
PowerServer 2021 Help
PowerServer 2021

Contents
Installation ... xiii

1 PowerServer components ... 1
2 Installation requirements ... 3

2.1 Client PC .. 3
2.2 Development PC .. 3
2.3 Web Server ... 4
2.4 .NET Server .. 4
2.5 Database Server ... 4
2.6 Network ... 5

Quick Start .. vi
1 Overview ... 1
2 Preparing a local development environment .. 2

2.1 Installing IIS in Windows 10 ... 4
3 Verifying the example sales app .. 7
4 Minimal efforts: Deploying the sample PowerServer project 8

4.1 Updating the sample PowerServer project based on your
environment ... 8
4.2 Building and deploying the PowerServer project 12
4.3 Starting the Web APIs .. 12
4.4 Running the installable cloud application ... 13

5 Full experience: Creating and deploying a new PowerServer project 15
5.1 Creating the PowerServer project .. 15

5.1.1 Creating a new PowerServer project .. 15
5.1.2 Configuring the General tab ... 15
5.1.3 Configuring the External Files tab .. 15
5.1.4 Configuring the Runtime tab .. 16
5.1.5 Configuring the Client Deployment tab 17
5.1.6 Configuring the Web APIs tab .. 20
5.1.7 Importing the PowerServer license .. 23

5.2 Building and deploying the PowerServer project 26
5.3 Starting the Web APIs .. 27
5.4 Running the installable cloud application ... 27

How-to Guides .. xxix
1 Overview ... 1
2 Create the PowerServer project ... 2
3 Define the PowerServer projects .. 3
4 Configure the Web server for deployment .. 14
5 Upload the cloud app launcher and the runtime files 17

5.1 About cloud app launcher .. 20
6 Configure the Web API settings ... 22
7 Configure the database connection .. 25
8 Import license and activate PowerServer ... 32
9 Analyze the unsupported features .. 35
10 Build and deploy the PowerServer project ... 36

10.1 What is the PowerServer C# solution .. 37
10.2 What settings will be deployed to the solution 40

10.3 Build & deploy using commands .. 42
10.4 Run the ServerAPIs.Tests project .. 45

11 Compile and run the Web APIs .. 47
12 Check the status of Web APIs ... 49
13 Run the installable cloud application .. 50
14 Customize the app entry page ... 53
15 Customize the deployed app using commands .. 54

15.1 Change the External Files .. 55
15.2 Change the Web API URL ... 56
15.3 Encrypt the database password ... 57

16 Support cookie validation ... 59
17 View the API documentation .. 61
18 Get/Kill user sessions ... 63
19 Package the client app ... 65
20 Undeploy the client app .. 66
21 Uninstall the client app ... 67

Tutorials .. lxix
1 Tutorial 1: Deploying your PowerServer project to production
environment .. 1

1.1 Overview ... 1
1.2 Task 1: Setting up the client machine .. 1
1.3 Task 2: Setting up the database server ... 1

1.3.1 Preparations ... 1
1.3.2 Configuring Windows Defender Firewall 2
1.3.3 Starting the database ... 3

1.4 Task 3: Setting up the Web server .. 3
1.4.1 Overview ... 3
1.4.2 Preparations ... 3
1.4.3 Installing Web Server (IIS) ... 4
1.4.4 Deploying app files to Web Server ... 7

1.4.4.1 Overview ... 7
1.4.4.2 Method 1: Creating an IIS FTP site 8
1.4.4.3 Method 2: Packaging and copying the client app 11

1.5 Task 4: Setting up the development PC .. 12
1.5.1 Preparations ... 12
1.5.2 Creating the ODBC data source .. 12
1.5.3 Creating a Web server profile for remote deployment 14
1.5.4 Uploading the cloud app launcher and the runtime files to the
remote server ... 15
1.5.5 Modifying and re-deploying the PowerServer project 16

1.6 Task 5: Setting up the auth server ... 19
1.7 Task 6: Setting up the .NET server .. 20

1.7.1 Preparations ... 20
1.7.2 Creating the ODBC data source .. 21
1.7.3 Publishing the Web APIs .. 23

2 Tutorial 2: Hosting Web APIs in Docker Containers 24
2.1 Task 1: Setting up Docker .. 24

2.1.1 Setting up a docker host (Docker Engine) 24

2.1.2 Setting up a docker registry ... 25
2.2 Task 2: Setting up the database server ... 25

2.2.1 Preparations ... 25
2.2.2 Starting the database ... 26

2.3 Task 3: Publishing to Docker ... 30
2.3.1 Preparing the development PC .. 30
2.3.2 Modifying and re-deploying the PowerServer project 31
2.3.3 Editing the pg_hba.conf file .. 34
2.3.4 Publishing Web APIs to Docker ... 34

2.3.4.1 Specifying Web API URL ... 40
3 Tutorial 3: Hosting Web APIs in IIS (in-process hosting) 42

3.1 Overview ... 42
3.2 Preparations .. 43
3.3 Installing IIS .. 45

3.3.1 Windows Server OS ... 45
3.3.2 Windows Desktop OS .. 47

3.4 Creating an IIS website .. 50
3.5 Configuring IIS .. 52
3.6 Configuring SSL on IIS ... 55
3.7 Publishing Web APIs to IIS .. 55

4 Tutorial 4: Hosting Web APIs in Kestrel ... 60
4.1 Overview ... 60
4.2 About PowerServer Web APIs and Kestrel .. 61
4.3 Running Web APIs on Kestrel .. 61
4.4 Using a reverse proxy server ... 62

4.4.1 Configuring Apache reverse proxy server (Windows) 62
4.4.1.1 Preparations ... 62
4.4.1.2 Configuring Apache .. 63
4.4.1.3 Modifying and re-deploying the PowerServer project 65
4.4.1.4 Starting Web APIs (in development environment) 66

4.4.2 Configuring Apache reverse proxy server (Linux) 67
4.4.2.1 Preparations ... 67
4.4.2.2 Configuring Apache .. 68
4.4.2.3 Modifying and re-deploying the PowerServer project 71
4.4.2.4 Starting Web APIs (in development environment) 72

4.4.3 Configuring Nginx reverse proxy server (Windows) 73
4.4.3.1 Preparations ... 73
4.4.3.2 Configuring Nginx ... 75
4.4.3.3 Modifying and re-deploying the PowerServer project 76
4.4.3.4 Starting Web APIs (in development environment) 77

4.4.4 Configuring Nginx reverse proxy server (Linux) 78
4.4.4.1 Preparations ... 78
4.4.4.2 Configuring Nginx ... 79
4.4.4.3 Modifying and re-deploying the PowerServer project 81
4.4.4.4 Starting Web APIs (in development environment) 82

4.4.5 Configuring IIS reverse proxy server .. 84
4.4.5.1 Preparations ... 84
4.4.5.2 Configuring IIS .. 85

4.4.5.3 Modifying and re-deploying the PowerServer project 89
4.4.5.4 Starting Web APIs (in development environment) 90

5 Tutorial 5: Load-balancing PowerServer Web APIs 92
5.1 Overview ... 92
5.2 Configuring Nginx as a load balancer .. 93

5.2.1 Using Nginx Sticky Module .. 94
5.2.2 Using Nginx Plus .. 95
5.2.3 Using IP hash load-balancing .. 96

5.3 Configuring IIS as a load balancer ... 97
5.4 Configuring Apache as a load balancer ... 103

6 Tutorial 6: Authenticating your apps ... 105
6.1 Overview ... 105
6.2 Using JWT .. 106

6.2.1 Preparations ... 106
6.2.2 Modifying the PowerBuilder client app 108

6.2.2.1 Purpose .. 108
6.2.2.2 Add scripts .. 108
6.2.2.3 Add an INI file .. 112
6.2.2.4 Start session manually by code 113
6.2.2.5 Modify and re-deploy the PowerServer project 114

6.2.3 Appendix ... 115
6.2.3.1 Validate username and password against a
database ... 115

6.3 Using OAuth 2.0 ... 117
6.3.1 Preparations ... 117
6.3.2 Modifying the PowerBuilder client app 119

6.3.2.1 Purpose .. 119
6.3.2.2 Add scripts .. 119
6.3.2.3 Add an INI file .. 126
6.3.2.4 Start session manually by code 126
6.3.2.5 Modify and re-deploy the PowerServer project 127

6.3.3 Appendix ... 128
6.3.3.1 Validate username and password against a
database ... 128
6.3.3.2 Validate username and password against an LDAP
server .. 130
6.3.3.3 Test the OAuth server .. 131

6.4 Using Amazon Cognito ... 132
6.4.1 Preparations ... 132
6.4.2 Creating the Amazon Cognito user pool 134
6.4.3 Modifying the PowerBuilder client app 141

6.4.3.1 Purpose .. 141
6.4.3.2 Add scripts .. 141
6.4.3.3 Add an INI file .. 145
6.4.3.4 Start session manually by code 145
6.4.3.5 Modify and re-deploy the PowerServer project 146

6.4.4 Modifying the authentication template 147
6.4.5 (Optional) Testing the Cognito server 148

6.5 Using other authentication servers ... 149
6.5.1 Azure Active Directory (AD) ... 149

6.5.1.1 Preparations ... 149
6.5.1.2 Creating an Azure AD tenant 151
6.5.1.3 Modifying the PowerBuilder client app 151
6.5.1.4 Modifying the authentication template 158

6.5.2 Azure Active Directory (AD) B2C ... 159
6.5.2.1 Preparations ... 159
6.5.2.2 Creating an Azure AD B2C tenant 160
6.5.2.3 Modifying the PowerBuilder client app 161
6.5.2.4 Modifying the authentication template 168

7 Tutorial 7: Building your PowerServer project with commands 170
7.1 Task 1: Preparing the environment .. 170
7.2 Task 2: Exporting the build file ... 170
7.3 Task 3 (Optional): Configuring the build file 171

7.3.1 Getting source code from SVN, Git, or VSS 171
7.3.2 Executing additional commands ... 173

7.4 Task 4: Running the PBAutoBuild210.exe command 175
7.5 Task 5: Integrating with Jenkins ... 175

8 Tutorial 8: Creating a standalone installable package 178
8.1 Packaging the client app .. 178
8.2 Packaging the PowerServer Web APIs .. 179
8.3 Telling client app where PowerServer Web APIs is 181

9 Tutorial 9: Load testing installable cloud apps ... 183
9.1 Load testing installable cloud apps with LoadRunner 183

9.1.1 Dynamic Values in the Recorded Script 183
9.1.2 Enclosing Parameters in Angle Brackets “<>” 183
9.1.3 Running the Application in Test Mode before Recording the
Script .. 183

9.1.3.1 How to switch to the test mode 184
9.1.4 Recording ... 185

9.1.4.1 Specifying the app .exe file as the Application 185
9.1.4.2 Disabling the async scan ... 186

9.1.5 Correlating the Session ID ... 187
9.1.5.1 How to correlate the session ID in the recorded
script ... 187

9.1.6 Correlating the Transaction ID ... 189
9.1.6.1 How to correlate the transaction ID in case of single
transaction .. 189
9.1.6.2 How to correlate the transaction ID in case of multiple
transactions ... 191

9.1.7 Parameterizing Static Values in SQLs 192
9.1.7.1 How to parameterize static values in Retrieve 192
9.1.7.2 How to parameterize static values in Select 193

9.1.8 Replaying .. 193
9.2 Load testing installable cloud apps with JMeter 193

9.2.1 Overview ... 193
9.2.2 Preparing the installable cloud application 194

9.2.2.1 Configuring and deploying the application 194
9.2.2.2 Switching the application to test mode 194
9.2.2.3 Running PowerServer Web APIs and then JMeter
recorder or Fiddler .. 195

9.2.3 Recording JMeter scripts .. 196
9.2.3.1 Recording scripts automatically (using Recorder) 196
9.2.3.2 Recording scripts manually (using Fiddler + JMeter) 203
9.2.3.3 Parameterizing the Retrieve test 212

9.2.4 Parameterization and correlation .. 220
9.2.4.1 Why parameterization and correlation are required 220
9.2.4.2 Parameterizing the access token 220
9.2.4.3 Parameterizing the session ID 222
9.2.4.4 Parameterizing the transaction ID 223
9.2.4.5 Parameterizing the retrieval argument 226
9.2.4.6 Parameterizing the ESQL parameter 227

10 Tutorial 10: Setting up a Web server ... 230
10.1 Overview ... 230
10.2 Setting up IIS .. 230

10.2.1 Preparations ... 230
10.2.2 Installing Web Server (IIS) ... 230
10.2.3 Configuring SSL on IIS ... 234
10.2.4 Creating an IIS FTP site ... 234
10.2.5 Configuring SSL on FTP server ... 238

10.3 Setting up Apache on Windows ... 239
10.3.1 Preparations ... 239
10.3.2 Installing Apache HTTP Server .. 240
10.3.3 Configuring SSL on Apache ... 241
10.3.4 Installing FTP server .. 241

10.4 Setting up Apache on Linux ... 245
10.4.1 Preparations ... 245
10.4.2 Installing Apache HTTP Server .. 245
10.4.3 Configuring SSL on Apache ... 247
10.4.4 Configuring Apache to be case-insensitive 247
10.4.5 Packaging and copying the client app 248

10.5 Setting up Nginx on Windows .. 249
10.5.1 Preparations ... 249
10.5.2 Installing Nginx ... 250
10.5.3 Configuring SSL on Nginx .. 251
10.5.4 Installing FTP server .. 251

10.6 Setting up Nginx on Linux .. 254
10.6.1 Preparations ... 254
10.6.2 Installing Nginx ... 254
10.6.3 Configuring SSL on Nginx .. 256
10.6.4 Configuring Nginx to be case-insensitive 256
10.6.5 Packaging and copying the client app 257

11 Tutorial 11: Deploying installable cloud apps to Kubernetes 258
11.1 Overview ... 258
11.2 Before you begin .. 258

11.3 Configuring Azure Kubernetes Service .. 259
11.3.1 Creating a Kubernetes cluster in AKS 259
11.3.2 Connecting to the Kubernetes cluster 266
11.3.3 Installing ingress controller ... 267

11.3.3.1 Creating public IP address ... 267
11.3.3.2 Creating a Kubernetes namespace 270
11.3.3.3 Installing Ingress-Nginx .. 270
11.3.3.4 Using your own TLS certificates in AKS 271

11.3.4 Logging into Azure container registry 272
11.3.5 Creating a database ... 274

11.4 Containerizing the installable cloud app ... 279
11.4.1 Preparing the application .. 279

11.4.1.1 Modifying the Web API URL 279
11.4.1.2 Modifying the database connection 279
11.4.1.3 Packaging the client app as a zipped file 281
11.4.1.4 Building the PowerServer project 281

11.4.2 Creating the container images ... 282
11.4.2.1 Creating an image for the client app 282
11.4.2.2 Creating an image for the Web API 283

11.4.3 Pushing images to Azure container registry 285
11.5 Deploying the application to the Kubernetes cluster 286

11.5.1 Creating the YAML manifest files ... 286
11.5.2 Deploying the application ... 290
11.5.3 Configuring the domain name .. 291
11.5.4 Testing the application ... 291

Working with Database Connections .. ccxciii
1 Overview ... 1

1.1 Supported database connection options .. 1
1.2 Comparing the runtime database connections between c/s app and
installable cloud app ... 2
1.3 Techniques for supporting various connection scenarios 2

2 Supported database types .. 4
2.1 ASE database ... 4

3 Configuring database caches ... 6
3.1 Creating database caches in the project settings 6
3.2 Managing database caches in the PowerServer solution 10

4 Setting up static database connection for the app runtime 11
4.1 Creating transaction-to-cache mappings in the project settings 11
4.2 Managing transaction-to-cache mappings in the PowerServer
solution .. 12
4.3 Using LogID and LogPass properties ... 12

5 Setting up dynamic database connection for the app runtime 13
5.1 Dynamically mapping transaction object with cache using
DBParm ... 13

5.1.1 Using CacheGroup property in DBParm 13
5.1.2 Using LogID and LogPass properties 15

5.2 Making dynamic database connections from the app client 15
6 Managing database connections using PowerServer APIs 17

Unsupported Features & Workarounds Guide ... xix
1 How to detect unsupported features .. 1
2 Unsupported features & workarounds .. 4

2.1 Unsupported features that can be detected ... 4
2.1.1 SetTrans ... 4
2.1.2 Data pipeline .. 4
2.1.3 MobiLink ... 5
2.1.4 Oracle RPC arrays ... 5
2.1.5 SQLPreview .. 6
2.1.6 SQLReturnData property .. 6

2.2 Unsupported features that cannot be detected 7
2.2.1 Transaction trace .. 7
2.2.2 Unsupported use cases in Embedded SQLs 7
2.2.3 Retrieve As Needed and Rows to Disk 8
2.2.4 SyntaxFromSQL ... 8
2.2.5 Database synonyms ... 8
2.2.6 Commit or Rollback Transaction using Dynamic SQL 9
2.2.7 Data retrieval and SQL operations in the RetrieveRow
event .. 9

3 Discrepancies & workarounds .. 10
3.1 Discrepancies that cannot be detected .. 10

3.1.1 DB connection .. 10
3.1.2 Alias name .. 10
3.1.3 Data type mismatch ... 10
3.1.4 rowsupdated value ... 10
3.1.5 DisableBind parameter ... 11
3.1.6 TableBlob retrieval .. 11
3.1.7 Dynamic DataWindow .. 11
3.1.8 TransactionName ... 11
3.1.9 Data type in Dynamic SQL Format 4 12
3.1.10 Decimal data type in static SQL or DataWindow 12
3.1.11 Timing of transaction rollback ... 13
3.1.12 Oracle AutoCommit and Lock .. 13
3.1.13 Stored procedure parameter .. 13
3.1.14 Transaction commit .. 13
3.1.15 Use Describe in Dynamic SQL Format 4 13
3.1.16 Bit data field ... 14
3.1.17 SelectBlob/UpdateBlob supports UTF8 only 14
3.1.18 SQLNRows property (with Cursor) ... 14
3.1.19 SQLCode property (with SP) .. 14
3.1.20 Column name from view .. 15

4 Incompatible coding styles ... 16
4.1 PBLs contain DataWindows with the same name 16
4.2 Object name using C# reversed words .. 16
4.3 DataWindow name containing special characters 16
4.4 Editing SQL .. 16
4.5 Column order in data source and Column Specification 17
4.6 One compute expression containing multiple computed columns 17

4.7 Cursor syntax ... 18
4.8 Syntax after UNION .. 18

Troubleshooting Guide .. xix
1 Configuring and deploying PowerServer projects ... 1

1.1 Permission errors when configuring the Web server profile 1
1.2 Error during the build process .. 1
1.3 Error in the Unsupported (DWs) window .. 1
1.4 Failed to generate the PowerServer Web APIs project 2
1.5 Error uploading application files to FTP ... 3
1.6 Changed PBL list .. 3

2 Running installable cloud apps ... 4
2.1 Cloud app launcher and application executable 4

2.1.1 Failed to get the app publisher from the server 4
2.1.2 Cannot start cloud app launcher .. 4
2.1.3 Application executable disappeared suddenly 4
2.1.4 Window is slow to open ... 5

2.2 Models and controls ... 6
2.2.1 Cannot retrieve data when data includes null values 6
2.2.2 PBSELECT DataWindow error ... 6
2.2.3 RibbonBar control displays blank ... 6

2.3 Server ... 7
2.3.1 Cannot connect to the server when creating the session 7
2.3.2 Session creation failed ... 7
2.3.3 App requires login again .. 8
2.3.4 File name containing character + cannot be downloaded 9
2.3.5 "HTTP Error 404.2 - Not Found" error when running the
app ... 10

2.4 Database ... 11
2.4.1 Different results returned from an ASE stored procedure 11
2.4.2 SelectBlob data truncated .. 12
2.4.3 Garbage letters display when retrieving multibyte data 12
2.4.4 Slow app performance with SQL Anywhere 14
2.4.5 64-bit database cannot be connected from IIS 15

3 License errors ... 16
3.1 Failed to call the license server API ... 16
3.2 Failed to login the license server ... 16
3.3 Cannot access License.json ... 17

4 Others ... 18
4.1 Failed to update NuGet packages in PowerServer C# solution 18

Performance Guide ... xix
1 Introduction ... 1
2 Performance suggestions on project compilation and deployment 2
3 Performance suggestions on loading installable cloud apps for the first
time ... 3
4 Performance suggestions on running installable cloud apps 4

4.1 Debugging the performance ... 4
4.2 Working against the impact of Internet and slow networks on
runtime performance ... 5

4.3 Hosting Web APIs and database on the same LAN 6
4.4 Web API publishing method ... 6
4.5 Optimizing database server performance ... 6
4.6 Tuning excessive server calls .. 6

4.6.1 Overview ... 6
4.6.2 Technique #1: partitioning transactions via stored
procedures ... 7
4.6.3 Technique #2: partitioning non-visual logic via server-side
REST APIs ... 9
4.6.4 Technique #3: eliminating recursive embedded SQL 9
4.6.5 Technique #4: eliminating DW computed fields calling user
functions that have ESQL ... 10

4.7 Minimizing large data transmissions ... 11
4.7.1 Overview ... 11
4.7.2 Technique #1: retrieving data incrementally 11

4.7.2.1 For Oracle database server ... 11
4.7.2.2 For all other database servers 12

4.7.3 Technique #2: minimizing excessive number of columns 12
Debugging Guide .. xiii

1 Overview ... 1
2 Debugging with Fiddler ... 2

2.1 Installing Fiddler ... 2
2.2 Configuring Fiddler ... 2
2.3 Configuring the PowerServer project .. 3
2.4 Running the PowerServer Web APIs and then Fiddler 3
2.5 Capture HTTP(S) with Fiddler .. 3
2.6 Filtering the results ... 4
2.7 Inspecting the results ... 5
2.8 Analyzing the performance ... 6

3 Logs and unsupported features report ... 7
3.1 Deployment log ... 7
3.2 Unsupported features report ... 7
3.3 Web file download log .. 7
3.4 Web API request log .. 8
3.5 Debugging log in SnapDevelop .. 8
3.6 PowerServer logs ... 8

3.6.1 Log4net logging .. 8
3.6.2 Logging with the settings in Logging.json 8

4 Debugging case studies ... 10
4.1 DataWindow related errors ... 10

4.1.1 DataWindow retrieve error ... 10
4.1.2 SyntaxFromSQL execution error .. 10
4.1.3 Different execution results in different databases 11
4.1.4 Incompatible data type ... 13
4.1.5 PBSELECT retrieve error ... 13

4.2 Embedded SQL related errors ... 14
5 Data type mapping tables ... 16

5.1 SQL server data type mappings ... 16

5.2 ASE server data type mappings ... 17
5.3 SQL Anywhere server data type mappings .. 18
5.4 Oracle server data type mappings ... 19
5.5 PostgreSQL data type mappings ... 20

Installation

Contents
1 PowerServer components .. 1
2 Installation requirements .. 3

2.1 Client PC .. 3
2.2 Development PC .. 3
2.3 Web Server .. 4
2.4 .NET Server ... 4
2.5 Database Server .. 4
2.6 Network .. 5

PowerServer components

Page 1

1 PowerServer components
PowerServer 2021 is comprised of two parts:

• PowerServer Toolkit -- Provides utilities for 1) Creating and managing PowerServer
projects; 2) Analyzing and compiling the application; 3) Generating and deploying the
application web files (PBD files and supporting files) to the web server; 4) Generating a
PowerServer Web APIs solution; 5) Compiling and running the PowerServer Web APIs
(in local environment); 6) Running a PowerServer project; 6) Generating build files from
existing PowerServer projects for auto-build, etc.

PowerServer Toolkit is provided as a component in the PowerBuilder Installer and
installed as a plug-in to the PowerBuilder IDE. For how to run the PowerBuilder Installer,
refer to Installation Guide for PowerBuilder IDE. The PowerServer Toolkit is by default
installed to %AppeonInstallPath%\Common\PSToolkit\[version]\.

Figure 1.1:

• The PowerServer NuGet packages -- The runtime library for the PowerServer Web
APIs that supports data processing, authorization, licensing etc. When you launch the
PowerServer C# solution, the PowerServer NuGet packages will be automatically
downloaded and installed from the NuGet website (https://www.nuget.org). Please make
sure the computer can connect to the NuGet website (https://www.nuget.org).

The PowerServer NuGet packages can be downloaded to SnapDevelop or any other .NET
IDE such as Visual Studio. No matter which .NET IDE you are using, the instructions
on how to install, update, and uninstall the PowerServer packages are the same as all the
other NuGet packages. For detailed instructions, please refer to this documentation https://
docs.microsoft.com/nuget/quickstart/install-and-use-a-package-in-visual-studio.

The PowerServer NuGet packages are free to download but must be activated before it can
work properly. For more, refer to Import license and activate PowerServer.

https://docs.appeon.com/pb2021/installation_guide_for_pb/index.html
https://www.nuget.org
https://www.nuget.org
https://docs.microsoft.com/nuget/quickstart/install-and-use-a-package-in-visual-studio
https://docs.microsoft.com/nuget/quickstart/install-and-use-a-package-in-visual-studio

PowerServer components

Page 2

Figure 1.2:

Note

PowerServer 2021 will only work with PowerBuilder 2021. Before deploying your
application with PowerServer 2021, make sure 1) your application is upgraded to
be compatible with PowerBuilder 2021; and 2) you have a PowerBuilder CloudPro
license (paid or trial).

Note

PowerServer 2020 or earlier cannot be upgraded to PowerServer 2021; and
applications deployed with PowerServer 2020 or earlier cannot work with
PowerServer 2021.

https://docs.appeon.com/pb2021/appeon_license_user_guide/ch03s01.html#Trying_a_free_trial

Installation requirements

Page 3

2 Installation requirements

2.1 Client PC

To run the installable cloud app, install the following OS and Web browser:

• Windows 10 or 8.1, or Windows Server 2019, 2016, or 2012 R2

• Google Chrome, Mozilla Firefox, or Microsoft Edge (Chromium-based)

2.2 Development PC

It is recommended that PowerBuilder IDE, PowerBuilder Runtime, PowerServer Toolkit, and
PowerBuilder Compiler are the same version and build.

For installation instructions, refer to Installation Guide for PowerBuilder IDE.

Note

You must have administrator privileges to run the PowerBuilder Installer and install
some components.

Table 2.1:

To Install the following

Build and deploy the PowerServer project • Windows 10 or 8.1

• PowerBuilder IDE 2021

• PowerBuilder Runtime 2021

• PowerServer Toolkit 2021

Build and deploy the PowerServer project
using the PBAutoBuild210.exe command

• Windows 10 or 8.1, or Windows Server
2019, 2016, or 2012 R2

• PowerBuilder Runtime 2021

• PowerServer Toolkit 2021

• PowerBuilder Compiler 2021 (or
PowerBuilder IDE 2021)

Compile and publish the PowerServer Web
APIs

• Windows 10 or 8.1

• SnapDevelop 2021 or Visual Studio 2019

The computer must be able to connect to
the NuGet site (https://www.nuget.org), in
order to download the packages required
for compilation.

https://docs.appeon.com/pb2021/installation_guide_for_pb/index.html
https://www.nuget.org

Installation requirements

Page 4

2.3 Web Server

The app files can be hosted in the following Web servers:

• Windows IIS

For how to install and configure IIS, refer to Setting up IIS.

• Windows/Linux Apache

For how to install and configure Apache in Windows, refer to Setting up Apache on
Windows.

For how to install and configure Apache in Linux, refer to Setting up Apache on Linux.

• Windows/Linux Nginx

For how to configure Nginx in Windows, refer to Setting up Nginx on Windows.

For how to configure Nginx in Linux, refer to Setting up Nginx on Linux.

* Kestrel is not recommended to be used as the Web server for hosting the app files.

* Any version within the support period is supported.

2.4 .NET Server

The PowerServer Web APIs is an ASP.NET Core 3.1 app; it can be hosted and deployed like
any other ASP.NET Core app.

The following are the most popular hosting environments:

• Windows/Linux Docker

For how to publish the PowerServer Web APIs to Docker, refer to Tutorial 2: Hosting Web
APIs in Docker Containers.

• Kubernetes

• Windows IIS

For how to publish the PowerServer Web APIs to IIS, refer to Tutorial 3: Hosting Web
APIs in IIS.

• Windows/Linux Kestrel (with or without a reverse proxy server)

For how to run the PowerServer Web APIs on Kestrel, refer to Tutorial 4: Hosting Web
APIs in Kestrel.

* Any version within the support period is supported.

For a complete list of supported environments, refer to https://docs.microsoft.com/aspnet/
core/host-and-deploy/?view=aspnetcore-3.1.

2.5 Database Server

The installable cloud apps can work with the following databases:

https://docs.microsoft.com/aspnet/core/host-and-deploy/?view=aspnetcore-3.1
https://docs.microsoft.com/aspnet/core/host-and-deploy/?view=aspnetcore-3.1

Installation requirements

Page 5

• Oracle 12c, 18c, or 19c

PowerBuilder and/or PowerServer will automatically download the required driver
(Oracle.ManagedDataAccess.Core 2.19.110) from https://www.nuget.org, or you will be
asked to specify the location of the driver if https://www.nuget.org cannot be connected.

• PostgreSQL 11.3, 12, or 13

• SQL Server 2016, 2017, or 2019

• SQL Anywhere (ODBC) 16 (16.0.0.2043 or later) or 17

If SQL Anywhere is on a different machine from PowerBuilder, make sure to enable the
connection pooling setting in the ODBC driver. Connection pooling is enabled by default
if SQL Anywhere is on the same machine as PowerBuilder.

• ASE (ODBC) 16.0

ASE databases can only be connected using the ODBC driver in the PowerServer runtime
environment. This is different from the PowerBuilder runtime environment where the ASE
database is connected using the native driver. See ASE database for the differences caused
by this driver change.

• MySQL 5.6, 5.7, or 8.0

PowerBuilder and/or PowerServer will automatically download the required driver
(MySql.Data 8.0.25) from https://www.nuget.org, or you will be asked to specify the
location of the driver if https://www.nuget.org cannot be connected.

• Informix 12.x or 14 (Beta feature) *

PowerBuilder and/or PowerServer will automatically download the required driver
(IBM.Data.DB2.Core 2.2.0.100) from https://www.nuget.org, or you will be asked to
specify the location of the driver if https://www.nuget.org cannot be connected.

* Beta means the feature has not been fully tested, has known bugs, and does not receive
standard technical support. We will collect reported bugs and try to address in a future
version.

SQL Anywhere and ASE databases can be connected using the ODBC driver only. The other
databases are connected using the native database driver.

2.6 Network
Same as any other web applications, for installable cloud apps, the Web APIs must be
published to a PowerServer that locates on the same LAN as the database server. If the
database is not on the same network as the Web APIs, every request has to go a long way
from PowerServer to the database, it is highly possible that there will be performance and
security issues.

https://www.nuget.org
https://www.nuget.org
https://www.nuget.org
https://www.nuget.org
https://www.nuget.org
https://www.nuget.org

Quick Start

Contents
1 Overview .. 1
2 Preparing a local development environment ... 2

2.1 Installing IIS in Windows 10 .. 4
3 Verifying the example sales app ... 7
4 Minimal efforts: Deploying the sample PowerServer project 8

4.1 Updating the sample PowerServer project based on your
environment .. 8
4.2 Building and deploying the PowerServer project 12
4.3 Starting the Web APIs ... 12
4.4 Running the installable cloud application .. 13

5 Full experience: Creating and deploying a new PowerServer project 15
5.1 Creating the PowerServer project ... 15

5.1.1 Creating a new PowerServer project ... 15
5.1.2 Configuring the General tab .. 15
5.1.3 Configuring the External Files tab ... 15
5.1.4 Configuring the Runtime tab .. 16
5.1.5 Configuring the Client Deployment tab .. 17
5.1.6 Configuring the Web APIs tab ... 20
5.1.7 Importing the PowerServer license .. 23

5.2 Building and deploying the PowerServer project 26
5.3 Starting the Web APIs ... 27
5.4 Running the installable cloud application .. 27

Overview

Page 1

1 Overview
PowerBuilder 2021 introduces a new project type: PowerServer. With the PowerServer
project type, PowerBuilder applications can be deployed as installable cloud applications.

This tutorial helps you to quickly get started with PowerServer. By going through this
tutorial, you will get a basic understanding of the key tasks required for deploying a
PowerServer project based on the Example Sales App (SalesDemo) provided in the
PowerBuilder Installer.

Preparing a local development environment

Page 2

2 Preparing a local development environment
In order to quickly get started with PowerServer, we will use a local development machine
for all roles (development, client, Web server, .NET server, and database server).

Therefore, "a local development environment" in this Quick Start guide does not mean
the development PC only; it means all roles in one machine, as illustrated in the following
graph. And it can only represent one supported environment (not all), for example, the IIS
web server is used as an example here (although Apache and Nginx web servers are also
supported), the SQL Anywhere database is used as an example (although PostgreSQL, SQL
Server, Oracle etc. are also supported), Chrome is used as an example (although Firefox and
Edge are also supported).

Figure 2.1:

The following steps will guide you through preparing such an environment.

Step 1: Prepare a Windows 10 (64-bit) machine.

PowerBuilder IDE can only run on Windows 10 or 8.1.

Step 2: Make sure this machine has Internet connection.

Step 3: Install the following software to this machine.

Table 2.1:

Role Requires the following software

Client • Install Google Chrome

The installable cloud app must run through Google Chrome, Mozilla
Firefox, or Microsoft Edge (Chromium-based) for the first time.

Database
Server

Development

• Install SQL Anywhere 17 (or PostgreSQL 11.3, 12, or 13)

You can download the installer for the free trial of SQL Anywhere
developer edition (or the installer for PostgreSQL).

If you install the PostgreSQL demo database, the steps are the same as
using the SQL Anywhere demo database.

Development Download the PowerBuilder Installer executable from the Downloads page
on the Appeon User Center (login is required) and then run the PowerBuilder
Installer to install the following programs or components:

https://www.sap.com/products/sql-anywhere/trial.html
https://www.sap.com/products/sql-anywhere/trial.html
https://www.postgresql.org/download/
https://account.appeon.com/download

Preparing a local development environment

Page 3

Role Requires the following software
• PowerBuilder Runtime 2021

• PowerServer Toolkit 2021

• PowerBuilder IDE 2021

During the PowerBuilder IDE installation, double check that the SQL
Anywhere engine (or PostgreSQL engine) is already installed and selected
in the following screen; this will automatically install the demo database
according to the selected engine and create the ODBC data source required
for running the PowerBuilder demo application.

Figure 2.2:

The demo database file is automatically installed to %Public%\Documents
\Appeon\PowerBuilder 21.0\ and the corresponding ODBC data source is
automatically created during the PowerBuilder installation.

• If SQL Anywhere engine is installed and selected, the demo database
file is pbdemo2021.db and the ODBC data source is PB Demo DB
V2021.

• If PostgreSQL engine is installed and selected, the demo database file
is pbpostgres2021.dmp and the ODBC data source is PB Postgres
V2021.

Alternatively, you can download the database file from https://github.com/
Appeon/PowerBuilder-Project-Example-Database and create the ODBC
data source manually (instructions are provided here).

Web Server • Install Windows IIS

Follow the next section Installing IIS in Windows 10 to install and verify
IIS.

Windows IIS will be used as the Web server in this tutorial to host the
client-side of the installable cloud app. You can also use Windows/Linux
Apache and Windows/Linux Nginx (instructions are provided here).

.NET Server • Nothing needs to be installed

https://github.com/Appeon/PowerBuilder-Project-Example-Database
https://github.com/Appeon/PowerBuilder-Project-Example-Database
https://docs.appeon.com/pb2021/installation_guide_for_pb/Installing_PowerBuilder_demo_applications_and_database.html

Preparing a local development environment

Page 4

Role Requires the following software
In the development environment, we will directly run the PowerServer
Web APIs on the ASP.NET Core Kestrel web server (a light-weight web
server automatically included and enabled in the ASP.NET Core project);
and as Kestrel is by default included in the PowerServer Web APIs, there
is no need to install any other software.

Alternatively, you can publish PowerServer Web APIs to a dedicated
hosting environment such as Docker, IIS etc. (as described in tutorial 2
and tutorial 3).

2.1 Installing IIS in Windows 10

Step 1: In Windows 10, navigate to Control Panel > Programs > Programs and Features >
Turn Windows features on or off.

Step 2: Expand the Internet Information Services node and make sure the following
features are selected.

• IIS Management Console

• .NET Extensibility 4.7

• Application Initialization

• ASP.NET 4.7

• ISAPI Extensions

• ISAPI Filters

• Default Document

• Static Content

Preparing a local development environment

Page 5

Figure 2.3:

Step 3: Click OK to install the selected features.

After IIS is installed, a Default Web Site (with port 80) is automatically created.

We will use the Default Web Site (with port 80) in this tutorial. You can also create new
websites with different port numbers (instructions are provided here).

Preparing a local development environment

Page 6

Figure 2.4:

Step 4: Open a Web browser and input "http://localhost:80/" in the address bar.

If the IIS welcome screen displays, the Default Web Site is working properly.

Figure 2.5:

Verifying the example sales app

Page 7

3 Verifying the example sales app
Step 1: Select Windows Start | Appeon PowerBuilder 2021, and then right-click Example
Sales App and select More | Run as administrator. The SalesDemo workspace is loaded in
the PowerBuilder IDE.

Note: Run as administrator is recommended as administrator rights are required when
performing some tasks later (such as uploading files to server).

Step 2: Click the Run button in the PowerBuilder toolbar and make sure the application can
run and data can be retrieved successfully. Close the application after verifying it.

Minimal efforts: Deploying the sample PowerServer
project

Page 8

4 Minimal efforts: Deploying the sample
PowerServer project
The Example Sales App (SalesDemo) contains a sample PowerServer project in the
salesdemo.pbl: salesdemo_cloud. Following the instructions in this chapter, and using the
sample project, you can get the application deployed to PowerServer and then run as an
installable cloud app in a few steps. Alternatively, you can follow the instructions in the
chapter Creating and deploying a new PowerServer project to try the full steps of creating
and then deploying a PowerServer project from the very beginning.

4.1 Updating the sample PowerServer project based on your
environment

Step 1: Open the sample PowerServer project in the painter.

1. Load the SalesDemo workspace in the PowerBuilder IDE by selecting Windows Start |
Appeon PowerBuilder 2021, and then right-clicking Example Sales App and selecting
More | Run as administrator.

2. Locate the salesdemo_cloud project file in salesdemo.pbl, and double click to open it in
the painter.

The project file contains multiple tabs: General, Libraries, External Files, Runtime,
Signing, Client Deployment, Run Options, and Web APIs. Most settings in the tabs
are pre-configured and can stay as-is. You only need to follow the instructions in the
subsequent steps to adjust a few settings based on your environment.

Step 2: Update the server configuration with the following steps:

1. Click the Client Deployment tab in the PowerServer project painter.

2. In the Deployment mode section, click the Server Configuration button. In the Web
Server Profile window that appears, click the Add button.

3. In the Add/Edit Server window, select Local server, set the Web root full path (in this
tutorial, C:\inetpub\wwwroot), and then click Test File Path to ensure the path is valid.

This tutorial assumes your OS is installed to the C drive and the IIS Web root is C:
\inetpub\wwwroot. If you encounter any errors when configuring the Web server profile,
refer to Permission errors when configuring the Web server profile.

Minimal efforts: Deploying the sample PowerServer
project

Page 9

Figure 4.1:

4. Click OK to save the server profile and return to the Web Server Profile window.

5. Click the Upload Cloud App Launcher button.

Minimal efforts: Deploying the sample PowerServer
project

Page 10

Figure 4.2:

6. In the Upload Cloud App Launcher and Runtime window that appears, make sure the
following are selected: Local, Upload the runtime files for the apps, 32-bit, and 64-bit.

7. Click Upload and make sure the upload is successful. This section Uploading the cloud
app launcher and the runtime files has more details about this window.

Step 3: Update the PowerServer solution path with the following steps:

1. Click Web APIs in the PowerServer project painter.

In the Solution location field, the default location is set to [current user]\source\repos.

2. If the location in the Solution location does not exist on the current machine, please select
a valid one.

Minimal efforts: Deploying the sample PowerServer
project

Page 11

Figure 4.3:

Step 4: Use the default Web API URL "http://localhost:5000" in the Web APIs tab. Make
sure the port number is not occupied by another program.

In this tutorial, the Web APIs will be running on the local computer, in order to quickly get
started and running.

If you plan to apply a web debugging proxy tool to debug the deployed application or want to
publish the PowerServer Web APIs to a dedicated server, then use the actual IP address.

Figure 4.4:

Step 5: Import a valid PowerServer license in the Web APIs tab.

You can import a valid license into the project settings using Auto Import (importing the
current PowerBuilder CloudPro or trial license), or Import from File (file from the License
Management page on https://account.appeon.com).

Figure 4.5:

Step 6: Double check the Database Configuration in the Web APIs tab.

1. Click the Database Configuration button in the Web APIs tab in the PowerServer
project painter.

https://account.appeon.com

Minimal efforts: Deploying the sample PowerServer
project

Page 12

2. Click DB Drivers in the upper part to make sure the SQL Anywhere driver (or
PostgreSQL driver) and the option "I have read and agree to the license ..." both are
selected.

3. Select the "Sales" cache and then click the Edit button besides the selected cache name.

If you use SQL Anywhere as the demo database, no change is needed to the database
configuration. If you use PostgreSQL as the demo database, the default login account is
postgres (user)/postgres (password). Please double check the connection.

Figure 4.6:

4.2 Building and deploying the PowerServer project

Step 1: Click the Save button () in the toolbar.

Step 2: Click the Build & Deploy PowerServer Project button () in the toolbar to build
and deploy the project.

4.3 Starting the Web APIs

Step 1: Make sure your computer can connect to the NuGet site (https://www.nuget.org).

The packages required for compiling and running the Web APIs must be downloaded from
the NuGet site first.

Step 2: Click the Compile & Run Web APIs button () in the toolbar to compile and run
the Web APIs on the local computer.

This will run the Web APIs directly on Kestrel (a light-weight web server included and
enabled automatically in every ASP.NET Core project).

https://www.nuget.org

Minimal efforts: Deploying the sample PowerServer
project

Page 13

To deploy Web APIs to a dedicated hosting environment such as Docker or IIS, refer to
Tutorial 2: Hosting Web APIs in Docker Containers and Tutorial 3: Hosting Web APIs in
IIS.

Step 3: Check the Output window and make sure build is successful.

Step 4: Make sure the API console window displays "Application started...".

Also notice "Now listening on: http://0.0.0.0:5000" in the console window. This is the
URL for accessing the Web APIs. You can use "localhost" or the IP address to access
the Web APIs running on the local computer. The port number can be modified in the
launchSettings.json in the PowerServer C# solution and will take effect in the development
environment.

When the installable cloud application is run later, you can view the logs in the console
window to check if the requests and responses are processed successfully.

Figure 4.7:

4.4 Running the installable cloud application

Step 1: Click the Run PowerServer Project button () in the toolbar to run the
application.

For more information about running the application, refer to Run the installable cloud
application.

Step 2: In the app entry page that appears, click Download the Launcher to download and
install the launcher.

After the launcher is installed, the application should automatically start, if not, click Start
the Application in the entry page to start the application.

Minimal efforts: Deploying the sample PowerServer
project

Page 14

Figure 4.8:

Step 3: When the application main window displays, click the Address button in the
application toolbar. Data should be successfully displayed.

You can view the logs in the API console window to check if the Web API requests and
responses are successful.

Figure 4.9:

Full experience: Creating and deploying a new
PowerServer project

Page 15

5 Full experience: Creating and deploying a
new PowerServer project
This chapter guides you to try the full steps of creating, deploying and then running a
PowerServer project (Example Sales App) from the very beginning. During the process, you
can get a better understanding of each setting in the PowerServer project. Alternatively, if
you hope to have a really quick experience on deploying PowerServer projects, you may start
with the sample PowerServer project (salesdemo_cloud) provided in the salesdemo.pbl. For
more information, see Deploying the sample PowerServer project.

5.1 Creating the PowerServer project

5.1.1 Creating a new PowerServer project

Step 1: In the PowerBuilder System Tree view, right click the SalesDemo workspace and
select New. In the New dialog, select the Project tab and then select PowerServer.

The PowerServer project painter is opened.

Configure the PowerServer project painter according to the instructions below. Some tab
pages that do not need to be configured in this tutorial will be skipped directly. For detailed
information on how to use each tab page, refer to the How-to guides.

5.1.2 Configuring the General tab

Step 1: On the General tab, input "salesdemo_cloud_new" in App name as the application
name.

5.1.3 Configuring the External Files tab

Step 1: On the External Files tab, select Files preloaded as compressed packages and
then click Create Package. Input a package name (for example "theme"). Then select this
package and click Add Folder to add these two folders one by one: JSON and Theme, as
shown in the figure below.

Step 2: Select Files preloaded in uncompressed format and then click Add Files to add the
files as shown in the figure below.

Step 3: Select Images/videos dynamically loaded and then click Add Folder to add the
following folder: image.

Full experience: Creating and deploying a new
PowerServer project

Page 16

Figure 5.1:

5.1.4 Configuring the Runtime tab

Step 1: On the Runtime tab, select WebBrowser Support and RibbonBar Support.

Full experience: Creating and deploying a new
PowerServer project

Page 17

Figure 5.2:

5.1.5 Configuring the Client Deployment tab

Step 1: Select the Client Deployment tab in the PowerServer project painter.

Step 2: In the Deployment mode section, click the Server Configuration button.

Step 3: In the Web Server Profile window that appears, click the Add button.

Step 4: In the Add/Edit Server window, select Local server, set the Web root full path (in
this tutorial, C:\inetpub\wwwroot), and then click Test File Path to ensure the path is valid.

Full experience: Creating and deploying a new
PowerServer project

Page 18

This tutorial assumes your OS is installed to the C drive and the IIS Web root is C:\inetpub
\wwwroot.

If you encounter any errors when configuring the Web server profile, refer to Permission
errors when configuring the Web server profile.

Figure 5.3:

Step 5: Click OK to save the server profile and return to the Web Server Profile window.

Step 6: Click the Upload Cloud App Launcher button.

Full experience: Creating and deploying a new
PowerServer project

Page 19

Figure 5.4:

Step 7: In the Upload Cloud App Launcher and Runtime window that appears, select
Directly upload to the server and Local, and then make sure the following are selected:
Local, Upload the runtime files for the apps, 32-bit, and 64-bit.

Step 8: Click Upload and make sure the upload is successful.

This section Uploading the cloud app launcher and the runtime files has more details about
this window.

Full experience: Creating and deploying a new
PowerServer project

Page 20

Figure 5.5:

5.1.6 Configuring the Web APIs tab

Step 1: On the Web APIs tab, select "New solution" from the Solution name list; in the New
solution dialog, click OK to use the default solution name.

Figure 5.6:

Full experience: Creating and deploying a new
PowerServer project

Page 21

Step 2: Use the default Web API URL "http://localhost:5000". Make sure the port setting in
the Web API URL is not occupied by another program.

In this tutorial, the Web APIs will be running on the local computer, in order to quickly get
started and running.

If you plan to apply a web debugging proxy tool to debug the deployed application or want to
publish the PowerServer Web APIs to a dedicated server, then use the actual IP address.

Figure 5.7:

Step 3: Click the Database Configuration button at the bottom of the Web APIs tab.

Step 4: In the Database Configuration dialog, click DB Drivers in the upper part to make
sure the SQL Anywhere driver (or PostgreSQL driver) and the option "I have read and agree
to the license ..." both are selected.

Step 5: In the Database Configuration dialog, click New in the upper part to create the
database connection that will be used by the Web APIs.

Figure 5.8:

Create the database connection with the following settings:

• Specify any text (for example "local_sa") as the database cache name.

Full experience: Creating and deploying a new
PowerServer project

Page 22

• Specify SQL Anywhere (ODBC) as the database provider.

• Select PB Demo DB V2021 as the data source.

• Specify "dba" as the user name and "sql" as the password.

• Click Test Connection to make sure the database can be connected successfully.

Figure 5.9:

Full experience: Creating and deploying a new
PowerServer project

Page 23

Step 6: Click OK to save settings and go back to the Database Configuration dialog; and
then click New in the lower part to map the transaction object with the database cache.

Step 7: Input "sqlca" as the transaction object that maps to the database cache.

Figure 5.10:

5.1.7 Importing the PowerServer license

The imported license file will be deployed along with the Web APIs project, and will be
activated when the Web APIs starts.

First of all, make sure you have a valid license for PowerServer 2021 GA.

• If you have a preview or beta license, the preview or beta license will no longer work
with the GA version.

• If you already have a PowerBuilder CloudPro license (no matter which version it is),
the CloudPro license will automatically work with the GA version. Each PowerBuilder
CloudPro subscription includes a developer license of PowerServer, which supports a
maximum of 5 user sessions (user session = installable cloud app). You will need to
purchase a production license of PowerServer in order to use the production server and
more user sessions.

• If you have no PowerBuilder CloudPro license, you can apply for a trial license at
https://www.appeon.com/psfreetrial, or purchase a production license of PowerServer from
https://www.appeon.com/pricing.

Once you have a valid license, you can import the license and deploy it along with the Web
APIs project. The license will be activated when the Web APIs starts.

https://www.appeon.com/psfreetrial
https://www.appeon.com/pricing

Full experience: Creating and deploying a new
PowerServer project

Page 24

To import the license automatically:

To activate PowerServer using the developer license or trial license included in the
PowerBuilder CloudPro subscription, you can obtain the license automatically from the
Appeon website according to the current PowerBuilder IDE login account.

1. Make sure the computer can connect to the Appeon sites (through port number 80):
https://api.appeon.com and https://api2.appeon.com.

2. Go to the Web APIs tab of the PowerServer project painter, and then click Auto Import
to automatically import the license.

PowerBuilder will automatically obtain the developer or trial license of PowerServer
(according to your PowerBuilder IDE login account) from the Appeon sites and then
import the license here.

Figure 5.11:

To import the license manually:

You can also export the license file from the Appeon website manually and then import the
license here.

1. Log into the Appeon User Center, click License Management, and then click All
Licenses under PowerServer.

https://api.appeon.com
https://api2.appeon.com

Full experience: Creating and deploying a new
PowerServer project

Page 25

Figure 5.12:

2. Click View, and then click Export to export the license code to a TXT file
([LicenseKey].txt) and save the file on the local machine.

Full experience: Creating and deploying a new
PowerServer project

Page 26

Figure 5.13:

3. Go to the Web APIs tab of the PowerServer project painter, and then click Import form
File to select and import the [LicenseKey].txt file.

Figure 5.14:

5.2 Building and deploying the PowerServer project

Step 1: Click the Save button () in the toolbar and then enter a name for the PowerServer
project object.

A PowerServer project object will be created under the specified library.

Step 2: Click the Build & Deploy PowerServer Project button () in the toolbar to build
and deploy the project.

Select ODB ODBC | PB Demo DB V2021 from the Database Profiles dialog box if you are
prompted to connect to a database profile.

Full experience: Creating and deploying a new
PowerServer project

Page 27

5.3 Starting the Web APIs
Step 1: Make sure your computer can connect to the NuGet site (https://www.nuget.org).

The packages required for compiling and running the Web APIs must be downloaded from
the NuGet site first.

Step 2: Click the Compile & Run Web APIs button () in the toolbar to compile and run
the Web APIs on the local computer.

This will run the Web APIs directly on Kestrel (a light-weight web server included and
enabled automatically in every ASP.NET Core project).

To deploy Web APIs to a dedicated hosting environment such as Docker or IIS, refer to
Tutorial 2: Hosting Web APIs in Docker Containers and Tutorial 3: Hosting Web APIs in
IIS.

Step 3: Check the Output window and make sure build is successful.

Step 4: Make sure the API console window displays "Application started...".

Also notice "Now listening on: http://0.0.0.0:5000" in the console window. This is the
URL for accessing the Web APIs. You can use "localhost" or the IP address to access
the Web APIs running on the local computer. The port number can be modified in the
launchSettings.json in the PowerServer C# solution and will take effect in the development
environment.

When the installable cloud application is run later, you can view the logs in the console
window to check if the requests and responses are processed successfully.

Figure 5.15:

5.4 Running the installable cloud application

Step 1: Click the Run PowerServer Project button () in the toolbar to run the
application.

For more information about running the application, refer to Run the installable cloud
application.

Step 2: In the app entry page that appears, click Download the Launcher to download and
install the launcher.

https://www.nuget.org

Full experience: Creating and deploying a new
PowerServer project

Page 28

After the launcher is installed, the application should automatically start, if not, click Start
the Application in the entry page to start the application.

Figure 5.16:

Step 3: When the application main window displays, click the Address button in the
application toolbar. Data should be successfully displayed.

You can view the logs in the API console window to check if the Web API requests and
responses are successful.

Figure 5.17:

How-to Guides

Contents
1 Overview .. 1
2 Create the PowerServer project .. 2
3 Define the PowerServer projects ... 3
4 Configure the Web server for deployment ... 14
5 Upload the cloud app launcher and the runtime files .. 17

5.1 About cloud app launcher .. 20
6 Configure the Web API settings .. 22
7 Configure the database connection ... 25
8 Import license and activate PowerServer .. 32
9 Analyze the unsupported features ... 35
10 Build and deploy the PowerServer project .. 36

10.1 What is the PowerServer C# solution .. 37
10.2 What settings will be deployed to the solution ... 40
10.3 Build & deploy using commands ... 42
10.4 Run the ServerAPIs.Tests project ... 45

11 Compile and run the Web APIs ... 47
12 Check the status of Web APIs .. 49
13 Run the installable cloud application ... 50
14 Customize the app entry page .. 53
15 Customize the deployed app using commands ... 54

15.1 Change the External Files ... 55
15.2 Change the Web API URL .. 56
15.3 Encrypt the database password .. 57

16 Support cookie validation ... 59
17 View the API documentation ... 61
18 Get/Kill user sessions .. 63
19 Package the client app .. 65
20 Undeploy the client app ... 66
21 Uninstall the client app .. 67

Overview

Page 1

1 Overview
The following tasks give a comprehensive overview of what you can perform for a
PowerServer project:

1. Create the PowerServer project.

2. Define the PowerServer project.

3. Configure the Web server for deployment.

4. Upload the cloud app launcher and the runtime files.

5. Configure the Web API settings.

6. Configure the database connection.

7. Import license and activate PowerServer.

8. Analyze the unsupported features.

9. Build and deploy the PowerServer project.

10.Compile and run the Web APIs.

11.Check the status of Web APIs.

12.Run the installable cloud application.

13.Customize the app entry page.

14.Customize the deployed app using commands.

15.View the API documentation.

16.Get/Kill user sessions.

17.Package the client app.

18.Undeploy the client app.

19.Uninstall the client app.

Create the PowerServer project

Page 2

2 Create the PowerServer project
Recommendation: It is recommended that you launch PowerBuilder IDE as an
administrator; otherwise PowerBuilder IDE may not have full permissions to read/write the
folder under the Web server.

To create a PowerServer project:

1. Select File>New or click the New button in the PowerBar to open the New dialog box.

2. Select the Project tab.

3. Select the target in which you want to create the project from the Target drop-down list.

4. Select the PowerServer project type and click OK.

The Project painter for PowerServer opens so that you can specify the various
properties of your application.

5. When you have finished defining the project object, save the object by selecting

File>Save from the menu bar or by clicking the Save button () in the toolbar.
PowerBuilder saves the project as an independent object in the specified library. Like
other objects, projects are displayed in the System Tree and the Library painter.

Define the PowerServer projects

Page 3

3 Define the PowerServer projects
Once you have created a PowerServer project, you can open it from the System Tree and
modify the properties if necessary. The Project painter for the PowerServer project looks like
this.

Figure 3.1:

The following describes each of the pages and options you can specify in the Project painter
for PowerServer.

General page

Table 3.1: General page

Option What you specify

App name Specify a name for the application.

PBR file name (Optional) Specify a PowerBuilder resource file (PBR) for your application
if you dynamically reference resources (such as bitmaps and icons) in your
scripts and you want the resources included in the application instead of
having to distribute the resources separately.

Define the PowerServer projects

Page 4

Option What you specify
You can type the name of a PBR file in the box or click the button next to
the box to browse your directories for the PBR file you want to include.
The PBR file as well as the resources it references must reside in the
application directory or subdirectory; and only relative paths of the PBR
file and the resources will be accepted.

For more about PBRs, see Distributing resources in PowerBuilder User
Guide.

Windows
classic style

Select this to add a manifest file to the application that specifies the
appearance of the controls as an application resource.

By default, this option is not selected, which means the Windows flat style
is used and the 3D effect of some controls will be removed to have a "flat"
look, for example, the 3D lowered border of Column and Computed Field
in the DataWindow object, the background color of Button, the BackColor
and TextColor of the tooltip, and the TabBackColor of tab header will not
take effect. If you still want the 3D effect, you should select the "Windows
classic style" option when deploying the application.

Note

If you have applied a theme to the application, you should not
check the "Enable Windows Classic Style in the IDE" option in the
System Options or the "Windows classic style" option in the project
painter and the PB.INI file (if any) should not contain such setting,
otherwise, the application UI will be rendered in the Windows
classic style instead of the selected theme.

Rebuild Specify either Full or Incremental to indicate whether you want to
regenerate and redeploy all object files to the Web server. If you choose
Incremental, PowerBuilder regenerates and redeploys only objects that
have changed, and objects that reference any objects that have changed,
since the last time you built the application.

As a precaution, regenerate all objects before rebuilding your project.

Enable
DEBUG
symbol

Select to enable any code that you placed in DEBUG conditional code
blocks. For more information, see Using the DEBUG preprocessor symbol
in PowerBuilder User Guide.

Encrypt all the
compiled p-
code files

Select whether to encrypt the object files when compiled from the
PowerBuilder dynamic libraries.

Platform Select if the application can run on 32-bit or 64-bit machines.

Manifest
Information

Select whether to generate a manifest file (either external or embedded)
and to set the execution level of the application.

For further information, see Attaching or embedding manifest files in
PowerBuilder User Guide.

https://docs.appeon.com/pb2021/pbug/ch07s03.html#Distributing_resources
https://docs.appeon.com/pb2021/pbug/ch07s01.html#ug20730
https://docs.appeon.com/pb2021/pbug/ch07s03.html#Attaching_or_embedding_manifest_files

Define the PowerServer projects

Page 5

Option What you specify

Properties
displayed for
executable

Specify your own values for the Product name, Company name,
Description, Copyright, Product version, and File version fields associated
with the application file and with machine-code DLLs. These values
become part of the Version resource associated with the application file,
and most of them display on the Version tab page of the Properties dialog
box for the file in Windows Explorer. The Product and File version string
fields can have any format.

Executable
version used by
installer

Specify the product version and file version (in numeric values) that will
be used by Microsoft Installer to determine whether a file needs to be
updated.

The four numbers can be used to represent the major version, minor
version, point release, and build number of your product. They must all be
present. If your file versioning system does not use all these components,
you can replace the unused numbers with zeros. The maximum value for
any of the numbers is 65535.

Libraries page

Table 3.2: Libraries page

Page What you specify

Libraries
page

Specify a PBR file for a dynamic library if it uses resources (such as bitmaps and
icons) and you want the resources included in the dynamic library instead of having
to distribute the resources separately.

You can type the name of a PBR file in the box or click the button next to the box to
browse your directories for the PBR file you want to include. The PBR file as well
as the resources it references must reside in the application directory or subdirectory;
and only relative paths of the PBR file and the resources will be accepted.

External Files page

Table 3.3: External Files page

Page What you specify

External Files
page

Specify the custom user external files and/or the resource files that are
referenced in the PowerScript. Make sure all these files are placed in the
same folder or sub-folder of the application target (.pbt) file.

Files preloaded as compressed packages and Files preloaded in
uncompressed format

The custom user external files will be downloaded from the server
before the application starts. It is recommended that you deploy the files
which stay unchanged most of the time (such as UI theme files) as one
compressed package, so that it can be transferred faster; and deploy the
files which may be modified frequently (such as INI files) as individual
files, or deploy them as a separate package.

• To deploy files as one compressed package, select Files preloaded as
compressed packages from the list box, then click Create Package to

Define the PowerServer projects

Page 6

Page What you specify
create a package, and then click Add Folder or Add Files to add the
folder or files under this package.

• To deploy files as individual files, select Files preloaded in
uncompressed format from the list box, and then click Add Folder or
Add Files to add the folder or files under it.

The custom user external files may include the following:

• INI files (including pb.ini, pblab.ini, pbodb.ini etc.)

You can specify the update strategy for the INI file by clicking the INI
Configuration button. More details are provided below.

• DLL/OCX files (requiring no administrator rights to register)

You can specify which DLL/OCX files can be registered by Regsvr32
or Regasm by clicking the DLL & OCX Registration button. More
details are provided below.

• XML files or image files used by the UI theme or external functions

• text files, PDF files or any other files used by the external function

Images/videos dynamically loaded

The resource files (such as images, videos etc.) are downloaded from the
server at the moment when they are used by the application. You can select
Images/videos dynamically loaded and then click Add Folder or Add
Files to add the folder or files under it.

Note

The read-only files added under Files preloaded in uncompressed
format or Images/videos dynamically loaded will lose its read-
only attribute after transferred to the server via FTP. This seems to
be a common issue with FTP transfer.

DLL & OCX Registration

If the DLL/OCX files need to be registered and can be registered by
Regsvr32 or Regasm without requiring the administrator rights, you can
click DLL & OCX Registration to select the DLL/OCX files so that
they can be registered by Regsvr32 or Regasm automatically before the
application starts; if the DLL/OCX files need to be registered but cannot
be registered by Regsvr32 or Regasm or they need to be registered using
administrator rights, you can specify the registration commands in Preload
Event in the Run Options tab.

INI Configuration

Define the PowerServer projects

Page 7

Page What you specify
When the application is updated, the INI file can be updated with the
specified strategy. Click the INI Configuration button and then select one
or more INI file and configure the strategy for them at one time; or select
and configure for the INI file one by one.

• Overwrite update -- The INI file on the client will be updated if the INI
file downloaded from the server has been updated, and changes made to
the local INI file will be lost.

• Merge update -- The INI file on the client will be merged with the INI
file downloaded from the server, so changes made to the local INI file
will be preserved and merged into the INI file downloaded from the
server. But notice that any setting that exists in the local INI file while
does not exist in the downloaded INI file will be removed.

• Do not update -- Once the INI file is downloaded to the client, it shall
never be updated with the INI file downloaded from the server.

Note

The external files cannot contain any file that has the same name
as the application, or the PBD or p-code file to be generated,
otherwise duplicate name error occurs.

For example, [appname].exe, [appname].xml, [appname].manifest
file etc. cannot be added to External Files.

For another example, test.pbl will be deployed as test.pbd,
therefore, test.pbd cannot be added to External Files.

Runtime page

Table 3.4: Runtime page

Page What you specify

Runtime page Select the runtime files according to the features used in the application.
The files will be downloaded from the server to the client, for the
application to run.

The deployment tool does not actually deploy the files, instead it notifies
the application to download such files (corresponding to the runtime
version displayed) from the server directly. The runtime version displayed
on this page can be configured in the IDE > System Options dialog. And
you will need to make sure the corresponding version of PowerBuilder
Runtime is uploaded to the server when you upload the Cloud App
Launcher to the server.

Signing page

Define the PowerServer projects

Page 8

Table 3.5: Signing page

Page What you specify

Signing page Select whether to digitally sign the application executable file
(appname.exe).

If you want to digitally sign the application executable file, you can
specify the settings required for signing under the "Use the SignTool utility
from the Windows SDK" option, for example, SignTool location, signing
certificate, certificate password, signature algorithm, and URL of the time
stamp server. And make sure Microsoft’s SignTool has been installed on
the current machine.

Or you can place the signing scripts in a file (with file extension as .cmd)
and then select the file for the "Use your own signing script" option.
For example, to sign the application executable file (appname.exe)
using Microsoft’s SignTool, you may create a cmd file that includes the
following scripts:

signtool.exe sign /f mycert.pfx /p password /d "My
 application" /du http://www.mytest.com /fd sha256 /tr "http://
timestamp.digicert.com" /td sha256 mytest.exe

After the executable file is generated and before it is deployed to the
server, PowerBuilder will sign the executable file using your own signing
scripts or using the SignTool settings you specified.

Make sure the PowerBuilder user has the appropriate rights to access the
time stamp server and sign files.

Client Deployment page

Table 3.6: Client Deployment page

Option What you specify

Deployment
mode

Select to deploy the client app to a local server or a remote server. If you
have not configured the server yet, click the Server Configuration button
and follow instructions in Configuring the Web server for deployment to
configure the server.

If the option "Check the availability of Cloud App Launcher on the server
during the deployment process" is selected, the deployment process will be
terminated if no Cloud App Launcher is detected on the target server. For
how to upload the app launcher and runtime files, refer to Uploading the
app launcher and runtime files.

You can also choose to package the client app as an executable installer or
a zipped file, and then install the client-side to the Web servers. For more
about packaging a client app, refer to Package the client app.

Deployment
version

The deployment version number is used by the server to determine whether
to perform an install or update for the application.

It is recommended to increment the deployment version number every time
when the application is updated and re-deployed.

Define the PowerServer projects

Page 9

Option What you specify

Available time
and Expiration
time

Schedule the time for the deployment version to be accessible or
inaccessible to end users.

However, if the available time or expiration time is reached and the
app is still open, the app will not get updated, until the app is closed
or the session times out. Therefore, it is recommended that the session
timeout feature should be enabled (for apps deployed via PowerServer) or
implemented (for apps deployed via PowerClient).

Minimum
compatible
version

Specify the lowest compatible version for the application. If the current
version installed is older than it, a forced update will be performed, or the
application will stop running.

Download
options

Specify when to download the application files -- before the application
starts or at the moment when they are called by the application at runtime.

If you select "Download the app files as necessary", the following files will
be downloaded before the app runs: 1) the PowerBuilder Runtime files, 2)
the application executable, and 3) the files you selected to be preloaded in
the External Files page; the other files will be downloaded at the moment
they are called by the app.

If you select "Download all the app files at app startup", the runtime files,
app executable, the application files, and external files are all downloaded
at the startup, except for the image files that are set to be dynamically
loaded in the External Files settings.

App entry page
settings

Specify which mode (with or without background service) will be
run by default when the user accesses the application by inputting
http://IPAddress/AppName.

IMPORTANT: This setting must be consistent with the app launcher
which is uploaded to the server, otherwise the application will fail to run.
If you have changed the mode and uploaded the launcher again, make sure
you also change the mode here accordingly, and ask the end user to clear
the browser cache if the app launcher fail to run on the client.

• If you have uploaded the app launcher with background service, then
you should select "Startup with background service" (and keep
"Deploy auto.html..." selected and "Deploy manual.html..." unselected).

In such case, the user can input http://IPAddress/AppName or
http://IPAddress/AppName/auto.html to access the application.

The user should not input http://IPAddress/AppName/manual.html,
otherwise it will lead to a "page not found" error or an infinite searching
for files.

• If you have uploaded the app launcher without background service, then
you should select "Startup without background service" (and keep
"Deploy manual.html..." selected and "Deploy auto.html..." unselected).

Define the PowerServer projects

Page 10

Option What you specify
In such case, the user can input http://IPAddress/AppName or
http://IPAddress/AppName/manual.html to access the application.

The user should not input http://IPAddress/AppName/auto.html,
otherwise it will lead to a "page not found" error or an infinite searching
for files.

• If you have uploaded the app launcher with and without background
service, then you can choose the default startup mode between "Startup
with background service" and "Startup without background service" and
then select both the "Deploy manual.html..." and "Deploy auto.html..."
options.

In such case, the user can input http://IPAddress/AppName/manual.html
to run the application without background service, and input
http://IPAddress/AppName/auto.html to run the application with
background service; or input http://IPAddress/AppName to run the
application in the default startup mode.

The visual displays of the app entry page are customizable. For how, refer
to Customize the app entry page.

Run Options page

Table 3.7: Run Options page

Option What you specify

Commandline
arguments

Specify the command line arguments for the application. The arguments
will be directly passed to the application when the application is run. And
the arguments will be automatically saved and updated to the app startup
icon on the desktop and the app shortcut menu in Windows start.

The arguments specified here cannot be modified at runtime. If you want
to modify the argument at runtime, you can specify the argument in the
application URL (for example, http://localhost/salesdemo/?arg=1).

You can also pass arguments to the EXE directly. If there are multiple
arguments, please include them in quotation marks or separate them with a
delimiter (instead of a space), for example,

C:\Users\<username>\AppData\Roaming\PBApps\Applications
\localhost_<appname>\<appname>.exe "parm1 parm2 parm3"

C:\Users\<username>\AppData\Roaming\PBApps\Applications
\localhost_<appname>\<appname>.exe parm1/parm2/parm3

Show the
loading
animation
before the app
runs

Specify whether to show an animation (as shown below) when the
application prepares for startup. The animation will disappear when the
application's first window displays.

This option should not be selected if the application starts with no user
interface; otherwise the animation will not disappear.

Define the PowerServer projects

Page 11

Option What you specify
Figure 3.2:

You can deploy your own animation to replace the default animation (as
shown above). For how, refer to Customize the app entry page.

Validate the
application
integrity before
the app runs

Specify whether to validate the hash of every object file before they are
loaded, so that files changed illegally will not be run.

App shortcut You can specify whether to create the following shortcuts:

• Desktop shortcut -- Specify whether to create an application shortcut
icon on the client desktop.

• Start menu shortcut -- Specify whether to create an application start
shortcut menu in the Windows start menu.

• App uninstall shortcut -- Specify whether to create an application
uninstall shortcut menu in the Windows start menu.

You can also customize the app shortcut name and the shortcut icon (the
icon file must be added to the External Files tab first before it can be
selected here).

Preload event (Optional) Specify the commands that will be executed immediately after
files are downloaded and before the application starts. For example, you
can specify commands to register DLL/OCX files that cannot be registered
by Regsrv32 or Regasm or require administrator rights to register; or any
other commands that need to be executed with administrator rights.

If the commands need to be executed with the administrator rights, you
should select the Run as administrator option.

You can specify how often the commands should be executed: for only
one time when the application is launched for the first time or when the
application is updated, or every time when the application runs.

The commands can be any Windows commands or user-defined
commands.

For example, suppose there is a DLL file from the application that needs to
be registered on the client, you can enter the following commands:

Define the PowerServer projects

Page 12

Option What you specify
cd /d "C:\Windows\Microsoft.NET\Framework\v4.0.30319"
regasm "%AppData%\Appeon\PBCloud
\demo.appeon.com_app1\EncryptDecryptClass.dll" /tlb:testappeon.tlb
 /codebase /nologo

Note: As the commands are executed silently, any commands that will
pause the execution and wait for user input will cause the application to
wait endlessly.

Running app
from IDE

Specify how the application can be launched from the PowerBuilder IDE
(when you select the Run PowerServer Project button in the toolbar or
from right-clicking the PowerServer project in the System Tree).

You can specify the host name, port number, connection type (HTTP or
HTTPS), and/or arguments. You can also specify to start the application
from the Cloud App Launcher if the Cloud App Launcher is installed, or
from a Web browser if the Cloud App Launcher is not already installed.
If the Cloud App Launcher is not installed on the current machine, even if
you have specified to start the application from the Cloud App Launcher,
the Web browser will start to install the Cloud App Launcher and run the
application.

The arguments specified here will be appended to the application URL and
then passed to the application via the URL, for example, http://localhost/
salesdemo/?arg1&arg2.

Note that the arguments appended to the application URL cannot contain
special characters such as "?", "#", as they have special meanings in HTML
URL; if you want to use these characters in the argument name or value,
you can specify them in the Commandline arguments as static arguments
on this same page, so that they can be passed to the application directly
instead of being sent as part of the URL.

Web APIs page

Table 3.8: Web APIs page

Option What you specify

Web API
Generation

Specify the location, name, authentication template, and namespace for
the PowerServer C# solution. The namespace can only contain characters,
numbers, and underscores, and the first character must be a capital letter or
underscore.

If the PowerServer C# solution has already been created before, you
can select an existing solution from the Solution name list, and then
deploy the app to the existing solution; if you re-deploy an app to an
existing solution, the application data models and ESQLs will be updated
in the solution, and if you deploy a new app to an existing solution, the
application data models and ESQLs will be added to the existing solution.

You can also choose whether to overwrite the server settings (such
as license, launch settings etc.) and the authentication template in the
solution. Apps deployed to the same solution can share settings including

Define the PowerServer projects

Page 13

Option What you specify
PowerServer license, Web API URL, database connection settings etc. and
can take advantage of additional features such as authorization, file server
etc. that are developed by users.

See Configure the Web API settings for more details.

Web API URL Specify the URL for accessing the PowerServer Web APIs.

It is highly recommended that you specify an HTTPS URL for the
production environment.

Important

The port number in the Web API URL will be deployed to the
PowerServer C# solution; so that when PowerServer Web API
starts, it starts at the specified port number.

And the complete Web API URL will be deployed to the Web
server, so that the client knows where to call the PowerServer Web
APIs.

License settings You can click Auto Import to directly obtain and import the license
from the Appeon sites, or click Import from File to select and import the
license file.

See Import license and activate PowerServer for more details.

Database
Configuration

Click the Database Configuration button to configure the database
connection for the application deployment and runtime. The database
connection is required 1) when converting the PowerBuilder DataWindow
objects to C# models during the deployment process; and 2) when
accessing data from the database at application runtime.

See Configure the database connection for more details.

Configure the Web server for deployment

Page 14

4 Configure the Web server for deployment
A Web server is required to host the client-side of the installable cloud app deployed from the
PowerServer project. If you have not set up any Web server yet, you can follow this tutorial
Setting up a Web server.

Any type of Web server (such as IIS, Apache, Nginx etc.) is supported. You can set up FTP
on the server, so that you can remotely deploy the app to the server. For how to configure
FTP on a server running against IIS, refer to Creating an IIS FTP site. For how to configure
SSL on a server running against IIS, refer to Configure an SSL-based FTP server.

To configure a deployment server:

1. Select Tools>Web Server Profile from the menu bar to open the Web Server Profile
window.

2. In the Web Server Profile window, click the Add button.

Figure 4.1:

3. In the Add/Edit Server window, select Local server or Remote server.

For a local server, set the Web root full path (for example %systemdrive%\inetpub
\wwwroot for IIS), and then click Test File Path to ensure the path is valid.

Note

If you intend to deploy to a local Web server, make sure you run PowerBuilder as
administrator or have write permissions to the specified directory (administrator rights
are required when transferring files to a local Web server).

Configure the Web server for deployment

Page 15

For a remote server, specify a profile name and the connection settings for the FTP site
(including host name, port number, FTP username, FTP password, and encryption), and
then click Test FTP Connection to ensure the connection is successful.

4. Click OK. The server profile will be created.

Figure 4.2:

The server configuration will be used by all PowerServer projects; therefore if you have
changed the server settings, you will need to upload the app launcher if no launcher has been
uploaded to that server or directory.

Note

If you intend to deploy to the Web server through a proxy server, make sure the
proxy server and the FTP server have the same encoding, otherwise, the multi-byte
characters in the file/folder name will become unrecognizable after deployed to the
server.

Note

As PowerBuilder is designed to be case-insensitive, therefore, in a case-sensitive
system like Linux, some app files (such as images) may not be found or loaded. To

Configure the Web server for deployment

Page 16

avoid any issue caused by the case of file name, make sure to configure the Linux
server to ignore case-sensitive.

Upload the cloud app launcher and the runtime files

Page 17

5 Upload the cloud app launcher and the
runtime files
The app launcher and the runtime files must be uploaded to the Web server, and then
installed to the client when the application is run for the first time. The app launcher and the
runtime files will be used by all apps that are deployed to the same server and directory.

Note: there will be only one app launcher in the specified server and directory, although there
can be multiple versions of runtime files. The app launcher will be overwritten without notice
by the one uploaded later to the same server and directory.

To upload the app launcher and runtime files:

1. Select Tools>Upload Cloud App Launcher from the menu bar. The Upload Cloud
App Launcher and Runtime window appears.

Figure 5.1:

2. In the Upload Cloud App Launcher and Runtime window, select whether to directly
upload the app launcher and runtime files to the server or only create a zip package and
manually upload it to the server later.

• To directly upload the app launcher and runtime files to the server, select a local
server or a remote server where the app launcher and the runtime files will be
uploaded.

• To create a zip package which will be manually uploaded later, specify where the zip
package will be created.

Upload the cloud app launcher and the runtime files

Page 18

IMPORTANT: the app launcher and runtime files must be uploaded to the same server
and directory where the application will be deployed. If you have not configured the
server yet, follow instructions in Configure the Web server for deployment to configure
the server first.

3. Select the runtime files (32-bit and/or 64-bit) to upload.

The version of runtime files is determined by the runtime version selected in the IDE >
System Options. Multiple versions of runtime files can co-exist on the same server and
directory.

4. Select or create an app launcher to upload.

You can select an existing app launcher from the Launcher profile list:

• Default_WithoutService -- This profile specifies the launcher without the background
service. It contains the following default settings:

• Launcher without background service is selected.

• Default_WithServiceSingle -- This profile specifies the launcher with the background
service which supports single Windows user by default. It contains the following
default settings:

• Launcher with background service is selected.

• Single user is selected.

• Default_WithServiceMulti -- This profile specifies the launcher with the background
service which supports multiple Windows users by default. It contains the following
default settings:

• Launcher with background service is selected.

• Multiple users is selected.

• Default_Both_WithServiceSingle -- This profile specifies the launcher with the
background service and the launcher without the background service; and the
launcher with the background service supports single Windows user by default. This
profile contains the following default settings:

• Launcher without background service is selected.

• Launcher with background service is selected.

• Single user is selected.

• Default_Both_WithServiceMulti -- This profile specifies the launcher with the
background service and the launcher without the background service; and the
launcher with the background service supports multiple Windows users by default.
This profile contains the following default settings:

Upload the cloud app launcher and the runtime files

Page 19

• Launcher without background service is selected.

• Launcher with background service is selected.

• Multiple users is selected.

Or you can create your own launcher by clicking the Create button, if you want to
customize the launcher settings.

• Specify a profile name for your new launcher.

• Specify where to save your new launcher on the local machine.

• On the General tab, specify the title and the logo (ICO format) that will be shown in
the launcher.

• On the Advanced Options tab, specify where to install the application on the client.
The path in the App path field will be used as the default installation path. If you
want to allow the user to select where to install the application during the installation
process, you can select "Allow the user to change the path".

IMPORTANT: If you want to set a different path as the default path instead of
%AppData%\PBApps, you should NOT include the system variable (such as %windir
%, %temp% etc.) other than %AppData%, because currently only the %AppData%
variable is supported.

• On the Advanced Options tab, specify which app launcher will be uploaded and
installed: launcher without background service, or launcher with background service,
or both. When Launcher with background service is selected, you can specify
the launcher with background service supports single Windows user by default or
supports multiple Windows users by default, and/or if you want to allow the user to
select which user option to support during the installation process, you can select
"Allow the user to change the option".

• On the Signing tab, select whether to digitally sign the launcher executable file
(CloudAppLauncher_Installer.exe).

If you want to digitally sign the launcher executable file, you can specify the settings
required for signing under the "Use the SignTool utility from the Windows SDK"
option, for example, SignTool location, signing certificate, certificate password,
signature algorithm, and URL of the time stamp server. And make sure Microsoft’s
SignTool has been installed on the current machine.

Or you can place the signing scripts in a file (with file extension as .cmd) and then
select the file for the "Use your own signing script" option. For example, to sign the
executable file (CloudAppLauncher_Installer.exe) using Microsoft’s SignTool, you
may create a cmd file that includes the following scripts:

signtool.exe sign /f mycert.pfx /p password /d "My app launcher" /du http://
www.mytest.com /fd sha256 /tr "http://timestamp.digicert.com" /td sha256
 CloudAppLauncher_Installer.exe

Upload the cloud app launcher and the runtime files

Page 20

After the executable file is generated and before it is uploaded to the server,
PowerBuilder will sign the executable file using your own signing scripts or using the
SignTool settings you specified.

Figure 5.2:

Tip

To remove a launcher profile, go to the path where the launcher is saved (by default,
C:\Users\appeon\AppData\Roaming\CloudAppLauncher), go into the folder which
corresponds to the launcher version and then delete the sub-folder that is named after
the profile.

5.1 About cloud app launcher

You can determine which type of cloud app launcher you want to upload to the server:

• Launcher without background service: This launcher program does NOT use a background
service. As such, it should be easier to install and use and does not require administrator
rights. However, it has certain dependency on the browser, which may result in different
installation experience depending on the browser used and its configuration. If there are
multiple users on the client machine, the launcher will need to be installed for each user.

Upload the cloud app launcher and the runtime files

Page 21

• Launcher with background service: The launcher program uses a background service. If
there are multiple users on the client machine, the launcher will need to be installed for
each user, and only the first installation requires administrator rights to install and start
the service. If the launcher is installed on the machine for the first time by a user without
administrator rights, a window will pop up for inputting the administrator user name and
password; after that, the other users also need to install the launcher but they do not need to
have administrator rights, and all users will use the service started by the first installation.
This launcher type does NOT have dependency on the browser.

When and why administrator rights are required?

When the cloud app launcher is first installed on the client, it needs to add the following
entries to the registry:

• A registry entry for the protocol

• A registry entry for starting the launcher

• A registry entry for information that will be used by uninstall

Adding entries to the registry does not need administrator rights, unless the launcher
with the background service which supports multiple Windows users (that is, the
Default_WithServiceMulti or Default_Both_WithServiceMulti launcher) is installed, in such
case, the launcher must be registered using administrator rights, so that the launcher can be
started as a system-level service and used by all Windows users.

Silent installation of cloud app launcher

The cloud app launcher will be automatically downloaded and installed to the client when the
application is run for the first time. If you want to silently install the cloud app launcher to
the client before the application runs, you can get the installation package of the cloud app
launcher from the PowerBuilder Runtime installation directory (for example, C:\Program
Files (x86)\Appeon\Common\PowerBuilder\Runtime 21.0.0.1311\CloudAppInstall\default),
and then run the following command to silently install the cloud app launcher.

CloudAppLauncher_Installer.msi /qn

Configure the Web API settings

Page 22

6 Configure the Web API settings

To configure the Web API settings:

1. Select the Web APIs tab in the PowerServer project painter.

2. Select to create a new solution or select an existing solution from the Solution name
list.

New solution vs. existing solution

Depending on whether multiple applications will use the same PowerServer solution or
each application will use its own PowerServer solution, you can choose to create a new
C# solution or an existing solution. If you want one PowerServer solution to be used
by all applications, you can choose an existing solution; and then deploy the app (as
well as the others) to this solution. If you re-deploy an app to an existing solution, the
application data models and ESQLs will get updated in the solution, and if you deploy a
new app to an existing solution, the application data models and ESQLs will be added to
the existing solution.

You can also select whether to overwrite the server settings (such as database
configurations, license, Web API port etc.) in the existing solution. Apps deployed to
the same solution can share settings such as the PowerServer license, Web API port,
database configurations etc. and can take advantage of new developments added by the
user such as authorization, file server etc.

For more information about the PowerServer C# solution, see About the PowerServer
C# solution.

3. Select a template type from the Auth Template list.

• Do not use auth service: Provides no authentication template.

• Use built-in JWT server: Includes a built-in authentication server that supports JWT
or bearer tokens. See Tutorial 6: Authenticating your apps > Using JWT for more
information.

• Use built-in OAuth server: Includes a built-in authentication server based on
IdentityServer4 framework that works with the OAuth 2.0 authorization flows. See
Tutorial 6: Authenticating your apps > Using OAuth 2.0 for more information.

• Use built-in AWS Cognito server: Includes a built-in authentication server that
works with the Amazon Cognito user pool. See Tutorial 6: Authenticating your apps
> Using Amazon Cognito for more information.

• Use external auth service: Includes templates that can be easily extended to support
the other identity providers that work with the OAuth flows or JWT, such as Azure
AD or Azure AD B2C. See Tutorial 6: Authenticating your apps > Using other auth
servers for more information.

4. Input a name as the namespace for the PowerServer C# solution.

Configure the Web API settings

Page 23

The namespace can only contain characters, numbers, and underscores, and the first
character must be a capital letter or underscore.

5. Specify the Web API URL.

It is highly recommended that you specify an HTTPS URL for the production
environment.

This URL will be deployed to two areas:

• The port number in the Web API URL will be deployed to the PowerServer C#
solution; so that when the PowerServer Web APIs starts in the development
environment, it starts at this port number. You can change this port number in the
PowerServer C# solution > ServerAPIs project > Properties > launchSettings.json
> "applicationUrl" setting.

• The complete Web API URL will be deployed to the Web server, so that the client
knows where to call the PowerServer Web APIs. If you want the client to call the
PowerServer Web APIs running at a different URL, you can change the Web API
URL using the CustomizeDeploy.dll tool. See this section for more details.

Configure the Web API settings

Page 24

Figure 6.1:

Configure the database connection

Page 25

7 Configure the database connection
Before you can build and deploy a PowerServer project, you MUST configure the database
connection in the Database Configuration window (from the PowerServer project painter >
Web APIs tab > Database Configuration button).

Database connection is required 1) when converting the PowerBuilder DataWindow
objects to C# models during the deployment process; and 2) when accessing data from the
database at application runtime. The database information (including the cache settings
and the transaction-to-cache mappings) will be deployed to the ServerAPIs project in the
PowerServer C# solution.

This section talks about creating a database connection cache and mapping it with the
transaction object in the Database Configuration window. (You may want to consider the
other database connection methods as discussed in Working with Database Connections).

Note that you only need to map the transaction objects that already exist in the PowerBuilder
application.

First of all, you must select the required database driver and agree to the driver license terms
as the driver must be downloaded from the NuGet site to the PowerServer C# solution. You
must do this no matter where you will create the database connection (in the PowerServer
project settings > Database Configuration window or in the PowerServer C# solution >
ServerAPIs project).

To select the required database driver:

1. Click the Database Configuration button at the bottom of the Web APIs tab.

2. Click DB Drivers in the Database Configuration window.

Figure 7.1:

3. In the Required Database Drivers window, select the driver and the option "I have
read and agree to the license ..."; and then click OK.

Configure the database connection

Page 26

Figure 7.2:

To configure the database connection in the Database Configuration window:

1. Click the Database Configuration button at the bottom of the Web APIs tab.

2. In the Database Configuration dialog, you can create various DB connection profiles
which include database connections to be used in different environments, for example,
database connections for the development environment, testing environment, production
environment, etc.

Each DB connection profile will have a corresponding Applications.
[DBConnectionProfile].json created in the PowerServer C# solution > ServerAPIs
project > AppConfig for storing its settings such as database connection cache(s),
transaction-to-cache mapping(s) etc. For example, the default Applications.json stores
the settings of the "Default" connection profile, Applications.Test.json stores the
settings of the "Test" connection profile, Applications.Production.json stores the
settings of the "Production" connection profile.

You can then decide which connection profile to be used in the application by selecting
the profile and clicking the Set as Current button. The name of the current profile will
be stored to the "POWERSERVER_ENVIRONMENTTYPE" setting in the ServerAPIs
project > AppConfig > AppConfig.json.

To create a new DB connection profile:

• Click New in the DB connection profile group.

Configure the database connection

Page 27

• In the New DB connection profile dialog box, specify a name for the DB connection
profile, for example, production.

• To create the new connection profile from an existing profile, you can select the
check box below and then select an existing profile to clone from.

Figure 7.3:

3. In the Database Configuration dialog, you can create the connection cache that
connects with the database.

For example, you can establish a connection with the SQL Anywhere database for the
PowerBuilder demo using the following settings:

• Click New in the upper part of the Connection configuration group.

• In the Database Configuration dialog box, specify any text as the cache name.

• Specify SQL Anywhere (ODBC) as the database provider.

• Select the data source.

• Specify the user name (for example, dba) and password (for example, sql).

• Click Test Connection to make sure the database can be connected successfully.

The "Allow dynamic connection using the transaction LogID and LogPass" option
allows the application to use the LogID and LogPass property values of the Transaction
object to log in to the database server as shown in the example below (instead of using
the values in the User name and Password fields). For more, refer to Using LogID and
LogPass properties.

Configure the database connection

Page 28

Transaction.LogId = "sa"
Transaction.LogPass = "Appeon123!@#"

The Advanced button contains additional important settings for the database driver such
as DelimitIdentifier, TrimSpaces, etc. If your database has such settings, make sure to
click the Advanced button to configure those settings.

Figure 7.4:

If you select MySQL, Oracle, or Informix from the Provider listbox, you
will be asked to specify a location for the required driver (MySql.Data 8.0.25,
Oracle.ManagedDataAccess.Core 2.19.110, or IBM.Data.DB2.Core 2.2.0.100) or allow
PowerBuilder to install the required driver from the NuGet website.

The packages downloaded from the NuGet website will be stored to %USERPROFILE
%\.nuget\packages and cached in %USERPROFILE%\.sd\19.0\dbDrives\, so they can
be automatically loaded when the database connection is created.

Configure the database connection

Page 29

Figure 7.5:

4. After the database cache is created, you can map the transaction object with the cache in
the Database Configuration dialog. To do this:

• Click New in the lower part of the Connection configuration group.

• Input the transaction object name (for example "sqlca") and then select the cache to
map with.

Figure 7.6:

Rather than making static mappings of the cache and the transaction object (as shown
above), you can also create dynamic mappings by using the DBParm CacheName
property. For more details, see Working with Database Connections.

To manually configure the database connection in the ServerAPIs project:

When the PowerServer project is built and deployed in the PowerBuilder IDE, the cache
settings (including database server host/port, database name, login ID, password, advanced

Configure the database connection

Page 30

settings etc.) and the transaction-to-cache mappings configured in the Database Configuration
window will be deployed and stored in PowerServer and you can manually change these
settings in the PowerServer C# solution. To do this:

1. Open the PowerServer C# solution > ServerAPIs project > AppConfig >
Applications.json or Applications.[DBConnectionProfile].json file.

The Applications.json file contains the configuration of the "Default" DB connection
profile. If you have another connection profile, the profile name is added in the middle
of the file name. For example, Applications.Development.json file contains the
configuration of the "Development" DB connection profile.

2. In the Applications.json (or Applications.[DBConnectionProfile].json) file, locate
the "Applications" block > [application name] > "CloudTransactions". This is where the
transaction-to-cache mapping(s) is stored.

In the following example, the "sqlca" transaction object is mapped to the "local-sa"
database cache. You can modify the existing mapping, or create a new mapping by
making a copy of the existing one.

 "Applications": {
 "pssales": {
 "CloudTransactions": {
 "sqlca": {
 "CacheName": "local-sa"
 }
 },
 ...

3. In the Applications.json (or Applications.[DBConnectionProfile].json) file, locate the
"Connections" block. This is where the cache(s) is stored.

In the following example, there are two caches "local-sa" and "local-postgresql" under
the "Default" cache group; and each cache contains the database connection information
that are configured and deployed from the Database Configuration window. You can
modify the existing cache, or create a new cache by making a copy of the existing one.

...
 "Connections": {
 "Default": {
 "local-sa": {
 "ConnectionType": "Odbc",
 "OdbcName": "PB Demo DB V2021",
 "OdbcDriver": "SqlAnywhere",
 "UserID": "dba",
 "Password":
 "eyJQYXlsb2FkIjoiYlx1MDAyQkxocTNiMUtWSzhBY1FCbVltU0FBPT0iLCJUaW1lc3RhbXAiOjE2MjU2NDYwNDcsIlNpZ25hdHVyZSI6IkF5V253VzNVNVx1MDAyQk5mNUxOd2RGTG83alVQeWRVYlpaUEtWcG5PU012cVx1MDAyQm95RTVtVlkwblQ3NHVqSFBHcm5NdVVQQUhnRFhKSklRZ1hiZ2c3Y3hGSG1jZz09In0=",
 "CommandTimeout": 30,
 "OtherOptions": "",
 "DynamicConnection": false
 },
 "local-postgresql": {
 "ConnectionType": "PostgreSql",
 ...
 }
 }
 }

Configure the database connection

Page 31

But notice that the PowerServer C# solution will be updated every time when
the PowerServer project is built and deployed in the PowerBuilder IDE. If
you manually modify the settings in Applications.json (or Applications.
[DBConnectionProfile].json), and want to keep these changes, you should use the
"Overwrite server settings (DB connection, Web API port, and license)" option properly.
For more information, refer to What settings will be deployed to the solution.

Import license and activate PowerServer

Page 32

8 Import license and activate PowerServer
First of all, make sure you have a valid license for the PowerServer 2021 GA version.

• If you have a preview or beta license, the preview or beta license will no longer work
with the GA version.

• If you already have a PowerBuilder CloudPro license (no matter which version it is),
the CloudPro license will automatically work with the GA version. Each PowerBuilder
CloudPro subscription includes a developer license of PowerServer, which supports a
maximum of 5 user sessions (user session = installable cloud app). You will need to
purchase a production license of PowerServer in order to use the production server and
more user sessions.

• If you have no PowerBuilder CloudPro license, you can apply for a trial license at
https://www.appeon.com/psfreetrial, or purchase a production license of PowerServer from
https://www.appeon.com/pricing.

Once you have a valid license, you can import the license and deploy it along with the Web
APIs project. The license will be validated later when the PowerServer Web APIs is run.

To import the license automatically:

To activate PowerServer using the developer license or trial license included in the
PowerBuilder CloudPro subscription, you can obtain the license automatically from the
Appeon website according to the current PowerBuilder IDE login account.

1. Make sure the computer can connect to the Appeon sites (through port number 80):
https://api.appeon.com and https://api2.appeon.com.

2. Go to the Web APIs tab of the PowerServer project painter, and then click Auto Import
to automatically import the license.

PowerBuilder will automatically obtain the developer or trial license of PowerServer
(according to your PowerBuilder IDE login account) from the Appeon sites and then
import the license here.

Figure 8.1:

To import the license manually:

You can also export the license file from the Appeon website manually and then import the
license here.

https://www.appeon.com/psfreetrial
https://www.appeon.com/pricing
https://api.appeon.com
https://api2.appeon.com

Import license and activate PowerServer

Page 33

1. Log into the Appeon User Center, click License Management, and then click All
Licenses under PowerServer.

Figure 8.2:

2. Click View, and then click Export to export the license code to a TXT file
([LicenseKey].txt) and save the file on the local machine.

Import license and activate PowerServer

Page 34

Figure 8.3:

3. Go to the Web APIs tab of the PowerServer project painter, and then click Import form
File to select and import the [LicenseKey].txt file.

Figure 8.4:

If there are multiple PowerServer projects that will use different PowerServers, then you will
have to import the license to every project before deployment. The license will be deployed
along with the PowerServer Web APIs (in the PowerServer C# solution > ServerAPIs
project > Server.json).

The license will be automatically validated when the PowerServer Web APIs is run.
Please make sure the .NET server can connect to the following Appeon websites (through
port number 80): https://apips.appeon.com and https://apipsoa.appeon.com (or https://
apips.appeon.net and https://apipsoa.appeon.net) so that the Appeon license server can
successfully validate the license and activate the PowerServer packages.

https://apips.appeon.com
https://apipsoa.appeon.com
https://apips.appeon.net
https://apips.appeon.net
https://apipsoa.appeon.net

Analyze the unsupported features

Page 35

9 Analyze the unsupported features
Refer to Unsupported Features Guide > How to detect unsupported features for details.

Build and deploy the PowerServer project

Page 36

10 Build and deploy the PowerServer project

To build and deploy a PowerServer project:

1. Before building and deploying the application, make sure to close any antivirus tool on
the development machine.

2.
Click the Build & Deploy PowerServer Project button () in the toolbar, or right-
click the PowerServer project in the System Tree and then select Build & Deploy
PowerServer Project to build and deploy the application to the server. Or select Deploy
PowerServer Project if you have already built the application before.

The application executable file (as well as the PBD files) is generated under %TEMP
%\pbappscache\temp\[appname] (for example, C:\Users\appeon\AppData\Local\Temp
\pbappscache\temp\pssales) on the development machine, then digitally signed, and
deployed to the server.

The PowerServer C# solution is generated under the specified location (by default C:
\Users\[username]\source\repos).

Note

After the application is deployed to the server, do not manually change the application
folder name on the server, otherwise the application uninstall program will fail to run.

The build & deploy process is composed of the following tasks:

Table 10.1:

Process What does the process do?

Build 1) Generates or updates the PowerServer C# solution (using the specified
Namespace and Auth Template).

2) Converts PowerBuilder DataWindow objects to .NET DataStore models and
parses the embedded SQL statements and adds them to the AppModels project.

3) Configures or updates the PowerServer Web API compilation environment.

4) Compiles the scripts and analyzes unsupported features.

5) Generates the PBD files, app executable file, and other application files.

Deploy Adds the server settings (app name, Web API port, PowerServer license, and
database configurations) to the ServerAPIs project of the PowerServer C#
solution.

Deploy or
Package

Uploads the app files (PBD files, app executable file, external files etc.) and
settings (runtime file list, Web API URL, and other project settings) to the Web
server, or creates an application package that includes these files and settings.

You can also build and deploy the project using commands (see Build the PowerServer
project with commands for details).

Build and deploy the PowerServer project

Page 37

10.1 What is the PowerServer C# solution
The PowerServer C# solution is generated during the build process. After the solution is

generated, you can click the Open C# Solution in SnapDevelop button () in the toolbar
to launch the PowerServer C# solution in SnapDevelop. Or go to the location where the
solution is generated; and double click PowerServer_[appname].sln to launch the solution
in SnapDevelop or other C# editor such as Visual Studio.

The PowerServer C# solution is an ASP.NET Core solution which contains three projects:

• The AppModels project contains the C# models (converted from the PowerBuilder
DataWindows) and the embedded SQLs (ESQL) from the PowerBuilder application.

• The ServerAPIs project contains the PowerServer Web APIs which is RESTFul APIs for
handling the database connections, data processing, PowerServer license activation, and
advanced features such as file server etc.

• The ServerAPIs.Tests project contains a number of test cases which can check if the
PowerServer Web APIs is running correctly after the ServerAPIs project is modified. See
Running the ServerAPIs.Tests project for more details.

The ServerAPIs project contains a number of configurable files and controllers. The
following highlights the important files and settings only. For complete descriptions, refer to
the readme.txt file under Solution Items.

• Properties\launchSettings.json: This file contains the environment settings for running
the PowerServer Web APIs in the local development environment, for example, the
commandName key specifies the web server to launch (the value "Project" indicates
that the Kestrel web server will be launched), and the applicationURL key specifies the
host name and port number for the web server. For description of the settings in this
file, See https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments?
view=aspnetcore-3.1#development-and-launchsettingsjson.

• AppConfig

• AppConfig.xml: This file contains the DB connection profile that is currently selected
and deployed from the Database Configuration window.

• Applications.json or Applications.[DBConnectionProfile].json: This file contains
the basic information of the deployed applications and the database connection cache
settings.

For each DB connection profile configured in the Database Configuration window, an
Applications.[DBConnectionProfile].json file is created. Applications.json is for the
"Default" DB connection profile.

• "Applications": This block includes the mappings of transactions and connection
caches, timeout values for transaction, session, and request, and run mode (0-normal
mode, 1-test mode) of each deployed application.

• "Connections": This block includes the database connection cache name, database
type, data source settings, and some advanced settings.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-3.1#development-and-launchsettingsjson
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-3.1#development-and-launchsettingsjson

Build and deploy the PowerServer project

Page 38

• Authentication: This folder contains the template and built-in server for the selected
authentication type. For more information, refer to Tutorial 6: Authenticating your apps.

• Controllers

• ApplicationController.cs: This file provides APIs for dynamically adding, modifying
or removing the application settings.

• ConnectionController.cs: This file provides APIs for dynamically adding, modifying
or removing the database connections such as cache or cache group.

• LicenseController.cs: This file provides APIs for dynamically accessing the license
information.

• SessionController.cs: This file provides APIs for getting all user sessions or killing a
particular user session. For more information, see Get/Kill user sessions.

• StatisticsController.cs: This file provides APIs for getting statistics of the request and
transaction.

• TransactionController.cs: This file provides APIs for getting all transactions or rolling
back a particular transaction.

For documentation of these APIs, refer to View the API documentation.

• HealthChecks: Refer to the readme.txt file under Solution Items for more information.
For more information, refer to Check the status of Web APIs.

• Logging

• log4net.xml: This file contains the logging settings for PowerServer. The "RollingFile"
appender specifies the location, size, and backup of the log file, the "TraceAppender"
appender specifies to generate the trace log, the "ConsoleAppender" appender specifies
to print the logging information in the console and sets the font color of the logging
information. For detailed syntax, refer to Apache Log4Net Manual.

• Logging.json or Logging.Development.json: This file specifies the log level (Trace,
Debug, Information, Warning, Error, Critical, and None), what level of logging
information will be printed in the API console, and what type of PowerServer
information (SQL, transaction, and session) will be logged.

Logging.json will take effect in the production environment (for example, when Web
APIs are published and running in IIS, docker etc.); and the default log level is warning.
Logging.Development.json will take effect in the development environment (for
example, when Web APIs is running from the SnapDevelop IDE or the PowerBuilder
IDE); and the default log level is information.

• OpenAPI: The OpenAPI Specification for implementing the API documentation.

• Server.json or Server.Development.json: This file contains settings related with the
server. As you can use multiple environments in ASP.NET Core (read more), there can be

https://logging.apache.org/log4net/release/manual/introduction.html
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-3.1

Build and deploy the PowerServer project

Page 39

multiple configuration files, for example, Server.json will take effect in the production
environment (for example, when Web APIs are published and running in IIS, docker etc.),
while Server.Development.json will take effect in the development environment (for
example, when Web APIs is running from the SnapDevelop IDE or the PowerBuilder
IDE).

• AllowedHosts: This setting specifies the host names to bind with PowerServer. See
Host filtering for more.

• PowerServer: This block specifies the settings for PowerServer.

• LicenseKey & LicenseCode: PowerServer license information.

• EncryptedSensitiveData: Sensitive data refers to the database login password which
is used to create the database connection cache in AppConfig\Applications.json. If
the password is an encrypted value (encrypted by the CustomizeDeploy.dll tool), this
setting should be set to True; if the password is not encrypted (still a plain-text string),
this setting should be set to False so that PowerServer will encrypt the password for
you and store the encrypted value to the database. If this setting is set to True and you
input a plain-text password, the plain-text password will be stored to the database.

• AppModelsAssemblyNames: AppModels assembly name.

• ProxyOptions: The IP address and login credentials of the proxy server. If the
Web API host server connects to Internet through a proxy server, you will need to
configure the proxy server settings here.

• EmailOptions: This block must be configured first if you want to get notifications
for license expiration. The settings include the SMTP server settings, sender email
settings, and recipients.

• StatisticsOptions: This block determines which type of transaction statistics will be
generated and cached in the memory. Some settings are disabled by default to lower
memory usages. You can also take advantage of the StatisticsController APIs in
PowerServer NuGet package to get the statistics.

For files that are not mentioned here, refer to the readme.txt file under Solution Items for
more information.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/host-filtering?view=aspnetcore-5.0

Build and deploy the PowerServer project

Page 40

Figure 10.1:

10.2 What settings will be deployed to the solution

Although the PowerServer C# solution allows you to make changes to it, you will have to be
aware that some settings in the solution might be updated every time when the PowerServer
project is built and deployed in the PowerBuilder IDE.

Build and deploy the PowerServer project

Page 41

Table 10.2:

Settings from the
Web APIs tab

Will be updated to By Overwrite strategy

Auth Template ServerAPIs project >
Authentication

BuildWhen selecting a different authentication
template, you will be prompted whether to
overwrite the existing authentication.

Namespace AppModels project BuildOverwritten all the time.

Port number
in the "Web

API URL" field

(Note: the
complete URL

of Web API
is deployed to
the Web server

all the time)

ServerAPIs project
> Properties >
launchSettings.json
> port number in
"applicationUrl"

DeployDetermined by the "Overwrite server
settings (DB connection, Web API port,
and license)" option.

When the option is selected, the port
number in "applicationUrl" will be
updated, otherwise it will not be changed.

License settings ServerAPIs project
> Server.json >
"PowerServer" >
"LicenseKey" and
"LicenseCode"

DeployDetermined by the "Overwrite server
settings (DB connection, Web API port,
and license)" option.

When the option is selected, both
"LicenseKey" and "LicenseCode" will
be updated, otherwise they will not be
changed.

Database
Configuration
window > the

current DB
connection profile

ServerAPIs project
> AppConfig >
AppConfig.json

DeployOverwritten all the time.

Database
Configuration

window >
database caches

configured
in all DB

connection profiles

ServerAPIs project
> AppConfig >
Applications.json
or Applications.
[DBConnectionProfile].json
> "Connections" >
"Default" > [cache
name]

("Default" refers to
the default cache
group.)

DeployDetermined by the "Overwrite server
settings (DB connection, Web API port,
and license)" option.

New caches will be added regardless if this
option is selected or not.

If there are multiple caches, there will be
multiple [cache name] blocks. When this
option is selected, and if a cache with the
same name is configured in the Database
Configuration window, the corresponding
[cache name] block will be overwritten; if
there is no cache with the same name in the
Database Configuration window, the [cache
name] block will not be overwritten. When
this option is not selected, all [cache name]
blocks will not be overwritten.

Build and deploy the PowerServer project

Page 42

Settings from the
Web APIs tab

Will be updated to By Overwrite strategy

By the way, if you create new cache groups
(besides "Default"), these new cache
groups will not be overwritten regardless if
this option is selected or not.

Database
Configuration

window >
transaction-to-
cache mappings

configured
in all DB

connection profiles

ServerAPIs project
> AppConfig >
Applications.json
or Applications.
[DBConnectionProfile].json
> "Applications"
> [app name] >
"CloudTransactions"
> [transaction name]

DeployDetermined by the "Overwrite server
settings (DB connection, Web API port,
and license)" option.

New transactions will be added regardless
if this option is selected or not.

If there are multiple transaction objects,
there will be multiple [transaction name]
blocks. When this option is selected, and if
a transaction object with the same name is
configured in the Database Configuration
window, the corresponding [transaction
name] block will be overwritten; if there
is no transaction with the same name
in the Database Configuration window,
the [transaction name] block will not
be overwritten. When this option is not
selected, all [transaction name] blocks will
not be overwritten.

10.3 Build & deploy using commands
Instead of building and deploying the PowerServer project from the PowerBuilder IDE, you
can also build and deploy the project using the PBAutoBuild210 command. For step-by-
step guidance, refer to Tutorial 7: Building your PowerServer project with commands. The
PBAutoBuild210 command can integrate with Jenkins to automate the build and deployment
process for PowerServer projects. Refer to the Jenkins user documentations for how to use
Jenkins.

To build and deploy the PowerServer project with commands:

1. Export the configurations of the PowerServer project to the JSON file.

1.
Click the Export PowerServer Build File button () in the toolbar if the
PowerServer project painter opens, or right click the PowerServer project object and
then select Export Build File.

2. In the Export Build File dialog box, specify where to save the exported file.

If you right click the workspace and then select Export Build File, you can select
one or more targets to export the build file for, and then select one or more project
types to export if there are more than one type of project objects in the selected
target(s). If you select more than one project type, the corresponding project objects

https://www.jenkins.io/
https://www.jenkins.io/doc/

Build and deploy the PowerServer project

Page 43

will be exported to the build file > "Projects" > [project object name]. If the selected
targets contain project objects with the same name, only the object listed last will be
added to the build file.

Specify how to overwrite the following settings if the build file already exists: the
source code settings, build job settings, and project settings.

Figure 10.2:

3. Click Export.

The exported JSON file includes every single setting that is required for compiling,
packaging and deploying the PowerServer project, for example,

• Project settings such as project type, platform (32-bit or 64-bit), build options etc.

• Library list

• Version information

• Run options

• ...

You can find a complete list of settings under the "Projects" block in the exported file.

The exported file also contains a "BuildPlan" block which provides additional
configurations:

• "SourceControl" -- provides settings for downloading and merging source code from
the source control server (including SVN, Git, and/or VSS).

Merging will not only merge the source code but also upgrade the source code to
the current version. However, it will not check or upgrade the PBD files used in the
library list (you will need to replace the PBD files with the corresponding version).

• "BuildJob" -- contains the location of the selected PowerBuilder application target(s)
and the name of the project object(s).

Build and deploy the PowerServer project

Page 44

• Both the "SourceControl" and "BuildJob" blocks contain a "PreCommand" setting
and a "PostCommand" setting which allow you to specify commands that can be
executed before and/or after that particular block is executed.

You can specify the commands or command file in "PreCommand" or
"PostCommand". For example,

"PreCommand": "SourcePre.bat"

The commands in "PreCommand" and "PostCommand" can be executed in
synchronous (default) or asynchronous mode, and the command window can be
visible or invisible (default). For example,

"PostCommand": "postcmd.bat /show /async"

Note: The relative path specified in the file is relative to the path of the JSON file.

2. Execute the PBAutoBuild210.exe file and the JSON file in a command line to
automatically build and deploy the project. For example,

PBAutoBuild210 /f c:\pssales.json /l deploy.log /le error.log /lu unsupport.log

The PBAutoBuild210.exe file supports the following parameters:

• /f -- specifies the configuration file. The configuration file (in JSON format) can be
directly exported from the PowerBuilder IDE, as described in step 1.

PBAutoBuild210 /f c:\pssales.json

• /l -- writes the logging information to a file.

• /le -- writes the error information to a file.

• /lu -- writes the unsupported PowerScript features to a file. For example,

PBAutoBuild210 /f c:\pssales.json /l deploy.log /le error.log /lu
 unsupport.log

The relative path specified in the parameter is relative to the path of the configuration
file. In the above example, the three log files will be generated under the same path as
the configuration file.

• /p -- specifies the password for logging into SVN, Git, or VSS. This will generate an
encrypted value based on the password. If the password contains the double quotation
mark ("), use the escape character \" to replace ".

PBAutoBuild210 /p 123456

• /h or /? -- displays the help information.

PBAutoBuild210 /h

Build and deploy the PowerServer project

Page 45

Figure 10.3:

Note

The handling of PB.INI is the same in PBAutoBuild and OrcaScript:

If the application relies on a property in PB.INI to run, for example, [RichText]
PageSizeAsControlSize=1, the user needs to copy the PB.INI file to the directory
where the application executable resides.

If the compilation of PBAutoBuild or OrcaScript relies on a property in PB.INI, for
example, [PB] DashInIdentifiers=0, the user needs to copy the PB.INI file to the
directory where PBAutoBuild210.exe or pbc210.exe resides.

10.4 Run the ServerAPIs.Tests project
ServerAPIs.Tests is a unit test project generated with the PowerServer C# solution; it
contains a number of XUnit.net tests which can check if the APIs in the ServerAPIs
project can work correctly. The following categories of test cases are provided to check the
corresponding APIs:

• DataWindows

• Embedded SQLs

• Stored procedures

• Sessions

• Transactions

To run the test case in the ServerAPIs.Tests project, select the Test > Test Explorer menu
in the SnapDevelop IDE, and then click Run All in Test Explorer to run all the test cases, or
right click the test case you want to run and then select Run Selected Tests.

Build and deploy the PowerServer project

Page 46

Check the Summary window to make sure all tests have passed successfully.

Figure 10.4:

Compile and run the Web APIs

Page 47

11 Compile and run the Web APIs
The PowerServer Web APIs is created during the build & deploy process and are ready to
compile and run locally immediately after deployment.

Important

The Compile & Run Web APIs button () in the toolbar can only run the Web
APIs on the LOCAL machine, and detailed logs will be generated for development
and debugging purpose. For optimal runtime performance, you can publish Web APIs
to IIS instead of running Web APIs locally.

To compile and run the Web APIs:

1. Make sure your computer can connect to the NuGet site (https://www.nuget.org), so
that the packages required for compiling and running the Web APIs can be successfully
downloaded from the NuGet site.

2.
Click the Compile & Run Web APIs button () in the toolbar.

3. Select whether to compile the PowerServer C# solution before running the Web APIs (it
is selected by default).

For the first time to run the Web APIs, the compile option must be selected. After the
successful compiling and running of Web APIs, this option can be de-selected to save
time, unless the Web APIs project has been changed or an error has occurred.

4. Select the DB connection profile that the Web API will work with. The DB connection
profile that is currently selected in the Database Configuration window will be
selected by default.

5. Click OK to compile and run the Web APIs.

Figure 11.1:

https://www.nuget.org

Compile and run the Web APIs

Page 48

6. Check the Output window and make sure build is successful.

7. Make sure the API console window displays "Application started...". Also notice "Now
listening on: http://0.0.0.0:5009" in the console window. This is the URL for accessing
the Web APIs. The port number can be modified in the ServerAPIs\Properties
\launchSettings.json in the PowerServer C# solution.

When the installable cloud application is run later, you can view the logs in the console
window to check if the requests and responses are processed successfully.

Figure 11.2:

Check the status of Web APIs

Page 49

12 Check the status of Web APIs
When the Web APIs is running, you can check the health status of Web APIs by running
http://[Web-API-URL]/health-ui in a Web browser, for example, http://localhost:5009/health-
ui/.

Expand each block to view the details, especially the Suggestion section.

Figure 12.1:

Run the installable cloud application

Page 50

13 Run the installable cloud application
Note: IE and Edge Legacy (EdgeHTML-based) browsers should not be used to run the
installable cloud app, as Microsoft will end support for IE and Edge Legacy soon. You can
use one of the following supported browsers: Chrome, Firefox, and the new Edge browser
(Chromium-based).

• (For developers) Run the application by right-clicking the PowerServer project in the
System Tree and then select Run PowerServer Project.

Or click the Run PowerServer Project button () in the toolbar. The Run
PowerServer Project button will be available in the toolbar when the Project painter
for PowerServer is opened; if more than one Project painter for PowerServer is opened,
then the settings in the currently active painter will be used to run the application. And the
application will be run in the Web browser or in the Cloud App Launcher according to the
configurations in the Run Options tab in the painter. However, if Cloud App Launcher is
not installed, then the default Web Browser will be run to install the Cloud App Launcher
and run the application.

• (For developers and end users) Run the application in a Web browser for the first time.

The user can input the application URL http://IPAddress/AppName in a Web browser
to access the application. The IP address should point to the Web server where the app
files are deployed. This URL can run the application with or without background process,
depending on which startup mode the developer has selected as the default.

The cloud app launcher and the application must be installed through the Web browser for
the first time. After that, users can directly double click the application icon on the desktop or
the application shortcut on the Windows Start menu to run the application (the shortcut icon
and menu are created by default unless the developer has changed the default settings in the
Project painter for PowerServer).

If the application is started without the background service, the user will be asked by the Web
browser whether to run the app launcher. This is a browser behavior. Select Allow. Then
the following app entry page displays. If the download does not start automatically, click
Download the Launcher to download and install the cloud app launcher first, and then click
Start the Application to download, install, and start the application.

Run the installable cloud application

Page 51

Figure 13.1:

If the application is started with the background service, the following app entry displays. If
download does not start automatically, click to download and install the cloud app launcher.

Figure 13.2:

You can view the logs in the API console window to check if the Web API requests and
responses are successful.

Note

The virus-detection software McAfee WebAdvisor may block the
CloudAppLauncher.exe file during the installation process. You can try adding the
domain as a trusted site. To add the domain as a trusted site in McAfee WebAdvisor:

1. Right click the WebAdvisor add-on and select Options.

2. Under Manage your trusted sites, add the domain and click the + symbol.

Run the installable cloud application

Page 52

3. Close and re-open the browser and run the installation again.

Note

If there is no response or progress when running the application, the
CloudAppLauncher.exe file might be blocked by the Windows SmartScreen. You
can try to turn off Windows SmartScreen in Control Panel > System and Security >
Security and Maintenance > Change SmartScreen settings.

Note

Every time when the application launches, it needs to connect to the Web server
to check updates, therefore, please make sure Web server is running and can be
connected all the time.

Customize the app entry page

Page 53

14 Customize the app entry page
If you want to customize the license agreement and the visual displays (such as color,
icon, text etc.) in the app entry page, you can make changes to the files under the
%AppeonInstallPath%\PowerBuilder [version]\HTML folder, and then deploy the application
again. The changes will apply to all applications deployed after the change is made.

Or you can directly make changes to the files under the application folder on the server, if
you want to change that particular application only; but once you re-deploy that application,
the changes will be lost.

• license.html is the template for license agreement.

• auto.html, autoconnect.html, autodownload.html, autoinit.html, and index.html are
templates for applications started with background service.

• manual.html, manualconnect.html, manualdownload.html, and index.html are templates
for applications started without background service.

Customize the loading animation

You can also deploy your own animation to replace the default animation (if you have
selected "Show the loading animation before the app runs").

To deploy your own animation,

1. Prepare a GIF format of your animation and name the file as "loading_ica.gif". Only GIF
format is supported currently.

2. Place "loading_ica.gif" under the same directory as the application target (.pbt) file.

3. Add "loading_ica.gif" under Files preloaded as compressed packages or Files
preloaded in uncompressed format in the External Files page.

Important

If you have customized any file(s), it is strongly recommended that you manage
these files separately, for example, back up the files somewhere to prevent file lost or
overwritten after product upgrades or app deployments, or make files easily in sync if
more than one developer will deploy the application.

Customize the deployed app using commands

Page 54

15 Customize the deployed app using
commands
When the application is deployed (from the PowerBuilder IDE) or installed (from the
packaged executable installer or zipped file) to the Web server, the app files and config files
are generated with hash codes, to prevent files changed illegally from running. Therefore, you
cannot directly change the deployed settings/files on the Web server, instead you will have
to make changes in the project painter and then deploy the application again, or modify the
settings/files using commands (the CustomizeDeploy.dll tool).

The CustomizeDeploy.dll tool allows you to:

• Change the External Files -- The "External Files" refers to the packages, folders, and files
(such as INI files, DLL/OCX etc.) that are deployed from the External Files tab of the
PowerServer project painter.

• Change the Web API URL -- The Web API URL is stored on the Web server, so that the
client knows where to call the PowerServer Web APIs at runtime. You may want to change
the Web API URL value, if you want the client to call the PowerServer Web APIs running
on a different URL.

• Encrypt the database password -- You can encrypt the database login password used in
the PowerServer project painter > Database Configuration, or in the PowerServer C#
solution > ServerAPIs project > AppConfig > Applications.json file. You can use the
encrypted string instead of the plain-text string to protect sensitive information.

You can find the CustomizeDeploy.dll tool in the "1.01" sub-folder of the application folder
after the application is deployed or installed to the Web server (either from the PowerBuilder
IDE or from the packaged executable installer or zipped file).

Important

Prerequisites

To execute the CustomizeDeploy.dll file using the dotnet command, you will need to
install the ASP.NET Core Runtime 3.1 or later.

To run CustomizeDeploy.dll in Windows Web server:

1. Install the ASP.NET Core Runtime 3.1 or later.

2. Open the command prompt. (You'd better run the command prompt using an
administrator by right-clicking it and then selecting "Run as administrator").

3. Navigate to the Web server root folder > [application] folder > "1.01" (for example, C:
\inetpub\wwwroot\pssales\1.01).

4. Execute the CustomizeDeploy.dll file using the dotnet command.

To run CustomizeDeploy.dll in Linux Web server:

1. Install the ASP.NET Core Runtime 3.1 or later.

dnf install aspnetcore-runtime-5.0

Customize the deployed app using commands

Page 55

2. Go to the Web server root folder > [application] folder > "1.01" (for example, /var/
www/html/pssales/1.01, or /usr/share/nginx/html/pssales/1.01).

3. Right click the blank area within the folder and then select Open in Terminal.

4. Execute the CustomizeDeploy.dll file using the dotnet command. Notice that the
command and file name are all case-sensitive in the Linux OS.

For example,

dotnet CustomizeDeploy.dll -url=https://172.16.100.71:5009

Figure 15.1:

15.1 Change the External Files

To replace the External Files (such as INI, DLL/OCX etc.) for a deployed application:

1. Install the ASP.NET Core Runtime 3.1 or later.

2. Open the command prompt. (You'd better run the command prompt using an
administrator by right-clicking it and then selecting "Run as administrator").

3. Navigate to the Web server root folder > [application] folder > "1.01" (for example, C:
\inetpub\wwwroot\pssales\1.01).

4. Execute the CustomizeDeploy.dll file using the dotnet command.

dotnet CustomizeDeploy.dll -src=<source file> -dest=<destination file>

The "src" argument should point to the new file that you want to use to replace the old
file.

The "dest" argument should point to the old file that you want to replace with the new
file.

When external files are deployed to the server, they are appended with the file extension
".zip", but they are not compressed files (the only exception is package). For example, if
apisetup.ini is selected in the External Files tab, it will be deployed as apisetup.ini.zip
to the server, however, apisetup.ini.zip is not a compressed file and it can be directly
opened in a text editor just like apisetup.ini.

And to replace the file, you should prepare the source file without .zip extension.

For example,

Customize the deployed app using commands

Page 56

dotnet CustomizeDeploy.dll -src=/new/apisetup.ini -dest=apisetup.ini.zip

Or

dotnet CustomizeDeploy.dll -src=/new/new.ini -dest=apisetup.ini.zip

The only exception is the package which is indeed compressed as the zip format (with
file extension ".zip.zip"). Therefore, you should prepare the source file for the package
in the compressed zip format.

For example,

dotnet CustomizeDeploy.dll -src=/new/theme.zip -dest=theme.zip.zip

Or

dotnet CustomizeDeploy.dll -src=/new/aaa.zip -dest=theme.zip.zip

The tool will replace the package as a whole (and refresh the hash code of the package)
and it will not validate the individual files included in the package. Therefore you need
to make sure the files included in the package are correct and complete.

15.2 Change the Web API URL

To change the Web API URL for a deployed application:

1. Install the ASP.NET Core Runtime 3.1 or later.

2. Open the command prompt. (You'd better run the command prompt using an
administrator by right-clicking it and then selecting "Run as administrator").

3. Navigate to the Web server root folder > [application] folder > "1.01" (for example, C:
\inetpub\wwwroot\pssales\1.01).

4. Execute the CustomizeDeploy.dll file using the dotnet command.

• Syntax 1

dotnet CustomizeDeploy.dll -url=<URL>

The "url" argument should point to the new Web API URL that you want to change
to.

For example

dotnet CustomizeDeploy.dll -url=https://172.16.100.71:5009

Figure 15.2:

Customize the deployed app using commands

Page 57

• Syntax 2

dotnet CustomizeDeploy.dll -url

If the "url" argument is not set with any value, it will get the current URL. Therefore,
you can run this command to check what the current Web API URL is.

Figure 15.3:

15.3 Encrypt the database password

To encrypt a password, you can execute the CustomizeDeploy.dll file located in the
PowerBuilder IDE installation folder (%AppeonInstallPath%\PowerBuilder [version]\Pstools
\CustomizeDeploy) or in the deployed application on the Web server.

To execute the CustomizeDeploy.dll file located in the PowerBuilder IDE installation
folder, there is no need to install the ASP.NET Core Runtime as it is already installed with
PowerServer Toolkit.

To execute the CustomizeDeploy.dll file located in the deployed application on the Web
server, you will need to install the ASP.NET Core Runtime first, as explained in the
following steps.

To encrypt a password (such as the database login password) for the database connection cache:

1. Install the ASP.NET Core Runtime 3.1 or later.

2. Open the command prompt. (You'd better run the command prompt using an
administrator by right-clicking it and then selecting "Run as administrator").

3. Navigate to the PowerBuilder IDE installation folder (%AppeonInstallPath%
\PowerBuilder [version]\Pstools\CustomizeDeploy) or Web server root folder >
[application] folder > "1.01" (for example, C:\inetpub\wwwroot\pssales\1.01).

4. Execute the CustomizeDeploy.dll file using the dotnet command.

dotnet CustomizeDeploy.dll -encrypt=<string>

dotnet CustomizeDeploy.dll -encrypt=<string> -outfile=<output file>

The "encrypt" argument should be set to the value that needs to be encrypted.

The "outfile" argument can save the encrypted value in the specified location and file.

Customize the deployed app using commands

Page 58

Figure 15.4:

Figure 15.5:

When creating a database connection cache in the PowerServer project painter >
Database Configuration, or in the PowerServer C# solution > ServerAPIs project >
AppConfig > Applications.json file, instead of inputting the plain text of the database
login password, you can encrypt it using the above command, and then input the
encrypted value instead of the plain text.

Note

If special characters are contained in the value, use double quotation marks (in
Windows) or single quotation marks (in Linux) to include the entire value. For
example,

In Windows, to encrypt the value post!gres

dotnet CustomizeDeploy.dll -encrypt="post!gres"

If the quotation mark is contained as part of value, then place the escape character \
before the quotation mark. For example, to encrypt the value postgr”es

dotnet CustomizeDeploy.dll -encrypt="postgr\”es"

Support cookie validation

Page 59

16 Support cookie validation
You can now set a cookie to the cloud app launcher and the application; and the cookie will
be automatically carried in the HTTP request header of every client request.

Once a cookie is set to the cloud app launcher and the application, the cookie can be validated
against the validation scripts or the SSO server etc. And based on the validation results,
the launcher and/or the application can be determined whether to allow to download the
requested files and/or connect with the database.

Notice that

1. Currently you can only set the name and value for a cookie, and cannot set the other
cookie attributes (including Domain, Expires, Path etc.); and you must set the cookie in
the key-value pairs, for example, "key1=value1; key2=value2".

2. The cookie must be passed into the launcher and the application by the index.html file,
therefore, you will have to start the application from the index.html (by accessing the app
URL in the Web browser); you cannot start the application from the app shortcut on the
desktop or start menu.

3. Make sure the cookie will stay valid if you select "Download the app files as necessary"
because files will be downloaded only when requested. Set an appropriate expiration
period for the cookie.

To set a cookie to the cloud app launcher and the application,

You can modify the JavaScript file (launcher.js) on the Web server to set a cookie to the
cloud app launcher.

launcher.js is located in the application folder > "js" sub-folder on the Web server, for
example, C:\inetpub\wwwroot\salesdemo_cloud\js\launcher.js.

For example, the following JavaScript will set the cookie by obtaining the cookie from
document.cookie. However, if the cookie is set to HttpOnly, it cannot be accessed from
document.cookie by JavaScript.

function getCookie(){
 var strCookie = "";
 strCookie = document.cookie;
 return strCookie;
}

function getCmdline(Url){
 var strCookie = getCookie();
 var strUrl = Url;
 if(strCookie.length > 0)
 {
 strUrl += " -cookie ";
 strUrl += strCookie;
 }
 return strUrl;
}

For example, the following JavaScript will set the cookie by obtaining the cookie from the
application URL, for example, http://localhost:5000/test?name=admin;pw=123.

function getCookie(){

Support cookie validation

Page 60

 var strCookie = "";
 strCookie = window.parent.parent.location.search.split("?")[1];
 return strCookie;
}

function getCmdline(Url){
 var strCookie = getCookie();
 var strUrl = Url;
 if(strCookie.length > 0)
 {
 strUrl += " -cookie ";
 strUrl += strCookie;
 }
 return strUrl;
}

View the API documentation

Page 61

17 View the API documentation
The documentation for PowerServer Web APIs is formatted using the OpenAPI Specification
(formerly Swagger Specification). Each API is described with the operations (GET and
POST) and the operation parameters; and developers can easily try out and adopt the API.

The PowerServer Web APIs here mainly refers to the management APIs in the ServerAPIs
project > Controllers folder.

• ApplicationController.cs: This file provides APIs for dynamically adding, modifying or
removing the application settings.

• ConnectionController.cs: This file provides APIs for dynamically adding, modifying or
removing the database connections such as cache or cache group.

• LicenseController.cs: This file provides APIs for dynamically accessing the license
information.

• SessionController.cs: This file provides APIs for getting all user sessions or killing a
particular user session. For more information, see Get/Kill user sessions.

• StatisticsController.cs: This file provides APIs for getting statistics of the request and
transaction.

• TransactionController.cs: This file provides APIs for getting all transactions or rolling
back a particular transaction.

To view the API documentation, run the ServerAPIs project (by clicking Run in the
PowerServer C# solution).

The Swagger UI for the API documentation will be launched automatically in the Web
browser. However, the Swagger UI may not be successfully loaded until the ServerAPIs
project completes all the startup process. You may see Swagger UI refresh a few times before
the API documentation is successfully loaded; or you may need to refresh the browser to load
the API documentation.

View the API documentation

Page 62

Figure 17.1:

By expanding each API, you can view the details of the API and try out the API (by clicking
the Try it out button on the top right corner).

For code examples of calling the API in PowerScript, refer to Get/Kill user sessions.

Figure 17.2:

Get/Kill user sessions

Page 63

18 Get/Kill user sessions
You can use the following functions or APIs to manage user session(s) for the installable
cloud application:

• The GetSessionID function of the PowerBuilder Application object -- Gets the session ID
of the current client.

• The LoadAll API provided by the SessionController.cs file in the PowerServer C# solution
-- Gets the session IDs of all clients. Refer to View the API documentation for how to view
the documentation of this API.

• The KillByID API provided by the SessionController.cs file in the PowerServer C#
solution -- Kills the session(s) according to the ID. Refer to View the API documentation
for how to view the documentation of this API.

To get the session ID of the current application client, you can write PowerScripts as below:

String ls_SessionID
ls_SessionID = Getapplication().GetSessionID()

To get all user sessions, you can write PowerScripts as below:

//-------------------------------------
LoadAll---

httpclient lhc_client
string ls_url
string ls_json

lhc_client = create httpclient

//GetSessions
ls_url = "http://localhost:5000/api/Session/LoadAll"
//This URL should be replaced with the actual IP address and port number of
 PowerServer Web APIs
//If there are multiple .NET servers, obtain one by one
//lhc_client.SetRequestHeader("Authorization", $token, true) //If authentication
 is enabled
lhc_client.sendrequest("Get",ls_url)

if lhc_client.getresponsestatuscode() = 200 then
 lhc_client.getresponsebody(ls_json)
 //parse the json
 //wf_getsessions(ls_json)
end if

//---

To kill the specified user session, you can write PowerScripts as below:

Step 1: Get all the user sessions first.

Step 2: Kill the specified session according to the session ID.

The session information returned will look like this:

//
[{"sessionid":"8e3f5c6d-7515-4377-9a45-0e3349fcbfd2","application":"SalesApp","sessionstate":"Actived","ipaddress":"127.0.0.1","serveripaddress":"127.0.0.1:5000","duration":101,"createtime":"2021-07-27T03:33:52.2616578Z","lastvisittime":"2021-07-27T03:33:52.6032097Z"}]

https://docs.appeon.com/pb2021/powerscript_reference/ch02s04s335.html

Get/Kill user sessions

Page 64

//-------------------------------------
KillByID---

httpclient lhc_client
string ls_url
string ls_sessionid

lhc_client = create httpclient

//GetSessions
//lhc_client.SetRequestHeader("Authorization", $token, true) //If authentication
 is enabled
ls_url = "http://localhost:5000/api/Session/KillById"
//This URL should be replaced with the actual IP address and port number of
 PowerServer Web APIs

ls_sessionid = "8e3f5c6d-7515-4377-9a45-0e3349fcbfd2"
ls_url += "/"+ls_sessionid

lhc_client.sendrequest("post",ls_url)

if lhc_client.getresponsestatuscode() = 200 then
 messagebox("succeed",ls_sessionid +" was killed")
end if

//---

Package the client app

Page 65

19 Package the client app
When deploying the PowerServer project as an installable cloud app, you can choose to
package the client-side as an executable installer or a zipped file, and then install the client to
the Web servers.

To package the client app:

1. Go to the Client Deployment tab of the PowerServer project painter, and then click
Package the compiled app and manually deploy later.

2. Specify to generate the package as an executable installer or a compressed zip file, and
select whether to package the cloud app launcher and the PowerBuilder Runtime files.

If you select Zipped file, an appname_Installer.zip file is generated in the specified
path. You can copy the zip file to the server and then decompress it to the Web root.

If you select Executable installer, an appname_Installer.exe file is generated in the
specified path. You can copy the executable file to the server and then run it to install
the application to the Web root.

3. Specify the location where the package will be generated.

Figure 19.1:

4. Save the project settings and then click the Build & Deploy PowerServer Project

button () or Deploy PowerServer Project () button in the toolbar to generate the
package.

Note

Do not manually change the name of the installed or de-compressed application folder
on the server, otherwise the application uninstall program will fail to run.

Undeploy the client app

Page 66

20 Undeploy the client app
To undeploy the client app from the server:

1. Right-click the PowerServer project in the System Tree and then select Undeploy
PowerServer Project from the popup menu.

2. Select whether to remove the entire project (all deployed versions) or only the selected
version from the server.

Figure 20.1:

Uninstall the client app

Page 67

21 Uninstall the client app
To uninstall the client app from the client machine:

1. Uninstall the application by selecting the Uninstall shortcut menu from the Windows
Start | [appname]. The Uninstall shortcut menu and the [appname] menu are available
only when the developer selected to create the Start menu shortcut and App uninstall
shortcut in the Run Options page of the Project painter for PowerServer.

If the Uninstall shortcut menu is not available, you can run the Uninstall.exe file in the
application folder, for example, %AppData%\PBApps\Applications\localhost_pssales
\Uninstall.exe (%AppData%\PBApps is configurable when uploading the Cloud App
Launcher and runtime files).

Note: If the application folder name (which is named after [appname]) on the server has
been changed manually, the application uninstall program will fail to run.

The uninstall program will automatically remove the following:

• The application shortcuts on the desktop and the Windows start menu.

• The application folder under %AppData%\PBApps\Applications, for example,
%AppData%\PBApps\Applications\localhost_pssales.

The application folder contains all of the application files and any external files (such
as UI theme files, DLLs/OCXs, images/videos, INIs etc.) that are deployed with
PowerServer. This folder will be automatically deleted during the uninstall process.

However, the uninstall program will NOT automatically remove the following:

• The registration information of DLL/OCX files in the Windows registry.

If you have selected to register the DLL/OCX files (using Regsvr32 by default), you
will need to remove the registry information manually. Follow instructions in step 4
below.

• The runtime files under %AppData%\PBApps\Applications\Runtime.

The PowerBuilder Runtime files are used by all deployed apps on the client machine.
You can manually delete the runtime files if they are no longer used.

• The download folder under %AppData%\PBApps, for example, %AppData%
\PBApps\Download.

This folder stores the download statistics of the app and runtime files. It can be
manually deleted.

2. Uninstall the cloud app launcher by uninstalling Cloud App Launcher from Control
Panel\Programs\Programs and Features.

If the cloud app launcher without background service is uninstalled, the %LocalAppData
%\Launcher folder will be removed.

If the cloud app launcher with background service is uninstalled, the %LocalAppData%
\LauncherWithService folder will be removed.

Uninstall the client app

Page 68

3. Uninstall the cloud app service by uninstalling Cloud App Launcher Service from
Control Panel\Programs\Programs and Features.

The cloud app launcher service is installed only when the launcher with background
service which supports multiple Windows users is installed.

4. Remove the registry information of DLL/OCX files.

The registry information of DLL/OCX files (or any other files that are installed and
registered by your own) will not be automatically removed during the application
uninstall process.

To clean up the registry information of the DLL/OCX files, you can write scripts (a
sample shown below) and place them in a file named ManualUninstall.cmd, place the
ManualUninstall.cmd file under the same directory as the application target (.pbt) file,
add ManualUninstall.cmd under Files preloaded as compressed packages or Files
preloaded in uncompressed format in the External Files page, and then deploy the
application.

The scripts in ManualUninstall.cmd will be automatically run when the application
uninstall program is run. (If the file requires administrator rights to unregister, you
should run the application uninstall program with administrator rights.)

You can also add scripts in ManualUninstall.cmd to clean up any other files that are
installed and registered by your own.

The following is a sample script for unregistering DLL/OCX files that are registered by
Regsvr32:

set Driver=%~d0
set HOMEDIR=%~dp0
%Driver%
cd %HOMEDIR%
regsvr32 /u .\dllname
regasm /unregister .\AssemblyName

Tutorials

Contents
1 Tutorial 1: Deploying your PowerServer project to production environment 1

1.1 Overview .. 1
1.2 Task 1: Setting up the client machine ... 1
1.3 Task 2: Setting up the database server .. 1

1.3.1 Preparations ... 1
1.3.2 Configuring Windows Defender Firewall ... 2
1.3.3 Starting the database .. 3

1.4 Task 3: Setting up the Web server ... 3
1.4.1 Overview .. 3
1.4.2 Preparations ... 3
1.4.3 Installing Web Server (IIS) .. 4
1.4.4 Deploying app files to Web Server .. 7

1.4.4.1 Overview .. 7
1.4.4.2 Method 1: Creating an IIS FTP site ... 8
1.4.4.3 Method 2: Packaging and copying the client app 11

1.5 Task 4: Setting up the development PC .. 12
1.5.1 Preparations ... 12
1.5.2 Creating the ODBC data source ... 12
1.5.3 Creating a Web server profile for remote deployment 14
1.5.4 Uploading the cloud app launcher and the runtime files to the
remote server .. 15
1.5.5 Modifying and re-deploying the PowerServer project 16

1.6 Task 5: Setting up the auth server .. 19
1.7 Task 6: Setting up the .NET server ... 20

1.7.1 Preparations ... 20
1.7.2 Creating the ODBC data source ... 21
1.7.3 Publishing the Web APIs ... 23

2 Tutorial 2: Hosting Web APIs in Docker Containers .. 24
2.1 Task 1: Setting up Docker ... 24

2.1.1 Setting up a docker host (Docker Engine) 24
2.1.2 Setting up a docker registry .. 25

2.2 Task 2: Setting up the database server .. 25
2.2.1 Preparations ... 25
2.2.2 Starting the database .. 26

2.3 Task 3: Publishing to Docker .. 30
2.3.1 Preparing the development PC ... 30
2.3.2 Modifying and re-deploying the PowerServer project 31
2.3.3 Editing the pg_hba.conf file ... 34
2.3.4 Publishing Web APIs to Docker .. 34

2.3.4.1 Specifying Web API URL .. 40
3 Tutorial 3: Hosting Web APIs in IIS (in-process hosting) 42

3.1 Overview .. 42
3.2 Preparations ... 43
3.3 Installing IIS ... 45

3.3.1 Windows Server OS .. 45
3.3.2 Windows Desktop OS ... 47

3.4 Creating an IIS website ... 50
3.5 Configuring IIS ... 52
3.6 Configuring SSL on IIS .. 55
3.7 Publishing Web APIs to IIS ... 55

4 Tutorial 4: Hosting Web APIs in Kestrel .. 60
4.1 Overview .. 60
4.2 About PowerServer Web APIs and Kestrel ... 61
4.3 Running Web APIs on Kestrel ... 61
4.4 Using a reverse proxy server .. 62

4.4.1 Configuring Apache reverse proxy server (Windows) 62
4.4.1.1 Preparations .. 62
4.4.1.2 Configuring Apache ... 63
4.4.1.3 Modifying and re-deploying the PowerServer project 65
4.4.1.4 Starting Web APIs (in development environment) 66

4.4.2 Configuring Apache reverse proxy server (Linux) 67
4.4.2.1 Preparations .. 67
4.4.2.2 Configuring Apache ... 68
4.4.2.3 Modifying and re-deploying the PowerServer project 71
4.4.2.4 Starting Web APIs (in development environment) 72

4.4.3 Configuring Nginx reverse proxy server (Windows) 73
4.4.3.1 Preparations .. 73
4.4.3.2 Configuring Nginx .. 75
4.4.3.3 Modifying and re-deploying the PowerServer project 76
4.4.3.4 Starting Web APIs (in development environment) 77

4.4.4 Configuring Nginx reverse proxy server (Linux) 78
4.4.4.1 Preparations .. 78
4.4.4.2 Configuring Nginx .. 79
4.4.4.3 Modifying and re-deploying the PowerServer project 81
4.4.4.4 Starting Web APIs (in development environment) 82

4.4.5 Configuring IIS reverse proxy server ... 84
4.4.5.1 Preparations .. 84
4.4.5.2 Configuring IIS ... 85
4.4.5.3 Modifying and re-deploying the PowerServer project 89
4.4.5.4 Starting Web APIs (in development environment) 90

5 Tutorial 5: Load-balancing PowerServer Web APIs .. 92
5.1 Overview .. 92
5.2 Configuring Nginx as a load balancer ... 93

5.2.1 Using Nginx Sticky Module .. 94
5.2.2 Using Nginx Plus ... 95
5.2.3 Using IP hash load-balancing .. 96

5.3 Configuring IIS as a load balancer .. 97
5.4 Configuring Apache as a load balancer .. 103

6 Tutorial 6: Authenticating your apps .. 105
6.1 Overview .. 105
6.2 Using JWT ... 106

6.2.1 Preparations ... 106
6.2.2 Modifying the PowerBuilder client app .. 108

6.2.2.1 Purpose ... 108

6.2.2.2 Add scripts ... 108
6.2.2.3 Add an INI file ... 112
6.2.2.4 Start session manually by code .. 113
6.2.2.5 Modify and re-deploy the PowerServer project 114

6.2.3 Appendix .. 115
6.2.3.1 Validate username and password against a database 115

6.3 Using OAuth 2.0 .. 117
6.3.1 Preparations ... 117
6.3.2 Modifying the PowerBuilder client app .. 119

6.3.2.1 Purpose ... 119
6.3.2.2 Add scripts ... 119
6.3.2.3 Add an INI file ... 126
6.3.2.4 Start session manually by code .. 126
6.3.2.5 Modify and re-deploy the PowerServer project 127

6.3.3 Appendix .. 128
6.3.3.1 Validate username and password against a database 128
6.3.3.2 Validate username and password against an LDAP
server ... 130
6.3.3.3 Test the OAuth server ... 131

6.4 Using Amazon Cognito .. 132
6.4.1 Preparations ... 132
6.4.2 Creating the Amazon Cognito user pool 134
6.4.3 Modifying the PowerBuilder client app .. 141

6.4.3.1 Purpose ... 141
6.4.3.2 Add scripts ... 141
6.4.3.3 Add an INI file ... 145
6.4.3.4 Start session manually by code .. 145
6.4.3.5 Modify and re-deploy the PowerServer project 146

6.4.4 Modifying the authentication template ... 147
6.4.5 (Optional) Testing the Cognito server ... 148

6.5 Using other authentication servers .. 149
6.5.1 Azure Active Directory (AD) .. 149

6.5.1.1 Preparations .. 149
6.5.1.2 Creating an Azure AD tenant .. 151
6.5.1.3 Modifying the PowerBuilder client app 151
6.5.1.4 Modifying the authentication template 158

6.5.2 Azure Active Directory (AD) B2C .. 159
6.5.2.1 Preparations .. 159
6.5.2.2 Creating an Azure AD B2C tenant 160
6.5.2.3 Modifying the PowerBuilder client app 161
6.5.2.4 Modifying the authentication template 168

7 Tutorial 7: Building your PowerServer project with commands 170
7.1 Task 1: Preparing the environment ... 170
7.2 Task 2: Exporting the build file .. 170
7.3 Task 3 (Optional): Configuring the build file .. 171

7.3.1 Getting source code from SVN, Git, or VSS 171
7.3.2 Executing additional commands .. 173

7.4 Task 4: Running the PBAutoBuild210.exe command 175

7.5 Task 5: Integrating with Jenkins .. 175
8 Tutorial 8: Creating a standalone installable package 178

8.1 Packaging the client app ... 178
8.2 Packaging the PowerServer Web APIs ... 179
8.3 Telling client app where PowerServer Web APIs is 181

9 Tutorial 9: Load testing installable cloud apps .. 183
9.1 Load testing installable cloud apps with LoadRunner 183

9.1.1 Dynamic Values in the Recorded Script .. 183
9.1.2 Enclosing Parameters in Angle Brackets “<>” 183
9.1.3 Running the Application in Test Mode before Recording the
Script ... 183

9.1.3.1 How to switch to the test mode ... 184
9.1.4 Recording ... 185

9.1.4.1 Specifying the app .exe file as the Application 185
9.1.4.2 Disabling the async scan .. 186

9.1.5 Correlating the Session ID .. 187
9.1.5.1 How to correlate the session ID in the recorded script 187

9.1.6 Correlating the Transaction ID .. 189
9.1.6.1 How to correlate the transaction ID in case of single
transaction .. 189
9.1.6.2 How to correlate the transaction ID in case of multiple
transactions .. 191

9.1.7 Parameterizing Static Values in SQLs ... 192
9.1.7.1 How to parameterize static values in Retrieve 192
9.1.7.2 How to parameterize static values in Select 193

9.1.8 Replaying ... 193
9.2 Load testing installable cloud apps with JMeter 193

9.2.1 Overview .. 193
9.2.2 Preparing the installable cloud application 194

9.2.2.1 Configuring and deploying the application 194
9.2.2.2 Switching the application to test mode 194
9.2.2.3 Running PowerServer Web APIs and then JMeter recorder
or Fiddler .. 195

9.2.3 Recording JMeter scripts ... 196
9.2.3.1 Recording scripts automatically (using Recorder) 196
9.2.3.2 Recording scripts manually (using Fiddler + JMeter) 203
9.2.3.3 Parameterizing the Retrieve test ... 212

9.2.4 Parameterization and correlation ... 220
9.2.4.1 Why parameterization and correlation are required 220
9.2.4.2 Parameterizing the access token .. 220
9.2.4.3 Parameterizing the session ID .. 222
9.2.4.4 Parameterizing the transaction ID 223
9.2.4.5 Parameterizing the retrieval argument 226
9.2.4.6 Parameterizing the ESQL parameter 227

10 Tutorial 10: Setting up a Web server ... 230
10.1 Overview .. 230
10.2 Setting up IIS ... 230

10.2.1 Preparations ... 230

10.2.2 Installing Web Server (IIS) .. 230
10.2.3 Configuring SSL on IIS .. 234
10.2.4 Creating an IIS FTP site .. 234
10.2.5 Configuring SSL on FTP server .. 238

10.3 Setting up Apache on Windows .. 239
10.3.1 Preparations ... 239
10.3.2 Installing Apache HTTP Server ... 240
10.3.3 Configuring SSL on Apache .. 241
10.3.4 Installing FTP server .. 241

10.4 Setting up Apache on Linux .. 245
10.4.1 Preparations ... 245
10.4.2 Installing Apache HTTP Server ... 245
10.4.3 Configuring SSL on Apache .. 247
10.4.4 Configuring Apache to be case-insensitive 247
10.4.5 Packaging and copying the client app ... 248

10.5 Setting up Nginx on Windows ... 249
10.5.1 Preparations ... 249
10.5.2 Installing Nginx .. 250
10.5.3 Configuring SSL on Nginx ... 251
10.5.4 Installing FTP server .. 251

10.6 Setting up Nginx on Linux ... 254
10.6.1 Preparations ... 254
10.6.2 Installing Nginx .. 254
10.6.3 Configuring SSL on Nginx ... 256
10.6.4 Configuring Nginx to be case-insensitive 256
10.6.5 Packaging and copying the client app ... 257

11 Tutorial 11: Deploying installable cloud apps to Kubernetes 258
11.1 Overview .. 258
11.2 Before you begin ... 258
11.3 Configuring Azure Kubernetes Service .. 259

11.3.1 Creating a Kubernetes cluster in AKS ... 259
11.3.2 Connecting to the Kubernetes cluster ... 266
11.3.3 Installing ingress controller .. 267

11.3.3.1 Creating public IP address .. 267
11.3.3.2 Creating a Kubernetes namespace 270
11.3.3.3 Installing Ingress-Nginx ... 270
11.3.3.4 Using your own TLS certificates in AKS 271

11.3.4 Logging into Azure container registry .. 272
11.3.5 Creating a database .. 274

11.4 Containerizing the installable cloud app .. 279
11.4.1 Preparing the application ... 279

11.4.1.1 Modifying the Web API URL ... 279
11.4.1.2 Modifying the database connection 279
11.4.1.3 Packaging the client app as a zipped file 281
11.4.1.4 Building the PowerServer project 281

11.4.2 Creating the container images ... 282
11.4.2.1 Creating an image for the client app 282
11.4.2.2 Creating an image for the Web API 283

11.4.3 Pushing images to Azure container registry 285
11.5 Deploying the application to the Kubernetes cluster 286

11.5.1 Creating the YAML manifest files .. 286
11.5.2 Deploying the application .. 290
11.5.3 Configuring the domain name ... 291
11.5.4 Testing the application ... 291

Tutorial 1: Deploying your PowerServer project to
production environment

Page 1

1 Tutorial 1: Deploying your PowerServer
project to production environment

1.1 Overview
In the Quick Start guide, we use the simplest scenario (all roles in the local development
environment) to quickly get started with the PowerServer deployment; now in this tutorial,
we will walk through the deployment process in a more production-like environment, using
individual machines as the client, development PC, Web server, database server, and .NET
server.

It is recommended that before you go through this tutorial you have a successful result with
the Quick Start guide first, so that you have basic concepts of the whole deployment process.

1.2 Task 1: Setting up the client machine
Set up the client machine with the following OS and software:

• Windows 10

• Google Chrome

This tutorial takes Google Chrome as an example. You can also use Firefox or the new
Edge browser (Chromium-based).

1.3 Task 2: Setting up the database server

1.3.1 Preparations

In this tutorial, we will set up the salesdemo SQL Anywhere database server running in an
independent machine.

Set up the database server with the following OS and software:

• Windows Server 2019 (64-bit)

• SQL Anywhere 17

Click here to download the installer for the free trial of SQL Anywhere developer edition.

This tutorial takes SQL Anywhere database as an example. You can also install the other
databases by following the documentation from the vendor.

Note that the SQL Anywhere database can only be connected through an ODBC driver.
You will need to create the same ODBC data source in both the development PC and
the .NET server. The data source in the development PC is for converting DataWindows to
models, and the data source in the .NET server is for accessing data from the database. The
following sections have detailed instructions for how to create the ODBC data source.

Important

For optimal runtime performance, it is highly recommended that the PowerServer
Web APIs should be published to a server that locates on the same LAN as the

https://www.sap.com/products/sql-anywhere/trial.html

Tutorial 1: Deploying your PowerServer project to
production environment

Page 2

database server. If the database is not on the same network as the Web APIs, every
request has to go a long way from PowerServer to the database, it is highly possible
that there will be performance and security issues.

1.3.2 Configuring Windows Defender Firewall

If Windows Defender Firewall or any antivirus tool is turned on, make sure to configure them
to allow the database server port (2638 in this tutorial or the port number you choose to use)
to go through, otherwise, connection errors may occur.

You would need to configure the firewall/antivirus settings on the following servers:

• Database server -- to allow the database server port (2638 in this tutorial)

• .NET server -- to allow the .NET server port (5009 in this tutorial)

• Web server -- to allow the FTP server port (21 in this tutorial) (this only affects the FTP
connection during the app deployment)

The following steps configure the firewall settings on the database server (you can take the
same steps to configure the other servers):

Step 1: Open Windows Defender Firewall and then click Advanced settings.

Step 2: Select Inbound Rules and then click New Rule.

Figure 1.1:

Step 3: Create a new rule which allows connections through the database server port (2638 in
this tutorial).

Tutorial 1: Deploying your PowerServer project to
production environment

Page 3

Figure 1.2:

1.3.3 Starting the database

Step 1: Download the database file (pbdemo2021_for_sqlanywhere.zip) from https://
github.com/Appeon/PowerBuilder-Project-Example-Database.

Or copy the database file (pbdemo2021.db) from the PowerBuilder demo installation folder
(%Public%\Documents\Appeon\PowerBuilder 21.0\) to the database server, if you have
installed PowerBuilder IDE according to Task 4.

Step 2: Start this database file on the salesdemo database server using SQL Anywhere
Network Server (dbsrv17.exe).

The database server must be started as a network server (not personal server) in order to
support network connections.

"C:\Program Files\SQL Anywhere 17\Bin64\dbsrv17.exe" -x tcpip(port=2638) -n
 salesdemo "C:\DB\pbdemo2021.db"

1.4 Task 3: Setting up the Web server

1.4.1 Overview

The client-side of the installable cloud app can be hosted in the following Web servers:

• Windows IIS

• Windows/Linux Apache

• Windows/Linux Nginx

This tutorial will take Windows IIS as an example. For detailed instructions of the other Web
servers, refer to Setting up a Web server.

1.4.2 Preparations

In this tutorial, we will set up a Web server and an FTP server running on the same IIS
instance.

https://github.com/Appeon/PowerBuilder-Project-Example-Database
https://github.com/Appeon/PowerBuilder-Project-Example-Database

Tutorial 1: Deploying your PowerServer project to
production environment

Page 4

Step 1: Set up the Web server with the following OS and software:

• Windows Server 2019 (64-bit)

• Microsoft IIS

The next section Installing Web Server (IIS) has detailed installation instructions.

Step 2: Configure Secure Sockets Layer (SSL) for the Web server, so that HTTPS can be
used to secure the connections between the client and the Web server.

For how to configure SSL on IIS, refer to https://docs.microsoft.com/en-us/iis/manage/
configuring-security/how-to-set-up-ssl-on-iis.

Step 3: Configure Windows Defender Firewall on the Web server to allow the FTP port (21
in this tutorial).

The section "Configuring Windows Defender Firewall" has detailed instructions.

1.4.3 Installing Web Server (IIS)

Step 1: In Windows Server 2019, open Server Manager, and then select Add roles and
features.

Step 2: In the Add Roles and Features Wizard, click Next several times until the Server
Roles section displays.

Step 3: Click the check box of Web Server (IIS); and then click Add Features when asked
whether to add features required for Web server.

Figure 1.3:

Step 4: Make sure the check box of Web Server (IIS) is selected.

https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis
https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis

Tutorial 1: Deploying your PowerServer project to
production environment

Page 5

Figure 1.4:

Step 5: Click Next until the Role Services section displays. Make sure the following role
services are selected.

• Default Document

• Static Content

• .NET Extensibility 4.7

• Application Initialization

• ASP.NET 4.7

• ISAPI Extensions

• ISAPI Filters

• IIS Management Console

• FTP Service

• FTP Extensibility

FTP Service & FTP Extensibility must be enabled if you want to create an IIS FTP site
for transferring files from a remote development machine to the Web server.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 6

Figure 1.5:

Step 6: Click Next and then click Install.

After IIS is installed, a Default Web Site (with port 80) is automatically created (you could
also create new websites with different port numbers).

Figure 1.6:

Step 7: Open a Web browser and run the following URLs to access the Default Web Site.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 7

http://localhost:80/

http://your_server_ip:80/

TIP: You can use "localhost" or the IP address to access the IIS website on the local
computer. To obtain the IP address, open a command prompt window and then type
ipconfig<Enter>. Write down the IP address as it is needed when you configure the Web
server profile in PowerBuilder.

If the IIS welcome screen displays, the IIS website is working properly.

Figure 1.7:

Also remember the physical path for Default Web Site which is C:\inetpub\wwwroot
by default (or any other path you have changed to). This is where the client app will be
deployed, or the FTP site will point to.

1.4.4 Deploying app files to Web Server

1.4.4.1 Overview

To deploy the client app from the local development PC to the remote Web server, you can
choose:

• Method 1: Deploy the client app to the remote server through the FTP protocol.

Step 1: Set up an FTP server (the FTP server's physical path must point to the Web root of
the Web server).

Method 1: Creating an IIS FTP site will walk you through how to set up an FTP server.

Step 2: Deploy the client app from the development machine to the remote server through
the FTP server.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 8

"Task 4: Setting up the development PC" has detailed instructions.

• Method 2: Package the client app and then install (or copy) it to the Web root of the Web
server.

Method 2: Packaging and copying the client app will walk you through how to package the
client app and then install (or copy) it to the Web server Web root.

1.4.4.2 Method 1: Creating an IIS FTP site

The following steps will walk you through setting up an IIS FTP site on the Web server, so
that PowerBuilder can deploy files to the remote server through the FTP protocol.

In the previous section, if you have selected to enable FTP Service & FTP Extensibility,
you can create an IIS FTP site to be used by the remote deployment.

Step 1: In the IIS Manager, right click Sites, select Add FTP Site.

Step 2: Specify a name for the FTP site, and set the physical path to the Web root of the IIS
Web server (C:\inetpub\wwwroot in this tutorial). Click Next.

Figure 1.8:

Step 3: Use the default port 21 (or specify a different port if you like). If no certificate is
available, you can select No SSL. Use the default values for the other settings. Click Next.

For how to configure SSL on an IIS FTP site, refer to Configure an SSL-based FTP server.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 9

Figure 1.9:

Step 4: Select Anonymous and Basic authentication. Select All users or specify the users
that are allowed to access the FTP site, and then select the Read and Write permissions.
Click Finish.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 10

Figure 1.10:

The FTP site is created.

Figure 1.11:

Step 5: Open a Web browser and run the following URL to access the FTP site.

ftp://your_server_ip:21/

If the FTP root displays, then the FTP site is working properly.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 11

Figure 1.12:

1.4.4.3 Method 2: Packaging and copying the client app

Before you take the steps below to package the client app, make sure you have built the
application successfully by following instructions in the next section "Task 4: Setting up the
development PC".

Step 1: In the PowerServer project painter, select the Client Deployment tab, then select
Package the compiled app and manually deploy later, and then select Zipped file,
Package Cloud App Launcher, and Package all runtime files.

Figure 1.13:

Step 2: Save the project settings and then click the Build & Deploy PowerServer Project or
Deploy PowerServer Project button in the toolbar to generate the package.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 12

When the packaging process is completed, the folder that contains the generated package will
be displayed.

Step 3: Copy and extract the generated zipped file to the Web root of the Web server.

1.5 Task 4: Setting up the development PC

1.5.1 Preparations

Set up the development machine with the following OS and software (install the software in
the order listed):

• Windows 10 (64-bit)

• SQL Anywhere 17

• PowerBuilder IDE 2021

• PowerBuilder Runtime 2021

• PowerServer Toolkit 2021

• SnapDevelop 2021 (optional)

• Google Chrome (optional)

1.5.2 Creating the ODBC data source

A database connection needs to be established between the development PC and the database
server (for converting DataWindows to models), and between the .NET server and the
database server (for retrieving data). Currently the SQL Anywhere database can only be
connected through an ODBC driver, therefore, you will need to create the same ODBC data
source in both:

• the development PC, and

• the .NET server

In Task 2: Setting up the database server, we have successfully set up the salesdemo SQL
Anywhere database server in an individual machine. In this tutorial, we will create an ODBC
data source on the development PC that connects to this database server. (You will take the
same steps to create the same ODBC data source on the .NET server later. The same ODBC
data source means the data source has the same name, for example, "SalesDemo DB" in this
tutorial)

Step 1: Install SQL Anywhere 17.

Step 2: Create a 64-bit ODBC data source and name it as "SalesDemo DB". The data source
name must be the same in both the development PC and the .NET server.

IMPORTANT: Make sure you use the 64-bit version of ODBC administrator to create the
data source, because only the 64-bit ODBC data sources can be selected for the PowerServer
project.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 13

Step 3: Click Test Connection to ensure the connection settings are correct.

Figure 1.14:

Figure 1.15:

Tutorial 1: Deploying your PowerServer project to
production environment

Page 14

1.5.3 Creating a Web server profile for remote deployment

Step 1: Go to the development PC, select Windows Start | Appeon PowerBuilder 2021,
and then right-click Example Sales App and select More | Run as administrator. The
SalesDemo workspace is loaded in the PowerBuilder IDE.

Step 2: Select Tools>Web Server Profile from the PowerBuilder menu bar to open the Web
Server Profile window.

Step 3: In the Web Server Profile window, click Add.

Step 4: Select Remote server, and then specify the settings for connecting to the FTP site.

In this tutorial, specify the following values (or the values you chose):

Server profile name: Any text, for example, Remote IIS Web Server, Remote Apache HTTP
Server, Remote Nginx, etc.

Host: IP address or host name of the FTP site, for example, 172.16.100.63.

Port: Port number of the FTP site, for example, 21.

Username: Windows user name.

Password: Windows user password.

Figure 1.16:

Step 5: Click Test FTP Connection and make sure connection to the FTP site is successful.

Tip

In case connection errors occur, try the following to resolve:

• Check if the Windows Defender Firewall on the FTP server allows the FTP port
(21 in this tutorial) to go through.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 15

• Check if the port (21 in tutorial) is occupied by any other program.

Tip: You can execute the command "netstat -ano | findstr 21" to check if the port
number is occupied by any other program.

• Input a username and password for logging to the FTP site, instead of using
anonymous login.

• Check if the user has read and write permissions to the FTP root.

1.5.4 Uploading the cloud app launcher and the runtime files to the remote
server

Step 1: Select Tools>Upload Cloud App Launcher from the PowerBuilder menu bar.

Step 2: In the Upload Cloud App Launcher and Runtime window that appears, select
Directly upload to the server and then select a server profile (for example, "Remote IIS
Web Server") from the listbox.

Step 3: Keep the other settings as default and click Upload.

Figure 1.17:

Step 4: When the upload is finished, go to the Web server and verify the
"CloudAppPublisher" folder exists under the Web root (in this tutorial, the Web root
for IIS is C:\inetpub\wwwroot, for Apache is C:\Apache24\htdocs, and for Nginx is C:
\nginx-1.19.10\html).

Tutorial 1: Deploying your PowerServer project to
production environment

Page 16

1.5.5 Modifying and re-deploying the PowerServer project

The following modifications are made to the PowerServer project created in the Quick Start
guide. If you have not created a PowerServer project yet, please follow the instructions in the
Quick Start guide to create one.

Step 1: Select the profile for the remote server (instead of the local server).

On the Client Deployment tab of the PowerServer project painter, select "Directly deploy
to the server" and then select a server profile (such as "Remote IIS Web Server", "Remote
Apache HTTP Server", or "Remote Nginx") in the Deployment mode section.

The server profile is created in the section Creating a Web server profile for remote
deployment.

Figure 1.18:

Step 2: Specify the auth template to use in the production environment. It is strongly
recommended for security concerns, that in the production environment, you shall safeguard
the server resources through implementing an authentication server with PowerServer.

Figure 1.19:

Select a template type from the Auth Template list.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 17

• Use built-in JWT server: Includes a built-in authentication server that supports JWT
or bearer tokens. See Tutorial 6: Authenticating your apps > Using JWT for more
information.

• Use built-in OAuth server: Includes a built-in authentication server based on
IdentityServer4 framework that works with the OAuth 2.0 authorization flows. See
Tutorial 6: Authenticating your apps > Using OAuth 2.0 for more information.

• Use built-in AWS Cognito server: Includes a built-in authentication server that works
with the Amazon Cognito user pool. See Tutorial 6: Authenticating your apps > Using
Amazon Cognito for more information.

• Use external auth service: Includes templates that can be easily extended to support the
other identity providers that work with the OAuth flows or JWT, such as Azure AD or
Azure AD B2C. See Tutorial 6: Authenticating your apps > Using other auth servers for
more information.

Step 3: Specify the Web API URL. The Web API URL is used by the client app to call the
Web APIs.

On the Web APIs tab of the PowerServer project painter, specify the Web API URL, for
example, https://172.16.100.71:5009. This indicates that the client app will call the Web
APIs running on the server at https://172.16.100.71:5009. It is highly recommended that you
specify an HTTPS URL for the production environment.

Important

1. Make sure the Web API is running on the specified IP address (or host name) and
port number. For how to start the Web API, see the next section.

2. If the IP address and port number of the .NET server are changed later, you will
need to modify the settings here and then deploy the project again (using the
"Deploy PowerServer Project" option).

Figure 1.20:

Step 4: Select the "SalesDemo DB" ODBC data source (created in Creating the ODBC data
source).

Tutorial 1: Deploying your PowerServer project to
production environment

Page 18

At the bottom of the Web APIs tab of the PowerServer project painter, click the Database
Configuration button.

In the Database Configuration window, click DB Drivers in the upper part to make sure the
corresponding database driver and the option "I have read and agree to the license ..." both
are selected.

In the Database Configuration window, click New in the upper part to create the database
connection that will be used by the deployment.

In the dialog box that displays, configure the database connection with the following settings:

Figure 1.21:

Then select the database cache you created just now to map with the "sqlca" transaction
object.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 19

Figure 1.22:

Step 5: Save the PowerServer project settings.

Step 6: Build and deploy the PowerServer project (using the "Build & Deploy PowerServer
Project" option) for the changes to take effect.

When the deployment is finished, go to the Web server and verify that the application folder
(for example, "pssales") exists under the Web root.

Step 7: Go to the specified location (C:\Users\appeon\source\repos in this tutorial) and copy
the PowerServer C# solution folder to the .NET server.

1.6 Task 5: Setting up the auth server

It is strongly recommended for security concerns, that in the production environment, you
shall safeguard the server resources through implementing an authentication server with
PowerServer.

If you have selected an auth template (build-in JWT server, built-in OAuth server, or built-
in AWS Cognito server) in the project settings, make sure to follow the relevant instructions
to modify the PowerBuilder client app and re-deploy the PowerServer project. If you have
selected to use built-in AWS Cognito server, you also need to make changes to the deployed
authentication template.

• Use built-in JWT server: Includes a built-in authentication server that supports JWT
or bearer tokens. See Tutorial 6: Authenticating your apps > Using JWT for more
information.

• Use built-in OAuth server: Includes a built-in authentication server based on
IdentityServer4 framework that works with the OAuth 2.0 authorization flows. See
Tutorial 6: Authenticating your apps > Using OAuth 2.0 for more information.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 20

• Use built-in AWS Cognito server: Includes a built-in authentication server that works
with the Amazon Cognito user pool. See Tutorial 6: Authenticating your apps > Using
Amazon Cognito for more information.

If you have selected to use external auth service in the project settings, see Tutorial 6:
Authenticating your apps > Using other auth servers for more information on how to
incorporate the other auth server that work with the OAuth flows or JWT, such as Azure AD
or Azure AD B2C.

1.7 Task 6: Setting up the .NET server

1.7.1 Preparations

This tutorial starts the Web APIs directly (using the built-in Kestrel server), you can also
deploy the Web APIs to a more secure and manageable environment such as Docker
Container, IIS etc. as described in the following tutorials.

• Tutorial 2: Hosting Web APIs in Docker Containers

• Tutorial 3: Hosting Web APIs in IIS

• Tutorial 4: Hosting Web APIs in Kestrel

In this tutorial, we will set up a .NET server running in an independent machine.

Step 1: Set up the .NET server with the following OS and software:

• Windows Server 2019 (64-bit)

• SQL Anywhere 17

• SnapDevelop 2021

Step 2: (IMPORTANT) Configure Secure Sockets Layer (SSL) for the .NET server, so that
HTTPS can be used to secure the connections between the client and the .NET server.

Step 3: Make sure the .NET server can connect to the NuGet site: https://www.nuget.org
(for installing PowerServer NuGet packages) and the following Appeon sites (through
port number 80): https://apips.appeon.com and https://apipsoa.appeon.com (or https://
apips.appeon.net and https://apipsoa.appeon.net) (for validating the PowerServer license).

Note

If the server connects to Internet through a proxy server, make sure to configure the
proxy server settings in the PowerServer Web API as well (the ServerAPIs project >
Server.json file > "ProxyOptions" block).

Step 4: Configure Windows Defender Firewall on the .NET server to allow the port (5009 in
this tutorial or any port number you choose). The section "Configuring Windows Defender
Firewall" has detailed instructions.

https://www.nuget.org
https://apips.appeon.com
https://apipsoa.appeon.com
https://apips.appeon.net
https://apips.appeon.net
https://apipsoa.appeon.net

Tutorial 1: Deploying your PowerServer project to
production environment

Page 21

Important

For optimal runtime performance, it is highly recommended that the PowerServer
Web APIs should be published to a server that locates on the same LAN as the
database server. If the database is not on the same network as the Web APIs, every
request has to go a long way from PowerServer to the database, it is highly possible
that there will be performance and security issues.

1.7.2 Creating the ODBC data source

A database connection needs to be established between the development PC and the database
server (for converting DataWindows to models), and between the .NET server and the
database server (for retrieving data). Currently the SQL Anywhere database can only be
connected through an ODBC driver, therefore, you will need to create the same ODBC data
source in both:

• the development PC, and

• the .NET server

Step 1: Install SQL Anywhere 17.

Step 2: Create a 64-bit ODBC data source and name it as "SalesDemo DB". The data source
name must be the same in both the development PC and the .NET server. The data source
should connect to the salesdemo SQL Anywhere database server (which is set up in Task 2:
Setting up the database server).

IMPORTANT: Make sure you use the 64-bit version of ODBC administrator to create the
data source, because only the 64-bit ODBC data sources are supported by PowerServer.

Step 3: Click Test Connection to ensure the connection settings are correct.

Tutorial 1: Deploying your PowerServer project to
production environment

Page 22

Figure 1.23:

Figure 1.24:

Tutorial 1: Deploying your PowerServer project to
production environment

Page 23

1.7.3 Publishing the Web APIs

Step 1: Copy the PowerServer C# solution from the development PC (C:\Users\appeon
\source\repos in this tutorial) to the .NET server.

Step 2: Double click PowerServer_[appname].sln to launch the solution in SnapDevelop.
Log in to SnapDevelop if required.

The PowerServer C# solution will connect to the NuGet site (https://www.nuget.org) to
download and install the required packages from the NuGet site.

Step 3: Click Run from the SnapDevelop toolbar to start the Web APIs (using the built-in
Kestrel server) immediately.

You can also deploy the Web APIs to a hosting environment, for example, publish to a folder
on the hosting server (like Docker), or publish to a process manager such as IIS etc., as
described in the following tutorials.

• Tutorial 2: Hosting Web APIs in Docker Containers

• Tutorial 3: Hosting Web APIs in IIS

• Tutorial 4: Hosting Web APIs in Kestrel (and using a reverse proxy)

https://www.nuget.org

Tutorial 2: Hosting Web APIs in Docker Containers

Page 24

2 Tutorial 2: Hosting Web APIs in Docker
Containers
The PowerServer Web APIs is an ASP.NET Core app; it can be hosted and deployed like
any other ASP.NET Core app described in https://docs.microsoft.com/aspnet/core/host-and-
deploy/?view=aspnetcore-3.1.

This tutorial takes Docker as an example to show you how to publish and host the Web
APIs in a Docker Container; it will reuse part of the configurations in the Quick Start and
Tutorial 1, thus, it is strongly recommended that you have completed the Quick Start guide
and Tutorial 1 first.

2.1 Task 1: Setting up Docker

2.1.1 Setting up a docker host (Docker Engine)

Figure 2.1:

The docker host is where the docker image is built and the docker container is run. The
ServerAPIs project will be built and published as a docker image first, and then the docker
image will be run as a docker container. The Web APIs is actually hosted and run in the
docker container.

Step 1: Set up a docker host (also called Docker Engine in the SnapDevelop IDE).

To set up a docker host/Docker Engine, refer to https://docs.docker.com/engine/install/.

In this tutorial, a Docker Engine has already been set up in a Linux server (suppose its IP
address and port number are 172.25.100.20:2375).

Write down this information as it will be required when you build the ServerAPIs project as
a docker image (in the later section Publishing Web APIs to Docker).

Step 2: Make sure the docker host machine can connect to the following Appeon sites
(through port number 80): https://apips.appeon.com and https://apipsoa.appeon.com (or
https://apips.appeon.net and https://apipsoa.appeon.net) (for validating the PowerServer
license).

https://docs.microsoft.com/aspnet/core/host-and-deploy/?view=aspnetcore-3.1
https://docs.microsoft.com/aspnet/core/host-and-deploy/?view=aspnetcore-3.1
https://docs.docker.com/engine/install/
https://apips.appeon.com
https://apipsoa.appeon.com
https://apips.appeon.net
https://apipsoa.appeon.net

Tutorial 2: Hosting Web APIs in Docker Containers

Page 25

If the docker host machine connects to Internet via a proxy server, refer to Configure Docker
to use a proxy server for detailed instructions.

2.1.2 Setting up a docker registry

Figure 2.2:

A docker registry is the repository where the docker image is published and shared. You may
choose from the following registries:

• Docker Hub -- Docker's official registry, it is the default registry when you install Docker.
You can connect to the public registry (hub.docker.com:443) that anyone can use or a your
own private registry. You will be required to log into Docker Hub before you can store the
image. For more about Docker Hub, refer to https://docs.docker.com/docker-hub/.

• A self-hosted Docker Registry -- Your own registry created using the open-source Docker
Registry. For more about Docker Registry, refer to https://docs.docker.com/registry/.

Step 1: Set up a docker registry.

In this tutorial, a self-hosted Docker Registry has already been set up in a Linux server
(suppose its IP address and port number are 172.25.100.20:5000).

Write down this information as it will be required when you build and publish the
ServerAPIs project as a docker image (in the later section Publishing Web APIs to Docker).

To know more about Docker, we recommend you start by understanding the Docker
Architecture.

2.2 Task 2: Setting up the database server

2.2.1 Preparations

This tutorial takes PostgreSQL database as an example. You can also install other databases
by following the documentation from the vendor.

https://docs.docker.com/network/proxy/
https://docs.docker.com/network/proxy/
https://docs.docker.com/docker-hub/
https://docs.docker.com/registry/
https://docs.docker.com/get-started/overview/#docker-architecture
https://docs.docker.com/get-started/overview/#docker-architecture

Tutorial 2: Hosting Web APIs in Docker Containers

Page 26

In this tutorial, we will set up a database server with the PBDemo PostgreSQL database
running in an independent machine.

Step 1: Set up the database server with the following OS and software:

• Windows Server 2019 (64-bit)

• PostgreSQL 12

Click here to download the installer for PostgreSQL.

Step 2: Configure Windows Defender Firewall on the database server to allow the database
server port (5432 in this tutorial or any port number you choose). The section "Configuring
Windows Defender Firewall" has detailed instructions.

2.2.2 Starting the database

Step 1: Download the database file (pbdemo2021_for_postgresql.zip) from https://
github.com/Appeon/PowerBuilder-Project-Example-Database.

Or copy the database file (pbpostgres2021.dmp) from the PowerBuilder demo installation
folder (%Public%\Documents\Appeon\PowerBuilder 21.0\) to the database server, if you
have installed PowerBuilder IDE according to Task 3: Setting up the development PC.

Step 2: Restore and run the database in the management tool for PostgreSQL.

1. Select Windows Start menu | PostgreSQL 12 | pgAdmin 4.

pgAdmin 4 is a Web application. If pgAdmin 4 cannot run in Internet Explorer (the default
Web browser in Windows Server 2019), you can install and try Google Chrome.

2. Expand Servers | PostgreSQL, right click Databases, and select Create | Database.

Figure 2.3:

3. Input PBDemo in the Database field and click Save.

https://www.postgresql.org/download/
https://github.com/Appeon/PowerBuilder-Project-Example-Database
https://github.com/Appeon/PowerBuilder-Project-Example-Database

Tutorial 2: Hosting Web APIs in Docker Containers

Page 27

Figure 2.4:

4. Right click PBDemo that was just created, and select Restore.

Tutorial 2: Hosting Web APIs in Docker Containers

Page 28

Figure 2.5:

5. Select the pbpostgres2021.dmp file and click Restore.

Tutorial 2: Hosting Web APIs in Docker Containers

Page 29

Figure 2.6:

After the database file is restored, you will be able to view the following schemas:

Figure 2.7:

Tutorial 2: Hosting Web APIs in Docker Containers

Page 30

6. Open the pg_hba.conf file in a text editor and add the following line. The pg_hba.conf
file is located in %PostgreSQL%\12\data. This enables the database server to allow remote
connections.

host all all 0.0.0.0/0 md5

2.3 Task 3: Publishing to Docker

2.3.1 Preparing the development PC

Set up the development machine with the following OS and software (install the software in
the order listed):

• Windows 10 (64-bit)

• PostgreSQL 12

During installation, make sure the Command Line Tools component is selected to install,
and specify and write down the following information:

Data Directory: C:\Program Files\PostgreSQL\12\data by default

Database Superuser: postgres by default

Password for Database Superuser: (this password is set during installation) postgres in this
tutorial

Port Number: 5432 by default

• PostgreSQL ODBC driver (32-bit)

The 32-bit version of PostgreSQL ODBC driver is required by the PowerBuilder IDE to
establish database connection with the PostgreSQL database; therefore the PostgreSQL
ODBC driver (32-bit) must be installed on the development PC.

• PowerBuilder IDE 2021

During installation, make sure to select the PostgreSQL engine for the PowerBuilder demo
database.

The PowerBuilder demo database file for PostgreSQL (pbpostgres2021.dmp) will be
installed to the %Public%\Documents\Appeon\PowerBuilder 21.0\ directory.

Tutorial 2: Hosting Web APIs in Docker Containers

Page 31

Figure 2.8:

• PowerBuilder Runtime 2021

• PowerServer Toolkit 2021

• SnapDevelop 2021

• Google Chrome (optional)

2.3.2 Modifying and re-deploying the PowerServer project

The following modifications are made to the PowerServer project created in the Quick Start
guide and modified in Tutorial 1. If you have not created a PowerServer project yet, please
follow the instructions in the Quick Start guide and Tutorial 1 to create one.

Step 1: Specify where the Web APIs is actually hosted and run. This tells the client app
where and how to call the Web APIs.

On the Web APIs tab of the PowerServer project painter, specify the URL of the
docker container where the Web APIs is running. The host name (or IP address) of the
docker container should be the same as that of the docker host/Docker Engine. The port
number is what will be specified later when the docker container is run, for example,
https://172.16.100.20:5009. This indicates that the client app will call the Web APIs running
on the docker container at https://172.16.100.20:5009.

It is highly recommended that you specify an HTTPS URL for the production environment.

Tutorial 2: Hosting Web APIs in Docker Containers

Page 32

Important

1. Make sure the docker container is run at the same host name (or IP address)
and port number. For how to run the image as a container, see the next section
Publishing Web APIs to Docker.

2. If the host name and port number of the docker container are changed later, you
will need to modify the settings here and then deploy the project again (using the
"Build & Deploy PowerServer Project" option).

Figure 2.9:

Step 2: Configure the database connection.

1. At the bottom of the Web APIs tab of the PowerServer project painter, click the Database
Configuration button.

2. In the Database Configuration window, click DB Drivers in the upper part to make sure
the corresponding database driver and the option "I have read and agree to the license ..."
both are selected.

3. In the Database Configuration window, click New in the upper part to create the
database connection that will be used by the deployment.

4. In the dialog box that displays, configure the database connection settings (using the
PBDemo PostgreSQL database in this tutorial).

Tutorial 2: Hosting Web APIs in Docker Containers

Page 33

Figure 2.10:

If the following errors occur when testing the connection, try the following solutions:

• "Exception while connecting"

Solution: make sure the firewall on the database server has been configured to allow the
database port 5432 (detailed instructions).

• "28000: no pg_hba.conf entry for host "172.16.100.104", user "postgres", database
"postgres", SSL off"

Solution: edit the %PostgreSQL%\12\data\pg_hba.conf file to allow remote connections
(detailed instructions).

Tutorial 2: Hosting Web APIs in Docker Containers

Page 34

5. Select the database cache you created just now and map it to the "sqlca" transaction object.

Figure 2.11:

Step 3: Save the PowerServer project settings.

Step 4: Build and deploy the PowerServer project (using the "Build & Deploy PowerServer
Project" option) for the changes to take effect.

2.3.3 Editing the pg_hba.conf file

Open the pg_hba.conf file in a text editor and add the following line.

The pg_hba.conf file is located in %PostgreSQL%\12\data. This enables the database server
to allow remote connections.

host all all 0.0.0.0/0 md5

2.3.4 Publishing Web APIs to Docker

Step 1: Open the PowerServer C# solution in SnapDevelop.

Click the Open C# Solution in SnapDevelop button () in the toolbar to launch the
PowerServer C# solution in SnapDevelop. Or go to the location where the PowerServer C#
solution is generated; and double click PowerServer_[appname].sln to launch the solution
in SnapDevelop.

At startup, the solution will install/update the dependencies. Wait until the Dependencies
folder completes the install/update. (Make sure the machine can connect to the NuGet site:
https://www.nuget.org in order to successfully install PowerServer NuGet packages).

Step 2: Add docker support to the ServerAPIs project.

https://www.nuget.org

Tutorial 2: Hosting Web APIs in Docker Containers

Page 35

1. In the Solution Explorer, right click on the ServerAPIs project node, and select Add >
Docker Support.

2. In the Add Dockerfile dialog, select the target OS: Linux or Windows, and click OK.
The target OS indicates the platform where Docker Engine and Docker Container are
running. In this tutorial, select Linux.

A file named Dockerfile is automatically created according to the selected OS and added
under the ServerAPIs project. This file contains all the commands required for building a
docker image appropriate for the selected OS.

Figure 2.12:

Step 3: Build and publish the ServerAPIs project as a docker image.

Figure 2.13:

1. In the Solution Explorer, right click on the ServerAPIs project node, and select Publish.

2. In the window that appears, select Docker, and then click Start to configure for publish.

a. Keep Publish to Personal Repository checked if you are connecting to your own
repository (not part of an organization). If the repository is owned by an organization,
clear the checkbox, and enter the organization name.

b. In the Engine field, select the machine where Docker Engine is installed.

Tutorial 2: Hosting Web APIs in Docker Containers

Page 36

If you select localhost, make sure you have installed Docker Engine on the local
machine; if you select a remote machine, make sure you have installed Docker Engine
to that machine and configured Docker Engine to allow remote connection. See Setting
up a docker host (Docker Engine) for more.

c. In the Registry field, specify where to store the docker image: Docker Hub or a self-
hosted Docker Registry. See Setting up a docker registry for more.

If you specify a repository in Docker Hub, you will need to enter your Docker
username and password.

d. In the Image Name field, enter a name for the docker image you want to create for the
project.

e. Click Finish to start building the project as an image and publishing the image to the
specified Docker Engine and docker registry.

Figure 2.14:

Check the Docker Output window and make sure the publish is successful.

Tutorial 2: Hosting Web APIs in Docker Containers

Page 37

Figure 2.15:

Step 4: Run the docker image as a docker container.

Figure 2.16:

1. In SnapDevelop, select View > Docker Explorer to open the Docker Explorer.

2. In the Docker Explorer, expand the node for the machine where Docker Engine is, and
then expand Images and find the image that is created for the project, right click it and
select Run as a Container.

Tutorial 2: Hosting Web APIs in Docker Containers

Page 38

Figure 2.17:

3. In the window that appears, specify the following settings for the container, and click OK.

• Specify a name for the container.

• Specify the port number for the Web APIs in the container. Leave the IP address with
the default value 0.0.0.0 which will automatically point to the IP address for Docker
Engine where the container is running.

IMPORTANT:

1. The IP address and port number must match with the Web API URL specified on the
Web APIs tab of the PowerServer project painter. And the actual IP address (instead of
0.0.0.0) should be specified in the Web API URL (view Web API URL).

2. If the docker host machine connects to Internet via a proxy server, configure the
proxy settings as the environment variables (as shown in the blue frame below); or refer
to Configure Docker to use a proxy server for detailed instructions.

https://docs.docker.com/network/proxy/

Tutorial 2: Hosting Web APIs in Docker Containers

Page 39

Figure 2.18:

The container is started and added under the Containers node. You can stop, restart, or
delete the container, or execute commands using the right-click context menu.

Tutorial 2: Hosting Web APIs in Docker Containers

Page 40

Figure 2.19:

If you double click the container, the container configuration and log will be displayed
on the right. The Logs section displays valuable logging information of the Web APIs at
runtime.

Figure 2.20:

2.3.4.1 Specifying Web API URL

Specify where the Web APIs is hosted and run.

On the Web APIs tab of the PowerServer project painter, specify the URL of the docker
container where the Web APIs is running, for example, https://172.16.100.20:5009. It is
highly recommended that you specify an HTTPS URL for the production environment.

Tutorial 2: Hosting Web APIs in Docker Containers

Page 41

IMPORTANT: if the host name and port number of the docker container are changed later,
you only need to update the Web API URL and then deploy the project again (using the
"Deploy PowerServer Project" option) (it is not necessary to update or re-deploy Web APIs
to Docker).

Figure 2.21:

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 42

3 Tutorial 3: Hosting Web APIs in IIS (in-
process hosting)

3.1 Overview

The PowerServer Web APIs can be directly hosted inside of an IIS Application pool and
run in the same process as its IIS worker process (w3wp.exe); this is known as in-process
hosting. It is different from the out-of-process hosting which runs the PowerServer Web APIs
in a process separate from the IIS worker process and forwards the requests made to the IIS
reverse proxy to the Kestrel server.

Figure 3.1:

This tutorial talks about the in-process hosting. The configuration of IIS reverse proxy server
for the out-of-process hosting will be discussed in Using Kestrel with IIS reverse proxy
server.

To implement the in-process hosting of the PowerServer Web APIs in IIS, you will need to
publish Web APIs to IIS using the following methods:

• Web Deploy -- directly publishes Web APIs to the specified IIS website. You can deploy
to the IIS website on the local or remote server.

To deploy to an IIS website on the local server (e.g. IIS on Windows 10), you will need to
set up the server in this way:

1. Install IIS

2. Create an IIS website

3. Install Web Deploy 3.6 (or later) & ASP.NET Core Hosting Bundle 3.1

To deploy to an IIS website on the remote server (e.g. IIS on Windows Server 2019), you
will need to set up the server in this way:

https://docs.microsoft.com/aspnet/core/host-and-deploy/iis/in-process-hosting?view=aspnetcore-5.0
https://docs.microsoft.com/aspnet/core/host-and-deploy/iis/in-process-hosting?view=aspnetcore-5.0
https://docs.microsoft.com/aspnet/core/host-and-deploy/iis/out-of-process-hosting?view=aspnetcore-5.0

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 43

1. Install IIS

2. Create an IIS website

3. Configure IIS

4. Install Web Deploy 3.6 (or later) & ASP.NET Core Hosting Bundle 3.1

• File System -- publishes Web APIs to a local folder. You need to manually copy the
published folders and files to the web root of the IIS website later.

This will require you to set up the server in this way:

1. Install lIS

2. Create an IIS website

3. Install ASP.NET Core Hosting Bundle 3.1

3.2 Preparations

In this tutorial, we will set up a server running on IIS in an independent machine, and then
publish and host the Web APIs in the IIS running on this server.

Step 1: Set up the server with the following OS and software (install the software in the order
listed).

• Windows Server 2019 (64-bit)

• Microsoft IIS

Follow the section below to install and configure IIS.

• Web Deploy 3.6 (or later)

Download and install from https://www.microsoft.com/download/confirmation.aspx?
id=43717.

IMPORTANT: Make sure to select the Complete setup type when installing Web
Deploy.

https://www.microsoft.com/download/confirmation.aspx?id=43717
https://www.microsoft.com/download/confirmation.aspx?id=43717

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 44

Figure 3.2:

When the installation is complete, select Control Panel > System and Security >
Administrative Tools > Services, and make sure "Web Deployment Agent Service" is
running.

Important

Web Deploy must be installed after IIS is installed. If you have installed Web Deploy
before IIS, uninstall Web Deploy and then choose the Complete setup type to install
it again; do not use the Modify feature to re-install Web Deploy.

• ASP.NET Core Hosting Bundle 3.1

Download and install from https://dotnet.microsoft.com/download/dotnet/thank-you/
runtime-aspnetcore-3.1.13-windows-hosting-bundle-installer.

Step 2: Make sure the .NET server can connect to the NuGet site: https://www.nuget.org
(for installing PowerServer NuGet packages) and the following Appeon sites (through
port number 80): https://apips.appeon.com and https://apipsoa.appeon.com (or https://
apips.appeon.net and https://apipsoa.appeon.net) (for validating the PowerServer license).

Note

If the server connects to Internet through a proxy server, make sure to configure the
proxy server settings in the PowerServer Web API as well (the ServerAPIs project >
Server.json file > "ProxyOptions" block).

Step 3: Configure Windows Defender Firewall on the .NET server to allow the .NET server
port (81 in this tutorial or any port number you choose). The section "Configuring Windows
Defender Firewall" has detailed instructions.

https://dotnet.microsoft.com/download/dotnet/thank-you/runtime-aspnetcore-3.1.13-windows-hosting-bundle-installer
https://dotnet.microsoft.com/download/dotnet/thank-you/runtime-aspnetcore-3.1.13-windows-hosting-bundle-installer
https://www.nuget.org
https://apips.appeon.com
https://apipsoa.appeon.com
https://apips.appeon.net
https://apips.appeon.net
https://apipsoa.appeon.net

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 45

3.3 Installing IIS

3.3.1 Windows Server OS

The following steps take Windows Server 2019 as an example:

Step 1: In Windows Server 2019, open Server Manager, and then select Add roles and
features.

Step 2: In the Add Roles and Features Wizard, click Next several times until the Server
Roles section displays.

Step 3: Select the check box of Web Server (IIS); and then click Add Features when asked
whether to add features required for Web server.

Figure 3.3:

Step 4: Make sure the Web Server (IIS) check box is selected, and click Next.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 46

Figure 3.4:

Step 5: Click Next until the Role Services section displays. Make sure the following role
services are selected.

IMPORTANT: Management Service must be selected and installed otherwise the IIS
remote management will not be supported. If IIS remote management is not supported, then
you will not be able to deploy to IIS from a remote computer; you will only be able to deploy
to IIS from the local computer.

Management Service is only available on Windows Server OS; and is not available on
Windows Desktop OS (such as Windows 10); which means if you have installed IIS on
Windows 10, you can only do a local deployment (instead of remote deployment) to IIS.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 47

Figure 3.5:

Step 6: Click Next and then click Install.

After IIS is installed, a Default Web Site (with port 80) is automatically created (you could
also create new websites with different port numbers).

Step 7: Open a Web browser and run the following URLs to access the Default Web Site.

http://localhost:80/

http://your_server_ip:80/

TIP: You can use "localhost" or the IP address to access the IIS website on the local
computer. To obtain the IP address, open a command prompt window and then type
ipconfig<Enter>.

If the IIS welcome screen displays, the IIS website is working properly.

3.3.2 Windows Desktop OS

The following steps take Windows 10 as an example:

Step 1: In Windows 10, navigate to Control Panel > Programs > Programs and Features >
Turn Windows features on or off (left side of the screen).

Step 2: Expand the Internet Information Services node and make sure the following
features are selected.

• FTP Service

• FTP Extensibility

FTP Service & FTP Extensibility must be enabled if you want to create an IIS FTP site
for transferring files from a remote development machine to the Web server.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 48

• IIS Management Console

• .NET Extensibility 4.7

• Application Initialization

• ASP.NET 4.7

• ISAPI Extensions

• ISAPI Filters

• Default Document

• Static Content

Figure 3.6:

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 49

Step 3: Click OK to install the selected features.

After IIS is installed, a Default Web Site (with port 80) is automatically created (you could
also create new websites with different port numbers).

Figure 3.7:

Step 4: Open a Web browser and run the following URLs to access the Default Web Site.

http://localhost:80/

http://your_server_ip:80/

TIP: You can use "localhost" or the IP address to access the IIS website on the local
computer. To obtain the IP address, open a command prompt window and then type
ipconfig<Enter>.

If the IIS welcome screen displays, the IIS website is working properly.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 50

Figure 3.8:

3.4 Creating an IIS website

Step 1: In IIS Manager, open the server's node in the Connections panel. Right-click the
Sites folder. Select Add Website from the contextual menu.

Step 2: Specify the following values and the click OK to create the site.

• Site name: testsite in this example

• Physical path: C:\inetpub\testsite_root in this example. This is where the folders and files
of Web APIs will be published.

• Port: 81 in this example.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 51

Figure 3.9:

The IIS website is created and started.

Figure 3.10:

Open a Web browser and run the following URLs to access the new website.

http://localhost:81/

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 52

http://your_server_ip:81/

If the IIS welcome screen displays, then the website is working properly.

3.5 Configuring IIS

This section is to configure IIS to support remote deployment. You can skip this section if
you will deploy to IIS from the local computer, for example, if you want to deploy to IIS on
Windows 10 which supports only local deployment, or if you want to deploy to a local folder
first and then manually copy the published files to IIS.

Step 1: Enable remote connections for the IIS server.

1. In IIS Manager, select the server's node in the Connections panel, and then double click
Management Service on the Features View.

Note: The Management Service feature is available only when you select the
Management Service feature when installing IIS.

Figure 3.11:

2. Select the check box of Enable remote connections, and then click Apply and Start in
the Actions pane to start the management service.

If Management Service is already running, click Stop in the Actions pane to stop the
service first before you can make changes to it.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 53

Figure 3.12:

3. Select Control Panel > System and Security > Administrative Tools > Services, and
make sure the "Web Management Service" service is running.

Step 2: Configure the IIS website to allow the Windows user to connect to the site.

1. In IIS Manager, select the website in the Connections panel, and then double click IIS
Manager Permissions on the Features View.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 54

Figure 3.13:

2. Click Allow User on the Actions pane. In the Allow User dialog, click Select.

Figure 3.14:

3. Enter the Windows user name, click Check Names and then click OK.

IMPORTANT: Make sure to use a Windows user that has Full Control over the site's root
folder so that it can create files and folders underneath.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 55

Figure 3.15:

The Windows user is added to IIS Manager Permissions. This Windows user is allowed
to connect to the "testsite" site now.

Figure 3.16:

3.6 Configuring SSL on IIS
It is highly recommended that you configure Secure Sockets Layer (SSL) for IIS, so that
HTTPS can be used to secure the connections between the client and IIS.

For how to configure SSL on IIS, refer to https://docs.microsoft.com/en-us/iis/manage/
configuring-security/how-to-set-up-ssl-on-iis.

3.7 Publishing Web APIs to IIS
The following uses the Web Deploy method to publish Web APIs to IIS:

Step 1: On the development machine, open the PowerServer C# solution in SnapDevelop.
Log in to SnapDevelop if required.

https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis
https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 56

Click the Open C# Solution in SnapDevelop button () in the toolbar to launch the
PowerServer C# solution in SnapDevelop. Or go to the location where the PowerServer C#
solution is generated; and double click PowerServer_[appname].sln to launch the solution
in SnapDevelop.

At startup, the solution will install/update the dependencies. Wait until the Dependencies
folder completes the install/update. (Make sure the machine can connect to the NuGet site:
https://www.nuget.org in order to successfully install PowerServer NuGet packages).

Step 2: In the Solution Explorer, right click on the ServerAPIs project node, and select
Publish.

Step 3: In the window that appears, select Web Deploy, and click Start.

Step 4: Configure the Web deploy profile, and click Next.

The following figure shows the settings for deploying to an IIS website on a remote server.

Note: Input the Windows user name that you have configured to allow to connect to the site.

Figure 3.17:

The following figure shows the settings for deploying to an IIS website on the local machine.

It is not necessary to input username and password when connecting to a local site.

https://www.nuget.org

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 57

Figure 3.18:

Step 5: Keep the others as default settings and click Finish.

Figure 3.19:

Publishing begins automatically. If any error or failure is reported in the Output window,
click the link provided at the end to view more details and possible solutions.

Step 6: Make sure publishing was successful as shown in the figure below.

After that you can specify the URL (for example, https://172.16.100.83:81) as the Web API
URL in the Web APIs tab of the PowerServer project painter and then build and deploy the
project again.

If you use the SQL Anywhere database or ASE database, also set up the corresponding
ODBC data source in the server where Web APIs is published and running.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 58

Figure 3.20:

When you run the installable cloud application later, the following two processes will be
started in the server and they will launch the PowerServer Web APIs automatically.

Tutorial 3: Hosting Web APIs in IIS (in-process hosting)

Page 59

Figure 3.21:

Tutorial 4: Hosting Web APIs in Kestrel

Page 60

4 Tutorial 4: Hosting Web APIs in Kestrel

4.1 Overview

Kestrel is the default web server used for ASP.NET Core applications. When a new
ASP.NET Core project is created, it includes the Kestrel web server by default. The Kestrel
web server provides better request processing performance to ASP.NET Core applications
as it is an open-source, cross-platform and light-weight web server; but it does not have
advanced features of web servers like IIS, Nginx, Apache etc.

The PowerServer Web APIs, which is a standard ASP.NET Core application, can be hosted
in the Kestrel web server with or without using a reverse proxy server.

In the following graph, the PowerServer Web APIs is hosted in Kestrel and Kestrel is used as
an edge (Internet-facing) server without a reverse proxy server.

• Kestrel serves the dynamic content (such as data processing tasks) from the PowerServer
Web APIs.

• The web server (such as IIS, Apache, Nignx etc.) and the Kestrel server can reside in the
same or different machine.

Figure 4.1:

In the following graph, the PowerServer Web APIs is hosted in Kestrel, and Kestrel is used in
a reverse proxy configuration.

• Kestrel serves the dynamic content (such as data processing tasks) from the PowerServer
Web APIs.

• The reverse proxy server (such as IIS, Nginx, Apache etc.) forwards the requests to the
PowerServer Web APIs running in Kestrel. The reverse proxy server may reside on a
dedicated machine or may be deployed alongside a web server.

• The web server (such as IIS, Apache, Nignx etc.), the reverse proxy server, and the Kestrel
server can reside in the same or different machine.

Tutorial 4: Hosting Web APIs in Kestrel

Page 61

Figure 4.2:

4.2 About PowerServer Web APIs and Kestrel
As aforementioned, Kestrel is by default used by the ASP.NET Core project templates,
therefore it is automatically included and enabled in the PowerServer Web APIs, and there is
no need to install or configure Kestrel.

In the launchSettings.json file of the ServerAPIs project of the PowerServer C# solution, the
commandName key has the value Project which indicates that the Kestrel web server will be
launched; and the applicationUrl key specifies the host name and port number for Kestrel.

For detailed description of the settings in launchSettings.json, see https://docs.microsoft.com/
en-us/aspnet/core/fundamentals/environments?view=aspnetcore-3.1#development-and-
launchsettingsjson.

 "ServerAPIs": {
 "commandName": "Project",
 "launchBrowser": true,
 "launchUrl": "swagger",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "http://0.0.0.0:6000/"
 }

4.3 Running Web APIs on Kestrel
As Kestrel is by default included and enabled in the PowerServer Web APIs, when the
PowerServer Web APIs runs, it automatically runs on Kestrel.

You can run PowerServer Web APIs on Kestrel using the following methods:

• (In the development environment) Launch the PowerServer Web APIs from the
SnapDevelop IDE (by clicking the Run button in the PowerServer C# solution).

• (In the development environment) Execute the "dotnet run --project
PowerServer_salesdemo\ServerAPIs\ServerAPIs.csproj" command,

• (In the production environment) Publish the PowerServer Web APIs from the
SnapDevelop IDE to a folder, copy the folder to the production server, and then run the
app.

The Web APIs will be compiled as an ASP.NET Core app and all files (such as
configuration files, assembly files, dependencies, .NET runtime etc.) required to run the

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-3.1#development-and-launchsettingsjson
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-3.1#development-and-launchsettingsjson
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-3.1#development-and-launchsettingsjson

Tutorial 4: Hosting Web APIs in Kestrel

Page 62

app will be copied to the publish folder. See this section for step-by-step instructions on
how to publish the Web APIs to a folder.

After that, copy the folder to the server and then run the app:

dotnet <app_assembly>.dll

The PowerServer Web APIs can be run as a service just like any other ASP.NET Core app,
so that it can be automatically run without needing you to log into the PC to start it.

To run the PowerServer Web APIs as a service in Windows, refer to
https://docs.microsoft.com/aspnet/core/host-and-deploy/windows-service?
view=aspnetcore-3.1&tabs=visual-studio.

To run the PowerServer Web APIs as a service in Linux, refer to https://
docs.microsoft.com/aspnet/core/host-and-deploy/linux-nginx?view=aspnetcore-3.1#create-
the-service-file.

4.4 Using a reverse proxy server

4.4.1 Configuring Apache reverse proxy server (Windows)

4.4.1.1 Preparations

In this tutorial, we will learn how to set up Apache on Windows and use it as the reverse
proxy server to redirect requests to the PowerServer Web APIs running on the Kestrel server.

The Apache reverse proxy server can be set up on the same or different server from the
PowerServer Web APIs and Kestrel. In this tutorial, the same server will be used.

In this tutorial, we will configure and use the following server environment and URLs. Be
careful to use the correct port number and make sure the port is not occupied by any other
program.

https://docs.microsoft.com/aspnet/core/host-and-deploy/windows-service?view=aspnetcore-3.1&tabs=visual-studio
https://docs.microsoft.com/aspnet/core/host-and-deploy/windows-service?view=aspnetcore-3.1&tabs=visual-studio
https://docs.microsoft.com/aspnet/core/host-and-deploy/linux-nginx?view=aspnetcore-3.1#create-the-service-file
https://docs.microsoft.com/aspnet/core/host-and-deploy/linux-nginx?view=aspnetcore-3.1#create-the-service-file
https://docs.microsoft.com/aspnet/core/host-and-deploy/linux-nginx?view=aspnetcore-3.1#create-the-service-file

Tutorial 4: Hosting Web APIs in Kestrel

Page 63

Figure 4.3:

Step 1: Set up the server with the following OS and software (install the software in the order
listed).

• Windows Server 2019 (64-bit)

• Visual C++ Redistributable

• Apache HTTP Server 2.4.47

The section Installing Apache HTTP Server has detailed installation instructions.

Step 2: Make sure the server can connect to the NuGet site: https://www.nuget.org
(for installing PowerServer NuGet packages) and the following Appeon sites (through
port number 80): https://apips.appeon.com and https://apipsoa.appeon.com (or https://
apips.appeon.net and https://apipsoa.appeon.net) (for validating the PowerServer license).

Note

If the server connects to Internet through a proxy server, make sure to configure the
proxy server settings in the PowerServer Web API as well (the ServerAPIs project >
Server.json file > "ProxyOptions" block).

Step 3: Configure Windows Defender Firewall on the server to allow the port number (80
and 8080 in this tutorial or any port number you choose). The section "Configuring Windows
Defender Firewall" has detailed instructions.

4.4.1.2 Configuring Apache

This section is to configure Apache as a reverse proxy server in a Windows machine.

https://www.nuget.org
https://apips.appeon.com
https://apipsoa.appeon.com
https://apips.appeon.net
https://apips.appeon.net
https://apipsoa.appeon.net

Tutorial 4: Hosting Web APIs in Kestrel

Page 64

Step 1: Go to the ..\Apache24\conf folder and open the httpd.conf file in a text editor.

Step 2: Add the following scripts to the end of the httpd.conf file.

This is to configure Apache as a reverse proxy server which will redirect requests made to
the URL: https://172.16.100.35:8080/ to the PowerServer Web APIs running on Kestrel at
https://172.16.100.35:6000/.

Listen on port 8080 or any port you choose. Make sure it is not used by any other
 program.
<VirtualHost *:8080>
 ProxyPreserveHost On
 ErrorLog logs\ps-error.log
 CustomLog logs\ps-access.log common
 # Pass all requests received at the root https://172.16.100.35/8080 to
 https://172.16.100.35:6000/ (PowerServer Web APIs running on Kestrel server) and
 in reverse.
 ProxyPass / https://172.16.100.35:6000/
 ProxyPassReverse / https://172.16.100.35:6000/
</VirtualHost>

Step 3: Locate the following line in the httpd.conf file and specify the port number: 80 (or
any port you choose) is used to access the static Web files on the Apache HTTP server, 8080
is used to access Web APIs (according to the reverse proxy setting in step 2, requests made to
8080 will be forwarded to 6000.)

Change

Listen 80

To

Listen 80
Listen 8080

Tip: In Windows, you can execute the command "netstat -ano | findstr 8080" to check if the
port number is occupied by any other program.

Step 4: Make sure the following lines are NOT commented out in the httpd.conf file.

LoadModule negotiation_module modules/mod_negotiation.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule slotmem_shm_module modules/mod_slotmem_shm.so

Step 5: Check if any syntax error in httpd.conf.

cd C:\Apache24\bin
httpd -t

Step 6: Restart Apache for the changes to take effect.

httpd -k restart

Step 7: View the ..\Apache24\logs\error.log file to make sure Apache is started successfully.

[Wed Jun 02 00:46:00.547040 2021] [mpm_winnt:notice] [pid 1556:tid 696] AH00455:
 Apache/2.4.47 (Win64) configured -- resuming normal operations
[Wed Jun 02 00:46:00.547040 2021] [mpm_winnt:notice] [pid 1556:tid 696] AH00456:
 Apache Lounge VS16 Server built: Apr 24 2021 11:08:47
[Wed Jun 02 00:46:00.547040 2021] [core:notice] [pid 1556:tid 696] AH00094: Command
 line: 'c:\\apache24\\bin\\httpd.exe -d C:/Apache24'

Tutorial 4: Hosting Web APIs in Kestrel

Page 65

[Wed Jun 02 00:46:00.547040 2021] [mpm_winnt:notice] [pid 1556:tid 696]
 AH00418: Parent: Created child process 4860
[Wed Jun 02 00:46:01.143540 2021] [mpm_winnt:notice] [pid 4860:tid 728]
 AH00354: Child: Starting 64 worker threads.

Step 8: If you have set up a firewall on the server, configure the firewall to allow port 8080
(by following instructions in "Configuring Windows Defender Firewall").

Note

If the firewall blocks the port number, you will have the following error when running
the application.

Figure 4.4:

4.4.1.3 Modifying and re-deploying the PowerServer project

The following modifications are made to the PowerServer project created in the Quick Start
guide. If you have not created a PowerServer project yet, please follow the instructions in the
Quick Start guide to create one.

Step 1: Modify the Web API URL to point to the Apache reverse proxy server.

On the Web APIs tab of the PowerServer project painter, specify the URL of the Apache
reverse proxy server, for example, https://172.16.100.35:8080 in this tutorial. It is highly
recommended that you specify an HTTPS URL for the production environment.

All requests for PowerServer Web APIs will be first made to https://172.16.100.35:8080 and
then redirected by the Apache reverse proxy server to the PowerServer Web APIs running on
Kestrel server (for example, https://172.16.100.35:6000).

Figure 4.5:

Tutorial 4: Hosting Web APIs in Kestrel

Page 66

Step 2: Select a Web server for deploying the app files.

On the Client Deployment tab of the PowerServer project painter, select a local or remote
Web server (IIS, Apache, Nginx, etc.) you have configured properly.

The Web server and the Apache reverse proxy server can reside in the same or different
machine. If the Web server is an Apache HTTP server, it can be the same or different server
instance with the Apache reverse proxy server.

In this tutorial, we use the same Apache server instance as the Apache HTTP server and the
reverse proxy server.

• If you choose the "Directly deploy to the server" option, make sure you have configured
the FTP settings properly for the server. See Setting up Apache on Windows > Installing
FTP server for detailed instructions.

• If you choose the "Package the compiled app and manually deploy later" option, follow the
instructions in Packaging and copying the client app.

Figure 4.6:

Step 3: Save the PowerServer project settings and then build and deploy the PowerServer
project for the changes to take effect.

4.4.1.4 Starting Web APIs (in development environment)

In this tutorial, we will directly run the PowerServer Web APIs in the development
environment, by using either of the following methods:

• Execute the "dotnet run --project PowerServer19\ServerAPIs\ServerAPIs.csproj"
command, or

• Open the PowerServer C# solution in the SnapDevelop IDE and then click the Run button.

PowerServer Web APIs is running as a standalone console application on its own internal
Kestrel web server.

Make sure the PowerServer Web APIs is running on the correct IP address and port number.
For example, https://172.16.100.35:6000/ in this tutorial. You may modify the port number in
the launchSettings.json file of the ServerAPIs project of the PowerServer C# solution when
running in the development environment.

If the server connects to Internet through a proxy server, make sure to configure the proxy
server settings in the PowerServer Web API as well (the ServerAPIs project > Server.json
file > "ProxyOptions" block).

Tutorial 4: Hosting Web APIs in Kestrel

Page 67

Figure 4.7:

When you run the application (https://172.16.100.35:80/pssales in this tutorial), you will be
able to see from the console that the requests are going through successfully and the requests
are originally made to the Apache proxy server (https://172.16.100.35/8080 in this tutorial).

4.4.2 Configuring Apache reverse proxy server (Linux)

4.4.2.1 Preparations

In this tutorial, we will learn how to set up Apache on Linux and use it as the reverse proxy
server to redirect requests to the PowerServer Web APIs running on the Kestrel server.

In this tutorial, we will configure and use the following server environment and URLs. Be
careful to use the correct port number and make sure the port is not occupied by any other
program.

Tutorial 4: Hosting Web APIs in Kestrel

Page 68

Figure 4.8:

Step 1: Set up the reverse proxy server with the following OS and software (install the
software in the order listed).

• CentOS 8 (64-bit)

• Apache HTTP Server

The section Installing Apache HTTP Server has detailed installation instructions.

Step 2: Configure the CentOS user account: you can either use the root account or create a
new account with administrative privileges.

Step 3: Set up a firewall on the server and make sure the firewall allows the port (80 and
8080 in this tutorial or any port number you choose) to go through.

Step 4: Make sure the server can connect to Internet during the installation of Apache HTTP
Server.

4.4.2.2 Configuring Apache

This section is to configure Apache as a reverse proxy server in a Linux machine.

Step 1: Go to the /etc/httpd/conf folder and open the httpd.conf file in a text editor.

Step 2: Add the following scripts to the end of the httpd.conf file.

This is to configure Apache as a reverse proxy server which will redirect requests made to
the URL: https://172.16.100.40:8080/ to the PowerServer Web APIs running on Kestrel at
https://172.16.100.35:6000/.

Listen on port 8080 or any port you choose. Make sure it is not used by any other
 program.
<VirtualHost *:8080>

Tutorial 4: Hosting Web APIs in Kestrel

Page 69

 ProxyPreserveHost On
 # Pass all requests received at the root https://172.16.100.40/8080 to
 https://172.16.100.35:6000/ (PowerServer Web APIs running on Kestrel server) and
 in reverse.
 ProxyPass / https://172.16.100.35:6000/
 ProxyPassReverse / https://172.16.100.35:6000/
</VirtualHost>

Step 3: Locate the following line in the httpd.conf file and specify the port number: 80 (or
any port you choose) is used to access the static Web files on the Apache HTTP server, 8080
is used to access Web APIs (according to the reverse proxy setting in step 2, requests made to
8080 will be forwarded to 6000.)

Change

Listen 80

To

Listen 80
Listen 8080

Tip: In CentOS, you can execute the command "netstat -anp | grep 8080" to check if the port
number is occupied by any other program.

Step 4: Run the following command to add port 8080 to "http_port_t":

$ sudo semanage port -a -t http_port_t -p tcp 8080

Note

If the port is not properly added, you may see the following error when you start and
check the status of Apache:

Figure 4.9:

Step 5: If you have set up a firewall on the server, run the following command to permanently
enable port 8080:

$ sudo firewall-cmd --permanent --zone=public --add-port=8080/tcp

and the following command to reload the firewall service:

$ sudo firewall-cmd --reload

Note

If the firewall blocks the port number, you may have the following error when
running the application.

Tutorial 4: Hosting Web APIs in Kestrel

Page 70

Figure 4.10:

Step 6: Check if any syntax error in httpd.conf, and then restart Apache for the changes to
take effect.

$ sudo apachectl configtest

$ sudo systemctl restart httpd

Step 7: Verify that Apache is running.

$ sudo systemctl status httpd

Figure 4.11:

Step 8: Run the following command to allow Apache to make outbound connections.

$ sudo /usr/sbin/setsebool -P httpd_can_network_connect 1

Tutorial 4: Hosting Web APIs in Kestrel

Page 71

Note

If Apache is not allowed to make outbound connections, you may encounter the
following error when running the application,

Figure 4.12:

and may have the following errors in the \var\log\httpd\error_log.log file.

[Tue Jun 08 05:21:42.408866 2021] [proxy:error] [pid 4025:tid
 140605678085888] (13)Permission denied: AH00957: HTTP: attempt to connect
 to 172.16.100.35:6000 (172.16.100.35) failed
[Tue Jun 08 05:21:42.408952 2021] [proxy_http:error] [pid 4025:tid
 140605678085888] [client 172.16.100.35:56187] AH01114: HTTP: failed to make
 connection to backend: 172.16.100.35

4.4.2.3 Modifying and re-deploying the PowerServer project

The following modifications are made to the PowerServer project created in the Quick Start
guide. If you have not created a PowerServer project yet, please follow the instructions in the
Quick Start guide to create one.

Step 1: Modify the Web API URL to point to the Apache reverse proxy server.

On the Web APIs tab of the PowerServer project painter, specify the URL of the Apache
reverse proxy server, for example, https://172.16.100.40:8080. It is highly recommended that
you specify an HTTPS URL for the production environment.

All requests for PowerServer Web APIs will be first made to https://172.16.100.40:8080 and
then redirected by the Apache reverse proxy server to the PowerServer Web APIs running on
Kestrel server (for example, https://172.16.100.35:6000).

Figure 4.13:

Tutorial 4: Hosting Web APIs in Kestrel

Page 72

Step 2: Select a Web server for deploying the app files.

On the Client Deployment tab of the PowerServer project painter, select a local or remote
Web server (IIS, Apache, Nginx, etc.) you have configured properly.

The Web server and the Apache reverse proxy server can reside in the same or different
machine. If the Web server is an Apache HTTP server, it can be the same or different server
instance with the Apache reverse proxy server. If you want to deploy the app files to the
Apache HTTP server which uses the same server instance as the Apache reverse proxy
server on a Linux machine, you can choose "Package the compiled app and manually deploy
later" (see Packaging and copying the client app for detailed instructions).

In this tutorial, we choose to deploy the app files to a local IIS Web server.

Figure 4.14:

Step 3: Save the PowerServer project settings and then build and deploy the PowerServer
project for the changes to take effect.

4.4.2.4 Starting Web APIs (in development environment)

In this tutorial, we will directly run the PowerServer Web APIs in the development
environment, by using either of the following methods:

• Execute the "dotnet run --project PowerServer19\ServerAPIs\ServerAPIs.csproj"
command, or

• Open the PowerServer C# solution in the SnapDevelop IDE and then click the Run button.

PowerServer Web APIs is running as a standalone console application on its own internal
Kestrel web server.

Make sure the PowerServer Web APIs is running on the correct IP address and port number.
For example, https://172.16.100.35:6000/ in this tutorial. You may modify the port number in
the launchSettings.json file of the ServerAPIs project of the PowerServer C# solution when
running in the development environment.

If the server connects to Internet through a proxy server, make sure to configure the proxy
server settings in the PowerServer Web API as well (the ServerAPIs project > Server.json
file > "ProxyOptions" block).

Tutorial 4: Hosting Web APIs in Kestrel

Page 73

Figure 4.15:

When you run the application (https://172.16.100.72:80/pssales in this tutorial), you will be
able to see from the console that the requests are going through successfully and the requests
are originally made to the Apache proxy server (https://172.16.100.40/8080 in this tutorial).

Figure 4.16:

4.4.3 Configuring Nginx reverse proxy server (Windows)

4.4.3.1 Preparations

In this tutorial, we will learn how to set up Nginx on Windows and use it as the reverse proxy
server to redirect requests to the PowerServer Web APIs running on the Kestrel server.

Tutorial 4: Hosting Web APIs in Kestrel

Page 74

The Nginx reverse proxy server can be set up on the same or different server from the
PowerServer Web APIs and Kestrel. In this tutorial, the same server will be used.

In this tutorial, we will configure and use the following server environment and URLs. Be
careful to use the correct port number and make sure the port is not occupied by any other
program.

Figure 4.17:

Step 1: Set up the server with the following OS and software (install the software in the order
listed).

• Windows Server 2019 (64-bit)

• Nginx 1.19.10

The section Installing Nginx has detailed installation instructions.

Step 2: Make sure the server can connect to the NuGet site: https://www.nuget.org
(for installing PowerServer NuGet packages) and the following Appeon sites (through
port number 80): https://apips.appeon.com and https://apipsoa.appeon.com (or https://
apips.appeon.net and https://apipsoa.appeon.net) (for validating the PowerServer license).

Note

If the server connects to Internet through a proxy server, make sure to configure the
proxy server settings in the PowerServer Web API as well (the ServerAPIs project >
Server.json file > "ProxyOptions" block).

https://www.nuget.org
https://apips.appeon.com
https://apipsoa.appeon.com
https://apips.appeon.net
https://apips.appeon.net
https://apipsoa.appeon.net

Tutorial 4: Hosting Web APIs in Kestrel

Page 75

Step 3: Configure Windows Defender Firewall on the server to allow the port number (80
and 8080 in this tutorial or any port number you choose). The section "Configuring Windows
Defender Firewall" has detailed instructions.

4.4.3.2 Configuring Nginx

This section is to configure Nginx as a reverse proxy server in a Windows machine.

Step 1: Go to the ..\nginx-1.19.10\conf folder and open the nginx.conf file in a text editor.

Step 2: Locate the "server" block and add another "server" block as shown below.

This is to configure Nginx as a reverse proxy server which will redirect requests made to
the URL: https://172.16.100.39:8080/ to the PowerServer Web APIs running on Kestrel at
https://172.16.100.35:6000/.

 server {
 listen 8080;
 location / {
 proxy_set_header Host $http_host;
 proxy_pass https://172.16.100.35:6000;
 }
 }

Figure 4.18:

Tip: In Windows, you can execute the command "netstat -ano | findstr 8080" to check if the
port number is occupied by any other program.

Step 3: Check if any syntax error in the Nginx configuration file, and then restart Nginx for
the changes to take effect.

nginx -t

nginx -s reload

Tutorial 4: Hosting Web APIs in Kestrel

Page 76

Step 4: Verify that the Nginx processes are running.

tasklist /fi "imagename eq nginx.exe"

Step 5: If you have set up a firewall on the server, configure the firewall to allow port 8080
(by following instructions in "Configuring Windows Defender Firewall").

Note

If the firewall blocks the port number, you will have the following error when running
the application.

Figure 4.19:

4.4.3.3 Modifying and re-deploying the PowerServer project

The following modifications are made to the PowerServer project created in the Quick Start
guide. If you have not created a PowerServer project yet, please follow the instructions in the
Quick Start guide to create one.

Step 1: Modify the Web API URL to point to the Nginx reverse proxy server.

On the Web APIs tab of the PowerServer project painter, specify the URL of the Nginx
reverse proxy server, for example, https://172.16.100.39:8080 in this tutorial. It is highly
recommended that you specify an HTTPS URL for the production environment.

All requests for the PowerServer Web APIs will be first made to https://172.16.100.39:8080
and then redirected by the Nginx reverse proxy server to the PowerServer Web APIs running
on Kestrel server (for example, https://172.16.100.35:6000).

Figure 4.20:

Step 2: Select a Web server for deploying the app files.

Tutorial 4: Hosting Web APIs in Kestrel

Page 77

On the Client Deployment tab of the PowerServer project painter, select a local or remote
Web server (IIS, Apache, Nginx, etc.) you have configured properly.

The Web server and the Nginx reverse proxy server can reside in the same or different
machine. If the Web server is an Nginx HTTP server, it can be the same or different server
instance with the Nginx reverse proxy server.

In this tutorial, we use the same Nginx server instance as the Nginx HTTP server and the
reverse proxy server.

• If you choose the "Directly deploy to the server" option, make sure you have configured
the FTP settings properly for the server. See Setting up Nginx on Windows > Installing
FTP server for detailed instructions.

• If you choose the "Package the compiled app and manually deploy later" option, follow the
instructions in Packaging and copying the client app.

Figure 4.21:

Step 3: Save the PowerServer project settings and then build and deploy the PowerServer
project for the changes to take effect.

4.4.3.4 Starting Web APIs (in development environment)

In this tutorial, we will directly run the PowerServer Web APIs in the development
environment, by using either of the following methods:

• Execute the "dotnet run --project PowerServer19\ServerAPIs\ServerAPIs.csproj"
command, or

• Open the PowerServer C# solution in the SnapDevelop IDE and then click the Run button.

PowerServer Web APIs is running as a standalone console application on its own internal
Kestrel web server.

Make sure the PowerServer Web APIs is running on the correct IP address and port number.
For example, https://172.16.100.35:6000/ in this tutorial. You may modify the port number in
the launchSettings.json file of the ServerAPIs project of the PowerServer C# solution when
running in the development environment.

If the server connects to Internet through a proxy server, make sure to configure the proxy
server settings in the PowerServer Web API as well (the ServerAPIs project > Server.json
file > "ProxyOptions" block).

Tutorial 4: Hosting Web APIs in Kestrel

Page 78

Figure 4.22:

When you run the application (https://172.16.100.39:80/pssales in this tutorial), you will be
able to see from the console that the requests are going through successfully and the requests
are originally made to the Nginx proxy server (https://172.16.100.39/8080 in this tutorial).

Figure 4.23:

4.4.4 Configuring Nginx reverse proxy server (Linux)

4.4.4.1 Preparations

In this tutorial, we will learn how to set up Nginx on Linux and use it as the reverse proxy
server to redirect requests to the PowerServer Web APIs running on the Kestrel server.

Tutorial 4: Hosting Web APIs in Kestrel

Page 79

In this tutorial, we will configure and use the following server environment and URLs. Be
careful to use the correct port number and make sure the port is not occupied by any other
program.

Figure 4.24:

Step 1: Set up the reverse proxy server with the following OS and software (install the
software in the order listed).

• CentOS 8 (64-bit)

• Nginx

The section Installing Nginx has detailed installation instructions.

Step 2: Configure the CentOS user account: you can either use the root account or create a
new account with administrative privileges.

Step 3: Set up a firewall on the server and make sure the firewall allows the port (80 and
8080 in this tutorial or any port number you choose) to go through.

Step 4: Make sure the server can connect to Internet during the installation of Nginx.

4.4.4.2 Configuring Nginx

This section is to configure Nginx as a reverse proxy server in a Linux machine.

Step 1: Go to the /etc/nginx/ folder and open the nginx.conf file in a text editor.

Step 2: Locate the "server" block and add another "server" block as shown below.

This is to configure Nginx as a reverse proxy server which will redirect requests made to
the URL: https://172.16.100.51:8080/ to the PowerServer Web APIs running on Kestrel at
https://172.16.100.35:6000/.

Tutorial 4: Hosting Web APIs in Kestrel

Page 80

 server {
 listen 8080;
 location / {
 proxy_set_header Host $http_host;
 proxy_pass https://172.16.100.35:6000;
 }
 }

Tip: In CentOS, you can execute the command "netstat -anp | grep 8080" to check if the port
number is occupied by any other program.

Step 3: Run the following command to add port 8080 to "http_port_t":

$ sudo semanage port -a -t http_port_t -p tcp 8080

Note

If the port is not properly added, you may see the following error when Nginx starts:

Figure 4.25:

and may have the following error in the \var\log\nginx\error.log file.

2021/06/09 05:26:29 [emerg] 4107#0: bind() to 0.0.0.0:8080 failed (13:
 Permission denied)

Step 4: If you have set up a firewall on the server, run the following command to permanently
enable port 8080:

$ sudo firewall-cmd --permanent --zone=public --add-port=8080/tcp

and the following command to reload the firewall service:

$ sudo firewall-cmd --reload

Note

If the firewall blocks the port number, you will have the following error when running
the application.

Figure 4.26:

Tutorial 4: Hosting Web APIs in Kestrel

Page 81

Step 5: Check if any syntax error in the Nginx configuration file, and then restart Nginx for
the changes to take effect.

$ sudo nginx -t

$ sudo systemctl restart nginx

Step 6: Verify that Nginx is running.

$ sudo systemctl status nginx

Step 7: Run the following command to allow Nginx to make outbound connections.

$ sudo setsebool -P httpd_can_network_connect 1

Note

If Nginx is not allowed to make outbound connections, you may encounter the
following error when running the application,

Figure 4.27:

and may have the following errors in the \var\log\nginx\error.log file.

2021/06/09 02:38:02 [crit] 5364#0: *2 connect() to 172.16.100.35:6000
 failed (13: Permission denied) while connecting to upstream, client:
 172.16.100.35,
server: _, request: "POST /api/ServerApi/CreateSession HTTP/1.1",
 upstream: "http://172.16.100.35:6000/api/ServerApi/CreateSession", host:
 "172.16.100.51"

4.4.4.3 Modifying and re-deploying the PowerServer project

The following modifications are made to the PowerServer project created in the Quick Start
guide. If you have not created a PowerServer project yet, please follow the instructions in the
Quick Start guide to create one.

Step 1: Modify the Web API URL to point to the Nginx reverse proxy server.

On the Web APIs tab of the PowerServer project painter, specify the URL of the Nginx
reverse proxy server, for example, https://172.16.100.51:8080. It is highly recommended that
you specify an HTTPS URL for the production environment.

All requests for the PowerServer Web APIs will be first made to https://172.16.100.51:8080
and then redirected by the Nginx reverse proxy server to the PowerServer Web APIs running
on Kestrel server (for example, https://172.16.100.35:6000).

Tutorial 4: Hosting Web APIs in Kestrel

Page 82

Figure 4.28:

Step 2: Select a Web server for deploying the app files.

On the Client Deployment tab of the PowerServer project painter, select a local or remote
Web server (IIS, Apache, Nginx, etc.) you have configured properly.

The Web server and the Nginx reverse proxy server can reside in the same or different
machine. If the Web server is an Nginx HTTP server, it can be the same or different server
instance with the Nginx reverse proxy server. If you want to deploy the app files to the Nginx
HTTP server which uses the same server instance as the Nginx reverse proxy server on a
Linux machine, you can choose the "Package the compiled app and manually deploy later"
option (see Packaging and copying the client app for detailed instructions).

In this tutorial, we choose to deploy the app files to a local IIS Web server.

Figure 4.29:

Step 3: Save the PowerServer project settings and then build and deploy the PowerServer
project for the changes to take effect.

4.4.4.4 Starting Web APIs (in development environment)

In this tutorial, we will directly run the PowerServer Web APIs in the development
environment, by using either of the following methods:

• Execute the "dotnet run --project PowerServer19\ServerAPIs\ServerAPIs.csproj"
command, or

• Open the PowerServer C# solution in the SnapDevelop IDE and then click the Run button.

PowerServer Web APIs is running as a standalone console application on its own internal
Kestrel web server.

Tutorial 4: Hosting Web APIs in Kestrel

Page 83

Make sure the PowerServer Web APIs is running on the correct IP address and port number.
For example, https://172.16.100.35:6000/ in this tutorial. You may modify the port number in
the launchSettings.json file of the ServerAPIs project of the PowerServer C# solution when
running in the development environment.

If the server connects to Internet through a proxy server, make sure to configure the proxy
server settings in the PowerServer Web API as well (the ServerAPIs project > Server.json
file > "ProxyOptions" block).

Figure 4.30:

When you run the application (https://172.16.100.72:80/pssales in this tutorial), you will be
able to see from the console that the requests are going through successfully and the requests
are originally made to the Nginx proxy server (https://172.16.100.51/8080 in this tutorial).

Figure 4.31:

Tutorial 4: Hosting Web APIs in Kestrel

Page 84

4.4.5 Configuring IIS reverse proxy server

4.4.5.1 Preparations

In this tutorial, we will learn how to set up Windows IIS as the reverse proxy server which
redirects requests to the PowerServer Web APIs running on the Kestrel server. This is also
known as the IIS out-of-process hosting which runs the PowerServer Web APIs in a process
separate from the IIS worker process and forwards the requests made to the IIS reverse proxy
to the Kestrel server.

In this tutorial, we will configure and use the following server environment and URLs. Be
careful to use the correct port number and make sure the port is not occupied by any other
program.

Figure 4.32:

Step 1: Set up the reverse proxy server with the following OS and software (install the
software in the order listed).

• Windows Server 2019 (64-bit)

• IIS

The section Installing Web Server (IIS) has detailed installation instructions.

• IIS URL Rewrite

Download and install the URL Rewrite extension.

URL Rewrite must be installed prior to ARR, as ARR depends on URL Rewrite.

https://docs.microsoft.com/aspnet/core/host-and-deploy/iis/out-of-process-hosting?view=aspnetcore-5.0
https://www.iis.net/downloads/microsoft/url-rewrite

Tutorial 4: Hosting Web APIs in Kestrel

Page 85

• IIS Application Request Routing (ARR)

Download and install the Application Request Routing extension.

After installation, you should be able to see the Application Request Routine Cache and
URL Rewrite features in the IIS manager.

Figure 4.33:

Step 2: Make sure the server can connect to the NuGet site: https://www.nuget.org
(for installing PowerServer NuGet packages) and the following Appeon sites (through
port number 80): https://apips.appeon.com and https://apipsoa.appeon.com (or https://
apips.appeon.net and https://apipsoa.appeon.net) (for validating the PowerServer license).

Note

If the server connects to Internet through a proxy server, make sure to configure the
proxy server settings in the PowerServer Web API as well (the ServerAPIs project >
Server.json file > "ProxyOptions" block).

Step 3: Configure Windows Defender Firewall on the server to allow the port number (80
and 8080 in this tutorial or any port number you choose). The section "Configuring Windows
Defender Firewall" has detailed instructions.

4.4.5.2 Configuring IIS

This section is to configure IIS as a reverse proxy server.

Step 1: Open the IIS manager, select the server in the Connections pane, and then double
click Application Request Routing Cache to open the feature.

https://www.iis.net/downloads/microsoft/application-request-routing
https://www.nuget.org
https://apips.appeon.com
https://apipsoa.appeon.com
https://apips.appeon.net
https://apips.appeon.net
https://apipsoa.appeon.net

Tutorial 4: Hosting Web APIs in Kestrel

Page 86

Figure 4.34:

Step 2: In the Actions pane, click Server Proxy Settings.

Figure 4.35:

Step 3: On the Application Request Routing page, select Enable Proxy; and then in the
Actions pane, click Apply. This enable ARR as a proxy at the server level.

Tutorial 4: Hosting Web APIs in Kestrel

Page 87

Figure 4.36:

Step 4: Select the website (listening on port 8080 in this tutorial) in the Connections pane,
and then double click URL Rewrite to open the feature.

Figure 4.37:

Step 5: In the Actions pane, click Add Rule(s).

Step 6: In the Add Rule(s) dialog, select Reverse Proxy and click OK.

Tutorial 4: Hosting Web APIs in Kestrel

Page 88

Figure 4.38:

Step 7: In the Add Reverse Proxy Rules dialog, input the URL of the PowerServer Web API
running on the Kestrel server (https://172.16.100.35:6000/ in this tutorial). Click OK.

Tutorial 4: Hosting Web APIs in Kestrel

Page 89

Figure 4.39:

4.4.5.3 Modifying and re-deploying the PowerServer project

The following modifications are made to the PowerServer project created in the Quick Start
guide. If you have not created a PowerServer project yet, please follow the instructions in the
Quick Start guide to create one.

Step 1: Modify the Web API URL to point to the IIS reverse proxy server.

On the Web APIs tab of the PowerServer project painter, specify the URL of the IIS reverse
proxy server, for example, https://172.16.100.81:8080. It is highly recommended that you
specify an HTTPS URL for the production environment.

All requests for the PowerServer Web APIs will be first made to https://172.16.100.81:8080
and then redirected by the IIS reverse proxy server to the PowerServer Web APIs running on
the Kestrel server (for example, https://172.16.100.35:6000).

Tutorial 4: Hosting Web APIs in Kestrel

Page 90

Figure 4.40:

Step 2: Select a Web server for deploying the app files.

On the Client Deployment tab of the PowerServer project painter, select a local or remote
Web server (IIS, Apache, Nginx, etc.) you have configured properly.

The Web server and the IIS reverse proxy server can reside in the same or different machine.
If the Web server is an IIS HTTP server, it can be the same or different server instance with
the IIS reverse proxy server.

In this tutorial, we choose to deploy the app files to a local IIS Web server.

To use the same IIS server instance as the IIS HTTP server and the reverse proxy server, you
can choose from these two options:

• If you choose the "Directly deploy to the server" option, make sure you have configured
the FTP settings properly for the server. See Setting up IIS > Creating an IIS FTP site for
detailed instructions.

• If you choose the "Package the compiled app and manually deploy later" option, follow the
instructions in Packaging and copying the client app.

Figure 4.41:

Step 3: Save the PowerServer project settings and then build and deploy the PowerServer
project for the changes to take effect.

4.4.5.4 Starting Web APIs (in development environment)

In this tutorial, we will run the PowerServer Web APIs in the development environment, by
using either of the following methods:

• Execute the "dotnet run --project PowerServer19\ServerAPIs\ServerAPIs.csproj"
command, or

Tutorial 4: Hosting Web APIs in Kestrel

Page 91

• Open the PowerServer C# solution in the SnapDevelop IDE and then click the Run button.

PowerServer Web APIs is running as a standalone console application on its own internal
Kestrel web server.

Make sure the PowerServer Web APIs is running on the correct IP address and port number.
For example, https://172.16.100.35:6000/ in this tutorial. You may modify the port number in
the launchSettings.json file of the ServerAPIs project of the PowerServer C# solution when
running in the development environment.

If the server connects to Internet through a proxy server, make sure to configure the proxy
server settings in the PowerServer Web API as well (the ServerAPIs project > Server.json
file > "ProxyOptions" block).

Figure 4.42:

When you run the application (https://172.16.100.72:80/pssales in this tutorial), you will be
able to see from the console that the requests are going through successfully.

Tutorial 5: Load-balancing PowerServer Web APIs

Page 92

5 Tutorial 5: Load-balancing PowerServer Web
APIs

5.1 Overview

PowerServer Web APIs provides no clustering function to support load-balancing or fail-
over; but you can install and configure a third-party server (such as Nginx, Apache, IIS,
AWS ALB, Azure Application Gateway, AWS EKS (K8S), Azure AKS (K8S) etc.) as a load
balancer to direct requests to a group of .NET servers. (Fail-over is currently unsupported.)

PowerServer Web APIs uses cookie to achieve session persistence (it returns a cookie when
each user session is created and then includes the cookie in each request from that user
session). Therefore, you will need to configure the third-party server to support the following:

• "sticky" or "persistent" sessions (this ensures the requests from the same user will always
be directed to the same PowerServer Web APIs)

• the cookie timeout value must be equal to or greater than the session timeout value (this
ensures the cookie stays valid during a session)

The session timeout value is by default 3600 seconds (it is set in the Applications.json file
in the PowerServer C# solution).

When you configure the Web API URL for the application, you should point to the URL of
the load balancer (for example, https://172.16.100.51:8080 in the following graph).

Tutorial 5: Load-balancing PowerServer Web APIs

Page 93

Figure 5.1:

5.2 Configuring Nginx as a load balancer

This tutorial will walk you through configuring Nginx as a load balancer to direct client
requests to a group of PowerServer Web APIs. You can choose one of the following
methods:

• Use the Nginx third-party module (Nginx Sticky Module) to support session persistence
via cookies.

• Use Nginx Plus that supports session persistence via cookies.

Nginx Plus is a commercial product.

• Use the IP hash load-balancing method to support session persistence via IP address.

With IP hash, the client's IP address is used as a hashing key to determine which
PowerServer Web APIs should be selected for the client's request. This ensures the
requests from the same user session is always directed to the same PowerServer Web APIs.
However, the IP-hash-based session persistence cannot guarantee that user sessions are
evenly distributed across servers. For example, there may be situations where a lot of user

https://github.com/Refinitiv/nginx-sticky-module-ng
https://www.nginx.com/products/nginx/

Tutorial 5: Load-balancing PowerServer Web APIs

Page 94

sessions are coming with the same IP address (behind proxies) and all these user sessions
will go to the same server, which might cause unbalanced load.

5.2.1 Using Nginx Sticky Module

This tutorial will walk you through configuring Nginx + Nginx Sticky Module as a load
balancer to direct client requests to a group of PowerServer Web APIs. You will have to
configure Nginx + Nginx Sticky Module as a load balancer and use the sticky cookie to
support session persistence. With sticky cookies, the requests from the same user session are
always directed to the same PowerServer Web APIs.

Step 1: Download the source code of Nginx and Nginx Sticky Module separately.

• Download the source code of Nginx from https://nginx.org.

• Download the source code of Nginx Sticky Module from https://bitbucket.org/nginx-
goodies/nginx-sticky-module-ng/src/master/.

Step 2: Re-compile Nginx to include the Nginx Sticky Module.

./configure ... --add-module=/absolute/path/to/nginx-sticky-module-ng
make
make install

Step 3: Check if any syntax error in the Nginx configuration file, and then restart Nginx for
the changes to take effect.

nginx -t

systemctl restart nginx

Step 4: Configure Nginx to direct requests to the PowerServer Web APIs group using the
sticky cookie load-balancing method.

1. Open the nginx.conf file in a text editor (nginx.conf is located in /etc/nginx/ in Linux).

2. Under the "server" block that defines the virtual server, add another "server" block and
"upstream" block that define the server group.

• The "upstream" directive defines the PowerServer Web APIs group.

In the following example, the "upstream" block consists of two server configurations; it
could consists of more.

The "upstream" block also consists of the "sticky" directive which defines that the
sticky-cookie load-balancing method will be used when determining which server in the
group the request will be directed to.

• The "listen" directive specifies the port number for the requests. The Web API URL
should point to this port number.

• The "proxy_pass" directive forwards the request to the server group defined in the
"upstream" directive, therefore, it should match with the upstream name.

The following configuration defines a PowerServer Web APIs group named
webapi which consists of three .NET servers: https://172.16.100.34:6000/,

https://nginx.org
https://bitbucket.org/nginx-goodies/nginx-sticky-module-ng/src/master/
https://bitbucket.org/nginx-goodies/nginx-sticky-module-ng/src/master/

Tutorial 5: Load-balancing PowerServer Web APIs

Page 95

https://172.16.100.35:6000/, and https://172.16.100.36:6000/ and requests made to the
URL: https://<server>:8090/ will be redirected to the PowerServer Web APIs group.

upstream webapi
 {
 server 172.16.100.34:6000;
 server 172.16.100.35:6000;
 server 172.16.100.36:6000;
 sticky name=route hash=sha1 expires=1h;
 }
server {
 listen 8090;
 server_name localhost;

 location / {
 proxy_pass https://webapi;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $remote_addr;
 }
 }

5.2.2 Using Nginx Plus

This tutorial will walk you through configuring Nginx Plus as a load balancer to direct client
requests to a group of PowerServer Web APIs. You will have to configure Nginx Plus as a
load balancer and use the sticky cookie to support session persistence. With sticky cookies,
the requests from the same user session are always directed to the same PowerServer Web
APIs.

Step 1: Install Nginx Plus. Nginx Plus is a commercial product. You will need to purchase it
first or apply for a trial version of Nginx Plus.

Step 2: Configure Nginx Plus to direct requests to the PowerServer Web APIs group using
the sticky cookie load-balancing method.

1. Open the nginx.conf file in a text editor.

2. Add an "http" block that defines the server group.

• The "listen" directive specifies the port number for the requests. The Web API URL
should point to this port number.

• The "proxy_pass" directive forwards the request to the server group defined in the
"upstream" directive, therefore, it should match with the upstream name.

• The "upstream" directive defines the PowerServer Web APIs group.

In the following example, the "upstream" block consists of three server configurations;
it could consists of more.

The "upstream" block also consists of the "sticky" directive and defines the cookie
name and timeout value. The cookie timeout value must be equal to or greater than the
session timeout value (which is 3600 seconds by default). In the following example, the
cookie timeout value is set to 1 hour (which is 3600 seconds).

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-plus/

Tutorial 5: Load-balancing PowerServer Web APIs

Page 96

For more information about the sticky cookie and the other load-balancing methods
(such as sticky route and sticky learn), refer to https://docs.nginx.com/nginx/admin-
guide/load-balancer/http-load-balancer/#enabling-session-persistence.

The following configuration defines a PowerServer Web APIs group named
servergroup which consists of three .NET servers: https://172.16.100.34:6000/,
https://172.16.100.35:6000/, and https://172.16.100.36:6000/, and requests made to the
URL: https://<server>:8080/ will be redirected to the PowerServer Web APIs group.

http {
 server {
 listen 8080;
 location / {
 proxy_set_header Host $http_host;
 proxy_pass https://servergroup;
 }
 }
 upstream servergroup {
 sticky cookie srv_id expire=1h path=/;
 server https://172.16.100.34:6000;
 server https://172.16.100.35:6000;
 server https://172.16.100.36:6000;
 }
}

5.2.3 Using IP hash load-balancing

The IP-hash-based session persistence cannot guarantee that user sessions are evenly
distributed across servers. For example, there may be situations where a lot of user sessions
are coming with the same IP address (behind proxies) and all these user sessions will go to
the same server, which might cause unbalanced load. Therefore consider the impact carefully
before you decide to go this way.

To configure Nginx as a load balancer and use the IP hash load-balancing method,

Step 1: Follow the sections below to install Nginx.

• Setting up Nginx on Windows > "Preparations" and "Installing Nginx" sections

• Setting up Nginx on Linux > "Preparations" and "Installing Nginx" sections

Step 2: Configure Nginx to direct requests to the PowerServer Web APIs group using the IP
hash load-balancing method.

1. Open the nginx.conf file in a text editor (nginx.conf is located in the ..\nginx-1.19.10\conf
folder in Windows, or /etc/nginx/ in Linux).

2. Under the "server" block that defines the virtual server, add another "server" block and
"upstream" block that define the server group.

• The "listen" directive specifies the port number for the requests. The Web API URL
should point to this port number.

• The "proxy_pass" directive forwards the request to the server group defined in the
"upstream" directive, therefore, it should match with the upstream name.

https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#enabling-session-persistence
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#enabling-session-persistence

Tutorial 5: Load-balancing PowerServer Web APIs

Page 97

• The "upstream" directive defines the PowerServer Web APIs group.

In the following example, the "upstream" block consists of three server configurations;
it could consists of more.

The "upstream" block also consists of the "ip_hash" directive which defines that the IP
hash load-balancing method will be used when determining which server in the group
the request will be directed to.

The following configuration defines a PowerServer Web APIs group named
webapi which consists of three .NET servers: https://172.16.100.34:6000/,
https://172.16.100.35:6000/, and https://172.16.100.36:6000/, and requests made to the
URL: https://<server>:8080/ will be redirected to the PowerServer Web APIs group.

 server {
 listen 8080;
 location / {
 proxy_set_header Host $http_host;
 proxy_pass https://webapi;
 }
 }
 upstream webapi{
 ip_hash;
 server https://172.16.100.34:6000;
 server https://172.16.100.35:6000;
 server https://172.16.100.36:6000;
 }

5.3 Configuring IIS as a load balancer

This tutorial will walk you through configuring IIS as a load balancer to direct client requests
to a group of PowerServer Web APIs. You will have to configure IIS to support sticky
sessions.

Step 1: Follow the sections below to install IIS.

• Setting up IIS > "Preparations" and "Installing Web Server (IIS)" sections

Step 2: Follow the sections below to install the extensions required by IIS to work as proxy
server and load balancer.

• Configuring IIS reverse proxy server > "Preparations" section

Step 3: Configure IIS as a proxy server and load balancer which redirects requests to the
PowerServer Web APIs group.

1. Create a new website "proxyserver" which binds to port number 8080. You can also use
the existing Default Web Site (with port 80).

2. Set the application pool to "No managed code".

a. Select Application Pools in the Connections pane.

b. Right click "proxyserver" in the list of application pools and then select Basic Settings.

Tutorial 5: Load-balancing PowerServer Web APIs

Page 98

c. In the Edit Application Pool window, select No Managed Code from the .NET CLR
version list box, and then click OK.

Figure 5.2:

3. Set the cookie timeout value to a value equal to or greater than the session timeout value
which is 3600 seconds (60 minutes) by default.

Figure 5.3:

Tutorial 5: Load-balancing PowerServer Web APIs

Page 99

Figure 5.4:

4. Create a server farm that includes the group of PowerServer Web APIs.

a. Right click Server Farms in the Connections pane, and then select Create Server
Farm.

The Server Farms node will not be available if "IIS Application Request Routing
(ARR)" is not installed.

b. In the Create Server Farm window, specify the server farm name and then click Next.

c. Add the server instance by inputting the host name or IP address of PowerServer Web
APIs, clicking Advanced settings to specify the port number of PowerServer Web
APIs, and then clicking Add.

d. Repeat the previous step to add the server instances one by one and then click Finish.

e. Select Yes when asked whether to automatically create a URL rewrite rule.

Figure 5.5:

Tutorial 5: Load-balancing PowerServer Web APIs

Page 100

5. Modify the URL rewrite rule.

a. Select the server in the Connections pane and then double click URL Rewrite in the
features view to open the feature.

Figure 5.6:

b. Select the "ARR_PowerServerGroup_loadbalance" rule (this rule is automatically
created when you create the server farm) and then click Edit from the Actions pane.

Tutorial 5: Load-balancing PowerServer Web APIs

Page 101

Figure 5.7:

c. In the Edit Inbound Rule window, expand the Conditions block and then click Add.
In the Add Condition dialog, input "{SERVER_PORT}" to the Condition input field
and "8080" (port of "proxyserver" website) to the Pattern field, and click OK.

Figure 5.8:

d. Click Apply for the changes to take effect.

Tutorial 5: Load-balancing PowerServer Web APIs

Page 102

Figure 5.9:

6. Configure Server Affinity of the server farm to support sticky sessions.

a. Select the "PowerServerGroup" server farm in the Connections pane, and then double
click Server Affinity in the features view to open the feature.

Figure 5.10:

Tutorial 5: Load-balancing PowerServer Web APIs

Page 103

b. Select the check box of Client affinity, keep the Cookie name as default
"ARRAffinity", and then click Apply.

Figure 5.11:

5.4 Configuring Apache as a load balancer

This tutorial will walk you through configuring Apache as a load balancer to direct client
requests to a group of PowerServer Web APIs. You will have to configure Apache as a load
balancer and use the "Request Counting" load balancer scheduler algorithm and the cookie in
order to support sticky sessions.

Step 1: Follow the sections below to install Apache 2.4 (The load balancing feature is
available in Apache 2.2 or later).

• Setting up Apache on Windows > "Preparations" and "Installing Apache HTTP Server"
sections

• Setting up Apache on Linux > "Preparations" and "Installing Apache HTTP Server"
sections

Step 2: Configure Apache to direct requests to the PowerServer Web APIs group using the
"Request Counting" load balancer scheduler algorithm and the cookie.

1. For Windows Apache, make sure the following lines are NOT commented out in the
httpd.conf file.

mod_proxy, mod_proxy_http, mod_proxy_balancer, mod_lbmethod_byrequests (the
"Request Counting" algorithm), and mod_headers (stickyness cookie) must be enabled in
order to have the load-balancing ability.

Tutorial 5: Load-balancing PowerServer Web APIs

Page 104

LoadModule headers_module modules/mod_headers.so
LoadModule status_module modules/mod_status.so
LoadModule slotmem_shm_module modules/mod_slotmem_shm.so
LoadModule lbmethod_byrequests_module modules/mod_lbmethod_byrequests.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
LoadModule proxy_http_module modules/mod_proxy_http.so

2. Add the following lines to the end of the httpd.conf file.

The "Header" directive provides load balancing with stickyness using mod_headers.

The "Max-Age" attribute specifies the number of seconds until the cookie expires. This
value must be greater than the session timeout value (which is 3600 seconds by default).

The "BalancerMember" directive specifies the URL of the server instance in the group.

The "stickysession" attribute specifies the name of the cookie.

For more information, refer to https://httpd.apache.org/docs/2.4/mod/
mod_proxy_balancer.html.

Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e; Max-Age=3700; path=/"
 env=BALANCER_ROUTE_CHANGED

ProxyRequests Off
<Proxy balancer://mycluster>
BalancerMember https://172.16.100.34:6000 route=server1
BalancerMember https://172.16.100.35:6000 route=server2
BalancerMember https://172.16.100.36:6000 route=server3
ProxySet stickysession=ROUTEID
</Proxy>
ProxyPass / balancer://mycluster/

https://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
https://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html

Tutorial 6: Authenticating your apps

Page 105

6 Tutorial 6: Authenticating your apps

6.1 Overview

The PowerServer Web APIs can include a built-in authentication server which can
be used easily to authenticate the installable cloud apps. You can select which of the
following authentication server to be built into the PowerServer Web APIs. And since the
authentication server is built into the PowerServer Web APIs, it has the same URL as the
PowerServer Web APIs and it runs automatically when the PowerServer Web APIs runs.

• Use built-in JWT server: Includes a built-in authentication server that supports JWT or
bearer tokens. See Using JWT for more information.

• Use built-in OAuth server: Includes a built-in authentication server based on
IdentityServer4 framework that works with the OAuth 2.0 authorization flows. See Using
OAuth 2.0 for more information.

• Use built-in AWS Cognito server: Includes a built-in authentication server that works
with the Amazon Cognito user pool. See Using Amazon Cognito for more information.

• Use external auth service: Includes templates that can be easily extended to support the
other identity providers that work with the OAuth flows or JWT, such as Azure AD or
Azure AD B2C. See Using other auth servers for more information.

Figure 6.1:

1. The client sends the user name and password (from the INI file or login window) to the
authentication server.

2. The authentication server validates the user (against the DefaultUserStore.cs file, the
authentication database, or the LDAP server); and if validation is successful, it authorizes
and returns a token to the client.

3. The client sends a request that includes the token to the PowerServer Web API.

4. The PowerServer Web APIs validates the token with the authentication server; and if
validation is successful, it gets data from the database.

The following tokens are supported:

Tutorial 6: Authenticating your apps

Page 106

• JSON Web Token (JWT) (recommended)

• Bearer token

For OAuth 2.0, the following authorization flows are recommended:

• Client Credentials

• Resource Owner Password

The PowerBuilder client application will implement the authentication process (such
as getting a valid token, accessing data with the token etc.) using the PowerBuilder
RestClient, OAuthClient, JsonParser, TokenRequest, and TokenResponse objects, and the
Application.SetHttpRequestHeader function. See the code example in the following sections
for more details. And it calls the Application.BeginSession function to create the user session
in a manual way (instead of the automatic way) in order to include the token information. See
the "Start session manually by code" section for more details.

6.2 Using JWT

6.2.1 Preparations

Before making changes to the PowerBuilder client app, let's follow the steps below to make
sure 1) the PowerBuilder application can run successfully, 2) the app has been deployed as an
installable cloud app successfully, and 3) the PowerServer C# solution (including the built-in
JWT server) has been successfully generated.

In this tutorial, we will take Sales Demo as an example.

Step 1: Select Windows Start | Appeon PowerBuilder 2021, and then right-click Example
Sales App and select More | Run as administrator.

Step 2: When the SalesDemo workspace is loaded in the PowerBuilder IDE, click the Run
button in the PowerBuilder toolbar.

Step 3: When the application main window is opened, click the Address icon in the
application ribbon bar and make sure data can be successfully retrieved.

Step 4: Create and configure a PowerServer project for the Sales Demo app (detailed
instructions are provided in the Quick Start guide).

IMPORTANT: In the Web APIs tab, select Use built-in JWT server from the Auth
Template list box.

Step 5: Deploy the application as an installable cloud app. The PowerServer C# solution is
generated, but the installable cloud app cannot run yet because further settings and changes
are required, as explained in the subsequent sections.

The PowerServer C# solution contains a built-in JWT server and the authentication class files
as shown below.

• The built-in JWT server authenticates the user credential and returns a token. The built-in
server is included in the ServerAPIs project; it runs automatically when the PowerServer
Web APIs (the ServerAPIs project) runs.

https://jwt.io/introduction

Tutorial 6: Authenticating your apps

Page 107

• DefaultUserStore.cs defines two users by default. You can change this file to define
more users. These users will be used by the built-in server to validate the users passed
from the client.

The users can also be defined and stored in the database. Refer to Validate username and
password against a database for more information.

• DatabaseUserStore.cs can be added with scripts to connect with an authentication
database where the users are defined and stored.

• The authentication class and configuration files will be used by the PowerServer Web APIs
to validate the token passed from the client and, if validation is successful, data will be
obtained from the database.

• Authentication.json contains the settings for enabling the authentication feature
("PowerServer:EnableAuthentication") and specifying the JWT token information
("JwtSetting").

The "PowerServer:EnableAuthentication" setting is set to true by default. Setting it to
false will turn off the authentication feature. The "JwtSetting" block is used to specify
the token information including the issuer, audience and security key.

Tutorial 6: Authenticating your apps

Page 108

Figure 6.2:

6.2.2 Modifying the PowerBuilder client app

6.2.2.1 Purpose

In this section, we will modify the PowerBuilder application source code and the
PowerServer project settings to achieve the following results:

• Sends the user credentials and/or password to the JWT server and gets a token from the
JWT server if authentication is successful.

• Uses the token to access data from the PowerServer Web API.

• Refreshes the token when necessary.

6.2.2.2 Add scripts

Step 1: Declare the following global variables.

//Token expiresin

Tutorial 6: Authenticating your apps

Page 109

Long gl_Expiresin
//Refresh token clockskew
Long gl_ClockSkew = 3

Step 2: Define a global function and name it f_Authorization().

Select from menu File > New; in the New dialog, select the PB Object tab and then select
Function and click OK to add a global function.

This global function uses the HTTP Post method to send the user credentials to the
authentication server and then gets the token from the HTTP Authorization header.

Add scripts to the f_Authorization() function to implement the following scenario: When the
application starts, the application uses the username and password from the login window to
get the token, and when the token expires, the login window displays for the user to input the
username and password again.

Note: The following scripts use the username and password from the INI file instead of from
the login window. You can change the scripts to use the login window after you implement
the login window and return the username and password to the f_Authorization() function.

//Integer f_Authorization() for password
//UserName & Password are passed from the login window
RestClient lrc_Client
String ls_url, ls_UserName, ls_UserPass, ls_PostData, ls_Response, ls_expires_in
String ls_TokenType, ls_AccessToken
String ls_type, ls_description, ls_uri, ls_state
Integer li_Return, li_rtn
JsonParser ljson_Parser

li_rtn = -1
ls_url = profilestring("CloudSetting.ini","setup","TokenURL","")

//login window can be implemented to return username & password according to actual
 needs.
//Open(w_login)
//Return UserName & Password

ls_UserName = ProfileString("CloudSetting.ini", "users", "userName", "")
ls_UserPass = ProfileString("CloudSetting.ini", "users", "userPass", "")

If IsNull (ls_UserName) Or Len (ls_UserName) = 0 Then
 MessageBox("Tips", "UserName is empty!")
 Return li_rtn
End If
If IsNull (ls_UserPass) Or Len (ls_UserPass) = 0 Then
 MessageBox("Tips", "Password is empty!")
 Return li_rtn
End If

ls_PostData = '{"Username":"' + ls_UserName + '", "Password":"' + ls_UserPass +
 '"}'
lrc_Client = Create RestClient
lrc_Client.SetRequestHeader("Content-Type","application/json")
li_Return = lrc_Client.GetJWTToken(ls_Url, ls_PostData, ls_Response)
If li_Return = 1 and Pos (ls_Response, "access_token") > 0 Then
 ljson_Parser = Create JsonParser
 ljson_Parser.LoadString(ls_Response)
 ls_TokenType = ljson_Parser.GetItemString("/token_type")
 ls_AccessToken = ljson_Parser.GetItemString("/access_token")
 //Application Set Authorization Header
 Getapplication().SetHttpRequesTheader("Authorization", ls_TokenType + " "
 +ls_AccessToken, true)

Tutorial 6: Authenticating your apps

Page 110

 //Set Global Variables
 gl_Expiresin = Long (ljson_Parser.GetItemNumber("/expires_in"))

 li_rtn = 1
Else
 MessageBox("AccessToken Falied", "Return :" + String (li_Return))
End If

If IsValid (ljson_Parser) Then DesTroy (ljson_Parser)
If IsValid (lrc_Client) Then DesTroy (lrc_Client)

Return li_rtn

Step 3: Insert a timing object (timing_1) to the application and add the following scripts to
the Timer event of timing_1.

1) Open the application object and then select from menu Insert > Object > Timing to add a
timing object to the application.

2) Add the following scripts to the Timer event of timing_1.

//Authenticates the user
f_Authorization()

When displayed in the source editor, the Timer event looks like this:

event timer;//Authenticates the user
f_Authorization()
end event

Figure 6.3:

Step 4: Add the following scripts to the application Open event.

Tutorial 6: Authenticating your apps

Page 111

Place the scripts before the database connection is established. The scripts get the token from
the JWT server and then start the user session (using the BeginSession function) to include
the token information in the session.

//Authenticates the user and returns the token
If f_Authorization() <> 1 Then
 Return
End If

//Starts the session
long ll_return
Try
 ll_return = Beginsession()
 If ll_return <> 0 Then
 Messagebox("Beginsession Failed:" + String(ll_return),
 GetHttpResponseStatusText())
 End if
Catch (Throwable ex)
 MessageBox("Throwable", ex.GetMessage())
 Return
End Try

//Refreshes the token for timing
If gl_Expiresin > 0 And (gl_Expiresin - gl_ClockSkew) > 0 Then
 //Timer = Expiresin - ClockSkew
 //7200 - 3
 timing_1.Start(gl_Expiresin - gl_ClockSkew)
End If

//Connects to db

Figure 6.4:

Tutorial 6: Authenticating your apps

Page 112

Step 5: Add the following scripts to the SystemError event.

The scripts will trigger the SystemError event when the session or license encounters an
error; and if the token is invalid or expires, the scripts will call the f_Authorization function
to get the token again.

Choose Case error.Number
 Case 220 to 229 //Session Error
 MessageBox ("Session Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 Case 230 to 239 //License Error
 MessageBox ("License Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 Case 240 to 249 //Token Error
 MessageBox ("Token Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 //Authorization
 f_Authorization()
 Case Else
 MessageBox ("SystemError", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
End Choose

Figure 6.5:

6.2.2.3 Add an INI file

Create an INI file in the same location as the PBT file and name it CloudSetting.ini.

Specify the URL for requesting the token from the JWT server in the CloudSetting.ini file.
Notice that TokenURL points to the "/connect/token" API of the built-in JWT server, and

Tutorial 6: Authenticating your apps

Page 113

the JWT server root URL (for example, https://localhost:5000/) is the same as the URL of
PowerServer Web API. If you change the PowerServer Web API URL, change the root URL
here accordingly.

[Setup]
TokenURL=https://localhost:5000/connect/token

To get the username and password from the INI file (instead of from the login window),
you need to add the following section to the CloudSetting.ini file and set the user name and
password accordingly.

[users]
userName=alice
userPass=alice

6.2.2.4 Start session manually by code

By default, the user session is automatically created when the application starts; and the
session includes no token. For the session to include the token, the session must be started
manually by code instead of automatically.

To start the session manually by code,

Step 1: Enable "Begin session by code" in the PowerBuilder IDE. (Steps: Open the
application object painter, click Additional Properties in the application's Properties dialog;
in the Application dialog, select the PowerServer tab and then select the Begin session by
code option and click Apply.)

After this option is enabled, when the BeginSession function in the application Open event
is called, it will create a session that includes the token information (See scripts in step 4 in
"Add scripts").

Tutorial 6: Authenticating your apps

Page 114

Figure 6.6:

6.2.2.5 Modify and re-deploy the PowerServer project

Step 1: Add the INI file CloudSetting.ini to the Files preloaded in uncompressed format
section under the External Files tab.

Step 2: Select RESTClient Support and Compression Support under the Runtime tab.

Tutorial 6: Authenticating your apps

Page 115

Figure 6.7:

Step 3: Double check the URL of the PowerServer Web APIs in the Web APIs tab. Make
sure the port number is not occupied by any other program.

Tip: You can execute the command "netstat -ano | findstr portnumber" to check if the port
number is occupied by any other program.

The built-in JWT server will run at the same URL as the PowerServer Web API. If the
PowerServer Web API URL is changed, change the JWT server root URL accordingly in the
INI file.

Step 4: Double check that Use built-in JWT server is selected from the Auth Template list
box in the Web APIs tab.

Step 5: Save the changes and deploy the PowerServer project (using the "Build & Deploy
PowerServer Project" option) so that the above settings can take effect in the installable cloud
app.

6.2.3 Appendix

6.2.3.1 Validate username and password against a database

When the username and password are passed from the application to the built-in JWT
server, the JWT server will by default authenticate them against users defined in the
DefaultUserStore.cs file. If users are defined in an authentication database instead of
DefaultUserStore.cs, you can choose to

• Have JWT server to connect to the authentication database and authenticate the user every
time when a token is requested (see this section for details); or

• Populate users from the database to the user list of the DefaultUserStore.cs file, and the
user list will be cached and used to authenticate the user when a token is requested.

Tutorial 6: Authenticating your apps

Page 116

The benefit of populating and caching the user list is the JWT server does not need to
connect to the authentication database every time when a user is authenticated, but the
downside is if the users in the authentication database are updated, the PowerServer Web
APIs needs to be restarted to refresh the user list.

This section will show you how to populate and cache the user list of the DefaultUserStore.cs
file.

Step 1: Open the DatabaseUserStore.cs file and add the following scripts. Suppose a SQL
Server database will be connected. Modify the database connection string according to your
environment.

using System.Collections.Generic;
using System.Linq;
using System.Security.Claims;
using IdentityModel;
using Microsoft.Data.SqlClient;
using Microsoft.Extensions.Logging;
using SnapObjects.Data;
using SnapObjects.Data.SqlServer;

namespace ServerAPIs
{
 public class DatabaseUserStore : IUserStore
 {
 private readonly ILogger _logger;
 private readonly List<UserModel> _users;

 public DatabaseUserStore(ILogger<DatabaseUserStore> logger)
 {
 _logger = logger;
 _users = new List<UserModel>();
 string Constr = @"Data Source=172.16.1.10,1433;Initial
 Catalog=pb_cloud;Integrated Security=False;User
 ID=sa;Password=1234;Pooling=True;Min Pool Size=0;Max Pool
 Size=100;MultipleActiveResultSets=False;Encrypt=False;TrustServerCertificate=False;ApplicationIntent=ReadWrite";
 SqlServerDataContext _context = new SqlServerDataContext(new
 SqlConnection(Constr));
 string sql = "select username,password from users where isValid = 1";
 var users = _context.SqlExecutor.Select<DynamicModel>(sql);
 foreach (var u in users)
 {
 _users.Add(new UserModel
 {
 Username = u.GetValue<string>(0),
 Password = u.GetValue<string>(1),
 Claims = new[]
 {
 new Claim(JwtClaimTypes.Name, u.GetValue<string>(0)),
 new Claim(JwtClaimTypes.Scope, "serverapi"), //this script
 is added because scope is enabled by default
 },
 });
 };

 }

 public UserModel ValidateCredentials(string username, string password)
 {
 var user = _users.FirstOrDefault(x => x.Username == username &&
 x.Password == password);
 if (user != null)

Tutorial 6: Authenticating your apps

Page 117

 {
 _logger.LogInformation($"User <{username}> logged in.");

 return user;
 }
 else
 {
 _logger.LogError($"Invalid login attempt.");

 return default;
 }
 }
 }
}

To connect with a database type different from SQL Server, add the following namespace
accordingly.

using SnapObjects.Data.MySql;

using SnapObjects.Data.Oracle;

using SnapObjects.Data.PostgreSql;

using SnapObjects.Data.Odbc;

Step 2: Open the AuthenticationExtensions.cs file and modify the script to inject the
DatabaseUserStore class instead of the DefaultUserStore class.

//services.AddSingleton<IUserStore, DefaultUserStore>();
services.AddSingleton<IUserStore, DatabaseUserStore>();

6.3 Using OAuth 2.0

6.3.1 Preparations

Before making changes to the PowerBuilder client app, let's follow the steps below to make
sure 1) the PowerBuilder application can run successfully, 2) the app has been deployed as an
installable cloud app successfully, and 3) the PowerServer C# solution (including the built-in
OAuth server) has been successfully generated.

In this tutorial, we will take Sales Demo as an example.

Step 1: Select Windows Start | Appeon PowerBuilder 2021, and then right-click Example
Sales App and select More | Run as administrator.

Step 2: When the SalesDemo workspace is loaded in the PowerBuilder IDE, click the Run
button in the PowerBuilder toolbar.

Step 3: When the application main window is opened, click the Address icon in the
application ribbon bar and make sure data can be successfully retrieved.

Step 4: Create and configure a PowerServer project for the Sales Demo app (detailed
instructions are provided in the Quick Start guide).

IMPORTANT: In the Web APIs tab, select Use built-in OAuth server from the Auth
Template list box.

Step 5: Deploy the application as an installable cloud app. The PowerServer C# solution is
generated, but the installable cloud app cannot run yet because further settings and changes
are required, as explained in the subsequent sections.

Tutorial 6: Authenticating your apps

Page 118

The PowerServer C# solution contains a built-in OAuth server and the authentication class
files as shown below.

• The built-in OAuth server uses the IdentityServer4 framework. It is included in the
ServerAPIs project; it will run automatically when the PowerServer Web APIs (the
ServerAPIs project) runs. You can use another OAuth server (such as Google OAuth 2.0
Authorization Server) instead of using the built-in server. In this tutorial, we will use the
built-in server to authenticate the user credentials and return the token.

• DefaultConfig.cs defines two OAuth authorization flows: client credentials and
resource owner password; and in each flow defines client ID, client name, grant type,
client secret, scope etc. If you want to define different credentials, you can change this
file accordingly.

• DefaultUserStore.cs defines two users by default. You can change this file to define
more users.

The users can also be defined and stored in the database or LDAP server. Refer to
Validate username and password against a database or Validate username and password
against an LDAP server for more information.

• DatabaseUserStore.cs can be added with scripts to connect with an authentication
database where the users are defined and stored.

• The authentication class and configuration files will be used by the PowerServer Web APIs
to validate the token (passed from the client) against the OAuth server and, if validation is
successful, data will be obtained from the database.

• Authentication.json contains the settings for enabling the authentication feature
("PowerServer:EnableAuthentication") and specifying the URL of the OAuth server
("Authority").

The "PowerServer:EnableAuthentication" setting is set to true by default. Setting it to
false will turn off the authentication feature. The "Authority" setting is set to the OAuth
server URL which is the same as Web API URL by default, as the built-in OAuth server
resides in the PowerServer Web API. If you set up your own OAuth server, change the
URL in this file accordingly.

Tutorial 6: Authenticating your apps

Page 119

Figure 6.8:

6.3.2 Modifying the PowerBuilder client app

6.3.2.1 Purpose

In this section, we will modify the PowerBuilder application source code and the
PowerServer project settings to achieve the following results:

• Sends the user credentials and/or password to the OAuth server and gets a token from the
OAuth server if authentication is successful.

• Uses the token to access data from the PowerServer Web API.

• Refreshes the token when necessary.

6.3.2.2 Add scripts

Step 1: Declare the following global variables.

//Token expiresin

Tutorial 6: Authenticating your apps

Page 120

Long gl_Expiresin
//Refresh token clockskew
Long gl_ClockSkew = 3

Step 2: Define a global function and name it f_Authorization().

Select from menu File > New; in the New dialog, select the PB Object tab and then select
Function and click OK to add a global function.

This global function uses the HTTP Post method to send the user credentials to the
authentication server and then gets the token from the HTTP Authorization header.

Add scripts to the f_Authorization() function according to the following scenarios:

• Scenario 1: Supports Client Credentials (GrantType="client_credentials") and gets the
client ID and secret from the application.

• Scenario 2: Supports Resource Owner Password (GrantType="password") and gets the
username and password from a login window.

• Scenario 3: Supports Resource Owner Password (GrantType="password") and gets the
username and password from the INI file.

Scripts for scenario 1:

Supports Client Credentials (GrantType="client_credentials") and gets the client ID and
secret from the application.

When the application starts, the application uses the client ID and secret stored in the
application to get the token from the OAuth server, and when the token expires, it
automatically refreshes the token.

//integer f_Authorization() for client_credentials
//The URL for requesting token is specified in the INI file
OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
String ls_url, ls_UserName, ls_UserPass
String ls_TokenType, ls_AccessToken
String ls_type, ls_description, ls_uri, ls_state
Integer li_Return, li_rtn

li_rtn = -1
ls_url = profilestring("CloudSetting.ini","setup","TokenURL","")

//TokenRequest
ltr_Request.tokenlocation = ls_url
ltr_Request.Method = "POST"
ltr_Request.clientid = "client"
ltr_Request.clientsecret = "511536EF-F270-4058-80CA-1C89C192F69A"
ltr_Request.scope = "serverapi"
ltr_Request.granttype = "client_credentials"

loac_Client = Create OAuthClient
li_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If li_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ls_TokenType = ltr_Response.gettokentype()
 ls_AccessToken = ltr_Response.GetAccessToken()
 //Application Set Authorization Header
 Getapplication().SetHttpRequesTheader("Authorization", ls_TokenType + " "
 +ls_AccessToken, true)

Tutorial 6: Authenticating your apps

Page 121

 //Set Global Variables
 gl_Expiresin = ltr_Response.getexpiresin()
 li_rtn = 1
Else
 li_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri, ls_state)
 MessageBox("AccessToken Falied", "Return :" + String (li_Return) + "~r~n" +
 ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)

Return li_rtn

Scripts for scenario 2:

Supports Resource Owner Password (GrantType="password") and gets the username and
password from a login window.

When the application starts, the client ID and secret stored in the application as well as
the username and password from the login window will be sent to the OAuth server to get
the token, and when the token expires, the login window displays for the user to input the
username and password again.

The username and password will be passed to the OAuth server and validated against
the DefaultUserStore.cs file (to validate against a database or LDAP server rather than
DefaultUserStore.cs, refer to Validate username and password against a database or Validate
username and password against an LDAP server for more information).

The following scripts will work only after you implement a login window and return the
username and password to the f_Authorization() function.

//Integer f_Authorization() for password from login window
//The URL for requesting token is specified in the INI file
//username & password are passed from the login window
OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
String ls_url, ls_UserName, ls_UserPass
String ls_TokenType, ls_AccessToken
String ls_type, ls_description, ls_uri, ls_state
Integer li_Return, li_rtn

li_rtn = -1
ls_url = profilestring("CloudSetting.ini","setup","TokenURL","")

//TokenRequest
ltr_Request.tokenlocation = ls_url
ltr_Request.Method = "POST"
ltr_Request.clientid = "ro.client"
ltr_Request.clientsecret = "08692CED-944D-4DA9-BFEF-0FE503C203AC"
ltr_Request.scope = "serverapi"
ltr_Request.granttype = "password"

//login window can be implemented to return username & password according to actual
 needs
//Open(w_login)
//Return UserName & Password

If IsNull (ls_UserName) Or Len (ls_UserName) = 0 Then
 MessageBox("Tips", "UserName is empty!")
 Return li_rtn
End If

Tutorial 6: Authenticating your apps

Page 122

If IsNull (ls_UserPass) Or Len (ls_UserPass) = 0 Then
 MessageBox("Tips", "Password is empty!")
 Return li_rtn
End If

ltr_Request.UserName = ls_UserName
ltr_Request.Password = ls_UserPass

loac_Client = Create OAuthClient
li_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If li_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ls_TokenType = ltr_Response.gettokentype()
 ls_AccessToken = ltr_Response.GetAccessToken()
 //Application Set Authorization Header
 Getapplication().SetHttpRequesTheader("Authorization", ls_TokenType + " "
 +ls_AccessToken, true)
 //Set Global Variables
 gl_Expiresin = ltr_Response.getexpiresin()

 li_rtn = 1
Else
 li_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri, ls_state)
 MessageBox("AccessToken Falied", "Return :" + String (li_Return) + "~r~n" +
 ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)

Return li_rtn

Scripts for scenario 3:

Supports Resource Owner Password (GrantType="password") and gets the username and
password from the INI file.

When the application starts, the client ID and secret stored in the application as well as the
username and password from the INI file will be sent to the OAuth server to get the token,
and when the token expires, it automatically refreshes the token.

The username and password will be passed to the OAuth server and validated against
the DefaultUserStore.cs file (to validate against a database or LDAP server rather than
DefaultUserStore.cs, refer to Validate username and password against a database or Validate
username and password against an LDAP server for more information).

//Integer f_Authorization() for password from INI file
//The URL for requesting token is specified in the INI file
//username & password are passed from the INI file
OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
String ls_url, ls_UserName, ls_UserPass
String ls_TokenType, ls_AccessToken
String ls_type, ls_description, ls_uri, ls_state
Integer li_Return, li_rtn

li_rtn = -1
ls_url = profilestring("CloudSetting.ini","setup","TokenURL","")

//TokenRequest
ltr_Request.tokenlocation = ls_url
ltr_Request.Method = "POST"
ltr_Request.clientid = "YourClientIdThatCanOnlyRead"
ltr_Request.clientsecret = "yoursecret1"

Tutorial 6: Authenticating your apps

Page 123

ltr_Request.scope = "scope.readaccess"
ltr_Request.granttype = "password"

//From CloudSetting.ini
ls_UserName = ProfileString("CloudSetting.ini", "users", "userName", "")
ls_UserPass = ProfileString("CloudSetting.ini", "users", "userPass", "")
If IsNull (ls_UserName) Or Len (ls_UserName) = 0 Then
 MessageBox("Tips", "UserName is empty!")
 Return li_rtn
End If
If IsNull (ls_UserPass) Or Len (ls_UserPass) = 0 Then
 MessageBox("Tips", "Password is empty!")
 Return li_rtn
End If
ltr_Request.UserName = ls_UserName
ltr_Request.Password = ls_UserPass

loac_Client = Create OAuthClient
li_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If li_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ls_TokenType = ltr_Response.gettokentype()
 ls_AccessToken = ltr_Response.GetAccessToken()
 //Application sets the authorization header
 Getapplication().SetHttpRequestHeader("Authorization", ls_TokenType + " "
 +ls_AccessToken, true)
 //Set the global variables
 gl_Expiresin = ltr_Response.getexpiresin()

 li_rtn = 1
Else
 li_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri, ls_state)
 MessageBox("AccessToken Failed", "Return: " + String (li_Return) + "~r~n" +
 ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)

Return li_rtn

Step 3: Insert a timing object (timing_1) to the application and add the following scripts to
the Timer event of timing_1.

1) Open the application object and then select from menu Insert > Object > Timing to add a
timing object to the application.

2) Add the following scripts to the Timer event of timing_1.

//Authenticates the user
f_Authorization()

When displayed in the source editor, the Timer event looks like this:

event timer;//Authenticates the user
f_Authorization()
end event

Tutorial 6: Authenticating your apps

Page 124

Figure 6.9:

Step 4: Add the following scripts to the application Open event.

Place the scripts before the database connection is established. The scripts get the token from
the OAuth server and then start the user session (using the BeginSession function) to include
the token information in the session.

//Authenticates the user and returns the token
If f_Authorization() <> 1 Then
 Return
End If

//Starts the session
long ll_return
Try
 ll_return = Beginsession()
 If ll_return <> 0 Then
 Messagebox("Beginsession Failed:" + String(ll_return),
 GetHttpResponseStatusText())
 End if
Catch (Throwable ex)
 MessageBox("Throwable", ex.GetMessage())
 Return
End Try

//Refreshes the token for timing
If gl_Expiresin > 0 And (gl_Expiresin - gl_ClockSkew) > 0 Then
 //Timer = Expiresin - ClockSkew
 //3600 - 3
 timing_1.Start(gl_Expiresin - gl_ClockSkew)
End If

Tutorial 6: Authenticating your apps

Page 125

//Connects to db

Figure 6.10:

Step 5: Add the following scripts to the SystemError event.

The scripts will trigger the SystemError event when the session or license encounters an
error; and if the token is invalid or expires, the scripts will call the f_Authorization function
to get the token again.

Choose Case error.Number
 Case 220 to 229 //Session Error
 MessageBox ("Session Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 Case 230 to 239 //License Error
 MessageBox ("License Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 Case 240 to 249 //Token Error
 MessageBox ("Token Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 //Authorization
 f_Authorization()
 Case Else
 MessageBox ("SystemError", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
End Choose

Tutorial 6: Authenticating your apps

Page 126

Figure 6.11:

6.3.2.3 Add an INI file

Create an INI file in the same location as the PBT file and name it CloudSetting.ini.

Specify the URL for requesting the token from the OAuth server in the CloudSetting.ini file.
Notice that TokenURL points to the "/connect/token" API of the built-in OAuth server, and
the OAuth server root URL (for example, https://localhost:5000/) is the same as the URL of
PowerServer Web API. If you change the PowerServer Web API URL, change the root URL
here accordingly.

[Setup]
TokenURL=https://localhost:5000/connect/token

To support "scenario 3" which supports Resource Owner Password (GrantType="password")
and gets the username and password from the INI file, you need to add the following section
to the CloudSetting.ini file and set the user name and password accordingly.

[users]
userName=alice
userPass=alice

6.3.2.4 Start session manually by code

By default, the user session is automatically created when the application starts; and the
session includes no token. For the session to include the token, the session must be started
manually by code instead of automatically.

To start the session manually by code,

Tutorial 6: Authenticating your apps

Page 127

Step 1: Enable "Begin session by code" in the PowerBuilder IDE. (Steps: Open the
application object painter, click Additional Properties in the application's Properties dialog;
in the Application dialog, select the PowerServer tab and then select the Begin session by
code option and click Apply.)

After this option is enabled, when the BeginSession function in the application Open event
is called, it will create a session that includes the token information (See scripts in step 4 in
"Add scripts").

Figure 6.12:

6.3.2.5 Modify and re-deploy the PowerServer project

Step 1: Add the INI file CloudSetting.ini to the Files preloaded in uncompressed format
section under the External Files tab.

Step 2: Select OAuth 2.0 Support and Compression Support under the Runtime tab.

Tutorial 6: Authenticating your apps

Page 128

Figure 6.13:

Step 3: Double check the URL of the PowerServer Web APIs in the Web APIs tab. Make
sure the port number is not occupied by any other program.

Tip: You can execute the command "netstat -ano | findstr portnumber" to check if the port
number is occupied by any other program.

The built-in OAuth server will run at the same URL as the PowerServer Web APIs. If the
PowerServer Web API URL is changed, change the OAuth server root URL accordingly in
the INI file.

Step 4: Double check that Use built-in OAuth server is selected from the Auth Template
list box in the Web APIs tab.

Step 5: Save the changes and deploy the PowerServer project (using the "Build & Deploy
PowerServer Project" option) so that the above settings can take effect in the installable cloud
app.

6.3.3 Appendix

6.3.3.1 Validate username and password against a database

When the username and password are passed from the application to the built-in OAuth
server, the OAuth server will by default authenticate them against the users predefined in
DefaultUserStore.cs. For security concern, you might want the OAuth server to authenticate
against the users stored in a database instead of DefaultUserStore.cs.

To do that, you will need to modify the UserValidator.cs file so that every time when
a token is requested, the OAuth server will connect to the database and authenticate the
user. (Another option is to populate and cache users from the database to the user list of the
DefaultUserStore.cs file. See this section for details.)

Tutorial 6: Authenticating your apps

Page 129

Step 1: Add namespaces. Suppose a SQL Server database will be connected. The following
namespaces need to be added.

using System;
using Microsoft.Data.SqlClient;
using SnapObjects.Data;
using SnapObjects.Data.SqlServer;

To connect with a database type different from SQL Server, add the following namespace
accordingly.

using SnapObjects.Data.MySql;

using SnapObjects.Data.Oracle;

using SnapObjects.Data.PostgreSql;

using SnapObjects.Data.Odbc;

Step 2: Add the connection string to connect to the database and authenticate the username
and password against the users in the database.

Below is the complete scripts of the UserValidator.cs file (suppose the users are stored in the
"users" table in a SQL Server database).

using System.Threading.Tasks;
using IdentityServer4.Models;
using IdentityServer4.Validation;
using System;
using Microsoft.Data.SqlClient;
using SnapObjects.Data;
using SnapObjects.Data.SqlServer;

namespace ServerAPIs
{

 public class UserValidator : IResourceOwnerPasswordValidator
 {
 public Task ValidateAsync(ResourceOwnerPasswordValidationContext context)
 {
 //To validate username and password against a SQLServer database, set
 the connection string as below
 String Constr = @"Data Source=172.16.1.10,1433;Initial
 Catalog=pb_cloud;Integrated Security=False;User
 ID=sa;Password=1234;Pooling=True;Min Pool Size=0;Max Pool
 Size=100;MultipleActiveResultSets=False;Encrypt=False;TrustServerCertificate=False;ApplicationIntent=ReadWrite";
 SqlServerDataContext _context = new SqlServerDataContext(new
 SqlConnection(Constr));
 string sql = "select username from users where isValid = 1 and username
 = '" + context.UserName + "' and password = '" + context.Password + "'";
 var users = _context.SqlExecutor.Select<DynamicModel>(sql);

 if (users.Count >= 1)
 {
 //If validation is successful, returns the user
 context.Result = new GrantValidationResult(subject:
 context.UserName, authenticationMethod: "custom");
 }
 else
 {
 //If validation failed, returns the error
 context.Result = new
 GrantValidationResult(TokenRequestErrors.InvalidGrant, "Incorrect username or
 password.");

Tutorial 6: Authenticating your apps

Page 130

 }

 return Task.CompletedTask;
 }
 }
}

6.3.3.2 Validate username and password against an LDAP server

When the username and password are passed from the application to the built-in OAuth
server, the OAuth server will by default authenticate them against the users predefined in
DefaultUserStore.cs. For security concern, you might want the OAuth server to authenticate
against the users stored in an LDAP server instead of DefaultUserStore.cs.

To do that,

Step 1: Install the Microsoft.Windows.Compatibility NuGet package first, as the following
sample scripts make references to this package.

Step 2: Modify the UserValidator.cs file.

Here is a sample script of the UserValidator.cs class that connects to an LDAP server to
authenticate the user credentials.

using IdentityServer4.Models;
using IdentityServer4.Validation;
using System;
using System.DirectoryServices;
using System.Threading.Tasks;
namespace ServerAPIs
{
 public class UserValidator: IResourceOwnerPasswordValidator
 {
 public Task ValidateAsync(ResourceOwnerPasswordValidationContext context)
 {
 string strError = string.Empty;
 bool lb_succes = false;
 string ls_server = "ldap.appeon.com";
 string ls_user = context.UserName;
 string ls_pass = context.Password;
 using (DirectoryEntry adsEntry = new DirectoryEntry("LDAP://" +
 ls_server, ls_user, ls_pass, AuthenticationTypes.Secure))
 {
 using (DirectorySearcher adsSearcher = new
 DirectorySearcher(adsEntry))
 {
 adsSearcher.Filter = "(SAMAccountName=" + ls_user + ")";
 adsSearcher.PropertiesToLoad.Add("cn");
 try
 {
 SearchResult adsSearchResult = adsSearcher.FindOne();
 if (adsSearchResult == null)
 {
 lb_succes = false;
 }
 }
 catch (Exception ex)
 {
 strError = ex.Message;
 }
 finally
 {
 adsEntry.Close();

Tutorial 6: Authenticating your apps

Page 131

 }
 }
 }
 if (strError.Length == 0)
 {
 lb_succes = true;
 }

 if (lb_succes)
 {
 context.Result = new GrantValidationResult(subject:
 context.UserName, authenticationMethod: "custom");
 }
 else
 {
 context.Result = new
 GrantValidationResult(TokenRequestErrors.InvalidGrant, "Incorrect
 username,password or server.");
 }
 return Task.CompletedTask;
 }

 }
}

6.3.3.3 Test the OAuth server

Test the OAuth server by sending a request which includes the grant type, scope, client ID,
client secret, and user credentials.

1. Right click in the code block of a method, and select Run Test(s) from the popup menu.

The Web API Tester is launched.

2. In the Web API Tester, click the plus (+) sign to create a new request:

URL: http://localhost:5000/connect/token

HTTP method: POST

Content-Type: application/x-www-form-urlencoded

Request (when grant type is client credentials):

grant_type=client_credentials&scope=scope.readaccess&client_id=YourClientIdThatCanOnlyRead&client_secret=yoursecret1

Or request (when grant type is resource owner password):

grant_type=password&scope=scope.readaccess&client_id=YourClientIdThatCanOnlyRead&client_secret=yoursecret1&username=user&password=pass

3. Click Send to send the request, and the OAuth server returns the token information if
validation is successful.

http://localhost:5000/connect/token

Tutorial 6: Authenticating your apps

Page 132

Figure 6.14:

6.4 Using Amazon Cognito

6.4.1 Preparations

Before making changes to the PowerBuilder client app, let's follow the steps below to make
sure 1) the PowerBuilder application can run successfully, 2) the app has been deployed as an
installable cloud app successfully, and 3) the PowerServer C# solution (including the built-in
Amazon Cognito server) has been successfully generated.

In this tutorial, we will take Sales Demo as an example.

Step 1: Select Windows Start | Appeon PowerBuilder 2021, and then right-click Example
Sales App and select More | Run as administrator.

Step 2: When the SalesDemo workspace is loaded in the PowerBuilder IDE, click the Run
button in the PowerBuilder toolbar.

Step 3: When the application main window is opened, click the Address icon in the
application ribbon bar and make sure data can be successfully retrieved.

Step 4: Create and configure a PowerServer project for the Sales Demo app (detailed
instructions are provided in the Quick Start guide).

IMPORTANT: In the Web APIs tab, select Use built-in AWS Cognito server from the
Auth Template list box.

Step 5: Deploy the application as an installable cloud app. The PowerServer C# solution is
generated, but the installable cloud app cannot run yet because further settings and changes
are required, as explained in the subsequent sections.

Tutorial 6: Authenticating your apps

Page 133

The PowerServer C# solution contains a built-in Amazon Cognito server and the
authentication class files as shown below.

• The built-in Amazon Cognito server authenticates the user credential with the Cognito
service and returns an identity token. The built-in server is included in the ServerAPIs
project; it will run automatically when the PowerServer Web APIs (the ServerAPIs
project) runs.

• The authentication class and configuration files will be used by the PowerServer Web APIs
to validate the token passed from the client; and if validation is successful, data will be
obtained from the database.

• Authentication.json contains the settings for enabling the authentication feature
("PowerServer:EnableAuthentication") and specifying the Amazon Cognito user pool
("AWS").

The "PowerServer:EnableAuthentication" setting is set to true by default. Setting it to
false will turn off the authentication feature. The "AWS" block is used to the specify the
Amazon Cognito user pool including region, user pool ID, user pool client ID, and user
pool client secret.

Figure 6.15:

Tutorial 6: Authenticating your apps

Page 134

6.4.2 Creating the Amazon Cognito user pool

This tutorial uses the Amazon Cognito user pool as an SAML identity provider for the
installable cloud app.

The following outlines the key steps for creating the Amazon Cognito user pool. For
complete and detailed instructions, please refer to Getting Started with User Pools.

When the user pool is created successfully, gather the information such as region, user pool
ID, user pool client ID, and user pool client secret which are required by the built-in server
later (as shown below).

"AWS": {
 "Region": "us-west-2",
 "UserPoolId": "us-west-2_5wyOzYn1d",
 "UserPoolClientId": "4linbauf6d58b552r6lc3gbpkc",
 "UserPoolClientSecret": "1prlm08gm3aptlokcbai88ekiegff9mqbc98nhebfart5g4a3cr2"
 }

Step 1: Set up the AWS Single Sign-On (SSO).

Before you can set up AWS Single Sign-On (SSO), you must:

• Have first set up the AWS Organizations service and have All features set to enabled. For
more information about this setting, see Enabling All Features in Your Organization in the
AWS Organizations User Guide.

• Sign in with the AWS Organizations management account credentials before you begin
setting up AWS SSO. These credentials are required to enable AWS SSO. For more
information, see Creating and Managing an AWS Organization in the AWS Organizations
User Guide. You cannot set up AWS SSO while signed in with credentials from an
Organization’s member account.

For more details, refer to AWS SSO prerequisites.

Step 2: Get the SAML 2.0 metadata.

1) Add a new application.

https://docs.aws.amazon.com/cognito/latest/developerguide/getting-started-with-cognito-user-pools.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/prereqs.html

Tutorial 6: Authenticating your apps

Page 135

2) Add a custom SAML 2.0 application.

3) After filling in the configuration, save it, and then download the SAML metadata file or
save the metadata file URL.

For more details, refer to AWS Single Sign-On.

Step 3: Add an identity provider.

1) Click Add provider.

2) Select SAML and then upload the SAML metadata file you just got.

https://console.aws.amazon.com/singlesignon/home

Tutorial 6: Authenticating your apps

Page 136

Step 4: Create the user pool.

a. Go to the Amazon Cognito console. You might be prompted for your AWS credentials.

b. Choose Manage User Pools.

c. In the top-right corner of the page, choose Create a user pool.

d. Provide a name for your user pool, and choose Review defaults to save the name.

e. In the top-left corner of the page, choose Attributes, choose Email address or phone
number and Allow email addresses, and then choose Next step to save.

f. In the left navigation menu, choose Review.

g. Review the user pool information and make any necessary changes. When the information
is correct, choose Create pool.

https://console.aws.amazon.com/cognito/home

Tutorial 6: Authenticating your apps

Page 137

Fill in the following configuration as required.

Tips: It is recommended to modify the configuration (for example, "Attributes") that cannot
be modified after pool creation.

Step 5: Create the user pool application client.

a. On the navigation bar on the left-side of the page, choose App clients under General
settings.

b. Choose Add an app client.

c. Give your app a name.

d. Check Generate client key.

Tutorial 6: Authenticating your apps

Page 138

e. Check Enable authentication based on username and password
(ALLOW_USER_PASSWORD_AUTH).

f. Choose Create an application client.

Step 6: Configure the SAML identity provider.

Open the identity provider configuration page of the user pool, choose SAML, select the
SAML metadata file downloaded in step 2 or the terminal node URL of the metadata file.

Tutorial 6: Authenticating your apps

Page 139

Step 7: Configure the application integration settings.

a. Configure domain name. You can configure the Amazon Cognito domain name or your
own domain name.

b. Configure the application client settings, select all options under the Enable identity
provider, enter the callback URL and the logout URL, select Authorization code grant
and implicit grant under the Allowed OAuth flow, select all options under the Allowed
OAuth scope, save the settings and click to publish Hosted UI.

Tutorial 6: Authenticating your apps

Page 140

Step 8: Import or create users.

Step 9: Create a group (optional).

Tutorial 6: Authenticating your apps

Page 141

6.4.3 Modifying the PowerBuilder client app

6.4.3.1 Purpose

In this section, we will modify the PowerBuilder application source code and the
PowerServer project settings to achieve the following results:

• Gets the user credential from the application login window, then authenticates it with the
Amazon Cognito User Pools and gets an identity token.

• Uses the identity token to access data from the PowerServer Web API.

• Refreshes the identity token when necessary.

6.4.3.2 Add scripts

Step 1: Declare the following global variables.

//Token expiresin
Long gl_Expiresin
//Refresh token clockskew
Long gl_ClockSkew = 3

Step 2: Define a global function and name it f_Authorization().

Select from menu File > New; in the New dialog, select the PB Object tab and then select
Function and click OK to add a global function.

This global function uses the HTTP Post method to send the user credentials to the
authorization server and then gets the identity token from the HTTP Authorization header.

Add scripts to the f_Authorization() function to implement the following scenario: When the
application starts, the application uses the username and password from the login window to
get the token, and when the token expires, the login window displays for the user to input the
username and password again.

The following scripts hard code the username and password instead of getting them from the
login window. You can change the scripts to use the login window after you implement the
login window and return the username and password to the f_Authorization() function.

//Integer f_Authorization() for password
//UserName & Password are passed from the login window
RestClient lrc_Client

Tutorial 6: Authenticating your apps

Page 142

String ls_url, ls_UserName, ls_UserPass, ls_PostData, ls_Response, ls_expires_in
String ls_TokenType, ls_AccessToken
String ls_type, ls_description, ls_uri, ls_state
Integer li_Return, li_rtn
JsonParser ljson_Parser

li_rtn = -1
ls_url = profilestring("CloudSetting.ini","setup","TokenURL","")

//login window can be implemented to return username & password according to actual
 needs.
//Open(w_login)
//Return UserName & Password

ls_UserName = "admin@test.com"
ls_UserPass = "appeon123"

If IsNull (ls_UserName) Or Len (ls_UserName) = 0 Then
 MessageBox("Tips", "UserName is empty!")
 Return li_rtn
End If
If IsNull (ls_UserPass) Or Len (ls_UserPass) = 0 Then
 MessageBox("Tips", "Password is empty!")
 Return li_rtn
End If

ls_PostData = '{"username":"' + ls_UserName + '", "password":"' + ls_UserPass +
 '"}';
lrc_Client = Create RestClient
lrc_Client.SetRequestHeader("Content-Type","application/json")
li_Return = lrc_Client.GetJWTToken(ls_Url, ls_PostData, ls_Response)
If li_Return = 1 and Pos (ls_Response, "access_token") > 0 Then
 ljson_Parser = Create JsonParser
 ljson_Parser.LoadString(ls_Response)
 ls_TokenType = ljson_Parser.GetItemString("/token_type")
 ls_AccessToken = ljson_Parser.GetItemString("/access_token")
 //Application Set Authorization Header
 Getapplication().SetHttpRequesTheader("Authorization", ls_TokenType + " "
 +ls_AccessToken, true)
 //Set Global Variables
 gl_Expiresin = Long (ljson_Parser.GetItemNumber("/expires_in"))

 li_rtn = 1
Else
 MessageBox("AccessToken Falied", "Return :" + String (li_Return))
End If

If IsValid (ljson_Parser) Then DesTroy (ljson_Parser)
If IsValid (lrc_Client) Then DesTroy (lrc_Client)

Return li_rtn

Step 3: Insert a timing object (timing_1) to the application and add the following scripts to
the Timer event of timing_1.

1) Open the application object and then select from menu Insert > Object > Timing to add a
timing object to the application.

2) Add the following scripts to the Timer event of timing_1.

//Authenticates the user
f_Authorization()

When displayed in the source editor, the Timer event looks like this:

Tutorial 6: Authenticating your apps

Page 143

event timer;//Authenticates the user
f_Authorization()
end event

Figure 6.16:

Step 4: Add the following scripts to the application Open event.

Place the scripts before the database connection is established. The scripts get the token from
the built-in Cognito server and then start the user session (using the BeginSession function)
to include the token information in the session.

//Authenticates the user and returns the token
If f_Authorization() <> 1 Then
 Return
End If

//Starts the session
long ll_return
Try
 ll_return = Beginsession()
 If ll_return <> 0 Then
 Messagebox("Beginsession Failed:" + String(ll_return),
 GetHttpResponseStatusText())
 End if
Catch (Throwable ex)
 MessageBox("Throwable", ex.GetMessage())
 Return
End Try

//Refreshes the token for timing
If gl_Expiresin > 0 And (gl_Expiresin - gl_ClockSkew) > 0 Then
 //Timer = Expiresin - ClockSkew

Tutorial 6: Authenticating your apps

Page 144

 //7200 - 3
 timing_1.Start(gl_Expiresin - gl_ClockSkew)
End If

//Connects to db

Figure 6.17:

Step 5: Add the following scripts to the SystemError event.

The scripts will trigger the SystemError event when the session or license encounters an
error; and if the token is invalid or expires, the scripts will call the f_Authorization function
to get the token again.

Choose Case error.Number
 Case 220 to 229 //Session Error
 MessageBox ("Session Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 Case 230 to 239 //License Error
 MessageBox ("License Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 Case 240 to 249 //Token Error
 MessageBox ("Token Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 //Authorization
 f_Authorization()
 Case Else
 MessageBox ("SystemError", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)

Tutorial 6: Authenticating your apps

Page 145

End Choose

Figure 6.18:

6.4.3.3 Add an INI file

Create an INI file in the same location as the PBT file and name it CloudSetting.ini.

The INI file specifies the URL for requesting the token from the Amazon Cognito server.
Notice that TokenURL points to the "/connect/token" API of the built-in Cognito server, and
the Cognito server root URL (for example, https://localhost:5000/) is the same as the URL of
PowerServer Web API. If you change the PowerServer Web API URL, change the root URL
here accordingly.

[Setup]
TokenURL=https://localhost:5000/connect/token

6.4.3.4 Start session manually by code

By default, the user session is automatically created when the application starts; and the
session includes no token. For the session to include the token, the session must be started
manually by code instead of automatically.

To start the session manually by code,

Step 1: Enable "Begin session by code" in the PowerBuilder IDE. (Steps: Open the
application object painter, click Additional Properties in the application's Properties dialog;
in the Application dialog, select the PowerServer tab and then select the Begin session by
code option.)

Tutorial 6: Authenticating your apps

Page 146

After this option is enabled, when the BeginSession function in the application Open event
is called, it will create a session that includes the token information (See scripts in step 4 in
"Add scripts").

Figure 6.19:

6.4.3.5 Modify and re-deploy the PowerServer project

Step 1: Add the INI file CloudSetting.ini to the Files preloaded in uncompressed format
section under the External Files tab.

Step 2: Select RESTClient Support and Compression Support under the Runtime tab.

Tutorial 6: Authenticating your apps

Page 147

Figure 6.20:

Step 3: Double check the URL of the PowerServer Web APIs in the Web APIs tab. Make
sure the port number is not occupied by any other program.

Tip: You can execute the command "netstat -ano | findstr portnumber" to check if the port
number is occupied by any other program.

The built-in Cognito server will run at the same URL as the PowerServer Web API. If the
PowerServer Web API URL is changed, change the root URL accordingly in the INI file.

Step 4: Double check that Use built-in AWS Cognito server is selected from the Auth
Template list box in the Web APIs tab.

Step 5: Save the changes and deploy the PowerServer project (using the "Build & Deploy
PowerServer Project" option) so that the above settings can take effect in the installable cloud
app.

6.4.4 Modifying the authentication template

The AWS Cognito user pool must be provided in the built-in Cognito server so that the
PowerServer Web APIs can use it to validate the identity token passed from the client. And if
validation is successful, it can get data from the database.

Note

The authentication template will be restored if the "Auth Template" option is
changed and the PowerServer C# solution is re-built from the PowerBuilder IDE.
Therefore, do not change the "Auth Template" option if you have made changes to
the template in the solution.

Tutorial 6: Authenticating your apps

Page 148

Open the Authentication.json file and specify the AWS Cognito user pool (including region,
user pool ID, user pool client ID, and user pool client secret) that will be used to validate the
identity token passed from the client.

"AWS": {
 "Region": "us-west-2",
 "UserPoolId": "us-west-2_5wyOzYn1d",
 "UserPoolClientId": "4linbauf6d58b552r6lc3gbpkc",
 "UserPoolClientSecret": "1prlm08gm3aptlokcbai88ekiegff9mqbc98nhebfart5g4a3cr2"
 }

Figure 6.21:

6.4.5 (Optional) Testing the Cognito server

Test the built-in Amazon Cognito server by sending a request.

1. Right click in the code block of a method, and select Run Test(s) from the popup menu.

The Web API Tester is launched.

2. In the Web API Tester, click the plus (+) sign to create a new request:

URL: http://localhost:5000/Cognito/getToken

HTTP method: POST

Content-Type: application/json

Request:

{"username":"admin@test.com", "password":"appeon123",
 "ClientSecret":"1prlm08gm3aptlokcbai88ekiegff9mqbc98nhebfart5g4a3cr2"}

3. Click Send to send the request, and the API returns the token information if validation is
successful.

http://localhost:5000/Cognito/getToken

Tutorial 6: Authenticating your apps

Page 149

Figure 6.22:

6.5 Using other authentication servers
PowerServer 2021 provides templates that can be easily extended to support the other identity
providers that work with the OAuth flows or JWT, such as Azure AD or Azure AD B2C.

6.5.1 Azure Active Directory (AD)

6.5.1.1 Preparations

Before making changes to the PowerBuilder client app, let's follow the steps below to make
sure 1) the PowerBuilder application can run successfully, 2) the app has been deployed as an
installable cloud app successfully, and 3) the PowerServer C# solution has been successfully
generated.

In this tutorial, we will take Sales Demo as an example.

Step 1: Select Windows Start | Appeon PowerBuilder 2021, and then right-click Example
Sales App and select More | Run as administrator.

Step 2: When the SalesDemo workspace is loaded in the PowerBuilder IDE, click the Run
button in the PowerBuilder toolbar.

Step 3: When the application main window is opened, click the Address icon in the
application ribbon bar and make sure data can be successfully retrieved.

Step 4: Create and configure a PowerServer project for the Sales Demo app (detailed
instructions are provided in the Quick Start guide).

IMPORTANT: In the Web APIs tab, select Use external auth service from the Auth
Template list box.

Step 5: Deploy the application as an installable cloud app. The PowerServer C# solution is
generated, but the installable cloud app cannot run yet because further settings and changes
are required, as explained in the subsequent sections.

Tutorial 6: Authenticating your apps

Page 150

The PowerServer C# solution provides templates for configuring the address of the
authentication server like Azure AD or Azure AD B2C.

• Authentication.json contains the settings for enabling the authentication feature
("PowerServer:EnableAuthentication") and specifying the address of the authentication
server ("Authentication:Authority"). The PowerServer Web APIs will validate the token
against the authentication server; and if validation is successful, data will be obtained from
the database.

The "PowerServer:EnableAuthentication" setting is set to true by default. Setting it to
false will turn off the authentication feature.

The "Authentication:Authority" setting is set for JWT by default; you can set the address
of Azure AD and Azure AD B2C.

Figure 6.23:

Tutorial 6: Authenticating your apps

Page 151

6.5.1.2 Creating an Azure AD tenant

The following outlines the key steps for setting up an Azure AD tenant and registering an
application with the Microsoft identity platform. For complete and detailed instructions,
please refer to Quickstart: Set up a tenant and Quickstart: Register an application.

During the process of creating the tenant, gather the following information:

• Tenant ID: for example, 0ffb9ae0-c080-4913-aa94-ed08b5de4d40

• Primary domain: for example, powerservertest.onmicrosoft.com

• Application (client) ID: for example, 49cddad2-721d-4fbc-bd64-1cfa2b183e00

• Client secret: for example, 2ig8hfliVu.u1kl_79RbyZuh~.X_b~e~3M

• Application ID URI: for example, api://49cddad2-721d-4fbc-bd64-1cfa2b183e00

• Scope: for example, 49cddad2-721d-4fbc-bd64-1cfa2b183e00/.default

The above information will be used later.

6.5.1.3 Modifying the PowerBuilder client app

6.5.1.3.1 Purpose

In this section, we will modify the PowerBuilder application source code and the
PowerServer project settings to achieve the following results:

• Gets the user credential from the application login window, then authenticates it with the
Azure AD tenant and gets a token.

• Uses the token to access data from the PowerServer Web API.

• Refreshes the token when necessary.

6.5.1.3.2 Add scripts

Step 1: Declare the following global variables.

//Token expiresin
Long gl_Expiresin
//Refresh token clockskew
Long gl_ClockSkew = 3

Step 2: Define a global function and name it f_Authorization().

Select from menu File > New; in the New dialog, select the PB Object tab and then select
Function and click OK to add a global function.

This global function uses the HTTP Post method to send the user credentials to the
authorization server and then gets the identity token from the HTTP Authorization header.

Add scripts to the f_Authorization() function to implement the following scenario:

• Scenario 1: Supports Client Credentials (GrantType="client_credentials") and gets the
client ID and secret from the application.

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-create-new-tenant
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

Tutorial 6: Authenticating your apps

Page 152

• Scenario 2: Supports Resource Owner Password (GrantType="password") and gets the
username and password from a login window.

Scripts for scenario 1:

When the application starts, the application uses the client ID and secret stored in the
application to get the token from Azure AD, and when the token expires, it automatically
refreshes the token.

//Integer f_Authorization() for client_credentials
//UserName & Password from login window
OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
String ls_url, ls_UserName, ls_UserPass
String ls_TokenType, ls_AccessToken
String ls_type, ls_description, ls_uri, ls_state
Integer li_Return, li_rtn

li_rtn = -1
ls_url = profilestring("CloudSetting.ini","setup","TokenURL","")
//TokenRequest
ltr_Request.tokenlocation = ls_url
ltr_Request.Method = "POST"
ltr_Request.clientid = "49cddad2-721d-4fbc-bd64-1cfa2b183e00"
ltr_Request.clientsecret = "2ig8hfliVu.u1kl_79RbyZuh~~.X_b~~e~~3M"
ltr_Request.granttype = "client_credentials"
ltr_Request.Scope = "49cddad2-721d-4fbc-bd64-1cfa2b183e00/.default"

loac_Client = Create OAuthClient
li_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If li_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ls_TokenType = ltr_Response.gettokentype()
 ls_AccessToken = ltr_Response.GetAccessToken()
 //Application Set Authorization Header
 Getapplication().SetHttpRequesTheader("Authorization", ls_TokenType + " " +
 ls_AccessToken, true)
 //Set Global Variables
 gl_Expiresin = ltr_Response.getexpiresin()

li_rtn = 1
Else
 li_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri, ls_state)
 MessageBox("AccessToken Falied", "Return :" + String (li_Return) + "~r~n" +
 ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)

Return li_rtn

Scripts for scenario 2:

When the application starts, the client ID and secret stored in the application as well as the
username and password from the login window will be sent to Azure AD to get the token,
and when the token expires, the login window displays for the user to input the username and
password again.

The following scripts hard code the username and password instead of getting them from the
login window. You can change the scripts to use the login window after you implement the
login window and return the username and password to the f_Authorization() function.

Tutorial 6: Authenticating your apps

Page 153

//Integer f_Authorization() for password
//UserName & Password from login window
OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
String ls_url, ls_UserName, ls_UserPass
String ls_TokenType, ls_AccessToken
String ls_type, ls_description, ls_uri, ls_state
Integer li_Return, li_rtn

li_rtn = -1
ls_url = profilestring("CloudSetting.ini","setup","TokenURL","")

//TokenRequest
ltr_Request.tokenlocation = ls_url
ltr_Request.Method = "POST"
ltr_Request.clientid = "49cddad2-721d-4fbc-bd64-1cfa2b183e00"
ltr_Request.clientsecret = "2ig8hfliVu.u1kl_79RbyZuh~~.X_b~~e~~3M"
ltr_Request.scope = "49cddad2-721d-4fbc-bd64-1cfa2b183e00/.default"
ltr_Request.granttype = "password"

//login window can be implemented to return username & password according to actual
 needs
//Open(w_login)
//Return UserName & Password

ls_UserName = "appeon2@powerservertest.onmicrosoft.com"
ls_UserPass = "Test2008aaBB"

If IsNull (ls_UserName) Or Len (ls_UserName) = 0 Then
 MessageBox("Tips", "UserName is empty!")
 Return li_rtn
End If
If IsNull (ls_UserPass) Or Len (ls_UserPass) = 0 Then
 MessageBox("Tips", "Password is empty!")
 Return li_rtn
End If

ltr_Request.UserName = ls_UserName
ltr_Request.Password = ls_UserPass

loac_Client = Create OAuthClient
li_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If li_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ls_TokenType = ltr_Response.gettokentype()
 ls_AccessToken = ltr_Response.GetAccessToken()
 //Application Set Authorization Header
 Getapplication().SetHttpRequesTheader("Authorization", ls_TokenType + " "
 +ls_AccessToken, true)
 //Set Global Variables
 gl_Expiresin = ltr_Response.getexpiresin()

 li_rtn = 1
Else
 li_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri, ls_state)
 MessageBox("AccessToken Falied", "Return :" + String (li_Return) + "~r~n" +
 ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)

Return li_rtn

Tutorial 6: Authenticating your apps

Page 154

Step 3: Insert a timing object (timing_1) to the application and add the following scripts to
the Timer event of timing_1.

1) Open the application object and then select from menu Insert > Object > Timing to add a
timing object to the application.

2) Add the following scripts to the Timer event of timing_1.

//Authenticates the user
f_Authorization()

When displayed in the source editor, the Timer event looks like this:

event timer;//Authenticates the user
f_Authorization()
end event

Figure 6.24:

Step 4: Add the following scripts to the application Open event.

Place the scripts before the database connection is established. The scripts get the token from
Azure AD and then start the user session (using the BeginSession function) to include the
token information in the session.

//Authenticates the user and returns the token
If f_Authorization() <> 1 Then
 Return
End If

//Starts the session
long ll_return
Try
 ll_return = Beginsession()

Tutorial 6: Authenticating your apps

Page 155

 If ll_return <> 0 Then
 Messagebox("Beginsession Failed:" + String(ll_return),
 GetHttpResponseStatusText())
 End if
Catch (Throwable ex)
 MessageBox("Throwable", ex.GetMessage())
 Return
End Try

//Refreshes the token for timing
If gl_Expiresin > 0 And (gl_Expiresin - gl_ClockSkew) > 0 Then
 //Timer = Expiresin - ClockSkew
 //7200 - 3
 timing_1.Start(gl_Expiresin - gl_ClockSkew)
End If

//Connects to db

Figure 6.25:

Step 5: Add the following scripts to the SystemError event.

The scripts will trigger the SystemError event when the session or license encounters an
error; and if the token is invalid or expires, the scripts will call the f_Authorization function
to get the token again.

Choose Case error.Number
 Case 220 to 229 //Session Error
 MessageBox ("Session Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)

Tutorial 6: Authenticating your apps

Page 156

 Case 230 to 239 //License Error
 MessageBox ("License Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 Case 240 to 249 //Token Error
 MessageBox ("Token Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 //Authorization
 f_Authorization()
 Case Else
 MessageBox ("SystemError", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
End Choose

Figure 6.26:

6.5.1.3.3 Add an INI file

Create an INI file in the same location as the PBT file and name it CloudSetting.ini.

The INI file specifies the URL for requesting the token from Azure AD.

[Setup]
TokenURL=https://login.microsoftonline.com/0ffb9ae0-c080-4913-aa94-ed08b5de4d40/
oauth2/v2.0/token

6.5.1.3.4 Start session manually by code

By default, the user session is automatically created when the application starts; and the
session includes no token. For the session to include the token, the session must be started
manually by code instead of automatically.

To start the session manually by code,

Tutorial 6: Authenticating your apps

Page 157

Step 1: Enable "Begin session by code" in the PowerBuilder IDE. (Steps: Open the
application object painter, click Additional Properties in the application's Properties dialog;
in the Application dialog, select the PowerServer tab and then select the Begin session by
code option, and click Apply.)

After this option is enabled, when the BeginSession function in the application Open event
is called, it will create a session that includes the token information (See scripts in step 4 in
"Add scripts").

Figure 6.27:

6.5.1.3.5 Modify and re-deploy the PowerServer project

Step 1: Add the INI file CloudSetting.ini to the Files preloaded in uncompressed format
section under the External Files tab.

Step 2: Select OAuth 2.0 Support, RESTClient Support and Compression Support under
the Runtime tab.

Tutorial 6: Authenticating your apps

Page 158

Figure 6.28:

Step 3: Double check the URL of the PowerServer Web APIs in the Web APIs tab. Make
sure the port number is not occupied by any other program.

Tip: You can execute the command "netstat -ano | findstr portnumber" to check if the port
number is occupied by any other program.

Step 4: Double check that Use external auth service is selected from the Auth Template list
box in the Web APIs tab.

Step 5: Save the changes and deploy the PowerServer project (using the "Build & Deploy
PowerServer Project" option) so that the above settings can take effect in the installable cloud
app.

6.5.1.4 Modifying the authentication template

The Azure AD server address must be provided so that the PowerServer Web APIs can use
it to validate the token passed from the client. And if validation is successful, it can get data
from the database.

Note

The authentication template will be restored if the "Auth Template" option is
changed and the PowerServer C# solution is re-built from the PowerBuilder IDE.
Therefore, do not change the "Auth Template" option if you have made changes to
the template in the solution.

Open the Authentication.json file, comment the server address for standard JWT,
uncomment the server address for Azure AD, and specify the Azure AD tenant ID that will
be used to validate the token passed from the client.

Tutorial 6: Authenticating your apps

Page 159

// Azure AD authentication server address
"Authentication:Authority": "https://login.microsoftonline.com/0ffb9ae0-c080-4913-
aa94-ed08b5de4d40",

Figure 6.29:

6.5.2 Azure Active Directory (AD) B2C

6.5.2.1 Preparations

Before making changes to the PowerBuilder client app, let's follow the steps below to make
sure 1) the PowerBuilder application can run successfully, 2) the app has been deployed as an
installable cloud app successfully, and 3) the PowerServer C# solution has been successfully
generated.

In this tutorial, we will take Sales Demo as an example.

Step 1: Select Windows Start | Appeon PowerBuilder 2021, and then right-click Example
Sales App and select More | Run as administrator.

Step 2: When the SalesDemo workspace is loaded in the PowerBuilder IDE, click the Run
button in the PowerBuilder toolbar.

Step 3: When the application main window is opened, click the Address icon in the
application ribbon bar and make sure data can be successfully retrieved.

Step 4: Create and configure a PowerServer project for the Sales Demo app (detailed
instructions are provided in the Quick Start guide).

IMPORTANT: In the Web APIs tab, select Use external auth service from the Auth
Template list box.

Step 5: Deploy the application as an installable cloud app and make sure the installable cloud
app can run successfully and the PowerServer C# solution is generated.

The PowerServer C# solution provides templates for configuring the address of the
authentication server like Azure AD or Azure AD B2C.

• Authentication.json contains the settings for enabling the authentication feature
("PowerServer:EnableAuthentication") and specifying the address of the authentication
server ("Authentication:Authority"). The PowerServer Web APIs will validate the token

Tutorial 6: Authenticating your apps

Page 160

against the authentication server; and if validation is successful, data will be obtained from
the database.

The "PowerServer:EnableAuthentication" setting is set to true by default. Setting it to
false will turn off the authentication feature.

The "Authentication:Authority" setting is set for JWT by default; you can set the address
of Azure AD and Azure AD B2C.

Figure 6.30:

6.5.2.2 Creating an Azure AD B2C tenant

The following outlines the key steps for setting up an Azure AD B2C tenant. For complete
and detailed instructions, please refer to Tutorial: Create an Azure Active Directory B2C
tenant.

During the process of creating the tenant, gather the following information:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-tenant
https://docs.microsoft.com/en-us/azure/active-directory-b2c/tutorial-create-tenant

Tutorial 6: Authenticating your apps

Page 161

• Tenant ID: for example, ed7837a1-96e2-4243-8ac8-172bc467f42c

• Primary domain: for example, powerserverb2c.onmicrosoft.com

• Application (client) ID: for example, ddaf52bf-1039-4f7a-ab85-51a219c1d4d7

• Client secret: for example, VgJo8X8qu4nCW.gf.FRxe.lhBZfE9F6.MA

• Application ID URI: for example, https://powerserverb2c.onmicrosoft.com/
ddaf52bf-1039-4f7a-ab85-51a219c1d4d7

• Scope: for example, https://powerserverb2c.onmicrosoft.com/ddaf52bf-1039-4f7a-
ab85-51a219c1d4d7/.default

The above information will be used later.

6.5.2.3 Modifying the PowerBuilder client app

6.5.2.3.1 Purpose

In this section, we will modify the PowerBuilder application source code and the
PowerServer project settings to achieve the following results:

• Gets the user credential from the application login window, then authenticates it with the
Azure AD B2C tenant and gets a token.

• Uses the token to access data from the PowerServer Web API.

• Refreshes the token when necessary.

6.5.2.3.2 Add scripts

Step 1: Declare the following global variables.

//Token expiresin
Long gl_Expiresin
//Refresh token clockskew
Long gl_ClockSkew = 3

Step 2: Define a global function and name it f_Authorization().

Select from menu File > New; in the New dialog, select the PB Object tab and then select
Function and click OK to add a global function.

This global function uses the HTTP Post method to send the user credentials to the
authorization server and then gets the identity token from the HTTP Authorization header.

Add scripts to the f_Authorization() function to implement the following scenario:

• Scenario 1: Supports Client Credentials (GrantType="client_credentials") and gets the
client ID and secret from the application.

• Scenario 2: Supports Resource Owner Password (GrantType="password") and gets the
username and password from a login window.

Tutorial 6: Authenticating your apps

Page 162

Scripts for scenario 1:

When the application starts, the application uses the client ID and secret stored in
the application to get the token from Azure AD B2C, and when the token expires, it
automatically refreshes the token.

//Integer f_Authorization() for client_credentials
//UserName & Password from login window
OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
String ls_url, ls_UserName, ls_UserPass
String ls_TokenType, ls_AccessToken
String ls_type, ls_description, ls_uri, ls_state
Integer li_Return, li_rtn

li_rtn = -1
ls_url = profilestring("CloudSetting.ini","setup","TokenURL","")
//TokenRequest
ltr_Request.tokenlocation = ls_url
ltr_Request.Method = "POST"
ltr_Request.clientid = "ddaf52bf-1039-4f7a-ab85-51a219c1d4d7"
ltr_Request.clientsecret = "VgJo8X8qu4nCW.gf.FRxe.lhBZfE9F6.MA"
ltr_Request.granttype = "client_credentials"
ltr_Request.Scope = "https://powerserverb2c.onmicrosoft.com/ddaf52bf-1039-4f7a-
ab85-51a219c1d4d7/.default"

loac_Client = Create OAuthClient
li_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If li_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ls_TokenType = ltr_Response.gettokentype()
 ls_AccessToken = ltr_Response.GetAccessToken()
 //Application Set Authorization Header
 Getapplication().SetHttpRequesTheader("Authorization", ls_TokenType + " " +
 ls_AccessToken, true)
 //Set Global Variables
 gl_Expiresin = ltr_Response.getexpiresin()

 li_rtn = 1
Else
 li_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri, ls_state)
 MessageBox("AccessToken Falied", "Return :" + String (li_Return) + "~r~n" +
 ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)

Return li_rtn

Scripts for scenario 2:

When the application starts, the client ID and secret stored in the application as well as
the username and password from the login window will be sent to Azure AD B2C to get
the token, and when the token expires, the login window displays for the user to input the
username and password again.

The following scripts hard code the username and password instead of getting them from the
login window. You can change the scripts to use the login window after you implement the
login window and return the username and password to the f_Authorization() function.

//Integer f_Authorization() for password
//UserName & Password from login window

Tutorial 6: Authenticating your apps

Page 163

OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
String ls_url, ls_UserName, ls_UserPass
String ls_TokenType, ls_AccessToken
String ls_type, ls_description, ls_uri, ls_state
Integer li_Return, li_rtn

li_rtn = -1
ls_url = profilestring("CloudSetting.ini","setup","TokenURL","")

//TokenRequest
ltr_Request.tokenlocation = ls_url
ltr_Request.Method = "POST"
ltr_Request.clientid = "ddaf52bf-1039-4f7a-ab85-51a219c1d4d7"
ltr_Request.clientsecret = "VgJo8X8qu4nCW.gf.FRxe.lhBZfE9F6.MA"
ltr_Request.scope = "https://powerserverb2c.onmicrosoft.com/ddaf52bf-1039-4f7a-
ab85-51a219c1d4d7/.default"
ltr_Request.granttype = "password"

//login window can be implemented to return username & password according to actual
 needs
//Open(w_login)
//Return UserName & Password

ls_UserName = "appeontest"
ls_UserPass = "Test2008aa"

If IsNull (ls_UserName) Or Len (ls_UserName) = 0 Then
 MessageBox("Tips", "UserName is empty!")
 Return li_rtn
End If
If IsNull (ls_UserPass) Or Len (ls_UserPass) = 0 Then
 MessageBox("Tips", "Password is empty!")
 Return li_rtn
End If

ltr_Request.UserName = ls_UserName
ltr_Request.Password = ls_UserPass

loac_Client = Create OAuthClient
li_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If li_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ls_TokenType = ltr_Response.gettokentype()
 ls_AccessToken = ltr_Response.GetAccessToken()
 //Application Set Authorization Header
 Getapplication().SetHttpRequesTheader("Authorization", ls_TokenType + " "
 +ls_AccessToken, true)
 //Set Global Variables
 gl_Expiresin = ltr_Response.getexpiresin()

 li_rtn = 1
Else
 li_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri, ls_state)
 MessageBox("AccessToken Falied", "Return :" + String (li_Return) + "~r~n" +
 ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)

Return li_rtn

Step 3: Insert a timing object (timing_1) to the application and add the following scripts to
the Timer event of timing_1.

Tutorial 6: Authenticating your apps

Page 164

1) Open the application object and then select from menu Insert > Object > Timing to add a
timing object to the application.

2) Add the following scripts to the Timer event of timing_1.

//Authenticates the user
f_Authorization()

When displayed in the source editor, the Timer event looks like this:

event timer;//Authenticates the user
f_Authorization()
end event

Figure 6.31:

Step 4: Add the following scripts to the application Open event.

Place the scripts before the database connection is established. The scripts get the token from
Azure AD B2C and then start the user session (using the BeginSession function) to include
the token information in the session.

//Authenticates the user and returns the token
If f_Authorization() <> 1 Then
 Return
End If

//Starts the session
long ll_return
Try
 ll_return = Beginsession()

Tutorial 6: Authenticating your apps

Page 165

 If ll_return <> 0 Then
 Messagebox("Beginsession Failed:" + String(ll_return),
 GetHttpResponseStatusText())
 End if
Catch (Throwable ex)
 MessageBox("Throwable", ex.GetMessage())
 Return
End Try

//Refreshes the token for timing
If gl_Expiresin > 0 And (gl_Expiresin - gl_ClockSkew) > 0 Then
 //Timer = Expiresin - ClockSkew
 //7200 - 3
 timing_1.Start(gl_Expiresin - gl_ClockSkew)
End If

//Connects to db

Figure 6.32:

Step 5: Add the following scripts to the SystemError event.

The scripts will trigger the SystemError event when the session or license encounters an
error; and if the token is invalid or expires, the scripts will call the f_Authorization function
to get the token again.

Choose Case error.Number
 Case 220 to 229 //Session Error

Tutorial 6: Authenticating your apps

Page 166

 MessageBox ("Session Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 Case 230 to 239 //License Error
 MessageBox ("License Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 Case 240 to 249 //Token Error
 MessageBox ("Token Error", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
 //Authorization
 f_Authorization()
 Case Else
 MessageBox ("SystemError", "Number:" + String(error.Number) + "~r~nText:" +
 error.Text)
End Choose

Figure 6.33:

6.5.2.3.3 Add an INI file

Create an INI file in the same location as the PBT file and name it CloudSetting.ini.

The INI file specifies the URL for requesting the token from Azure AD B2C.

[Setup]
TokenURL=https://login.microsoftonline.com/powerserverb2c.onmicrosoft.com/oauth2/
v2.0/token

6.5.2.3.4 Start session manually by code

By default, the user session is automatically created when the application starts; and the
session includes no token. For the session to include the token, the session must be started
manually by code instead of automatically.

Tutorial 6: Authenticating your apps

Page 167

To start the session manually by code,

Step 1: Enable "Begin session by code" in the PowerBuilder IDE. (Steps: Open the
application object painter, click Additional Properties in the application's Properties dialog;
in the Application dialog, select the PowerServer tab and then select the Begin session by
code option, and click Apply.)

After this option is enabled, when the BeginSession function in the application Open event
is called, it will create a session that includes the token information (See scripts in step 4 in
"Add scripts").

Figure 6.34:

6.5.2.3.5 Modify and re-deploy the PowerServer project

Step 1: Add the INI file CloudSetting.ini to the Files preloaded in uncompressed format
section under the External Files tab.

Step 2: Select OAuth 2.0 Support, RESTClient Support and Compression Support under
the Runtime tab.

Tutorial 6: Authenticating your apps

Page 168

Figure 6.35:

Step 3: Double check the URL of the PowerServer Web APIs in the Web APIs tab. Make
sure the port number is not occupied by any other program.

Tip: You can execute the command "netstat -ano | findstr portnumber" to check if the port
number is occupied by any other program.

Step 4: Double check that Use external auth service is selected from the Auth Template list
box in the Web APIs tab.

Step 5: Save the changes and deploy the PowerServer project (using the "Build & Deploy
PowerServer Project" option) so that the above settings can take effect in the installable cloud
app.

6.5.2.4 Modifying the authentication template

The Azure AD B2C server address must be provided so that the PowerServer Web APIs can
use it to validate the token passed from the client. And if validation is successful, it can get
data from the database.

Note

The authentication template will be restored if the "Auth Template" option is
changed and the PowerServer C# solution is re-built from the PowerBuilder IDE.
Therefore, do not change the "Auth Template" option if you have made changes to
the template in the solution.

Open the Authentication.json file, comment the server address for standard JWT,
uncomment the server address for Azure AD B2C, and specify the Azure AD B2C tenant ID
that will be used to validate the token passed from the client.

// Azure AD B2C authentication server address

Tutorial 6: Authenticating your apps

Page 169

"Authentication:Authority": "https://login.microsoftonline.com/
ed7837a1-96e2-4243-8ac8-172bc467f42c/v2.0",

Figure 6.36:

Tutorial 7: Building your PowerServer project with
commands

Page 170

7 Tutorial 7: Building your PowerServer project
with commands
Besides building and deploying your PowerServer project in the PowerBuilder IDE, you can
also build and deploy your PowerServer project with commands (PBAutoBuild210.exe).

7.1 Task 1: Preparing the environment

Step 1: Install the following software on the same machine:

• Windows 10 (64-bit)

• PowerBuilder IDE 2021

• PowerBuilder Runtime 2021

• PowerBuilder Compiler 2021

• PowerServer Toolkit 2021

Step 2: Prepare the database driver if the MySQL, Oracle, or Informix database connection
is required.

If the MySQL, Oracle, or Informix database connection is used and if the corresponding
database driver has not been downloaded yet, you will need to manually download the
database driver from the NuGet website.

• For MySQL, download MySql.Data 8.0.25 and the license file, and unzip the files to
%USERPROFILE%\.sd\19.0\dbDrives\MySql.Data\8.0.25.

• For Oracle, download Oracle.ManagedDataAccess.Core 2.19.110 and the license file, and
unzip the files to %USERPROFILE%\.sd\19.0\dbDrives\Oracle.ManagedDataAccess.Core
\2.19.110.

• For Informix, download IBM.Data.DB2.Core 2.2.0.100 and the license file, and unzip the
files to %USERPROFILE%\.sd\19.0\dbDrives\IBM.Data.DB2.Core\2.2.0.100.

They will be automatically loaded by PBAutoBuild210.exe when creating the database
connection.

7.2 Task 2: Exporting the build file

This tutorial will assume that you have already followed the Quick Start guide to

1. create a PowerServer project for the Example Sales Demo;

2. build and deploy the PowerServer project (using the Build & Deploy PowerServer
Project option in the PowerBuilder IDE) successfully; and

3. run the installable cloud app successfully.

https://www.nuget.org/api/v2/package/MySql.Data/8.0.25
https://downloads.mysql.com/docs/licenses/connector-net-8.0-gpl-en.pdf
https://www.nuget.org/api/v2/package/Oracle.ManagedDataAccess.Core/2.19.110
https://www.oracle.com/downloads/licenses/distribution-license.html
https://www.nuget.org/api/v2/package/IBM.Data.DB2.Core/2.2.0.100
http://www14.software.ibm.com/cgi-bin/weblap/lap.pl?li_formnum=L-JERN-B9QMT9

Tutorial 7: Building your PowerServer project with
commands

Page 171

Now let's export the PowerServer project settings of the Example Sales Demo to a JSON
file:

Step 1: Open the workspace for the Example Sales App in the PowerBuilder IDE, and then
double-click the PowerServer project object to open the PowerServer project painter.

Step 2: When the PowerServer project painter is opened, click the Export PowerServer

Build File button () in the toolbar.

Step 3: In the Export Build File dialog box, write down the path and filename to be
exported, and then click Export.

Figure 7.1:

7.3 Task 3 (Optional): Configuring the build file

The exported build file contains all the settings required for building and deploying the PBL
files of the Example Sales App. It also contains some advanced settings that allow you to:

• Get and merge source code from SVN, Git, or VSS;

• Execute additional commands during the build process.

7.3.1 Getting source code from SVN, Git, or VSS

You can configure the exported build file to download source code from SVN, Git, or VSS
before the build process starts.

Step 1: Make a copy of the exported build file and place it to a location near your
PowerBuilder application target, so that you could manage the file path (especially the
relative file path) easily.

Note: the relative path will be relative to the build file.

Step 2: Open the build file in a text editor, locate the "BuildPlan" block and then configure
the corresponding part, for example, "Git" as shown below.

Tutorial 7: Building your PowerServer project with
commands

Page 172

If the computer connects to Internet through a proxy server, make sure to configure the proxy
server settings in the "Proxy" part.

 "BuildPlan": {
 "SourceControl": {
 "PreCommand": "",
 "SVN": [
 {"SrcPath": "","User": "","Password": "","DestPath": "","Proxy":
 {"Ip": "","Port": 0,"Username": "","Password": ""}}
],
 "Git": [
 {"SrcPath": "https://github.com/Appeon/PowerBuilder-AutoBuild-
Sales-SourceCode", "User": "tester@appeon.com", "Password": "YGRrYjc6OzU=",
 "DestPath": ".\\Build", "Proxy": {"Ip": "","Port": 0,"Username": "","Password":
 ""}}
],

Note: The password must be an encrypted value which is generated from the original
password by executing "PBAutoBuild210.exe /p", as shown below.

Figure 7.2:

Step 3: If the source code downloaded from SVN, Git, or VSS is not the PBL file but objects
in ws_objects, then you will need to merge the objects to the PBL file. Locate the "Merging"
block in the build file and then configure as below:

Setting "RefreshPbl" to true if you want to refresh the PBL files by deleting and then
generating the PBL files again.

 "Merging": [
 {"Target": ".\\Build\\salesdemo.pbt", "LocalProjectPath": ".\
\Build", "RefreshPbl": false}
],

At the same time, make sure to double check the target location is set correctly in the
"Projects" block, for example,

 "BuildJob": {
 "PreCommand": "",
 "Projects": [
 {"Target": ".\\Build\\salesdemo.pbt", "Name": "ps_salesdemo"}
],
 "PostCommand": ""
 }

When the PBAutoBuild210.exe command is executed later, it will first download the source
code from the Git server and then merge the source code, as shown below.

Tutorial 7: Building your PowerServer project with
commands

Page 173

Figure 7.3:

7.3.2 Executing additional commands

The entire build & deploy process is made up of several steps, and additional commands
can be executed before and/or after some particular steps such as the "SourceControl" and
"BuildJob" steps.

Example 1: to add commands to remove the "build" folder before downloading the
source code.

Step 1: Create a bat file which contains the following command, and save the bat file as
Command_DeleteFolder.bat.

RMDIR /s /q "D:\PB2021\SalesDemo\Build"

Figure 7.4:

Step 2: In the build file, locate the "BuildPlan" block and then the "PreCommand" setting;
and add the file path and name of Command_DeleteFolder.bat.

 "BuildPlan": {
 "SourceControl": {
 "PreCommand": "Command_DeleteFolder.bat",
 "SVN": [

Tutorial 7: Building your PowerServer project with
commands

Page 174

 ...
],

When the PBAutoBuild210.exe command is executed later, it will execute the commands in
Command_DeleteFolder.bat before it downloads the source code.

Besides the "PreCommand" setting, there is also a "PostCommand" setting for the
"SourceControl" and "BuildJob" steps, which allows you to execute commands after that
particular step.

Example 2: to add commands to start the PowerServer Web APIs after building the
PowerServer project in the PowerBuilder IDE.

Step 1: Create a bat file which contains the following command, and save the bat file as
startwebapi.bat.

dotnet.exe run --no -build --project C:\Users\appeon\source\repos
\PowerServer_salesdemo\ServerAPIs\ServerAPIs.csproj

Step 2: In the build file, locate the "BuildJob" block and then the "PostCommand" setting;
and add the file path and name of startwebapi.bat.

 "BuildJob": {
 "PreCommand": "",
 "Projects": [
 ...
],
 "PostCommand": "startwebapi.bat /show / sync"
 }

When the PBAutoBuild210.exe command is executed later, it will execute the commands in
startwebapi.bat after it finishes building the PowerServer project.

Example 3: to publish the PowerServer Web API after building the PowerServer
project in the PowerBuilder IDE.

Step 1: Create a bat file which contains the following command, and save the bat file as
publish.bat.

dotnet.exe publish C:\Users\appeon\source\repos\PowerServer_salesdemo\ServerAPIs
\ServerAPIs.csproj -c release -o C:\Publish

Step 2: In the exported build file, locate the "BuildJob" block and then the "PostCommand"
setting; and add the file path and name of publish.bat.

 "BuildJob": {
 "PreCommand": "",
 "Projects": [
 ...
],
 "PostCommand": "publish.bat /show / sync"
 }

When the PBAutoBuild210.exe command is executed later, it will execute the commands in
publish.bat after it finishes building the PowerServer project.

Note

The dotnet commands can also be integrated with Jenkins. See Task 5 for more
details.

Tutorial 7: Building your PowerServer project with
commands

Page 175

7.4 Task 4: Running the PBAutoBuild210.exe command
Step 1: In the command line window, execute the PBAutoBuild210.exe file and the build
file. For example,

PBAutoBuild210.exe /f "D:\PB2021\SalesDemo\ps_salesdemo.json" /l Log_PSBuild.log /
le Log_PSError.log /lu Log_PSUnsupport.log

The PBAutoBuild210.exe file can be running with several parameters. For a complete list,
refer to Build & deploy using commands.

Step 2: Carefully check the information in the command line window to make sure the build
and deploy process is successful.

Figure 7.5:

The build file and commands used in this tutorial can be downloaded from https://
github.com/Appeon/PowerBuilder-AutoBuild-Sales-Example. After you download these files
to D:\PB2021\SalesDemo\, you can follow instructions in the readme file.

7.5 Task 5: Integrating with Jenkins
The PBAutoBuild210 command can integrate with Jenkins to automate the build and
deployment process for PowerServer projects. Refer to the Jenkins user documentations for
how to use Jenkins.

Following gives a few examples on how to integrate the PBAutoBuild210 and dotnet
commands with Jenkins.

Example 1: to execute the PBAutoBuild210 command and the build file.

Figure 7.6:

https://github.com/Appeon/PowerBuilder-AutoBuild-Sales-Example
https://github.com/Appeon/PowerBuilder-AutoBuild-Sales-Example
https://www.jenkins.io/
https://www.jenkins.io/doc/

Tutorial 7: Building your PowerServer project with
commands

Page 176

Example 2: to download source code from SVN, Git, or VSS, and then execute the
PBAutoBuild210 command and the build file.

Double check that the PBT location is the same one in all required areas.

Figure 7.7:

Figure 7.8:

Example 3: to publish or run the PowerServer Web APIs

You can integrate dotnet commands with Jenkins. After you install the .NET SDK Support
plugin for Jenkins, the dotnet commands (for example, dotnet publish, dotnet run etc.) are
available as shown below. Refer to https://www.jenkins.io/doc/pipeline/steps/dotnet-sdk/ for
more details.

https://www.jenkins.io/doc/pipeline/steps/dotnet-sdk/

Tutorial 7: Building your PowerServer project with
commands

Page 177

Figure 7.9:

Tutorial 8: Creating a standalone installable package

Page 178

8 Tutorial 8: Creating a standalone installable
package
Each PowerBuilder installable cloud application is composed of two parts:

• the application client-side which resides on the Web server

• the PowerServer Web APIs which resides on the .NET server

Therefore, to create a standalone installable package for the PowerBuilder installable cloud
application, you need to create two packages:

• An executable installer or zipped file of the application client-side

• A distributable package of the PowerServer Web APIs

After that, you will need to set the Web API URL correctly to the application client-side, so
that the application knows where to access the PowerServer Web APIs at runtime.

8.1 Packaging the client app

When deploying the PowerServer project as an installable cloud app, you can choose to
package the client-side as an executable installer or a zipped file, and then install the client to
the Web servers.

To package the client app:

1. Go to the Client Deployment tab of the PowerServer project painter, and then click
Package the compiled app and manually deploy later.

2. Specify to generate the package as an executable installer or a compressed zip file, and
select whether to package the cloud app launcher and the PowerBuilder Runtime files.

If you select Zipped file, an appname_Installer.zip file is generated in the specified
path. You can copy the zip file to the server and then decompress it to the Web root.

If you select Executable installer, an appname_Installer.exe file is generated in the
specified path. You can copy the executable file to the server and then run it to install
the application to the Web root.

3. Specify the location where the package will be generated.

Tutorial 8: Creating a standalone installable package

Page 179

Figure 8.1:

4. Save the project settings and then click the Build & Deploy PowerServer Project

button () or Deploy PowerServer Project () button in the toolbar to generate the
package.

Note

Do not manually change the name of the installed or de-compressed application folder
on the server, otherwise the application uninstall program will fail to run.

8.2 Packaging the PowerServer Web APIs
For easier distributions, the PowerServer Web APIs can be published to a local folder.

Step 1: On the development machine, open the PowerServer C# solution in SnapDevelop.
Log in to SnapDevelop if required.

Click the Open C# Solution in SnapDevelop button () in the toolbar to launch the
PowerServer C# solution in SnapDevelop. Or go to the location where the PowerServer C#
solution is generated; and double click PowerServer_[appname].sln to launch the solution
in SnapDevelop.

At startup, the solution will install/update the dependencies. Wait until the Dependencies
folder completes the install/update. (Make sure the machine can connect to the NuGet site:
https://www.nuget.org in order to successfully install PowerServer NuGet packages).

Step 2: In the Solution Explorer, right click on the ServerAPIs project node, and select
Publish.

Step 3: In the window that appears, select File System, and click Start.

Step 4: Specify a name for the profile and specify the destination folder where the files will
be published, and click Next.

https://www.nuget.org

Tutorial 8: Creating a standalone installable package

Page 180

Figure 8.2:

Step 5: Specify the publish settings or use the default settings and then click Finish.

If published as a Framework-Dependent package, the package will only include the project
itself and its dependencies. Users have to install the .NET Core runtime in order to run the
project.

If published as a Self-Contained package, the package will not only include the project itself
and its dependencies, but also include the .NET Core runtime and libraries. Users can run it
on a machine that has no .NET Core runtime installed.

Figure 8.3:

Publishing begins automatically. If any error or failure is reported in the Output window,
click the link provided at the end to view more details and possible solutions.

Step 6: Make sure publishing was successful.

Click the PublishURL to open the folder that contains the published files.

Tutorial 8: Creating a standalone installable package

Page 181

Figure 8.4:

8.3 Telling client app where PowerServer Web APIs is

The client app needs to know where to access the PowerServer Web APIs when it starts to
run. You can tell a client app where to access the PowerServer Web APIs before and/or after
the PowerServer project deployment in the PowerBuilder IDE.

Before the PowerServer project deployment in the PowerBuilder IDE, you can specify the
Web API URL field on the Web APIs tab in the PowerServer project painter. Then, the
specified Web API URL will be included in the application client-side when it is deployed or
installed to the Web server. It is highly recommended that you specify an HTTPS URL for
the production environment.

Tutorial 8: Creating a standalone installable package

Page 182

Figure 8.5:

After the application is deployed or installed to the Web server, you can change the Web API
URL that is included in the application without needing to re-deploying or re-installing the
application. To do that, you can run the following commands in the "1.01" sub-folder of the
application folder on the Web server.

To get the current URL:

dotnet CustomizeDeploy.dll -url

To change the URL:

dotnet CustomizeDeploy.dll -url=<URL>

For example

Figure 8.6:

For more about how to change the Web API URL using commands, see How-to Guides >
Customize the deployed app using commands.

Tutorial 9: Load testing installable cloud apps

Page 183

9 Tutorial 9: Load testing installable cloud
apps

9.1 Load testing installable cloud apps with LoadRunner

LoadRunner is an automated performance and testing product from Micro Focus. It can
simulate hundreds or thousands of concurrent users, to put the application through the real-
life user loads, and examine the behavior and performance.

When you load test installable cloud apps with LoadRunner, after recording a script,
you are required to correlate a few dynamic values and also parameterize static values
in the script. Otherwise, the script will fail to replay. In this tutorial, we will explain the
relevant techniques in detail and with examples that are specifically required for load testing
installable cloud apps with LoadRunner. For the common LoadRunner functions, please refer
to the relevant LoadRunner documentation.

9.1.1 Dynamic Values in the Recorded Script

The main dynamic values in the recorded script for installable cloud apps are “sessionid” and
“transactionid”. Both values are dynamic and can only stay valid for a short time, therefore,
it is necessary to capture them using the function “web_reg_save_param” and then save them
into parameters in the script.

Specially, about “sessionid”: Because all the requests and responses between the client
application and PowerServer are tracked by “sessionid”, “sessionid” is encrypted in every
request/response for security reasons in production environment. It is necessary to set
“sessionid” to plain text with the technique explained at Running the Application in Test
Mode before Recording the Script.

9.1.2 Enclosing Parameters in Angle Brackets “<>”

LoadRunner scripts typically enclose parameters in curly braces “{}”. However, because
the scripts recorded for installable cloud apps contain many JSON strings, which contain a
lot of formatting curly braces “{}”, it is recommended that you enclose parameters in angle
brackets when you edit the script recorded for installable cloud apps.

9.1.3 Running the Application in Test Mode before Recording the Script

As explained above in Dynamic Values in the Recorded Script, “sessionid” is encrypted
in production environment. It causes difficulty to correlate the value in the script. To work
around the problem, the PowerServer Web APIs has two modes:

• “0”- normal mode

• “1”- test mode

Under the test mode, the “sessionid” included in the requests and responses is in plain text.
The security is compromised but it shall be sufficient for the test environment.

Tutorial 9: Load testing installable cloud apps

Page 184

9.1.3.1 How to switch to the test mode

1. Open the file AppConfig | applications.json in the ServerAPIs project of the PowerServer
solution.

2. Change the “RunMode” attribute value from “0” to “1”.

With the “RunMode” set to 1, when the installable cloud app is started, the app will
prompt the following warning, and all window titles in the installable cloud app will show
“Test Mode”.

Note: Instructions in the document assume that the installable cloud app is running in the
test mode.

Tutorial 9: Load testing installable cloud apps

Page 185

9.1.4 Recording

9.1.4.1 Specifying the app .exe file as the Application

For recording, please fill up the Start Recording dialog similar to the screenshot A provided
below. Specifically, for the Application to run the URL, please specify the .exe file of the
client app, which you can get by right clicking the desktop shortcut of the app and then
copying from the properties > Target field.

Screenshot A: The Application field value is the .exe file of the client app

Screenshot B: The Application field value read from the Target field of the app properties

Tutorial 9: Load testing installable cloud apps

Page 186

9.1.4.2 Disabling the async scan

The “Async Scan” option under Code Generation shall be disabled. If the option is on,
LoadRunner will automatically generate asynchronous callback scripts. It is hard to
parameterize the transaction IDs properly in the asynchronous callback scripts.

Tutorial 9: Load testing installable cloud apps

Page 187

9.1.5 Correlating the Session ID

Session ID (“sessionid”) is different every time you run an installable cloud app. Obviously,
since the execution of the recorded script depends upon the session ID returned by the server,
it is necessary to catch the proper “sessionid” from the CreateSession server response and
then attach it to the subsequent requests. That is, correlating the session ID in the script for
successful replay.

9.1.5.1 How to correlate the session ID in the recorded script

1. Add scripts in the CreateSession for capturing the session ID and assign it to a parameter.

A CreateSession request looks like the following:

web_custom_request("CreateSession",
 "URL=http://192.168.178.125:5001/api/ServerApi/CreateSession",
 "Method=POST",
 "Resource=0",
 "RecContentType=application/json",
 "Referer=",
 "Snapshot=t60.inf",
 "Mode=HTTP",
 "EncType=application/json;charset=UTF-8",
 "Body={\"version\":\"1.0\",\"requestid\":\"52C33A54-6687-40ef-
ACA8-4FC34B8066CE\",\"appname\":
 \"psapi4loadrunner\",\"namespace\":\"Psapi4loadrunner\",\"session
\":null,\"type\":31,\
 "transaction\":null,\"content\":{\"createsession\":{\"securestring
\":\""

 "eyJ0aW1lc3RhbXAiOjE2MjQyNjk4MjYsInBheWxvYWQiOiJuQStOK1ZKb1pqRkxFRzBsT0QzMnAzZmtsVlc2Qk

 xydGZuQ2FqcUJvcTNTY0FORDdYeDZmTDFnMVFGUFhNdk9EVGpWTjgyVERLOTdSMHhHVEhSMmxXZz09Iiwic2lnbm
 F0dXJlIjoiOUpicHc2OUFwWFYxcEg4UTEraDRodHh4SHlGVnptS2lhWmdNZmJQS1pP

 UmdBVW9JcHdoTzNTY2krbnltV2NTZ2lidzUyZHhsYjluQlpjQXgyUmd4S2c9PSJ9\"}}}",
 LAST);

You need to add the following code above the CreateSession request:

• Add a web_set_max_html_param_len function to be the first line in the script file. It
would set the maximum length of the HTML string which LoadRunner can retrieve:

web_set_max_html_param_len("262144");

Tutorial 9: Load testing installable cloud apps

Page 188

• Add a web_reg_save_param function above CreateRequest to capture the session ID
and assign it to the parameter “gs_SessionID”.

web_reg_save_param("gs_SessionID","LB=\"sessionid\":\"","RB=\"},
\"graceperiod","Search=Body",LAST);

2. Replace the session ID with the parameter every time it occurs.

• Identify the session ID that need to be correlated. You may do a global search in the
script for “session” which is followed by the session ID.

• Replace every occurrence of the session ID with the parameter <gs_SessionID>.

Taking the ConnectAndCreateTransaction request as an example. The following is the
original request. You see the session ID is the string following the “session”.

web_custom_request("ConnectAndCreateTransaction",
 "URL=http://192.168.178.125:5001/api/ServerApi/
ConnectAndCreateTransaction",
 "Method=POST",
 "Resource=0",
 "RecContentType=application/json",
 "Referer=",
 "Snapshot=t65.inf",
 "Mode=HTTP",
 "EncType=application/json;charset=UTF-8",
 "Body={\"version\":\"1.0\",\"requestid\":\"D024C3D8-FE54-490e-
BAB6-23F8CAB3D8F3\",\"appname\":\"psapi4loadrunner\",
 \"namespace\":\"Psapi4loadrunner\",\"session\":
\"""eyJ0aW1lc3RhbXAiOjE2MjQyNjk4MjgsInBheWxvYWQiOiJ3bmFMV0FuZ2

 14S2RnQlhqbFVqQlRNNmswRVUxN2gwaFhpb3pEbm9SakkyOUtkYk9kWlMwWGgxeWtPdTlYRFI5QTFITXZKTVcvRW9IbEppQjY4MVhBQXhHU3U

 rZlA0Y3YvOEVjMWF5OVNxTzlSUFpEYjJPYTIrektQUmRPSXV2L25yVXYwdDhGNmpzRUY0TzVqUTROMmVhc1piY0c5NkpJTUVCUi9jK25OUEFE

 cTNiZ1BxWTZtL2dodlhBYW84U3AiLCJzaWduYXR1cmUiOiJQTEo3WDJaRnBVV1FyOXcvK1dwaG4rWnRWK3BPc0taRUhwd0ZReWNYQ2tkZ3RVS
 WRuUW52QVh5VlgvUUpDTlZFZUVFR0twcGtIOUs0c3FQTDB3SVZqQT09In0=\",\"type
\":7,\"transaction\":null,\"content\":
 {\"connect""\":{\"cachegroup\":\"\",\"cachename\":\"\",
\"transactionname\":\"sqlca\",\"params\":\"""eyJ0aW1lc

 3RhbXAiOjE2MjQyNjk4MjgsInBheWxvYWQiOiJQK1kvMk5yWmVTUWY0dElIempGMy9vdlk0VFhWY0NWNlFrd2UxVGJkSENHTFNnc2R0allOZU

 dtNDN2WlB6dFFCLzk0Ulk4dVFOYkNISnZqblltQ3RoTUZCRFJaS21YZmtDWExPRkdjbWt2WXFkSXBEcDRhN0NLUDBVK1gxOGhQQVhiNjJoSXA

 3aWp2S0FkZEpNOFU3QmxXbEI5MGx4ZEp5OVVTNU00NzZhaGxZMlRSYlF1NTlWcksxdER0VngxbERKRU80cGFvRVVkM0cxQk5RbUtrcVBqaTda

 MDFPNDZ3UmNvVVp6MlB1TXkrUG1VNVlvWmF0eUhxRjN3ZExyRlZLIiwic2lnbmF0dXJlIjoiVGJoR2dEeEtLWFg2V3V6bTIwei94WXdKb2FFW

 TNvUlgxSTkzeDJiS1lncjd0MmFXcmxaUkp0TTh6dEZpVUc4R1Y3VTgrdk""xZL2pQK29lZGxTdW0yWWc9PSJ9\"}}}",
 LAST);

After replacing the occurrence of the session ID with the parameter <gs_SessionID>, the
script will look like the following:

web_custom_request("ConnectAndCreateTransaction",
 "URL=http://192.168.178.125:5001/api/ServerApi/
ConnectAndCreateTransaction",
 "Method=POST",
 "Resource=0",
 "RecContentType=application/json",

Tutorial 9: Load testing installable cloud apps

Page 189

 "Referer=",
 "Snapshot=t65.inf",
 "Mode=HTTP",
 "EncType=application/json;charset=UTF-8",
 "Body={\"version\":\"1.0\",\"requestid\":\"D024C3D8-FE54-490e-
BAB6-23F8CAB3D8F3\",
 \"appname\":\"psapi4loadrunner\",\"namespace\":\"Psapi4loadrunner\",
 \"session\":\"""<gs_SessionID>\",\"type\":7,\"transaction\":null,
\"content\"
 :{\"connect""\":{\"cachegroup\":\"\",\"cachename\":\"\",
\"transactionname\":\"sqlca\",\"params\":\

 """eyJ0aW1lc3RhbXAiOjE2MjQyNjk4MjgsInBheWxvYWQiOiJQK1kvMk5yWmVTUWY0dElIempGMy9vdlk0VFhWY0NWNlFrd2U

 xVGJkSENHTFNnc2R0allOZUdtNDN2WlB6dFFCLzk0Ulk4dVFOYkNISnZqblltQ3RoTUZCRFJaS21YZmtDW

 ExPRkdjbWt2WXFkSXBEcDRhN0NLUDBVK1gxOGhQQVhiNjJoSXA3aWp2S0FkZEpNOFU3QmxXbEI5MGx4ZEp5OVVTNU00NzZhaGx

 ZMlRSYlF1NTlWcksxdER0VngxbERKRU80cGFvRVVkM0cxQk5RbUtrcVBqaTdaMDFPNDZ3UmNvVVp6MlB1T

 XkrUG1VNVlvWmF0eUhxRjN3ZExyRlZLIiwic2lnbmF0dXJlIjoiVGJoR2dEeEtLWFg2V3V6bTIwei94WXdKb2FFWTNvUlgxSTk

 zeDJiS1lncjd0MmFXcmxaUkp0TTh6dEZpVUc4R1Y3VTgrdk""xZL2pQK29lZGxTdW0yWWc9PSJ9\"}}}",
 LAST);

9.1.6 Correlating the Transaction ID

Installable cloud operations perform all database operations in transactions. Each transaction
is assigned with a unique transaction ID. An existing transaction ID will become invalid if
any of the following cases occur:

• When the relevant session ID becomes invalid;

• At the execution of Connect, Disconnect, Commit, or Rollback.

When the Connect, Disconnect, Commit or Rollback is executed, the response body will
contain the new transaction ID. When the Commit or Rollback is executed but has failed, the
response body will still contain the old transaction ID, which means that the old transaction is
still valid.

It is necessary to catch the proper “transactionid” from the server response on Connect/
Disconnect/Commit/Rollback, and then attach it to the subsequent requests. That is,
correlating the transaction ID in the script for successful replay.

9.1.6.1 How to correlate the transaction ID in case of single transaction

The following steps take the Connect request as an example, and the session ID has already
been correlated.

1. Add scripts in the Connect for capturing the transaction ID and assign it to a parameter.

A ConnectAndCreateTransaction request looks like the following:

web_custom_request("ConnectAndCreateTransaction",
 "URL=http://192.168.178.125:5001/api/ServerApi/
ConnectAndCreateTransaction",
 "Method=POST",
 "Resource=0",
 "RecContentType=application/json",
 "Referer=",

Tutorial 9: Load testing installable cloud apps

Page 190

 "Snapshot=t275.inf",
 "Mode=HTTP",
 "EncType=application/json;charset=UTF-8",
 "Body={\"version\":\"1.0\",\"requestid\":\"667FF1FE-77F8-40b6-869E-
EA90D466B504\",
 \"appname\":\"psapi4loadrunner\",\"namespace\":\"Psapi4loadrunner\",
\"session\":\""
 "<gs_SessionID>\",\"type\":7,\"transaction\":null,\"content\":
{\"connect"
 "\":{\"cachegroup\":\"\",\"cachename\":\"\",\"transactionname\":
\"sqlca\",\"params\":\""

 "eyJ0aW1lc3RhbXAiOjE2MjUyMDM0OTMsInBheWxvYWQiOiJjNjJLb3BST1pMVVBuZVc4NXk5bUgzb1RvOXI1NSs

 rR05UTC90S2wyR2lubExleE1CdCtVaGttRWJtd2N2Um5vVTlBejBCbDV3Mlh0aW5zYi80SU9jQW5uc2hqNXdSbUt

 0ZGx0UlJkeVllSCtEU1JTc1ZNVjd5SmttTnBTdHpoZnZHK3Z0RnhJWE1JczZHRzh5QVJsd2U1WlJ3VEFUVmIxeFF

 rZnl3MXdOc1ZUeFNGMDNsb2UwMlZXVU1JOUU5MzhuTHhoaXRxMElmTTZjaVhST21la2xMaEh6ZkREcm1tc3RWYVU

 4OWhuY2ZZNU5oaXdtMHFnYkowY2Fsdmp6OENOcjhmVHpZR1BmQ0UxZW1YZ3lkNG8vUT09Iiwic2lnbmF0dXJlIjo
 idFkwVDlURUxYY0tOTEhBdmZzQUNOQ0tuRWtlRUtKNEFMSnBsamJ1aFRtYk92dU"
 "FhSnBrNXlLMTBhMEtiMzQ1dkc4Vm9tRTJZaG9Kb0FnbUlOaHF1cWc9PSJ9\"}}}",
 LAST);

You need to add the following code above the ConnectAndCreateTransaction request:

• Add a web_reg_save_param function above the request to capture the transaction ID
and assign it to the parameter “gs_TransactionID”.

web_reg_save_param("gs_TransactionID","LB=\"transactionid\":\"","RB=\"},
\"content","Search=Body",LAST);

2. Replace the transaction ID with the parameter every time it occurs.

• Identify the transaction ID that need to be correlated. You may do a global search in the
script for “transactionid” which is followed by the transaction ID. Ensure that there is
no confusion between the current transaction ID and the other ones.

• Replace every occurrence of the transaction ID with the parameter <gs_TransactionID>.

web_custom_request("RetrieveWithParm",
 "URL=http://192.168.178.125:5001/api/ServerApi/RetrieveWithParm",
 "Method=POST",
 "Resource=0",
 "RecContentType=application/json",
 "Referer=",
 "Snapshot=t279.inf",
 "Mode=HTTP",
 "EncType=application/json;charset=UTF-8",
 "Body={\"version\":\"1.0\",\"requestid\":
\"014DD22B-11AB-4238-88D1-7892060396AD\",\"appname\":
 \"psapi4loadrunner\",\"namespace\":\"Psapi4loadrunner\",\"session\":
\"""<gs_SessionID>\",
 \"type\":1,\"transaction\":{\"transactionid\":\"""<gs_TransactionID>
\",\"transactionname\
 ":\"sqlca\"},\"content\":{\"retrieves\":[{\"retrieveid\":
\"014DD22B-11AB-4238-88D1-789206
 0396AD\",\"parent\":\"\",\"dataobject\":\"d_customers\",
\"parentcolumn\":\"\",\"isreport\":
 false,\"isdynamic\":false,\"dwsyntax\":\"\",\"sql\":\"\",
\"processing\":1,\"arguments\":[]}]}}",

Tutorial 9: Load testing installable cloud apps

Page 191

 LAST);

9.1.6.2 How to correlate the transaction ID in case of multiple transactions

If your application has multiple transactions, each transaction has its unique transaction ID.
The transactions can be differentiated by their transaction names, and their transaction IDs
shall be assigned with different parameters, so that each parameter will correlate with its own
transaction.

1. Add scripts in the Connect for capturing the transaction ID and assign it to a parameter.

A ConnectAndCreateTransaction request in a transaction named as “itr_dynamiccon”
looks like the following:

web_custom_request("ConnectAndCreateTransaction_2",
 "URL=http://192.168.178.125:5001/api/ServerApi/
ConnectAndCreateTransaction",
 "Method=POST",
 "Resource=0",
 "RecContentType=application/json",
 "Referer=",
 "Snapshot=t337.inf",
 "Mode=HTTP",
 "EncType=application/json;charset=UTF-8",
 "Body={\"version\":\"1.0\",\"requestid\":\"5D86818C-CAF5-49fe-
B78A-4AC7AC550F88\",\"appname\"
 :\"psapi4loadrunner\",\"namespace\":\"Psapi4loadrunner\",\"session
\":\"""<gs_SessionID>\"
 ,\"type\":7,\"transaction\":null,\"content\":{\"connect""\":
{\"cachegroup\":\"\",\"cachename\
 ":\"PostgreSQL\",\"transactionname\":\"itr_dynamiccon\",\"params\":
\"""eyJ0aW1lc3RhbXAiOjE2Mj

 UyMDg5MTEsInBheWxvYWQiOiJna21qUzVZY01RM294ZnJLVFNQQ1NyRFJuUENqTmxPTHZEeENGUlJ0MngrNW1WV3d2WFJ

 NK3BCalRiMEFKY05EZm5iMFU5VVQ0ckhjdnRRQ0tubkV1Q29adlhoOExlRXZvaFhsSGJlMmQ1cFdRZzc2VnhLOGYwZHZl

 SDBGMVRBRTB6YU9zaEhuM2lKMGZEQkJSak1scXl1MThyUnM0OFlOY3dlMGY2ZGpHbWVvUGxmVU40RzM0MTcwMCtzbUh3U

 ng5ZUlIcnUvR2pRS0hkYmFFRWJyMlAxR2tMZVg4UE1wVlVtZTh5ektJWlRZZUVkSFBtd3crekpLNlJFeE9QMFFKVVdIVW

 4wajFKemh0MURYcW95VjlKMjJyam5CNVk3U1dBYy91UnRlQkxmUT0iLCJzaWduYXR1cmUiOiIyT2t2SGRIaWtoWGZzeXQ

 vSHNhSUk4R3VzQj""M5OXJmbER1YzdTWEpkNjg1bDlxUjJJbkpzRGVVbTcxdVl6WHh0UGZFeTFGTFUzcDRjRWNWK2p1YW
 F0UT09In0=\"}}}",
 LAST);

You need to add the following code above the ConnectAndCreateTransaction request:

• Add a web_reg_save_param function above the request to capture the transaction ID
and assign it to the parameter “gs_TransactionID_Dycache”. Here the parameter name
has a suffix “_Dycache” to identify the transaction “itr_dynamiccon”.

web_reg_save_param("gs_TransactionID_Dycache","LB=\"transactionid\":\"","RB=
\"},\"content","Search=Body",LAST);

2. Replace the transaction ID with the parameter every time it occurs.

• Identify the transaction ID that need to be correlated. You may do a global search in the
script for the transaction name “itr_dynamiccon” which follows the transaction ID.

Tutorial 9: Load testing installable cloud apps

Page 192

• Replace every occurrence of the transaction ID with the parameter
<gs_TransactionID_Dycache>.

web_custom_request("RetrieveWithParm",
 "URL=http://192.168.178.125:5001/api/ServerApi/RetrieveWithParm",
 "Method=POST",
 "Resource=0",
 "RecContentType=application/json",
 "Referer=",
 "Snapshot=t338.inf",
 "Mode=HTTP",
 "EncType=application/json;charset=UTF-8",
 "Body={\"version\":\"1.0\",\"requestid\":\"81EDB9E2-CC47-4b68-
B70A-09B46DD88261\",\"appname\":\
 "psapi4loadrunner\",\"namespace\":\"Psapi4loadrunner\",\"session\":
\"""<gs_SessionID>\",\
 "type\":1,\"transaction\":{\"transactionid\":
\"""<gs_TransactionID_Dycache>\",\"transactionname\"
 :\"itr_dynamiccon\"},\"content\":{\"retrieves\":[{\"retrieveid\":
\"81EDB9E2-CC47-4b68-B70A-09B46
 DD88261\",\"parent\":\"\",\"dataobject\":\"d_customers\",
\"parentcolumn\":\"\",\"isreport\":false,
 \"isdynamic\":false,\"dwsyntax\":\"\",\"sql\":\"\",\"processing\":1,
\"arguments\":[]}]}}",
 LAST);

9.1.7 Parameterizing Static Values in SQLs

When recording an installable cloud app to create the script, you would use static values for
SQL statements (Retrieve, Select, etc.). It is not realistic to use the same value for all replays.
Therefore, it is necessary to parameterize the static values.

9.1.7.1 How to parameterize static values in Retrieve

1. Find the static value in the Retrieve request body. You shall get it in the “arguments”
node.

2. Select the value, right click and select “Replace with Parameter” -> “Create new
parameter”.

3. Enter the parameter name.

In the example script below, the “customer_id” static value has been parameterized with
the parameter <customerID>:

web_custom_request("RetrieveWithParm",
 "URL=http://192.168.178.125:5001/api/ServerApi/RetrieveWithParm",
 "Method=POST",
 "Resource=0",
 "RecContentType=application/json",
 "Referer=",
 "Snapshot=t144.inf",
 "Mode=HTTP",
 "EncType=application/json;charset=UTF-8",
 "Body={\"version\":\"1.0\",\"requestid\":\"50CA839C-E8DF-4303-
A146-33EBB30BEB45\",\"appname\":\
 "psapi4loadrunner\",\"namespace\":\"Psapi4loadrunner\",\"session\":
\"""<gs_SessionID>\",\

Tutorial 9: Load testing installable cloud apps

Page 193

 "type\":1,\"transaction\":{\"transactionid\":\"""<gs_TransactionID>
\"},\"content\":{\"retrieves\":
 [{\"retrieveid\":\"50CA839C-E8DF-4303-A146-33EBB30BEB45\",\"parent
\":\"\",\"dataobject\":
 \"d_customer_pro\",\"""parentcolumn\":\"\",\"isreport\":false,
\"isdynamic\":false,\"dwsyntax\":\"\",
 \"sql\":\"\",\"processing\":1,\"arguments\":[{\"category\":1,\"name
\":\"customer_id\",\"""type\":
 \"number\",\"value\":<customerID>}]}]}}",
 LAST);

9.1.7.2 How to parameterize static values in Select

1. Find the static value in the Select request body. You shall get it in the “parameters” node.

2. Select a value in the list of parameters, right click and select “Replace with Parameter” ->
“Create new parameter”.

3. Enter the parameter name.

4. Repeat step 2 to 3 until all values are parameterized

In the example script below, the Select request has been parameterized with the
parameters <customerID> and <NotName>:

web_custom_request("SelectWithParm",
 "URL=http://192.168.178.125:5001/api/ServerApi/SelectWithParm",
 "Method=POST",
 "Resource=0",
 "RecContentType=application/json",
 "Referer=",
 "Snapshot=t358.inf",
 "Mode=HTTP",
 "EncType=application/json;charset=UTF-8",
 "Body={\"version\":\"1.0\",\"requestid\":\"7C362898-230B-4858-
AB15-2241DC3FD982\",\"appname\":
 \"psapi4loadrunner\",\"namespace\":\"Psapi4loadrunner\",\"session\":
\"""<gs_SessionID>\",
 \"type\":11,\"transaction\":{\"transactionid\":
\"""<gs_TransactionID>\",\"transactionname\":
 \"sqlca\"},\"content\":{\"esqlselect\":{\"modulename\":\"\",\"sqlid
\":\"sqlHandle_01_2763E2FE\",
 \"parameters\""":[{\"category\":1,\"name\":\"name\",\"type\":\"int
\",\"value\":<customerID>},
 {\"category\":1,\"name\":\"name\",\"type\":\"string\",\"value\":
\"<NotName>\"}]}}}",
 LAST);

9.1.8 Replaying

If you replay the script on a different machine from the one you recorded the script, to make
sure that the Application field value from Recording is still valid during replay, you must
manually run the application before the replay.

9.2 Load testing installable cloud apps with JMeter

9.2.1 Overview

This tutorial assumes a basic understanding of the following concepts:

Tutorial 9: Load testing installable cloud apps

Page 194

• JMeter basis. To familiarize yourself with JMeter basics, go through https://
jmeter.apache.org/usermanual/index.html.

• PowerServer and installable cloud app basis. To quickly get started with PowerServer and
deploy the Sales Demo application, go through Quick Start.

9.2.2 Preparing the installable cloud application

9.2.2.1 Configuring and deploying the application

This tutorial will take the deployed Sales Demo application as an example to walk through
the test script recording and parameterizing.

You can follow Quick Start to deploy the Sales Demo application.

Note that you must use the actual IP address (instead of "localhost") for the Web API URL.
(Reason is in the Section 9.2.3.1, “Recording scripts automatically (using Recorder)” and
Section 9.2.3.2, “Recording scripts manually (using Fiddler + JMeter)” sections, you will use
the JMeter proxy server or Fiddler (or any other web debugging proxy tool) both of which
will bypass "localhost".)

9.2.2.2 Switching the application to test mode

9.2.2.2.1 Why test mode is required

The main dynamic values in the recorded script for installable cloud apps are “sessionid” and
“transactionid”. Both values are dynamic and can only stay valid for a short time, therefore, it
is necessary to capture them and save them into variables in the script.

Specially, about “sessionid”: Because all the requests and responses between the client
application and PowerServer are tracked by “sessionid”, “sessionid” is encrypted in every
request/response for security reasons in production environment, which makes it difficult to
correlate the value in the script. To work around the problem, the PowerServer Web APIs has
two modes:

• “0”- normal mode

• “1”- test mode

Under the test mode, the “sessionid” included in the requests and responses is in plain text.
The security is compromised but it shall be sufficient for the test environment.

9.2.2.2.2 How to switch to the test mode

Step 1: Open the file AppConfig | applications.json in the ServerAPIs project of the
PowerServer solution.

https://jmeter.apache.org/usermanual/index.html
https://jmeter.apache.org/usermanual/index.html

Tutorial 9: Load testing installable cloud apps

Page 195

Step 2: Change the “RunMode” attribute value from “0” to “1”.

Step 3: Run PowerServer Web APIs.

Step 4: Run the installable cloud app.

With the “RunMode” set to 1 (test mode), the app will prompt the following warning, and all
window titles in the installable cloud app will show “Test Mode”.

9.2.2.3 Running PowerServer Web APIs and then JMeter recorder or Fiddler

Keep PowerServer Web APIs running, and close the installable cloud app after you verify
that the installable cloud app runs successfully; and then proceed to the next step to record the
test scripts.

Tutorial 9: Load testing installable cloud apps

Page 196

Note

You must run PowerServer Web APIs before you start JMeter recorder (HTTP(S)
Test Script Recorder) or Fiddler (or any other Web debugging proxy tool). Otherwise,
the PowerServer Web APIs will fail to start.

Reason is JMeter recorder and Fiddler (as well as any other Web debugging proxy
tool) work by adding itself as a proxy instead of using your current proxy settings;
therefore if the PowerServer Web APIs connects with the NuGet site and Appeon site
through a proxy server, it may fail to start.

9.2.3 Recording JMeter scripts

You will need to create a test plan to record the JMeter scripts. You can create a test plan
either by

• Using the JMeter HTTP(S) Test Script Recorder to automatically record the HTTP
requests, or

• Using Fiddler (or any other web debugging proxy tool) to get the HTTP requests and then
manually adding the HTTP requests to JMeter

9.2.3.1 Recording scripts automatically (using Recorder)

One easy way to create a test plan is to use the JMeter HTTP(S) Test Script Recorder.
With Recorder, you can just browse on the application and do the actions and everything
(including HTTP requests) will get recorded automatically.

This section provides step-by-step instructions for recording scripts on the Sales Demo
application. You can also follow the JMeter documentation: https://jmeter.apache.org/
usermanual/jmeter_proxy_step_by_step.html.

9.2.3.1.1 Creating a test plan from templates

Step 1: Select Templates from the File menu.

https://jmeter.apache.org/usermanual/jmeter_proxy_step_by_step.html
https://jmeter.apache.org/usermanual/jmeter_proxy_step_by_step.html

Tutorial 9: Load testing installable cloud apps

Page 197

Step 2: Select Recording and then click Create.

Step 3: Use the default values or modify them according to your needs, and then click
Create.

A complete Test Plan is generated successfully.

Tutorial 9: Load testing installable cloud apps

Page 198

9.2.3.1.2 Enabling recorder

In Test Plan, the HTTP(S) Test Script Recorder is disabled by default.

Right click on it and then select Enable to enable it.

Tutorial 9: Load testing installable cloud apps

Page 199

9.2.3.1.3 Configuring recorder

In the HTTP(S) Test Script Recorder window, specify the following settings:

1. Use the default port number 8888 or input a new one. Make sure the port is not occupied
by any other program. Make sure the browser proxy is set to the same port later.

2. Modify Target Controller to Test Plan > Thread Group.

3. Modify Naming scheme to Prefix.

Tutorial 9: Load testing installable cloud apps

Page 200

9.2.3.1.4 Configuring your browser to use the JMeter Proxy

Step 1: Open the Web browser. Take Internet Explorer as an example.

Step 2: Select menu Tools > Internet options. Select the Connections tab and then click the
LAN settings button.

Step 3: Enter 127.0.0.1 and port 8888 (and make sure the Web API URL is not in the
exception list).

Tutorial 9: Load testing installable cloud apps

Page 201

9.2.3.1.5 Recording the scripts

Step 1: Return to HTTP(S) Test Script Recorder, and click Start.

This will start the JMeter proxy server which is used to intercept the browser requests.

Step 2: Click OK when prompted to install the certificate as shown below.

Tutorial 9: Load testing installable cloud apps

Page 202

Step 3: Keep the “Recorder: Transactions Control” window open during recording.

Step 4: Now run the Sales Demo installable cloud app in the Web browser. (Make sure
PowerServer Web APIs started before JMeter started. See Running PowerServer Web APIs
and then JMeter recorder and Fiddler for why.)

Step 5: Click a few buttons such as Address, Customer etc. in the window and then exit from
the application. These HTTP requests will be automatically captured by the script recorder.

Step 6: Close the Web browser and return to the JMeter window.

Step 7: Click the Stop button in the “Recorder: Transactions Control” window to stop the
recording.

9.2.3.1.6 Viewing the recorded scripts

The recorded HTTP requests will be listed in the tree on the left panel. You can manually
remove any HTTP requests that are not needed.

Tutorial 9: Load testing installable cloud apps

Page 203

9.2.3.1.7 Parameterizing the scripts

To use the dynamic values of the access token, session ID, transaction ID etc., you need to
parameterize them in the scripts. See Section 9.2.4, “Parameterization and correlation” for
detailed instructions.

9.2.3.2 Recording scripts manually (using Fiddler + JMeter)

First, you need to use Fiddler (or any other web debugging proxy tool) to get the HTTP
requests. For how to use Fiddler, see Debugging with Fiddler.

Then you need to manually add the HTTP requests to JMeter.

9.2.3.2.1 Obtaining HTTP requests

You can view the HTTP requests using Fiddler (or any other web debugging proxy tool).

Fiddler can capture every detail of the HTTP request and the header.

Tutorial 9: Load testing installable cloud apps

Page 204

9.2.3.2.2 Creating a test plan and adding HTTP requests

Creating a Test Plan

To create a new test plan, select File > New. Input a name for the test plan.

When the test plan is created, it is added to the tree on the left panel. All subsequent elements
will be added to this tree in a hierarchical structure.

Tutorial 9: Load testing installable cloud apps

Page 205

Adding a Thread Group

A Test Plan must have at least one thread group. The Thread Group tells JMeter the number
of users (threads) you want to simulate, how often users should send requests and how many
requests they should send.

To add a Thread Group to the test plan, right click on the test plan that you added just now,
and then select Add > Threads (Users) > Thread Group.

Tutorial 9: Load testing installable cloud apps

Page 206

You will need to configure the following properties:

• Number of threads (users): how many concurrent users will be accessing the
PowerServer Web APIs.

• Ramp-up period (seconds): how long to take to start all users. For example, if set to zero,
all users will start immediately. If set the number of users to 100, and ramp-up periods to
50, that means in every second, 2 users will be started.

• Loop count: how many times the test should repeat.

Adding HTTP requests

After you created the test plan and a thread group, you can determine which type of requests
to make (such as Web (HTTP/HTTPS), FTP, JDBC, Java etc.)

In this test, you need to make the HTTP request to the PowerServer Web APIs.

To add an HTTP request, right click on the thread group that you added just now, and then
select Add > Sampler > HTTP Request.

Tutorial 9: Load testing installable cloud apps

Page 207

When you specify an HTTP Request, you can make use of the information obtained by
Fiddler, such as the protocol, server IP, port, HTTP method, path, body data etc.

For example, you can add an HTTP POST request that access the RetrieveWithParm Web
API, and input the JSON request body to the Body Data tab.

In the same way, you can add requests like GET, POST, PUT, and DELETE.

Tutorial 9: Load testing installable cloud apps

Page 208

Adding an HTTP header manager

In case you have any specific headers that should be part of the HTTP request, you can add
an HTTP header manager. The HTTP header manager lets you add or override HTTP request
headers.

To add an HTTP header manager, right click on the HTTP request that you added just now,
and then select Add > Config Element > HTTP Header Manager.

Tutorial 9: Load testing installable cloud apps

Page 209

When you specify the HTTP header, you can make use of the information obtained by
Fiddler.

For example, you can add the Content-Type and Accept-Encoding to the HTTP header
manager.

If all requests will use the same header information, you can use one HTTP Header Manager
for all requests (or even for all thread groups), instead of each request having its own HTTP

Tutorial 9: Load testing installable cloud apps

Page 210

Header Manager. You can adjust the hierarchical level of the HTTP Header Manager (by
drag & drop) in Thread Group.

Adding listeners

The above is basically everything you need as a minimum setup of an HTTP request suite.

However, in order for you to view the results and statistics of the test, you need to add
Listeners. There are several types of listeners such as view results tree, summary report,
graph results etc.

• Summary Report: you can easily get the performance matrices of each request, such as
the number of samples processed, the average response time, throughput, error rate etc.

• View Results Tree: you can see all the details related to the request as well as HTTP
headers, body size, response code etc. In case any request failed, you can get useful
information from this listener for troubleshooting a specific error.

• Graph Results: you can see a graphical representation of the throughput vs. the deviation
of the tests.

• There are a couple more listeners which you can take some time to explore.

You can add one or more listeners according to your needs.

To add a listener, right click on the thread group, select Add > Listener, and then choose the
listener.

Tutorial 9: Load testing installable cloud apps

Page 211

Running tests and viewing results

It is recommended that you save the Test Plan to a file before running it.

To save the Test Plan, select Save or Save Test Plan As… from the File menu. The test
scripts will be saved in a JMX file. You can then add this file to your project repository, and
other members of your team can load it on their own JMeter tools as well.

Now you can start the test by clicking the Start button on the toolbar. This will start the
thread group and the results will be captured by the listener.

To run the test again, clean up the previous result by clicking the Clear All button on the
toolbar.

Tutorial 9: Load testing installable cloud apps

Page 212

9.2.3.3 Parameterizing the Retrieve test

You can keep running the same test without parameterizing the session ID, because the
session timeout value is 3600 seconds by default, and if you keep repeating the test within
3600 seconds, the session will stay valid until PowerServer Web APIs is restarted or the
application is closed.

Of course, you can also parameterize the session ID and transaction ID so that they are
always correlated with the dynamic values instead of static ones.

In this section, you will learn how to parameterize the session ID and transaction ID for
the Retrieve test. You will learn more about parameterization and correlation for the access
token, retrieval arguments, and ESQL parameters in Section 9.2.4, “Parameterization and
correlation”.

This section will reuse the test plan and thread group that was just recorded in
Section 9.2.3.1, “Recording scripts automatically (using Recorder)”.

Clean up the recorded test plan by removing any duplicated and unnecessary requests.
Suppose the test plan looks like this after cleanup:

Tutorial 9: Load testing installable cloud apps

Page 213

Now you will add two other thread groups:

• setUp Thread Group: contains the pre-test actions such as creating the session,
connecting to the database, starting the transaction etc.

• tearDown Thread Group: contains the post-test actions such as committing a transaction,
disconnecting from the database, destroying the session etc.

9.2.3.3.1 Adding a setUp Thread Group

The setUp Thread Group is used when you need to run initial actions to prepare the testing
environment, prior to starting your main test. These actions should be configured within the
setUp Thread Group and not within the regular Thread Group that you will use for running
your load test.

In this tutorial, you will run the following pre-test actions via setUp Thread Group:

• Create the user session

• Connect to the database

• Start the transaction

Adding a setUp Thread Group

To add a setUp Thread Group to the test plan, right click on the test plan that you added just
now, and then select Add > Threads (Users) > setUp Thread Group.

Make sure this setUp Thread Group is listed as the first thread group under the test plan, so
it starts before the other thread groups. You can drag the item in the tree to adjust their level
and order.

You can use the default settings for the setUp Thread Group.

Tutorial 9: Load testing installable cloud apps

Page 214

Adding HTTP requests

Now you can move (by drag & drop) the following HTTP requests from Thread Group to the
setUp Thread Group.

Parameterizing the session ID

To parameterize the session ID, you can first add a Regular Expression Extractor to save
the session ID to a local variable; and then add a BeanShell PostProcessor to set the local
variable as a global property, so that it can be shared in all thread groups.

Tutorial 9: Load testing installable cloud apps

Page 215

To add a Regular Expression Extractor, right click on the CreateSession request and then
select Add > Post Processors > Regular Expression Extractor.

Specify the Regular Expression Extractor like this.

• Name of created variable: “session” or any name you prefer

• Regular Expression: "sessionid":"(.+?)"

• Template: 1

• Match No.: 1

The session ID will be saved to the “session” variable.

To add a BeanShell PostProcessor, right click on the CreateSession request, and then select
Add > Post Processors > BeanShell PostProcessor.

Input the following script: ${__setProperty(session,${session},)}

The “session” variable becomes a JMeter global property.

Use the Search menu to search for all occurrences of “session” in all thread
groups, and then replace the static value of session ID with the global property
${__property(session,,)}.

Parameterizing the transaction ID

Similar to the session ID, you can first add a Regular Expression Extractor to save the
transaction ID into a local variable; and then add a BeanShell PostProcessor to set the local
variable as a global property, so that it can be shared in all thread groups.

Tutorial 9: Load testing installable cloud apps

Page 216

To add a Regular Expression Extractor, right click on the ConnectAndCreateTransaction
request and then select Add > Post Processors > Regular Expression Extractor.

Specify the Regular Expression Extractor like this:

• Name of created variable: “transaction” or any other name you prefer

• Regular Expression: "transactionid":"(.+?)"

• Template: 1

• Match No.: 1

The transaction ID will be saved to the “transaction” variable.

To add a BeanShell PostProcessor, right click on the ConnectAndCreateTransaction
request and then select Add > Post Processors > BeanShell PostProcessor.

Input the following script: ${__setProperty(transaction,
${transaction},)}

The “transaction” variable becomes a JMeter global property.

Use the Search menu to search for all occurrences of “transactionid” in all thread
groups, and then replace the static value of transaction ID with the global property
${__property(transaction,,)}.

9.2.3.3.2 Adding a tearDown Thread Group

The tearDown Thread Group is used to perform post-test actions. These actions should be
configured within the tearDown Thread Group and not within the regular Thread Group that
you will use for running your load test.

In this tutorial, you will run the following post-test actions via tearDown Thread Group:

• Commit the transaction

• Destroy the user session

Adding a tearDown Thread Group

To add a tearDown Thread Group to the test plan, right click on the test plan that you added
just now, and then select Add > Threads (Users) > tearDown Thread Group.

Tutorial 9: Load testing installable cloud apps

Page 217

Make sure this tearDown Thread Group is listed after Thread Group, so it starts when Thread
Group has finished.

You can use the default settings for the tearDown Thread Group. Normally the tearDown
Thread Group runs only once.

Adding HTTP requests

Now you can move (by drag & drop) the following HTTP requests from Thread Group to the
setUp Thread Group.

Tutorial 9: Load testing installable cloud apps

Page 218

Parameterizing the transaction ID

You can first add a Regular Expression Extractor to save the transaction ID into a local
variable; and then add a BeanShell PostProcessor to set the local variable as a global
property, so that it can be shared in all thread groups.

To add a Regular Expression Extractor, right click on the CommitAndCreateTransaction
request and then select Add > Post Processors > Regular Expression Extractor.

Specify the Regular Expression Extractor like this:

• Name of created variable: “transaction” or any other name you prefer

• Regular Expression: "transactionid":"(.+?)"

• Template: 1

• Match No.: 1

The transaction ID will be saved to the “transaction” variable.

Tutorial 9: Load testing installable cloud apps

Page 219

To add a BeanShell PostProcessor, right click on the CommitAndCreateTransaction
request and then select Add > Post Processors > BeanShell PostProcessor.

Input the following script: ${__setProperty(transaction,
${transaction},)}

The “transaction” variable becomes a JMeter global property.

Use the Search menu to search for all occurrences of “transactionid” in all thread
groups, and then replace the static value of transaction ID with the global property
${__property(transaction,,)}.

9.2.3.3.3 Configuring Thread Group

After moving requests to the setUp Thread Group and the tearDown Thread Group, now the
regular Thread Group contains only one RetrieveWithParm request.

Go to the Body Data of the RetrieveWithParm request, and make sure the session ID and
the transaction ID are replaced with the global property:

${__property(session,,)}

${__property(transaction,,)}

Configure the Thread Group according to your needs.

For example, set the number of users to 100, ramp-up period to 50 seconds, which means
2 requests are made in every second (set ramp-up to 0 will start all 100 users at one time).
Set loop count to infinite and duration to 86400 seconds, which means the test will be run
repeatedly in 24 hours.

Tutorial 9: Load testing installable cloud apps

Page 220

9.2.4 Parameterization and correlation

9.2.4.1 Why parameterization and correlation are required

Parameterization and correlation are required for unique/dynamic values that are generated
by the server. In the case of PowerServer, the access token, session ID, and transaction ID
are all unique/dynamic values generated by PowerServer at runtime. If you re-play the scripts
without first changing the value recorded, the scripts will fail, because the dynamic value
generated by PowerServer does not match with the value recorded.

Therefore, after the scripts are recorded, you need to find out all occurrences of the access
token, session ID, and transaction ID in the script and replace them with variables.

In some cases, dynamic values also refer to the retrieval arguments, ESQL parameters etc.

9.2.4.2 Parameterizing the access token

To parameterize the access token, you can use the following

• a Regular Expression Extractor that saves the access token into a local variable

• a BeanShell Sampler that calls the “setProperty” function to set the local variable as a
global property, so that it can be shared in all thread groups

In the case of PowerServer, the GetToken request gets the access token, therefore, you add
a Regular Expression Extractor to the GetToken request to get and save the token into a
local variable.

A GetToken request will look like this:

Tutorial 9: Load testing installable cloud apps

Page 221

To add a Regular Expression Extractor, right click on the GetToken request and then
select Add > Post Processors > Regular Expression Extractor.

Specify the Regular Expression Extractor like this.

• Name of created variable: “token” or any name you prefer

• Regular Expression: "access_token":"(.+?)"

• Template: 1

• Match No.: 1

The access token will be saved to the “token” variable. You can invoke the local variable
by typing ${token} in the requests (bodies and headers).

If you want to make the “token” variable a global property that can be accessed by all
threads and thread groups, you can add a BeanShell Sampler or BeanShell PostProcessor
to call the JMeter “setProperty” function. The “setProperty” function can set the “token”
variable as a global property. Section 9.2.3.3, “Parameterizing the Retrieve test” has
instructions for how to add a BeanShell PostProcessor. This section will show how to add a
BeanShell Sampler.

Tutorial 9: Load testing installable cloud apps

Page 222

To add a BeanShell Sampler, right click on setUp Thread Group, and then select Add >
Sampler > BeanShell Sampler.

• Use the default name or input any name you prefer.

• Input the following script:

${__setProperty(token,${token},)}

The “token” variable becomes a JMeter global property.

Use the Search menu to search for all occurrences of “access_token” in all
thread groups, and replace the static value of token with the global property
${__property(token,,)}.

9.2.4.3 Parameterizing the session ID

To parameterize the session ID, you can use the following

• a Regular Expression Extractor that saves the session ID into a local variable

• a BeanShell Sampler that calls the “setProperty” function to set the local variable as a
global property, so that it can be shared in all thread groups

In the case of PowerServer, the CreateSession request creates the session ID, therefore,
you add a Regular Expression Extractor to the CreateSession request to get and save the
session ID into a local variable.

To add a Regular Expression Extractor, right click on the CreateSession request and then
select Add > Post Processors > Regular Expression Extractor.

Specify the Regular Expression Extractor like this.

• Name of created variable: “session” or any name you prefer

• Regular Expression: "sessionid":"(.+?)"

• Template: 1

• Match No.: 1

The session ID will be saved to the “session” variable. You can invoke the local variable
by typing ${session} in the requests (bodies and headers).

Tutorial 9: Load testing installable cloud apps

Page 223

If you want to make the “session” variable a global property that can be accessed by all
threads and thread groups, you can add a BeanShell Sampler or BeanShell PostProcessor
to call the JMeter “setProperty” function. The “setProperty” function will set the “session”
variable as a global property. Section 9.2.3.3, “Parameterizing the Retrieve test” has
instructions for how to add a BeanShell PostProcessor. This section will show how to add a
BeanShell Sampler.

To add a BeanShell Sampler, right click on setUp Thread Group, and then select Add >
Sampler > BeanShell Sampler.

• Use the default name or input any name you prefer.

• Input the following script:

${__setProperty(session,${session},)}

The “session” variable becomes a JMeter global property.

Use the Search menu to search for all occurrences of “session” in all thread
groups, and replace the static value of session ID with the global property
${__property(session,,)}.

For example,

9.2.4.4 Parameterizing the transaction ID

Similar to the session ID, you can use the following to parameterize the transaction ID:

Tutorial 9: Load testing installable cloud apps

Page 224

• a Regular Expression Extractor that saves the transaction ID to a local variable

• a BeanShell Sampler that calls the “setProperty” function to set the local variable as a
global property, so that it can be shared in all thread groups

In the case of PowerServer, the following requests will update/change the transaction ID and
contain the new ID in the response body:

1. Connect

2. DisConnect

3. Commit

4. Rollback

When Commit or Rollback failed, the response body will still contain the old transaction ID,
which means the old transaction ID is still valid.

9.2.4.4.1 In single transaction

In the case of PowerServer, the Connect, DisConnect, Commit, and Rollback request
will update/change the transaction ID, therefore, you need to add a Regular Expression
Extractor to each of these requests to get and save the transaction ID into a variable.

Let’s take the ConnectAndCreateTransaction request as an example.

To add a Regular Expression Extractor, right click on the ConnectAndCreateTransaction
request and then select Add > Post Processors > Regular Expression Extractor.

Specify the Regular Expression Extractor like this:

• Name of created variable: “transaction” or any other name you prefer

• Regular Expression: "transactionid":"(.+?)"

• Template: 1

• Match No.: 1

The transaction ID will be saved to the “transaction” variable. You can invoke the local
variable by typing ${transaction} in the requests (bodies and headers).

Tutorial 9: Load testing installable cloud apps

Page 225

If you want to make the “transaction” variable a global property that can be accessed
by all threads and thread groups, you can add a BeanShell Sampler or BeanShell
PostProcessor to call the JMeter “setProperty” function. The “setProperty” function will set
the “transaction” variable as a global property. Section 9.2.3.3, “Parameterizing the Retrieve
test” has instructions for how to add a BeanShell PostProcessor. This section will show how
to add a BeanShell Sampler.

To add a BeanShell Sampler, right click on setUp Thread Group, and then select Add >
Sampler > BeanShell Sampler.

• Use the default name or input any name you prefer.

• Input the following script:

${__setProperty(transaction,${transaction},)}

The “transaction” variable becomes a JMeter global property.

Use the Search menu to search for all occurrences of “transactionid” in all thread groups, and
replace the static value of transaction ID with ${__property(transaction,,)}.

9.2.4.4.2 In multiple transactions

If your application uses multiple transactions, then each transaction will have its unique
transaction ID. The transactions can be differentiated by their transaction names, and their
transaction IDs shall be assigned with different variables, so that each variable will correlate
with its own transaction.

Suppose your application has two transactions: SQLCA, and lstr_trans1. You will need to
define two variables to store the ID of each transaction.

For transaction name “SQLCA”

• Add a Regular Expression Extractor to store the ID of the “SQLCA” transaction to a
variable. Suppose the variable name is “transaction”.

• Add a BeanShell Sampler to call the JMeter “setProperty” function to set the variable as a
global property: ${__setProperty(transaction,${transaction},)}

For transaction name “lstr_trans1”

• Add a Regular Expression Extractor to store the ID of the “lstr_trans1” transaction to a
variable. Suppose the variable name is “trans”.

• Add a BeanShell Sampler to call the JMeter “setProperty” function to set the variable as a
global property: ${__setProperty(trans,${trans},)}

Tutorial 9: Load testing installable cloud apps

Page 226

Make sure to replace the transaction ID with the appropriate variable according to the
transaction name. (You can use the Search menu to search for the transaction name and then
replace its ID with the corresponding variable.)

After execution, you can view the View Results Tree to double check the transaction ID.

For example, in the Connect and Disconnect request pair, the transaction ID should be the
same.

9.2.4.5 Parameterizing the retrieval argument

There are many ways for JMeter to parameterize the script. In this section, you will learn how
to parameterize the retrieval argument using a CSV file.

In this section, you will first need to prepare a CSV file that contains test data for the retrieval
argument. Suppose there is only one retrieval argument (so there will be only one column in
the CSV file).

Then, you will need to add a CSV Data Set Config element to read the data value from the
CSV file:

To add a CSV Data Set Config element, right click on Thread Group, and then select Add >
Config Element > CSV Data Set Config.

Specify the CSV Data Set Config like this:

• Filename: File name and path of the CSV file (if the file is in the bin folder, then enter the
filename, or use the full path of the file).

• Variable name: “value” or input any name you prefer (if there are multiple columns in the
CSV file, define multiple variables and separate them with commas “,”)

Tutorial 9: Load testing installable cloud apps

Page 227

Now, you can replace the initial value by typing ${value} in the request.

9.2.4.6 Parameterizing the ESQL parameter

Another common way to parameterize the script is to use the user defined variables and user
parameters.

Unlike CSV Data Set Config which can access an external file, user defined variables and
user parameters are used when you have less number of test data, because you need to
manually insert the test data.

In user defined variables, only one value can be defined for a variable; in user parameters
multiple values can be defined for a variable.

In this section, you will learn how to define the user defined variables and user parameters.

You can define variables in the User Define Variables for Test Plan (then the scope is global)
or Thread Group or Sampler (then the scope is local).

For example, select Test Plan, and then input the name and value of the variable.

Tutorial 9: Load testing installable cloud apps

Page 228

To add the User Parameters, right click on the Thread Group, and then select Add > Pre
Processors > User Parameters.

Suppose you have set the number of users to 3. You can define different test data for the 3
users like this.

Now you can replace the initial value with the user defined variables and user parameters in
the request.

Take the Select request as an example.

Tutorial 9: Load testing installable cloud apps

Page 229

Tutorial 10: Setting up a Web server

Page 230

10 Tutorial 10: Setting up a Web server

10.1 Overview

You can choose one of the following Web servers to host the client-side of the installable
cloud app:

• Windows IIS

• Windows/Linux Apache

• Windows/Linux Nginx

This tutorial provides detailed instructions on how to set up a Web server for this purpose.

10.2 Setting up IIS

10.2.1 Preparations

In this tutorial, we will set up a Web server and an FTP server running on the same IIS
instance.

Step 1: Set up the Web server with the following OS and software:

• Windows Server 2019 (64-bit)

• Microsoft IIS

The next section Installing Web Server (IIS) has detailed installation instructions.

Step 2: Configure Windows Defender Firewall on the Web server to allow the FTP port
(21 in this tutorial). The section "Configuring Windows Defender Firewall" has detailed
instructions.

10.2.2 Installing Web Server (IIS)

Step 1: In Windows Server 2019, open Server Manager, and then select Add roles and
features.

Step 2: In the Add Roles and Features Wizard, click Next several times until the Server
Roles section displays.

Step 3: Click the check box of Web Server (IIS); and then click Add Features when asked
whether to add features required for Web server.

Tutorial 10: Setting up a Web server

Page 231

Figure 10.1:

Step 4: Make sure the check box of Web Server (IIS) is selected.

Figure 10.2:

Tutorial 10: Setting up a Web server

Page 232

Step 5: Click Next until the Role Services section displays. Make sure the following role
services are selected.

• Default Document

• Static Content

• .NET Extensibility 4.7

• Application Initialization

• ASP.NET 4.7

• ISAPI Extensions

• ISAPI Filters

• IIS Management Console

• FTP Service

• FTP Extensibility

FTP Service & FTP Extensibility must be enabled if you want to create an IIS FTP site
for transferring files from a remote development machine to the Web server.

Figure 10.3:

Tutorial 10: Setting up a Web server

Page 233

Step 6: Click Next and then click Install.

After IIS is installed, a Default Web Site (with port 80) is automatically created (you could
also create new websites with different port numbers).

Figure 10.4:

Step 7: Open a Web browser and run the following URLs to access the Default Web Site.

http://localhost:80/

http://your_server_ip:80/

TIP: You can use "localhost" or the IP address to access the IIS website on the local
computer. To obtain the IP address, open a command prompt window and then type
ipconfig<Enter>. Write down the IP address as it is needed when you configure the Web
server profile in PowerBuilder.

If the IIS welcome screen displays, the IIS website is working properly.

Tutorial 10: Setting up a Web server

Page 234

Figure 10.5:

Also remember the physical path for Default Web Site which is C:\inetpub\wwwroot
by default (or any other path you have changed to). This is where the client app will be
deployed, or the FTP site will point to.

10.2.3 Configuring SSL on IIS

It is highly recommended that you configure Secure Sockets Layer (SSL) for the Web server,
so that HTTPS can be used to secure the connections between the client and the Web server.

For how to configure SSL on IIS, refer to https://docs.microsoft.com/en-us/iis/manage/
configuring-security/how-to-set-up-ssl-on-iis.

10.2.4 Creating an IIS FTP site

Note

To deploy the client app from the development PC to the remote Web server, you can
choose:

• Method 1: Deploy the client app to the remote server through the FTP protocol.
This requires that

1) An FTP server is set up on the Web server (the FTP server's physical path must
point to the Web root of the Web server).

This section will walk you through how to set up an FTP server on the Web server.

2) The client app is deployed to the remote Web server through the FTP server.

Tutorial 1 > "Task 4: Setting up the development PC" has detailed instructions.

https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis
https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis

Tutorial 10: Setting up a Web server

Page 235

• Method 2: Package the client app and then install (or copy) it to the remote Web
server.

Follow the instructions in Packaging and copying the client app to package the
client app and then install (or copy) it to the Web server Web root.

The following steps will walk you through setting up an IIS FTP site on the Web server, so
that PowerBuilder can deploy files to the remote Web server through the FTP protocol.

In the previous section, if you have selected to enable FTP Service & FTP Extensibility,
you can create an IIS FTP site to be used by the remote deployment.

Step 1: In the IIS Manager, right click Sites, select Add FTP Site.

Step 2: Specify a name for the FTP site, and set the physical path to the Web root of the IIS
Web server (C:\inetpub\wwwroot in this tutorial). Click Next.

Figure 10.6:

Step 3: Use the default port 21 (or specify a different port if you like). If no certificate is
available, you can select No SSL. Use the default values for the other settings. Click Next.

For how to configure SSL on an IIS FTP site, refer to Configure an SSL-based FTP server.

Tutorial 10: Setting up a Web server

Page 236

Figure 10.7:

Step 4: Select Anonymous and Basic authentication. Select All users or specify the users
that are allowed to access the FTP site, and then select the Read and Write permissions.
Click Finish.

Tutorial 10: Setting up a Web server

Page 237

Figure 10.8:

The FTP site is created.

Figure 10.9:

Step 5: Open a Web browser and run the following URL to access the FTP site.

Tutorial 10: Setting up a Web server

Page 238

ftp://your_server_ip:21/

If the FTP root displays, then the FTP site is working properly.

Figure 10.10:

10.2.5 Configuring SSL on FTP server

To configure the FTP server with Secure Sockets Layer (SSL), you can follow instructions in
https://docs.microsoft.com/en-us/iis/publish/using-the-ftp-service/using-ftp-over-ssl-in-iis-7.

The following highlights the important settings for configuring SSL on an FTP site:

• The Physical path must be the full path to the Web server Web root.

• The FTP site must be set to Require SSL or Allow SSL.

• An SSL certificate must be selected.

• The Read and Write permissions must be enabled.

https://docs.microsoft.com/en-us/iis/publish/using-the-ftp-service/using-ftp-over-ssl-in-iis-7

Tutorial 10: Setting up a Web server

Page 239

Figure 10.11: FTP site properties

When you configure the Web Server profile in PowerBuilder that connects with an SSL Web
server, you should input the HTTPS listener and port number for the Web server.

10.3 Setting up Apache on Windows

10.3.1 Preparations

In this tutorial, we will set up a Web server running on Apache HTTP Server on Windows.

Step 1: Set up the Web server with the following OS and software:

• Windows Server 2019 (64-bit)

• Visual C++ Redistributable

• Apache HTTP Server 2.4.47

The next section Installing Apache HTTP Server has detailed installation instructions.

Step 2: Configure Windows Defender Firewall on the Web server to allow the port
(the HTTP port is 80 and the FTP port is 21 in this tutorial) to go through. The section
"Configuring Windows Defender Firewall" has detailed instructions.

Tutorial 10: Setting up a Web server

Page 240

10.3.2 Installing Apache HTTP Server

Step 1: Select a binary package provider for Apache for Windows from https://
httpd.apache.org/docs/current/platform/windows.html#down.

Step 2: In this tutorial, select Apache Lounge, and then download the following packages
from https://www.apachelounge.com/download/.

• Visual C++ Redistributable for Visual Studio 2015 - 2019: https://aka.ms/vs/16/release/
VC_redist.x64.exe

• Apache 2.4.47 Win64: https://www.apachelounge.com/download/VS16/binaries/
httpd-2.4.47-win64-VS16.zip

Step 3: Double click VC_redist.x64.exe to install the Visual C++ Redistributable first.

Step 4: Unzip the httpd-2.4.47-win64-VS16.zip file and place the Apache24 folder under
the C drive ("C:\Apache24" is the default ServerRoot in conf\httpd.conf; and the default
folder for web files is DocumentRoot "C:\Apache24\htdocs"). If you place the Apache24
folder to another location, change the following setting accordingly.

Define SRVROOT "c:/Apache24"

Note

Paths in httpd.conf and other configuration files must be specified using forward
slashes ("/") instead of back slashes ("\").

You could also change the IP address, port number, server name etc. in httpd.conf rather
than using the default values.

Tip: In Windows, you can execute the command "netstat -ano | findstr portnumber" to check
if the port number is occupied by any other program.

Step 5: Open the command prompt window, go to the C:\Apache24\bin folder, and run the
Apache HTTP server.

cd C:\Apache24\bin
httpd.exe

https://httpd.apache.org/docs/current/platform/windows.html#down
https://httpd.apache.org/docs/current/platform/windows.html#down
https://www.apachelounge.com/download/
https://aka.ms/vs/16/release/VC_redist.x64.exe
https://aka.ms/vs/16/release/VC_redist.x64.exe
https://www.apachelounge.com/download/VS16/binaries/httpd-2.4.47-win64-VS16.zip
https://www.apachelounge.com/download/VS16/binaries/httpd-2.4.47-win64-VS16.zip

Tutorial 10: Setting up a Web server

Page 241

Figure 10.12:

Step 6: Test the Apache HTTP server by opening up a Web browser and typing in the
address: http://localhost.

The following message indicates the Apache HTTP server is working properly.

You can further test from the development PC by typing http://your_server_ip in a browser.

Figure 10.13:

The Using Apache HTTP Server on Microsoft Windows page has more detailed
documentation about using Apache on Windows.

10.3.3 Configuring SSL on Apache

It is highly recommended that you configure Secure Sockets Layer (SSL) for the Web server,
so that HTTPS can be used to secure the connections between the client and the Web server.

For how to configure SSL on Apache, refer to https://httpd.apache.org/docs/2.4/ssl/.

10.3.4 Installing FTP server

Note

To deploy the client app from the development PC to the remote Web server, you can
choose:

https://httpd.apache.org/docs/current/platform/windows.html
https://httpd.apache.org/docs/2.4/ssl/

Tutorial 10: Setting up a Web server

Page 242

• Method 1: Deploy the client app to the remote server through the FTP protocol.
This requires that

1) An FTP server is set up on the Web server (the FTP server's physical path must
point to the Web root of the Web server).

This section will walk you through how to set up an FTP server on the Web server.

2) The client app is deployed to the remote Web server through the FTP server.

Tutorial 1 > "Task 4: Setting up the development PC" has detailed instructions.

• Method 2: Package the client app and then install (or copy) it to the remote Web
server.

Follow the instructions in Packaging and copying the client app to package the
client app and then install (or copy) it to the Web server Web root.

The following steps will walk you through setting up an FTP server on the Web server, so
that PowerBuilder can deploy files to the remote server through the FTP protocol.

In this tutorial, we set up an IIS FTP server.

To enable the IIS FTP service and create an IIS FTP site,

Step 1: Follow the instructions in Installing Web Server (IIS) until the Role Services section
displays; and make sure the following role services are selected and installed.

• FTP Server

• FTP Service

• FTP Extensibility

• Management Tools

• IIS Management Console

Tutorial 10: Setting up a Web server

Page 243

Figure 10.14:

Step 2: Follow the instructions in Creating an IIS FTP site to create an FTP site and set the
physical path to the document root of the Apache HTTP server which is C:\Apache24\htdocs
by default.

Tutorial 10: Setting up a Web server

Page 244

Figure 10.15:

Step 3: Test the FTP site by opening up a Web browser and typing in the address: ftp://
localhost.

The following message indicates the FTP site is working properly.

You can further test from the development PC by typing ftp://your_server_ip in a browser. (If
access failed, check that if the firewall has blocked the FTP port; you can try to turn off the
firewall on the server.)

Figure 10.16:

Tutorial 10: Setting up a Web server

Page 245

10.4 Setting up Apache on Linux

10.4.1 Preparations

In this tutorial, we will set up a Web server running on Apache HTTP Server on Linux.

Step 1: Set up a server with the following OS and software:

• CentOS 8 (64-bit)

• Apache HTTP Server

The next section Installing Apache HTTP Server has detailed installation instructions.

Step 2: Configure the CentOS user account: you can either use the root account or create a
new account with administrative privileges.

Step 3: Set up a firewall on the server and make sure the firewall allows the port (the HTTP
port is 80 in this tutorial) to go through.

Step 4: Make sure the server can connect to Internet during the installation of Apache HTTP
Server.

10.4.2 Installing Apache HTTP Server

Step 1: Download and install Apache HTTP Server from the CentOS's default software
repositories. Make sure the machine can connect to Internet during the download and
installation process.

$ sudo dnf install httpd

During the download and installation process, you might be prompted to enter the password
for your user account, or enter y to confirm that you want to install Apache.

Step 2: Start Apache HTTP Server.

$ sudo systemctl start httpd

Step 3: Verify that the HTTP Server service is running.

$ sudo systemctl status httpd

Tutorial 10: Setting up a Web server

Page 246

Figure 10.17:

Step 4: If you have set up a firewall on the server, run the following command to permanently
enable HTTP service and port 80:

sudo firewall-cmd --permanent --zone=public --add-service=http

sudo firewall-cmd --permanent --zone=public --add-port=80/tcp

To apply the changes, reload the firewall service using the following command:

sudo firewall-cmd --reload

To verify that the http service and port 80 were added successfully, you can run:

sudo firewall-cmd --permanent --list-all

Figure 10.18:

Step 5: Test the Apache HTTP server by opening up a Web browser and typing in the
address: http://localhost or http://your_server_ip.

Tutorial 10: Setting up a Web server

Page 247

The following page indicates the Apache HTTP server is installed and started successfully.

You can further test from the development PC by typing http://your_server_ip in a browser.

Figure 10.19:

10.4.3 Configuring SSL on Apache

It is highly recommended that you configure Secure Sockets Layer (SSL) for the Web server,
so that HTTPS can be used to secure the connections between the client and the Web server.

For how to configure SSL on Apache, refer to https://httpd.apache.org/docs/2.4/ssl/.

10.4.4 Configuring Apache to be case-insensitive

As PowerBuilder is designed to be case-insensitive and always uses lower cases to access
the deployed folders/files, therefore, in a case-sensitive file system like Linux, folder/file
names (such as theme files, images etc.) containing upper cases may not be found or loaded.
To avoid such issues, you should always use lower cases in folder/file names for your
application, or add the following configuration to Apache in Linux to ignore the case:

1. Go to the /etc/httpd/conf folder, and open httpd.conf in a text editor.

2. Search "loadmodule" and add the following lines.

Pay special attention to the words "speling_module" and "mod_speling" (not spelling).

LoadModule speling_module modules/mod_speling.so
CheckSpelling on

https://httpd.apache.org/docs/2.4/ssl/

Tutorial 10: Setting up a Web server

Page 248

Figure 10.20:

3. Check if any syntax error in httpd.conf.

$ sudo apachectl configtest

4. Restart Apache.

$ sudo systemctl restart httpd

If Apache failed to start, go to the /var/log/httpd folder and view the error_log.log and
access_log.log files to read the detailed error information.

10.4.5 Packaging and copying the client app

Note

To deploy the client app from the development PC to the remote Web server, you can
choose:

• Method 1: Deploy the client app to the remote server through the FTP protocol.
This requires that

1) An FTP server is set up on the Web server (the FTP server's physical path must
point to the Web root of the Apache HTTP Server: /var/www/html/).

2) The client app is deployed to the remote Web server through the FTP server.

• Method 2: Package the client app and then install (or copy) it to the remote Web
server.

This section will walk you through packaging and copying the client app to the
Web root of the Apache HTTP Server: /var/www/html/.

Before you take the steps below to package the client app, make sure you have built the
application successfully by following instructions in Tutorial 1 > "Task 4: Setting up the
development PC".

Tutorial 10: Setting up a Web server

Page 249

Step 1: In the PowerServer project painter, select the Client Deployment tab, then select
Package the compiled app and manually deploy later, and then select Zipped file,
Package Cloud App Launcher, and Package all runtime files.

Figure 10.21:

Step 2: Save the project settings and then click the Build & Deploy PowerServer Project or
Deploy PowerServer Project button in the toolbar to generate the package.

When the packaging process is completed, the folder that contains the generated file will be
displayed.

Step 3: Copy and extract the generated zipped file to the Web root of the Apache HTTP
Server: /var/www/html/.

10.5 Setting up Nginx on Windows

10.5.1 Preparations

In this tutorial, we will set up a Web server running on Nginx.

Step 1: Set up the Web server with the following OS and software:

• Windows Server 2019 (64-bit)

• Nginx 1.19.10

The next section Installing Nginx has detailed installation instructions.

Step 2: Configure Windows Defender Firewall on the Web server to allow the port (the
HTTP port is 80 and the FTP port is 21 in this tutorial). The section "Configuring Windows
Defender Firewall" has detailed instructions.

Tutorial 10: Setting up a Web server

Page 250

10.5.2 Installing Nginx

Step 1: Download Nginx/Windows-1.19.10 from http://nginx.org/en/download.html.

Step 2: Unzip the downloaded nginx-1.19.10.zip file and place the nginx-1.19.10 folder
under the C drive or any location you like.

Step 3: Open the command prompt window, go to the nginx-1.19.10 folder, and run Nginx.

cd C:\nginx-1.19.10
start nginx

You could also change the IP address, port number etc. in conf\nginx.conf rather than using
the default values.

Note

Paths in nginx.conf and other configuration files must be specified using forward
slashes ("/") instead of back slashes ("\").

Step 4: Run the tasklist command to see if the Nginx processes are running.

tasklist /fi "imagename eq nginx.exe"

Figure 10.22:

Step 6: Test the Nginx web server by opening up a Web browser and typing in the address:
http://localhost.

The following page indicates the Nginx web server is working successfully.

You can further test from the development PC by typing http://your_server_ip in a browser.

http://nginx.org/download/nginx-1.19.10.zip
http://nginx.org/en/download.html

Tutorial 10: Setting up a Web server

Page 251

Figure 10.23:

The Nginx for Windows page has more detailed documentation on using Nginx on Windows.

10.5.3 Configuring SSL on Nginx

It is highly recommended that you configure Secure Sockets Layer (SSL) for the Web server,
so that HTTPS can be used to secure the connections between the client and the Web server.

For how to configure SSL on Nginx, refer to http://nginx.org/cn/docs/http/
configuring_https_servers.html.

10.5.4 Installing FTP server

Note

To deploy the client app from the development PC to the remote Web server, you can
choose:

• Method 1: Deploy the client app to the remote server through the FTP protocol.
This requires that

1) An FTP server is set up on the Web server (the FTP server's physical path must
point to the Web root of the Web server).

This section will walk you through how to set up an FTP server on the Web server.

2) The client app is deployed to the remote Web server through the FTP server.

Tutorial 1 > "Task 4: Setting up the development PC" has detailed instructions.

• Method 2: Package the client app and then install (or copy) it to the remote Web
server.

Follow the instructions in Packaging and copying the client app to package the
client app and then install (or copy) it to the Web server Web root.

The following steps will walk you through setting up an FTP server on the Web server, so
that PowerBuilder can deploy files to the remote server through the FTP protocol.

http://nginx.org/en/docs/windows.html
http://nginx.org/cn/docs/http/configuring_https_servers.html
http://nginx.org/cn/docs/http/configuring_https_servers.html

Tutorial 10: Setting up a Web server

Page 252

In this tutorial, we set up an IIS FTP server.

To enable the IIS FTP service and create an IIS FTP site,

Step 1: Follow the instructions in Installing Web Server (IIS) until the Role Services section
displays; and make sure the following role services are selected and installed.

• FTP Server

• FTP Service

• FTP Extensibility

• Management Tools

• IIS Management Console

Figure 10.24:

Step 2: Follow the instructions in Creating an IIS FTP site to create an FTP site and set the
physical path to the server root of Nginx which is nginx-1.19.10\html by default.

Tutorial 10: Setting up a Web server

Page 253

Figure 10.25:

Step 3: Test the FTP site by opening up a Web browser and typing in the address: ftp://
localhost.

The following message indicates the FTP site is working successfully.

You can further test from the development PC by typing ftp://your_server_ip in a browser. (If
access failed, check that if the firewall has blocked the FTP port; you can try to turn off the
firewall on the server.)

Figure 10.26:

Tutorial 10: Setting up a Web server

Page 254

10.6 Setting up Nginx on Linux

10.6.1 Preparations

In this tutorial, we will set up a Web server running on Nginx on Linux.

Step 1: Set up a Web server with the following OS and software:

• CentOS 8 (64-bit)

• Nginx

The next section Installing Nginx has detailed installation instructions.

Step 2: Configure the CentOS user account: you can either use the root account or create a
new account with administrative privileges.

Step 3: Set up a firewall on the server and make sure the firewall allows the port (the HTTP
port is 80 in this tutorial) to go through.

Step 4: Make sure the server can connect to Internet during the installation of Nginx.

10.6.2 Installing Nginx

Step 1: Download and install Nginx from the CentOS's default software repositories. Make
sure the machine can connect to Internet during the download and installation process.

$ sudo dnf install nginx

During the download and installation process, you might be prompted to enter the password
for your user account, or enter y to confirm that you want to install Nginx.

Step 2: Enable and start the Nginx HTTP server when the installation is completed.

$ sudo systemctl enable nginx

$ sudo systemctl start nginx

Step 3: Verify that the Nginx HTTP server service is running.

$ sudo systemctl status nginx.service

Tutorial 10: Setting up a Web server

Page 255

Figure 10.27:

Step 4: If you have set up a firewall on the server, run the following command to permanently
enable the HTTP service and port 80:

sudo firewall-cmd --permanent --zone=public --add-service=http

sudo firewall-cmd --permanent --zone=public --add-port=80/tcp

To apply the changes, reload the firewall service using the following command:

sudo firewall-cmd --reload

To verify that the http service and port 80 were added successfully, you can run:

sudo firewall-cmd --permanent --list-all

Figure 10.28:

Step 5: Test the Nginx HTTP server by opening up a Web browser and typing in the address:
http://localhost.

The following page indicates the Nginx HTTP server is installed and started successfully.

Tutorial 10: Setting up a Web server

Page 256

You can further test from the development PC by typing http://your_server_ip in a browser.

Figure 10.29:

10.6.3 Configuring SSL on Nginx

It is highly recommended that you configure Secure Sockets Layer (SSL) for the Web server,
so that HTTPS can be used to secure the connections between the client and the Web server.

For how to configure SSL on Nginx, refer to http://nginx.org/cn/docs/http/
configuring_https_servers.html.

10.6.4 Configuring Nginx to be case-insensitive

As PowerBuilder is designed to be case-insensitive and always uses lower cases to access the
deployed folders/files, therefore, in a case-sensitive file system like Linux, folder/file names
(such as images etc.) containing upper cases may not be found or loaded.

To avoid such issues, you are recommended to

• Change the folder/file names (such as theme, images etc.) to use all lower cases; or

• Configure Nginx in Linux to be case-insensitive.

To configure Nginx in Linux to be case-insensitive,

1. Download the ngx_http_lower_upper_case module and Nginx source code.

Suppose ngx_http_lower_upper_case is de-compressed to the folder: /src/case/, and Nginx
is de-decompressed to the folder: /src/ngx/.

2. Go to the Nginx folder and load the ngx_http_lower_upper_case module.

cd /src/ngx/nginx-1.21.3

http://nginx.org/cn/docs/http/configuring_https_servers.html
http://nginx.org/cn/docs/http/configuring_https_servers.html
https://github.com/replay/ngx_http_lower_upper_case
http://nginx.org/download/nginx-1.21.3.tar.gz

Tutorial 10: Setting up a Web server

Page 257

./configure --prefix=/nginx \
--add-module=/src/case/ngx_http_lower_upper_case

3. Compile the Nginx source code.

make

4. If Nginx is already installed, stop Nginx, copy the files from /src/ngx/nginx-1.21.3/objs/
nginx to replace the existing ones, and then restart Nginx.

If Nginx is not yet installed, execute the following command to install Nginx:

make install

5. Go to the Nginx installation folder and open the nginx.conf file in a text editor.

Locate the "location" block and modify it like below:

location ~[A-Z+] {
 lower $caseurl $request_uri;
 rewrite ^(.*) $caseurl last;
}

6. Reload the Nginx configuration.

nginx –s reload

10.6.5 Packaging and copying the client app

To deploy the client app from the development PC to the remote Web server, you can choose:

• Method 1: Deploy the client app to the remote server through the FTP protocol. This
requires that

1) An FTP server is set up on the Web server (the FTP server's physical path must point to
the Web root of the Nginx HTTP server which is /usr/share/nginx/html by default).

2) The client app is deployed to the remote Web server through the FTP server.

• Method 2: Package the client app and then install (or copy) it to the remote Web server.

Follow the instructions in Packaging and copying the client app to package and copy the
client app to the Web root of the Nginx HTTP server: /usr/share/nginx/html.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 258

11 Tutorial 11: Deploying installable cloud
apps to Kubernetes

11.1 Overview

You can deploy the PowerBuilder installable cloud applications (including the client app, the
PowerServer Web APIs, and the database) to Kubernetes.

In this tutorial, we will take Azure Kubernetes Service (AKS) as an example to show you
how to create a Kubernetes cluster in AKS and then deploy the PowerBuilder installable
cloud application to it.

This tutorial assumes a basic understanding of the following concepts:

• Kubernetes concepts. For more information, see Kubernetes core concepts for Azure
Kubernetes Service (AKS).

• Docker concepts. For more information, see Docker overview.

Generally speaking, this tutorial accomplish the following major tasks:

• Creating a Kubernetes cluster

• Containerizing your application

• Deploying the containerized application to the Kubernetes cluster

11.2 Before you begin

Prepare a local machine that can connect with the Kubernetes cluster and deploy the Docker
container image to the cluster.

You should install the following OS and software to the machine:

• Windows 10

• Docker Desktop

Docker Desktop includes Docker Engine, Docker CLI client, Docker Compose, Docker
Content Trust, Kubernetes, and Credential Helper.

After installing Docker Desktop, you need to enable Kubernetes support. To do that, go to
Preferences > Kubernetes and then click Enable Kubernetes.

• Azure CLI

This tutorial requires that you are running the Azure CLI version 2.0.64 or later. Run az --
version to find the version. If you need to install or upgrade, see Install Azure CLI.

• kubectl

You will need to use kubectl to connect to the Kubernetes cluster from your local computer
and create deployments for the application.

https://docs.microsoft.com/en-us/azure/aks/concepts-clusters-workloads
https://docs.microsoft.com/en-us/azure/aks/concepts-clusters-workloads
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/desktop/windows/install/
https://docs.microsoft.com/cli/azure/install-azure-cli
https://kubernetes.io/docs/user-guide/kubectl/

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 259

kubectl is already installed if you use the Azure Cloud Shell. You can also install it locally
using the az aks install-cli command.

• Helm

To install the Nginx ingress controller, you use Helm. Make sure you are using the latest
release of Helm and have access to the ingress-nginx Helm repository.

There are several ways to accomplish a task in Azure, for example, you can create an AKS
cluster using the Azure portal, a PowerShell script, an Azure CLI script etc. In this tutorial,
we will take priority in using the Azure portal whenever possible.

11.3 Configuring Azure Kubernetes Service

11.3.1 Creating a Kubernetes cluster in AKS

You can create a Kubernetes cluster in Azure Kubernetes Service (AKS) using either of the
following methods:

• The Azure CLI

• The Azure portal

• Azure PowerShell

• Using template-driven deployment options, like Azure Resource Manager templates and
Terraform

This tutorial will show you how to create the cluster using the Azure portal.

Step 1: Sign in to the Azure portal at https://portal.azure.com.

Step 2: In the search box at the top of the portal, enter Kubernetes.

Step 3: In the search results, select Kubernetes services.

Step 4: Select Create a Kubernetes cluster.

https://helm.sh
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-powershell
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-rm-template
https://portal.azure.com/

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 260

Step 5: On the Basics page, configure the following options:

• Project details:

• Select an Azure Subscription.

• Select or create an Azure Resource group, such as pscloudapp.

• Cluster details:

• Ensure the Preset configuration is Standard. For more details on preset configurations,
see Cluster configuration presets in the Azure portal.

• Enter a Kubernetes cluster name, such as pscloudapp.

• Select a Region and Kubernetes version for the AKS cluster.

• Primary node pool:

• Leave the default values selected.

https://docs.microsoft.com/en-us/azure/aks/quotas-skus-regions#cluster-configuration-presets-in-the-azure-portal

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 261

Step 6: Select Next: Node pools at the bottom of the screen.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 262

Step 7: On the Node pools page, keep the default options. Click Next: Authentication at the
bottom of the screen.

Step 8: On the Authentication page, configure the following options:

• Leave the Authentication method field with System-assigned managed identity.

To avoid needing an Owner or Azure account administrator role, you can also manually
configure a service principal to pull images from ACR. For more information, see ACR
authentication with service principals or Authenticate from Kubernetes with a pull secret.

• Enable the Kubernetes role-based access control (Kubernetes RBAC) option to provide
more fine-grained control over access to the Kubernetes resources deployed in your AKS
cluster.

Step 9: Click Next: Networking at the bottom of the screen.

Step 10: On the Networking page, select Kubenet. Click Next: Integrations at the bottom
of the screen.

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-auth-service-principal
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-auth-service-principal
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-auth-kubernetes

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 263

Step 11: On the Integrations page, configure the following options:

• In the Container registry section, select Create new to create a new container registry.

If you selected Service principal authentication method, you can only select None in the
Container registry section.

Step 12: Click Review + create at the bottom of the screen.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 264

Step 13: When validation completes, click Create.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 265

Step 14: When deployment completes, view the details.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 266

11.3.2 Connecting to the Kubernetes cluster

Step 1: Get the authentication code for logging into Azure.

Az login --use-device-code

Step 2: Follow the instructions in the output to log in to Azure.

When login is successful, the following information will display.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 267

Step 3: Configure the kubectl to connect to your Kubernetes cluster using the az aks get-
credentials command. For example,

az aks get-credentials -g pscloudapp -n pscloudapp

The command downloads credentials and configures the Kubernetes command-line tool to
use them.

Step 4: View the connection to your cluster using the following command.

Kubectl get nodes

The output returns a list of the cluster nodes, make sure the node status is ready.

11.3.3 Installing ingress controller

An ingress controller is a piece of software that provides reverse proxy, configurable
traffic routing, and TLS termination for Kubernetes services. For more, refer to https://
docs.microsoft.com/en-us/azure/aks/ingress-basic. You can choose from a number of ingress
controllers.

This tutorial shows you how to install the Nginx ingress controller in the AKS cluster.

11.3.3.1 Creating public IP address

By default, an Nginx ingress controller is created with a new public IP address assignment.
This public IP address is only static for the life-span of the ingress controller, and is lost if
the controller is deleted and re-created. A common configuration requirement is to provide

https://docs.microsoft.com/en-us/azure/aks/ingress-basic
https://docs.microsoft.com/en-us/azure/aks/ingress-basic
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 268

the Nginx ingress controller an existing static public IP address. The static public IP address
remains if the ingress controller is deleted. This approach allows you to use existing DNS
records and network configurations in a consistent manner throughout the life cycle of your
applications.

There are several ways to create a static public IP address, as described here. In this tutorial,
you will create a static public IP address using the Azure portal.

Step 1: Get the resource group name of the AKS cluster before you create the static public IP
address:

1. In the Azure portal, select the resource group.

2. Select the Properties page.

3. Make a note of the Infrastructure resource group.

For example, the infrastructure resource group for pscloudapp is
MC_pscloudapp_pscloudapp_westus2.

Step 2: Create a static public IP address.

The following example creates a static public IP address named pscloudapp in the AKS
cluster resource group obtained in the previous step:

1. In the search box at the top of the portal, enter Public IP.

2. In the search results, select Public IP addresses.

3. Select + Create.

4. In Create public IP address, enter, or select the following information:

https://docs.microsoft.com/en-us/azure/virtual-network/create-public-ip-portal?tabs=option-create-public-ip-standard-zones

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 269

Select Standard from SKU.

Enter a name for the IP address.

Select your subscription.

Select MC_pscloudapp_pscloudapp_westus2 from Resource group.

Select the same location as the cluster.

Leave the others as default.

Finally, click Create.

When the IP address is created successfully, make a note of the IP address, for example,
52.143.79.245.

You will associate this static public IP address with the Nginx ingress controller in the next
section, and you may use it to access the application later.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 270

11.3.3.2 Creating a Kubernetes namespace

Before installing Ingress-Nginx, you are recommended to create a new Kubernetes
namespace for the ingress resources.

For example, execute the following command to create a new namespace: ingress-basic-
pscloudapp.

kubectl create namespace ingress-basic-pscloudapp

11.3.3.3 Installing Ingress-Nginx

Step 1: Add the repo of the ingress-nginx repository to your helm config:

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm repo update

Step 2: Install the Nginx ingress controller in the ingress-basic-pscloudapp namespace
created in the previous step.

• The static public IP address created in the earlier step will be assigned to the ingress
controller using the --set controller.service.loadBalancerIP parameter.

• For added redundancy, two replicas of the Nginx ingress controllers are deployed with the
--set controller.replicaCount parameter.

• The ingress controller also needs to be scheduled on a Linux node. Windows Server
nodes shouldn't run the ingress controller. A node selector is specified using the --

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 271

set nodeSelector parameter to tell the Kubernetes scheduler to run the Nginx ingress
controller on a Linux-based node.

helm install nginx-ingress ingress-nginx/ingress-nginx \
 --namespace ingress-basic-pscloudapp \
 --set controller.replicaCount=2 \
 --set controller.nodeSelector."beta\.kubernetes\.io/os"=linux \
 --set defaultBackend.nodeSelector."beta\.kubernetes\.io/os"=linux \
 --set controller.admissionWebhooks.patch.nodeSelector."beta\.kubernetes
\.io/os"=linux \
 --set controller.service.loadBalancerIP="52.143.79.245"

Step 3: View the installed Nginx ingress controller.

kubectl --namespace ingress-basic-pscloudapp get services -o wide -w nginx-ingress-
ingress-nginx-controller

A Kubernetes load balancer service is created for the Nginx ingress controller; and the static
public IP address is assigned.

11.3.3.4 Using your own TLS certificates in AKS

You can generate your own certificates, and create a Kubernetes secret for use with the
ingress route.

For testing purpose, you can generate a self-signed certificate with openssl. For production
use, you should request a trusted, signed certificate through a provider or your own certificate
authority (CA).

In this tutorial, we assume that you have already generated a TLS certificate and a private
key.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 272

Now, you will generate a Kubernetes TLS secret using the TLS certificate and the private
key.

11.3.3.4.1 Creating Kubernetes secret for the TLS certificate

To allow Kubernetes to use the TLS certificate and private key for the ingress controller, you
create and use a Secret.

The secret is defined once, and will be referenced later when you define ingress routes.

Step 1: Copy the certificate and the private key to the local publish directory, for example, C:
\cloudappdemo\publish.

Step 2: Create a secret. For example, the following command creates a secret named aks-
ingress-tls-appeon.com.

kubectl create secret tls aks-ingress-tls-appeon.com \
 --key server.key \
 --cert server_appeon.com_ssl.cer

11.3.3.4.2 (Optional) Adding the default certificate

You can also add a default certificate, so that it displays no matter when the IP address or
domain name is accessed.

Step 1: Edit the Nginx-Ingress deployment configuration file. For example,

kubectl edit deployment nginx-ingress-ingress-nginx-controller -o yaml -n ingress-
basic-pscloudapp

Step 2: Add the following parameter to the configuration.

- --default-ssl-certificate=default/aks-ingress-tls-appeon.com

11.3.4 Logging into Azure container registry

During the process of creating the Kubernetes cluster in AKS, you should have already
created an Azure container registry. If not, create one in the Azure portal (by selecting
Create in the Home > Container registries page) or using the az acr create command.

https://docs.microsoft.com/cli/azure/acr?view=azure-cli-latest#az_acr_create

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 273

The Azure container registry is your private Docker registry in Azure. Later, you will push
the Docker container images (running the installable cloud app) to the Azure container
registry.

You must log in to the Azure container registry before pushing images to it. Take note of
the username, password, and login server name of the container registry. You will need this
information later.

Step 1: Get the username and password for the container registry.

1. In the Azure portal, select the container registry > Access keys.

2. Set Admin user to Enabled.

3. Make a note of the username and password, for example,

Username: pscloudapp

Password: TuYkbf4ZMgIV42J/RRC9YpHtgL4MxZDP

Password2: G=P/eJETTIF5m/kCkXHM5OC9VIL4y9dx

Step 2: Integrate the container registry with the AKS cluster. For example,

az aks update -n pscloudapp -g pscloudapp --attach-acr pscloudapp

Step 3: Get the full login server name of the container registry.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 274

1. In the Azure portal, select the container registry > Overview.

2. Make a note of the login server name.

For example, pscloudapp.azurecr.io. It will be used to log into the container registry as
well as push the images to the registry.

Step 4: Log into the container registry using the full login server name. For example,

docker login pscloudapp.azurecr.io

11.3.5 Creating a database

For optimal performance, it is highly recommended that the application database is also
running in the same Azure instance.

You can create a database in Azure using the Azure portal, a PowerShell script, or an Azure
CLI script.

In this tutorial, you will create a database using the Azure portal; and you will create an
Azure SQL Database.

Azure SQL Database is based on the latest stable version of the Microsoft SQL Server
database engine.

Step 1: In the search box at the top of the portal, enter SQL database.

Step 2: In the search results, select SQL database.

Step 3: Select Create.

Step 4: On the Basics page, configure the following options:

1. Select the subscription.

2. Select the resource group.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 275

3. Enter any text as the database name.

4. For Server, select Create New to create a new server and specify the following:

a. Server name: Enter a unique name as the server name, for example, pscloudapp (so the
full name is pscloudapp.database.windows.net)

b. Server admin login: Enter any text as the administrator user name, for example, appeon

c. Password: Enter a password that meets the requirement, for example, pwdsqlserver8*

5. Leave Want to use SQL elastic pool set to No.

6. Under Compute + storage, select Configure database, and then select the appropriate
options and click Apply.

7. For Backup storage redundancy, select Geo-redundant backup storage.

8. Select Next: Networking at the bottom of the page.

Step 5: On the Networking page, configure the following options:

1. For Network connectivity, select Public endpoint.

2. Set both of Allow Azure services and resources to access this server and Add current
client IP address to Yes.

3. Select Next: Security at the bottom of the page.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 276

Step 6: Keep the default Security options. Click Next: Additional settings at the bottom of
the screen.

Step 7: On the Additional settings page, in the Data source section, select whether to restore
from a backup or select sample data or start with a blank database.

Step 8: Select Review + create at the bottom of the page.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 277

Step 9: When validation completes, select Create.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 278

After the database is created, you can view the connection strings.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 279

11.4 Containerizing the installable cloud app

11.4.1 Preparing the application

The following modifications are made to the existing PowerServer project. If you have not
created a PowerServer project yet, please follow the instructions in the Quick Start guide to
create one.

11.4.1.1 Modifying the Web API URL

You need to make sure the client app knows where to call the PowerServer Web APIs before
containerizing the application (as the CustomizeDeploy.dll tool cannot be executed after
containerized).

Go to the Web APIs tab of the PowerServer project painter, specify the URL of
the PowerServer Web APIs, for example, https://demok8s.appeon.com:9005, or
https://52.143.79.245:9005.

If you input the domain name (in this tutorial, demok8s.appeon.com) here, make sure the
domain name is associated with the IP address. The IP address should be the Azure static
public IP address (in this tutorial, 52.143.79.245) created in Creating public IP address.

The port number should be the same one specified later in the YAML manifest file that
defines the Kubernetes pod for running the Web API docker image (in this tutorial, the pre-
defined port number is 9005).

Notes:

1. Make sure the Kubernetes pod for the Web API will be run at the same domain name/IP
address and port number later.

2. If the domain name/IP address and port number are changed later, you will need to modify
the settings here and build the PowerServer project again in the PowerBuilder IDE.

11.4.1.2 Modifying the database connection

In Creating a database, you have already created a SQL Server database in Azure.

Now you will need to modify the database connection cache to point to this database created
in Azure.

Step 1: At the bottom of the Web APIs tab of the PowerServer project painter, click the
Database Configuration button.

Step 2: In the Database Configuration window, click DB Drivers in the upper part to make
sure the SQL Server driver and the option "I have read and agree to the license ..." both are
selected.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 280

Step 3: In the Database Configuration window, click New in the upper part to create a new
connection cache.

Step 4: In the dialog box that displays, specify the database connection settings. For example,
you specify the settings as shown below to connect to the Azure SQL database in Creating a
database.

Step 5: When the cache is created successfully, make sure to select this new cache to map
with the transaction object in the lower part of the Database Configuration dialog.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 281

11.4.1.3 Packaging the client app as a zipped file

To deploy the client app to a Web server which runs as a docker container image, you will
have to package the client app as a zipped file first and then manually deploy it to the image.

Go to the Client Deployment tab of the PowerServer project painter, and then click Package
the compiled app and manually deploy later. Specify to generate the package as a
compressed zip file, and select to package the cloud app launcher and the PowerBuilder
Runtime files.

When the project is built in the next step, a zipped file of the client app will be generated.

11.4.1.4 Building the PowerServer project

After you made changes to the PowerServer project settings, save the project settings and
then click the Build & Deploy PowerServer Project button in the toolbar.

When the build process completes, the following will be generated:

• a zipped file of the client app

• a C# solution of PowerServer Web APIs

They will be used to create the docker container images in the next step.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 282

11.4.2 Creating the container images

You will need to create two container images: one contains the Web server and the client app,
and the other contains the PowerServer Web APIs.

11.4.2.1 Creating an image for the client app

This is to create a Docker container image that contains the Web server and the client app.

This tutorial will show you how to create a container image using the Dockerfile.

Step 1: Extract the zipped file of the client app to the local directory, for example, C:
\cloudappdemo\cloudapp.

(In the following screenshot, demok8s is the application name. Make a note of the
application name, as it will be used in the application URL to access the application later.)

Step 2: Create a Dockerfile and input the following commands.

Example 1: the following commands get an Apache HTTP server image from the public
repository and then add the client app to the web root of the Apache HTTP server.

FROM httpd:latest
COPY --chown=daemon:daemon "cloudapp/" "/usr/local/apache2/htdocs/"

Example 2: the following commands get an Nginx Web server image from the public
repository and then add the client app to the web root of the Nginx Web server.

FROM nginx:latest
COPY --chown=nginx:nginx "cloudapp/" "/usr/share/nginx/html/"

Step 3: Place the Dockerfile to the local directory, for example, C:\cloudappdemo.

Step 4: Use the docker build command to create the image and tag it as
powerservercloudapp:001.

The dot (.) in the middle of the command sets the location of the Dockerfile (in this case, the
current directory).

cd C:\cloudappdemo
docker build . -t powerservercloudapp:001

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 283

Step 5: After the image is created, use the docker images command to see the images.

11.4.2.2 Creating an image for the Web API

This is to create a Docker container image that contains the PowerServer Web APIs.

This tutorial will show you how to build and publish the PowerServer Web APIs as a Docker
container image in the SnapDevelop IDE.

Step 1: Open the PowerServer C# solution in SnapDevelop.

Click the Open C# Solution in SnapDevelop button in the toolbar to launch the
PowerServer C# solution in SnapDevelop. Or go to the location where the PowerServer C#
solution is generated; and double click PowerServer_[appname].sln to launch the solution
in SnapDevelop.

Step 2: Add docker support to the ServerAPIs project.

1. In the Solution Explorer, right click on the ServerAPIs project node, and select Add >
Docker Support.

2. In the Add Dockerfile dialog, select the target OS: Linux or Windows, and click OK.
The target OS indicates the platform where Docker Engine and Docker Container are
running.

A file named Dockerfile is automatically created according to the selected OS and added
under the ServerAPIs project. This file contains all the commands required for building a
docker image appropriate for the selected OS.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 284

Figure 11.1:

Step 3: In the Solution Explorer, select the ServerAPIs project, and then select menu Build >
Publish ServerAPIs.

Step 4: In the window that appears, select Docker, and then click Start to configure for
publish.

a. Keep Publish to Personal Repository checked if you are connecting to your own
repository. If the repository is owned by an organization, clear the checkbox, and enter the
organization name.

b. In the Engine field, select localhost.

c. In the Registry field, specify to store the container image in the local repository.

d. In the Image Name field, enter a name for the container image you want to create.

e. In the Tag field, enter a tag, for example, enter 001 to indicate the image version.

f. Click Finish to start building the project as an image and publishing the image to the
specified Docker Engine and docker registry.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 285

Step 5: Check the Docker Output window and make sure the publish is successful.

11.4.3 Pushing images to Azure container registry

To push container images to Azure container registry, you must first tag the image with the
full name of the registry’s login name. If you have not written down the login server name of
the Azure container registry, follow instructions in Logging into Azure container registry to
get it.

To push the image that contains the client app, run the following commands to tag the image
with the registry’s login name first and then push the image to the Azure container registry.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 286

You can also add :001 to the end of the image name to indicate the image version.

docker tag powerservercloudapp:001 pscloudapp.azurecr.io/powerservercloudapp:001

docker push pscloudapp.azurecr.io/powerservercloudapp:001

To push the image that contains the PowerServer Web APIs, run the following commands
to tag the image with the registry’s login name first and then push the image to the Azure
container registry.

You can also add :001 to the end of the image name to indicate the image version.

docker tag powerserverwebapi:001 pscloudapp.azurecr.io/powerserverwebapi:001

docker push pscloudapp.azurecr.io/powerserverwebapi:001

11.5 Deploying the application to the Kubernetes cluster

Now that you have already containerized your PowerBuilder installable cloud application
(the images that contain the client app and the PowerServer Web APIs have been created
and pushed to the Azure container registry), you can deploy them to the Kubernetes cluster.
The deployments tell Kubernetes how to create and update instances of your application.
Once you have created a deployment, the Kubernetes control plane schedules the application
instances included in that deployment to run on individual nodes in the cluster.

11.5.1 Creating the YAML manifest files

You can create a deployment by defining a manifest file in the YAML format. The manifest
file defines a cluster’s desired state, like which container images to run.

To create all the necessary pods, ingress, and services for running a PowerBuilder installable
cloud app, you will need the following manifest files:

• deployment-pscloudapp.yml: This file defines a deployment of the pod that runs the client
app.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 287

• deployment-pswebapi.yml: This file defines a deployment of the pod that runs the
PowerServer Web APIs.

• ingress-pscloudapp-appeon.com.yml: This file defines an ingress that sends the HTTP/
HTTPS requests of the client app to the service.

• ingress-pswebapi-appeon.com.yml: This file defines an ingress that sends the HTTP/
HTTPS requests of the PowerServer Web APIs to the service.

• service-pscloudapp.yml: This file exposes the pod running the client app as a Kubernetes
service.

• service-pswebapi.yml: This file exposes the pod running the PowerServer Web APIs as a
Kubernetes service.

• secret-env-connectstrings.yml: This file defines a secret that contains the sensitive data,
environment variables etc. that can be used by the deployments.

You can use Visual Studio Code or a text editor to create and edit the YAML file.

The following sample files only provide the minimal required settings; you can modify the
files according to your needs. You can change the file name as you like but keep the file
extension as yaml or yml.

Create a manifest file named deployment-pscloudapp.yml and copy in the following
example YAML:

• It defines a pod named deployment-pscloudapp.

• The pod runs the container of the client app and it pulls the container
image from the Azure container registry: pscloudapp.azurecr.io/
powerservercloudapp:001.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployment-pscloudapp
spec:
 selector:
 matchLabels:
 app: pscloudapp
 template:
 metadata:
 labels:
 app: pscloudapp
 spec:
 containers:
 - name: pscloudapp
 image: pscloudapp.azurecr.io/powerservercloudapp:001
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
 ports:
 - containerPort: 80

Create a manifest file named deployment-pswebapi.yml and copy in the following
example YAML:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/configuration/secret/

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 288

• It defines a pod named deployment-pswebapi.

• The pod runs the container for the PowerServer Web APIs and it pulls the container
image from the Azure container registry: pscloudapp.azurecr.io/
powerserverwebapi:001.

• It uses the PowerServer license key and code from the secret secret-env-
connectionstrings.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployment-pswebapi
spec:
 replicas: 3
 selector:
 matchLabels:
 app: pswebapi
 template:
 metadata:
 labels:
 app: pswebapi
 spec:
 containers:
 - name: pswebapi
 image: pscloudapp.azurecr.io/powerserverwebapi:001
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
 ports:
 - containerPort: 9005
 env:
 - name: PowerServer__LicenseKey
 valueFrom:
 secretKeyRef:
 key: PowerServer__LicenseKey
 name: secret-env-connectionstrings
 - name: PowerServer__LicenseCode
 valueFrom:
 secretKeyRef:
 key: PowerServer__LicenseCode
 name: secret-env-connectionstrings

Create a manifest file named ingress-pscloudapp-appeon.com.yml and copy in
the following example YAML:

• It defines an ingress named ingress-pscloudapp-appeon.com and a list of rules
that match against the incoming requests and route the requests to the service.

In the following example, requests to the host pbexam.appeon.com is routed to the
service named service-pscloudapp (listening on port 80).

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-pscloudapp-appeon.com
 labels:
 name: ingress-pscloudapp-appeon.com
 annotations:
 kubernetes.io/ingress.class: nginx

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 289

spec:
 rules:
 - host: pbexam.appeon.com
 http:
 paths:
 - pathType: Prefix
 path: "/"
 backend:
 service:
 name: service-pscloudapp
 port:
 number: 80

Create a manifest file named ingress-pswebapi-appeon.com.yml and copy in the
following example YAML:

• It defines an ingress named ingress-pswebapi-appeon.com and a list of rules that
match against the incoming requests and route the requests to the service.

In the following example, requests to the host demok8s.appeon.com is routed to the
service named service-pswebapi (listening on port 9005).

• The port must be the same one that you specified in the PowerServer project settings >
Web API URL in the PowerBuilder IDE (in this tutorial, 9005).

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-pswebapi-appeon.com
 labels:
 name: ingress-pswebapi-appeon.com
 annotations:
 kubernetes.io/ingress.class: nginx
spec:
 rules:
 - host: demok8s.appeon.com
 http:
 paths:
 - pathType: Prefix
 path: "/"
 backend:
 service:
 name: service-pswebapi
 port:
 number: 9005

Create a manifest file named service-pscloudapp.yml and copy in the following
example YAML:

• It exposes the pod running the client app as a service so that it can be accessible from the
public internet.

apiVersion: v1
kind: Service
metadata:
 name: service-pscloudapp
spec:
 selector:
 app: pscloudapp
 ports:
 - port: 80
 targetPort: 80

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 290

Create a manifest file named service-pswebapi.yml and copy in the following
example YAML:

• It exposes the pod running the PowerServer Web APIs as a service so that it can be
accessible from the public internet.

apiVersion: v1
kind: Service
metadata:
 name: service-pswebapi
spec:
 selector:
 app: pswebapi
 ports:
 - port: 9005
 targetPort: 9005

Create a manifest file named secret-env-connectstrings.yml and copy in the
following example YAML:

• It defines the environment variables for the PowerServer license key and code, which
makes it possible for you to update the PowerServer license key and code whenever
necessary.

apiVersion: v1
stringData:
 PowerServer__LicenseKey: $YOURLICENSEKEY
 PowerServer__LicenseCode: $YOURLICENSECODE
kind: Secret
metadata:
 name: secret-env-connectionstrings
 namespace: default
type: Opaque

11.5.2 Deploying the application

Step 1: Place the YAML manifest files to the local deployment directory, for example, C:
\cloudappdemo\deploy.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 291

Step 2: Deploy the installable cloud application through the manifest file.

kubectl apply -f .

This command parses the manifest files existing in the current directory and creates the
Kubernetes pods, services, ingress, and secret.

Make sure the output shows that the resources are created successfully in the AKS cluster.

Step 3: View the status of your containers.

kubectl get pods

11.5.3 Configuring the domain name

If you use the domain name in the YAML manifest file in the previous step, you will need to
associate the domain names with the Azure static public IP address, for example,

pbexam.appeon.com 52.143.79.245

demok8s.appeon.com 52.143.79.245

11.5.4 Testing the application

Test the application by accessing the application URL in the Web browser, for example,

https://pbexam.appeon.com/demok8s

If the download does not start automatically, click Download the Launcher to download and
install the cloud app launcher first, and then click Start the Application to download, install,
and start the application.

Tutorial 11: Deploying installable cloud apps to
Kubernetes

Page 292

Working with Database Connections

Contents
1 Overview .. 1

1.1 Supported database connection options ... 1
1.2 Comparing the runtime database connections between c/s app and
installable cloud app .. 2
1.3 Techniques for supporting various connection scenarios 2

2 Supported database types ... 4
2.1 ASE database .. 4

3 Configuring database caches .. 6
3.1 Creating database caches in the project settings .. 6
3.2 Managing database caches in the PowerServer solution 10

4 Setting up static database connection for the app runtime 11
4.1 Creating transaction-to-cache mappings in the project settings 11
4.2 Managing transaction-to-cache mappings in the PowerServer solution 12
4.3 Using LogID and LogPass properties .. 12

5 Setting up dynamic database connection for the app runtime 13
5.1 Dynamically mapping transaction object with cache using DBParm 13

5.1.1 Using CacheGroup property in DBParm ... 13
5.1.2 Using LogID and LogPass properties .. 15

5.2 Making dynamic database connections from the app client 15
6 Managing database connections using PowerServer APIs 17

Overview

Page 1

1 Overview

1.1 Supported database connection options
A developer has several options for establishing database connections for installable cloud
apps.

Table 1.1: Possible options to establish database connections

Option Connection required
for project compilation

Connection required
for the app runtime

#1 Create the caches in the project
settings > Database Configuration
window. For more information, refer to
Configuring database caches.

Dynamic database connection ---
Specify which cache will be used by the
transaction object in PowerScript. For more
information, refer to Dynamically mapping
transaction object with cache.

#2 Create the caches in the project
settings > Database Configuration
window. For more information, refer to
Configuring database caches.

Static database connection --- Map the
transaction object with the cache in the
project settings > Database Configuration
window. For more information, refer to
Setting up static database connection for
the app runtime.

#3 Create the caches in the project
settings > Database Configuration
window. For more information, refer to
Configuring database caches.

Static database connection --- Directly
specify the database connection
information in PowerScript. For more
information, refer to Making dynamic
database connections from the app client.

With either of the options, you need to create the cache in the Database Configuration
window, because it is required for project compilation: the cache information is necessary for
converting the DataWindows to C# models.

If you have configured more than one options, the priority order to take the options is: #1
-> #2 -> #3. Option #3 is not recommended for the production environment because of
security concerns. Different from the other two options (which stores the database connection
information in PowerServer), #3 stores the database connection information at the app client
and has higher risk of exposing the sensitive connection information.

As you can tell from the above table, during the app runtime, there are two ways to connect
with the database: static database connection, or dynamic database connection.

• "Static database connection" (option #2) means the connection configuration (including
connection cache settings, and transaction-to-cache mappings) is created before the app
is run. The connection configuration is initially created in the Database Configuration
window and gets deployed to the PowerServer C# solution. Although you may further
update the connection configuration in the solution, the configuration from the solution
will be used during the app runtime.

• "Dynamic database connection" means the mapping is created when the app is run. A
dynamic mapping can be created in the application scripts using the DBParm CacheName
property (option #1) or using the transaction connections (option #3).

https://docs.appeon.com/pb2021/connection_reference/ch01s01.html#CacheName

Overview

Page 2

1.2 Comparing the runtime database connections between c/s app
and installable cloud app
The following diagram shows you the comparison of runtime database connections between
native c/s app and installable cloud app (using option #2):

Figure 1.1:

1.3 Techniques for supporting various connection scenarios
A few settings are available in the PowerServer project settings and also in the PowerServer
solution to assist you to handle various connection scenarios. Specifically:

1. If as the app developer, you want to switch between different development, testing and
even production environment for running the app.

Technique: Configuring different DB connection profiles in the PowerServer project
settings. If you define the database connections in multiple profiles, the PowerServer
project will be compiled against all the configured profiles. When you run the
PowerServer Web APIs, you can select the actual connection profile with which the Web
APIs will run.

2. If as the app developer, you want to assign different database access, to different app
users.

Technique: Enabling the "Allow dynamic connection using the transaction LogID and
LogPass" option in the cache settings. The LogID and LogPass may be unique to each
app user. If you enable this option, the database connection will be set up according to the
access permission associated with the LogID and LogPass.

3. If as the app distributor (or independent software vendor), you want to have the deployed
app working in customer-specific database environment.

Overview

Page 3

Technique: Configuring different cache groups (DBParm CacheGroup property)

You can define multiple database connection scenarios in the cache groups, through
changing the PowerServer C# solution or dynamically calling the PowerServer APIs in
PowerScript. Then, you can dynamically specify the CacheGroup value in DBParm, so
that the deployed application will work in different database connection scenarios for
different use cases.

4. If as the app administrator, you have updated the database environment and want to enable
the Web APIs to work with the updated databases.

Technique: Directly updating the connection settings in the Applications.json file

The Applications.json file can be edited even after the Web APIs have been compiled. If
the changes are minor, you can directly update the Applications.json file as the temporary
solution.

Supported database types

Page 4

2 Supported database types
You can create database connection caches for the following databases in the Database
Configuration window or in the PowerServer C# solution:

• Adaptive Server Enterprise (ODBC) 16.0

ASE databases can only be connected using the ODBC driver in the PowerServer runtime
environment. This is different from the PowerBuilder runtime environment where the
ASE database is connected using the native driver. See the next section for the differences
caused by this driver change.

• Informix 12.x or 14 (Beta feature) *

PowerBuilder and/or PowerServer will automatically download the required driver
(IBM.Data.DB2.Core 2.2.0.100) from https://www.nuget.org, or you will be asked to
specify the location of the driver if https://www.nuget.org cannot be connected.

* Beta means the feature has not been fully tested, has known bugs, and does not receive
standard technical support. We will collect reported bugs and try to address in a future
version.

• MySQL 5.6, 5.7, or 8.0

PowerBuilder and/or PowerServer will automatically download the required driver
(MySql.Data 8.0.25) from https://www.nuget.org, or you will be asked to specify the
location of the driver if https://www.nuget.org cannot be connected.

• Oracle 12c, 18c, or 19c

PowerBuilder and/or PowerServer will automatically download the required driver
(Oracle.ManagedDataAccess.Core 2.19.110) from https://www.nuget.org, or you will be
asked to specify the location of the driver if https://www.nuget.org cannot be connected.

• PostgreSQL 11.3, 12, or 13

• SQL Anywhere (ODBC) 16 (16.0.0.2043 or later) or 17

If SQL Anywhere is on a different machine from PowerBuilder, make sure to enable the
connection pooling setting in the ODBC driver. Connection pooling is enabled by default
if SQL Anywhere is on the same machine as PowerBuilder.

• SQL Server 2016, 2017, or 2019

SQL Anywhere and ASE databases can be connected using the ODBC driver only. The other
databases are connected using the native database driver.

2.1 ASE database

If your application uses the ASE database, please notice that the drivers used in PowerBuilder
and PowerServer are different. In PowerBuilder, the ASE native driver is used, while in
PowerServer, the ODBC driver is used. Due to the driver difference, we have observed the
following differences when running an installable cloud application against PowerServer:

https://www.nuget.org
https://www.nuget.org
https://www.nuget.org
https://www.nuget.org
https://www.nuget.org
https://www.nuget.org

Supported database types

Page 5

• The ASE stored procedure might return different values because the default value of the
"Set ANSI Null" option is different in these two drivers. (Read more)

• The data values of the SelectBlob variable are truncated in the installable cloud app,
because the default value of the "Text size" option in the ODBC driver is 32KB. (Read
more)

• Garbage letters display in the installable cloud app when retrieving multibyte data from the
ASE database because DBParm does not support the "charset" parameter when using the
ODBC driver. (Read more)

There might be other differences we haven't noticed yet. Please carefully examine the build
and deploy process for any warnings or errors and fully test your application to make sure the
data is correct.

Configuring database caches

Page 6

3 Configuring database caches

3.1 Creating database caches in the project settings

It is required to create database caches in the project settings > Database Configuration
window. The caches contain the database connection information for project compilation
(PowerServer Toolkit will connect to the target database when converting the DataWindows
to C# models), and will be deployed to the PowerServer solution and then be used for the
database connection for the app runtime.

To create a database cache in the Database Configuration window:

1. Click the Database Configuration button at the bottom of the Web APIs tab.

2. In the Database Configuration window, you must select the required database driver
and agree to the driver license terms as the driver must be downloaded from the NuGet
site to the PowerServer C# solution.

To select the required database driver:

• Click DB Drivers in the Database Configuration window.

• In the Required Database Drivers window, select the driver and the option "I have
read and agree to the license ..."; and then click OK.

Figure 3.1:

Configuring database caches

Page 7

Figure 3.2:

3. In the Database Configuration window, you can create different DB connection
profiles to be used in different scenarios, for example, create different database
connection profiles for the development environment, testing environment, production
environment, etc.

To create a new DB connection profile:

• Click New in the DB connection profile group.

• In the New DB connection profile dialog box, specify a name for the DB connection
profile, for example, production.

It is more efficient to create the new profile based on the settings of an existing one.
You can select the clone option below and then select an existing profile to clone
from.

Configuring database caches

Page 8

Figure 3.3:

You can then decide which profile to be used in the application by selecting the DB
connection profile and clicking the Set as Current button.

4. In the Database Configuration window, you can create the connection cache that
connects with the database.

For example, you can establish a connection with the SQL Anywhere database for the
PowerBuilder demo using the following settings:

• Click New in the upper part of the window.

• In the dialog box that displays, specify any text as the cache name.

• Select the database provider.

• Select the data source.

• Specify the user name (for example, dba) and password (for example, sql).

• Click Test Connection to make sure the database can be connected successfully.

The Advanced button contains additional important settings for the database driver such
as DelimitIdentifier, TrimSpaces, etc. If your database has such settings, make sure to
click the Advanced button to configure those settings.

Configuring database caches

Page 9

Figure 3.4:

If you select MySQL, Oracle, or Informix from the Provider listbox, you
will be asked to specify a location for the required driver (MySql.Data 8.0.25,
Oracle.ManagedDataAccess.Core 2.19.110, or IBM.Data.DB2.Core 2.2.0.100) or allow
PowerBuilder to download and install the required driver from the NuGet website.

The packages downloaded from the NuGet website will be stored to %USERPROFILE
%\.nuget\packages and cached in %USERPROFILE%\.sd\19.0\dbDrives\, so they can
be automatically loaded when the MySQL or Oracle database connection is created.

Figure 3.5:

Configuring database caches

Page 10

3.2 Managing database caches in the PowerServer solution
When the PowerServer project is built and deployed in the PowerBuilder IDE, the cache
settings (including database server host/port, database name, login ID, password, advanced
settings etc.) configured in the Database Configuration window will be deployed and stored
in the PowerServer C# solution. You can manually change these settings in the PowerServer
C# solution.

To manage database caches in the ServerAPIs project of the PowerServer solution:

1. Open the PowerServer C# solution > ServerAPIs project > AppConfig >
Applications.json file.

The Applications.json file contains the configuration of the "Default" DB connection
profile. If you have another connection profile, the profile name is added in the middle
of the file name. For example, Applications.Development.json file contains the
configuration of the "Development" DB connection profile.

2. In the Applications.json file, locate the "Connections" block. This is where the cache(s)
is stored.

In the following example, there are two caches "local-sa" and "local-postgresql" under
the "Default" cache group; and each cache contains the database connection information
that are configured and deployed from the Database Configuration window. You can
modify the existing cache, or create a new cache by making a copy of the existing one.

...
 "Connections": {
 "Default": {
 "local-sa": {
 "ConnectionType": "Odbc",
 "OdbcName": "PB Demo DB V2021",
 "OdbcDriver": "SqlAnywhere",
 "UserID": "dba",
 "Password":
 "eyJQYXlsb2FkIjoiYlx1MDAyQkxocTNiMUtWSzhBY1FCbVltU0FBPT0iLCJUaW1lc3RhbXAiOjE2MjU2NDYwNDcsIlNpZ25hdHVyZSI6IkF5V253VzNVNVx1MDAyQk5mNUxOd2RGTG83alVQeWRVYlpaUEtWcG5PU012cVx1MDAyQm95RTVtVlkwblQ3NHVqSFBHcm5NdVVQQUhnRFhKSklRZ1hiZ2c3Y3hGSG1jZz09In0=",
 "CommandTimeout": 30,
 "OtherOptions": "",
 "DynamicConnection": false
 },
 "local-postgresql": {
 "ConnectionType": "PostgreSql",
 ...
 }
 }
 }

Note: (1) The PowerServer C# solution will be updated every time when the
PowerServer project is built and deployed in the PowerBuilder IDE. If you manually
modify the settings in Applications.json, and want to keep these changes, you should
use the "Overwrite server settings (DB connection, Web API port, and license)" option
properly. For more information, refer to What settings will be deployed to the solution.
(2) If you want to change the database driver, you must make changes in the project
settings and then re-deploy the project from the PowerBuilder IDE. Changing the driver
directly in the PowerServer solution would cause failure in the running of the installable
cloud app.

Setting up static database connection for the app
runtime

Page 11

4 Setting up static database connection for the
app runtime
Static database connection means the connection configuration (including connection
cache settings, and transaction-to-cache mappings) is created before the app is run. The
connection configuration is initially created in the Database Configuration window and gets
deployed to the PowerServer C# solution. Although you may further update the connection
configuration in the solution, the configuration from the solution will be used during the app
runtime.

4.1 Creating transaction-to-cache mappings in the project settings

After the database cache is created in the Database Configuration dialog, for each
transaction object that already exists in the application, map it with the cache in the
transaction-to-cache mappings section. The mapping will be deployed to the PowerServer
solution, and then be used to set up static database connection for the app runtime. Note
that you only need to map the transaction objects that already exist in the PowerBuilder
application.

To configure the mapping of the transaction object with the cache:

1. Click the Database Configuration button at the bottom of the Web APIs tab.

2. In the Transaction-to-cache mappings section, you can input the transaction object name
(for example "sqlca") and then select one of the configured caches to map with.

Figure 4.1:

Setting up static database connection for the app
runtime

Page 12

4.2 Managing transaction-to-cache mappings in the PowerServer
solution
When the PowerServer project is built and deployed in the PowerBuilder IDE, the
transaction-to-cache mappings configured in the Database Configuration window will
be deployed and stored in PowerServer. You can manually change these settings in the
PowerServer C# solution.

To manage the transaction-to-cache mappings in the ServerAPIs project:

1. Open the PowerServer C# solution > ServerAPIs project > AppConfig >
Applications.json file.

The Applications.json file contains the configuration of the "Default" DB connection
profile. If you have another connection profile, the profile name is added in the middle
of the file name. For example, Applications.Development.json file contains the
configuration of the "Development" DB connection profile.

2. In the Applications.json file, locate the "Applications" block > [application name] >
"CloudTransactions". This is where the transaction-to-cache mapping(s) is stored.

In the following example, the "sqlca" transaction object is mapped to the "salesdemo"
database cache. You can modify the existing mapping, or create a new mapping by
making a copy of the existing one.

 "Applications": {
 "pssales": {
 "CloudTransactions": {
 "sqlca": {
 "CacheName": "salesdemo"
 }
 },
 ...

Note: The PowerServer C# solution will be updated every time when the PowerServer
project is built and deployed in the PowerBuilder IDE. If you manually modify the
settings in Applications.json, and want to keep these changes, you should use the
"Overwrite server settings (DB connection, Web API port, and license)" option properly.
For more information, refer to What settings will be deployed to the solution.

4.3 Using LogID and LogPass properties
In case of static database connection, if the "Allow dynamic connection using the transaction
LogID and LogPass" option (equivalent to the "DynamicConnection" setting) in the database
cache is enabled, the application will use the LogID and LogPass property values (as shown
in the example below) of the Transaction object to log in to the database server (instead of
using the values in the User name and Password fields of the cache). Then the installable
cloud app can connect to the database based on the user credentials provided at runtime.

Transaction.LogId = "sa"
Transaction.LogPass = "Appeon123!@#"

Setting up dynamic database connection for the app
runtime

Page 13

5 Setting up dynamic database connection for
the app runtime

5.1 Dynamically mapping transaction object with cache using
DBParm

Besides statically mapping the transaction object with the database cache in the Database
Configuration window, for each transaction object that already exists in the application,
you can also dynamically map it with the database cache using the DBParm CacheName
property. Such dynamic mapping with DBParm has priority over the static mapping if both
exist.

For example,

Sqlca.dbparm="cachename='Test'"

With the possibility of dynamically mapping a transaction object with the cache in the
application scripts, you can create multiple caches which connect to the database with
different privileges. When a user logs in, the application decides which cache should be used
by the transaction object for establishing the database connection.

5.1.1 Using CacheGroup property in DBParm

The DBParm CacheGroup property is added for specifying the cache group to be used by
the installable cloud app. You can define multiple database connection scenarios in the cache
groups, and then dynamically specify the CacheGroup value in DBParm, so that the deployed
application will work in different database connection scenarios for different use cases.

The database caches you create in the project settings all belong to the "default" cache group.
You can create new cache groups. There are two ways to do it:

1. Add the new cache group in the PowerServer C# solution (in the ServerAPIs project >
AppConfig > Applications.json file). You can create a new group by making a copy of
the "default" group and then modify or add the cache in the new group. The cache group
you created will be preserved every time when you build and deploy the PowerServer
project (only the "default' cache group may be updated by deployment).

2. Add the new cache group dynamically in PowerScript by calling the relevant PowerServer
APIs (refer to Managing database connections using PowerServer APIs.)

The example below shows you how to add cache groups in the PowerServer C# solution:

 "Connections": {
 "default": {
 ...
 },
 "cachegroup1": {
 "dbcache1": {
 "ConnectionType": "Odbc",
 "OdbcName": "sa-db1",
 "OdbcDriver": "SqlAnywhere",
 "UserID": "dba",
 "Password": "...",

https://docs.appeon.com/pb2021/connection_reference/ch01s01.html#CacheName
https://docs.appeon.com/pb2021/connection_reference/ch01s01.html#CacheGroup

Setting up dynamic database connection for the app
runtime

Page 14

 ...
 },
 "dbcache2": {
 "ConnectionType": "PostgreSql",
 "Database": "pgs-db1",
 "Host": "172.16.100.33",
 "Port": 5432,
 "UserID": "postgres",
 "Password": "...",
 ...
 },
 ...
 },
 "cachegroup2": {
 "dbcache1": {
 "ConnectionType": "Odbc",
 "OdbcName": "sa-db2",
 "OdbcDriver": "SqlAnywhere",
 "UserID": "dba",
 "Password": "...",
 ...
 },
 "dbcache2": {
 "ConnectionType": "PostgreSql",
 "Database": "pgs-db2",
 "Host": "172.16.100.89",
 "Port": 5432,
 "UserID": "postgres",
 "Password": "...",
 ...
 },
 ...
 },
 ...
 }

Then you can modify the application scripts to use the CacheGroup property:

//pass cachegroup from commandline
ls_cachegroup = commandlinearg
if len(ls_cachegroup) = 0 then
 ls_cachegroup = "default"
end if

//db connection info used by PowerBuilder native c/s app
SQLCA.DBMS = "SNC SQL Native Client(OLE DB)"
SQLCA.ServerName = "localhost"
SQLCA.AutoCommit = true

//if "DynamicConnection" is true in the cache, the LogID and LogPass property
 values will be used to log in to
//the database server, instead of using the values specified in the cache.
SQLCA.LogPass = "mypass"
SQLCA.LogId = "mylog"

//cache and cachegroup used by PowerServer
SQLCA.DBParm =
 "Database='qa_datawindow',DelimitIdentifier=1,cachename='dbcache',cachegroup='"+ls_cachegroup
+"'"
connect;

if sqlca.sqlcode <> 0 then
 messagebox("Database Error",sqlca.sqlerrtext)
 return

Setting up dynamic database connection for the app
runtime

Page 15

end if

Figure 5.1:

5.1.2 Using LogID and LogPass properties

In case of dynamic database connection using DBParm, if the "Allow dynamic connection
using the transaction LogID and LogPass" option (equivalent to the "DynamicConnection"
setting) in the database cache is enabled, the application will use the LogID and LogPass
property values (as shown in the example below) of the Transaction object to log in to
the database server (instead of using the values in the User name and Password fields of
the cache). Then the installable cloud app can connect to the database based on the user
credentials provided at runtime.

Transaction.LogId = "sa"
Transaction.LogPass = "Appeon123!@#"

5.2 Making dynamic database connections from the app client
If there is no transaction-to-cache mapping configured for the app (either statically or
dynamically, as explained in Setting up static database connection for the app runtime and
Dynamically mapping transaction object with cache), you can make direct connections with
the following databases from the application client.

Instead of storing the connection settings in the PowerServer solution, the connection info
is stored at the client side, in the script, or in the application INI files. Saving sensitive
information at the client is not recommended because of security concerns. Therefore, this
approach is not recommended.

• MS SQL Server (through Native Client, OLE DB, ADO.NET)

• Oracle

• SQL Anywhere (through ODBC)

• Adaptive Server Enterprise (through ODBC)

Setting up dynamic database connection for the app
runtime

Page 16

MS SQL Server through Native Client:

SQLCA.DBMS = "SNC SQL Native Client(OLE DB)"
SQLCA.LogPass = "Appeon123!@#"
SQLCA.ServerName = "172.16.3.243"
SQLCA.LogId = "sa"
SQLCA.AutoCommit = False
SQLCA.DBParm = "Database='qa_datawindow'"

MS SQL Server through OLE DB:

SQLCA.DBMS = "OLE DB"
SQLCA.LogPass = "Appeon123!@#"
SQLCA.LogId = "sa"
SQLCA.AutoCommit = False
SQLCA.DBParm =
 "PROVIDER='SQLOLEDB',DATASOURCE='172.16.3.243',PROVIDERSTRING='database=qa_datawindow'"

MS SQL Server through ADO.NET:

SQLCA.DBMS = "ADO.Net"
SQLCA.LogPass = "Appeon123!@#"
SQLCA.LogId = "sa"
SQLCA.AutoCommit = False
SQLCA.DBParm =
 "Namespace='System.Data.SqlClient',DataSource='172.16.3.243',Database='qa_datawindow'"

Oracle:

SQLCA.DBMS = "ORA Oracle"
SQLCA.LogPass = "appeon"
SQLCA.ServerName = "172.16.3.98/pdborcl" //servername must point to a remote
 instance; cannot be local.
SQLCA.LogId = "DBO"
SQLCA.AutoCommit = False
SQLCA.DBParm = "DisableBind=1"
SQLCA.DBParm = "TableCriteria='DBO',DisableBind=1"

SQL Anywhere through ODBC:

SQLCA.DBMS = "ODBC"
SQLCA.AutoCommit = False
SQLCA.DBParm = "ConnectString='DSN=PB Demo DB
 V2021;UID=dba;PWD=sql',driver='SqlAnywhere'"

Adaptive Server Enterprise through ODBC:

SQLCA.DBMS = "ODBC"
SQLCA.AutoCommit = False
SQLCA.DBParm =
 "ConnectString='DSN=en_ase1253;UID=en_ase1253;PWD=en_ase1253',driver='ase'"

Managing database connections using PowerServer
APIs

Page 17

6 Managing database connections using
PowerServer APIs
There are a number of connection-related PowerServer APIs for you to manage the database
connections or view the connection status during runtime. You can find the list of APIs in the
Controllers > ConnectionController.cs file in the ServerAPIs project:

• api/connection/loadone: Loads the configuration of a given connection;

• api/connection/loadgroup: Loads the configuration of a given CacheGroup;

• api/connection/loadall: Loads all the connection configuration;

• api/connection/addone: Adds a connection configuration;

• api/connection/addrange: Adds a group of connection configuration;

• api/connection/addgroup: Adds a group of empty connection configuration, and copies
connection configuration list from the specified CacheGroup;

• api/connection/edit: Edits a connection configuration;

• api/connection/removeone: Removes a connection configuration;

• api/connection/removegroup: Removes a CacheGroup and the connection configuration in
it.

For details on how each of the APIs is defined, please check the ConnectionController.cs file.
For documentations, refer to View the API documentation.The following example shows you
how to call the api/connection/loadall API in PowerScript to get all the current connection
configuration:

//-------------------------------------
loadall--
httpclient lhc_client
string ls_url
string ls_json

lhc_client = create httpclient

//Load all connection
ls_url = "http://localhost:5000/api/connection/loadall"
//This URL should be replaced with the actual IP address and port number of
 PowerServer Web APIs
//If there are multiple .NET servers, obtain one by one
//lhc_client.SetRequestHeader("Authorization", $token, true) //If authorization is
 enabled
lhc_client.sendrequest("Get",ls_url)

if lhc_client.getresponsestatuscode() = 200 then
 lhc_client.getresponsebody(ls_json)
 //parse the json
 wf_getsessions(ls_json)
end if

//---

Managing database connections using PowerServer
APIs

Page 18

And the response is like below:

[{"cachegroup":"Default","items":[{"cachename":"ora","configuration":
{"connectiontype":2,"host":"172.16.3.98","port":1521,"odbcname":"","odbcdriver":"","userid":"dbo","password":"appeon","database":"pdborcl","enablepooling":true,"minpoolsize":0,"maxpoolsize":100,"connectionlifetime":0,"connectiontimeout":30,"commandtimeout":30,"otheroptions":"","dynamicconnection":false}},
{"cachename":"Test classes","configuration":
{"connectiontype":5,"host":"172.16.9.52","port":5432,"odbcname":"","odbcdriver":"","userid":"postgres","password":"postgres","database":"qa_datawindow","enablepooling":true,"minpoolsize":0,"maxpoolsize":100,"connectionlifetime":0,"connectiontimeout":30,"commandtimeout":30,"otheroptions":"","dynamicconnection":false}},
{"cachename":"Test123","configuration":
{"connectiontype":0,"host":"172.16.9.52","port":5432,"odbcname":"","odbcdriver":"","userid":"postgres","password":"postgres","database":"qa_datawindow","enablepooling":true,"minpoolsize":0,"maxpoolsize":100,"connectionlifetime":0,"connectiontimeout":30,"commandtimeout":30,"otheroptions":"","dynamicconnection":false}}]},
{"cachegroup":"Developer","items":[{"cachename":"sql","configuration":
{"connectiontype":0,"host":"172.16.3.243","port":1433,"odbcname":"","odbcdriver":"","userid":"sa","password":"Appeon123!
@#","database":"Qa_datawindow","enablepooling":true,"minpoolsize":0,"maxpoolsize":100,"connectionlifetime":0,"connectiontimeout":30,"commandtimeout":30,"otheroptions":"","dynamicconnection":false}}]}]

Unsupported Features & Workarounds Guide

Contents
1 How to detect unsupported features ... 1
2 Unsupported features & workarounds ... 4

2.1 Unsupported features that can be detected .. 4
2.1.1 SetTrans .. 4
2.1.2 Data pipeline .. 4
2.1.3 MobiLink ... 5
2.1.4 Oracle RPC arrays .. 5
2.1.5 SQLPreview ... 6
2.1.6 SQLReturnData property ... 6

2.2 Unsupported features that cannot be detected ... 7
2.2.1 Transaction trace ... 7
2.2.2 Unsupported use cases in Embedded SQLs 7
2.2.3 Retrieve As Needed and Rows to Disk ... 8
2.2.4 SyntaxFromSQL .. 8
2.2.5 Database synonyms .. 8
2.2.6 Commit or Rollback Transaction using Dynamic SQL 9
2.2.7 Data retrieval and SQL operations in the RetrieveRow event 9

3 Discrepancies & workarounds ... 10
3.1 Discrepancies that cannot be detected ... 10

3.1.1 DB connection ... 10
3.1.2 Alias name ... 10
3.1.3 Data type mismatch ... 10
3.1.4 rowsupdated value ... 10
3.1.5 DisableBind parameter .. 11
3.1.6 TableBlob retrieval ... 11
3.1.7 Dynamic DataWindow ... 11
3.1.8 TransactionName ... 11
3.1.9 Data type in Dynamic SQL Format 4 .. 12
3.1.10 Decimal data type in static SQL or DataWindow 12
3.1.11 Timing of transaction rollback .. 13
3.1.12 Oracle AutoCommit and Lock ... 13
3.1.13 Stored procedure parameter ... 13
3.1.14 Transaction commit ... 13
3.1.15 Use Describe in Dynamic SQL Format 4 13
3.1.16 Bit data field ... 14
3.1.17 SelectBlob/UpdateBlob supports UTF8 only 14
3.1.18 SQLNRows property (with Cursor) .. 14
3.1.19 SQLCode property (with SP) ... 14
3.1.20 Column name from view .. 15

4 Incompatible coding styles ... 16
4.1 PBLs contain DataWindows with the same name 16
4.2 Object name using C# reversed words ... 16
4.3 DataWindow name containing special characters 16
4.4 Editing SQL .. 16
4.5 Column order in data source and Column Specification 17
4.6 One compute expression containing multiple computed columns 17

4.7 Cursor syntax ... 18
4.8 Syntax after UNION ... 18

How to detect unsupported features

Page 1

1 How to detect unsupported features
The PowerScript features will be analyzed during the build & deploy process; and if any
feature is detected to be unsupported by the PowerServer Web APIs, it will be reported as an
unsupported feature in the Output window. Please note that not every unsupported feature
can be detected and listed, therefore, it is strongly recommended that you go through the
unsupported features/scenarios and discrepancies documented in this guide and make sure
they do not exist in your application.

The unsupported feature analysis option is disabled by default. To enable this option, open
the Application painter's Properties view, and select the option "During compilation, report
unsupported PowerScript features for PowerServer deployment" in the PowerServer tab
page.

Figure 1.1:

With this option selected, the scripts will be analyzed for unsupported features

• when the Build & Deploy PowerServer Project option is selected.

If any unsupported feature is detected, it will be displayed in the Output window |
Unsupported (DWs) tab or Unsupported (PowerServer) tab.

You can double-click the line or select Edit or Edit Source from the pop-up menu to open
the object in the painter or source editor.

Figure 1.2:

Figure 1.3:

• when the object is saved.

How to detect unsupported features

Page 2

PowerBuilder compiles each time when PowerScript is saved and displays the unsupported
feature for PowerServer, regardless of the project type.

If any unsupported feature is detected, it will be displayed as compilation warnings, as
shown below.

Figure 1.4:

Make sure to modify the unsupported feature according to the suggested workarounds in this
guide. Even if there is no unsupported features reported, it is still recommended that you go
through the following sections to find out what features/descrepancies cannot be detected and
why they are not working as expected in the installable cloud app.

• Unsupported features & workarounds

Unsupported features that can be detected -- lists the unsupported features that can be
detected by the deployment tool and provides possible workarounds.

Unsupported features that cannot be detected -- lists the unsupported features that cannot
be detected by the deployment tool and provides possible workarounds.

• Discrepancies & workarounds

Discrepancies that cannot be detected -- lists the programming or behavior differences
between PowerBuilder and PowerServer that cannot be detected by the deployment tool
and provides possible workarounds.

Tips:

If you want the analysis tool to ignore a piece of code, you can place the code within these
labels: #begin_disable_ufa and #end_disable_ufa.

For example, the SetTrans function in the following example will not be reported as an
unsupported feature.

#begin_disable_ufa

if ispowerserverapp () = true then

How to detect unsupported features

Page 3

 dw_1.SetTransObject(sqlca)
else
 dw_1.settrans(sqlca)
end if

#end_disable_ufa

dw_1.retrieve()

Unsupported features & workarounds

Page 4

2 Unsupported features & workarounds

2.1 Unsupported features that can be detected
This section lists the unsupported features that can be detected by the deployment tool, and
provides possible workarounds.

2.1.1 SetTrans

Unsupported feature

SetTrans function is not supported. For example,

integer dwcontrol.SetTrans (transaction transaction)

Workaround

Use SetTransObject to replace the SetTrans function.

2.1.2 Data pipeline

Unsupported feature

Data pipeline (Pipeline object) is not supported.

Workaround

You can consider making data pipeline an independent application and then calling this
application:

Step 1: Extract the data pipeline into a separate PowerBuilder target and deploy the target as
an executable application.

Step 2: Modify the scripts to call the pipeline executable application and open the window
through the commandline parameter.

For example, change the of_run_window function of the w_main window in the Example
App (PB Examples)

from

li_Resp = Open(lw_Ex, as_Window)

to

if ispowerserverapp () = true then
 if as_Window = 'w_pipeline' or as_Window = 'w_pipeline_blob' or as_Window =
 'w_pipeline_sp' then
 //run the application and pass the commandline parameter to open the window
 run(GetCurrentDirectory () + "\unsupportfeature\unsupport.exe "+as_Window)
 else
 li_Resp = Open(lw_Ex, as_Window)
 end if
 else
 li_Resp = Open(lw_Ex, as_Window)
end if

Step 3: In the PowerServer project painter > External Files tab > Files preloaded as
compressed packages section, add the pipeline executable application, including the EXE,
PBD, and the runtime files (especially runtime for database interface).

Unsupported features & workarounds

Page 5

2.1.3 MobiLink

Unsupported feature

MobiLink (MLSync object, MLSynchronization object, and SyncParm object) is not
supported.

Workaround

Please consider the workaround used by data pipeline.

2.1.4 Oracle RPC arrays

Unsupported feature

Oracle RPC does not support arrays.

Workaround

Convert the array to a string and use the string instead of the array.

For example, the following stored procedure has an array IN parameter and an array OUT
parameter. As a workaround, use varchar to replace both the IN and OUT parameters.

Assembly the IN parameter in the PowerScript:

ls_outparam = space(30)
ls_inparam = '123;456'

The INI parameter will be split in the stored procedure. Do the same for the OUT parameter.

PROCEDURE pro_arrNum(
 in_arrParamNum in usertype_number,
 out_arrParamNum out usertype_number
)
AS
BEGIN
 out_arrParamNum(1) := in_arrParamNum(1) ;
 out_arrParamNum(2) := in_arrParamNum(2);

END pro_arrNum;

procedure pro_arrNumTostr(
 in_varchar in varchar,
 out_varchar out varchar
)
AS
ls_resstr varchar(30);
ls_desstr varchar(30);
li_pos int;
BEGIN
 li_pos := 1;
 ls_resstr := in_varchar;
 while li_pos > 0 and length(ls_resstr) > 0 loop
 li_pos := instr(in_varchar, ';', 1);
 if li_pos > 0 then
 ls_desstr := ls_desstr || ';' || substr(ls_resstr, 1, li_pos - 1) ;
 ls_resstr := substr(ls_resstr, li_pos + 1);
 end if;
 end loop;
 out_varchar := ls_desstr;
 ls_desstr := ls_desstr || ';' || '999';
END pro_arrNumTostr;

Unsupported features & workarounds

Page 6

PowerScript:

int li_pos, li_index
string ls_inparam, ls_outparam, ls_return, ls_value
long ll_outarrparam[]

ls_outparam = space(30)
ls_inparam = '123;456'

gtr_trans.pro_arrNumTostr(ls_inparam, ref ls_outparam)

li_pos = 1
mle_1.text = ''

ll_outarrparam = wf_formatstring(ls_outparam)

public function any wf_formatstring (string as_value);int li_pos, li_index
string ls_value, ls_return
long ll_foramtvalue[]
li_pos = 1

do while len(as_value) > 0 and li_pos > 0
 li_pos = pos(as_value, ";")
 ls_value = mid(as_value,1, li_pos -1)
 if IsNumber (ls_value) then
 li_index++
 ll_foramtvalue[li_index] = Integer(ls_value)
 end if
 as_value = mid(as_value, li_pos+1)
loop

if IsNumber (as_value) then ll_foramtvalue[li_index+1] = Integer(as_value)

return ll_foramtvalue
end function

2.1.5 SQLPreview

Unsupported feature

The sqltype argument of the SQLPreview event only supports the PreviewSelect type,
and does not support the PreviewInsert, PreviewDelete, and PreviewUpdate types. For the
PreviewSelect type, PowerServer does not return the SELECT statement, the SELECT
statement generated on the client side will be different from the SELECT statement executed
in the database. The SELECT statement on the client side is generated according to the
PowerBuilder logic, while the SELECT statement executed in the database is generated by
the PowerServer runtime.

The request argument of the SQLPreview event only supports PreviewFunctionRetrieve,
and does not support PreviewFunctionReselectRow and PreviewFunctionUpdate.

Workaround

This feature will be supported in the next release.

2.1.6 SQLReturnData property

Unsupported feature

The SQLReturnData property of the Transaction object is unsupported.

Unsupported features & workarounds

Page 7

Workaround

N/A

2.2 Unsupported features that cannot be detected

This section lists the unsupported features that cannot be detected by the deployment tool,
and provides possible workarounds.

2.2.1 Transaction trace

Unsupported feature

The transaction trace is not supported. For example,

SQLCA.DBMS = "TRACE MSOLEDBSQL SQL Server"

Workaround

It can be partially worked around using server logs under the debug mode.

2.2.2 Unsupported use cases in Embedded SQLs

Embedded SQLs are supported, but there are a few unsupported use cases.

Unsupported use case #1

When executing a procedure in the cursor, only single result set is supported; the output
parameter, return value, and multiple result sets are all unsupported.

declare lcs_test1 cursor for execute hr.synonyms_package.get_emp;
open lcs_test1;
fetch lcs_test1 into :ls_name;
close lcs_test1;

Workaround

The code example below processes the result sets, return value and output parameter one at a
time.

int li_intParam, li_retValue, li_bitResult
string ls_outVarParam, ls_outNvarParam, ls_varResult, ls_ncharResult

li_intParam = 1

declare lp_procName01 procedure for @li_retValue = get_muiltResultset
 @in_intParam = :li_intParam, @out_varParam = :ls_outVarParam output,
 @out_nvarParam = :ls_outNvarParam output;
execute lp_procName01;

//Handles the first result set
fetch lp_procName01 into :ls_varResult, :ls_ncharResult, :li_bitResult;
do while sqlca.sqlcode = 0
 fetch lp_procName01
 into :ls_varResult, :ls_ncharResult, :li_bitResult;
loop

//Handles the second result set
fetch lp_procName01 into :ls_varResult, :ls_ncharResult;
do while sqlca.sqlcode = 0
 fetch lp_procName01 into :ls_varResult, :ls_ncharResult;

Unsupported features & workarounds

Page 8

loop

//Handles the return value and output parameter
fetch lp_procName01 into :li_retValue, :ls_outVarParam, :ls_outNvarParam;
close lp_procName01;

Unsupported use case #2

Different transactions work on the same temp table. For example, after the first transaction
is committed, the second transaction still accesses the temp table that is created in the first
transaction. In this case, an "invalid object name #TEMPTABLE" error may occur.

Workaround

Make sure that all the operations related with one temp table are performed in the same
transaction.

Unsupported use case #3

The DataWindows and/or embedded SQLs included in the PBD file cannot be parsed to
the C# models (and the SetLibraryList and AddToLibraryList functions will not work
properly with such PBD files as well).

Workaround

Manually convert the DataWindows and embedded SQLs from the corresponding PBL file
through DataWindow Converter.

2.2.3 Retrieve As Needed and Rows to Disk

Unsupported feature

Retrieve As Needed and Rows to Disk options are not supported (which means all data will
be retrieved).

Workaround

For retrieving a large amount of data, you can consider adding the WHERE clause to retrieve
only the data needed.

2.2.4 SyntaxFromSQL

Unsupported feature

SyntaxFromSQL does not support stored procedures and functions if they use the temporary
table; it will be supported in later versions.

Workaround

Use a statically created DataWindow (instead of a DataWindow dynamically created by
SyntaxFromSQL) to call stored procedures and functions which use the temporary table.

2.2.5 Database synonyms

Unsupported feature

Database synonyms are unsupported. Synonyms of different owners in the same database
only supports the SELECT statement.

Workaround

Unsupported features & workarounds

Page 9

Call database synonyms in the C# assembly or REST APIs and then modify PowerScript to
call the C# assembly or REST APIs.

2.2.6 Commit or Rollback Transaction using Dynamic SQL

Unsupported feature

Transactions that are dynamically committed are unsupported.

SQLs that are dynamically committed or rolled back are unsupported.

Example 1:

execute immediate "commit";

string ls_sql
ls_sql = "Rollback"
Execute immediate :ls_sql;

Workaround

Call the Commit or Rollback SQL statement directly. For example,

Commit {USING TransactionObject};

Rollback {USING TransactionObject};

Example 2:

ls_exec = 'SAVE TRANSACTION ' + as_savepointname
execute immediate :ls_exec using sqlca;

//NOTE this is a rollback of a savepoint, not a rollback of the entire transaction:
ls_exec = 'ROLLBACK TRANSACTION ' + as_savepointname
execute immediate :ls_exec using sqlca;

Workaround

Move the related business logic to the procedure and implement the transaction savepoint in
the procedure.

2.2.7 Data retrieval and SQL operations in the RetrieveRow event

Unsupported feature

Data retrieval and SQL operations in the RetrieveRow event are not supported.

Workarounds

N/A

Discrepancies & workarounds

Page 10

3 Discrepancies & workarounds

3.1 Discrepancies that cannot be detected

PowerBuilder and PowerServer have discrepancies in dealing with features such as the
database connection, alias name etc. These discrepancies cannot be detected by the
deployment tool.

Due to these discrepancies they might have different behaviors at runtime.

3.1.1 DB connection

In traditional client/server applications, one application just uses one database connection.

In applications deployed from PowerServer, each transaction uses a database connection, and
when the transaction is completed, the database connection is ended.

3.1.2 Alias name

For dynamic DataWindow objects that are created by SyntaxFromSQL, if the alias name is
the same as the column name, you will need to carefully check if the correct column name is
used in the scripts.

Take the following as an example. PowerBuilder will use "t_dwstyle_grid_employ_empid"
as the column name, while PowerServer will use "empid" as the column name.

select t_dwstyle_grid_employ.empid as empid, t_dwstyle_grid_employ.empname as
 empname, t_dwstyle_dept.deptname as deptname
from t_dwstyle_grid_employ, t_dwstyle_dept
where t_dwstyle_grid_employ.deptid = t_dwstyle_dept.deptid and
 t_dwstyle_grid_employ.empid < 500

Thus, the following script will cause a runtime error in the installable cloud app.

getitem (row, "t_dwstyle_grid_employ_empid")

3.1.3 Data type mismatch

If data type is corrected while SRD is not re-generated to reflect the change (as shown below,
data type is still mismatched), PowerBuilder will throw an error when trying to retrieve data,
while PowerServer will retrieve data successfully.

column=(type=long update=yes updatewhereclause=yes name=starttime
 dbname="t_dwstyle_grid_employ.starttime")

3.1.4 rowsupdated value

When the column is set to not updatable (as shown below), modifying the column data and
then performing an update will cause the rowsupdated argument of the UpdateEnd event to:

• Return 1 in PowerBuilder, but actually no update statement is generated at all.

• Return 0 in PowerServer, indicating that no rows are updated.

dw_control.Object.columnname.Update = "No"

Discrepancies & workarounds

Page 11

3.1.5 DisableBind parameter

Suppose the database column updatetime is defined as below.

updatetime datetime not null default getdate()

If the application user inserts a new row, but does not enter a value for this column, then
when DisableBind is set to 0,

• PowerBuilder throws an error indicating that the updatetime column cannot be null.

• PowerServer inserts the data row to the database successfully (the updatetime column
takes the default value from database).

In PowerServer, DisableBind always takes value 0 for the DataWindow UPDATE
statement and may ignore the null value according to the sqldefault attribute; while takes
value 0 or 1 for the DataWindow SELECT statement and ESQLs.

3.1.6 TableBlob retrieval

If the TableBlob control selects a text field, PowerBuilder retrieves data for all columns
except for this blob; while PowerServer retrieves no data (thus DataWindow will have no
data at all).

Figure 3.1:

3.1.7 Dynamic DataWindow

When a computed field has no alias, PowerBuilder will use the computed expression as the
column title, while PowerServer will automatically give a name (such as "Compute2") as the
column title.

3.1.8 TransactionName

PowerServer will use the transaction object name to map with the database cache name.
But when the transaction object is defined as an argument of a function, as shown below,
PowerServer will get different transaction name from PowerBuilder.

Discrepancies & workarounds

Page 12

Figure 3.2:

transaction ltr_tmp
ltr_tmp = create transaction
gnv_manager.of_connect(ltr_tmp,"qa_datawindow")

• PowerBuilder will get ltr_tmp as the transaction object name.

For example,

dw_1.settransobject(ltr_tmp)
dw_1.retrieve()

• PowerServer will get atr_transobject as the transaction object name.

Defining the transaction object as an instance variable or global variable can ensure
PowerBuilder and PowerServer get the same transaction object name.

3.1.9 Data type in Dynamic SQL Format 4

In PowerBuilder, the Oracle database may return the numeric data as the decimal type.

Row=1, Column=1, type=Decimal, value=1
Row=2, Column=1, type=Decimal, value=2

While in PowerServer, the Oracle database may return the numeric data as the longlong type.

Row=1, Column=1, type=LongLong, value=1
Row=2, Column=1, type=LongLong, value=2

It is recommended that the developer use "choose case" to support the longlong-type numeric
data.

CHOOSE CASE SQLDA.OutParmType[n]
case TypeLongLong!
 ls_DataType = 'LongLong'
 ls_Value = String(adda_parm.GetDynamicDecimal(li_Idx))

3.1.10 Decimal data type in static SQL or DataWindow

PowerServer will return numeric data with a fixed decimal point length according to
the decimal precision of the column. If the decimal place is insufficient, zero will be
automatically filled; while PowerBuilder will not fill zero after the decimal point of decimal
data. For example, the money-type data may display as an integer (for example, 40) in
PowerBuilder; while display as a floating point number with 4 decimal places (for example,
40.0000) in PowerServer.

Discrepancies & workarounds

Page 13

3.1.11 Timing of transaction rollback

If the SELECT statement is executed after the UPDATE statement (like below) and if the
execution of UPDATE is successful while the execution of SELECT is not, PowerServer
will immediately roll back the transaction (and roll back UPDATE), while PowerBuilder will
not. This may cause that data to be retrieved later will be different between PowerServer and
PowerBuilder.

update dbparm_fortest set name_char = :ls_tmp1,name_varch=:ls_tmp1 where id
 = :li_id using tran01;
select "name_char",name_varch into :ls_char,:ls_varchar from dbparm_fortest where
 "id"= :li_id using tran01;
ls_return += "ls_char=" + ls_char+" "+string(len(ls_char)) + is_newline
ls_return += "ls_varchar=" + ls_varchar+" "+string(len(ls_varchar)) + is_newline
select count(1) into :ll_count from dbparm_fortest where name_char = :ls_name using
 tran01;

3.1.12 Oracle AutoCommit and Lock

The Oracle AutoCommit and Lock properties take effect in PowerServer, while take no effect
in PowerBuilder.

If an unsupported isolation level is set, for example, lock= "RU", PowerServer will throw an
error executing the SQL.

3.1.13 Stored procedure parameter

If the output parameter of stored procedure has default values, even if PowerBuilder did not
pass the output parameter, the server can still use the default value of the stored procedure
to successfully get data. However, in PowerServer, if PowerBuilder did not pass the output
parameter, PowerServer will use null as the default value. This will cause the result set
different between PowerBuilder and PowerServer.

If the parameter name or number does not match, PowerBuilder will display an error
indicating that the parameter does not exist; while PowerServer will check the schema of
stored procedure or function and automatically match the corresponding parameter type and
position, therefore PowerServer may be able to execute the stored procedure without errors.

3.1.14 Transaction commit

If the commit statement is executed after Transaction.autocommit = true, PowerServer
will display the error: Database connection or transaction is not opened, commit is invalid.
To avoid this error, do not execute commit/rollback after Transaction.autocommit = true;
or setting the "TransactionException" property to false in the ServerAPIs project >
AppConfig > Applications.json to suppress the error message.

If the commit statement is executed after the select statement, PowerServer will display an
error indicating that the database connection failed due to the unknown logic error. To avoid
the error, remove the commit statement after the select statement.

3.1.15 Use Describe in Dynamic SQL Format 4

You can no longer use Describe in Dynamic SQL Format 4 to check the SQL syntax. For
example,

Discrepancies & workarounds

Page 14

describe sqlsa into sqlda;
if not this.of_checktrans(atr) then
 return string(atr.sqlcode)+":"+atr.sqlerrtext
end if

However, this discrepancy can be ignored as the SQL syntax will be checked when opened or
executed on the server.

3.1.16 Bit data field

When the SNC SQL Native Client database interface is used, the Bit data field returns -1
when the data value is 1.

It is recommended to use IsPowerServerApp to determine the scripts to execute for the
application deployed via PowerServer.

3.1.17 SelectBlob/UpdateBlob supports UTF8 only

SelectBlob and UpdateBlob in PowerServer can only handle the value with UTF8 character
encoding (EncodingUTF8!).

When UpdateBlob updates a UTF8 value in PowerServer, or when UpdateBlob updates a
UTF16LE value in PowerBuilder, SelectBlob in PowerServer can correctly display the value
using the UTF8 or ANSI encoding while SelectBlob in PowerBuilder can correctly display
the value using the default UTF16LE encoding.

You can write scripts below to minimize the impact of this discrepancy:

if ispowerserverapp () = true then

 Lblob = Blob("Any Text", EncodingUTF8!)
 Updateblob caseresfile set filestring = :lblob where filename
 = :as_filename;
 SELECTBLOB filestring into :lblob from caseresfile where filename
 = :as_filename;
 ls_return = String(lblob, encodingutf8!)

else
 Lblob = Blob("Any Text")
 Updateblob caseresfile set filestring = :lblob where filename
 = :as_filename;
 SELECTBLOB filestring into :lblob from caseresfile where filename
 = :as_filename;
 ls_return = String(lblob)
end if

3.1.18 SQLNRows property (with Cursor)

When executing a cursor, PowerServer fetches all data rows at a time therefore SQLNRows
returns the total amount of all fetched rows, while PowerBuilder fetches one data row at a
time therefore SQLNRows returns 1.

3.1.19 SQLCode property (with SP)

If a stored procedure returns a result set which contains 0 data row, SQLCode property
returns -1 in PowerServer while returns 100 in PowerBuilder.

"content":{"returnvalue":null,"outparams":
[{"datatype":"long","value":7}],"resultsets":[]}

https://docs.appeon.com/pb2021/powerscript_reference/ch02s04s461.html

Discrepancies & workarounds

Page 15

3.1.20 Column name from view

If the table is from a view, PowerBuilder and PowerServer will generate different columns
names.

For example,

//v_cust_dept is from view cust_dept
select v_cust_dept.v_id from v_cust_dept;

PowerBuilder will generate the column name as v_cust_dept_v_id; while PowerServer will
generate the column name as cust_dept_v_id.

If using dw_1.getitem(1,"v_cust_dept_v_id") to get data, runtime error will occur. Use
dw_1.getitem(1,index) instead.

Incompatible coding styles

Page 16

4 Incompatible coding styles
Nonstandard PowerScript coding practices might cause problems when converting
DataWindow to C# models; and special C# coding conventions might also prevent scripts
running as expected in the .NET server. Following are bad or unrecommended practices that
are commonly seen in PowerScript and must be avoided or corrected before deploying the
application with PowerServer.

4.1 PBLs contain DataWindows with the same name

It is not a recommended practice for multiple PBLs in the same application containing
DataWindows with the same name. When converting to the C# models, only the first
DataWindow will be converted (the other duplicates will be ignored), because all converted
C# models are placed in the same ASP.NET project, and a single ASP.NET project cannot
have two models with the same name.

Please avoid having DataWindows with the same name in the application.

4.2 Object name using C# reversed words

C# reversed words (such as "abstract", "base", and "delegate") cannot be used as the
PowerBuilder object name, otherwise, the object cannot be executed as expected.

Please avoid using the C# reversed words as object name.

4.3 DataWindow name containing special characters

The C# naming convention does not allow using special characters (such as dash (-), dollar
sign ($), number sign (#), and percent sign (%)) in the DataWindow name. Such special
characters in the DataWindow name will be replaced with underscores when converted to
the C# model; thus the DataWindow will not be found after conversion as the name has
changed. For example, the DataWindow name "d_sp_who_with-dash" will be converted
to "D_Sp_Who_With_Dash.cs"; and the following error may occur when retrieving data:
"Select Error: DataWindow 'd_sp_who_with-dash' was not found".

Please double check that the DataWindow name contains no dash (-), dollar sign ($), number
sign (#), or percent sign (%).

4.4 Editing SQL

It is not a PowerBuilder recommended practice to type (instead of select) the logical keyword
in the SQL Select painter.

If you type the logical keyword (such as "and") to the value in the SQL Select painter, the
model conversion and data retrieval in PowerServer will have the error: Incorrect syntax
near ')'. To resolve this error, you will need to select the logical operator, instead of manually
typing it. Or go to the Source Editor, and change AND~" to ~" LOGIC = ~"and~".

Incompatible coding styles

Page 17

Figure 4.1:

4.5 Column order in data source and Column Specification
It is not a PowerBuilder best practice for the columns in the data source to be in a different
order from the columns in the Column Specification.

If the columns listed in the data source and in the Column Specification are not in the same
order, the data retrieval will fail in the .NET server.

Suppose the data source is

SELECT "employee"."emp_id","employee"."emp_fname","employee"."start_date" FROM
 "employee"

If the column specification is changed from

table(column=(type=long update=yes updatewhereclause=yes key=yes name=emp_id
 dbname="employee.emp_id")
column=(type=char(20) update=yes updatewhereclause=yes name=emp_fname
 dbname="employee.emp_fname")
column=(type=date update=yes updatewhereclause=yes name=start_date
 dbname="employee.start_date")

to

table(column=(type=long update=yes updatewhereclause=yes key=yes name=emp_id
 dbname="employee.emp_id")
column=(type=date update=yes updatewhereclause=yes name=start_date
 dbname="employee.start_date")
column=(type=char(20) update=yes updatewhereclause=yes name=emp_fname
 dbname="employee.emp_fname")

then the DataWindow will be converted incorrectly to the model.

[Key]
[DwColumn("employee", "emp_id")]
public int? Emp_Id { get; set; }
[ConcurrencyCheck]
[DwColumn("employee", "emp_fname", TypeName = "char")]
public string Start_Date { get; set; }
[ConcurrencyCheck]
[DwColumn("employee", "start_date")]
public DateTime? Emp_Fname { get; set; }

And the following error will occur when retrieving data in the application:

sqlerrtext=Invalid object name 'employee'.

4.6 One compute expression containing multiple computed
columns
It is not a PowerBuilder best practice to define multiple computed columns in one compute
expression, as shown below.

Incompatible coding styles

Page 18

Figure 4.2:

When converted to the C# models, the computed columns cannot be split into separate ones
correctly.

To avoid any problems, please specify one computed column in one compute expression, as
shown below.

Figure 4.3:

4.7 Cursor syntax
When declaring a cursor, it is not a recommended practice to add the into keyword.
PowerBuilder will consider it redundant and ignore it; while PowerServer will consider it
(ls_result in the following example) as a parameter and will display the error: The number of
parameters does not match.

string ls_sql, ls_result
ls_vid = '100002'
ls_vname = ''
DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
ls_sql = 'SELECT v_name into :ls_result FROM employee WHERE v_id = ?'
PREPARE SQLSA FROM :ls_sql ;
OPEN DYNAMIC my_cursor using :ls_vid ;
FETCH my_cursor INTO :ls_vname ;
CLOSE my_cursor ;

4.8 Syntax after UNION
PowerBuilder will not check the syntax after the UNION keyword. If the syntax after
UNION is invalid, for example, a space is missing between "SELECT" and ":as_test" as
shown below, PowerServer will fail to convert the DataWindow to a model.

SELECT :as_test test1, Dept.ID, Dept.Name FROM Dept
union
 SELECT:as_test test1, Dept.ID, Dept.Name FROM Dept

Troubleshooting Guide

Contents
1 Configuring and deploying PowerServer projects .. 1

1.1 Permission errors when configuring the Web server profile 1
1.2 Error during the build process ... 1
1.3 Error in the Unsupported (DWs) window ... 1
1.4 Failed to generate the PowerServer Web APIs project 2
1.5 Error uploading application files to FTP .. 3
1.6 Changed PBL list ... 3

2 Running installable cloud apps .. 4
2.1 Cloud app launcher and application executable .. 4

2.1.1 Failed to get the app publisher from the server 4
2.1.2 Cannot start cloud app launcher ... 4
2.1.3 Application executable disappeared suddenly 4
2.1.4 Window is slow to open .. 5

2.2 Models and controls .. 6
2.2.1 Cannot retrieve data when data includes null values 6
2.2.2 PBSELECT DataWindow error .. 6
2.2.3 RibbonBar control displays blank .. 6

2.3 Server ... 7
2.3.1 Cannot connect to the server when creating the session 7
2.3.2 Session creation failed .. 7
2.3.3 App requires login again ... 8
2.3.4 File name containing character + cannot be downloaded 9
2.3.5 "HTTP Error 404.2 - Not Found" error when running the app 10

2.4 Database .. 11
2.4.1 Different results returned from an ASE stored procedure 11
2.4.2 SelectBlob data truncated ... 12
2.4.3 Garbage letters display when retrieving multibyte data 12
2.4.4 Slow app performance with SQL Anywhere 14
2.4.5 64-bit database cannot be connected from IIS 15

3 License errors .. 16
3.1 Failed to call the license server API .. 16
3.2 Failed to login the license server .. 16
3.3 Cannot access License.json .. 17

4 Others ... 18
4.1 Failed to update NuGet packages in PowerServer C# solution 18

Configuring and deploying PowerServer projects

Page 1

1 Configuring and deploying PowerServer
projects

1.1 Permission errors when configuring the Web server profile

Permission errors occur when testing the file path in the Web server profile or trying to
connect to the Web server during the deployment process.

Solution:

1. Restart PowerBuilder IDE using the "Run as administrator" option.

2. Check if the Windows user has read and write permissions to the Web root.

1.2 Error during the build process

The following error occurs when building the PowerServer project:

Error: ERROR [42000] [Sybase][ODBC Driver][SQL Anywhere]Syntax error near ###'…

Solution:

When configuring the database cache in the Database Configuration, please click the
Advanced Settings, and make sure the DelimitIdentifier option is set to be consistent with
runtime. If this option is changed dynamically at runtime, you will need to create two caches
in order to make sure the model conversion is successful.

1.3 Error in the Unsupported (DWs) window

When converting the DataWindow to the model, the following error occurs in the
Unsupported (DWs) window:

Error: Incorrect syntax near the keyword 'user'.

Cause:

The database table or data field contains keywords, and the DelimitIdentifier property is
specified in the DataWindow DBParm.

Solution:

When configuring the Database Configuration in the PowerServer project, make sure to click
the Advanced button and then set DelimitIdentifier to True.

Configuring and deploying PowerServer projects

Page 2

Figure 1.1:

1.4 Failed to generate the PowerServer Web APIs project
The following error is reported in the Output window during the build & deploy process:

Failed to delete the file “C:\Users\appeon\source\repos\PowerServer_pssales
\ServerAPIs\bin\Debug\netcoreapp3.1\xxxx.dll”
because it may be occupied by another program. Error code: 5.
Failed to generate the PowerServer Web APIs project. Error code: 0.

Or

Failed to delete the folder “C:\Users\appeon\source\repos\PowerServer_pssales
\ServerAPIs”
because it may be occupied by another program. Error code: 32.
Failed to generate the PowerServer Web APIs project. Error code: 0.

Solution:

1. Close the PowerServer C# solution (PowerServer_pssales in the above example) if it is
currently opened in any C# editor.

Configuring and deploying PowerServer projects

Page 3

2. Close the Web APIs if it is currently running.

3. Build and deploy the project again.

1.5 Error uploading application files to FTP
The following error might occur while deploying the client app files to an FTP server:

Failed to connect to the server, it does not have permission to upload files.
Failed to publish the installable cloud app.

Cause:

The FTP user has no write permission.

Solution:

Make sure the FTP user you set has write permissions, especially when you use an FTP
server in the cloud.

Alternatively, you can package and distribute the application files to the server manually.
To package the application files, right click on the PowerServer project in the system tree,
and select Package PowerServer Project…; or see Packaging the client app for more
information.

1.6 Changed PBL list
The following message displays when you deployed a project that has already been deployed
successfully before.

The current library list is different from the library list contained within this
 project. The project library list has been updated.
Refresh build options for the changed list and try again.

Cause:

The PBL list was updated (for example, with new or deleted PBLs) after it was first
successfully deployed.

It is a known issue that it takes a project (especially a large project) a long time to display this
prompt. This issue will be addressed in the later release.

Solution:

Build and deploy the project again.

Running installable cloud apps

Page 4

2 Running installable cloud apps

2.1 Cloud app launcher and application executable

2.1.1 Failed to get the app publisher from the server

The following error occurs when trying to run the installable cloud app for the first time.

Figure 2.1:

Cause:

The cloud app launcher has not been uploaded to the server.

Solution:

Upload the app launcher and runtime files according to the instructions in Upload the cloud
app launcher and the runtime files; and then run the application again.

2.1.2 Cannot start cloud app launcher

The Cloud App Launcher failed to start even if the launcher has already been installed.

Cause:

The client machine has third-party firewall tool, such as Sophos. The process of Sophos such
as swi_filter.exe and swi_service.exe block the access to the application URL.

Solution:

Configure the firewall to allow access to the following IP address and port numbers:

http://127.0.0.1:26568

http://127.0.0.1:26569

2.1.3 Application executable disappeared suddenly

The application executable file disappeared suddenly after being run successfully for a few
times. The application's desktop shortcut disappeared too.

Cause:

The anti-virus software such as McAfee may incorrectly identify the application executable
as malicious and block it from running.

Solution:

Running installable cloud apps

Page 5

Try the following to resolve this issue:

1. Add the application executable file (as well as the cloud app launcher) to the exception list
of the anti-virus software.

2. Sign the application executable (as well as the cloud app launcher).

3. Update the anti-virus software to the latest version and the latest virus definitions.

4. Report this false positive to the anti-virus software.

2.1.4 Window is slow to open

Under some circumstances, for example, a large application that contains lots of PBLs and
the window uses user-defined images, the window may be slow to open in the application
(deployed via PowerClient or PowerServer).

Cause:

The application will first search through all PBD files and then the application directory to
find the user-defined images. In the PowerClient/PowerServer deployment, all PBD files are
broken down very granularly into each individual object/definition file. When the application
searches through a PBD folder, it first opens the _indexes.idx and _files.idx files in the
PBD folder and then searches through all individual objects/definition files according to the
_files.idx file. If there are many PBD folders, the elapsed time will be much longer.

Solution:

Use a PowerBuilder resource file (PBR) to list the user-defined images. When the PBR file
is deployed with the application, the application can find the image very quickly through the
PBR file.

Figure 2.2:

Running installable cloud apps

Page 6

2.2 Models and controls

2.2.1 Cannot retrieve data when data includes null values

The following error occur when retrieving data: The property does not allow null value:
Object_Ref.

Cause & Solution:

When converting the DataWindow to the model, the nullable property is not correctly set.
You can search for the problematic object (for example, Object_Ref) in the exported models
in the PowerServer C# solution, and modify it to allow null values. For example,

Change

[Key]
 [DwColumn("disp", "object_ref")]
 public long Object_Ref { get; set; }

To

[Key]
 [DwColumn("disp", "object_ref")]
 public long? Object_Ref { get; set; }

2.2.2 PBSELECT DataWindow error

The DataWindow created with PBSELECT crashed or GetSQLSelect returns an error when
retrieving data.

Or the DataWindow created with PBSELECT cannot be converted to the model successfully.

Cause & Solution:

There are syntax errors when PowerServer converts PBSELECT to SELECT. It is
recommended that you convert PBSELECT to SELECT in PowerBuilder first and then
deploy the application with PowerServer again.

2.2.3 RibbonBar control displays blank

In the installable cloud app, the RibbonBar control displays blank.

Cause:

The script file (XML/JSON) that is used to create the RibbonBar control is not selected and
deployed with the project.

Solution:

1. Open the PowerServer project object, go to the External Files tab, select Files preloaded
in uncompressed format and then click Add Files to add the RibbonBar script file (XML/
JSON).

2. Deploy the PowerServer project again to make the change effective.

Running installable cloud apps

Page 7

2.3 Server

2.3.1 Cannot connect to the server when creating the session

The following error might occur when you run an installable cloud app: Cannot connect to
the server when creating the session.

Cause A:

The .NET server might have its IP address changed, for example, it is set to obtain IP address
automatically.

Solution A:

Set a static IP address or a domain name for the .NET server.

Cause B:

The .NET server might have set up a firewall and the firewall might not allow the specified
port number to go through.

Solution B:

Configure the firewall on the server to allow the specified port number to go through.

2.3.2 Session creation failed

The following error might occur when you run an installable cloud app: Session creation
failed.

Error 1:

Figure 2.3:

Cause:

If the host server connects to Internet via a proxy server, then PowerServer Web APIs has to
be configured with the proxy server as well.

Solution:

Open the PowerServer C# solution > the ServerAPIs project > the Server.json file, and
configure the proxy server settings in the "ProxyOptions" block.

 ...

Running installable cloud apps

Page 8

 "ProxyOptions": {
 "Server": "",
 "Username": "",
 "Password": ""
 },
 ...

Error 2:

Figure 2.4:

Cause:

Two applications under the same IIS website cannot use the same application pool.

Solution:

Step 1: Configure the two applications to use different application pools.

Step 2: Restart the website.

2.3.3 App requires login again

The app might require the user to log in or run again on a daily basis.

Cause:

In IIS, application pools are recycled every 1,740 minutes by default. The session in a
running app will become invalid after the recycle period is reached, so the user has to log in
or run the app again.

Solution:

Set the Regular Time Interval to 0 to stop recycle, or set to other duration.

Running installable cloud apps

Page 9

Figure 2.5:

2.3.4 File name containing character + cannot be downloaded

If the file name contains the character "+", an 404 error will occur when the file is
downloaded from the IIS Web server.

Cause & Solution:

In IIS Manager, select the folder which contains the character "+" in the folder or file name,
and then double click Request Filtering on the Features View.

Running installable cloud apps

Page 10

Figure 2.6:

Click Edit Feature Settings in the Actions pane.

In the Edit Request Filtering Settings dialog box, select Allow double escaping.

Figure 2.7:

2.3.5 "HTTP Error 404.2 - Not Found" error when running the app

When you run the application which is hosted in the IIS Web server, you get the following
error:

HTTP Error 404.2 - Not Found

Running installable cloud apps

Page 11

The page you are requesting cannot be served because of the ISAPI and CGI
 Restriction list settings on the Web server.

Cause:

The IIS server settings block the download of the CloudAppLauncher_Installer.exe file.

Solution:

In the IIS Manager, expand the server's node and then the Sites node in the Connections
panel, select the website where the application is hosted, and then double click Handler
Mappings on the Features View, and set CGI-exe to Disabled.

2.4 Database

2.4.1 Different results returned from an ASE stored procedure

For an ASE stored procedure, for example the following one, the results returned from the
installable cloud app and the PowerBuilder C/S app might be different.

CREATE PROCEDURE g_qaQuestionSelect
AS
DECLARE @quest_seq tinyint, @ErrorMessage varchar(255)
SELECT @quest_seq = NULL
 IF @quest_seq = NULL /* here is the error checking @quest_seq = NULL ,
 currently fixed it using IsNull(@quest_seq,0) = 0 */
 SELECT @ErrorMessage = 'ERROR.'
 ELSE
 SELECT @ErrorMessage = 'DONE.'

Cause:

The PowerServer installable cloud application connects to ASE through the ODBC driver,
while the PowerBuilder C/S app connects to ASE through the native driver. The default
values of Set ANSI Null option in these two drivers are different.

Solution:

De-select the Set ANSI Null option in the ODBC Data Source Administrator.

Running installable cloud apps

Page 12

Figure 2.8:

2.4.2 SelectBlob data truncated

The data values of the SelectBlob variable are truncated in the installable cloud app.

Cause & Solution:

The PowerServer installable cloud application connects to ASE through the ODBC driver,
while the PowerBuilder C/S app connects to ASE through the native driver. The Text size
option in the ODBC driver is 32KB by default.

You can increase the text size value using the Control Panel

1. Select Control Panel | Administrative Tools | Data Sources (ODBC), then select the data
source for Adaptive Server Enterprise in the User DSN or System DSN tab.

2. Select Configure to display the ODBC Adaptive Server Enterprise Setup window, then
select Advanced.

3. Change the value for Text Size to a larger value (the default value is 32KB). The Adaptive
Server ODBC drive truncates any data value that is larger than the value you set here.

2.4.3 Garbage letters display when retrieving multibyte data

When retrieving multibyte data from the ASE database, garbage data displays in the
installable cloud app.

Cause:

The PowerServer installable cloud application connects to ASE through the ODBC driver,
while the PowerBuilder C/S app connects to ASE through the native driver. When using

Running installable cloud apps

Page 13

the native driver, DBParm supports the charset parameter (for example, charset='roman8');
however when using the ODBC driver, DBParm does not support this parameter.

Solution:

Set the charset setting in the ODBC data source configuration page, for example,

cp852 -- PC Eastern Europe

cp1250 -- Microsoft Windows 3.1 Eastern European

cp869 -- IBM PC Greek

cp1253 -- MS Windows Greek

cp932 -- IBM J-DBCS:CP897 + CP301 (Shift-JIS)

sjis -- Shift-JIS (no extensions)

eucksc -- EUC KSC Korean encoding = CP949

cp936 -- Microsoft Simplified Chinese character sets

Running installable cloud apps

Page 14

Figure 2.9:

2.4.4 Slow app performance with SQL Anywhere

The app runs slowly when working with the SQL Anywhere database.

Solution:

Select the Pool Connections to this driver option in the ODBC Data Source
Administrator to speed up the performance.

Running installable cloud apps

Page 15

Figure 2.10:

2.4.5 64-bit database cannot be connected from IIS

When connecting with a 64-bit database (such as informix, ASE etc.) from the PowerServer
Web APIs that runs in the same process as its IIS worker process (in-process hosting), the
following error occurs:

ERROR [IM014] [Microsoft][ODBC Driver Manager] The specified DSN contains an
 architecture mismatch between the Driver and Application

Cause:

A 32-bit (x86) self-contained deployment published with a 32-bit SDK that uses the in-
process hosting model requires that the Application Pool is enabled for 32-bit; while a 64-
bit (x64) self-contained deployment that uses the in-process hosting model requires that the
Application Pool is disabled for 32-bit.

By default, the Application Pool is enabled for 32-bit.

Solution:

When using a 64-bit database, disable the Application Pool for 32-bit.

To do so, in IIS Manager, navigate to Application Pools in the Connections sidebar. Select
the app's Application Pool. In the Actions sidebar, select Advanced Settings. Set Enable
32-Bit Applications to False.

https://docs.microsoft.com/aspnet/core/host-and-deploy/iis/in-process-hosting?view=aspnetcore-5.0

License errors

Page 16

3 License errors

3.1 Failed to call the license server API

When running the installable cloud app, the Web API console displays the following error:

2021-01-27 01:28:32,094 ERROR PowerServer.Client.PowerServerClient.LogMessage [0] -
 MESSAGE: Failed to call the license server Api.
(Error connecting to https://apipsoatest.appeon.com/.well-known/openid-
configuration. A connection attempt failed because the
connected party did not properly respond after a period of time, or established
 connection failed because connected host has failed
to respond..)

Cause & Solution:

First, please note that it is possible that the PowerServer console may output the following
error information but the application is still running properly. That is because the system
allows a grace period in cases when PowerServer fails to validate the license. After the grace
period, PowerServer will stop responding the requests from the application.

The error here indicates that PowerServer cannot connect to https://apipsoatest.appeon.com.
However, according to the latest information in PB Help, PowerServer is required to connect
to https://apips.appeon.com and https://apipsoa.appeon.com, or https://apips.appeon.net and
https://apipsoa.appeon.net. The cause of the error must be, the PowerServer Runtime version
is too old. You shall manually update the PowerServer.Core and PowerServer.Api NuGet
packages to the latest version.

3.2 Failed to login the license server

When running the installable cloud app, the Web API console displays the following error:

2021-01-27 01:28:32,240 ERROR PowerServer.Client.PowerServerClient.LogMessage [0] -
 MESSAGE: License Exception: Failed to login the
license server. (Invalid_client) at
 PowerServer.SessionFacade.CreateSessionIdAsync(String appName, String
 clientEncryptString,
CancellationToken cancellationToken))

Cause & Solution:

The "invalid-client" error occurs because the license code is invalid or the license code
cached in the system has expired. Please try the following:

1. Check the license code included in the PowerServer project matches the one you obtained
from the Appeon website;

2. Clear the PowerServer cache and then build and run the Web APIs again;

To clear the PowerServer cache, go to %SystemDrive%\Users\[username]\.nuget
\packages, and delete the folders starting with "dwnet", "powerserver", "snapobjects", and
"powerscript".

3. Make sure that PowerServer is connecting to the correct license servers: https://
apips.appeon.com and https://apipsoa.appeon.com, or https://apips.appeon.net and https://

https://apipsoatest.appeon.com
https://apips.appeon.com
https://apipsoa.appeon.com
https://apips.appeon.net
https://apipsoa.appeon.net
https://apips.appeon.com
https://apips.appeon.com
https://apipsoa.appeon.com
https://apips.appeon.net
https://apipsoa.appeon.net

License errors

Page 17

apipsoa.appeon.net. If not, update the PowerServer.Core and PowerServer.Api NuGet
packages to the latest version.

3.3 Cannot access License.json
When the application is deployed to a subfolder under the IIS Web root, the first access to the
application always failed while the subsequent access is successful.

Cause:

When tracking the request using Fiddler, the CreateSession request failed at the first access
to the application, and the following error message is returned: errmsg=Access to the path 'C:
\inetpub\wwwroot\App\AppConfig\License.json' is denied.

Solution 1:

Grant Internet Guest Account and IIS Process Account proper rights to manipulate the Web
Root folder. Below are the detailed steps:

1. Right-click on the C:\Inetpub\wwwroot folder. Select the Properties item and select the
Security tab page;

2. Add IIS_ISERS(or NETWORK SERVICE) if it is not listed in the box "Group or
usernames";

3. Grant Full Control permission to the IIS_ISERS (or NETWORK SERVICE).

4. Restart the IIS server (iisreset.exe).

5. If the issue persists, please try granting "everyone" user full control permission on the C:
\inetpub\wwwroot\[appname] folder.

Solution 2:

Refer to the article below to set an account in the administrator group to the Identity
property for DefaultAppPool: https://campuslogicinc.freshdesk.com/support/solutions/
articles/5000713210-changing-identity-user-for-iis-application-pool.

Restart the IIS server (iisreset.exe).

https://apipsoa.appeon.net
https://campuslogicinc.freshdesk.com/support/solutions/articles/5000713210-changing-identity-user-for-iis-application-pool
https://campuslogicinc.freshdesk.com/support/solutions/articles/5000713210-changing-identity-user-for-iis-application-pool

Others

Page 18

4 Others

4.1 Failed to update NuGet packages in PowerServer C# solution
The PowerServer C# solution failed to update the NuGet packages; or the PowerServer C#
solution failed to build because the dependent NuGet packages were not updated.

Solution:

1) Make sure the computer can connect to the NuGet site (https://www.nuget.org).

2) Clean and then rebuild the PowerServer C# solution.

https://www.nuget.org

Performance Guide

Contents
1 Introduction ... 1
2 Performance suggestions on project compilation and deployment 2
3 Performance suggestions on loading installable cloud apps for the first time 3
4 Performance suggestions on running installable cloud apps 4

4.1 Debugging the performance .. 4
4.2 Working against the impact of Internet and slow networks on runtime
performance ... 5
4.3 Hosting Web APIs and database on the same LAN 6
4.4 Web API publishing method .. 6
4.5 Optimizing database server performance .. 6
4.6 Tuning excessive server calls ... 6

4.6.1 Overview .. 6
4.6.2 Technique #1: partitioning transactions via stored procedures 7
4.6.3 Technique #2: partitioning non-visual logic via server-side REST
APIs ... 9
4.6.4 Technique #3: eliminating recursive embedded SQL 9
4.6.5 Technique #4: eliminating DW computed fields calling user
functions that have ESQL ... 10

4.7 Minimizing large data transmissions .. 11
4.7.1 Overview .. 11
4.7.2 Technique #1: retrieving data incrementally 11

4.7.2.1 For Oracle database server .. 11
4.7.2.2 For all other database servers .. 12

4.7.3 Technique #2: minimizing excessive number of columns 12

Introduction

Page 1

1 Introduction
PowerServer deployments are different from traditional PowerBuilder client/server
application deployments in the following ways:

During the PowerServer project compilation and deployments:

• All DataWindows/DataStores are automatically converted to .NET models, and then
automatically exposed via REST/JSON APIs;

• All embedded SQLs will be deployed to the server side, and then automatically exposed
via REST/JSON APIs;

• All PBD files are broken down very granularly into each individual object/definition file.

When an end user starts an installable cloud app for the first time:

• Each client must download and install a supporting program, Cloud App Launcher, and
also download the supporting runtime files;

• Each client will download the app files from the web server. There are two possible ways:
Download the app files as necessary, or download all the app files at app startup.

• It is possible that some preload event (e.g., commands for environment detection or control
registration) shall be executed before the app starts.

When an installable cloud app starts to run:

• The app has no dependency on a web browser (type, version, or settings), and will run and
update itself as needed over the Internet;

• The app runs in a web or cloud environment instead of the previous on-premise
environment. It is powered by REST APIs that interface with the data sources, and such
REST APIs is hosted in PowerServer in a public or private cloud.

Due to the above differences, it can be well expected that the relevant performance behavior
will be different from the client/server applications. This document will provide you
some common performance tuning techniques to get maximum performance out of the
PowerServer project development and implementation.

Performance suggestions on project compilation and
deployment

Page 2

2 Performance suggestions on project
compilation and deployment
It is normal behavior that the PowerServer Toolkit would take 3 to 4 times as long as a
normal compile. There is much additional work to do, including:

• Obtaining database schema for the conversion;

• Converting DataWindows to C# models and static SQLs to C# properties;

• Breaking down all PBD files granularly into each individual object/definition file;

• Encrypting compiled files;

• Deploying the files to the web server, or packaging the files, etc.

There are a few tips for you to speed up the process:

• Use the local machine as the development environment. This means that you set up the
Web server, PowerServer, and database server on the local machine, and the database
server type and version shall be the same as the one to be used in the production
environment.

• Make sure that the option "During compilation, report unsupported PowerScript features
for PowerServer deployment" is selected in the application additional properties. The
unsupported features report can help you quickly locate and fix problems related with
PowerServer deployment.

• You need not sit and wait for the whole process to finish. It is possible to build the
PowerServer projects through scripts (see Tutorial 7: Building your PowerServer project
with commands).

Performance suggestions on loading installable cloud
apps for the first time

Page 3

3 Performance suggestions on loading
installable cloud apps for the first time
When an end user starts an installable cloud app for the first time, a number of files will be
downloaded from the web server to the client machine, such as Cloud App Launcher, runtime
files, the app files, and image files. The downloading performance depends on the network
status for sure. Besides, you need to plan the download timing carefully through the relevant
PowerServer project settings. Specifically:

• Consider whether to enable or disable the security-strengthening options. These options
will add some time marginal time. If judging from the nature of your application, security
is not a major concern, you may disable them.

• In the project settings | General tab, the option "Encrypt all the compiled p-code files"

• In the project settings | Run Options, the option "Validate the application integrity before
the app runs"

• Consider whether to download the files as necessary, or at the app startup. The total time
is no different, but you may want to shorten the initial waiting time for the users. The
relevant options are:

• In the project settings | External Files tab, the option to add images and videos in the
"Images/videos dynamically loaded" section;

• In the project settings | Client Deployment tab, the options "Download the app files as
necessary" and "Download all the app files at app startup".

If you select the "Download the app files as necessary", the following files will be
downloaded before the app runs: 1) The PowerBuilder Runtime files; 2) The application
executable; and 3) The files you selected to be preloaded in the External Files settings.
The other files are downloaded only when they are called by the app.

If you select the "Download all the app files at app startup", the runtime files, app
executable, the application files, and external files are all downloaded at the startup,
except for the image files that are set as “dynamically-loaded” in the External Files
settings.

Note that usually, if you have already run certain function of an application, when you
run it again, there is no need to download any additional files.

• Consider to transfer external files as compressed packaged or in uncompressed format. If
an external file/file folder will not change after downloaded to the client, add them to the
"Files preloaded as compressed packages" section; if some external file will change often
such as config files (XML, INI, etc.), add them to the "Files preloaded in uncompressed
format" section.

• Minimize the files that shall be downloaded to the client. For example, in the project
settings | Runtime, make sure that only the required runtime modules are selected.

Performance suggestions on running installable cloud
apps

Page 4

4 Performance suggestions on running
installable cloud apps
There are two hypotheses about the performance of running installable cloud apps:

1. The PB application does not have performance problems; but the installable cloud app has.

In this case, the performance problem may be caused by the connection network.

And the possible reasons are:

• The networks connection is slow or unstable;

• The data package is too large or the SQL syntaxes are not efficient that result in long
communication time in a single communication;

• The same functionality frequently communicates with the server that results in repeated
connection performance expense, etc.

In the case, you should: 1) First consider to reduce the communication times between
the client and the server so to reduce the connection performance expense; 2) Secondly,
consider to optimize the efficiency of each communication, for example, by retrieving
only the necessary data and using the optimal relational calculus in the SQL syntaxes,
etc.3) Continue reading the suggestions provided in this chapter and take the suggestions
applicable to your application.

2. Both the PB application and the installable cloud app have performance problems:

If the PB application has performance problems, the deployed installable cloud app will
definitely have performance problems as well.

In this case, you should:

1) First consider to optimize the performance of the PB application and the database
by using all kinds of available system tools. For example, you can use the transaction
track analyzer provided by the database provider to analyze and optimize the database
performance. Usually, popular database providers provide performance analysis and
optimization tools with their databases, you can use these provided tools to optimize the
databases.

2) Secondly, after you make sure that the PB application does not have performance
problems, use the hypothesis 1 to analyze the installable cloud app.

4.1 Debugging the performance
If you want to find out what factors/operations cause the performance issue, we suggest that
you download Fiddler and use it to track the web traffic between the application and the
server, and then locate the web page/operation that is running slowly. For more instructions
on how to use Fiddler, please check here: Debugging with Fiddler. Be sure to run the
PowerServer Web APIs before you start Fiddler (or any other Web debugging proxy tool).
Otherwise, the PowerServer Web APIs will fail to start.

In addition, when the Web APIs is running, you can check the health status of Web APIs
by running https://[Web-API-URL]/health-ui in a Web browser, for example, http://

https://www.telerik.com/fiddler

Performance suggestions on running installable cloud
apps

Page 5

localhost:5009/health-ui/. The health check report contains checking items such as SQL
execution performance, the status of local network. It can help you identify the configuration
issues or network connection failures affecting the performance.

4.2 Working against the impact of Internet and slow networks on
runtime performance

Network chatter and network-intensive code really highlight the weakness of a poor network
connection. Any code that results in a server call when executed multiple times sequentially
has potential to create network chatter. Here are several common examples of the code that
will result in server calls:

• Embedded SQL (Select, Insert, Delete, Update, Cursor);

• Invoking stored procedures or database functions;

• DataWindow/DataStore functions (Retrieve, Update, ReselectRow, ShareData);

• DataWindow/DataStore events (SQLPreview, RetrieveRow);

• Transaction functions (SyntaxFromSQL)

• Invoking a Web Service.

Each of the above statements (except SQLPreview and RetrieveRow) will generate one call
to the server. If any of the above statements are contained in a loop or recursive function,
well depending on the number of loops, even though it is just one statement it would be
executed multiple times generating multiple server calls. Needless to say, loops and recursive
functions are some of the most dangerous from a performance perspective.

The reason it is important to minimize server calls is because it can take 100 or even 1,000
times longer to transmit one packet of data over the Internet compared to a LAN. Imagine
an event handler is triggered, for example handling an "onClick" event, whose execution
will result in 80 synchronous server calls over a LAN with latency of 2 milliseconds (ms).
In such scenario the slow-down attributed to network latency would be 0.16 seconds (80 x 2
ms). Now imagine this same event handler running over a WAN with latency of 300 ms. The
slow-down attributed to the network latency would be a whopping 24 seconds (80 x 300 ms)!
And depending on the amount of data transmitted there could be additional slow-down due
the bandwidth bottlenecks.

It is imperative for the developer to be conscious that PowerBuilder applications deployed
to the cloud may not be running in a LAN environment, and as such there will be some
degree of performance degradation. How much depends on how the code is written, but in
most cases the performance degradation still falls within acceptable limits without much
performance optimization.

Should you find that certain operations in your application are unacceptably slow, the good
news is there are numerous things that you can do as PowerBuilder developers to ensure your
PowerBuilder applications perform well in a cloud environment or on slower networks. At
a high-level, your code needs to be written such that the server calls and other performance
intensive code is minimized or relocated to the middle-tier or back-end.

Performance suggestions on running installable cloud
apps

Page 6

4.3 Hosting Web APIs and database on the same LAN

Same as any other web applications, for installable cloud apps, the PowerServer Web APIs
must be published to a server that locates on the same LAN as the database server. If the
database is not on same network as the Web APIs, every request has to go a long way from
PowerServer to the database, it is highly possible that there will be performance problem.

4.4 Web API publishing method

To ensure the Web API execution performance, it is strongly recommended that you publish
the Web APIs to IIS or Docker or Kestrel. The performance would be much affected if you
just use the Compile & Run Web APIs (that is, running the Web APIs from the SnapDevelop
IDE). See Tutorials for step-by-step instructions on how to publish the Web APIs.

4.5 Optimizing database server performance

Setting appropriate values for the database parameters based on the actual needs can reduce
the occurrence of database deadlock and block hence can improve the concurrency and
stability of the Web application.

Common database optimization techniques include: optimizing the table structure, using
proper index, and optimizing SQL statement. Additionally, check the following database
server settings:

4.5.1 Connection Pooling

Instead of opening and closing connections for every request, connection pooling uses a
cache of database connections that can be reused when future requests to the database are
required. For example, right now the connection pooling is enabled by default for SQL
Anywhere if the database server is on the same machine as PowerBuilder. If SQL Anywhere
is on a different machine, you need manually enable the connection pooling.

4.5.2 Command Timeout

Setting appropriate timeout period for commands based on the actual needs can reduce the
occurrence of database deadlock and block. You may set the timeout values for transaction,
session, and request in the PowerServer C# solution > ServerAPIs project > AppConfig >
Applications.json file.

4.6 Tuning excessive server calls

4.6.1 Overview

Excessive server calls in a given operation can create performance issues for that operation
on slow and high-latency networks. If you are not familiar with the concept of "server calls",
please refer to Impact of the Internet and slow networks and then proceed with this section.

This section will provide three different techniques including code examples to minimize
server calls and thereby optimize the performance of your PowerBuilder application for the
cloud.

Performance suggestions on running installable cloud
apps

Page 7

1. Partition transactions utilizing stored procedures

2. Partition non-visual logic utilizing server-side REST APIs

3. Eliminating recursive embedded SQL

4. Eliminating DataWindow computed fields calling user functions that have embedded
SQLs

4.6.2 Technique #1: partitioning transactions via stored procedures

Imagine your PowerBuilder client contains the following code:

long ll_rows, i
decimal ldec_price, ldec_qty, ldec_amount

ll_rows = dw_1.retrieve(arg_orderid)
for i = 1 to ll_rows
 dw_1.SetItem(i, "price", dw_1.GetItemDecimal(i, "price")*1.2)
next

if dw_1.update() < 0 then
 rollback;
 return
end if

for i = 1 to ll_rows
 ldec_price = dw_1.GetItemDecimal(i, "price")
 ldec_qty = dw_1.GetItemDecimal(i, "qty")

 if ldec_price >= 100 then
 ldec_amount = ldec_amount + ldec_price*ldec_qty
 end if
Next

ll_rows = dw_2.Retrieve(arg_orderid)
dw_2.SetItem(dw_2.GetRow(), "amount", ldec_amount)

If dw_2.update() = 1 then
 Commit;
else
 rollback;
end if

This is not only problematic from a runtime performance perspective since there would be
numerous server calls over the WAN, but also it could result in a "long transaction" that
would tie up the database resulting in poor database scalability.

The business logic and the data access logic (for saving data) are intermingled. When the
first "Update()" is submitted to the database, the related table in the database will be locked
until the entire transaction is ended by the "Commit()". The longer a transaction is the longer
other clients must wait, resulting in fewer transactions per unit of time.

To improve the performance and scalability of the application, the above code can be
partitioned in two steps:

1. First, move the business logic (or as much possible) outside of the transaction. In other
words, the business logic should appear either before all Updates of the transaction or after

Performance suggestions on running installable cloud
apps

Page 8

Commit of the transaction. This way the transaction is not tied up while the business logic
is executing.

2. Second, partition the transaction whereby all the Updates are moved into a stored
procedure. The stored procedure will be executed on the database side and only return the
final result. This would eliminate the multiple server calls from the multiple updates to
just one server call over the WAN for saving all the data in one shot.

It is generally best to actually divide the original transaction into three segments or
procedures: "Retrieve Data", "Calculate" (time-consuming logic), and "Save Data". The
"Retrieve Data" procedure retrieves all required data for the calculation. This data usually
would be cached in a DataWindow(s) or a DataStore(s). In the "Calculate" procedure, the
data cached in DataStore will be used to perform the calculation instead of retrieving data
directly from the database. The calculation result would be cached back to a DataStore and
then saved to the database by the "Save Data" procedure.

Example of the new PB client code partitioned into three segments and invoking a stored
procedure to perform the Updates:

long ll_rows, i
decimal ldec_price, ldec_qty, ldec_amount
//Retrieve data
dw_2.Retrieve(arg_orderid)
ll_rows = dw_1.retrieve(arg_orderid)
//Calculate (time-consuming logic)
for i = 1 to ll_rows
 dw_1.SetItem(i, "price", dw_1.GetItemDecimal(i, "price")*1.2)
next

for i = 1 to ll_rows
 ldec_price = dw_1.GetItemDecimal(i, "price")
 ldec_qty = dw_1.GetItemDecimal(i, "qty")

 if ldec_price >= 100 then
 ldec_amount = ldec_amount + ldec_price*ldec_qty
 end if
Next

dw_2.SetItem(dw_2.GetRow(), "amount", ldec_amount)
//Save data
declare UpdateOrder procedure for up_UpdateOrder @OrderID = :arg_orderid,
@amount = :ldec_amount;
execute UpdateOrder;

Example of code for the stored procedure to Update the database:

create procedure up_UpdateOrder(
@orderid integer,
@amount decimal(18, 2)
)
as
begin
update order_detail set price = price*1.2
where ordered = @orderid

if @@error <> 0
begin
 rollback
 return dba.uf_raiseerror()
end

Performance suggestions on running installable cloud
apps

Page 9

update orders set amount = @amount
where ordered = @orderid

if @@error <> 0
begin
 rollback
 return dba.uf_raiseerror()
end

commit
end

In summary, with the above performance optimization technique, the performance and
scalability is improved since the transaction is shorter. The server call-inducing Updates are
all implemented on the server-side rather than the client-side, improving the response time.
Secondly, moving the business logic out of the transaction further shortens the transaction.
If the business logic cannot be moved out of the transaction, one may want to consider
implementing the business logic together with the transaction as a stored procedure. In
summary, shorter transactions equals better scalability and faster performance.

4.6.3 Technique #2: partitioning non-visual logic via server-side REST APIs

Partitioning non-visual logic and encapsulating it within server-side REST APIs means
rewriting the logics in C#, deploying them as REST APIs, and then invoking them from
PowerScript. With this technique we have reduced those numerous server calls of the
database transaction to just one single call to the REST API, and at the same time created a
re-usable component that can be shared by other modules in our PowerBuilder application or
shared by other applications.

4.6.4 Technique #3: eliminating recursive embedded SQL

It is actually quite common to find embedded SQL in a loop, especially Select and Insert
statements. As explained previously, server calls that are recursive in nature are quite
dangerous, potentially generating tremendous number of server calls. If your application
requires loops or recursive functions, it would be best to replace any code resulting in server
calls with code that does not.

For this technique, we will assume we have Select and Insert SQL statements in a loop.
The general idea is to first create a DataWindow/DataStore using the SQL. Then replace
the SQL statements contained in the loop with PowerScript modifying the DataWindow/
DataStore, which does not result in server calls. If the SQL statement contained in the loop
is an Insert statement, we would want to replace that with PowerScript that would insert
data into the DataWindow/DataStore. Once all the data has been inserted, then in one shot
we would update the DataWindow/DataStore to the database (outside the loop), resulting
in only one server call. If the SQL statement contained in the loop is a Select statement, we
would retrieve data into a DataWindow/DataStore before executing the loop, and then write
PowerScript in the loop to select the desired data from the DataWindow/DataStore.

The following is a code example that increases the price of a specific order by 20%, where
embedded SQL is used to update the change row-by-row (hence the loop), and then save
those changes to the database:

long ll_id

Performance suggestions on running installable cloud
apps

Page 10

declare order_detail cursor for
select id from order_detail where orderid = :arg_orderid;
open order_detail;
fetch order_detail into :ll_id;

do while sqlca.sqlcode = 0
 update order_detail set price = price*1.2
 where orderid = :arg_orderid and id = :ll_id;

 if sqlca.sqlcode < 0 then
 rollback;
 return
 end if

 fetch order_detail into :ll_id;
loop
close order_detail;
commit;

Now we will replace the embedded SQL with a DataWindow. Specifically, we will cache the
data in a DataWindow and update the database with a single DataWindow Update, resulting
in just once server call:

long ll_rows, i

ll_rows = dw_1.retrieve(arg_orderid)
for i = 1 to ll_rows
 dw_1.SetItem(i, "price", dw_1.GetItemDecimal(i, "price")*1.2)
next

if dw_1.update() = 1 then
commit;
else
rollback;
end if

With this technique we have just eliminated server calls from inside the loop, reduced the
number of server calls to just one, and created a data caching mechanism at the client-side
that can be used to feed data to other controls of the PowerBuilder client.

4.6.5 Technique #4: eliminating DW computed fields calling user functions that
have ESQL

If the computed fields in the DataWindow call user functions that have embedded SQLs, for
each DataWindow record, the application will need to do a complete round-trip to execute
those embedded SQLs. For the PowerBuilder native client/server application, a complete
round-trip is "from app to DB"; while for the PowerServer installable cloud application,
a complete round-trip is "from app to PowerServer then to DB". Due to the three-tier
architecture of the PowerServer installable cloud application, if there are lots of DataWindow
records, the performance impact may become significant and noticeable.

To avoid any potential impact, please try the workarounds below:

• Workaround 1: Change the DataWindow SQL to join related tables to get data directly.

• Workaround 2: Retrieve all required data to a DataStore and modify the user function to
get data from the DataStore instead of from the database.

Performance suggestions on running installable cloud
apps

Page 11

4.7 Minimizing large data transmissions

4.7.1 Overview

Suppose you have worked hard to make an application Web-ready using Appeon, and, using
your test data, it seemed to perform acceptably. Then, when your users provide "live" test
data in realistic volumes, you discover that the application takes a long time to load, and
worse, a long time to respond to your user's input. What to do?

Well first you should confirm that your issue is not caused by excessive server calls (see
Tuning: Excessive Server Calls). The reason is that majority of the time, PowerBuilder
applications are coded such that as additional rows of data are retrieved logic is executed to
validate, manipulate, or otherwise handle the data, which can result in server calls. As such,
the more rows of data are retrieved the more server calls are made.

Once you are certain the slow-down is not caused by excessive server calls then you can
consider reducing the size of data transmission. At a high-level there are several techniques
you can employ:

• The first and most popular is staging the data retrieval into manageable increments. For
example, you can expose a Next button, and have the application respond to this button
click by getting the next logical segment of the result set just like typical Websites or Web
applications. Technique #1: retrieving data incrementally gives you instructions on how to
achieve this.

• Another technique is to create multiple smaller "specific" views rather than one larger
"general" view. Consider adding SQL WHERE clauses based on more search criteria,
thus retrieving only the amount of data that is absolutely necessary for a particular view of
interest.

• If you have a choice between reducing the number of rows retrieved, and reducing the
number of columns, note that a small reduction in columns (described below in Technique
#2: minimizing excessive number of columns) can improve performance to an even greater
extent than a reduction in rows. This is because most of the time, loops, whether in the
application code or in the virtual machine, visit columns first and then rows.

Anything you do to reduce the size of the result set in one way or another can only improve
performance and possibly improve usability of your application as well.

4.7.2 Technique #1: retrieving data incrementally

4.7.2.1 For Oracle database server

Oracle includes a pseudo-column called ROWNUM which allows you to generate a list of
sequential numbers based on ordinal row. If your application uses Oracle database, apply
your Oracle skills and ROWNUM to limit the number of returned rows. For example, this
query selects the 10 rows from a table:

SELECT *
FROM (SELECT rownum r, t_dwstyle_grid_employ.empid FROM t_dwstyle_grid_employ)
WHERE r BETWEEN 10 AND 20;

Performance suggestions on running installable cloud
apps

Page 12

You can impose a NEXT button to the DataWindow. In the Clicked event of the NEXT
button, the query changes with ROWNUM increments by 10. Therefore, when the NEXT
button is clicked, the DataWindow displays next 10 rows.

4.7.2.2 For all other database servers

If your application uses a non-Oracle database (for example, Microsoft SQL server) you can
use the following SQL syntax to limit the number of returned rows to the DataWindow:

SELECT TOP 10 *
FROM my_table
WHERE Table.primary_key > = :bottom
ORDER BY Table.primary_key;

Before retrieving the first page of data, "bottom" should be set to a value smaller than any
primary key value in the table.

Based on this SQL statement, you can implement Next and Previous buttons for the
DataWindow. Their Clicked events increment or decrement the bottom variable so that its
value matches the primary key value in the first row you want to retrieve then execute the
above SQL statement.

4.7.3 Technique #2: minimizing excessive number of columns

As the number of rows in the result set increased, the number of columns will cause greater
degradation on performance, especially for nested loops in your application which process
rows in the outer loop, and columns in the inner loop. Sometimes the excessive number of
columns is intentional and other times it is unintentional.

A sign of unintentionally excessive columns would be the SQL syntax Select * From:
consider modifying this syntax to Select fieldList From, where fieldList is the comma-
separated list of all, and only, those fields your application will actually need. The
performance of the SQL syntax using asterisk will be automatically degraded any time your
database administrator modifies the database design by adding columns.

A sign of intentionally excessive columns is simply a long list of columns in your SQL Select
statement. Consider analyzing your actual needs to make certain all columns are necessary.
It may be possible to request certain columns (needed only in exceptional circumstances) in
a separate SQL operation. Please keep in mind if the Visible property of a column is set to
zero (the control is not visible), even though the Column cannot be seen, it is still impacting
performance.

Debugging Guide

Contents
1 Overview .. 1
2 Debugging with Fiddler .. 2

2.1 Installing Fiddler ... 2
2.2 Configuring Fiddler .. 2
2.3 Configuring the PowerServer project ... 3
2.4 Running the PowerServer Web APIs and then Fiddler 3
2.5 Capture HTTP(S) with Fiddler ... 3
2.6 Filtering the results .. 4
2.7 Inspecting the results ... 5
2.8 Analyzing the performance .. 6

3 Logs and unsupported features report .. 7
3.1 Deployment log .. 7
3.2 Unsupported features report .. 7
3.3 Web file download log ... 7
3.4 Web API request log ... 8
3.5 Debugging log in SnapDevelop ... 8
3.6 PowerServer logs .. 8

3.6.1 Log4net logging ... 8
3.6.2 Logging with the settings in Logging.json .. 8

4 Debugging case studies .. 10
4.1 DataWindow related errors .. 10

4.1.1 DataWindow retrieve error ... 10
4.1.2 SyntaxFromSQL execution error ... 10
4.1.3 Different execution results in different databases 11
4.1.4 Incompatible data type .. 13
4.1.5 PBSELECT retrieve error .. 13

4.2 Embedded SQL related errors ... 14
5 Data type mapping tables .. 16

5.1 SQL server data type mappings .. 16
5.2 ASE server data type mappings .. 17
5.3 SQL Anywhere server data type mappings ... 18
5.4 Oracle server data type mappings .. 19
5.5 PostgreSQL data type mappings ... 20

Overview

Page 1

1 Overview
PowerServer projects have the typical web application structure, consisting of client and
server sides. The client-side contains the functionality that a user interacts with, and the
server-side deals with the database operations. You need to first decide what operations
and functions you will debug, and then choose the right debugging technique and tool.
Specifically:

• For client-side operations that have no database interactions, you can continue using the
debugging functionality in the PowerBuilder IDE.

For more instructions, please check the existing documentation: Debugging an application
in PowerBuilder User Guide.

• For client-side operations that interact with PowerServer or the database, consider to use
a web debugging proxy tool to capture HTTP/HTTPS traffic between the client and the
server, to find out where the issue is rooted: the client, the server, or REST API services.

For more instructions, please refer to: Debugging with Fiddler.

• The unsupported features report and logs during the deployment and running of
PowerServer projects can be helpful for locating the causes of the errors occurred during
the process.

For the list of logs and unsupported features report available and their locations, please
check Logs and unsupported features report.

Then, there are a few debugging case studies targeting to showcase how to handle real-world
issues. Please check the Debugging case studies for the cases that apply certain debugging
techniques and tools, and the Troubleshooting Guide document for common errors and their
possible solution.

https://docs.appeon.com/pb2021/pbug/ch07s01.html#Debugging_an_application

Debugging with Fiddler

Page 2

2 Debugging with Fiddler
You may use any web debugging proxy tool that you are familiar with to inspect the traffic
between the client-side of an installable cloud application and PowerServer. Telerik Fiddler
is one of the options. This section uses Fiddler as the example to explain the relevant
techniques.

2.1 Installing Fiddler
Please install Fiddler on the computer that you plan to run and test the installable cloud app
deployed from a PowerServer project.

1. In the web browser, navigate to: https://www.telerik.com/download/fiddler

2. Fill the form, accept the license, download and install.

Alternatively, you can download directly from here too:

https://telerik-fiddler.s3.amazonaws.com/fiddler/FiddlerSetup.exe

2.2 Configuring Fiddler
The first time you run Fiddler, make sure to enable logging for HTTPS traffic with the
following steps:

1. Click Tools > Fiddler Options > HTTPS.

2. Click the Decrypt HTTPS Traffic box.

3. In the popup dialog that asks you whether you trust the Fiddler Root certificate, click Yes.

https://www.telerik.com/fiddler
https://www.telerik.com/download/fiddler
https://telerik-fiddler.s3.amazonaws.com/fiddler/FiddlerSetup.exe

Debugging with Fiddler

Page 3

By default, Fiddler does not capture and decrypt secure HTTPS traffic. To capture data sent
through HTTPS, the HTTPS traffic decryption must be enabled.

For more configuration settings on Fiddler, you may refer to: https://docs.telerik.com/fiddler/.

2.3 Configuring the PowerServer project

To enable that Fiddler can successfully capture the traffic, make sure that the Web API URL
setting of the PowerServer project uses the actual IP address, not "localhost".

2.4 Running the PowerServer Web APIs and then Fiddler

Be sure to run the PowerServer Web APIs before you start Fiddler (or any other Web
debugging proxy tool). Otherwise, the PowerServer Web APIs will fail to start.

Reason is Fiddler (as well as any other Web debugging proxy tool) works by adding itself
as a proxy instead of using your current proxy settings; therefore it will change your proxy
settings on startup and reverts them back to what they were when Fiddler is closed. If the
PowerServer Web APIs connects with the NuGet site and Appeon site through a proxy
server, it may fail to start.

2.5 Capture HTTP(S) with Fiddler

Open up your favorite browser, and simply navigate to the URL of the installable cloud app.
You will see the requests sent to PowerServer in the section containing list of sessions, (the
left pane)

After selecting one of those sessions, click on Inspectors tab, then the TextView tabs to view
the request sent to the server and also the response returned from the server.

https://docs.telerik.com/fiddler/

Debugging with Fiddler

Page 4

If the response body is encoded, click to decode:

2.6 Filtering the results

It is daunting task to check through hundreds of requests, therefore you may use filters to
filter the results.

For example, you can:

• Hide success (2xx) — This rule will remove all of the successful web requests. (An HTTP
status code of 200 means success). Usually you do not want to have to look through all of
the successes to find the missing files, content expiration intervals that are not properly set,
etc.

• Hide Image Requests — There is rarely debugging that can be done on how images are
downloaded, you can hide the image requests.

Debugging with Fiddler

Page 5

2.7 Inspecting the results

Based on what is reported in Fiddler, you will get what is the next step to take to debug
failures in the application.

1. Result: 502

Result “502” means that Fiddler's request for a web page was blocked (or request delayed)
by the site's web server or firewall or load balancer, causing the request to timeout.
When it happens, please check whether the connection from the current computer to
PowerServer can be successful or not.

2. Result: 404

Result “404” means that the requested item is not found. If it occurs, please check whether
the file exists on the web server.

3. Database related SqlCode and SqlErrorText

In the TextView of the requests, if you find an error with SQLCode or SqlErrorText, it
must be something wrong with the database operations. In this case, please further check
the relevant code or .cs file behind the request, to see if there is something wrong with the
code or the .NET DataStore model (converted from the PowerBuilder DataWindow), or
the SnapObjects Runtime.

4. Data retrieval

You can view the composition of the DataWindow that is performing the data retrieval,
and check into possible retrieval errors.

5. Data type mappings

Pay attention to the data types used in the deployment application or returned by
PowerServer when executing SyntaxFromSQL. If the data type is different from what is
specified in Data type mapping tables, you may need to make the necessary adjustments to
the model .cs file, or possibly in the original SQL.

Debugging with Fiddler

Page 6

2.8 Analyzing the performance
You can analyze the performance of a module by understanding the information in the
Fiddler's Statistics tab, especially:

• Request count

• Overall elapsed

You can also add Overall Elapsed as a custom column, for the convenience of view.

Logs and unsupported features report

Page 7

3 Logs and unsupported features report

3.1 Deployment log

When you deploy an application, the output panel shows all the build and deployment actions
occurred during the process.

You may also find the log file at \Program Files (x86)\Appeon\PowerBuilder 21.0\log.

3.2 Unsupported features report

If you enable the “During compilation, report unsupported PowerScript features for
PowerServer deployment”, PowerServer Toolkit will catch and report PowerScript features
that are currently unsupported by PowerServer. You can make changes into PowerScript
accordingly.

View the unsupported PowerScript features in Output > Unsupported (DWs) tab or
Unsupported (PowerServer) tab:

3.3 Web file download log

When you launch an installable cloud app at the client side, Cloud App Launcher is first
downloaded and installed, and then the app files. The download log of all the web files can be
found at the client side, the Cloud App Launcher:

For Cloud App Launcher without background service, the log file CloudAppShell.log is at
%LocalAppData%\Launcher\log;

For Cloud App Launcher with background service, the log file CloudAppShell.log is at
%LocalAppData%\LauncherWithService\log;

Logs and unsupported features report

Page 8

The app file download logs are at %AppData%\PBApps\Applications\[appname]\log.

3.4 Web API request log
You can enable logging for the PowerServer Web API requests at the client, by adding the
following setting to the PB.INI file (this INI needs to be deployed to the server):

[PowerServer]
Api_log = 1

The log file (such as api202106241530.log) will be generated at %AppData%\PBApps
\Applications\[appname]\log.

3.5 Debugging log in SnapDevelop
If you select Start Debugging in SnapDevelop to start ServerAPIs.exe, when an installable
cloud app calls PowerServer services, the Output panel in SnapDevelop will show the
relevant debugging information.

Tip: You can look for "SQL:" keyword in the output for the SQL syntax that PowerServer
sends to the database for execution.

3.6 PowerServer logs

3.6.1 Log4net logging

The PowerServer Web APIs adopts the Log4net logging framework for logging. The
PowerServer log files are stored in the Web API bin folder (make sure you have permissions
to write into the folder), for example, \ServerAPIs\bin\Debug\netcoreapp3.1\log. The
ServerAPIs project > Logging > log4net.config file controls which folder under \bin\Debug
\netcoreapp3.1\log to save the log files in and the log file name. For example:

<file value="Logging/logs/powerserver.log" />
//The log file will be rolled based on a size constraint (maximumFileSize)
<maximumFileSize value="100KB" />

3.6.2 Logging with the settings in Logging.json

The ServerAPIs project > Logging > Logging.json or Logging.Development.json file
contains 1) the log level of PowerServer; 2) the logs to display in the console window; 3) the
logging of SQLs, sessions and transactions.

Settings in Logging.json file will take effect in the production environment (for example,
when Web APIs is published and running in IIS, docker etc.). The default log level is
warning.

Settings in Logging.Development.json file will take effect in the development environment
(for example, when Web APIs is running from the SnapDevelop IDE or the PowerBuilder
IDE). The default log level is information.

The event levels (in the order of severity) include Trace, Debug, Information, Warning, Error,
Critical, and None. The level change can be made at runtime (no need to restart the server).

For example, if you do not want to output logs at the Information level (more detailed level),
you can change the log level in the file from "Information" to "Error".

Logs and unsupported features report

Page 9

The following is a sample log:

2021-03-05 09:09:09,080 ERROR PowerServerApi.ServerApiController.LogMessage [0] -
 MESSAGE: RequestId: CE1A2E41-0C93-4ff9-80FB-F98B096D4176,
ErrorMessage: The INSERT statement conflicted with the CHECK constraint
 "check_age". The conflict occurred in database "Qa_datawindow", table
"dbo.t_update_forcheck", column 'age'.
The statement has been terminated.

Debugging case studies

Page 10

4 Debugging case studies

4.1 DataWindow related errors

4.1.1 DataWindow retrieve error

An error has occurred when executing the following SQL statement via DataWindow
retrieve.

SQL syntax:

select id typeid,
 "Fname"||' - '||"Lname" as FullName,
 diner + interval '1 day' dinneAdd1,
 costs* 0.85 *(case when id%2 = 0 then 1 else -1 end) zk,
 birthday + interval '10 day' ,
 salary * 1.1 sales,
 to_char(cast(mobilephone as int),'###-####-###')
 from t_dwstyle_alltype a
 where /*DATEDIFF(d,birthday,'1000-02-01') between 8 and 10*/
 EXTRACT(day from birthday - to_timestamp('1000-02-01','YYYY-MM-DD')) > 8 and
 EXTRACT(day from birthday - to_timestamp('1000-02-01','YYYY-MM-DD')) < 10
 or birthday is null
 order by typeid

When the DataWindow retrieves data using the SQL, an error message pops up: The property
does not allow null value: Dinneadd1.

Debugging technique:

The error means that the model generated from the DataWindow has set non-nullable
attribute to the column. However, the Dinneadd1 column is a computed column, so it shall be
nullable. It is necessary to check the .cs file of the generated model, to find the column and
set nullable attribute to it.

For example, the column defined in the model is:

[DwColumn("dinneadd1")]
 public TimeSpan Dinneadd1 { get; set; }

Add the nullable attribute to the column:

[DwColumn("dinneadd1")]
 public TimeSpan? Dinneadd1 { get; set; }

Note: If the SQL syntax contains left join, or union, it may possibly induce similar error.

4.1.2 SyntaxFromSQL execution error

The application crashes when executing the same SQL statement via SyntaxFromSQL.

Debugging technique:

We shall first check the web debugging proxy tool, such as Fiddler, to locate at what
operation the error occurred (at the execution of SyntaxFromSQL), and also find out the error
message captured. Check in the Inspector TextView for the possible causes:

• Is there SqlErrorText?

Debugging case studies

Page 11

• Is any column name empty? --- Check the columnname;

• Any improper date type? --- Check the datatype;

• Issue with the column length or precision?

Then you will see there is a null column name. After setting an alias to the null column,
SyntaxFromSQL can then be executed successfully:

Column in the SQL: birthday + interval '10 day'

Add an alias to the column: birthday + interval '10 day' rq

4.1.3 Different execution results in different databases

Supposing we are executing the following CREATE TABLE syntax in SQL Server and
Oracle.

CREATE TABLE appeon_test (id integer NOT NULL,testname varchar(40) NOT NULL ,
 testdate date , testnumber decimal(12,3) , PRIMARY KEY (id))

With Oracle, the table created is as below:

Debugging case studies

Page 12

With SQL Server, the table created is as below:

In the PowerBuilder DataWindow SRD, the datatype is long, which can work well in both
databases.

table(column=(type=long update=yes updatewhereclause=yes key=yes name=id
 dbname="appeon_test.id")

When converting the DataWindow to C# model, with SQL Server, the Id column is of int
type:

[DwColumn("appeon_test", "id")]
 public int Id { get; set; }

Because the Id column of the table is Number in Oracle, when the same model tries to
retrieve data from the Oracle database, an error occurs:

Therefore, if using the Oracle database, the model Id shall be changed to the decimal data
type.

[DwColumn("appeon_test", "id")]
 public decimal Id { get; set; }

If you hope to run the same model against different databases, it is necessary to add
ValueConverter too the model column in the .cs file by:

Debugging case studies

Page 13

[ValueConverter(typeof(DefaultValueConverter))]
 [DwColumn("appeon_test", "id")]
 public int Id { get; set; }

4.1.4 Incompatible data type

With PostgreSQL, when retrieving data into a DataWindow that uses stored procedure as its
data source, an error occurred:

Select Error: The Decimal type is not compatible with the data type of the mapped property
'Unit_Weight' on model 'Dw_Mat_Items_Inquiry_List'.

Debugging technique:

Search for the model ”Dw_Mat_Items_Inquiry_List” in SnapDevelop and then
“Unit_Weight” in the model .cs file. In the stored procedure of the DataWindow, the data
type of Unit_Weight is NUMBER (12,3). According to the Data type mapping tables, the
Number data type is mapped to decimal. Therefore, the data type of Unit_Weight shall be
changed to decimal in the .cs file:

Public decimal? Unit_Weight { get; set; }

4.1.5 PBSELECT retrieve error

Sample PBSELECT script:

retrieve="PBSELECT(VERSION(400) TABLE(NAME=~"dec_emp~")

PBSELECT may easily cause errors. When the SQLPreview event (executed at the client
side) converts the PBSELECT to the SELECT syntax, the event may cause the client crash
or arrive at incorrect SQL syntax (the syntax relies on the DisableBind, DelimitIdentifier
settings in dbparm).

Debugging case studies

Page 14

If PBSELECT contains outer joins of multiple tables, there may be unknown error when it
is converted to SELECT, and such error cannot be identified by Fiddler because there is no
communication from the client to the server.

Debugging technique:

Check in Fiddler whether a connect has occurred, and whether the connection is successful.

If there is no connection and the client app has crashed, the issue may be caused by
PBSELECT. To avoid the problem, better change PBSELECT to a SELECT statement in the
application source code, and then deploy the application again.

4.2 Embedded SQL related errors

Possible error when executing an embedded SQL: ErrorMesage: 42883: function
up_ods301_005(integer, timestamp with time zone) does not exit

Debugging technique:

When an embedded SQL reports error, the recommended way is to run the server Web APIs
in debug mode, and check the SQL statement in the Output panel.

Debugging case studies

Page 15

For example, the original embedded SQL is:

select * from up_ods301_005(20,'1981-01-01');

And the actual statement shown in the Output is:

select * from up_ods301_005(@P0,@P1)
@P0 = 20
@P1 = 1981-01-01 12:00:00.000

You can then notice that the data type of the second parameter does not match in the two
statements (the first one is data, and the second one is timestamp with time zone) (for more
accurate data type information, use the web debugging proxy tool).

Data type mapping tables

Page 16

5 Data type mapping tables
This section provides the mapping rules from the original data type to the C# data type, or the
data type returned by PowerServer on executing SyntaxFromSQL. If the C# data type or the
type returned by PowerServer is different from what is listed in the tables, you would need to
make necessary changes to the C# models or the SQL syntax, to avoid possible errors.

5.1 SQL server data type mappings

Data type in SQL Server Data type in C# models

Data type returned
by PowerServer on
SyntaxFromSQL

bigint long decimal

binary blob blob

bit bool number

char string char

date datetime date

datetime datetime datetime

datetime2(7) datetime datetime

datetimeoffset(7) DateTimeOffset char

decimal(18, 2) decimal decimal

float double number

geography blob blob

geometry blob blob

hierarchyid blob blob

image Blob

int int long

money decimal decimal

nchar string char

ntext string char

numeric(18, 2) decimal decimal

nvarchar string char

real Single real

smalldatetime DateTime datetime

smallint short long

smallmoney decimal decimal

sql_variant object char

text string char(32766)

time(7) TimeSpan time

Data type mapping tables

Page 17

timestamp byte[] timestamp

tinyint byte long

uniqueidentifier Guid char

varbinary blob blob

varchar string char

xml string char(32766)

5.2 ASE server data type mappings

Data type in ASE Data type in C# models

Data type returned
by PowerServer on
SyntaxFromSQL

bigdatetime DateTime

bigint decimal Decimal(0)

bigtime DateTime datetime

binary byte[] char

bit bool number(1)

char string char

date DateTime date

datetime DateTime datetime

decimal decimal decimal

float double number

image blob

int int long

longsysname string char

money decimal decimal

nchar string char

numberic decimal decimal

nvarchar string char

real float real

smalldatetime DateTime datetime

smallint short long

smallmoney decimal decimal

sysname string char

text string(32000) char

time TimeSpan time

timestamp byte[] timestamp

tinyint byte long

Data type mapping tables

Page 18

unichar string char

unitext string char

univarchar string char

unsigned bigint decimal decimal

usigned int long ulong

unsigned smallint int ulong

varbinary byte char

varchar string char

5.3 SQL Anywhere server data type mappings

Data type in SQL Anywhere Data type in C# models
Data type returned
by PowerServer on
SyntaxFromSQL

bigint long decimal(0)

binary blob

bit bool number

char string char

date datetime date

datetime datetime datetime

datetimeoffset string char

decimal(18,2) decimal decimal(2)

double double number

float single real

image blob

integer int long

long binary blob

long nvarchar string char

long varbit string char

long varchar string char

money decimal decimal

nchar string char

ntext string char

numeric(18,2) decimal decimal(2)

nvarchar string char

real single real

smalldatetime datetime datetime

smallint short long

Data type mapping tables

Page 19

smallmoney decimal decimal

text string char

time timespan time

timestamp datetime datetime

timestamp with time zone string char

tinyint byte long

uniqueidentifier guid char

uniqueidentifierstr string char

unsignedbigint decimal decimal

unsignedint long UnsingedLong

unsignedsmallint int UnsingedLong

varbinary(50) blob

varbit(50) string char

varchar(50) string char

xml string char

sysname string char

5.4 Oracle server data type mappings

Data type in Oracle Data type in C# models

Data type returned
by PowerServer on
SyntaxFromSQL

BINARY_DOUBLE double BinaryDouble

BINARY_FLOAT single BinaryFloat

BLOB Blob

CLOB string Char

CHAR string Char

DATE datetime Datetime

INTERVAL DAY(2) TO
SECOND(6)

INTERVAL YEAR(2) TO
MONTH

LONG string Char

NCLOB string Char

NVARCHAR2 string Char

RAW Blob

TIMESTAMP(6) datetime Datetime

Data type mapping tables

Page 20

TIMESTAMP(6) WITH
LOCAL TIME ZONE datetime Datetime

TIMESTAMP(6) WITH TIME
ZONE datetime Datetime

VARCHAR2 string char

NUMBER(2) short int16

number Decimal

NUMBER(5,2) single Single

number(10) Int64

number(10,2) double

number(7) int32

number(15) int64

5.5 PostgreSQL data type mappings

Data type in PostgreSQL Data type in C# models
Data type returned
by PowerServer on
SyntaxFromSQL

bigint long decimal(0)

bigserial long decimal(0)

bit bool char

bit varying char

boolean char

Box char

bytea blob

character string char

character varying string char

cid Uint32 char

cidr char

circle char

date datetime date

daterange char

double precision double number

gtsvector char

inet ipaddress char

int2vector char

int4range char

integer int long

Data type mapping tables

Page 21

interval char

json string char

line char

macaddr physicaladdress char

money decimal number

name char

numeric(10,1) decimal decimal(1)

numrange char

oid char

path char

point char

polygon char

real float real

refcursor char

serial int long

regdictionary char

smallint short long

smallserial short long

Text string char

tid char

time with time zone(6) datetimeoffset char

time without time zone(6) timespan time

timestamp with time zone(6) datespan datetime

timestamp without time zone(6) datespan timestamp

tsquery char

tsrange char

uuid guid char

xid char

xml string char

	PowerServer 2021 Help
	Contents
	Installation
	1 PowerServer components
	2 Installation requirements
	2.1 Client PC
	2.2 Development PC
	2.3 Web Server
	2.4 .NET Server
	2.5 Database Server
	2.6 Network

	Quick Start
	1 Overview
	2 Preparing a local development environment
	2.1 Installing IIS in Windows 10

	3 Verifying the example sales app
	4 Minimal efforts: Deploying the sample PowerServer project
	4.1 Updating the sample PowerServer project based on your environment
	4.2 Building and deploying the PowerServer project
	4.3 Starting the Web APIs
	4.4 Running the installable cloud application

	5 Full experience: Creating and deploying a new PowerServer project
	5.1 Creating the PowerServer project
	5.1.1 Creating a new PowerServer project
	5.1.2 Configuring the General tab
	5.1.3 Configuring the External Files tab
	5.1.4 Configuring the Runtime tab
	5.1.5 Configuring the Client Deployment tab
	5.1.6 Configuring the Web APIs tab
	5.1.7 Importing the PowerServer license

	5.2 Building and deploying the PowerServer project
	5.3 Starting the Web APIs
	5.4 Running the installable cloud application

	How-to Guides
	1 Overview
	2 Create the PowerServer project
	3 Define the PowerServer projects
	4 Configure the Web server for deployment
	5 Upload the cloud app launcher and the runtime files
	5.1 About cloud app launcher

	6 Configure the Web API settings
	7 Configure the database connection
	8 Import license and activate PowerServer
	9 Analyze the unsupported features
	10 Build and deploy the PowerServer project
	10.1 What is the PowerServer C# solution
	10.2 What settings will be deployed to the solution
	10.3 Build & deploy using commands
	10.4 Run the ServerAPIs.Tests project

	11 Compile and run the Web APIs
	12 Check the status of Web APIs
	13 Run the installable cloud application
	14 Customize the app entry page
	15 Customize the deployed app using commands
	15.1 Change the External Files
	15.2 Change the Web API URL
	15.3 Encrypt the database password

	16 Support cookie validation
	17 View the API documentation
	18 Get/Kill user sessions
	19 Package the client app
	20 Undeploy the client app
	21 Uninstall the client app

	Tutorials
	1 Tutorial 1: Deploying your PowerServer project to production environment
	1.1 Overview
	1.2 Task 1: Setting up the client machine
	1.3 Task 2: Setting up the database server
	1.3.1 Preparations
	1.3.2 Configuring Windows Defender Firewall
	1.3.3 Starting the database

	1.4 Task 3: Setting up the Web server
	1.4.1 Overview
	1.4.2 Preparations
	1.4.3 Installing Web Server (IIS)
	1.4.4 Deploying app files to Web Server
	1.4.4.1 Overview
	1.4.4.2 Method 1: Creating an IIS FTP site
	1.4.4.3 Method 2: Packaging and copying the client app

	1.5 Task 4: Setting up the development PC
	1.5.1 Preparations
	1.5.2 Creating the ODBC data source
	1.5.3 Creating a Web server profile for remote deployment
	1.5.4 Uploading the cloud app launcher and the runtime files to the remote server
	1.5.5 Modifying and re-deploying the PowerServer project

	1.6 Task 5: Setting up the auth server
	1.7 Task 6: Setting up the .NET server
	1.7.1 Preparations
	1.7.2 Creating the ODBC data source
	1.7.3 Publishing the Web APIs

	2 Tutorial 2: Hosting Web APIs in Docker Containers
	2.1 Task 1: Setting up Docker
	2.1.1 Setting up a docker host (Docker Engine)
	2.1.2 Setting up a docker registry

	2.2 Task 2: Setting up the database server
	2.2.1 Preparations
	2.2.2 Starting the database

	2.3 Task 3: Publishing to Docker
	2.3.1 Preparing the development PC
	2.3.2 Modifying and re-deploying the PowerServer project
	2.3.3 Editing the pg_hba.conf file
	2.3.4 Publishing Web APIs to Docker
	2.3.4.1 Specifying Web API URL

	3 Tutorial 3: Hosting Web APIs in IIS (in-process hosting)
	3.1 Overview
	3.2 Preparations
	3.3 Installing IIS
	3.3.1 Windows Server OS
	3.3.2 Windows Desktop OS

	3.4 Creating an IIS website
	3.5 Configuring IIS
	3.6 Configuring SSL on IIS
	3.7 Publishing Web APIs to IIS

	4 Tutorial 4: Hosting Web APIs in Kestrel
	4.1 Overview
	4.2 About PowerServer Web APIs and Kestrel
	4.3 Running Web APIs on Kestrel
	4.4 Using a reverse proxy server
	4.4.1 Configuring Apache reverse proxy server (Windows)
	4.4.1.1 Preparations
	4.4.1.2 Configuring Apache
	4.4.1.3 Modifying and re-deploying the PowerServer project
	4.4.1.4 Starting Web APIs (in development environment)

	4.4.2 Configuring Apache reverse proxy server (Linux)
	4.4.2.1 Preparations
	4.4.2.2 Configuring Apache
	4.4.2.3 Modifying and re-deploying the PowerServer project
	4.4.2.4 Starting Web APIs (in development environment)

	4.4.3 Configuring Nginx reverse proxy server (Windows)
	4.4.3.1 Preparations
	4.4.3.2 Configuring Nginx
	4.4.3.3 Modifying and re-deploying the PowerServer project
	4.4.3.4 Starting Web APIs (in development environment)

	4.4.4 Configuring Nginx reverse proxy server (Linux)
	4.4.4.1 Preparations
	4.4.4.2 Configuring Nginx
	4.4.4.3 Modifying and re-deploying the PowerServer project
	4.4.4.4 Starting Web APIs (in development environment)

	4.4.5 Configuring IIS reverse proxy server
	4.4.5.1 Preparations
	4.4.5.2 Configuring IIS
	4.4.5.3 Modifying and re-deploying the PowerServer project
	4.4.5.4 Starting Web APIs (in development environment)

	5 Tutorial 5: Load-balancing PowerServer Web APIs
	5.1 Overview
	5.2 Configuring Nginx as a load balancer
	5.2.1 Using Nginx Sticky Module
	5.2.2 Using Nginx Plus
	5.2.3 Using IP hash load-balancing

	5.3 Configuring IIS as a load balancer
	5.4 Configuring Apache as a load balancer

	6 Tutorial 6: Authenticating your apps
	6.1 Overview
	6.2 Using JWT
	6.2.1 Preparations
	6.2.2 Modifying the PowerBuilder client app
	6.2.2.1 Purpose
	6.2.2.2 Add scripts
	6.2.2.3 Add an INI file
	6.2.2.4 Start session manually by code
	6.2.2.5 Modify and re-deploy the PowerServer project

	6.2.3 Appendix
	6.2.3.1 Validate username and password against a database

	6.3 Using OAuth 2.0
	6.3.1 Preparations
	6.3.2 Modifying the PowerBuilder client app
	6.3.2.1 Purpose
	6.3.2.2 Add scripts
	6.3.2.3 Add an INI file
	6.3.2.4 Start session manually by code
	6.3.2.5 Modify and re-deploy the PowerServer project

	6.3.3 Appendix
	6.3.3.1 Validate username and password against a database
	6.3.3.2 Validate username and password against an LDAP server
	6.3.3.3 Test the OAuth server

	6.4 Using Amazon Cognito
	6.4.1 Preparations
	6.4.2 Creating the Amazon Cognito user pool
	6.4.3 Modifying the PowerBuilder client app
	6.4.3.1 Purpose
	6.4.3.2 Add scripts
	6.4.3.3 Add an INI file
	6.4.3.4 Start session manually by code
	6.4.3.5 Modify and re-deploy the PowerServer project

	6.4.4 Modifying the authentication template
	6.4.5 (Optional) Testing the Cognito server

	6.5 Using other authentication servers
	6.5.1 Azure Active Directory (AD)
	6.5.1.1 Preparations
	6.5.1.2 Creating an Azure AD tenant
	6.5.1.3 Modifying the PowerBuilder client app
	6.5.1.3.1 Purpose
	6.5.1.3.2 Add scripts
	6.5.1.3.3 Add an INI file
	6.5.1.3.4 Start session manually by code
	6.5.1.3.5 Modify and re-deploy the PowerServer project

	6.5.1.4 Modifying the authentication template

	6.5.2 Azure Active Directory (AD) B2C
	6.5.2.1 Preparations
	6.5.2.2 Creating an Azure AD B2C tenant
	6.5.2.3 Modifying the PowerBuilder client app
	6.5.2.3.1 Purpose
	6.5.2.3.2 Add scripts
	6.5.2.3.3 Add an INI file
	6.5.2.3.4 Start session manually by code
	6.5.2.3.5 Modify and re-deploy the PowerServer project

	6.5.2.4 Modifying the authentication template

	7 Tutorial 7: Building your PowerServer project with commands
	7.1 Task 1: Preparing the environment
	7.2 Task 2: Exporting the build file
	7.3 Task 3 (Optional): Configuring the build file
	7.3.1 Getting source code from SVN, Git, or VSS
	7.3.2 Executing additional commands

	7.4 Task 4: Running the PBAutoBuild210.exe command
	7.5 Task 5: Integrating with Jenkins

	8 Tutorial 8: Creating a standalone installable package
	8.1 Packaging the client app
	8.2 Packaging the PowerServer Web APIs
	8.3 Telling client app where PowerServer Web APIs is

	9 Tutorial 9: Load testing installable cloud apps
	9.1 Load testing installable cloud apps with LoadRunner
	9.1.1 Dynamic Values in the Recorded Script
	9.1.2 Enclosing Parameters in Angle Brackets “<>”
	9.1.3 Running the Application in Test Mode before Recording the Script
	9.1.3.1 How to switch to the test mode

	9.1.4 Recording
	9.1.4.1 Specifying the app .exe file as the Application
	9.1.4.2 Disabling the async scan

	9.1.5 Correlating the Session ID
	9.1.5.1 How to correlate the session ID in the recorded script

	9.1.6 Correlating the Transaction ID
	9.1.6.1 How to correlate the transaction ID in case of single transaction
	9.1.6.2 How to correlate the transaction ID in case of multiple transactions

	9.1.7 Parameterizing Static Values in SQLs
	9.1.7.1 How to parameterize static values in Retrieve
	9.1.7.2 How to parameterize static values in Select

	9.1.8 Replaying

	9.2 Load testing installable cloud apps with JMeter
	9.2.1 Overview
	9.2.2 Preparing the installable cloud application
	9.2.2.1 Configuring and deploying the application
	9.2.2.2 Switching the application to test mode
	9.2.2.2.1 Why test mode is required
	9.2.2.2.2 How to switch to the test mode

	9.2.2.3 Running PowerServer Web APIs and then JMeter recorder or Fiddler

	9.2.3 Recording JMeter scripts
	9.2.3.1 Recording scripts automatically (using Recorder)
	9.2.3.1.1 Creating a test plan from templates
	9.2.3.1.2 Enabling recorder
	9.2.3.1.3 Configuring recorder
	9.2.3.1.4 Configuring your browser to use the JMeter Proxy
	9.2.3.1.5 Recording the scripts
	9.2.3.1.6 Viewing the recorded scripts
	9.2.3.1.7 Parameterizing the scripts

	9.2.3.2 Recording scripts manually (using Fiddler + JMeter)
	9.2.3.2.1 Obtaining HTTP requests
	9.2.3.2.2 Creating a test plan and adding HTTP requests
	Creating a Test Plan
	Adding a Thread Group
	Adding HTTP requests
	Adding an HTTP header manager
	Adding listeners
	Running tests and viewing results

	9.2.3.3 Parameterizing the Retrieve test
	9.2.3.3.1 Adding a setUp Thread Group
	Adding a setUp Thread Group
	Adding HTTP requests
	Parameterizing the session ID
	Parameterizing the transaction ID

	9.2.3.3.2 Adding a tearDown Thread Group
	Adding a tearDown Thread Group
	Adding HTTP requests
	Parameterizing the transaction ID

	9.2.3.3.3 Configuring Thread Group

	9.2.4 Parameterization and correlation
	9.2.4.1 Why parameterization and correlation are required
	9.2.4.2 Parameterizing the access token
	9.2.4.3 Parameterizing the session ID
	9.2.4.4 Parameterizing the transaction ID
	9.2.4.4.1 In single transaction
	9.2.4.4.2 In multiple transactions

	9.2.4.5 Parameterizing the retrieval argument
	9.2.4.6 Parameterizing the ESQL parameter

	10 Tutorial 10: Setting up a Web server
	10.1 Overview
	10.2 Setting up IIS
	10.2.1 Preparations
	10.2.2 Installing Web Server (IIS)
	10.2.3 Configuring SSL on IIS
	10.2.4 Creating an IIS FTP site
	10.2.5 Configuring SSL on FTP server

	10.3 Setting up Apache on Windows
	10.3.1 Preparations
	10.3.2 Installing Apache HTTP Server
	10.3.3 Configuring SSL on Apache
	10.3.4 Installing FTP server

	10.4 Setting up Apache on Linux
	10.4.1 Preparations
	10.4.2 Installing Apache HTTP Server
	10.4.3 Configuring SSL on Apache
	10.4.4 Configuring Apache to be case-insensitive
	10.4.5 Packaging and copying the client app

	10.5 Setting up Nginx on Windows
	10.5.1 Preparations
	10.5.2 Installing Nginx
	10.5.3 Configuring SSL on Nginx
	10.5.4 Installing FTP server

	10.6 Setting up Nginx on Linux
	10.6.1 Preparations
	10.6.2 Installing Nginx
	10.6.3 Configuring SSL on Nginx
	10.6.4 Configuring Nginx to be case-insensitive
	10.6.5 Packaging and copying the client app

	11 Tutorial 11: Deploying installable cloud apps to Kubernetes
	11.1 Overview
	11.2 Before you begin
	11.3 Configuring Azure Kubernetes Service
	11.3.1 Creating a Kubernetes cluster in AKS
	11.3.2 Connecting to the Kubernetes cluster
	11.3.3 Installing ingress controller
	11.3.3.1 Creating public IP address
	11.3.3.2 Creating a Kubernetes namespace
	11.3.3.3 Installing Ingress-Nginx
	11.3.3.4 Using your own TLS certificates in AKS
	11.3.3.4.1 Creating Kubernetes secret for the TLS certificate
	11.3.3.4.2 (Optional) Adding the default certificate

	11.3.4 Logging into Azure container registry
	11.3.5 Creating a database

	11.4 Containerizing the installable cloud app
	11.4.1 Preparing the application
	11.4.1.1 Modifying the Web API URL
	11.4.1.2 Modifying the database connection
	11.4.1.3 Packaging the client app as a zipped file
	11.4.1.4 Building the PowerServer project

	11.4.2 Creating the container images
	11.4.2.1 Creating an image for the client app
	11.4.2.2 Creating an image for the Web API

	11.4.3 Pushing images to Azure container registry

	11.5 Deploying the application to the Kubernetes cluster
	11.5.1 Creating the YAML manifest files
	11.5.2 Deploying the application
	11.5.3 Configuring the domain name
	11.5.4 Testing the application

	Working with Database Connections
	1 Overview
	1.1 Supported database connection options
	1.2 Comparing the runtime database connections between c/s app and installable cloud app
	1.3 Techniques for supporting various connection scenarios

	2 Supported database types
	2.1 ASE database

	3 Configuring database caches
	3.1 Creating database caches in the project settings
	3.2 Managing database caches in the PowerServer solution

	4 Setting up static database connection for the app runtime
	4.1 Creating transaction-to-cache mappings in the project settings
	4.2 Managing transaction-to-cache mappings in the PowerServer solution
	4.3 Using LogID and LogPass properties

	5 Setting up dynamic database connection for the app runtime
	5.1 Dynamically mapping transaction object with cache using DBParm
	5.1.1 Using CacheGroup property in DBParm
	5.1.2 Using LogID and LogPass properties

	5.2 Making dynamic database connections from the app client

	6 Managing database connections using PowerServer APIs

	Unsupported Features & Workarounds Guide
	1 How to detect unsupported features
	2 Unsupported features & workarounds
	2.1 Unsupported features that can be detected
	2.1.1 SetTrans
	2.1.2 Data pipeline
	2.1.3 MobiLink
	2.1.4 Oracle RPC arrays
	2.1.5 SQLPreview
	2.1.6 SQLReturnData property

	2.2 Unsupported features that cannot be detected
	2.2.1 Transaction trace
	2.2.2 Unsupported use cases in Embedded SQLs
	2.2.3 Retrieve As Needed and Rows to Disk
	2.2.4 SyntaxFromSQL
	2.2.5 Database synonyms
	2.2.6 Commit or Rollback Transaction using Dynamic SQL
	2.2.7 Data retrieval and SQL operations in the RetrieveRow event

	3 Discrepancies & workarounds
	3.1 Discrepancies that cannot be detected
	3.1.1 DB connection
	3.1.2 Alias name
	3.1.3 Data type mismatch
	3.1.4 rowsupdated value
	3.1.5 DisableBind parameter
	3.1.6 TableBlob retrieval
	3.1.7 Dynamic DataWindow
	3.1.8 TransactionName
	3.1.9 Data type in Dynamic SQL Format 4
	3.1.10 Decimal data type in static SQL or DataWindow
	3.1.11 Timing of transaction rollback
	3.1.12 Oracle AutoCommit and Lock
	3.1.13 Stored procedure parameter
	3.1.14 Transaction commit
	3.1.15 Use Describe in Dynamic SQL Format 4
	3.1.16 Bit data field
	3.1.17 SelectBlob/UpdateBlob supports UTF8 only
	3.1.18 SQLNRows property (with Cursor)
	3.1.19 SQLCode property (with SP)
	3.1.20 Column name from view

	4 Incompatible coding styles
	4.1 PBLs contain DataWindows with the same name
	4.2 Object name using C# reversed words
	4.3 DataWindow name containing special characters
	4.4 Editing SQL
	4.5 Column order in data source and Column Specification
	4.6 One compute expression containing multiple computed columns
	4.7 Cursor syntax
	4.8 Syntax after UNION

	Troubleshooting Guide
	1 Configuring and deploying PowerServer projects
	1.1 Permission errors when configuring the Web server profile
	1.2 Error during the build process
	1.3 Error in the Unsupported (DWs) window
	1.4 Failed to generate the PowerServer Web APIs project
	1.5 Error uploading application files to FTP
	1.6 Changed PBL list

	2 Running installable cloud apps
	2.1 Cloud app launcher and application executable
	2.1.1 Failed to get the app publisher from the server
	2.1.2 Cannot start cloud app launcher
	2.1.3 Application executable disappeared suddenly
	2.1.4 Window is slow to open

	2.2 Models and controls
	2.2.1 Cannot retrieve data when data includes null values
	2.2.2 PBSELECT DataWindow error
	2.2.3 RibbonBar control displays blank

	2.3 Server
	2.3.1 Cannot connect to the server when creating the session
	2.3.2 Session creation failed
	2.3.3 App requires login again
	2.3.4 File name containing character + cannot be downloaded
	2.3.5 "HTTP Error 404.2 - Not Found" error when running the app

	2.4 Database
	2.4.1 Different results returned from an ASE stored procedure
	2.4.2 SelectBlob data truncated
	2.4.3 Garbage letters display when retrieving multibyte data
	2.4.4 Slow app performance with SQL Anywhere
	2.4.5 64-bit database cannot be connected from IIS

	3 License errors
	3.1 Failed to call the license server API
	3.2 Failed to login the license server
	3.3 Cannot access License.json

	4 Others
	4.1 Failed to update NuGet packages in PowerServer C# solution

	Performance Guide
	1 Introduction
	2 Performance suggestions on project compilation and deployment
	3 Performance suggestions on loading installable cloud apps for the first time
	4 Performance suggestions on running installable cloud apps
	4.1 Debugging the performance
	4.2 Working against the impact of Internet and slow networks on runtime performance
	4.3 Hosting Web APIs and database on the same LAN
	4.4 Web API publishing method
	4.5 Optimizing database server performance
	4.6 Tuning excessive server calls
	4.6.1 Overview
	4.6.2 Technique #1: partitioning transactions via stored procedures
	4.6.3 Technique #2: partitioning non-visual logic via server-side REST APIs
	4.6.4 Technique #3: eliminating recursive embedded SQL
	4.6.5 Technique #4: eliminating DW computed fields calling user functions that have ESQL

	4.7 Minimizing large data transmissions
	4.7.1 Overview
	4.7.2 Technique #1: retrieving data incrementally
	4.7.2.1 For Oracle database server
	4.7.2.2 For all other database servers

	4.7.3 Technique #2: minimizing excessive number of columns

	Debugging Guide
	1 Overview
	2 Debugging with Fiddler
	2.1 Installing Fiddler
	2.2 Configuring Fiddler
	2.3 Configuring the PowerServer project
	2.4 Running the PowerServer Web APIs and then Fiddler
	2.5 Capture HTTP(S) with Fiddler
	2.6 Filtering the results
	2.7 Inspecting the results
	2.8 Analyzing the performance

	3 Logs and unsupported features report
	3.1 Deployment log
	3.2 Unsupported features report
	3.3 Web file download log
	3.4 Web API request log
	3.5 Debugging log in SnapDevelop
	3.6 PowerServer logs
	3.6.1 Log4net logging
	3.6.2 Logging with the settings in Logging.json

	4 Debugging case studies
	4.1 DataWindow related errors
	4.1.1 DataWindow retrieve error
	4.1.2 SyntaxFromSQL execution error
	4.1.3 Different execution results in different databases
	4.1.4 Incompatible data type
	4.1.5 PBSELECT retrieve error

	4.2 Embedded SQL related errors

	5 Data type mapping tables
	5.1 SQL server data type mappings
	5.2 ASE server data type mappings
	5.3 SQL Anywhere server data type mappings
	5.4 Oracle server data type mappings
	5.5 PostgreSQL data type mappings

