set a different path as the default path instead of
%AppData%\PBApps, you should NOT include the system variable (such as %windir
%, %temp% etc.) other than %AppData%, because currently only the %AppData%
variable is supported.

• On the Advanced Options tab, specify which app launcher will be uploaded and
installed: launcher without background service, or launcher with background service,
or both. When Launcher with background service is selected, you can specify
the launcher with background service supports single Windows user by default or
supports multiple Windows users by default, and/or if you want to allow the user to
select which user option to support during the installation process, you can select
"Allow the user to change the option".

• On the Signing tab, select whether to digitally sign the launcher executable file
(CloudAppLauncher_Installer.exe).

If you want to digitally sign the launcher executable file, you can specify the settings
required for signing under the "Use the SignTool utility from the Windows SDK"
option, for example, SignTool location, signing certificate, certificate password,
signature algorithm, and URL of the time stamp server. And make sure Microsoft’s
SignTool has been installed on the current machine.

Running Your Application

Page 964

Or you can place the signing scripts in a file (with file extension as .cmd) and then
select the file for the "Use your own signing script" option. For example, to sign the
executable file (CloudAppLauncher_Installer.exe) using Microsoft’s SignTool, you
may create a cmd file that includes the following scripts:

signtool.exe sign /f mycert.pfx /p password /d "My app launcher" /du http://
www.mytest.com /fd sha256 /tr "http://timestamp.digicert.com" /td sha256
 CloudAppLauncher_Installer.exe

After the executable file is generated and before it is uploaded to the server,
PowerBuilder will sign the executable file using your own signing scripts or using the
SignTool settings you specified.

Running Your Application

Page 965

Figure 7.16:

Tip

To remove a launcher profile, go to the path where the launcher is saved (by default,
C:\Users\appeon\AppData\Roaming\CloudAppLauncher), go into the folder which

Running Your Application

Page 966

corresponds to the launcher version and then delete the sub-folder that is named after
the profile.

7.3.7.3 Creating a PowerClient project

You can create a PowerClient project by selecting the PowerClient project type.

To create a PowerClient project:

1. Select File>New or click the New button in the PowerBar to open the New dialog box.

2. Select the Project tab.

3. Select the target in which you want to create the project from the Target drop-down list.

4. Select the PowerClient project type and click OK.

The Project painter for PowerClient opens so that you can specify the various properties
of your application.

5. When you have finished defining the project object, save the object by selecting
File>Save from the menu bar. PowerBuilder saves the project as an independent object
in the specified library. Like other objects, projects are displayed in the System Tree and
the Library painter.

7.3.7.4 Defining a PowerClient project

Once you have created a PowerClient project, you can open it from the System Tree and
modify the properties if necessary. The Project painter for the PowerClient project looks like
this.

Note

If you want to view an example of the PowerClient project, you can open the demo
app, for example, from Windows Start | Appeon PowerBuilder 2019 R3 | Example
Sales App, and view the PowerClient project included in the demo.

Running Your Application

Page 967

Figure 7.17:

Running Your Application

Page 968

The following table describes each of the options you can specify in the Project painter for
PowerClient.

Table 7.19: Options for PowerClient projects

Page or
Option

What you specify

App name Specify a name for the application.

PBR file name (Optional) Specify a PowerBuilder resource file (PBR) for your
application if you dynamically reference resources (such as bitmaps
and icons) in your scripts and you want the resources included in the
application instead of having to distribute the resources separately.

You can type the name of a PBR file in the box or click the button next to
the box to browse your directories for the PBR file you want to include.
The PBR file as well as the resources it references must reside in the
application directory or subdirectory; and only relative paths of the PBR
file and the resources will be accepted.

For more about PBRs, see Section 7.3.5, “Distributing resources”.

Windows
classic style

Select this to add a manifest file to the application that specifies the
appearance of the controls as an application resource.

By default, this option is not selected, which means the Windows flat style
is used and the 3D effect of some controls will be removed to have a "flat"
look, for example, the 3D lowered border of Column and Computed Field
in the DataWindow object, the background color of Button, the BackColor
and TextColor of tooltip, and the TabBackColor of tab header will not
take effect. If you still want the 3D effect, you should select the "Windows
classic style" option when deploying the application.

Note

If you have applied a theme to the application, you should not
check the "Enable Windows Classic Style in the IDE" option in
the System Options or the "Windows classic style" option in the
project painter and the PB.INI file (if any) should not contain
such setting, otherwise, the application UI will be rendered in the
Windows classic style instead of the selected theme.

Rebuild Specify either Full or Incremental to indicate whether you want
PowerClient to regenerate and redeploy all object files to the Web server.
If you choose Incremental, PowerClient regenerates and redeploys only
objects that have changed, and objects that reference any objects that have
changed, since the last time you built the application.

As a precaution, regenerate all objects before rebuilding your project.

General
page

Enable
DEBUG
symbol

Select to enable any code that you placed in DEBUG conditional code
blocks. For more information, see Section 7.1.2.8, “Using the DEBUG
preprocessor symbol”.

Running Your Application

Page 969

Page or
Option

What you specify

Encrypt all the
compiled p-
code files

Select whether to encrypt the object files when compiled from the
PowerBuilder dynamic libraries.

Platform Select if the application can run on 32-bit or 64-bit machines.

Manifest
Information

Select whether to generate a manifest file (either external or embedded)
and to set the execution level of the application.

For further information, see Section 7.3.4, “Attaching or embedding
manifest files”.

Properties
displayed for
executable

Specify your own values for the Product name, Company name,
Description, Copyright, Product version, and File version fields associated
with the application file and with machine-code DLLs. These values
become part of the Version resource associated with the application file,
and most of them display on the Version tab page of the Properties dialog
box for the file in Windows Explorer. The Product and File version string
fields can have any format.

Executable
version used by
installer

Specify the product version and file version (in numeric values) that will
be used by Microsoft Installer to determine whether a file needs to be
updated.

The four numbers can be used to represent the major version, minor
version, point release, and build number of your product. They must all be
present. If your file versioning system does not use all these components,
you can replace the unused numbers with zeros. The maximum value for
any of the numbers is 65535.

Libraries page Specify a PBR file for a dynamic library if it uses resources (such as
bitmaps and icons) and you want the resources included in the dynamic
library instead of having to distribute the resources separately.

You can type the name of a PBR file in the box or click the button next to
the box to browse your directories for the PBR file you want to include.
The PBR file as well as the resources it references must reside in the
application directory or subdirectory; and only relative paths of the PBR
file and the resources will be accepted.

External Files
page

Specify the custom user external files and/or the resource files that are
referenced in the PowerScript. Make sure all these files are placed in the
same folder or sub-folder of the application target (.pbt) file.

Files preloaded as compressed packages and Files preloaded in
uncompressed format

The custom user external files will be downloaded from the server
before the application starts. It is recommended that you deploy the files
which stay unchanged most of the time (such as UI theme files) as one
compressed package, so that it can be transferred faster; and deploy the
files which may be modified frequently (such as INI files) as individual
files, or deploy them as a separate package.

Running Your Application

Page 970

Page or
Option

What you specify

• To deploy files as one compressed package, select Files preloaded as
compressed packages from the list box, then click Create Package to
create a package, and then click Add Folder or Add Files to add the
folder or files under this package.

• To deploy files as individual files, select Files preloaded in
uncompressed format from the list box, and then click Add Folder or
Add Files to add the folder or files under it.

The custom user external files may include the following:

• INI files (including pb.ini, pblab.ini, pbodb.ini etc.)

• DLL/OCX files

• XML files or image files used by the UI theme or external functions

• text files, PDF files or any other files used by the external function

Images/videos dynamically loaded

The resource files (such as images, videos etc.) are downloaded from the
server at the moment when they are used by the application. You can select
Images/videos dynamically loaded and then click Add Folder or Add
Files to add the folder or files under it.

Note

The read-only files added under Files preloaded in uncompressed
format or Images/videos dynamically loaded will lose its read-
only attribute after transferred to the server via FTP. This seems to
be a common issue with FTP transfer.

DLL & OCX Registration

If the DLL/OCX files need to be registered and can be registered by
Regsvr32, you can click DLL & OCX Registration to select the DLL/
OCX files so that they can be registered by Regsvr32 automatically
before the application starts; if the DLL/OCX files need to be registered
but cannot be registered by Regsvr32, you can specify the registration
commands in Preload Event in the Run Options tab.

INI Configuration

When the application is updated, the INI file can be updated with the
specified strategy. Click the INI Configuration button and then select one
or more INI file and configure the strategy for them at one time; or select
and configure for the INI file one by one.

Running Your Application

Page 971

Page or
Option

What you specify

• Overwrite update -- The INI file on the client will be updated if the INI
file downloaded from the server has been updated, and changes made to
the local INI file will be lost.

• Merge update -- The INI file on the client will be merged with the INI
file downloaded from the server, so changes made to the local INI file
will be preserved and merged into the INI file downloaded from the
server. But notice that any setting that exists in the local INI file while
does not exist in the downloaded INI file will be removed.

• Do not update -- Once the INI file is downloaded to the client, it shall
never be updated with the INI file downloaded from the server.

Note

The external files cannot contain any file that has the same name
as the application, or the PBD or p-code file to be generated,
otherwise duplicate name error occurs.

For example, [appname].exe, [appname].xml, [appname].manifest
file etc. cannot be added to External Files.

For another example, test.pbl will be deployed as test.pbd,
therefore, test.pbd cannot be added to External Files.

Runtime page Select the runtime files according to the features used in the application.
The files will be downloaded from the server to the client, for the
application to run.

The deployment tool does not actually deploy the files, instead it notifies
the application to download such files (corresponding to the runtime
version displayed) from the server directly. The runtime version displayed
on this page can be configured in the IDE > System Options dialog. And
you will need to make sure the corresponding version of PowerBuilder
Runtime is uploaded to the server when you upload the Cloud App
Launcher to the server.

Signing page Select whether to digitally sign the application executable file
(appname.exe).

If you want to digitally sign the application executable file, you can
specify the settings required for signing under the "Use the SignTool utility
from the Windows SDK" option, for example, SignTool location, signing
certificate, certificate password, signature algorithm, and URL of the time
stamp server. And make sure Microsoft’s SignTool has been installed on
the current machine.

Or you can place the signing scripts in a file (with file extension as .cmd)
and then select the file for the "Use your own signing script" option.
For example, to sign the application executable file (appname.exe)

Running Your Application

Page 972

Page or
Option

What you specify

using Microsoft’s SignTool, you may create a cmd file that includes the
following scripts:

signtool.exe sign /f mycert.pfx /p password /d "My
 application" /du http://www.mytest.com /fd sha256 /tr "http://
timestamp.digicert.com" /td sha256 mytest.exe

After the executable file is generated and before it is deployed to the
server, PowerBuilder will sign the executable file using your own signing
scripts or using the SignTool settings you specified.

Deployment
Server

Select to deploy the application to a local server or a remote server. If you
have not configured the server yet, click the Server Configuration button
and follow instructions in Configuring a deployment server to configure
the server.

If the option "Check the availability of Cloud App Launcher on the server
during the deployment process" is selected, the deployment process will be
terminated if no Cloud App Launcher is detected on the target server.

Click the Upload Cloud App Launcher button to upload the app launcher
and runtime files to the same server or directory where app files will be
deployed. For detailed instructions, refer to Uploading the app launcher
and runtime files.

Deployment
version

The deployment version number is used by the server to determine
whether to perform an install or update for the application.

It is recommended to increment the deployment version number every time
when the application is updated and re-deployed.

Available time
and Expiration
time

Schedule the time for the deployment version to be accessible or
inaccessible to end users.

Minimum
compatible
version

Specify the lowest compatible version for the application. If the current
version installed is older than it, a forced update will be performed, or the
application will stop running.

Deployment
page

Update strategy Specify the update strategy for the application.

• Always update: always performs updates before application startup. If
checks for updates fail, then the application will not start.

• Update when connected: performs updates before application startup. If
checks for updates fail, then the current version installed on the client
will be running.

• Never update: never checks or performs updates once after the
application is installed on the client.

However, if the "Prompt to upgrade when the application deployment
version is invalid" option is selected, and if the application installed on

Running Your Application

Page 973

Page or
Option

What you specify

the client is older than the minimum compatible version, or is detected
as expired according to the expiration time, the user will get prompts to
update the application.

Download
options

Specify when to download the application files (other than those specified
in the External Files page) -- before the application starts or at the moment
when they are called by the application at runtime.

App entry page
settings

Specify which mode (with or without background service) will be
run by default when the user accesses the application by inputting
http://IPAddress/AppName.

IMPORTANT: This setting must be consistent with the app launcher
which is uploaded to the server, otherwise the application will fail to run.
If you have changed the mode and uploaded the launcher again, make sure
you also change the mode here accordingly, and ask the end user to clear
the browser cache if the app launcher fail to run on the client.

• If you have uploaded the app launcher with background service, then
you should select "Startup with background service" (and keep
"Deploy auto.html..." selected and "Deploy manual.html..." unselected).

In such case, the user can input http://IPAddress/AppName or
http://IPAddress/AppName/auto.html to access the application.

The user should not input http://IPAddress/AppName/manual.html,
otherwise it will lead to a "page not found" error or an infinite searching
for files.

• If you have uploaded the app launcher without background service, then
you should select "Startup without background service" (and keep
"Deploy manual.html..." selected and "Deploy auto.html..." unselected).

In such case, the user can input http://IPAddress/AppName or
http://IPAddress/AppName/manual.html to access the application.

The user should not input http://IPAddress/AppName/auto.html,
otherwise it will lead to a "page not found" error or an infinite searching
for files.

• If you have uploaded the app launcher with and without background
service, then you can choose the default startup mode between "Startup
with background service" and "Startup without background service" and
then select both the "Deploy manual.html..." and "Deploy auto.html..."
options.

In such case, the user can input http://IPAddress/AppName/manual.html
to run the application without background service, and input
http://IPAddress/AppName/auto.html to run the application with
background service; or input http://IPAddress/AppName to run the
application in the default startup mode.

Running Your Application

Page 974

Page or
Option

What you specify

Commandline
arguments

Specify the command line arguments for the application. The arguments
will be directly passed to the application when the application is run. And
the arguments will be automatically saved and updated to the app startup
icon on the desktop and the app shortcut menu in Windows start.

The arguments specified here cannot be modified at runtime. If you want
to modify the argument at runtime, you can specify the argument in the
application URL (for example, http://localhost/salesdemo/?arg1=value1).

Create
shortcut(s)

Specify whether to create an application shortcut icon on the client desktop
and/or create an application shortcut menu in the Windows start menu.

Show the
loading
animation
before the app
runs

Specify whether to show an animation (as shown below) when the
application prepares for startup. The animation will disappear when the
application's first window displays.

This option should not be selected if the application starts with no user
interface; otherwise the animation will not disappear.

Figure 7.18:

You can deploy your own animation to replace the default animation (as
shown above). To deploy your own animation,

1. Prepare a GIF format of your animation and name the file as
"loading_ica.gif". Only GIF format is supported currently.

2. Place "loading_ica.gif" under the same directory as the application
target (.pbt) file.

3. Add "loading_ica.gif" under Files preloaded as compressed packages
or Files preloaded in uncompressed format in the External Files
page.

Validate the
application
integrity before
the app runs

Specify whether to validate the hash of every object file before they are
loaded, so that files changed illegally will not be run.

Run
Options
page

Preload Event (Optional) Specify the commands that will be executed immediately
after files are downloaded and before the application starts. For example,
you can specify commands to register DLL/OCX files that cannot be

Running Your Application

Page 975

Page or
Option

What you specify

registered by Regsrv32; or any commands that need to be executed with
administrator rights.

The commands can be any Windows commands or user-defined
commands.

For example, suppose there is a DLL file from the application that needs to
be registered on the client, you can enter the following commands:

cd /d "C:\Windows\Microsoft.NET\Framework\v4.0.30319"
regasm "%AppData%\Appeon\PBCloud
\demo.appeon.com_app1\EncryptDecryptClass.dll" /tlb:testappeon.tlb
 /codebase /nologo

Note that as the commands are executed silently, any commands that will
pause the execution and wait for user input will cause the application to
wait endlessly.

You can specify how often the commands should be executed: for only
one time when the application is launched for the first time or when the
application is updated, or every time when the application runs.

If the commands need to be executed with the administrator rights, you
should select the Run as administrator option.

Running app
from IDE

Specify how the application can be launched from the PowerBuilder IDE
(when you select the Run PowerClient Project button in the PowerBar or
from right-clicking the PowerClient project in the System Tree).

You can specify the host name, port number, connection type (HTTP or
HTTPS), and/or arguments. You can also specify to start the application
from the Cloud App Launcher if the Cloud App Launcher is installed, or
from a Web browser if the Cloud App Launcher is not already installed.
If the Cloud App Launcher is not installed on the current machine, even if
you have specified to start the application from the Cloud App Launcher,
the Web browser will start to install the Cloud App Launcher and run the
application.

The arguments specified here will be appended to the application URL and
then passed to the application via the URL, for example, http://localhost/
salesdemo/?arg1&arg2.

Note that the arguments appended to the application URL cannot contain
special characters such as "?", "#", as they have special meanings in
HTML URL; if you want to use these characters in the argument name
or value, you can specify them in the Commandline arguments as static
arguments on this same page, so that they can be passed to the application
directly instead of being sent as part of the URL.

Tip

Advanced usage of External Files and Preload Event

Running Your Application

Page 976

The combination of External Files and Preload Event can streamline the process of
deploying a setup package to the server, installing the package and registering the file
on the client machine. In the External Files page, you add the folders and/or files that
make up of the setup package, and in the Preload Event field, you add commands to
run the setup file and register any component if necessary.

Take Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL) as an example.
Suppose the MSOLEDBSQL setup package includes the following folders and files:
msoledbsql folder, sqlncli folder, CheckDBDriver.bat file, and Install.bat file.

Step 1: Copy the msoledbsql folder, sqlncli folder, CheckDBDriver.bat file, and
Install.bat file to the same folder as the application target file.

Step 2: In the External Files page, select Files (Download at startup) in the list, and
then click Add Folder to add the folders: msoledbsql and sqlncli and click Add Files
to add the files: CheckDBDriver.bat and Install.bat.

The selected folders and files will be first deployed to the server and then downloaded
to the application directory on the client machine.

Step 3: In the Run Options page, add the following command in the Preload Event
field: .\CheckDBDriver.bat.

The command will be executed automatically when the application is first installed
or upgraded. The CheckDBDriver.bat file checks whether MSOLEDBSQL is
installed on the client machine. If MSOLEDBSQL is not installed, then Install.bat is
automatically run to install MSOLEDBSQL. Administrator rights are required to run
the Install.bat file, so the end user will be prompted for that if Install.bat is run.

7.3.7.5 Building and deploying a PowerClient project

To build and deploy a PowerClient project:

1. Before building and deploying the application, make sure to close any anti-virus tool on
the development machine.

2. Click the Build & Deploy PowerClient Project button in the PowerBar, or right-
click the PowerClient project in the System Tree and then select Build & Deploy
PowerClient Project to compile and deploy the application to the server. Or select
Deploy PowerClient Project if you have already built the application before.

The application executable file (as well as an XML file with the same name
and the object files) is generated under %PBAPPSCACHEDIR%\[appname]
(%PBAPPSCACHEDIR% points to %TEMP%\pbappscache\temp\) on the development
machine, then digitally signed, and deployed to the server.

Note

After the application is deployed to the server, do not manually change the application
folder name on the server, otherwise the application uninstall program will fail to run.

7.3.7.6 Running the PowerClient project

To run the PowerClient project:

Running Your Application

Page 977

Note: IE and Edge Legacy (EdgeHTML-based) browsers should not be used to run the app
deployed with PowerClient, as Microsoft will end support for IE and Edge Legacy soon.
You can use one of the following supported browsers: Chrome, Firefox, and the new Edge
browser (Chromium-based).

• (For developers) Run the application by right-clicking the PowerClient project in the
System Tree and then select Run PowerClient Project.

Or click the Run PowerClient Project button in the PowerBar. The Run PowerClient
Project button will be available in the PowerBar when the Project painter for PowerClient
is opened; if more than one Project painter for PowerClient is opened, then the settings in
the currently active painter will be used to run the application. And the application will
be run in the Web browser or in the Cloud App Launcher according to the configurations
in the Run Options tab in the painter. However, if Cloud App Launcher is not installed,
then the default Web Browser will be run to install the Cloud App Launcher and run the
application.

• (For developers and end users) Run the application in a Web browser for the first time.

The user can input http://IPAddress/AppName in a Web browser to access the application.
This URL can run the application with or without background process, depending on
which startup mode the developer has selected as the default. The end user may also
be able to input http://IPAddress/AppName/manual.html to run the application without
background service, and input http://IPAddress/AppName/auto.html to run the application
with background service, depending on whether the developer has selected to deploy
the app entry page. For more details, refer to "App entry page settings" in Defining a
PowerClient project.

The cloud app launcher and the application must be installed through the Web browser for
the first time. After that, users can directly double click the application icon on the desktop or
the application shortcut on the Windows Start menu to run the application (the shortcut icon
and menu are created by default unless the developer has changed the default settings in the
Project painter for PowerClient).

If the application is started without the background service, the user will be asked by the Web
browser whether to run the app launcher. This is a browser behavior. Select Allow. Then
the following app entry page displays. If the download does not start automatically, click
Download the Launcher to download and install the cloud app launcher first, and then click
Start the Application to download, install, and start the application.

Running Your Application

Page 978

Figure 7.19:

If the application is started with the background service, the following app entry displays.
If the download does not start automatically, click to download and install the cloud app
launcher.

Figure 7.20:

If you want to customize the license agreement and the visual displays (such as color,
icon, text etc.) in the above app entry page, you can make changes to the files under the
%AppeonInstallPath%\PowerBuilder [version]\HTML folder, and then deploy the application
again. The changes will apply to all deployed applications. Or you can directly make changes
to the files under the application folder on the server, if you want to change that particular
application only.

• license.html is the template for license agreement.

Running Your Application

Page 979

• auto.html, autoconnect.html, autodownload.html, autoinit.html, and index.html are
templates for applications started with background service.

• manual.html, manualconnect.html, manualdownload.html, and index.html are templates
for applications started without background service.

Note

The virus-detection software McAfee WebAdvisor may block the
CloudAppLauncher.exe file during the installation process. You can try adding the
domain as a trusted site. To add the domain as a trusted site in McAfee WebAdvisor:

1. Right click the WebAdvisor add-on and select Options.

2. Under Manage your trusted sites, add the domain and click the + symbol.

3. Close and re-open the browser and run the installation again.

Note

If there is no response or progress when running the application, the
CloudAppLauncher.exe file might be blocked by the Windows SmartScreen. You
can try to turn off Windows SmartScreen in Control Panel > System and Security >
Security and Maintenance > Change SmartScreen settings.

Note

Every time when the application launches, it needs to connect with the Web server
to check updates, therefore, please make sure Web server is running and can be
connected all the time.

7.3.7.7 Packaging the PowerClient project

To package the PowerClient project:

1. Right-click the PowerClient project in the System Tree and then select Package
PowerClient Project from the popup menu.

2. Specify the location where the package will be generated.

3. Specify to generate the package as an executable installer or a compressed zip file.

Running Your Application

Page 980

Figure 7.21:

If you select Zipped file, an appname_Installer.zip file is generated in the specified
path. You can copy the zip file to the server and then decompress it to the Web root.

If you select Executable installer file, an appname_Installer.exe file is generated in the
specified path. You can copy the executable file to the server and then run it to install
the application to the Web root.

Note

Do not manually change the name of the installed or de-compressed application folder
on the server, otherwise the application uninstall program will fail to run.

7.3.7.8 Undeploying the PowerClient project

To undeploy the PowerClient porject from the server:

1. Right-click the PowerClient project in the System Tree and then select Undeploy
PowerClient Project from the popup menu.

2. Select whether to remove the entire project (all deployed versions) or only the selected
deployment version from the server.

Running Your Application

Page 981

Figure 7.22:

7.3.7.9 Uninstalling the PowerClient project

To uninstall the PowerClient project from the client machine:

1. Uninstall the application by selecting the Uninstall shortcut menu from the Windows
Start | [appname].

The Uninstall menu and the [appname] menu are available only when the developer
selected to create the start menu shortcut in the Run Options page of the Project
painter for PowerClient. If the Uninstall menu is not available, you can run the
Uninstall.exe file in the application folder, for example, %AppData%\PBApps
\Applications\localhost_app1\Uninstall.exe (%AppData%\PBApps is configurable when
uploading the Cloud App Launcher and runtime files).

Note: If the application folder name (which is named after [appname]) on the server has
been changed manually, the application uninstall program will fail to run.

The uninstall program will automatically remove the following:

• The application shortcuts on the desktop and the Windows start menu.

• The application folder under %AppData%\PBApps\Applications, for example,
%AppData%\PBApps\Applications\localhost_app1.

The application folder contains all of the application files and any external files (such
as UI theme files, DLLs/OCXs, images/videos, INIs etc.) that are deployed with
PowerClient. This folder will be automatically deleted during the uninstall process.

However, the uninstall program will NOT automatically remove the following:

• The registration information of DLL/OCX files in the Windows registry.

If you have selected to register the DLL/OCX files (using Regsvr32 by default), you
will need to remove the registry information manually. Follow instructions in step 4
below.

Running Your Application

Page 982

• The runtime files under %AppData%\PBApps\Applications\Runtime.

The PowerBuilder Runtime files are used by all deployed apps on the client machine.
You can manually delete the runtime files if they are no longer used.

• The download folder under %AppData%\PBApps, for example, %AppData%
\PBApps\Download.

This folder stores the download statistics of the app and runtime files. It can be
manually deleted.

2. Uninstall the cloud app launcher by uninstalling Cloud App Launcher from Control
Panel\Programs\Programs and Features.

If the cloud app launcher without background service is uninstalled, the %LocalAppData
%\Launcher folder will be removed.

If the cloud app launcher with background service is uninstalled, the %LocalAppData%
\LauncherWithService folder will be removed.

3. Uninstall the cloud app service by uninstalling Cloud App Launcher Service from
Control Panel\Programs\Programs and Features.

The cloud app launcher service is installed only when the launcher with background
service which supports multiple Windows users is installed.

4. Remove the registry information of DLL/OCX files.

The registry information of DLL/OCX files (or any other files that are installed and
registered by your own) will not be automatically removed during the application
uninstall process.

To clean up the registry information of the DLL/OCX files, you can write scripts (a
sample shown below) and place them in a file named ManualUninstall.cmd, place the
ManualUninstall.cmd file under the same directory as the application target (.pbt) file,
add ManualUninstall.cmd under Files preloaded as compressed packages or Files
preloaded in uncompressed format in the External Files page, and then deploy the
application.

The scripts in ManualUninstall.cmd will be automatically run when the application
uninstall program is run. (If the file requires administrator rights to unregister, you
should run the application uninstall program with administrator rights.)

You can also add scripts in ManualUninstall.cmd to clean up any other files that are
installed and registered by your own.

The following is a sample script for unregistering DLL/OCX files that are registered by
Regsvr32:

set Driver=%~d0
set HOMEDIR=%~dp0
%Driver%
cd %HOMEDIR%
regsvr32 /u .\dllname
regasm /unregister .\AssemblyName

Running Your Application

Page 983

7.3.7.10 Tutorial: deploying your first PowerClient project

By completing this tutorial, you will have a basic understanding of the key tasks for creating
and deploying a PowerClient project. You will use the Example Sales Demo to complete this
tutorial.

Step 1: Open the Example Sales Demo from Windows Start | Appeon PowerBuilder 2019 R3
| Example Sales App.

Step 2: In the PowerBuilder System Tree, expand the salesdemo target | salesdemo.pbl,
double click the pc_salesdemo_asa object to open the PowerClient project in the painter.

Figure 7.23:

Running Your Application

Page 984

Step 3: View the settings in each tab of the project painter; keep the default values, but pay
special attentions to the following:

• the app name in the General tab

• the selected folders and files in the External Files tab

• the selected runtime modules in the Runtime tab

Step 4: Select the Deployment tab in the project painter.

Step 5: Make sure Local server is selected, and then click the Server Configuration button.

In the Server Configuration window that appears, make sure the Web root full path is set
to C:\inetpub\wwwroot.

Click Test File Path to ensure the path is valid.

Figure 7.24:

Running Your Application

Page 985

Step 6: Click the Upload Cloud App Launcher button.

In the Upload Cloud App Launcher and Runtime window, make sure the following are
selected: Local server, Default_WithoutService, Upload the runtime files for the apps,
32-bit, and 64-bit.

Click Upload and make sure the upload is successful.

Figure 7.25:

Running Your Application

Page 986

Step 7: Scroll down the Deployment tab, and select Startup without background service.

Figure 7.26:

Step 8: Save the project (by clicking the Save button in the PowerBar).

Step 9: Build and deploy the project (by clicking the Build & Deploy PowerClient Project
button in the PowerBar). Or right click the pc_salesdemo_asa object and then select Build &
Deploy PowerClient Project.

Make sure the project is built and deployed successfully.

Step 10: Run the project (by clicking the Run PowerClient Project button in the PowerBar).
Or directly access http://localhost/salesdemo_asa/ in the Web browser.

In the app entry page that appears, click Download the Launcher to download and install
the launcher. After the launcher is installed, the application should automatically start, if not,
click Start the Application in the entry page to start the application.

Running Your Application

Page 987

Figure 7.27:

Running Your Application

Page 988

7.3.8 Building proxies and .NET targets

The Project painter workspace for executable applications is shown in Defining an executable
application project. It contains a tab control, and on each tab page there are text boxes and
radio buttons you use to specify the characteristics of your executable file and dynamic
libraries.

The workspace for all other types of project objects is similar. If you used a wizard to create
the project, it shows the options you selected in the wizard. If you did not use a wizard,
you select the objects the project will use and specify project properties on tab pages in the
workspace.

When you build the project, the Output window shows whether the build was successful and
lists any errors encountered.

Building and deploying a workspace

You can build and deploy a single project or all the projects in your workspace. You can also
build and deploy from a command-line. For more information, see Building workspaces.

For more information

Web service proxies and EJB client proxies are obsolete features in PowerBuilder. An
obsolete feature is no longer eligible for technical support and will no longer be enhanced,
although it is still available.

If you are still interested to know more about building Web service proxies and EJB
client proxies, see Building a Web Services Client (Obsolete) and Building an EJB client
(obsolete).

https://docs.appeon.com/pb2019r2/application_techniques/ch29.html
https://docs.appeon.com/pb2019r2/application_techniques/ch27.html
https://docs.appeon.com/pb2019r2/application_techniques/ch27.html

Appendixes

Page 989

8 Appendixes
Appendix A describes the extended attribute system tables. Appendix B describes how to use
OrcaScript for automatic processing of builds and source control operations.

8.1 Appendix A. The Extended Attribute System Tables
About this appendix

This appendix describes each column in the extended attribute system tables.

8.1.1 About the extended attribute system tables

PowerBuilder stores application-based information you provide for a database table (such
as the text to use for labels and headings for the columns, validation rules, display formats,
and edit styles) in system tables in your database. These system tables are called the extended
attribute system tables. The tables contain all the information related to the extended
attributes for the tables and columns in the database. The extended attributes are used in
DataWindow objects.

The system tables

There are five extended attribute system tables.

Table 8.1: List of extended attribute system tables

Table Contains information about

PBCatTbl Tables in the database

PBCatCol Columns in the database

PBCatFmt Display formats

PBCatVld Validation rules

PBCatEdt Edit styles

What to do with the tables

You can open and look at these tables in the Database painter just like other tables. You
might want to create a report of the extended attribute information used in your database by
building a DataWindow object whose data source is the extended attribute system tables.

Caution

You should not change the values in the extended attribute system tables.
PowerBuilder maintains this information automatically whenever you change
information for a table or column in the Database painter.

8.1.2 The extended attribute system tables

This section lists and describes all of the columns in each of the extended attribute system
tables.

Table 8.2: The PBCatTbl table

Column Column name Description

1 pbt_tnam Table name

Appendixes

Page 990

Column Column name Description

2 pbt_tid Adaptive Server Enterprise Object ID of table (used
for Adaptive Server Enterprise only)

3 pbt_ownr Table owner

4 pbd_fhgt Data font height, PowerBuilder units

5 pbd_fwgt Data font stroke weight (400=Normal, 700=Bold)

6 pbd_fitl Data font Italic (Y=Yes, N=No)

7 pbd_funl Data font Underline (Y=Yes, N=No)

8 pbd_fchr Data font character set (0=ANSI, 2=Symbol,
255=OEM)

9 pbd_fptc Data font pitch and family (see note)

10 pbd_ffce Data font typeface

11 pbh_fhgt Headings font height, PowerBuilder units

12 pbh_fwgt Headings font stroke weight (400=Normal,
700=Bold)

13 pbh_fitl Headings font Italic (Y=Yes, N=No)

14 pbh_funl Headings font Underline (Y=Yes, N=No)

15 pbh_fchr Headings font character set (0=ANSI, 2=Symbol,
255=OEM)

16 pbh_fptc Headings font pitch and family (see note)

17 pbh_ffce Headings font typeface

18 pbl_fhgt Labels font height, PowerBuilder units

19 pbl_fwgt Labels font stroke weight (400=Normal, 700=Bold)

20 pbl_fitl Labels font Italic (Y=Yes, N=No)

21 pbl_funl Labels font Underline (Y=Yes, N=No)

22 pbl_fchr Labels font character set (0=ANSI, 2=Symbol,
255=OEM)

23 pbl_fptc Labels font pitch and family (see note)

24 pbl_ffce Labels font typeface

25 pbt_cmnt Table comments

About font pitch and family

Font pitch and family is a number obtained by adding together two constants:

• Pitch: 0=Default, 1=Fixed, 2=Variable

• Family: 0=No Preference, 16=Roman, 32=Swiss, 48=Modern, 64=Script,
80=Decorative

Appendixes

Page 991

Table 8.3: The PBCatCol table

Column Column name Description

1 pbc_tnam Table name

2 pbc_tid Adaptive Server Enterprise Object ID of table (used
for Adaptive Server Enterprise only)

3 pbc_ownr Table owner

4 pbc_cnam Column name

5 pbc_cid Adaptive Server Enterprise Column ID (used for
Adaptive Server Enterprise only)

6 pbc_labl Label

7 pbc_lpos Label position (23=Left, 24=Right)

8 pbc_hdr Heading

9 pbc_hpos Heading position (23=Left, 24=Right, 25=Center)

10 pbc_jtfy Justification (23=Left, 24=Right)

11 pbc_mask Display format name

12 pbc_case Case (26=Actual, 27=UPPER, 28=lower)

13 pbc_hght Column height, PowerBuilder units

14 pbc_wdth Column width, PowerBuilder units

15 pbc_ptrn Validation rule name

16 pbc_bmap Bitmap/picture (Y=Yes, N=No)

17 pbc_init Initial value

18 pbc_cmnt Column comments

19 pbc_edit Edit style name

20 pbc_tag (Reserved)

Table 8.4: The PBCatFmt table

Column Column name Description

1 pbf_name Display format name

2 pbf_frmt Display format

3 pbf_type Datatype to which format applies

4 pbf_cntr Concurrent-usage flag

Table 8.5: The PBCatVld table

Column Column name Description

1 pbv_name Validation rule name

2 pbv_vald Validation rule

3 pbv_type Datatype to which validation rule applies

4 pbv_cntr Concurrent-usage flag

5 pbv_msg Validation error message

Appendixes

Page 992

Table 8.6: The PBCatEdt table

Column Column name Description

1 pbe_name Edit style name

2 pbe_edit Format string (edit style type dependent; see Edit
style types for the PBCatEdt table)

3 pbe_type Edit style type (see the following table)

4 pbe_cntr Revision counter (increments each time edit style is
altered)

5 pbe_seqn Row sequence number for edit types requiring more
than one row in PBCatEdt table

6 pbe_flag Edit style flag (edit style type dependent)

7 pbe_work Extra field (edit style type dependent)

8.1.3 Edit style types for the PBCatEdt table

The following table shows the edit style types available for the PBCatEdt table.

Table 8.7: Edit style types for the PBCatEdt table

Edit style type pbe_type value (column 3)

CheckBox 85

RadioButton 86

DropDownListBox 87

DropDownDataWindow 88

Edit 89

Edit Mask 90

8.1.3.1 CheckBox edit style (code 85)

The following tables shows a sample row in the PBCatEdt table for a CheckBox edit style
and the meaning of the values.

Table 8.8: Sample row in PBCatEdt for a CheckBox edit style

Name Edit Type Cntr Seqn Flag Work

MyEdit Text 85 1 1 Flag

MyEdit OnValue 85 1 2 0

MyEdit OffValue 85 1 3 0

MyEdit ThirdValue 85 1 4 0

Table 8.9: Values used in CheckBox edit style sample

Value Meaning

Text CheckBox text

OnValue Data value for On state

OffValue Data value for Off state

Appendixes

Page 993

Value Meaning

ThirdValue Data value for Third state (this row exists only if 3 State is checked for
the edit style—bit 30 of Flag is 1)

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Left Text

Bit 30: 3 State

Bit 29: 3D

Bit 28: Scale Box

Bits 27 – 16 (3 hex digits): Not used (set to 0)

Bits 15 – 4 (3 hex digits): Always 0 for CheckBox edit style

Bit 3: Always 0 for CheckBox edit style

Bit 2: Always 1 for CheckBox edit style

Bit 1: Always 0 for CheckBox edit style

Bit 0: Always 0 for CheckBox edit style

8.1.3.2 RadioButton edit style (code 86)

The following tables show a sample row in the PBCatEdt table for a RadioButton edit style
and the meaning of the values.

Table 8.10: Sample row in PBCatEdt for a RadioButton edit style

Name Edit Type Cntr Seqn Flag Work

MyEdit Columns 86 1 1 Flag

MyEdit Display1 86 1 2 0

MyEdit Data1 86 1 3 0

MyEdit Display2 86 1 4 0

MyEdit Data2 86 1 5 0

Table 8.11: Values used in RadioButton edit style sample

Value Meaning

Columns Character representation (in decimal) of number of columns (buttons)
across.

Display1 Display value for first button.

Data1 Data value for first button.

Display2 Display value for second button.

Data2 Data value for second button.

Display and data values are repeated in pairs for each radio button
defined in the edit style.

Appendixes

Page 994

Value Meaning

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Left Text

Bit 30: 3D

Bit 29: Scale Circles

Bit 38: Not used (set to 0)

Bits 27 – 16 (3 hex digits): Not used (set to 0)

Bits 15 – 4 (3 hex digits): Always 0 for RadioButton edit style

Bit 3: Always 1 for RadioButton edit style

Bit 2: Always 0 for RadioButton edit style

Bit 1: Always 0 for RadioButton edit style

Bit 0: Always 0 for RadioButton edit style

8.1.3.3 DropDownListBox edit style (code 87)

The following tables show a sample row in the PBCatEdt table for a DropDownListBox edit
style and the meaning of the values.

Table 8.12: Sample row in PBCatEdt for a DropDownListBox edit style

Name Edit Type Cntr Seqn Flag Work

MyEdit Limit 87 1 1 Flag Key

MyEdit Display1 87 1 2 0

MyEdit Data1 87 1 3 0

MyEdit Display2 87 1 4 0

MyEdit Data2 87 1 5 0

Table 8.13: Values used in DropDownListBox edit style sample

Value Meaning

Limit Character representation (in decimal) of the Limit value.

Key One-character accelerator key.

Display1 Display value for first entry in code table.

Data1 Data value for first entry in code table.

Display2 Display value for second entry in code table.

Data2 Data value for second entry in code table.

Display and data values are repeated in pairs for each entry in the code
table.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding

Appendixes

Page 995

Value Meaning
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Sorted

Bit 30: Allow editing

Bit 29: Auto HScroll

Bit 28: VScroll bar

Bit 27: Always show list

Bit 26: Always show arrow

Bit 25: Uppercase

Bit 24: Lowercase (if bits 25 and 24 are both 0, then case is Any)

Bit 23: Empty string is NULL

Bit 22: Required field

Bit 21: Not used (set to 0)

Bit 20: Not used (set to 0)

Bits 19 – 16 (1 hex digit): Not used (set to 0)

Bits 15 – 4 (3 hex digits): Always 0 for DropDownListBox edit style

Bit 3: Always 0 for DropDownListBox edit style

Bit 2: Always 0 for DropDownListBox edit style

Bit 1: Always 1 for DropDownListBox edit style

Bit 0: Always 0 for DropDownListBox edit style

8.1.3.4 DropDownDataWindow edit style (code 88)

The following tables show a sample row in the PBCatEdt table for a DropDownDataWindow
edit style and the meaning of the values.

Table 8.14: Sample row in PBCatEdt for a DropDownDataWindow edit style

Name Edit Type Cntr Seqn Flag Work

MyEdit DataWin 88 1 1 Flag Limit

MyEdit DataCol 88 1 2 0 Key

MyEdit DisplayCol 88 1 3 0 Width%

Table 8.15: Values used in DropDownDataWindow edit style sample

Value Meaning

DataWin Name of DataWindow object to use.

DataCol Data column from DataWindow object.

DisplayCol Display column from DataWindow object.

Appendixes

Page 996

Value Meaning

Limit Character representation (in decimal) of Limit value.

Key One-character accelerator key.

Width% Width of the dropdown part of the DropDownDataWindow in %.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Allow editing

Bit 30: Auto HScroll

Bit 29: VScroll bar

Bit 28: Always show list

Bit 27: Uppercase

Bit 26: Lowercase (if bits 27 and 26 are both 0, then case is Any)

Bit 25: HScroll bar

Bit 24: Split horizontal scroll bar

Bit 23: Empty string is NULL

Bit 22: Required field

Bit 21: Always show arrow

Bit 20: Not used (set to 0)

Bits 19 – 16 (1 hex digit): Not used (set to 0)

Bits 15 – 8 (2 hex digits): Always 0 for DropDownDataWindow edit style

Bit 7: Always 0 for DropDownDataWindow edit style

Bit 6: Always 0 for DropDownDataWindow edit style

Bit 5: Always 0 for DropDownDataWindow edit style

Bit 4: Always 1 for DropDownDataWindow edit style

Bit 3 – 0 (1 hex digit): Always 0 for DropDownDataWindow edit style

8.1.3.5 Edit edit style (code 89)

The following tables show a sample row in the PBCatEdt table for an Edit edit style and the
meaning of the values.

About the example

This example shows an Edit edit style using a code table of display and data values.
There is a pair of rows in PBCatEdt for each entry in the code table only if bit 23 of
Flag is 1.

For information about code tables in edit styles, see Displaying and Validating Data.

Appendixes

Page 997

Table 8.16: Sample row in PBCatEdt for an Edit edit style

Name Edit Type Cntr Seqn Flag Work

MyEdit Limit 89 1 1 Flag Key

MyEdit Format 89 1 2 0 Focus

MyEdit Display1 89 1 3 0

MyEdit Data1 89 1 4 0

MyEdit Display2 89 1 5 0

MyEdit Data2 89 1 6 0

Table 8.17: Values used in Edit edit style sample

Value Meaning

Limit Character representation (in decimal) of Limit value.

Key One-character accelerator key.

Format Display format mask.

Focus Character "1" if Show Focus Rectangle is checked. NULL otherwise.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Uppercase

Bit 30: Lowercase (if Bits 31 and 30 are both 0, then case is Any)

Bit 29: Auto selection

Bit 28: Password

Bit 27: Auto HScroll

Bit 26: Auto VScroll

Bit 25: HScroll bar

Bit 24: VScroll bar

Bit 23: Use code table

Bit 22: Validate using code table

Bit 21: Display only

Bit 20: Empty string is NULL

Bit 19: Required field

Bit 18: Not used (set to 0)

Bit 17: Not used (set to 0)

Bit 16: Not used (set to 0)

Bits 15 – 4 (3 hex digits): Always 0 for Edit edit style

Bit 3: Always 0 for Edit edit style

Appendixes

Page 998

Value Meaning
Bit 2: Always 0 for Edit edit style

Bit 1: Always 0 for Edit edit style

Bit 0: Always 1 for Edit edit style

8.1.3.6 Edit Mask edit style (code 90)

The following tables show a sample row in the PBCatEdt table for an EditMask edit style and
the meaning of the values.

About the example

This example shows an Edit Mask edit style using a code table of display and data
values as part of a spin control. Rows 2 and beyond exist in PBCatEdt only if the edit
mask is defined as a spin control (bit 29 of Flag is 1). Rows 3 and beyond exist only if
the optional code table is populated.

For information about using an edit mask as a spin control, see Displaying and
Validating Data.

Table 8.18: Sample row in PBCatEdt for an EditMask edit style

Name Edit Type Cntr Seqn Flag Work

MyEdit Format 90 1 1 Flag DtFcKy

MyEdit Range 90 1 2 0 SpinInc

MyEdit Display1 90 1 3 0

MyEdit Data1 90 1 4 0

MyEdit Display2 90 1 5 0

MyEdit Data2 90 1 6 0

Table 8.19: Values used in EditMask edit style sample

Value Meaning

Format Display format mask.

DtFcKy Concatenated string with 1-character data-type code, 1-character focus-
rectangle code (0 or 1), and 1-character accelerator key.

Data type codes:

• Format String = "0"

• Format Number = "1"

• Format Date = "2"

• Format Time = "3"

• Format DataTime= "4"

Examples:

Appendixes

Page 999

Value Meaning
• "10x" means format is Number type, focus rectangle option is

unchecked, accelerator key is "x"

• "31z" means format is Time type, focus rectangle option is checked,
accelerator key is "z"

Range Character representation (in decimal) of spin control range. The min
value and max value are tab-delimited.

Example:

"1[tab]13" means min = 1, max = 13

SpinInc Character representation (in decimal) of spin increment.

Display1 Display value for first entry in code table.

Data1 Data value for first entry in code table.

Display2 Display value for second entry in code table.

Data2 Data value for second entry in code table.

Display and data values are repeated in pairs for each entry in the code
table.

Flag 32-bit flag. Low-order four hex digits are generic edit type; high-order
four are styles within the type. A 1 in any bit indicates the corresponding
style is checked. A 0 in any bit indicates the corresponding style is
unchecked.

Bit 31: Required

Bit 30: Autoskip

Bit 29: Spin control

Bit 28: Read only (code table option)

Bit 27: Use code table

Bit 26: Not used (set to 0)

Bit 25: Not used (set to 0)

Bit 24: Not used (set to 0)

Bit 23 – 16 (2 hex digits): Not used (set to 0)

Bit 15 – 8 (2 hex digits): Always 0 for Edit Mask edit style

Bit 7: Always 0 for Edit Mask edit style

Bit 6: Always 0 for Edit Mask edit style

Bit 5: Always 1 for Edit Mask edit style

Bit 4: Always 0 for Edit Mask edit style

Bits 3 – 0 (1 hex digit): Always 0 for Edit Mask edit style

About this appendix

Appendixes

Page 1000

This appendix describes the OrcaScript scripting language. OrcaScript allows you to perform
source control operations and build PowerBuilder workspaces and executables without
operator intervention. The full ORCA tool kit is available to Appeon partners only, but
OrcaScript can be used by any PowerBuilder customer.

8.2 Appendix B. PowerBuilder Compiler

8.2.1 Installing PowerBuilder Compiler

PowerBuilder Compiler includes the OrcaScript tool (orcascr190.exe), the PowerBuilder
Compiler tool (pbc190.exe), and their supporting files.

PowerBuilder Compiler can be installed through the PowerBuilder Installer.

1. Start the PowerBuilder Installer (you must have administrator privileges to run the
installer).

2. Select to agree to the license terms and click Continue.

3. Click Modify under PowerBuilder 2019 R3.

4. Select PowerBuilder Compiler from the Programs tab.

5. Click Install to begin the installation.

6. Click Finish when installation completes.

The PowerBuilder Compiler setup program does not support upgrade installation.

To silently install PowerBuilder Compiler, you can download its offline installation package
and then run the following command:

PowerBuilderCompiler.exe /s

8.2.1.1 Software requirements

PowerBuilder Runtime must be installed first before you can install PowerBuilder Compiler,
as PowerBuilder Compiler requires a runtime to run.

8.2.1.2 System requirements

Make sure your operating system is one of the following supported systems before you install
and run PowerBuilder Compiler.

• Windows 8.1 32- or 64-bit

• Windows 10 32- or 64-bit

• Windows Server 2012 R2

• Windows Server 2016

• Windows Server 2019

Appendixes

Page 1001

8.2.2 About PBC190.exe

8.2.2.1 What is PBC190.exe

PBC190.exe is a standalone app that is used to compile or deploy PowerBuilder projects
using DOS commands on Windows. It must be installed to a machine where PowerBuilder
Runtime has already been installed. It is provided separately and is currently free for use.

Although there is no major difference between compilation using PBC190.exe and
compilation (Run > Full Build/Incremental Build) in PowerBuilder IDE, there are minor
differences between deployment using PBC190.exe and deployment in PowerBuilder IDE
(Run > Deploy). Please see the following table for details.

Table 8.20:

Difference PowerBuilder PBC190.exe

Resource files You can specify a separate
resource file to associate with
a specific .pbl file.

Only a general resource file
for all PBLs is included.

8.2.2.2 Compiling/Deploying PowerBuilder Projects Using PBC190.exe

You can either compile or deploy PowerBuilder projects using PBC190.exe.

1. Prepare the PowerBuilder projects in PowerBuilder IDE.

Make sure the PBT file is not read-only.

Make sure PBL name contains no multi-byte characters. PBC tool will fail to run when
PBL name contains multi-byte characters.

2. In the command window, type PBC190 and the supported parameters such as /d, etc.

For the PBC190.exe supported parameters, see PBC190.exe supported parameters.

Note: You can create and generate the command using the PBC runtime parameters
for deployment in PowerBuilder IDE, and then copy and paste the command to the
command window. In the PowerBuilder IDE, click New > Project > Application to create
the command with PBC runtime parameters. You may refer to Creating a project and
Defining an executable application project in PowerBuilder Users Guide for more details
on creating and defining a project.

8.2.2.3 PBC190.exe supported parameters

PBC190.exe supports the following three categories of parameters:

• Parameters for compiling PowerBuilder projects.

• Parameters for deploying PowerBuilder projects.

• Parameter for displaying PBC190.exe help.

8.2.2.3.1 /c (and other compiling parameters)

/c is used to compile the PowerBuilder projects and then saves the changes into the related
PBLs.

Appendixes

Page 1002

/c supports:

1. two file types: .pbw or .pbt (.pbl is not supported currently).

2. two compilation modes: /f for full compilation; and /i for incremental compilation. If not
specified, full compilation will be used by default.

Examples:

This example compiles test11.pbw in full compilation mode:

pbc190 /c test11.pbw

This example compiles test11.pbw in incremental compilation mode:

pbc190 /c test11.pbw /i

8.2.2.3.2 /d (and other deployment parameters)

/d is used to deploy the PowerBuilder projects to EXE and DLL/PBD files. It supports two
file types: .pbw or .pbt (.pbl is not supported currently). For example, pbc190 /d test11.pbw.

It also supports the compilation modes (/f for full compilation and /i for incremental
compilation) and the following optional parameters for deployments. For example, pbc190 /
d "test11.pbt" /o "test11.exe" /r "test11.pbr" /w n /f /m y /tr n /in n /op 0 /x 32 /bg y /p
"PowerBuilder Enterprise Series" /cp "Appeon" /de "Appeon Product File" /cr "Contains
licensed copyright material by Appeon" /v "1.0.0.1" /fv "1.0.0.1" /ge 1 /le 0 /ps n

Please see the following table for details about these parameters.

Table 8.21:

Parameters Description

/o Name of the application executable file to be created.

All the other related files will be deployed to the same folder as the exe
file. For example: /o d:\fo\test11.exe. If not specified, the same name as
the PBT file will be used.

PowerBuilder IDE -> Project Painter: Executable file name option

/r Name of a PBR (PowerBuilder resource file) that will be used to build
the executable file. For example, /r test11.pbr.

PowerBuilder IDE -> Project Painter: Resource file name option

/x Whether the platform to run the exe file is 32-bit or 64-bit. Values are 32
(the default) and 64. For example, /x 32.

32-bit exe file can only run with the 32-bit runtime files, and 64-bit exe
file can only run with the 64-bit runtime files.

PowerBuilder IDE -> Project Painter: Platform option

/cp Name of the company. Default value is “Appeon”.

If there’s space in the company name, the name should be quoted, for
example, /cp "Appeon SZ".

PowerBuilder IDE -> Project Painter: Company name option

/p Name of the product. Default value is “PowerBuilder Enterprise Series”.

Appendixes

Page 1003

If there’s space in the product name, the name should be quoted, for
example, /p "PowerBuilder Enterprise Series".

PowerBuilder IDE -> Project Painter: Product name option

/de Description of the product. Default value is “Appeon Product File”.

If there’s space in the description, the description should be quoted, for
example, /de "Appeon Product File".

PowerBuilder IDE -> Project Painter: Description option

/cr Copyright statement of the product. Default value is “Contains licensed
copyright material by Appeon Inc. and others. Use and distribution of
Sybase copyright material and licensed material is governed by Appeon
End-user License Agreement.”.

If there is space in the copyright description, the description should be
quoted, for example, /cr "All rights reserved.".

PowerBuilder IDE -> Project Painter: Copyright option

/v Version of the software. Default value is “1.0.0.1”.

PowerBuilder IDE -> Project Painter: Product version option (Properties
displayed for executable)

/fv Version of the file. Default value is “1.0.0.1”.

PowerBuilder IDE -> Project Painter: File version option (Properties
displayed for executable)

/vn Version of the software which consist of four integer values representing
the major version number, minor version number, fix version number,
and build number, with each value separated by a decimal point, for
example "11.0.0.3012".

PowerBuilder IDE -> Project Painter: Product version option (Executable
version used by installer)

/fvn Version of the file which consists of four integer values representing the
major version number, minor version number, fix version number, and
build number, with each value separated by a decimal point, for example
"11.0.0.3012".

PowerBuilder IDE -> Project Painter: File version option (Executable
version used by installer)

/w Whether to use the Windows classic style. Values are:

• y – use the Windows classic style.

• n – (default) use the PowerBuilder style.

PowerBuilder IDE -> Project Painter: Windows classic style option

/m Whether to generate machine code executables and dynamic libraries.
Values are:

Appendixes

Page 1004

• y – generate machine code.

• n – (default) generate pseudo code.

PowerBuilder IDE -> Project Painter: Pcode option and Machine code
option

/tr Whether to generate a trace file for troubleshooting or profiling your
application when you run the executable file. Values are y and n (the
default).

This parameter takes effect only when machine code executable is
generated.

PowerBuilder IDE -> Project Painter: Trace information option

/in Whether to display context information (such as object, event, and script
line number) for runtime errors. Values are y and n (the default).

This parameter takes effect only when machine code executable is
generated.

PowerBuilder IDE -> Project Painter: Error context information option

/op Optimization level. Values are:

• 0 - (default) Optimize for speed

• 1 - Optimize for space

• 2 - None

This parameter takes effect only when machine code executable is
generated.

PowerBuilder IDE -> Project Painter: Optimization option

/bg Whether to enable any code that you placed in DEBUG symbol
conditional compilation code blocks. Values are y (the default) and n.

PowerBuilder IDE -> Project Painter: Enable DEBUG symbol option

/ge Whether to generate manifest. Values are:

• 0 - (default) No manifest

• 1 - Embedded manifest

• 2 - External manifest

PowerBuilder IDE -> Project Painter: Generation options option

/le Execution level of manifest. This parameter takes effect only when /ge is
set to 1 or 2. Values are:

• 0 - (default) As Invoker

• 1 - Highest Available

Appendixes

Page 1005

• 2 - Require Administrator

PowerBuilder IDE -> Project Painter: Execution level option

/ps Whether to allow access to the protected system UI. Values are y and n
(the default). This parameter takes effect only when /ge is set to 1 or 2.

PowerBuilder IDE -> Project Painter: Allow access to protected system
UI option

/pd Whether to generate the PBD/DLL file for a PBL. Values are:

• y - (default) to generate PBD/DLL file

• n - not to generate PBD/DLL file

PowerBuilder IDE -> Project Painter: PBD option

When there are more than one PBLs in an application, each PBL can
have its own /pd value. For example, when there are three PBLs, /pd nnn
indicates only EXE file is generated and no PBD/DLL file is generated; /
pd yny indicates the first and the third PBLs will have PBD/DLL files
generated; /pd n indicates the first PBL will not have PBD/DLL file
generated, and the second and the third PBL will have PBD/DLL files
generated because the default value is y.

If you specify to generate the EXE file only without the PBD/DLL file,
make sure to test that the EXE file can run correctly.

/rt The version of PowerBuilder Runtime that will be used to compile the
application executable, for example, /rt 19.2.0.0000.

If this parameter is not set, then the runtime version configured in the
PowerBuilder IDE will be used; and if no PowerBuilder IDE is installed
on the current machine, then the latest runtime within the same major
version as PowerBuilder Compiler will be used.

8.2.2.3.3 /h

/h is used for displaying the help of PBC190.exe parameters.

Example: pbc190 /h

8.3 Appendix C. The OrcaScript Language
About this appendix

This appendix describes the OrcaScript scripting language. OrcaScript allows you to perform
source control operations and build PowerBuilder workspaces and executables without
operator intervention. The full ORCA tool kit is available to Appeon partners only, but
OrcaScript can be used by any PowerBuilder customer.

8.3.1 About OrcaScript

OrcaScript allows you to write batch scripts to process PowerBuilder applications and files
without using the PowerBuilder development environment. You can use OrcaScript to

Appendixes

Page 1006

get the latest version of a target from source control, build the target PBLs, and compile
PowerBuilder executable files—all without operator intervention.

Using OrcaScript with source control

Note

The OrcaScript command for getting the latest objects from the source control server
is not supported by the SVN/Git solution. You can consider using the SVN/Git client
tool (such as TortoiseSVN, TortoiseGit etc.) to get the latest objects via commands.
For more information, see Usage notes for OrcaScript commands with SVN/Git.

The targets you obtain from source control using OrcaScript could be placed on a network
build computer that is shared by PowerBuilder developers. This is especially advantageous
for large shops with fixed working hours: the builds could be done nightly by running an
OrcaScript batch file, and an up-to-date version of the targets and libraries would be available
at the start of the next work day.

Developers could then use OrcaScript or operating system commands to copy the shared files
directly to their local computers. Although developers would still connect directly to source
control from their local workspaces, refreshing the targets in the workspaces would be much
faster since compilation times for complex targets would be greatly minimized.

Batch file order

If you include OrcaScript commands in a batch file, the file is read line by line. Each
OrcaScript batch file must begin with a start session command and end with an end session
command. You can save the batch file with any extension. You run the batch file by
calling the OrcaScript executable on a command line and passing the batch file name as an
argument:

OrcaScr190 myOrcaBat.dat

If you use relative directories in the OrcaScript batch file, create the batch file in the directory
that is the required root directory at runtime. This must be in the same directory or in the path
above a directory containing the files referenced by the batch file.

When you use relative directories, the OrcaScript batch file is portable for all users. However,
users must make the directory where they copy the batch file the current directory (the one
displayed in the DOS prompt) before invoking OrcaScr190.exe. The command to start the
OrcaScript executable can also take the following parameters:

Table 8.22:

Parameter Description Example

/D Sets variables that are valid in the
batch file

OrcaScr190 /D myVar1=value1 /D
myVar2=value2 myOrca.dat

/H or /? Prints syntax help to screen OrcaScr190 /H

Caution

You should not run an OrcaScript batch file if PowerBuilder is currently running on
the same computer. If the PowerBuilder development environment is not shut down

Appendixes

Page 1007

while OrcaScript is running, your PowerBuilder libraries can become corrupted. For
this reason, casual use of OrcaScript is not recommended.

Executing DOS commands and batch file

The OrcaScript commands can call DOS commands and arguments and the batch file. For
example,

start session
cmd "delete c:\test.txt"
end session

Or

start session
cmd "c:\test.bat"
end session

OrcaScript batch file vs. pbc190.exe

The pbc190.exe tool can be used to automate the PowerBuilder application building process.
See below to compare the scripts for building a project using the OrcaScript batch file and the
pbc190.exe tool.

OrcaScript batch file

The OrcaScript batch file contains the following scripts:

start session
set liblist "D:\Test\PB\190cmdvss\test11.pbl;D:\Test\PB\190cmdvss\appeontry.pbl;"
set application "D:\Test\PB\190cmdvss\test11.pbl" "test11"
build library "D:\Test\PB\190cmdvss\test11.pbl" "" pbd
build library "D:\Test\PB\190cmdvss\appeontry.pbl" "" pbd
build executable "D:\Test\PB\190cmdvss\test11.exe" "" "" "yy" newvstylecontrols
end session

pbc190.exe tool

Directly execute the pbc190.exe tool with the following commands:

pbc190 /d D:\Test\PB\190cmdvss\test11.pbt

Note

Please make sure the PBC tool is the same version as the PowerBuilder application
source code.

If you use the 2017 PBC tool (pbc170.exe) to build the 2019 R3 application source
code, the application will be downgraded from 2019 R3 to 2017, and the 2017
application cannot be built using the 2019 R3 PBC tool.

For more about how to use the pbc190.exe tool, refer to About PBC190.exe.

Error handling

Each line of an OrcaScript batch file either succeeds or fails. If a command fails, subsequent
commands are not processed and the OrcaScript session is ended. An error message is printed
to the command window.

Exception handling

User-defined exceptions such as Try...Catch is not supported by OrcaScript.

Appendixes

Page 1008

Comments

A semicolon (;) indicates that the rest of the line is treated as a comment.

The comment (including the semicolon) must start in a new line; it cannot be added to the
end of a command. This is a correct example:

scc connect
;test

8.3.2 OrcaScript Commands

OrcaScript commands are not case sensitive. The generic command parameters can include
only strings delimited by quotation marks, or predefined variables and constants without
quotation marks. White space is used to separate multiple parameters for a single command.
Any place a string is expected, a name that has been previously defined (set) in an OrcaScript
command can be used.

In the OrcaScript command prototype syntax that follows, brackets indicate a parameter is
optional. A pipe character inside angle brackets (< | >) indicates that a selection must be
made from one of the values inside the angle brackets. As elsewhere in the PowerBuilder
documentation, text in italic type indicates a variable.

For commands where a string variable is required by the command syntax but is not essential
to the command function (such as pbrName for the build library command), you can use an
empty string inside quotation marks for the string value. Most of the OrcaScript commands
and parameters are self-explanatory. For usage notes and an example of an OrcaScript batch
file for obtaining a target from source control, see Usage notes for OrcaScript commands and
parameters.

Some OrcaScript commands are for source control management, such as connecting with
the source control server, getting the latest files from the server etc. Only a few of these
OrcaScript commands are supported by the SVN/Git solution, and their usage are explained
in Usage notes for OrcaScript source control commands with SVN/Git.

OrcaScript commands

OrcaScript supports the following commands:

start session

end session

set name = value

set name += value

set liblist pbl_list [pbl_list ...]

set appendlib pblName pbdflag

set application pblName applicationName

set debug <true |false>

set exeinfo property <companyname | productname | copyright | description> propertyString

set exeinfo property <fileversion | fileversionnum | productversion | productversionnum>
versionString

echo value [value ...]

Appendixes

Page 1009

file copy fromFile toFile [clobberAttribute]

file delete fileName [clobberAttribute]

regenerate pblName entryName entryType

copy entry pblName entryName entryType toPblName

build library pblName pbrName <pbd | 32>

build executable exeName iconName pbrName pbdflags [machinecode] [newvstylecontrols]
[x64]

build application <full | migrate | incremental | 3pass>

build project pblName projectName [serverName serverPort logID logPass]

create library pblName pblComments

deploy winform project pblName entryName [iconName]

scc get connect properties workspaceName

scc set connect property deletetempfiles <true |false>

scc set connect property provider sccProvider

scc set connect property userid userID

scc set connect property password password

scc set connect property logfile logFileName

scc set connect property project projectPath

scc set connect property localprojpath localProjectPath

scc set connect property auxproject auxProjectPath

scc set connect property logappend < true | false >

scc connect [offline]

scc set target targetName [refreshType][refreshOption][refreshOption]

scc get latest version file_list [file_list ...]

scc exclude liblist pblName [pblName ...]

scc refresh target <full | migrate | incremental | 3pass>

scc close

Argument description

Arguments for OrcaScript commands are described in the table below:

Table 8.23:

Argument Description

name String you define for an OrcaScript session.

value Value of a string that you set for the OrcaScript session.

pbl_list String containing the list of PBLs for the session application. PBL names
can be separated by semicolons in a single string, or separated by a blank
space in multiple strings.

Appendixes

Page 1010

Argument Description

pblName Name of a PBL for an OrcaScript action or for the OrcaScript session
application.

pbdflag String of a Y or an N. "y" indicates that the library is a PBD. Objects from
the PBL are copied into the executable; objects from the PBD are not
copied.

Unlike pbdFlags which can be a string of more than one Y and/or N,
pbdflag is used with the appendlib command to set only one Y or N for
one PBL at a time, for example,

set appendlib "D:\Test\PB\190cmd\test11.pbl" "n"

set appendlib "D:\Test\PB\190cmd\appeontry.pbl" "y"

The appendlib command can be used independently, or used together with
the liblist command, for example,

set liblist "D:\Test\PB\190cmd\test11.pbl"

set appendlib "D:\Test\PB\190cmd\appeontry.pbl" "y"

applicationName Name of the application for an OrcaScript action.

true | false Boolean value for enabling or disabling script in conditional compilation
blocks set with the DEBUG condition. The set debug command applies
to standard PowerBuilder targets only. It affects all objects used by
subsequent regenerate and build application commands. It also affects
all objects retrieved with scc refresh target and scc get latest version
commands.

propertyString String for setting the company or product name, copyright owner, or
application description.

versionString String for setting the product or file version numbers. The
FileVersionNum and ProductVersionNum strings must consist of four
integer values representing the major version number, minor version
number, fix version number, and build number, with each value separated
by a decimal point, for example "11.0.0.3012".

fromFile File that you want to copy during an OrcaScript session.

toFile File name for a file that you copy during an OrcaScript session.

fileName File that you want to delete during an OrcaScript session.

clobberAttribute Determines whether the file copy command overwrites an existing file. If
the destination file does not already exist, the file copy command creates
the file regardless of the clobberAttribute value you select. Possible values
are:

Clobber (default)

File copy command overwrites an existing file marked read/write, but does
not overwrite an existing file marked read-only

NoClobber

Appendixes

Page 1011

Argument Description
File copy command does not overwrite an existing file even if it is marked
read/write

Clobber Always

File copy command overwrites an existing file even if it is marked read-
only

entryName Pointer to a string whose value is the name of the referenced object.

entryType Value specifying the type of the referenced object. Values can be:
application, datawindow, function, menu, query, struct, userobject,
window, pipe, project, or proxy. Certain abbreviations (app, dw, fn, struct,
uo, and win) are allowed as substitute values.

toPblName Name of the PBL to which you copy an entry.

pbrName Name of a resource file you want to include in a build.

pbd | 32 Select PBD to generate PowerBuilder dynamic libraries. Select 32 to
generate platform-specific machine code. You must enter a full path for a
PBL or PBR if you select 32 as the value of this argument in an OrcaScript
build library command.

exeName Name of the executable you want to build.

iconName Name of an icon to use for an executable you build with OrcaScript.

pbdFlags String composed of a series of Y and N values for each library in the
library list. A value of "nnyy" indicates that there are four libraries in the
library list, the last two being PBDs. Objects from PBLs are copied into
the executable; objects from PBDs are not copied.

machinecode Use to compile the project as machine code.

newvstylecontrolsUse Windows visual style or the UI theme for controls. If your application
has applied the UI theme, and if you has specified this argument, the UI
theme will take effect.

x64 Compile the project as a 64-bit executable.

full | migrate |
incremental |
3pass

Build strategy for the session application.

3pass performs a full rebuild of the application. It should be used instead
of full when there are complex inherited relationships.

projectName Name of the project object you want to build and deploy.

serverName Name of the server where you want to deploy a project.

serverPort Port for the server where you want to deploy a project.

logID Login ID for the server where you want to deploy a project.

logPass Login password for the server where you want to deploy a project.

pbdName Name of a PBD you append to an EXE.

pblComments Comments for a PBL you create in an OrcaScript session.

runtime_version The version of PowerBuilder Runtime that will be used to compile the
application executable.

Appendixes

Page 1012

Argument Description
This argument cannot be set in the batch file using the set command; it can
only be used with the /D parameter in the command line for OrcaScr190,
for example, OrcaScr190 /D runtime_version="19.2.0.2558" myOrca.dat.
If this argument is not set, then the runtime version configured in the
PowerBuilder IDE will be used; and if no PowerBuilder IDE is installed
on the current machine, then the latest runtime within the same major
version as OrcaScript will be used.

Arguments for source control commands

In addition to some of the arguments listed in the preceding table, OrcaScript source control
commands use the following arguments:

Table 8.24:

Argument Description

workspaceName Name of the workspace to connect to source control. You must include the
path to the workspace, although you can use a relative path.

sccProvider Name of the source control provider.

userID Name of the user registered to source control.

password Password for the user ID.

logFileName Name of a log file used to record SCC transactions.

projectPath Path to the source control project.

localProjectPath Local root directory for the project.

auxProjectPath Contains any string that the SCC provider wants to associate with the
project. It has a different meaning for every SCC vendor.

targetName Name of the target for source control operations.

true | false Boolean value for appending to the source control log file. If this command
is not used but a log file is specified, the session value defaults to "true".

offline Keyword indicating that an actual SCC connection will not be required for
this session. It is appropriate only when the ImportOnly refresh option is
used on a subsequent scc set target command. When refreshing a target
using ImportOnly, no communication with the SCC provider is required at
runtime, so the job may be run offline.

refreshType Value can be:

refresh_all

Gets latest version of all objects from the SCC provider and refreshes all
target libraries. Does not perform comparisons.

outofdate

Performs comparisons and updates objects that are out of date. If no
refreshType value is specified, the refreshType defaults to outofdate.

Appendixes

Page 1013

Argument Description
Combining values. You can combine compatible refreshType and
refreshOption values (for example, outofdate and exclude_checkout) in the
same string if the values are separated by a blank space.

refreshOption Value can be:

importonly

Does not perform comparisons and does not refresh. Use to build targets if
you refreshed the local path using the SCC provider's administration tool.

exclude_checkout

Prevents objects that are currently checked out by the current user from
being overwritten. Can be used with outofdate parameter in the same
OrcaScript command.

file_list String containing one or more resource file names (such as GIFs, HLPs, or
PBRs) using relative or absolute path specification. The string should not
include file names for objects contained in application PBLs. File names
can be separated by semicolons in a single string, or separated by a blank
space in multiple strings. The list of files must be on a single line even
when file names are contained in multiple strings.

8.3.3 Usage notes for OrcaScript commands and parameters

Before calling any other ORCA functions, you need to open a session:

start session

You can start and end multiple OrcaScript sessions in the same batch file.

Copying files, objects, and properties

If you want to use OrcaScript simply to move objects among libraries, you do not need to
set a library list or application. You can use the copy commands to copy files, objects, and
properties. This example copies the d_labels DataWindow from the source.pbl library to the
destin.pbl library:

copy entry "c:\\app\\source.pbl" "d_labels" dw "c:\\app\\destin.pbl"

Setting a library list and an application

If you want to use OrcaScript to build targets or deploy components (or set product and
version information using the set exeinfo command) you must first set the library list and
the current application. You can set the library list and current application only once in an
OrcaScript session. To use another library list and application, end the OrcaScript session and
start a new session. The following OrcaScript commands build target libraries and compile an
executable file.

start session
set appendlib ".\qadbtest\qadbtest.pbl" "n"
set appendlib ".\shared_obj\shared_obj.pbl" "y"
set appendlib ".\datatypes\datatype.pbl" "y"
set appendlib ".\chgreqs\chgreqs.pbl" "y"
set application ".\qadbtest\qadbtest.pbl" "qadbtest"
build library ".\shared_obj\shared_obj.pbl" "" pbd

Appendixes

Page 1014

build library ".\datatypes\datatype.pbl" "" pbd
build library ".\chgreqs\chgreqs.pbl" "" pbd
build executable ".\qadbtest\qadbtest.exe" ".\emp.ico" ".\qadbtest.pbr" ""
file copy ".\qadbtest\qadbtest.exe" ".\bin\qadbtest.exe"
file copy ".\chgreqs\chgreqs.pbd" ".\bin\chgreqs.pbd"
file copy ".\datatypes\datatype.pbd" ".\bin\datatype.pbd"
file copy ".\shared_obj\shared_obj.pbd" ".\bin\shared_obj.pbd"
end session

You can use relative paths when you generate PBDs with the "PBD" option, but the PBD
always gets generated in the same directory as the PBL. To actually run the executable, you
might have to move the PBDs to a "BIN" directory. The above example calls several file
copy commands to accomplish this.

If you select 32 as the last argument in a build library command, you must use the full path
for the PBL or PBR name included in that call.

Source control example

You can use OrcaScript source control commands instead of the commands to set the library
list and application. The following is an example of an OrcaScript session that builds the
same libraries as the previous example, but uses the target properties to set a library list and
application:

start session
scc get connect properties "testbld\testbld.pbw"
scc connect
scc set target "c:\testbld\qadbtest\qadbtest.pbt" "outofdate exclude_checkout"
scc refresh target "incremental"
build library ".\shared_obj\shared_obj.pbl" "" pbd
build library ".\datatypes\datatype.pbl" "" pbd
build library ".\chgreqs\chgreqs.pbl" "" pbd
build executable ".\qadbtest\qadbtest.exe" ".\emp.ico" ".\qadbtest.pbr" "nyyy"
scc close
end session

You can call the scc connect command only after getting connection properties, and you
must call it before you set or refresh the source-controlled targets. You must call the scc close
command before you end your OrcaScript session.

Set DEBUG example

The build application full command in the following example recompiles all of the objects in
the application PBL with the DEBUG condition disabled, and the buildapp_p.exe application
created by the build executable command behaves exactly like the production application.

start session
set debug false
set liblist "testdebug\buildapp.pbl"
set application "testdebug\buildapp.pbl" "testdebug"
build application full
build executable "destination_1\buildapp_p.exe" "icon\icon9.ico" "" "N"
end session

Setting the debug value only affects objects that are compiled or regenerated after the set
debug command is issued. The following example copies the PBL generated from the
previous example after it was compiled with the debug condition disabled. In this example,
even though set debug true is called before it builds the debug_copy.exe executable, the code
in DEBUG conditional compilation blocks is not enabled because none of the commands that
follow the set debug call invoke the PowerScript compiler.

Appendixes

Page 1015

start session
set debug TRUE
file copy "testdebug\buildapp.pbl" "testdebug\copy.pbl" clobber alwaysset
liblist "testdebug\copy.pbl"
set application "testdebug\copy.pbl" "testdebug"
build executable "destination_1\debug_copy.exe" "icon\icon9.ico" "" "N"
end session

If you add a build application command or a regenerate command after the set debug
command, the script inside DEBUG conditional compilation blocks will be enabled.

Shared library example

If you have another target that shares libraries with a target that you already refreshed, you
can use the OrcaScript exclude command to quickly reconstitute your target. The following
example excludes the shared libraries shared_obj.pbl, datatype.pbl, and chgreqs.pbl that
were refreshed in the previous example. It also demonstrates the use of variables for refresh
options and build type. Set statements define variables that can be used throughout an
OrcaScript session wherever the parser expects a string token.

start session
set refresh_flags = "outofdate"
set refresh_flags += "exclude_checkout"
set build_type = "incremental"
scc get connect properties "c:\testbld\testbld.pbw"
scc connect
scc set target ".\dbauto\dbauto.pbt" refresh_flags
scc exclude liblist ".\shared_obj\shared_obj.pbl" ".\datatypes\datatype.pbl" ".
\chgreqs\chgreqs.pbl"
scc refresh target build_type
build executable ".\dbauto\dbauto.exe" ".\emp.ico" "" "nyyy"
scc close
end session

Defining variables from the command line

Instead of defining variables in the OrcaScript session, you can define them from the
command line when you call your script. If you saved the OrcaScript example in the
previous script in a file named MyExample.dat, you could set the same variables by
typing the following at a command line prompt:

Orcascr190 /D refresh_flags="outofdate exclude_checkout" /D
 build_type="incremental" MyExample.dat

SCC connection properties

The SCC get connect properties command is an easy way to populate the Orca SCC
connection structure with the source control properties of a local workspace. However,
to create OrcaScript batch files that are portable from one workstation to another, the
recommended technique is to set each property explicitly. Many of these properties are
vendor specific. The best way to obtain correct values is to copy them directly from the SCC
log file for your PowerBuilder workspace.

After you have obtained the values you need from the SCC log file, you can create portable
batch files by setting the required connection properties and using relative directories and
URLs for path information. The following example shows portable OrcaScript batch file
commands for a workspace that connects to PBNative:

Appendixes

Page 1016

start session
scc set connect property provider "PB Native"
scc set connect property userid "Jane"
scc set connect property localprojpath ".\"
scc set connect property project "\\network_computer\PBNative_Archive\qadb"
scc set connect property logfile ".\MyPortableExample.log"
scc set connect property logappend "FALSE"
scc set connect property deletetempfiles "FALSE"
scc connect
; Perform refresh and build operations
scc close
end session

Using OrcaScript with source control targets offline

You can call scc connect offline to build source control targets offline. When you use
this command, you must specify ImportOnly as a refresh option. If you also specify the
Refresh_all option or the OutOfDate or Exclude_checkout refresh types, no connection is
made to source control.

For the OutOfDate refresh type, the object source residing in the PBL is compared with the
object source on the local project path. If these object sources are different, the object source
on the local project path is imported and compiled.

For the Exclude_checkout refresh type, the workspace PBC file is used to determine current
status. In order for the offline exclude_checkout processing to locate the PBC file, you must
use the scc get connect properties workspaceName command at the beginning of the script.
Objects marked as checked out to the current user in the PBC file will not be imported into
the PBLs during target processing.

Applicable scc connect properties for offline processing

When scc connect offline is used, only the following connect properties apply:

• scc set connect property localprojpath localProjectPath

• scc set connect property logfile logFileName

• scc set connect property logappend <true | false>

Setting refreshType and refreshOption values

When you set up a target with a source control connection, you can use refreshType and
refreshOption options in various combinations. You can even combine these values in the
same string if the values are separated by a blank space. For example:

scc set target ".\dbauto\dbauto.pbt" "refresh_all importonly"

Refresh_all option. Refresh_all performs no comparisons and imports all applicable
objects. Refresh_all behavior varies depending on whether ImportOnly is set. If ImportOnly
is off, Refresh All issues an SccGetLatestVersion call to obtain the tip revision of the PBT
file specified in the scc set target command. From the PBT file, it obtains the library list
for the target. It then calls SccGetLatestVersion to obtain the tip revision of the PBG file
associated with each PBL.

Appendixes

Page 1017

Each PBG file contains a list of objects registered under source control that reside in the
associated PBL. Refresh All then issues SccGetLatestVersion to obtain the tip revision of
each object and imports these objects into the PBL.

In offline processing, ImportOnly must be set to on. If you also set the Refresh_all option,
the PBT file that already exists on the local project path is used to obtain the library list for
the target. The PBG file that also exists on the local project path is then read to obtain a list of
objects associated with each PBL. Refresh_all then processes the PBG lists, importing source
entries residing on the local project path into the appropriate PBL.

ImportOnly option. When ImportOnly is on, the expectation is that the user has already
populated the local project path with the desired revision of each object. ImportOnly is used
to build a target from a previous milestone, such as a version label or a promotion model that
does not represent the tip revision of each object. Therefore, no SccGetLatestVersion calls
are issued. The desired revisions of the PBT, PBG, and object source files must already exist
on the local project path and they are used to import objects into the PBLs. You must use this
option if you are building a source controlled target while you are offline.

OutOfDate option. OutOfDate processing behaves differently depending on whether
ImportOnly is set. When ImportOnly is off, OutOfDate issues an SccGetLatestVersion call
to obtain the tip revision of the PBT and PBG files. It then compares each object in the target
PBLs with the tip revision in the SCC repository and imports the SCC source files into the
PBLs for the objects that are out of sync.

With ImportOnly turned on, OrcaScript never performs GetLatestVersion since the desired
revision of all objects already exists on the local project path. In this case, OutOfDate
processing compares source code in the PBL against object source on the local project path
to decide which objects, if any, need to be reimported. Using ImportOnly with OutOfDate
processing works the same whether you are online or offline.

Advantage of using OutOfDate with ImportOnly option

Combining the OutOfDate option with the ImportOnly option is particularly useful if
you perform nightly builds of a project that has several promotion models defined. If
the volume of changes is low, it may be more efficient to use OutOfDate processing
rather than Refresh All. In one PowerBuilder workspace, you build the "development"
view of the project that includes all development work in progress. In another
workspace, you build the "maintenance" view of the project, which includes bug fixes
waiting for QA verification. Elsewhere, you build a "production" view of the project
containing only verified bug fixes.

Each PowerBuilder workspace connects to the same SCC project, but uses a
different local project path. You use your vendor-specific SCC administration tool to
synchronize the local project path with the desired revision of each object belonging
to each promotion model. Then you launch OrcaScript to refresh the PBLs in each
workspace. This results in a nightly rebuild of all three promotion models, which
development team members can download each morning from a shared network
drive.

Exclude_checkout option. The Exclude_checkout option excludes from the import
list all objects that are currently checked out by the current user, no matter what other
refresh options are used. When connected to SCC, this option requires an additional call to

Appendixes

Page 1018

SccQueryInfo for each object in the target. Therefore, it is not recommended on a nightly
build computer. However, it is highly recommended when a developer uses OrcaScript on his
or her own workstation.

If you use Exclude_checkout processing while offline, the workspace PBC file is used to
determine current status, so you must specify the set get connect properties workspaceName
command. Objects marked as checked out to the current user in the PBC file will not be
imported into the PBLs during target processing.

How the current user is determined for Exclude_checkout processing

For online SCC connections, Exclude_checkout calls scc connect property userid
userID or the scc get connect properties workspaceName to determine the current
user. The runtime processing makes actual SccQueryInfo calls to the SCC provider
to determine check out status, so the information in the PBC file (from the prior SCC
connection) is ignored. Objects checked out to the current user are not imported and
replaced in the target library list.

For scc connect offline, the scc connect property userid command is completely
ignored. OrcaScript must rely on information from the prior SCC connection. Each
PBC file entry contains a bit flag that indicates "checked out to current user". This
flag determines whether the object is imported or excluded. The current user at
the time the PBC file was created is the user who last connected to this workspace
through the PowerBuilder IDE on this workstation.

Build command failures

OrcaScript build commands for an executable or a library fail if the executable or library
already exists in the build directory. To prevent an OrcaScript batch file containing these
commands from failing, move or delete existing executables and libraries from the build
directory before running the batch script.

The building process may fail because of using "scc refresh target 3pass". In such case, you
can add "scc refresh target incremental" before "scc refresh target 3pass", for example,

start session
set debug true
scc set connect property logfile "c:\ test\log.log"
scc connect offline
scc set target "c:\test\work.pbt" importonly
scc refresh target incremental
scc refresh target 3pass
scc close
end session

Escape characters for string variables

OrcaScript, like PowerScript, uses the tilde (~) as an escape character. If you need to include
a special character, such as a quotation mark, inside a string, you must place a tilde in front
of it. A character in an OrcaScript batch file with a tilde in front of it is processed as a literal
character.

Ending an OrcaScript session

You must close an OrcaScript session after you finish calling other OrcaScript commands.
You close an OrcaScript session by calling:

Appendixes

Page 1019

end session

Property values are deleted during end-session processing. If an OrcaScript program
starts numerous sessions, each individual session must contain statements to specify
property values, such as those assigned in set exeinfo or scc set connect commands.
However, variables that you set on a batch script command line using the /D parameter, or
inside a batch file using the set variable_name="value" syntax, remain valid for the entire
multisession program.

8.3.4 Usage notes for OrcaScript commands with SVN/Git

You can use "scc connect offline" to compile the source code managed by the SVN/Git
source control system in PowerBuilder 2019 R3; while you cannot use "scc connect" to
connect with the SVN/Git server or get the source code from the server. Therefore, the
following OrcaScript source control commands do not work with the SVN/Git solution in
2019 R3:

scc connect
scc get connect properties workspaceName
scc get latest version file_list [file_list ...]

The commands related with connecting to the server such as "scc set connect property userid
userID", "scc set connect property password password" etc. will be simply ignored.

The following example shows you how to use the OrcaScript source control command to
compile the source code from the SVN/Git source control system in 2019 R3.

start session
scc set connect property localprojpath "D:\temp_svn"
;localprojpath must point to the parent directory of ws_objects folder
scc set connect property logfile "D:\temp_svn\svnorca.log"
scc set connect property logappend false
scc set connect property deletetempfiles "true"
scc connect offline
scc set target "D:\temp_svn\datawindow_json.pbt" "refresh_all importonly"
scc exclude liblist "D:\temp_svn\pbsoapclient.pbd"
scc refresh target incremental
scc refresh target "3pass"
build library "D:\temp_svn\datawindow_json.pbl" "" pbd
build library "D:\temp_svn\appeon_workarounds.pbl" "" pbd
build library "D:\temp_svn\qa_frame.pbl" "" pbd
build executable "D:\temp_svn\datawindow_json.exe" "" "" "yyy"
scc close
end session

• scc set connect property localprojpath -- Specifies the parent directory of the ws_objects
folder. This example supposes ws_objects is located in D:\temp_svn.

• scc connect offline -- Copies the objects from ws_objects up one level, that is, to the path
specified in localprojpath (and it establishes no connection with the server).

Important

When you first upload a project to SVN or Git, all objects are generated under
ws_objects which is a flat folder containing no sub-directories, therefore objects
with the same name from different PBL files will be overwritten. If you have objects

Appendixes

Page 1020

with the same name in different PBL files, make sure to rename the object before
uploading it to SVN or Git.

• scc set target -- Refreshes the object list in the PBL file according to the objects copied
from ws_objects. The PBG file is no longer used by the SVN/Git solution to map and
refresh objects in the PBL file.

• scc exclude liblist -- Excludes any PBD files that are included in the current PBT,
otherwise, an error will occur indicating that the corresponding PBG file cannot be found.

• scc close -- Closes the session and clears the objects copied to the localprojpath path. The
objects will not be cleared, if the OrcaScript commands are terminated by the user or by
errors.

The following pseudocode shows you how to use the SVN/Git client tool to get the latest
source code from the source control server via commands.

//generate bat file
long ll_file
string is_file
string ls_write
is_file = is_dirc+"\SvnGit.bat"
filedelete(is_file)
ll_file = fileopen(is_file,linemode!,write!,shared!,append!,encodingANSI!)
IF condition1 THEN //SVN
 if condition2 T then // Checkout
 ls_write= "svn checkout ~""+ repository_url +"~" ~""+ checkout_directory
 +"~""
 //replace the variable "repository_url" and "checkout_directory"
 else //Update
 ls_write = "svn update ~""+ checkout_directory +"~""
 end if
else //Git
 if condition2 T then //Checkout and switch branch
 ls_write = "git clone ~""+URL.text+"~" ~""+download_localpath.text+"~"~r~n"
 ls_write += "cd /d ~""+ download_localpath.text+"~"~r~n"
 ls_write +="git checkout ~"origin/"+sle_BranchName.text+"~""
 else //Update and switch branch
 ls_write = "cd /d ~""+ download_localpath.text+"~"~r~n"
 ls_write += "git fetch origin ~""+sle_BranchName.Text +"~"~r~n"
 ls_write +="git checkout ~"origin/"+sle_BranchName.text+"~""
 end if
end if
filewrite(ll_file,ls_write)
fileclose(ll_file)

//Download files from svn or git server
run("~""+is_file+"~"")

Index

Page 1021

Index

Symbols
.NET assemblies

import, 171
.NET targets, 37

build, 988
3D look

use, 339

A
accelerator keys

define, 335
access level, 284
access to the current database

control, 506
accessibility of controls

specify, 336
aggregate functions in graphs, 764
ancestor function

call, 378
ancestor script

call, 378
Animation, 370
application

build, 44
debug, 891
debug and run, 891
handle runtime errors, 911
run, 911
trace and profile, 917

Application object, 139
Application painter

about, 147
Application painter overview, 147
application properties

set in scripts, 169
specify, 148

application targets, 35
application-level scripts

write, 168
applications structure

look at, 172
area graphs, 755
arguments, 286
ASA MobiLink synchronization wizard

use, 506
AutoInstantiate, 450

AutoScript
customize, 218
use, 216

B
Background.Color property, 718
bar graphs, 755
blobs

add to DataWindow objects, 633
Border property, 719
breakpoints

examine application, 898
set, 894

Brush.Color property, 720
Brush.Hatch property, 721

C
C# targets, 37
C0001 Compiler Error, 224
C0002 Compiler Error, 225
C0003 Compiler Error, 225
C0004 Compiler Error, 225
C0005 Compiler Error, 226
C0006 Compiler Warning, 227
C0007 Compiler Error, 227
C0008 Compiler Error, 227
C0009 Compiler Error, 228
C0010 Compiler Error, 228
C0011 Compiler Error, 228
C0013 Compiler Error, 228
C0014 Compiler Warning, 229
C0015 Compiler Error, 229
C0016 Compiler Error, 229
C0017 Compiler Error, 230
C0018 Compiler Error, 230
C0019 Compiler Error, 230
C0020 Compiler Error, 230
C0021 Compiler Error, 231
C0022 Fatal Compiler Error, 231
C0023 Compiler Error, 231
C0024 Compiler Error, 231
C0025 Compiler Error, 231
C0026 Compiler Error, 232
C0027 Compiler Error, 232
C0028 Compiler Error, 232
C0029 Compiler Error, 232
C0030 Fatal Compiler Error, 232
C0031 Compiler Error, 232
C0032 Fatal Compiler Error, 232

Index

Page 1022

C0033 Compiler Error, 232
C0034 Compiler Error, 233
C0035 Compiler Error, 233
C0036 Compiler Error, 233
C0037 Compiler Error, 233
C0038 Database Error, 233
C0039 Compiler Error, 233
C0040 Compiler Error, 234
C0041 Compiler Error, 234
C0042 Compiler Error, 234
C0043 Compiler Error, 234
C0044 Compiler Error, 235
C0045 Compiler Error, 235
C0046 Compiler Error, 235
C0047 Compiler Error, 236
C0048 Compiler Error, 236
C0049 Compiler Error, 236
C0050 Compiler Error, 236
C0051 Compiler Error, 236
C0052 Compiler Error, 236
C0053 Compiler Error, 236
C0054 Database Error, 236
C0055 Compiler Error, 237
C0056 Compiler Error, 237
C0057 Compiler Error, 237
C0058 Compiler Warning, 238
C0059 Compiler Warning, 238
C0060 Compiler Error, 239
C0061 Compiler Error, 239
C0062 Compiler Error, 239
C0063 Compiler Error, 239
C0064 Compiler Error, 240
C0065 Compiler Error, 240
C0066 Compiler Error, 240
C0067 Compiler Error, 241
C0068 Compiler Error, 241
C0069 Compiler Error, 242
C0070 Compiler Error, 243
C0071 Compiler Error, 243
C0072 Compiler Error, 243
C0073 Compiler Warning, 244
C0074 Compiler Error, 244
C0075 Compiler Warning, 244
C0076 Compiler Error, 244
C0077 Compiler Error, 244
C0078 Compiler Error, 245
C0079 Compiler Error, 245
C0080 Compiler Error, 246

C0081 Compiler Error, 246
C0082 Compiler Error, 246
C0083 Compiler Error, 246
C0084 Compiler Error, 247
C0085 Compiler Error, 247
C0086 Compiler Warning, 247
C0087 Compiler Warning, 248
C0088 Compiler Warning, 248
C0089 Compiler Warning, 248
C0090 Compiler Error, 248
C0091 Compiler Error, 248
C0092 Compiler Error, 248
C0093 Compiler Error, 249
C0094 Compiler Error, 249
C0095 Compiler Error, 249
C0096 Compiler Error, 249
C0097 Compiler Error, 249
C0098 Compiler Error, 249
C0099 Compiler Warning, 250
C0100 Compiler Error, 250
C0101 Compiler Error, 250
C0102 Compiler Error, 250
C0103 Compiler Error, 250
C0104 Compiler Error, 251
C0105 Compiler Error, 252
C0106 Compiler Error, 252
C0107 Compiler Error, 252
C0108 Compiler Error, 253
C0109 Compiler Error, 253
C0110 Compiler Warning, 253
C0111 Compiler Error, 254
C0112 Compiler Error, 254
C0113 Compiler Error, 254
C0114 Compiler Error, 254
C0115 Compiler Error, 254
C0116 Compiler Error, 254
C0117 Compiler Error, 255
C0118 Compiler Error, 255
C0119 Compiler Error, 255
C0120 Compiler Error, 255
C0121 Compiler Error, 256
C0122 Compiler Error, 256
C0123 Compiler Error, 256
C0124 Compiler Error, 256
C0125 Compiler Error, 256
C0126 Compiler Error, 256
C0127 Compiler Error, 256
C0128 Compiler Error, 257

Index

Page 1023

C0129 Compiler Warning, 257
C0130 Compiler Error, 257
C0131 Compiler Error, 257
C0132 Compiler Error, 258
C0133 Compiler Error, 258
C0134 Compiler Error, 259
C0135 Compiler Error, 259
C0136 Compiler Error, 259
C0137 Compiler Error, 260
C0138 Compiler Error, 260
C0139 Compiler Error, 260
C0140 Compiler Error, 261
C0141 Compiler Error, 261
C0142 Compiler Error, 261
C0143 Compiler Error, 261
C0144 Compiler Error, 262
C0145 Compiler Error, 262
C0146 Informational Message, 262
C0147 Informational Message, 262
C0148 Informational Message, 262
C0149 Informational Message, 262
C0150 Compiler Warning, 263
C0151 Compiler Warning, 263
C0152 Compiler Error, 263
C0153 Compiler Error, 263
C0154 Compiler Error, 263
C0155 Compiler Error, 263
C0156 Compiler Warning, 263
C0157 Informational Message, 263
C0158 Compiler Error, 264
C0159 Compiler Error, 264
C0160 Compiler Error, 264
C0161 Compiler Error, 264
C0162 Compiler Error, 264
C0163 Compiler Error, 264
C0164 Compiler Error, 265
C0165 Compiler Error, 265
C0166 Compiler Error, 265
C0167 Compiler Error, 265
C0168 Informational Message, 265
C0169 Compiler Error, 265
C0170 Compiler Error, 265
C0171 Compiler Warning, 265
C0172 Compiler Error, 266
C0173 Compiler Error, 266
C0174 Compiler Error, 266
C0175 Compiler Error, 266
C0176 Compiler Error, 266

C0177 Compiler Error, 266
C0178 Compiler Warning, 267
C0179 Compiler Warning, 267
C0180 Compiler Error, 267
C0181 Compiler Error, 267
C0182 Compiler Error, 267
C0183 Compiler Error, 267
C0184 Compiler Error, 267
C0185 Obsolete Warning, 267
C0186 Compiler Warning, 268
C0187 Compiler Error, 268
C0188 Compiler Warning, 268
C0189 Compiler Error, 268
C0190 Compiler Warning, 268
C0191 Compiler Error, 268
C0192 Compiler Error, 269
C0193 Compiler Error, 269
C0194 Compiler Error, 269
C0195 Compiler Error, 269
C0196 Compiler Error, 269
C0197 Informational Message, 269
C0198 Compiler Warning, 269
C0199 Compiler Warning, 269
C0200 Compiler Error, 269
C0201 Compiler Error, 270
C0202 Compiler Error, 270
C0203 Compiler Error, 270
C0204 Compiler Error, 270
C0205 Migration Warning, 270
C0206 Migration Warning, 270
C0207 Migration Warning, 270
C0208 Informational Message, 270
C0209 Compiler Warning, 270
C0210 Compiler Warning, 270
C0212 Compiler Error, 271
C0213 Compiler Error, 271
C0214 Compiler Error, 271
C0215 Compiler Error, 271
C0216 Compiler Error, 271
C0217 Informational Message, 271
C0218 Compiler Warning, 271
C0300 Compiler Error, 271
C0301 Compiler Error, 272
C0302 Compiler Error, 272
C0303 Compiler Error, 272
C0304 Compiler Error, 272
C0305 Compiler Error, 273
C0306 Compiler Error, 273

Index

Page 1024

C0307 Compiler Error, 273
C0308 Compiler Error, 274
C0309 Compiler Error, 274
C0310 Compiler Error, 274
C0311 Compiler Error, 275
C0312 Compiler Error, 275
C0313 Compiler Error, 276
C0314 Compiler Warning, 276
C0315 Compiler Warning, 276
C0316 Compiler Error, 277
C0317 Compiler Warning, 277
C0318 Compiler Warning, 277
C0319 Compiler Error, 277
C0320 Compiler Error, 277
C0321 Compiler Error, 278
C0322 Compiler Error, 278
C0323 Compiler Warning, 278
C0324 Compiler Warning, 279
C0325 Compiler Error, 279
C0326 Compiler Error, 279
C0327 Compiler Error, 280
C0328 Compiler Error, 280
C0329 Compiler Error, 280
C0330 Compiler Error, 281
C0331 Compiler Error, 281
CheckBox, 343
CheckBox edit style, 670
CheckBox edit style (code 85), 992
checked-out status of objects

clear, 122
child windows, 307
class user objects, 446

use, 458
Clip window, 29

arrange, 50
code table

define, 678
implement, 679
process, 680
validate user input, 680

Color, 722
colors

choose, 337
define, 64
specify, 736

column definitions
specify, 477

column graphs, 755

columns
copy and paste, 482
select, 555

command line arguments
use, 47

CommandButton, 341
comments

modify, 192
Compiler Errors, 224
components

create, 941
computed columns, 625
computed fields, 625
connection profile, 110
context-sensitive help

get, 221
Control List view, 144
control updates

about, 642
controls

about, 325
add, 316
align using grid, 331
align with each other, 331
change text, 329
choose colors, 337
copy, 333
define accelerator keys, 335
define properties, 327
define tab order, 333
equalize the size, 332
equalize the space, 332
events, 319
functions, 319
insert in a window, 325
move and resize using keyboard, 330
move and resize using mouse, 330
name, 327
properties, 319
select, 326
specify accessibility, 336
use 3D look, 339
use individual controls, 339
work with, 325

create a target, 33
crosstab

modify data, 794
Crosstab styles

Index

Page 1025

use, 539
crosstabs

about, 783
associate data, 787
create, 786
enhance, 793
preview, 792
types, 785
view, 790
work with, 783

custom class user object
build, 449

custom visual user object
build, 451

D
data

about display format, 655
about edit styles, 665
about validation rules, 681
associate with a crosstab, 787
define code table, 678
define display format, 658
define edit styles, 668
define validation rules, 682
display and validate, 653
export to XML, 841
grid DataWindow object, 592
import, 501
import from XML, 849
import into a DataWindow object, 589
manipulate, 497
modify, 498, 587
present, 653
print, 502, 591
print preview, 589
retrieve, 497, 585, 619
save, 502
save as PDF, 594
save in an external file, 594
save in HTML Table format, 602
validate, 654
view row information, 588
work with display format, 655
work with edit styles, 666
work with validation rules, 682

Data Pipeline Painter Overview, 512
data pipelines

about, 512
change destination and source database,
524
choose a pipeline operation, 519
correct errors, 525
create, 515
define, 513
dependency of modifications on pipeline
operation, 520
examples, 527
modify definition, 517
pipe blob data, 523
pipe extended attributes, 513
save, 526
use an existing pipeline, 526

data source
select, 542

database
manage, 469

database components
work with, 466

database painter
use, 470

Database painter
define a validation rule, 683
work with display formats, 656
work with edit styles, 667

Database Painter Overview, 470
database views, 468

display SQL statement, 494
drop, 497
export syntax, 497
join tables, 495
use, 493
work with, 492

DataWindow controls
add tooltips, 634

DataWindow objects, 22
about, 529
add buttons, 629
add columns, 621
add computed fields, 624
add controls, 621
add drawing controls, 622
add graphs, 632
add group boxes, 623
add InkPicture controls, 633
add OLE controls, 633

Index

Page 1026

add OLE object, 876
add pictures, 624
add reports, 633
add table blob controls, 633
add text, 622
align controls, 637
build, 541
change style properties, 604
control updates, 642
copy controls, 636
define, 529
define a computed field, 626
define groups, 699
define print specifications, 609
define queries, 575
define tab order, 613
delete controls, 635
display boundaries for controls, 634
enhance, 577
equalize space between controls, 637
equalize the size of controls, 638
examples, 529
generate, 574
highlight information, 706
modify, 575
modify data source, 616
modify general properties, 604
modify text, 612
move controls, 635
name controls, 614
position controls, 639
presentation style, 531
preview view, 585
prompt for retrieval criteria, 619
remove blank space, 638
reorganize controls, 634
resize controls, 636
retrieve data, 619
retrieve rows as needed, 620
rotate controls, 640
save, 575
save data in an external file, 594
save retrieved rows to disk, 621
select a data source, 542
set color, 605
set gradients and background pictures, 605
set transparency properties, 606
specify data for OLE object, 880

specify pointers, 608
specify variable-height bands, 615
store data using Data view, 617
use borders, 614
use External, 566
use graph, 759
use grid and ruler, 635
use OData Service, 572
use OLE, 873
use OLE columns, 885
use OLE presentation style, 876
use Query, 566
use Quick Select, 543
use SQL Select, 553
use Stored Procedure, 567
use Web service data source, 569
work with controls, 621

DataWindow painter
define a validation rule, 686
Design view, 579
Properties view, 582
resize bands, 584
select controls, 583
toolbars, 581
undo changes, 585
use zoom, 584
work with display formats, 657
work with edit styles, 668
XML support, 826

DataWindow Painter Overview, 578
date display formats, 662
DatePicker, 367
debug mode

run, 897
DEBUG preprocessor symbol, 908
debugger

break into when exception thrown, 910
examine application at breakpoint, 898
set breakpoints, 894
start, 892
step through application, 905

default layouts
change, 49

descendants
control names, 324
instance variables, 324

detail band, 581
detail band properties

Index

Page 1027

set, 817
display formats

about, 655
define, 658
work with, 655

dock toolbars, 57
Drawing controls, 347
drop-down toolbars, 55
DropDownDataWindow edit style, 675
DropDownDataWindow edit style (code 88),
995
DropDownListBox, 351
DropDownListBox edit style, 669
DropDownListBox edit style (code 87), 994
DropDownPictureListBox, 352
dynamic libraries

build, 953
use, 944

E
Edit edit style, 668
Edit edit style (code 89), 996
Edit Mask edit style (code 90), 998
edit styles

about, 665
define, 668
work with, 666

EditMask, 348
EditMask edit style, 671
editors, 22
Enabled property

use, 336
entries

export and import, 201
event ID, 292
Event List view, 145
events, 22
executable application project

define, 948
executable file

build, 953
executables

create, 941
execution

trace, 952
Existing Application target wizard

use, 136
Export/Import Template view

XML, 827
extended attribute system tables, 989
External

use, 566
external functions

declare, 281
external visual user object

build, 451

F
file editor

customize, 505
use, 43

File Editor Overview, 43
files

for DropDownPictureListBox controls,
352
for Picture controls, 345
for PictureButton controls, 342
for PictureHyperLink controls, 346
for PictureListBox controls, 354
for TreeView controls, 359
importing into script, 212

filters
define, 689
examples, 690
remove, 690
use, 689

fine-tune performance, 115
Font.Escapement property (for rotating
controls), 723
Font.Height property, 724
Font.Italic property, 725
Font.Strikethrough property, 726
Font.Underline property, 727
Font.Weight property, 727
fonts

change, 63
foreign keys, 467
Format property, 728
Freeform style

use, 532
function

code, 288
compile and save, 288
name, 286

Function List view, 146
Function Painter Overview, 283

Index

Page 1028

functions, 23

G
Git

use, 67
using, 92

global objects
specify, 150

global standard class user objects
use, 459

Graph presentation style, 772
Graph styles

use, 539
graphs

about, 752
associate data, 762
change position and size, 761
define properties, 773
parts, 752
place in DataWindow objects, 759
presentation style, 772
types, 754
use in application, 758
use in DataWindow objects, 759
use in windows, 782
use Properties view, 760
work with, 752

grid DataWindow object
specifying properties, 607

Grid style
use, 533

Group presentation style, 695
Group style

use, 537
GroupBox, 347
grouping criteria

specify, 561

H
header band, 580
Height property, 729
HProgressBar, 351
HScrollBar, 350
HTrackBar, 350

I
icon

specify, 150
identity column

specify, 644
indexes, 467

create, 491
drop, 492
modify, 492
work with, 491

inheritance, 175, 321, 323, 439, 455
about, 371
advantage, 323
browse the class hierarchy, 373
hierarchy, 372
understand, 371

inherited information
use, 456

inherited objects
work with, 374

inherited scripts
extend, 377
override, 378
use, 375
view, 376

initialization file
about, 65

InkEdit, 370
InkEdit edit style, 678
InkPicture, 370
instance variables

declare, 320

J
Java VM initialization

configure, 116
just-in-time debugging, 907

K
key icons, 467
keyboard shortcuts

customize, 62
keys, 466

define foreign keys, 489
define primary keys, 488
drop, 491
modify, 490
view, 487
work with, 487

keys and toolbars
format, 871

Index

Page 1029

L
Label style

use, 534
layout, 54
Layout view, 142
layouts

change, 49
libraries, 22

about, 181
create and delete, 188
create reports, 205
create runtime libraries, 203
display, 185
optimize, 195
organize, 182
regenerate entries, 195
search, 193
use, 181
work in, 189
work with, 181, 185

libraries and folders
filter the display, 189

library directory report
create, 206

library entry reports
create, 205

library painter
about, 183
open, 182

Library Painter Overview, 182
line graphs, 755
ListBox, 353
ListView, 357

M
main windows, 306
manifest files

attach and embed, 946
MDI application, 36
MDI frames, 308
menu

build, 416
build using inheritance, 439
create, 416
save, 422
use in application, 444
work with menu items, 416

menu bar

add to a window, 444
menu items

define the appearance and behavior, 423
events, 435
refer to objects in app, 437
set General properties, 423
set properties for contemporary menus,
425
set style properties, 426
use functions and variables, 437
work with, 416
write scripts, 435

menu painter
menu styles, 414
use, 412
views, 412

Menu Painter Overview, 412
menus

work with, 411
menus and menu items, 411
MobiLink synchronization server

start, 511
modify a custom button, 61
MonthCalendar, 366
multi-user environment

constraints, 72
MultiLineEdit, 348

N
N-Up style

use, 536
naming conventions, 176
nested reports

about, 737
add to a composite report, 748
adjusted width and height, 746
change report, 747
create using the Composite presentation
style, 741
modify definition, 747
place in another report, 742
relate to base report, 748, 750
use, 737
use options, 751
work with, 746

Non-Visual Object List view, 145
nonvisual objects

add, 316

Index

Page 1030

number display formats, 660

O
object status

refresh, 124
objects, 21

copy and delete, 190
create, 174
create using inheritance, 175, 372
display, 185
filter the display, 187
naming conventions, 176
open, 178
open and preview, 189
run or preview, 179
search, 193
select, 187
source-controlled, 133
work with, 174

objects versions
compare, 125

OData Service
use, 572

offline mode
work in, 114

OLE
columns in DataWindows, 885
data transfer from DataWindow, 875
DataWindow objects, 873
DataWindow presentation styles, 875
previewing columns, 885
report objects, 873
use in DataWindow objects, 873

OLE 2.0 style
use, 540

OLE columns
use in a DataWindow object, 885

OLE objects
activate and edit, 884
change object, 884
define, 877

OLE presentation style, 875
online help

use, 44
options in the development environment

use, 46
OrcaScript

about, 1005

commands, 1008
usage notes for commands and parameters,
1013

OrcaScript with SVN/Git
usage notes, 1019

Output window, 30
arrange, 50

P
painters, 22

features, 141
open, 140
views, 142
work in, 139

panes and views
move and resize, 52

PBCatEdt table
edit style types, 992

PBNative
use, 72

PBR file, 947
Pen.Color property, 729
Pen.Style property, 729
Pen.Width property, 731
pending SQL changes

view, 483
performance, 115
Picture, 345
PictureButton, 342
PictureHyperLink, 346
PictureListBox, 354
pie graphs, 755
pipeline operation

choose, 519
pipelines

work with, 512
Pointer property, 732
pop-up menu

use, 186
pop-up menus

display, 445
pop-up windows, 307
PowerBar, 27
PowerBuilder

about, 20
concepts and terms, 20
customize, 46
start with an open workspace, 46

Index

Page 1031

work with, 20
PowerBuilder environment, 23

manage, 65
PowerBuilder extensions, 23
PowerBuilder libraries, 22
PowerBuilder resource files, 947
PowerBuilder targets

build, 942
PowerBuilder units, 314
prefix

control name, 328
presentation style

choose, 531
Preview view of a DataWindow object

use, 585
primary keys, 467
print preview

use, 589
Profiling Class View, 927
Profiling Routine View, 929
Profiling Trace View, 931
project

create, 943
use project painter, 942

Project Painter Overview, 942
projects

upgrade under source control, 135
properties, 23

modify conditionally at runtime, 710
Properties view, 143

DataWindow painter, 582
property conditional expressions

use, 802
property values

supply, 717
Protect property, 732
Prototype window, 284
proxies

build, 988
PSR files

work with, 603

Q
queries

define, 575
modify, 577
preview, 576
save, 576

Query
use, 566

Query Painter Overview, 575
Quick Select

use, 543

R
RadioButton, 343
RadioButton edit style (code 86), 993
RadioButtons edit style, 671
registry

about, 65
repeating values

suppress, 691
reports

create on library contents, 205
resources

distribute, 946
response windows, 308
retrieval arguments, 560
return type, 285
RibbonBar

work with, 379
rich text

about, 859
keys and toolbars, 871
specify an editor, 152
work with, 859

RichText edit style, 677
RichText presentation style, 859
RichText style

use, 540
RichTextEdit control

use, 869
rows

filter, 500, 688
group, 693
sort, 499, 690
suppress repeating values, 691
view information, 501

S
save a layout, 54
save as PDF, 594
save data as PDF, 594
scatter graphs, 755
SCC API

extension, 74
Script view, 143

Index

Page 1032

Script views
about, 208
edit scripts, 211
modify properties, 210
open, 210

scripts, 22
compile, 222
limit size, 211
paste information, 212
print, 212
write, 208

SDI application, 36
selection criteria

specify, 561
SingleLineEdit, 348
sorting criteria

specify, 561
source control, 23

add objects, 117
check in objects, 121
check out objects, 119
compare objects, 125
display version history, 127
files available, 116
initialization settings, 128
modify objects, 133
refresh objects, 124
remove objects, 127
synchronize objects, 123
upgrade projects, 135
use, 66

source control files
import to a new library, 137

source control manager
use via SCC API, 71

source control operations in PowerBuilder,
117
source control system

Git, 92
SVN, 76
use via SCC API, 109

source control systems
about, 67

source control version history
display, 127

source editor
use, 180

source-controlled objects, 113

SQL Anywhere database
create and delete, 474

SQL Central
use, 511

SQL Select
use, 553

SQL statements
control comments, 503
create and execute, 502
create stored procedures, 503
enter SQL, 503
execute SQL, 505
explain SQL, 505

stacked graphs, 758
standard class user object

build, 450
standard visual user object

build, 452
statement terminator, 503
static crosstabs

create, 800
StaticHyperLink, 345
StaticText, 344
status of source-controlled objects

view, 113
Stored Procedure

use, 567
stored procedures

create, 503
use to update the database, 647

string display formats, 662
Structure List view, 146
Structure Painter Overview, 299
Structure view, 147
structures

about, 298
copy, 303
define, 299
display and paste information, 304
modify, 301
reference, 302
use, 302
use with functions, 303
work with, 298

summary and footer band, 581
SVN

use, 67
using, 76

Index

Page 1033

system tree, 25
System Tree

arrange, 50

T
Tab, 362
tab order

change window's tab order, 334
define, 333
establish, 333

table and column properties
specify, 477

table to update
specify, 644

tables
alter, 480
close, 482
create and edit temporary table, 486
create from an existing table, 476
create from scratch, 475
drop, 482
export syntax, 484
print definition, 484
specify column definitions, 477
specify table and column properties, 477
system table, 485
view pending SQL changes, 483
work with, 475

tables and columns, 466
tables and views

select, 554
Tabular style

use, 532
target

add to a workspace, 37
create, 33
remove from a workspace, 38

target properties
specify, 169

target types, 35
targets, 20

about, 139
rebuild, 197
search, 193
source-controlled, 133
upgrade, 198
work with, 139

targets library search path

specify, 170
text properties

specify, 149
theme

specify, 152
three-dimensional graphs, 757
THROWS clause

define, 287
time display formats, 663
Timer_Interval property, 733
title bar

display, 51
To-Do List

use, 41
toolbar basics, 55
toolbars

add to a window, 430
basics, 55
control the display, 56
create, 61
customize, 57
drop-down, 55
move using the mouse, 57
provide, 427
select a style, 430
set properties, 431
set properties in th Application painter,
434
set properties in th Window painter, 434
use, 55
work with, 411

tools
work with, 40

trace file
generate without timing information, 941

trace information
analyze programmatically, 933
analyze using profiling tools, 927
collect, 918

tree
navigate, 810

TreeView, 359
TreeView DataWindow

create, 804
Design view, 812
examples, 817
setting properties, 813
sort rows, 811

Index

Page 1034

TreeView level properties
set, 815

TreeView levels
add and delete, 809

TreeView presentation style, 803
TreeView properties

set, 813
TreeView style

use, 540
TreeViews

work with, 803

U
UI Theme

customize, 152
specify, 152

unique key columns
specify, 644

updatable columns
specify, 645

update when key is modified
specify, 647

user events
about, 291
define, 293
use, 296
work with, 291

user events and event IDs, 292
User Object Painter (Non-Visual) Overview,
448
user objects

about, 445
build, 447, 449
build using inheritance, 455
communicate between window and user
object, 461
create, 449
events, 453
name, 454
save, 454
use, 457
work with, 445

user-defined functions
about, 282
define, 283
modify, 289
use, 290
work with, 281

V
validation rules

about, 681
define, 682
understand, 681
work with, 682

variables
declare, 281

views, 142
add and remove, 54
float and dock, 53
use in painters, 51

Visible property, 733
use, 336

visual user objects, 447
use, 457

VProgressBar, 351
VScrollBar, 350
VTrackBar, 350

W
Web service

use to update the database, 649
Web service data source

use, 569
WebBrowser

work with, 408
WHERE clause for update/delete

specify, 645
Width property, 734
window and user object

communicate, 461
Window Painter Overview, 308
windows

about, 305
build, 306, 309
build using inheritance, 321
create, 309
define properties, 310
design, 305
events, 319
functions, 319
preview, 317
print definition, 318
properties, 319
run, 321
save, 316
types, 306

Index

Page 1035

work with, 305
write scripts, 319

wizards
about, 33
use, 33

workspace file
use, 47

workspace properties
specify, 38

Workspaces, 20
workspaces

build, 39
create, 31
manage, 37
open, 32
rebuild, 197

X
X property, 734
X1 X2 property, 734
XML

about, 824
export data to, 841
Export/Import Template view, 827
import data from, 849
parse, 826
syntax, 825
valid documents, 824

XML data
export and import, 823

XML support
in the DataWindow painter, 826

XML templates
create, 830
edit attributes, 838
edit CDATA sections, 840
edit comments, 841
edit composite and nested reports, 839
edit controls, 838
edit DataWindow expressions, 838
edit document type declaration, 836
edit processing instructions, 841
edit root element, 837
edit XML declaration, 836
header and detail sections, 832
save, 831

Y
Y property, 735

Y1 Y2 property, 735

	Users Guide
	Contents
	1 The PowerBuilder Environment
	1.1 Working with PowerBuilder
	1.1.1 About PowerBuilder
	1.1.2 Concepts and terms
	1.1.2.1 Workspaces and targets
	1.1.2.2 Objects
	1.1.2.3 DataWindow objects
	1.1.2.4 PowerBuilder libraries
	1.1.2.5 Painters and editors
	1.1.2.6 Events and scripts
	1.1.2.7 Functions
	1.1.2.8 Properties
	1.1.2.9 Source control
	1.1.2.10 PowerBuilder extensions

	1.1.3 The PowerBuilder environment
	1.1.3.1 The System Tree
	1.1.3.2 The PowerBar
	1.1.3.3 The Clip window
	1.1.3.4 The Output window

	1.1.4 Creating and opening workspaces
	1.1.4.1 Creating a workspace
	1.1.4.2 Opening a workspace

	1.1.5 Using wizards
	1.1.5.1 About wizards

	1.1.6 Creating a target
	1.1.7 Target types
	1.1.7.1 Application targets
	1.1.7.2 C# targets
	1.1.7.3 .NET targets (Obsolete)

	1.1.8 Managing workspaces
	1.1.8.1 Adding an existing target to a workspace
	1.1.8.2 Removing a target from a workspace
	1.1.8.3 Specifying workspace properties

	1.1.9 Building workspaces
	1.1.9.1 In the development environment
	1.1.9.2 From a command line

	1.1.10 Working with tools
	1.1.10.1 Using the To-Do List
	1.1.10.2 Using the file editor

	1.1.11 Using online help
	1.1.12 Building an application

	1.2 Customizing PowerBuilder
	1.2.1 Starting PowerBuilder with an open workspace
	1.2.1.1 Using options in the development environment
	1.2.1.2 Using a workspace file
	1.2.1.3 Using command line arguments

	1.2.2 Changing default layouts
	1.2.2.1 Arranging the System Tree, Output, and Clip windows
	1.2.2.2 Using views in painters
	1.2.2.2.1 Displaying the title bar
	1.2.2.2.2 Moving and resizing panes and views
	1.2.2.2.3 Floating and docking views
	1.2.2.2.4 Adding and removing views
	1.2.2.2.5 Saving a layout

	1.2.3 Using toolbars
	1.2.3.1 Toolbar basics
	1.2.3.2 Drop-down toolbars
	1.2.3.3 Controlling the display of toolbars
	1.2.3.4 Moving toolbars using the mouse
	1.2.3.4.1 Docking toolbars

	1.2.3.5 Customizing toolbars
	1.2.3.5.1 Modifying a custom button

	1.2.3.6 Creating new toolbars

	1.2.4 Customizing keyboard shortcuts
	1.2.5 Changing fonts
	1.2.6 Defining colors
	1.2.7 How the PowerBuilder environment is managed
	1.2.7.1 About the registry
	1.2.7.2 About the initialization file

	1.3 Using Source Control
	1.3.1 About source control systems
	1.3.1.1 Using SVN or Git
	1.3.1.2 Using source control manager via SCC API
	1.3.1.3 Using PBNative
	1.3.1.4 Constraints of a multi-user environment
	1.3.1.5 Extension to the SCC API

	1.3.2 Using SVN source control system
	1.3.2.1 Add a workspace to SVN
	1.3.2.2 Get a workspace from SVN
	1.3.2.3 Commit objects to SVN
	1.3.2.4 Get objects from SVN
	1.3.2.5 Resolve conflicts
	1.3.2.5.1 Remove the binary property from a R3 source-controlled workspace

	1.3.2.6 Revert changes
	1.3.2.7 Refresh objects
	1.3.2.8 Upload PBL
	1.3.2.9 Lock objects
	1.3.2.10 Tools for Show Log\Edit Conflicts
	1.3.2.11 Compare objects
	1.3.2.12 View/Edit the connection settings
	1.3.2.13 View the status of source-controlled objects

	1.3.3 Using Git source control system
	1.3.3.1 Add a workspace to Git
	1.3.3.2 Get a workspace from Git
	1.3.3.3 Commit objects to Git
	1.3.3.4 Get objects from Git
	1.3.3.5 Resolve conflicts
	1.3.3.6 Revert changes
	1.3.3.7 Refresh objects
	1.3.3.8 Upload PBL
	1.3.3.9 Tools for Show Log\Edit Conflicts
	1.3.3.10 Compare objects
	1.3.3.11 Use branches
	1.3.3.12 View/Edit the connection settings
	1.3.3.13 View the status of source-controlled objects

	1.3.4 Using source control systems via SCC API
	1.3.4.1 Using a source control system with PowerBuilder
	1.3.4.1.1 Setting up a connection profile
	1.3.4.1.2 Viewing the status of source-controlled objects
	1.3.4.1.3 Working in offline mode
	1.3.4.1.4 Fine-tuning performance for batched source control requests
	1.3.4.1.5 Configuring Java VM initialization
	1.3.4.1.6 Files available for source control

	1.3.4.2 Source control operations via SCC API in PowerBuilder
	1.3.4.2.1 Adding objects to source control
	1.3.4.2.2 Checking objects out from source control
	1.3.4.2.3 Checking objects in to source control
	1.3.4.2.4 Clearing the checked-out status of objects
	1.3.4.2.5 Synchronizing objects with the source control server
	1.3.4.2.6 Refreshing the status of objects
	1.3.4.2.7 Comparing local objects with source control versions
	1.3.4.2.8 Displaying the source control version history
	1.3.4.2.9 Removing objects from source control

	1.3.4.3 Initialization settings that affect source control
	1.3.4.4 Modifying source-controlled targets and objects
	1.3.4.4.1 Effects of source control on object management
	1.3.4.4.2 Opening objects checked in to source control
	1.3.4.4.3 Copy and move operations on source-controlled objects
	1.3.4.4.4 Editing the PBG file for a source-controlled target

	1.3.4.5 Upgrading existing projects under source control
	1.3.4.5.1 Using the Existing Application target wizard
	1.3.4.5.2 Importing source control files to a new library

	2 Working with Targets
	2.1 Working with Targets
	2.1.1 About targets
	2.1.2 Working in painters
	2.1.2.1 Opening painters
	2.1.2.2 Painter summary
	2.1.2.3 Painter features
	2.1.2.4 Views in painters that edit objects

	2.1.3 About the Application painter
	2.1.4 Specifying application properties
	2.1.4.1 Specifying default text properties
	2.1.4.2 Specifying an icon
	2.1.4.3 Specifying default global objects
	2.1.4.4 Specifying a rich text editor
	2.1.4.5 Specifying a theme for the application UI
	2.1.4.5.1 UI Theme
	System themes
	Custom themes

	2.1.4.5.2 Applying a theme
	2.1.4.5.3 Making the theme effective
	2.1.4.5.4 Packaging the theme
	2.1.4.5.5 Turning off the theme
	2.1.4.5.6 Understanding the theme.json file
	2.1.4.5.7 Understanding what can be set by the theme
	Windows and User Objects
	Controls
	DataWindows

	2.1.4.5.8 Understanding what additional features provided by the theme
	2.1.4.5.9 Understanding the event differences

	2.1.5 Writing application-level scripts
	2.1.5.1 Setting application properties in scripts

	2.1.6 Specifying target properties
	2.1.6.1 Specifying the target's library search path
	2.1.6.2 Importing .NET assemblies

	2.1.7 Looking at an application's structure
	2.1.7.1 Which objects are displayed
	2.1.7.1.1 Which references are displayed
	2.1.7.1.2 Which references are not displayed

	2.1.8 Working with objects
	2.1.8.1 Creating new objects
	2.1.8.2 Creating new objects using inheritance
	2.1.8.3 Naming conventions
	2.1.8.4 Opening existing objects
	2.1.8.5 Running or previewing objects

	2.1.9 Using the Source editor

	2.2 Working with Libraries
	2.2.1 About libraries
	2.2.1.1 Using libraries
	2.2.1.2 Organizing libraries

	2.2.2 Opening the Library painter
	2.2.3 About the Library painter
	2.2.4 Working with libraries
	2.2.4.1 Displaying libraries and objects
	2.2.4.2 Using the pop-up menu
	2.2.4.3 Controlling columns that display in the List view
	2.2.4.4 Selecting objects
	2.2.4.5 Filtering the display of objects
	2.2.4.6 Creating and deleting libraries
	2.2.4.7 Filtering the display of libraries and folders
	2.2.4.8 Working in the current library
	2.2.4.9 Opening and previewing objects
	2.2.4.10 Copying, moving, and deleting objects
	2.2.4.11 Setting the root
	2.2.4.12 Moving back, forward, and up one level
	2.2.4.13 Modifying comments

	2.2.5 Searching targets, libraries, and objects
	2.2.6 Optimizing libraries
	2.2.7 Regenerating library entries
	2.2.8 Rebuilding workspaces and targets
	2.2.9 Upgrading targets
	2.2.10 Exporting and importing entries
	2.2.11 Creating runtime libraries
	2.2.11.1 Including additional resources

	2.2.12 Creating reports on library contents
	2.2.12.1 Creating library entry reports
	2.2.12.2 Creating the library directory report

	3 Coding Fundamentals
	3.1 Writing Scripts
	3.1.1 About the Script view
	3.1.2 Opening Script views
	3.1.3 Modifying Script view properties
	3.1.4 Editing scripts
	3.1.4.1 Limiting size of scripts
	3.1.4.2 Printing scripts
	3.1.4.3 Pasting information into scripts
	3.1.4.4 Reverting to the unedited version of a script

	3.1.5 Using AutoScript
	3.1.5.1 Using the AutoScript pop-up window
	3.1.5.2 Customizing AutoScript
	3.1.5.3 Example

	3.1.6 Getting context-sensitive Help
	3.1.7 Compiling the script
	3.1.7.1 Handling problems
	3.1.7.2 Compiler Errors
	3.1.7.2.1 C0001 Compiler Error
	3.1.7.2.2 C0002 Compiler Error
	3.1.7.2.3 C0003 Compiler Error
	3.1.7.2.4 C0004 Compiler Error
	3.1.7.2.5 C0005 Compiler Error
	3.1.7.2.6 C0006 Compiler Warning
	3.1.7.2.7 C0007 Compiler Error
	3.1.7.2.8 C0008 Compiler Error
	3.1.7.2.9 C0009 Compiler Error
	3.1.7.2.10 C0010 Compiler Error
	3.1.7.2.11 C0011 Compiler Error
	3.1.7.2.12 C0013 Compiler Error
	3.1.7.2.13 C0014 Compiler Warning
	3.1.7.2.14 C0015 Compiler Error
	3.1.7.2.15 C0016 Compiler Error
	3.1.7.2.16 C0017 Compiler Error
	3.1.7.2.17 C0018 Compiler Error
	3.1.7.2.18 C0019 Compiler Error
	3.1.7.2.19 C0020 Compiler Error
	3.1.7.2.20 C0021 Compiler Error
	3.1.7.2.21 C0022 Fatal Compiler Error
	3.1.7.2.22 C0023 Compiler Error
	3.1.7.2.23 C0024 Compiler Error
	3.1.7.2.24 C0025 Compiler Error
	3.1.7.2.25 C0026 Compiler Error
	3.1.7.2.26 C0027 Compiler Error
	3.1.7.2.27 C0028 Compiler Error
	3.1.7.2.28 C0029 Compiler Error
	3.1.7.2.29 C0030 Fatal Compiler Error
	3.1.7.2.30 C0031 Compiler Error
	3.1.7.2.31 C0032 Fatal Compiler Error
	3.1.7.2.32 C0033 Compiler Error
	3.1.7.2.33 C0034 Compiler Error
	3.1.7.2.34 C0035 Compiler Error
	3.1.7.2.35 C0036 Compiler Error
	3.1.7.2.36 C0037 Compiler Error
	3.1.7.2.37 C0038 Database Error
	3.1.7.2.38 C0039 Compiler Error
	3.1.7.2.39 C0040 Compiler Error
	3.1.7.2.40 C0041 Compiler Error
	3.1.7.2.41 C0042 Compiler Error
	3.1.7.2.42 C0043 Compiler Error
	3.1.7.2.43 C0044 Compiler Error
	3.1.7.2.44 C0045 Compiler Error
	3.1.7.2.45 C0046 Compiler Error
	3.1.7.2.46 C0047 Compiler Error
	3.1.7.2.47 C0048 Compiler Error
	3.1.7.2.48 C0049 Compiler Error
	3.1.7.2.49 C0050 Compiler Error
	3.1.7.2.50 C0051 Compiler Error
	3.1.7.2.51 C0052 Compiler Error
	3.1.7.2.52 C0053 Compiler Error
	3.1.7.2.53 C0054 Database Error
	3.1.7.2.54 C0055 Compiler Error
	3.1.7.2.55 C0056 Compiler Error
	3.1.7.2.56 C0057 Compiler Error
	3.1.7.2.57 C0058 Compiler Warning
	3.1.7.2.58 C0059 Compiler Warning
	3.1.7.2.59 C0060 Compiler Error
	3.1.7.2.60 C0061 Compiler Error
	3.1.7.2.61 C0062 Compiler Error
	3.1.7.2.62 C0063 Compiler Error
	3.1.7.2.63 C0064 Compiler Error
	3.1.7.2.64 C0065 Compiler Error
	3.1.7.2.65 C0066 Compiler Error
	3.1.7.2.66 C0067 Compiler Error
	3.1.7.2.67 C0068 Compiler Error
	3.1.7.2.68 C0069 Compiler Error
	3.1.7.2.69 C0070 Compiler Error
	3.1.7.2.70 C0071 Compiler Error
	3.1.7.2.71 C0072 Compiler Error
	3.1.7.2.72 C0073 Compiler Warning
	3.1.7.2.73 C0074 Compiler Error
	3.1.7.2.74 C0075 Compiler Warning
	3.1.7.2.75 C0076 Compiler Error
	3.1.7.2.76 C0077 Compiler Error
	3.1.7.2.77 C0078 Compiler Error
	3.1.7.2.78 C0079 Compiler Error
	3.1.7.2.79 C0080 Compiler Error
	3.1.7.2.80 C0081 Compiler Error
	3.1.7.2.81 C0082 Compiler Error
	3.1.7.2.82 C0083 Compiler Error
	3.1.7.2.83 C0084 Compiler Error
	3.1.7.2.84 C0085 Compiler Error
	3.1.7.2.85 C0086 Compiler Warning
	3.1.7.2.86 C0087 Compiler Warning
	3.1.7.2.87 C0088 Compiler Warning
	3.1.7.2.88 C0089 Compiler Warning
	3.1.7.2.89 C0090 Compiler Error
	3.1.7.2.90 C0091 Compiler Error
	3.1.7.2.91 C0092 Compiler Error
	3.1.7.2.92 C0093 Compiler Error
	3.1.7.2.93 C0094 Compiler Error
	3.1.7.2.94 C0095 Compiler Error
	3.1.7.2.95 C0096 Compiler Error
	3.1.7.2.96 C0097 Compiler Error
	3.1.7.2.97 C0098 Compiler Error
	3.1.7.2.98 C0099 Compiler Warning
	3.1.7.2.99 C0100 Compiler Error
	3.1.7.2.100 C0101 Compiler Error
	3.1.7.2.101 C0102 Compiler Error
	3.1.7.2.102 C0103 Compiler Error
	3.1.7.2.103 C0104 Compiler Error
	3.1.7.2.104 C0105 Compiler Error
	3.1.7.2.105 C0106 Compiler Error
	3.1.7.2.106 C0107 Compiler Error
	3.1.7.2.107 C0108 Compiler Error
	3.1.7.2.108 C0109 Compiler Error
	3.1.7.2.109 C0110 Compiler Warning
	3.1.7.2.110 C0111 Compiler Error
	3.1.7.2.111 C0112 Compiler Error
	3.1.7.2.112 C0113 Compiler Error
	3.1.7.2.113 C0114 Compiler Error
	3.1.7.2.114 C0115 Compiler Error
	3.1.7.2.115 C0116 Compiler Error
	3.1.7.2.116 C0117 Compiler Error
	3.1.7.2.117 C0118 Compiler Error
	3.1.7.2.118 C0119 Compiler Error
	3.1.7.2.119 C0120 Compiler Error
	3.1.7.2.120 C0121 Compiler Error
	3.1.7.2.121 C0122 Compiler Error
	3.1.7.2.122 C0123 Compiler Error
	3.1.7.2.123 C0124 Compiler Error
	3.1.7.2.124 C0125 Compiler Error
	3.1.7.2.125 C0126 Compiler Error
	3.1.7.2.126 C0127 Compiler Error
	3.1.7.2.127 C0128 Compiler Error
	3.1.7.2.128 C0129 Compiler Warning
	3.1.7.2.129 C0130 Compiler Error
	3.1.7.2.130 C0131 Compiler Error
	3.1.7.2.131 C0132 Compiler Error
	3.1.7.2.132 C0133 Compiler Error
	3.1.7.2.133 C0134 Compiler Error
	3.1.7.2.134 C0135 Compiler Error
	3.1.7.2.135 C0136 Compiler Error
	3.1.7.2.136 C0137 Compiler Error
	3.1.7.2.137 C0138 Compiler Error
	3.1.7.2.138 C0139 Compiler Error
	3.1.7.2.139 C0140 Compiler Error
	3.1.7.2.140 C0141 Compiler Error
	3.1.7.2.141 C0142 Compiler Error
	3.1.7.2.142 C0143 Compiler Error
	3.1.7.2.143 C0144 Compiler Error
	3.1.7.2.144 C0145 Compiler Error
	3.1.7.2.145 C0146 Informational Message
	3.1.7.2.146 C0147 Informational Message
	3.1.7.2.147 C0148 Informational Message
	3.1.7.2.148 C0149 Informational Message
	3.1.7.2.149 C0150 Compiler Warning
	3.1.7.2.150 C0151 Compiler Warning
	3.1.7.2.151 C0152 Compiler Error
	3.1.7.2.152 C0153 Compiler Error
	3.1.7.2.153 C0154 Compiler Error
	3.1.7.2.154 C0155 Compiler Error
	3.1.7.2.155 C0156 Compiler Warning
	3.1.7.2.156 C0157 Informational Message
	3.1.7.2.157 C0158 Compiler Error
	3.1.7.2.158 C0159 Compiler Error
	3.1.7.2.159 C0160 Compiler Error
	3.1.7.2.160 C0161 Compiler Error
	3.1.7.2.161 C0162 Compiler Error
	3.1.7.2.162 C0163 Compiler Error
	3.1.7.2.163 C0164 Compiler Error
	3.1.7.2.164 C0165 Compiler Error
	3.1.7.2.165 C0166 Compiler Error
	3.1.7.2.166 C0167 Compiler Error
	3.1.7.2.167 C0168 Informational Message
	3.1.7.2.168 C0169 Compiler Error
	3.1.7.2.169 C0170 Compiler Error
	3.1.7.2.170 C0171 Compiler Warning
	3.1.7.2.171 C0172 Compiler Error
	3.1.7.2.172 C0173 Compiler Error
	3.1.7.2.173 C0174 Compiler Error
	3.1.7.2.174 C0175 Compiler Error
	3.1.7.2.175 C0176 Compiler Error
	3.1.7.2.176 C0177 Compiler Error
	3.1.7.2.177 C0178 Compiler Warning
	3.1.7.2.178 C0179 Compiler Warning
	3.1.7.2.179 C0180 Compiler Error
	3.1.7.2.180 C0181 Compiler Error
	3.1.7.2.181 C0182 Compiler Error
	3.1.7.2.182 C0183 Compiler Error
	3.1.7.2.183 C0184 Compiler Error
	3.1.7.2.184 C0185 Obsolete Warning
	3.1.7.2.185 C0186 Compiler Warning
	3.1.7.2.186 C0187 Compiler Error
	3.1.7.2.187 C0188 Compiler Warning
	3.1.7.2.188 C0189 Compiler Error
	3.1.7.2.189 C0190 Compiler Warning
	3.1.7.2.190 C0191 Compiler Error
	3.1.7.2.191 C0192 Compiler Error
	3.1.7.2.192 C0193 Compiler Error
	3.1.7.2.193 C0194 Compiler Error
	3.1.7.2.194 C0195 Compiler Error
	3.1.7.2.195 C0196 Compiler Error
	3.1.7.2.196 C0197 Informational Message
	3.1.7.2.197 C0198 Compiler Warning
	3.1.7.2.198 C0199 Compiler Warning
	3.1.7.2.199 C0200 Compiler Error
	3.1.7.2.200 C0201 Compiler Error
	3.1.7.2.201 C0202 Compiler Error
	3.1.7.2.202 C0203 Compiler Error
	3.1.7.2.203 C0204 Compiler Error
	3.1.7.2.204 C0205 Migration Warning
	3.1.7.2.205 C0206 Migration Warning
	3.1.7.2.206 C0207 Migration Warning
	3.1.7.2.207 C0208 Informational Message
	3.1.7.2.208 C0209 Compiler Warning
	3.1.7.2.209 C0210 Compiler Warning
	3.1.7.2.210 C0212 Compiler Error
	3.1.7.2.211 C0213 Compiler Error
	3.1.7.2.212 C0214 Compiler Error
	3.1.7.2.213 C0215 Compiler Error
	3.1.7.2.214 C0216 Compiler Error
	3.1.7.2.215 C0217 Informational Message
	3.1.7.2.216 C0218 Compiler Warning
	3.1.7.2.217 C0300 Compiler Error
	3.1.7.2.218 C0301 Compiler Error
	3.1.7.2.219 C0302 Compiler Error
	3.1.7.2.220 C0303 Compiler Error
	3.1.7.2.221 C0304 Compiler Error
	3.1.7.2.222 C0305 Compiler Error
	3.1.7.2.223 C0306 Compiler Error
	3.1.7.2.224 C0307 Compiler Error
	3.1.7.2.225 C0308 Compiler Error
	3.1.7.2.226 C0309 Compiler Error
	3.1.7.2.227 C0310 Compiler Error
	3.1.7.2.228 C0311 Compiler Error
	3.1.7.2.229 C0312 Compiler Error
	3.1.7.2.230 C0313 Compiler Error
	3.1.7.2.231 C0314 Compiler Warning
	3.1.7.2.232 C0315 Compiler Warning
	3.1.7.2.233 C0316 Compiler Error
	3.1.7.2.234 C0317 Compiler Warning
	3.1.7.2.235 C0318 Compiler Warning
	3.1.7.2.236 C0319 Compiler Error
	3.1.7.2.237 C0320 Compiler Error
	3.1.7.2.238 C0321 Compiler Error
	3.1.7.2.239 C0322 Compiler Error
	3.1.7.2.240 C0323 Compiler Warning
	3.1.7.2.241 C0324 Compiler Warning
	3.1.7.2.242 C0325 Compiler Error
	3.1.7.2.243 C0326 Compiler Error
	3.1.7.2.244 C0327 Compiler Error
	3.1.7.2.245 C0328 Compiler Error
	3.1.7.2.246 C0329 Compiler Error
	3.1.7.2.247 C0330 Compiler Error
	3.1.7.2.248 C0331 Compiler Error

	3.1.8 Declaring variables and external functions

	3.2 Working with User-Defined Functions
	3.2.1 About user-defined functions
	3.2.1.1 Deciding which kind you want

	3.2.2 Defining user-defined functions
	3.2.2.1 Opening a Prototype window to add a new function
	3.2.2.2 Defining the access level
	3.2.2.3 Defining a return type
	3.2.2.4 Naming the function
	3.2.2.5 Defining arguments
	3.2.2.6 Defining a THROWS clause
	3.2.2.7 Coding the function
	3.2.2.8 Compiling and saving the function

	3.2.3 Modifying user-defined functions
	3.2.4 Using your functions

	3.3 Working with User Events
	3.3.1 About user events
	3.3.1.1 User events and event IDs
	3.3.1.1.1 Event ID names

	3.3.2 Defining user events
	3.3.3 Using a user event
	3.3.3.1 Examples of user event scripts

	3.4 Working with Structures
	3.4.1 About structures
	3.4.1.1 Deciding which kind you want

	3.4.2 Defining structures
	3.4.3 Modifying structures
	3.4.4 Using structures
	3.4.4.1 Referencing structures
	3.4.4.2 Copying structures
	3.4.4.3 Using structures with functions
	3.4.4.4 Displaying and pasting structure information

	4 Working with Windows
	4.1 Working with Windows
	4.1.1 About windows
	4.1.1.1 Designing windows
	4.1.1.2 Building windows

	4.1.2 Types of windows
	4.1.2.1 Main windows
	4.1.2.2 Pop-up windows
	4.1.2.3 Child windows
	4.1.2.4 Response windows
	4.1.2.5 MDI frames

	4.1.3 About the Window painter
	4.1.4 Building a new window
	4.1.4.1 Creating a new window
	4.1.4.2 Defining the window's properties
	4.1.4.2.1 Using the General property page
	4.1.4.2.2 Choosing the window size and position
	4.1.4.2.3 Choosing the window pointer
	4.1.4.2.4 Specifying window scrolling
	4.1.4.2.5 Specifying toolbar properties

	4.1.4.3 Adding controls
	4.1.4.4 Adding nonvisual objects
	4.1.4.5 Saving the window

	4.1.5 Viewing your work
	4.1.5.1 Previewing a window
	4.1.5.2 Printing a window's definition

	4.1.6 Writing scripts in windows
	4.1.6.1 About events for windows and controls
	4.1.6.2 About functions for windows and controls
	4.1.6.3 About properties of windows and controls
	4.1.6.4 Declaring instance variables
	4.1.6.5 Examples of statements

	4.1.7 Running a window
	4.1.8 Using inheritance to build a window
	4.1.8.1 Building two windows with similar definitions
	4.1.8.2 Advantages of using inheritance
	4.1.8.3 Instance variables in descendants
	4.1.8.4 Control names in descendants

	4.2 Working with Controls
	4.2.1 About controls
	4.2.2 Inserting controls in a window
	4.2.3 Selecting controls
	4.2.4 Defining a control's properties
	4.2.5 Naming controls
	4.2.5.1 About the default prefixes
	4.2.5.1.1 Changing the default prefixes

	4.2.5.2 Changing the name

	4.2.6 Changing text
	4.2.6.1 How text size is stored

	4.2.7 Moving and resizing controls
	4.2.7.1 Moving and resizing controls using the mouse
	4.2.7.2 Moving and resizing controls using the keyboard
	4.2.7.3 Aligning controls using the grid
	4.2.7.4 Aligning controls with each other
	4.2.7.5 Equalizing the space between controls
	4.2.7.6 Equalizing the size of controls

	4.2.8 Copying controls
	4.2.9 Defining the tab order
	4.2.9.1 Establishing the default tab order
	4.2.9.2 Changing the window's tab order

	4.2.10 Defining accelerator keys
	4.2.11 Specifying accessibility of controls
	4.2.11.1 Using the Visible property
	4.2.11.2 Using the Enabled property

	4.2.12 Choosing colors
	4.2.13 Using the 3D look
	4.2.14 Using the individual controls
	4.2.14.1 CommandButton
	4.2.14.1.1 Specifying Default and Cancel buttons

	4.2.14.2 PictureButton
	4.2.14.3 CheckBox
	4.2.14.4 RadioButton
	4.2.14.5 StaticText
	4.2.14.6 StaticHyperLink
	4.2.14.7 Picture
	4.2.14.8 PictureHyperLink
	4.2.14.9 GroupBox
	4.2.14.10 Drawing controls
	4.2.14.11 SingleLineEdit and MultiLineEdit
	4.2.14.12 EditMask
	4.2.14.13 HScrollBar and VScrollBar
	4.2.14.14 HTrackBar and VTrackBar
	4.2.14.15 HProgressBar and VProgressBar
	4.2.14.16 DropDownListBox
	4.2.14.17 DropDownPictureListBox
	4.2.14.18 ListBox
	4.2.14.19 PictureListBox
	4.2.14.20 ListView
	4.2.14.21 TreeView
	4.2.14.22 Tab
	4.2.14.23 MonthCalendar
	4.2.14.24 DatePicker
	4.2.14.25 Animation
	4.2.14.26 InkEdit and InkPicture

	4.3 Understanding Inheritance
	4.3.1 About inheritance
	4.3.2 Creating new objects using inheritance
	4.3.3 The inheritance hierarchy
	4.3.4 Browsing the class hierarchy
	4.3.5 Working with inherited objects
	4.3.6 Using inherited scripts
	4.3.6.1 Viewing inherited scripts
	4.3.6.2 Extending a script
	4.3.6.3 Overriding a script
	4.3.6.4 Calling an ancestor script
	4.3.6.5 Calling an ancestor function

	4.4 Working with RibbonBar
	4.4.1 Introduction to RibbonBar items
	4.4.2 Creating a RibbonBar using RibbonBar Builder
	4.4.2.1 Using the RibbonBar Builder
	4.4.2.2 Creating a valid structure

	4.4.3 Accessing the RibbonBar items in the hierarchy
	4.4.4 Tutorial: How to Replace an Application Menu with a RibbonBar
	4.4.4.1 Overview
	4.4.4.2 Prerequisites
	4.4.4.3 Design and create a RibbonBar
	4.4.4.4 Add the RibbonBar to the application
	4.4.4.4.1 Replacing the existing menu with an empty one
	4.4.4.4.2 Inserting a RibbonBar control to the MDI window
	4.4.4.4.3 Disabling ControlMenu in sheet windows

	4.4.4.5 Initiate the RibbonBar
	4.4.4.5.1 Initiating the RibbonBar created by XML
	4.4.4.5.2 Initiating the RibbonBar created by PowerScript

	4.4.4.6 Define and bind user events with RibbonBar items
	4.4.4.7 Associate functions with RibbonBar items
	4.4.4.7.1 Example 1: Opening the “By Order Type” report
	4.4.4.7.2 Example 2: Opening the “2D BarStacked” report
	4.4.4.7.3 Example 3: Replacing the Close/Exit in sheet windows
	4.4.4.7.4 Example 4: Adding the Application Menu category
	4.4.4.7.5 Example 5: Including special RibbonBar widgets

	4.4.4.8 Summary notes

	4.5 Working with WebBrowser
	4.5.1 What can WebBrowser support?
	4.5.2 Configuring WebBrowser
	4.5.3 Defining user events for WebBrowser
	4.5.4 Packaging WebBrowser
	4.5.5 WebBrowser control vs. Microsoft Web Browser OLE control

	4.6 Working with Menus and Toolbars
	4.6.1 Menus and menu items
	4.6.2 Using the Menu painter
	4.6.2.1 Menu painter views
	4.6.2.2 Menu styles

	4.6.3 Building a new menu
	4.6.3.1 Creating a new menu
	4.6.3.2 Working with menu items
	4.6.3.2.1 How menu items are named
	4.6.3.2.2 Inserting menu items
	4.6.3.2.3 Creating separation lines in menus
	4.6.3.2.4 Duplicating menu items
	4.6.3.2.5 Changing menu item text
	4.6.3.2.6 Selecting menu items
	4.6.3.2.7 Navigating in the menu
	4.6.3.2.8 Moving menu items
	4.6.3.2.9 Deleting menu items

	4.6.3.3 Saving the menu

	4.6.4 Defining the appearance and behavior of menu items
	4.6.4.1 Setting General properties for menu items
	4.6.4.2 Setting menu style properties for contemporary menus
	4.6.4.3 Setting menu item style properties

	4.6.5 Providing toolbars
	4.6.5.1 How toolbars work
	4.6.5.2 Adding toolbars to a window
	4.6.5.3 Selecting a toolbar style
	4.6.5.4 Setting toolbar properties
	4.6.5.4.1 Toolbar style properties
	4.6.5.4.2 Toolbar item display characteristics

	4.6.5.5 Setting toolbar properties in the Window painter
	4.6.5.6 Setting toolbar properties in the Application painter

	4.6.6 Writing scripts for menu items
	4.6.6.1 Menu item events
	4.6.6.2 Using functions and variables
	4.6.6.3 Referring to objects in your application

	4.6.7 Using inheritance to build a menu
	4.6.7.1 Using the inherited information
	4.6.7.2 Inserting menu items in a descendant menu

	4.6.8 Using menus in your applications
	4.6.8.1 Adding a menu bar to a window
	4.6.8.2 Displaying pop-up menus

	4.7 Working with User Objects
	4.7.1 About user objects
	4.7.1.1 Class user objects
	4.7.1.2 Visual user objects
	4.7.1.3 Building user objects

	4.7.2 About the User Object painter
	4.7.3 Building a new user object
	4.7.3.1 Creating a new user object
	4.7.3.2 Building a custom class user object
	4.7.3.3 Building a standard class user object
	4.7.3.4 Building a custom visual user object
	4.7.3.5 Building an external visual user object
	4.7.3.6 Building a standard visual user object
	4.7.3.7 Events in user objects
	4.7.3.8 Saving a user object
	4.7.3.8.1 Naming the user object

	4.7.4 Using inheritance to build user objects
	4.7.4.1 Using the inherited information

	4.7.5 Using user objects
	4.7.5.1 Using visual user objects
	4.7.5.2 Using class user objects
	4.7.5.3 Using global standard class user objects

	4.7.6 Communicating between a window and a user object
	4.7.6.1 Examples of user object controls affecting a window

	5 Working with Databases
	5.1 Managing the Database
	5.1.1 Working with database components
	5.1.2 Managing databases
	5.1.3 Using the Database painter
	5.1.3.1 Modifying database preferences
	5.1.3.2 Logging your work

	5.1.4 Creating and deleting a SQL Anywhere database
	5.1.5 Working with tables
	5.1.5.1 Creating a new table from scratch
	5.1.5.2 Creating a new table from an existing table
	5.1.5.3 Specifying column definitions
	5.1.5.4 Specifying table and column properties
	5.1.5.4.1 Specifying table properties
	5.1.5.4.2 Specifying column extended attributes
	5.1.5.4.3 Specifying additional properties for character columns

	5.1.5.5 Altering a table
	5.1.5.6 Cutting, copying, and pasting columns
	5.1.5.7 Closing a table
	5.1.5.8 Dropping a table
	5.1.5.9 Viewing pending SQL changes
	5.1.5.10 Printing the table definition
	5.1.5.11 Exporting table syntax
	5.1.5.12 About system tables
	5.1.5.13 Creating and editing temporary tables

	5.1.6 Working with keys
	5.1.7 Working with indexes
	5.1.8 Working with database views
	5.1.9 Manipulating data
	5.1.9.1 Retrieving data
	5.1.9.2 Modifying data
	5.1.9.3 Sorting rows
	5.1.9.4 Filtering rows
	5.1.9.5 Viewing row information
	5.1.9.6 Importing data
	5.1.9.7 Printing data
	5.1.9.8 Saving data

	5.1.10 Creating and executing SQL statements
	5.1.10.1 Building and executing SQL statements
	5.1.10.1.1 Creating stored procedures
	5.1.10.1.2 Controlling comments
	5.1.10.1.3 Entering SQL
	5.1.10.1.4 Explaining SQL
	5.1.10.1.5 Executing SQL

	5.1.10.2 Customizing the editor

	5.1.11 Controlling access to the current database
	5.1.12 Using the ASA MobiLink synchronization wizard
	5.1.12.1 What the wizard generates
	5.1.12.2 Wizard options
	5.1.12.3 Trying out MobiLink synchronization

	5.1.13 Managing MobiLink synchronization on the server
	5.1.13.1 Starting the MobiLink synchronization server
	5.1.13.2 Using SQL Central

	5.2 Working with Data Pipelines
	5.2.1 About data pipelines
	5.2.1.1 Defining a data pipeline
	5.2.1.2 Piping extended attributes

	5.2.2 Creating a data pipeline
	5.2.3 Modifying the data pipeline definition
	5.2.3.1 Choosing a pipeline operation
	5.2.3.2 Dependency of modifications on pipeline operation
	5.2.3.3 When execution stops
	5.2.3.3.1 Whether rows are committed

	5.2.3.4 Piping blob data
	5.2.3.5 Changing the destination and source databases

	5.2.4 Correcting pipeline errors
	5.2.5 Saving a pipeline
	5.2.6 Using an existing pipeline
	5.2.7 Pipeline examples

	6 Working with DataWindows
	6.1 Defining DataWindow Objects
	6.1.1 About DataWindow objects
	6.1.1.1 DataWindow object examples
	6.1.1.2 How to use DataWindow objects

	6.1.2 Choosing a presentation style
	6.1.2.1 Using the Tabular style
	6.1.2.2 Using the Freeform style
	6.1.2.3 Using the Grid style
	6.1.2.4 Using the Label style
	6.1.2.5 Using the N-Up style
	6.1.2.6 Using the Group style
	6.1.2.7 Using the Composite style
	6.1.2.8 Using the Graph and Crosstab styles
	6.1.2.9 Using the OLE 2.0 style
	6.1.2.10 Using the RichText style
	6.1.2.11 Using the TreeView style

	6.1.3 Building a DataWindow object
	6.1.4 Selecting a data source
	6.1.5 Using Quick Select
	6.1.5.1 Selecting a table
	6.1.5.2 Selecting columns
	6.1.5.3 Specifying sorting criteria
	6.1.5.4 Specifying selection criteria
	6.1.5.4.1 SQL expression examples

	6.1.6 Using SQL Select
	6.1.6.1 Selecting tables and views
	6.1.6.2 Selecting columns
	6.1.6.3 Displaying the underlying SQL statement
	6.1.6.4 Joining tables
	6.1.6.4.1 Using ANSI outer joins

	6.1.6.5 Using retrieval arguments
	6.1.6.6 Specifying selection, sorting, and grouping criteria

	6.1.7 Using Query
	6.1.8 Using External
	6.1.9 Using Stored Procedure
	6.1.10 Using a Web service data source (Obsolete)
	6.1.11 Using the OData Service (Obsolete)
	6.1.12 Choosing DataWindow object-wide options
	6.1.13 Generating and saving a DataWindow object
	6.1.13.1 About the extended attribute system tables and DataWindow objects
	6.1.13.2 Saving the DataWindow object
	6.1.13.2.1 Naming the DataWindow object

	6.1.13.3 Modifying an existing DataWindow object

	6.1.14 Defining queries
	6.1.14.1 Previewing the query
	6.1.14.2 Saving the query
	6.1.14.3 Modifying a query

	6.1.15 What's next

	6.2 Enhancing DataWindow Objects
	6.2.1 Working in the DataWindow painter
	6.2.1.1 Understanding the DataWindow painter Design view
	6.2.1.1.1 The header band
	6.2.1.1.2 The detail band
	6.2.1.1.3 The summary and footer bands

	6.2.1.2 Using the DataWindow painter toolbars
	6.2.1.3 Using the Properties view in the DataWindow painter
	6.2.1.4 Selecting controls in the DataWindow painter
	6.2.1.5 Resizing bands in the DataWindow painter Design view
	6.2.1.6 Using zoom in the DataWindow painter
	6.2.1.7 Undoing changes in the DataWindow painter

	6.2.2 Using the Preview view of a DataWindow object
	6.2.2.1 Retrieving data
	6.2.2.2 Modifying data
	6.2.2.3 Viewing row information
	6.2.2.4 Importing data into a DataWindow object
	6.2.2.5 Using print preview
	6.2.2.6 Printing data
	6.2.2.7 Working in a grid DataWindow object

	6.2.3 Saving data in an external file
	6.2.3.1 Saving the data as PDF
	6.2.3.1.1 Saving as PDF using NativePDF! method with PDFlib
	6.2.3.1.2 Saving as PDF using the Distill! method with Ghostscript
	6.2.3.1.3 Saving as PDF using XSL-FO
	6.2.3.1.4 Saving as XSL-FO
	6.2.3.1.5 System requirements for XSL-FO

	6.2.3.2 Saving the data in HTML Table format
	6.2.3.3 Working with PSR files

	6.2.4 Modifying general DataWindow object properties
	6.2.4.1 Changing the DataWindow object style
	6.2.4.2 Setting colors in a DataWindow object
	6.2.4.3 Setting gradients and background pictures in a DataWindow object
	6.2.4.4 Setting transparency properties for a DataWindow object
	6.2.4.5 Specifying properties of a grid DataWindow object
	6.2.4.6 Specifying pointers for a DataWindow object
	6.2.4.7 Defining print specifications for a DataWindow object
	6.2.4.7.1 Printing with newspaper-style columns

	6.2.4.8 Modifying text in a DataWindow object
	6.2.4.9 Defining the tab order in a DataWindow object
	6.2.4.10 Naming controls in a DataWindow object
	6.2.4.11 Using borders in a DataWindow object
	6.2.4.12 Specifying variable-height bands in a DataWindow object
	6.2.4.13 Modifying the data source of a DataWindow object
	6.2.4.13.1 Modifying SQL SELECT statements
	6.2.4.13.2 Modifying the result set

	6.2.5 Storing data in a DataWindow object using the Data view
	6.2.5.1 What happens at runtime

	6.2.6 Retrieving data
	6.2.6.1 Prompting for retrieval criteria in a DataWindow object
	6.2.6.2 Retrieving rows as needed
	6.2.6.3 Saving retrieved rows to disk

	6.3 Working with Controls in DataWindow Objects
	6.3.1 Adding controls to a DataWindow object
	6.3.1.1 Adding columns to a DataWindow object
	6.3.1.2 Adding text to a DataWindow object
	6.3.1.3 Adding drawing controls to a DataWindow object
	6.3.1.4 Adding a group box to a DataWindow object
	6.3.1.5 Adding pictures to a DataWindow object
	6.3.1.6 Adding computed fields to a DataWindow object
	6.3.1.6.1 Computed columns versus computed fields
	6.3.1.6.2 Defining a computed field in the DataWindow painter Design view

	6.3.1.7 Adding buttons to a DataWindow object
	6.3.1.7.1 Controlling the display of buttons in print preview and in printed output
	6.3.1.7.2 Actions assignable to buttons in DataWindow objects

	6.3.1.8 Adding graphs to a DataWindow object
	6.3.1.9 Adding InkPicture controls to a DataWindow object
	6.3.1.10 Adding OLE controls to a DataWindow object
	6.3.1.11 Adding reports to a DataWindow object
	6.3.1.12 Adding table blob controls to a DataWindow object
	6.3.1.13 Adding tooltips to a DataWindow control

	6.3.2 Reorganizing controls in a DataWindow object
	6.3.2.1 Displaying boundaries for controls in a DataWindow object
	6.3.2.2 Using the grid and the ruler in a DataWindow object
	6.3.2.3 Deleting controls in a DataWindow object
	6.3.2.4 Moving controls in a DataWindow object
	6.3.2.5 Copying controls in a DataWindow object
	6.3.2.6 Resizing controls in a DataWindow object
	6.3.2.7 Aligning controls in a DataWindow object
	6.3.2.8 Equalizing the space between controls in a DataWindow object
	6.3.2.9 Equalizing the size of controls in a DataWindow object
	6.3.2.10 Sliding controls to remove blank space in a DataWindow object

	6.3.3 Positioning controls in a DataWindow object
	6.3.4 Rotating controls in a DataWindow object

	6.4 Controlling Updates in DataWindow objects
	6.4.1 About controlling updates
	6.4.1.1 What you can do

	6.4.2 Specifying the table to update
	6.4.3 Specifying the unique key columns
	6.4.4 Specifying an identity column
	6.4.5 Specifying updatable columns
	6.4.6 Specifying the WHERE clause for update/delete
	6.4.7 Specifying update when key is modified
	6.4.8 Using stored procedures to update the database
	6.4.9 Using a Web service to update the database (Obsolete)

	6.5 Displaying and Validating Data
	6.5.1 About displaying and validating data
	6.5.1.1 Presenting the data
	6.5.1.2 Validating data

	6.5.2 About display formats
	6.5.3 Working with display formats
	6.5.3.1 Working with display formats in the Database painter
	6.5.3.2 Working with display formats in the DataWindow painter

	6.5.4 Defining display formats
	6.5.4.1 Number display formats
	6.5.4.2 String display formats
	6.5.4.3 Date display formats
	6.5.4.4 Time display formats

	6.5.5 About edit styles
	6.5.6 Working with edit styles
	6.5.6.1 Working with edit styles in the Database painter
	6.5.6.2 Working with edit styles in the DataWindow painter

	6.5.7 Defining edit styles
	6.5.7.1 The Edit edit style
	6.5.7.2 The DropDownListBox edit style
	6.5.7.3 The CheckBox edit style
	6.5.7.4 The RadioButtons edit style
	6.5.7.5 The EditMask edit style
	6.5.7.6 The DropDownDataWindow edit style
	6.5.7.7 The RichText edit style
	6.5.7.8 The InkEdit edit style

	6.5.8 Defining a code table
	6.5.8.1 How code tables are implemented
	6.5.8.2 How code tables are processed
	6.5.8.3 Validating user input

	6.5.9 About validation rules
	6.5.9.1 Understanding validation rules

	6.5.10 Working with validation rules
	6.5.11 Defining validation rules
	6.5.11.1 Defining a validation rule in the Database painter
	6.5.11.1.1 Defining the expression
	6.5.11.1.2 Using match values for character columns
	6.5.11.1.3 Customizing the error message
	6.5.11.1.4 Specifying initial values

	6.5.11.2 Defining a validation rule in the DataWindow painter
	6.5.11.2.1 Specifying the expression
	6.5.11.2.2 Examples

	6.5.12 How to maintain extended attributes

	6.6 Filtering, Sorting, and Grouping Rows
	6.6.1 Filtering rows
	6.6.2 Sorting rows
	6.6.2.1 Suppressing repeating values

	6.6.3 Grouping rows
	6.6.3.1 Using the Group presentation style
	6.6.3.2 Defining groups in an existing DataWindow object
	6.6.3.2.1 Specifying the grouping columns
	6.6.3.2.2 Sorting the rows
	6.6.3.2.3 Rearranging the DataWindow object
	6.6.3.2.4 Adding summary statistics
	6.6.3.2.5 Sorting the groups

	6.7 Highlighting Information in DataWindow Objects
	6.7.1 Highlighting information
	6.7.1.1 Modifying properties when designing
	6.7.1.2 Modifying properties at runtime

	6.7.2 Modifying properties conditionally at runtime
	6.7.2.1 Example 1: creating a gray bar effect
	6.7.2.2 Example 2: rotating controls
	6.7.2.3 Example 3: highlighting rows of data
	6.7.2.4 Example 4: changing the size and location of controls

	6.7.3 Supplying property values
	6.7.3.1 Background.Color
	6.7.3.2 Border
	6.7.3.3 Brush.Color
	6.7.3.4 Brush.Hatch
	6.7.3.5 Color
	6.7.3.6 Font.Escapement (for rotating controls)
	6.7.3.7 Font.Height
	6.7.3.8 Font.Italic
	6.7.3.9 Font.Strikethrough
	6.7.3.10 Font.Underline
	6.7.3.11 Font.Weight
	6.7.3.12 Format
	6.7.3.13 Height
	6.7.3.14 Pen.Color
	6.7.3.15 Pen.Style
	6.7.3.16 Pen.Width
	6.7.3.17 Pointer
	6.7.3.18 Protect
	6.7.3.19 Timer_Interval
	6.7.3.20 Visible
	6.7.3.21 Width
	6.7.3.22 X
	6.7.3.23 X1, X2
	6.7.3.24 Y
	6.7.3.25 Y1, Y2

	6.7.4 Specifying colors

	6.8 Using Nested Reports
	6.8.1 About nested reports
	6.8.2 Creating a report using the Composite presentation style
	6.8.3 Placing a nested report in another report
	6.8.3.1 Placing a related nested report in another report
	6.8.3.2 Placing an unrelated nested report in another report

	6.8.4 Working with nested reports
	6.8.4.1 Adjusting nested report width and height
	6.8.4.2 Changing a nested report from one report to another
	6.8.4.3 Modifying the definition of a nested report
	6.8.4.4 Adding another nested report to a composite report
	6.8.4.5 Supplying retrieval arguments to relate a nested report to its base report
	6.8.4.6 Specifying criteria to relate a nested report to its base report
	6.8.4.7 Using options for nested reports

	6.9 Working with Graphs
	6.9.1 About graphs
	6.9.1.1 Parts of a graph
	6.9.1.1.1 How data is represented
	6.9.1.1.2 Organization of a graph

	6.9.1.2 Types of graphs
	6.9.1.2.1 Area, bar, column, and line graphs
	6.9.1.2.2 Pie graphs
	6.9.1.2.3 Scatter graphs
	6.9.1.2.4 Three-dimensional graphs
	6.9.1.2.5 Stacked graphs

	6.9.1.3 Using graphs in applications

	6.9.2 Using graphs in DataWindow objects
	6.9.2.1 Placing a graph in a DataWindow object
	6.9.2.2 Using the graph's Properties view
	6.9.2.3 Changing a graph's position and size
	6.9.2.4 Associating data with a graph
	6.9.2.4.1 Specifying which rows to include in a graph
	6.9.2.4.2 Specifying the categories
	6.9.2.4.3 Specifying the values
	6.9.2.4.4 Specifying the series
	6.9.2.4.5 Examples

	6.9.3 Using the Graph presentation style
	6.9.4 Defining a graph's properties
	6.9.4.1 Using the General page in the graph's Properties view
	6.9.4.2 Sorting data for series and categories
	6.9.4.3 Specifying text properties for titles, labels, axes, and legends
	6.9.4.4 Specifying overlap and spacing
	6.9.4.5 Specifying axis properties
	6.9.4.6 Specifying a pointer

	6.9.5 Using graphs in windows

	6.10 Working with Crosstabs
	6.10.1 About crosstabs
	6.10.1.1 Two types of crosstabs

	6.10.2 Creating crosstabs
	6.10.3 Associating data with a crosstab
	6.10.3.1 Specifying the information
	6.10.3.2 Viewing the crosstab
	6.10.3.3 Specifying more than one row or column

	6.10.4 Previewing crosstabs
	6.10.5 Enhancing crosstabs
	6.10.5.1 Specifying basic properties
	6.10.5.2 Modifying the data associated with the crosstab
	6.10.5.3 Changing the names used for the columns and rows
	6.10.5.4 Defining summary statistics
	6.10.5.4.1 Using crosstab functions

	6.10.5.5 Cross-tabulating ranges of values
	6.10.5.6 Creating static crosstabs
	6.10.5.7 Using property conditional expressions

	6.11 Working with TreeViews
	6.11.1 TreeView presentation style
	6.11.2 Creating a new TreeView DataWindow
	6.11.2.1 TreeView creation process
	6.11.2.2 Creating a TreeView DataWindow

	6.11.3 Adding and deleting TreeView levels
	6.11.4 Selecting a tree node and navigating the tree
	6.11.5 Sorting rows in a TreeView DataWindow
	6.11.6 TreeView DataWindow Design view
	6.11.7 Setting properties for the TreeView DataWindow
	6.11.7.1 Setting general TreeView properties
	6.11.7.2 Setting TreeView level properties
	6.11.7.3 Setting detail band properties

	6.11.8 TreeView DataWindow examples
	6.11.8.1 Data Explorer sample
	6.11.8.2 Data Linker sample

	6.12 Exporting and Importing XML Data
	6.12.1 About XML
	6.12.1.1 Valid and well-formed XML documents
	6.12.1.2 XML syntax
	6.12.1.3 XML parsing

	6.12.2 XML support in the DataWindow painter
	6.12.3 The Export/Import Template view for XML
	6.12.3.1 Creating templates
	6.12.3.2 Saving templates
	6.12.3.3 Header and Detail sections
	6.12.3.3.1 Header section
	6.12.3.3.2 Detail section

	6.12.4 Editing XML templates
	6.12.4.1 XML declaration
	6.12.4.2 Document type declaration
	6.12.4.3 Root element
	6.12.4.4 Controls
	6.12.4.5 DataWindow expressions
	6.12.4.6 Attributes
	6.12.4.7 Composite and nested reports
	6.12.4.8 CDATA sections
	6.12.4.9 Comments
	6.12.4.10 Processing instructions

	6.12.5 Exporting to XML
	6.12.5.1 Setting data export properties
	6.12.5.1.1 The Use Template property
	6.12.5.1.2 Generating group headers
	6.12.5.1.3 Formatting the exported XML
	6.12.5.1.4 Exporting metadata

	6.12.5.2 Selecting templates at runtime

	6.12.6 Importing XML
	6.12.6.1 Importing with a template
	6.12.6.1.1 Example

	6.12.6.2 Default data import
	6.12.6.2.1 Example with no empty elements
	6.12.6.2.2 Example with empty elements

	6.12.6.3 Tracing import

	6.13 Working with Rich Text
	6.13.1 About rich text
	6.13.2 Using the RichText presentation style
	6.13.2.1 Creating the DataWindow object
	6.13.2.2 Formatting for RichText objects within the DataWindow object
	6.13.2.2.1 The whole RichText DataWindow
	6.13.2.2.2 Selected text and paragraphs
	6.13.2.2.3 Input fields
	6.13.2.2.4 Pictures

	6.13.2.3 Previewing and printing

	6.13.3 Using the RichTextEdit control
	6.13.4 Formatting keys and toolbars

	6.14 Using OLE in a DataWindow Object
	6.14.1 About using OLE in DataWindow objects
	6.14.2 OLE objects and the OLE presentation style
	6.14.2.1 Adding an OLE object to a DataWindow object
	6.14.2.2 Using the OLE presentation style
	6.14.2.3 Defining the OLE object
	6.14.2.4 Specifying data for the OLE object
	6.14.2.5 Previewing the DataWindow object
	6.14.2.6 Activating and editing the OLE object
	6.14.2.7 Changing the object in the control

	6.14.3 Using OLE columns in a DataWindow object
	6.14.3.1 Creating an OLE column

	7 Running Your Application
	7.1 Debugging and Running Applications
	7.1.1 Overview of debugging and running applications
	7.1.2 Debugging an application
	7.1.2.1 Starting the debugger
	7.1.2.2 Setting breakpoints
	7.1.2.3 Running in debug mode
	7.1.2.4 Examining an application at a breakpoint
	7.1.2.4.1 Examining variable values
	7.1.2.4.2 Watching variables and expressions
	7.1.2.4.3 Monitoring the call stack
	7.1.2.4.4 Examining objects in memory
	7.1.2.4.5 Using the Source view
	7.1.2.4.6 Using the Source Browser view
	7.1.2.4.7 Using the Source History view

	7.1.2.5 Stepping through an application
	7.1.2.6 Debugging windows opened as local variables
	7.1.2.7 Just-in-time debugging
	7.1.2.8 Using the DEBUG preprocessor symbol
	7.1.2.9 Breaking into the debugger when an exception is thrown

	7.1.3 Running an application
	7.1.3.1 Running the application
	7.1.3.2 Handling errors at runtime

	7.2 Tracing and Profiling Applications
	7.2.1 About tracing and profiling an application
	7.2.2 Collecting trace information
	7.2.2.1 Tracing an entire application in PowerBuilder
	7.2.2.2 Using a window
	7.2.2.3 Collecting trace information using PowerScript functions

	7.2.3 Analyzing trace information using profiling tools
	7.2.3.1 Profiling Class View
	7.2.3.2 Profiling Routine View
	7.2.3.3 Profiling Trace View
	7.2.3.4 Setting call aggregation preferences

	7.2.4 Analyzing trace information programmatically
	7.2.4.1 Analyzing performance with a call graph model
	7.2.4.1.1 Using the BuildModel function to build a call graph model
	7.2.4.1.2 Extracting information from the call graph model

	7.2.4.2 Analyzing structure and flow using a trace tree model
	7.2.4.2.1 Using BuildModel to build a trace tree model
	7.2.4.2.2 Extracting information from the trace tree model

	7.2.4.3 Accessing trace data directly
	7.2.4.3.1 Using the TraceFile object

	7.2.5 Generating a trace file without timing information

	7.3 Creating Executables and Components
	7.3.1 About building PowerBuilder targets
	7.3.2 Using the Project painter
	7.3.2.1 Creating a project

	7.3.3 Using dynamic libraries
	7.3.4 Attaching or embedding manifest files
	7.3.5 Distributing resources
	7.3.5.1 Distributing resources separately
	7.3.5.2 Using PowerBuilder resource files
	7.3.5.3 What happens at runtime

	7.3.6 Creating an executable application
	7.3.6.1 Creating an executable app project
	7.3.6.2 Defining an executable app project
	7.3.6.3 Tracing execution
	7.3.6.4 Building an executable file and dynamic libraries
	7.3.6.4.1 How PowerBuilder builds the project
	7.3.6.4.2 How PowerBuilder searches for objects
	Which objects are copied to the executable file
	Which objects are not copied to the executable file
	Which objects are not copied to the dynamic libraries
	How to include the objects that were not found

	7.3.6.4.3 Listing the objects in a project

	7.3.7 Creating a PowerClient project
	7.3.7.1 Configuring a deployment server
	7.3.7.2 Uploading the app launcher and runtime files
	7.3.7.3 Creating a PowerClient project
	7.3.7.4 Defining a PowerClient project
	7.3.7.5 Building and deploying a PowerClient project
	7.3.7.6 Running the PowerClient project
	7.3.7.7 Packaging the PowerClient project
	7.3.7.8 Undeploying the PowerClient project
	7.3.7.9 Uninstalling the PowerClient project
	7.3.7.10 Tutorial: deploying your first PowerClient project

	7.3.8 Building proxies and .NET targets

	8 Appendixes
	8.1 Appendix A. The Extended Attribute System Tables
	8.1.1 About the extended attribute system tables
	8.1.2 The extended attribute system tables
	8.1.3 Edit style types for the PBCatEdt table
	8.1.3.1 CheckBox edit style (code 85)
	8.1.3.2 RadioButton edit style (code 86)
	8.1.3.3 DropDownListBox edit style (code 87)
	8.1.3.4 DropDownDataWindow edit style (code 88)
	8.1.3.5 Edit edit style (code 89)
	8.1.3.6 Edit Mask edit style (code 90)

	8.2 Appendix B. PowerBuilder Compiler
	8.2.1 Installing PowerBuilder Compiler
	8.2.1.1 Software requirements
	8.2.1.2 System requirements

	8.2.2 About PBC190.exe
	8.2.2.1 What is PBC190.exe
	8.2.2.2 Compiling/Deploying PowerBuilder Projects Using PBC190.exe
	8.2.2.3 PBC190.exe supported parameters
	8.2.2.3.1 /c (and other compiling parameters)
	8.2.2.3.2 /d (and other deployment parameters)
	8.2.2.3.3 /h

	8.3 Appendix C. The OrcaScript Language
	8.3.1 About OrcaScript
	8.3.2 OrcaScript Commands
	8.3.3 Usage notes for OrcaScript commands and parameters
	8.3.4 Usage notes for OrcaScript commands with SVN/Git

	Index

