
PowerScript Reference

Appeon PowerBuilder® 2019 R3

Contents
1 PowerScript Topics .. 33

1.1 Language Basics ... 33
1.1.1 Comments .. 33
1.1.2 Identifier names ... 34
1.1.3 Labels .. 35
1.1.4 Special ASCII characters ... 36
1.1.5 NULL values .. 37
1.1.6 Reserved words ... 39
1.1.7 Pronouns .. 40

1.1.7.1 Parent pronoun .. 40
1.1.7.2 This pronoun .. 42
1.1.7.3 Super pronoun ... 43

1.1.8 Statement continuation .. 43
1.1.9 Statement separation ... 45
1.1.10 White space ... 45
1.1.11 Conditional compilation .. 46

1.2 Datatypes ... 48
1.2.1 Standard datatypes .. 48
1.2.2 The Any datatype .. 53
1.2.3 System object datatypes ... 55
1.2.4 Enumerated datatypes ... 56

1.3 Declarations ... 56
1.3.1 Declaring variables .. 56

1.3.1.1 Where to declare variables ... 57
1.3.1.2 About using variables .. 58
1.3.1.3 Syntax of a variable declaration .. 60

1.3.2 Declaring constants ... 67
1.3.3 Declaring arrays ... 68

1.3.3.1 Values for array elements ... 71
1.3.3.2 Size of variable-size arrays ... 72
1.3.3.3 More about arrays ... 73

1.3.4 Declaring external functions .. 76
1.3.4.1 Datatypes for external function arguments 80
1.3.4.2 Calling external functions .. 82
1.3.4.3 Defining source for external functions 82

1.3.5 Declaring DBMS stored procedures as remote procedure calls 83
1.4 Operators and Expressions ... 84

1.4.1 Operators in PowerBuilder .. 85
1.4.1.1 Arithmetic operators in PowerBuilder 85
1.4.1.2 Relational operators in PowerBuilder 87
1.4.1.3 Concatenation operator in PowerBuilder 88

1.4.2 Operator precedence in PowerBuilder expressions 89
1.4.3 Datatype of PowerBuilder expressions .. 90

1.4.3.1 Numeric datatypes in PowerBuilder 90
1.4.3.2 String and char datatypes in PowerBuilder 92

1.5 Structures and Objects .. 93

1.5.1 About structures ... 93
1.5.2 About objects ... 94

1.5.2.1 About user objects ... 95
1.5.2.2 Instantiating objects ... 96
1.5.2.3 Using ancestors and descendants .. 97
1.5.2.4 Garbage collection ... 97
1.5.2.5 User objects that behave like structures 98

1.5.3 Assignment for objects and structures .. 99
1.5.3.1 Assignment for structures .. 99
1.5.3.2 Assignment for objects .. 100
1.5.3.3 Assignment for autoinstantiated user objects 100

1.6 Calling Functions and Events .. 102
1.6.1 About functions and events ... 102
1.6.2 Finding and executing functions and events 104

1.6.2.1 Finding functions ... 104
1.6.2.2 Finding events ... 105

1.6.3 Triggering versus posting functions and events 105
1.6.4 Static versus dynamic calls ... 107

1.6.4.1 Static calls ... 107
1.6.4.2 Dynamic calls .. 108

1.6.5 Overloading, overriding, and extending functions and events 112
1.6.5.1 Overloading and overriding functions 112
1.6.5.2 Extending and overriding events ... 113

1.6.6 Passing arguments to functions and events 114
1.6.6.1 Passing objects ... 114
1.6.6.2 Passing structures ... 115
1.6.6.3 Passing arrays ... 115

1.6.7 Using return values ... 116
1.6.7.1 Functions ... 116
1.6.7.2 Events .. 116
1.6.7.3 Using cascaded calling and return values 117

1.6.8 Syntax for calling PowerBuilder functions and events 117
1.6.9 Calling functions and events in an object's ancestor 120

2 Statements, Events, and Functions ... 124
2.1 PowerScript Statements .. 124

2.1.1 Assignment .. 124
2.1.2 CALL .. 126
2.1.3 CHOOSE CASE .. 127
2.1.4 CONTINUE .. 128
2.1.5 CREATE .. 129
2.1.6 DESTROY .. 132
2.1.7 DO...LOOP ... 133
2.1.8 EXIT ... 135
2.1.9 FOR...NEXT ... 135
2.1.10 GOTO .. 137
2.1.11 HALT .. 138
2.1.12 IF...THEN ... 139
2.1.13 RETURN .. 140

2.1.14 THROW ... 141
2.1.15 THROWS ... 142
2.1.16 TRY...CATCH...FINALLY...END TRY .. 143

2.2 SQL Statements .. 144
2.2.1 Using SQL in scripts .. 144

2.2.1.1 CLOSE Cursor ... 147
2.2.1.2 CLOSE Procedure ... 147
2.2.1.3 COMMIT .. 148
2.2.1.4 CONNECT ... 149
2.2.1.5 DECLARE Cursor .. 150
2.2.1.6 DECLARE Procedure .. 150
2.2.1.7 DELETE ... 152
2.2.1.8 DELETE Where Current of Cursor 152
2.2.1.9 DISCONNECT ... 153
2.2.1.10 EXECUTE .. 154
2.2.1.11 FETCH ... 154
2.2.1.12 INSERT .. 155
2.2.1.13 OPEN Cursor ... 156
2.2.1.14 ROLLBACK .. 157
2.2.1.15 SELECT ... 158
2.2.1.16 SELECTBLOB ... 159
2.2.1.17 UPDATE .. 160
2.2.1.18 UPDATEBLOB ... 160
2.2.1.19 UPDATE Where Current of Cursor 162

2.2.2 Using dynamic SQL ... 162
2.2.2.1 Dynamic SQL Format 1 ... 165
2.2.2.2 Dynamic SQL Format 2 ... 166
2.2.2.3 Dynamic SQL Format 3 ... 167
2.2.2.4 Dynamic SQL Format 4 ... 170

2.3 PowerScript Events .. 174
2.3.1 About events .. 174
2.3.2 Activate .. 177
2.3.3 AddressChange ... 178
2.3.4 BeginDownload .. 178
2.3.5 BeginDrag .. 179

2.3.5.1 Syntax 1: For ListView controls ... 179
2.3.5.2 Syntax 2: For TreeView controls ... 181

2.3.6 BeginLabelEdit ... 182
2.3.6.1 Syntax 1: For ListView controls ... 182
2.3.6.2 Syntax 2: For TreeView controls ... 183

2.3.7 BeginLogScan .. 184
2.3.8 BeginRightDrag .. 184

2.3.8.1 Syntax 1: For ListView controls ... 185
2.3.8.2 Syntax 2: For TreeView controls ... 186

2.3.9 BeginSync .. 187
2.3.10 BeginUpload .. 187
2.3.11 CategoryCollapsed .. 188
2.3.12 CategoryExpanded .. 189

2.3.13 CategorySelectionChanged ... 189
2.3.14 CategorySelectionChanging .. 190
2.3.15 CertificateError ... 191
2.3.16 Clicked ... 192

2.3.16.1 Syntax 1: For menus ... 193
2.3.16.2 Syntax 2: For ListView and Toolbar controls 193
2.3.16.3 Syntax 3: For Tab controls .. 195
2.3.16.4 Syntax 4: For TreeView controls 196
2.3.16.5 Syntax 5: For windows and progress bars 196
2.3.16.6 Syntax 6: For Ribbon controls ... 198
2.3.16.7 Syntax 7: For other controls .. 201

2.3.17 Close .. 201
2.3.17.1 Syntax 1: For the application object 202
2.3.17.2 Syntax 2: For OLE controls ... 202
2.3.17.3 Syntax 3: For windows .. 203

2.3.18 CloseQuery .. 203
2.3.19 CloseUp ... 205
2.3.20 ColumnClick ... 205
2.3.21 ConnectMobiLink ... 206
2.3.22 Constructor .. 207
2.3.23 DataChange ... 208
2.3.24 DateChanged ... 209
2.3.25 DateSelected ... 209
2.3.26 DBError .. 210
2.3.27 DBNotification .. 212
2.3.28 Deactivate .. 214
2.3.29 DeleteAllItems .. 215
2.3.30 DeleteItem .. 215

2.3.30.1 Syntax 1: For ListView controls ... 215
2.3.30.2 Syntax 2: For TreeView controls 216

2.3.31 Destructor .. 217
2.3.32 DisconnectMobiLink ... 217
2.3.33 DisplayMessage ... 218
2.3.34 DoubleClicked .. 219

2.3.34.1 Syntax 1: For ListBox, PictureListBox, ListView, and Tab
controls ... 219
2.3.34.2 Syntax 2: For TreeView controls 220
2.3.34.3 Syntax 3: For windows .. 221
2.3.34.4 Syntax 4: For other controls .. 222

2.3.35 DownloadingStart ... 223
2.3.36 DownloadingStateChanged ... 224
2.3.37 DragDrop ... 225

2.3.37.1 Syntax 1: For ListBox, PictureListBox, ListView, and Tab
controls ... 225
2.3.37.2 Syntax 2: For TreeView controls 226
2.3.37.3 Syntax 3: For windows and other controls 227

2.3.38 DragEnter ... 229
2.3.39 DragLeave ... 230

2.3.40 DragWithin ... 231
2.3.40.1 Syntax 1: For ListBox, PictureListBox, ListView, and Tab
controls ... 232
2.3.40.2 Syntax 2: For TreeView controls 232
2.3.40.3 Syntax 3: For windows and other controls 233

2.3.41 DropDown .. 234
2.3.42 EndDownload ... 235
2.3.43 EndLabelEdit .. 235

2.3.43.1 Syntax 1: For ListView controls ... 236
2.3.43.2 Syntax 2: For TreeView controls 236

2.3.44 EndLogScan .. 237
2.3.45 EndSync ... 238
2.3.46 EndUpload ... 239
2.3.47 Error ... 239

2.3.47.1 Syntax 1: for Connection, DataWindow, DataStore, OLE,
OLEObject, OLETxnObject .. 239
2.3.47.2 Syntax 2: for CompressorObject objects 242
2.3.47.3 Syntax 3: for ExtractorObject objects 243

2.3.48 ErrorMessage .. 244
2.3.49 EvaluateJavascriptFinished ... 245
2.3.50 ExternalException .. 246
2.3.51 FileExists .. 248
2.3.52 FileMessage ... 249
2.3.53 Finished ... 250
2.3.54 Gesture .. 250
2.3.55 GetFocus ... 252
2.3.56 Help .. 253
2.3.57 Hide .. 254
2.3.58 HotLinkAlarm ... 255
2.3.59 Idle ... 255
2.3.60 InputFieldSelected ... 256
2.3.61 InsertItem ... 257
2.3.62 ItemActivate ... 257
2.3.63 ItemChanged ... 259
2.3.64 ItemChanging ... 259
2.3.65 ItemCollapsed .. 260
2.3.66 ItemCollapsing ... 261
2.3.67 ItemExpanded .. 262
2.3.68 ItemExpanding ... 263
2.3.69 ItemPopulate .. 264
2.3.70 ItemUnselected .. 265
2.3.71 Key ... 265
2.3.72 LineDown ... 267
2.3.73 LineLeft .. 268
2.3.74 LineRight .. 269
2.3.75 LineUp .. 270
2.3.76 LoseFocus ... 271
2.3.77 Modified ... 272

2.3.77.1 Syntax 1: For Ribbon controls ... 272
2.3.77.2 Syntax 2: For all other controls ... 273

2.3.78 MouseDown ... 275
2.3.78.1 Syntax 1: For RichTextEdit controls 275
2.3.78.2 Syntax 2: For windows .. 275

2.3.79 MouseMove ... 277
2.3.79.1 Syntax 1: For RichTextEdit controls 277
2.3.79.2 Syntax 2: For windows .. 278

2.3.80 MouseUp .. 280
2.3.80.1 Syntax 1: For RichTextEdit controls 280
2.3.80.2 Syntax 2: For windows .. 281

2.3.81 Moved .. 282
2.3.82 NavigationError .. 283
2.3.83 NavigationProgressIndex ... 284
2.3.84 NavigationStart .. 285
2.3.85 NavigationStateChanged ... 286
2.3.86 Notify .. 287
2.3.87 Open .. 287

2.3.87.1 Syntax 1: For the application object 288
2.3.87.2 Syntax 2: For windows .. 289

2.3.88 Other .. 291
2.3.89 PageDown ... 291
2.3.90 PageLeft ... 292
2.3.91 PageRight .. 293
2.3.92 PageUp .. 294
2.3.93 PictureSelected .. 295
2.3.94 PipeEnd ... 296
2.3.95 PipeMeter ... 297
2.3.96 PipeStart .. 298
2.3.97 PrintFooter (obsolete) .. 298
2.3.98 PrintHeader (obsolete) ... 299
2.3.99 PdfPrintFinished ... 299
2.3.100 ProcessingFile ... 300
2.3.101 ProgressIndex .. 300
2.3.102 PropertyChanged ... 301
2.3.103 PropertyRequestEdit .. 302
2.3.104 RButtonDown ... 303

2.3.104.1 Syntax 1: For controls and windows, except
RichTextEdit ... 303
2.3.104.2 Syntax 2: For RichTextEdit controls 304

2.3.105 RButtonUp ... 305
2.3.106 RecognitionResult .. 306
2.3.107 RemoteExec .. 306
2.3.108 RemoteHotLinkStart ... 307
2.3.109 RemoteHotLinkStop ... 307
2.3.110 RemoteRequest ... 308
2.3.111 RemoteSend .. 309
2.3.112 Rename ... 309

2.3.113 Resize .. 310
2.3.114 ResourceRedirect .. 311
2.3.115 RightClicked ... 312

2.3.115.1 Syntax 1: For ListView and Tab controls 312
2.3.115.2 Syntax 2: For TreeView controls 313

2.3.116 RightDoubleClicked .. 313
2.3.116.1 Syntax 1: For ListView and Tab controls 314
2.3.116.2 Syntax 2: For TreeView controls 315

2.3.117 Save ... 315
2.3.118 SaveObject .. 316
2.3.119 Selected ... 317

2.3.119.1 Syntax 1: For Ribbon controls ... 317
2.3.119.2 Syntax 2: for all other controls ... 320

2.3.120 SelectionChanged .. 321
2.3.120.1 Syntax 1: For Listboxes ... 321
2.3.120.2 Syntax 2: For Tab controls .. 322
2.3.120.3 Syntax 3: For TreeView controls 323
2.3.120.4 Syntax 4: For Ribbon controls ... 324

2.3.121 SelectionChanging ... 325
2.3.121.1 Syntax 1: For Tab controls .. 325
2.3.121.2 Syntax 2: For TreeView controls 326

2.3.122 Show .. 327
2.3.123 SizeCompleted ... 328
2.3.124 Sort .. 328

2.3.124.1 Syntax 1: For ListView controls 328
2.3.124.2 Syntax 2: For TreeView controls 330

2.3.125 SQLPreview ... 331
2.3.126 Start ... 332

2.3.126.1 Syntax 1: for Animation controls 332
2.3.126.2 Syntax 2: for CompressorObject and ExtractorObject
objects .. 332

2.3.127 Stop .. 333
2.3.128 Stroke ... 334
2.3.129 SyncPreview .. 334
2.3.130 SystemError ... 335
2.3.131 SystemKey ... 336
2.3.132 Timer .. 337
2.3.133 TitleTextChanged ... 338
2.3.134 ToolbarMoved .. 339
2.3.135 UploadAck .. 340
2.3.136 UserString .. 341
2.3.137 ValueChanged ... 342
2.3.138 ViewChange ... 343
2.3.139 WaitForUploadAck ... 343
2.3.140 WarningMessage ... 344

2.4 PowerScript Functions ... 344
2.4.1 Abs ... 345
2.4.2 ACos .. 345

2.4.3 AccessToken ... 346
2.4.4 Activate .. 347
2.4.5 AddCategory .. 348
2.4.6 AddColumn .. 350
2.4.7 AddData ... 351

2.4.7.1 Syntax 1: For all graph types except scatter 351
2.4.7.2 Syntax 2: For scatter graphs ... 352

2.4.8 AddItem .. 353
2.4.8.1 Syntax 1: For ListBox and DropDownListBox controls 353
2.4.8.2 Syntax 2: For PictureListBox, DropDownPictureListBox,
and RibbonComboBoxItem controls .. 355
2.4.8.3 Syntax 3: For ListView controls ... 356
2.4.8.4 Syntax 4: For ListView controls ... 357

2.4.9 AddItemArray ... 358
2.4.10 AddItemBlob .. 360
2.4.11 AddItemBoolean .. 362
2.4.12 AddItemDate .. 364
2.4.13 AddItemDateTime .. 365
2.4.14 AddItemNull ... 369
2.4.15 AddItemNumber ... 371
2.4.16 AddItemObject ... 374
2.4.17 AddItemString .. 376
2.4.18 AddItemTime .. 378
2.4.19 AddLargePicture .. 379
2.4.20 AddMasterSeparatorItem ... 380
2.4.21 AddPicture ... 382
2.4.22 AddSeparatorItem .. 383
2.4.23 AddSeries .. 384
2.4.24 AddSmallPicture .. 385
2.4.25 AddStatePicture ... 386
2.4.26 AddToLibraryList .. 387
2.4.27 AppendParam .. 388
2.4.28 ApplyTheme ... 389
2.4.29 Arrange .. 391
2.4.30 ArrangeSheets ... 392
2.4.31 Asc ... 393
2.4.32 AscA ... 394
2.4.33 ASin ... 395
2.4.34 AsymmetricDecrypt .. 396
2.4.35 AsymmetricEncrypt .. 397
2.4.36 AsymmetricGenerateKey ... 399
2.4.37 AsymmetricSign ... 400
2.4.38 AsymmetricVerifySign .. 401
2.4.39 ATan .. 403
2.4.40 Base32Decode .. 404
2.4.41 Base32Encode ... 405
2.4.42 Base64Decode .. 406
2.4.43 Base64Encode ... 407

2.4.44 Base64UrlDecode .. 408
2.4.45 Base64UrlEncode .. 409
2.4.46 Beep ... 410
2.4.47 BeginTransaction (obsolete) .. 410
2.4.48 Blob .. 412
2.4.49 BlobEdit .. 413
2.4.50 BlobMid .. 415
2.4.51 BuildModel ... 416
2.4.52 Byte .. 418
2.4.53 Cancel .. 419

2.4.53.1 Syntax 1: for Pipeline objects .. 419
2.4.53.2 Syntax 2: for CompressorObject and ExtractorObject
objects .. 420

2.4.54 CancelDownload .. 421
2.4.55 CancelSync .. 422
2.4.56 CanUndo .. 422
2.4.57 CategoryCount ... 423
2.4.58 CategoryName ... 424
2.4.59 Ceiling .. 425
2.4.60 ChangeDirectory .. 426
2.4.61 ChangeMenu ... 426
2.4.62 Char ... 427
2.4.63 CharA ... 428
2.4.64 Check ... 429
2.4.65 ChooseColor .. 430
2.4.66 ClassList .. 430
2.4.67 ClassName .. 431

2.4.67.1 Syntax 1: For any object ... 432
2.4.67.2 Syntax 2: For variables ... 433

2.4.68 Clear .. 433
2.4.68.1 Syntax 1: For selected text .. 434
2.4.68.2 Syntax 2: For RichTextEdit controls 435
2.4.68.3 Syntax 3: For JSONPackage objects 436

2.4.69 ClearAll .. 437
2.4.70 ClearBoldDates .. 437
2.4.71 ClearHeaders ... 438

2.4.71.1 Syntax 1: for TokenRequest objects 438
2.4.71.2 Syntax 2: for OAuthRequest objects 439

2.4.72 ClearParams .. 440
2.4.73 ClearRecentItems .. 440
2.4.74 ClearRequestHeaders .. 442
2.4.75 Clipboard .. 442

2.4.75.1 Syntax 1: For text .. 443
2.4.75.2 Syntax 2: For bitmaps of graphs 444

2.4.76 Close .. 445
2.4.76.1 Syntax 1: For windows .. 445
2.4.76.2 Syntax 2: For OLEStorage objects 446
2.4.76.3 Syntax 3: For OLEStream objects 447

2.4.76.4 Syntax 4: For trace files .. 448
2.4.77 CloseChannel .. 449
2.4.78 CloseTab .. 450
2.4.79 CloseUserObject .. 451
2.4.80 CloseWithReturn .. 452
2.4.81 CollapseItem .. 454
2.4.82 CommandParm .. 455
2.4.83 CommitDocking .. 456
2.4.84 CommitTransaction (obsolete) ... 457
2.4.85 Compress ... 459
2.4.86 ConnectToNewObject .. 461
2.4.87 ConnectToNewRemoteObject ... 463
2.4.88 ConnectToObject ... 464
2.4.89 ConnectToRemoteObject ... 467
2.4.90 ConnectToServer (obsolete) .. 469
2.4.91 ContainsKey ... 471
2.4.92 ContainsPath ... 473
2.4.93 Copy ... 475
2.4.94 CopyRTF .. 476
2.4.95 Cos ... 478
2.4.96 Cpu .. 479
2.4.97 CreateDirectory .. 479
2.4.98 CreateInstance ... 480

2.4.98.1 Syntax 1: for TransactionServer objects 480
2.4.98.2 Syntax 2: for DotNetAssembly objects 481

2.4.99 CreateJsonArray .. 483
2.4.100 CreateJsonObject .. 484
2.4.101 CreatePage .. 484
2.4.102 Cut ... 485
2.4.103 DataCount .. 487
2.4.104 DataSource .. 488
2.4.105 Date ... 489

2.4.105.1 Syntax 1: For DateTime data and blobs 490
2.4.105.2 Syntax 2: For strings ... 490
2.4.105.3 Syntax 3: For combining numbers into a date 492

2.4.106 DateTime ... 493
2.4.106.1 Syntax 1: For creating DateTime values 493
2.4.106.2 Syntax 2: For extracting DateTime values from blobs 494
2.4.106.3 Syntax 3: For extracting DateTime values from strings ... 494

2.4.107 Day ... 495
2.4.108 DayName ... 496
2.4.109 DayNumber .. 497
2.4.110 DaysAfter ... 498
2.4.111 DBHandle ... 499
2.4.112 DebugBreak ... 500
2.4.113 Dec ... 500
2.4.114 DeleteCategory .. 501

2.4.114.1 Syntax 1: for Graph controls ... 501

2.4.114.2 Syntax 2: for RibbonBar controls 502
2.4.115 DeleteCheckBox .. 503
2.4.116 DeleteColumn .. 504
2.4.117 DeleteColumns .. 504
2.4.118 DeleteComboBox ... 505
2.4.119 DeleteData ... 506
2.4.120 DeleteGroup ... 507
2.4.121 DeleteItem .. 508

2.4.121.1 Syntax 1: For ListBox, DropDownListBox, and
RibbonComboBoxItem controls ... 508
2.4.121.2 Syntax 2: For ListView controls 509
2.4.121.3 Syntax 3: For TreeView controls 510
2.4.121.4 Syntax 4: For RibbonMenu controls 511
2.4.121.5 Syntax 5: For RibbonBar controls 512

2.4.122 DeleteItems .. 513
2.4.123 DeleteLargeButton ... 514
2.4.124 DeleteLargePicture .. 515
2.4.125 DeleteLargePictures ... 515
2.4.126 DeleteMasterItem ... 516
2.4.127 DeletePanel ... 517
2.4.128 DeletePicture ... 518
2.4.129 DeletePictures .. 519
2.4.130 DeleteRecentItem .. 520
2.4.131 DeleteSeries .. 521
2.4.132 DeleteSmallButton ... 522
2.4.133 DeleteSmallPicture ... 523
2.4.134 DeleteSmallPictures ... 523
2.4.135 DeleteStatePicture ... 524
2.4.136 DeleteStatePictures ... 524
2.4.137 DeleteTabButton .. 525
2.4.138 DestroyModel ... 526
2.4.139 DirectoryExists ... 527
2.4.140 DirList ... 527
2.4.141 DirSelect .. 529
2.4.142 Disable ... 530
2.4.143 DisableCommit ... 531
2.4.144 DisconnectObject ... 532
2.4.145 DisconnectServer ... 533
2.4.146 Double .. 534
2.4.147 DoVerb ... 535
2.4.148 Drag ... 536
2.4.149 DraggedObject (obsolete) .. 538
2.4.150 Draw ... 539
2.4.151 EditLabel .. 540

2.4.151.1 Syntax 1: For editing a label in a ListView 540
2.4.151.2 Syntax 2: For editing a label in a TreeView 541

2.4.152 Enable .. 542
2.4.153 EnableCommit ... 543

2.4.154 EntryList ... 544
2.4.155 EvaluateJavascriptAsync ... 545
2.4.156 EvaluateJavascriptSync ... 546
2.4.157 ExecRemote .. 548

2.4.157.1 Syntax 1: For sending single commands 548
2.4.157.2 Syntax 2: For commands over an opened channel 549

2.4.158 Exp ... 551
2.4.159 ExpandAll ... 551
2.4.160 ExpandItem .. 552
2.4.161 ExportJSON ... 553
2.4.162 ExportXML ... 554
2.4.163 ExportToJSONFile ... 554
2.4.164 ExportToXMLFile ... 555
2.4.165 Extract .. 557
2.4.166 Fact .. 560
2.4.167 FileClose .. 560
2.4.168 FileCopy ... 561
2.4.169 FileDelete ... 562
2.4.170 FileEncoding .. 562
2.4.171 FileExists .. 564
2.4.172 FileLength .. 564
2.4.173 FileLength64 .. 566
2.4.174 FileMove .. 567
2.4.175 FileOpen .. 567
2.4.176 FileRead ... 571
2.4.177 FileReadEx .. 573
2.4.178 FileSeek ... 575
2.4.179 FileSeek64 ... 576
2.4.180 FileWrite ... 577
2.4.181 FileWriteEx ... 579
2.4.182 Fill .. 581
2.4.183 FillA .. 581
2.4.184 FillW (obsolete) .. 582
2.4.185 Find .. 582
2.4.186 FindCategory ... 584
2.4.187 FindClassDefinition .. 585
2.4.188 FindFunctionDefinition ... 586
2.4.189 FindItem ... 587

2.4.189.1 Syntax 1: For ListBox, DropDownListBox, and
RibbonComboBoxItem controls ... 587
2.4.189.2 Syntax 2: For ListView controls 588
2.4.189.3 Syntax 3: For ListView controls 589
2.4.189.4 Syntax 4: For TreeView controls 591

2.4.190 FindMatchingFunction .. 593
2.4.191 FindNext ... 594
2.4.192 FindSeries .. 595
2.4.193 FindTypeDefinition ... 596
2.4.194 FromAnsi .. 598

2.4.195 FromUnicode ... 599
2.4.196 GarbageCollect .. 599
2.4.197 GarbageCollectGetTimeLimit ... 600
2.4.198 GarbageCollectSetTimeLimit ... 600
2.4.199 GetAccessToken .. 601
2.4.200 GetActiveCategory ... 602
2.4.201 GetActiveSheet .. 603
2.4.202 GetAlignment ... 604
2.4.203 GetApplication .. 605
2.4.204 GetApplicationButton ... 605
2.4.205 GetArgElement .. 606
2.4.206 GetAutomationNativePointer .. 607
2.4.207 GetBestHeight .. 608
2.4.208 GetBody ... 609

2.4.208.1 Syntax 1: for TokenResponse objects 609
2.4.208.2 Syntax 2: for OAuthRequest objects 610
2.4.208.3 Syntax 3: for ResourceResponse objects 611

2.4.209 GetBoxPictureList .. 612
2.4.210 GetByte .. 613
2.4.211 GetByteArray ... 614
2.4.212 GetCategory ... 614
2.4.213 GetCategoryByIndex .. 615
2.4.214 GetCategoryCount ... 616
2.4.215 GetCategoryIndex .. 617
2.4.216 GetCertificateLabel (obsolete) ... 618
2.4.217 GetCheckBox ... 620
2.4.218 GetChildCount ... 621
2.4.219 GetChildItem .. 623
2.4.220 GetChildItemByIndex ... 625
2.4.221 GetChildItemCount ... 626
2.4.222 GetChildKey ... 627
2.4.223 GetChildrenList .. 629
2.4.224 GetColumn ... 630
2.4.225 GetComboBox ... 631
2.4.226 GetCommandDDE ... 632
2.4.227 GetCommandDDEOrigin .. 633
2.4.228 GetCommandString ... 634
2.4.229 GetCompanyName .. 635
2.4.230 GetContextKeywords ... 636
2.4.231 GetContextService ... 637
2.4.232 GetCredentialAttribute (obsolete) .. 639
2.4.233 GetCurrentDirectory ... 641
2.4.234 GetData .. 641

2.4.234.1 Syntax 1: For data points in graphs 641
2.4.234.2 Syntax 2: For EditMask controls 643
2.4.234.3 Syntax 3: For data in an OLE server 644

2.4.235 GetDataDDE .. 646
2.4.236 GetDataDDEOrigin ... 646

2.4.237 GetDataLabelling ... 647
2.4.238 GetDataPieExplode .. 649
2.4.239 GetDataStyle .. 650

2.4.239.1 Syntax 1: For the colors of a data point 650
2.4.239.2 Syntax 2: For the line style and width used by a data
point ... 652
2.4.239.3 Syntax 3: For the fill pattern or symbol of a data point 653

2.4.240 GetDataTransparency .. 655
2.4.241 GetDataValue .. 656
2.4.242 GetDateLimits .. 658
2.4.243 GetDbmlsyncPath .. 659
2.4.244 GetDisplayRange ... 660
2.4.245 GetDotNetCoreVersion .. 661
2.4.246 GetDynamicDate .. 662
2.4.247 GetDynamicDateTime .. 664
2.4.248 GetDynamicDecimal .. 665
2.4.249 GetDynamicNumber ... 666
2.4.250 GetDynamicString .. 667
2.4.251 GetDynamicTime ... 668
2.4.252 GetEnvironment ... 669
2.4.253 GetExpiresIn .. 670
2.4.254 GetFileOpenName ... 671
2.4.255 GetFileSaveName .. 675
2.4.256 GetFilesCount .. 677
2.4.257 GetFilesList .. 678
2.4.258 GetFirstSheet ... 679
2.4.259 GetFixesVersion .. 680
2.4.260 GetFocus ... 681
2.4.261 GetFolder ... 682
2.4.262 GetGroup ... 683
2.4.263 GetGlobalProperty (obsolete) .. 684
2.4.264 GetHeader ... 685

2.4.264.1 Syntax 1: for TokenRequest objects 685
2.4.264.2 Syntax 2: for TokenResponse objects 686
2.4.264.3 Syntax 3: for OAuthRequest objects 687
2.4.264.4 Syntax 4: for ResourceResponse objects 688

2.4.265 GetHeaders .. 689
2.4.265.1 Syntax 1: for TokenRequest objects 689
2.4.265.2 Syntax 2: for TokenResponse objects 689
2.4.265.3 Syntax 3: for OAuthRequest objects 690
2.4.265.4 Syntax 4: for ResourceResponse objects 691

2.4.266 GetHostObject ... 692
2.4.267 GetInstalledRuntimes ... 693
2.4.268 GetItem .. 693

2.4.268.1 Syntax 1: For ListView controls 694
2.4.268.2 Syntax 2: For ListView controls 695
2.4.268.3 Syntax 3: For TreeView controls 696
2.4.268.4 Syntax 4: For RibbonMenu controls 697

2.4.268.5 Syntax 5: For RibbonBar controls 698
2.4.269 GetItemArray .. 699

2.4.269.1 Syntax 1 ... 699
2.4.269.2 Syntax 2 ... 701

2.4.270 GetItemArrayJSONString ... 703
2.4.270.1 Syntax 1 ... 703
2.4.270.2 Syntax 2 ... 704
2.4.270.3 Syntax 3 ... 705

2.4.271 GetItemAtPointer ... 707
2.4.272 GetItemBlob ... 707

2.4.272.1 Syntax 1 ... 707
2.4.272.2 Syntax 2 ... 709
2.4.272.3 Syntax 3 ... 710

2.4.273 GetItemBoolean ... 711
2.4.273.1 Syntax 1 ... 711
2.4.273.2 Syntax 2 ... 712
2.4.273.3 Syntax 3 ... 714

2.4.274 GetItemByTag .. 715
2.4.275 GetItemByPath ... 717
2.4.276 GetItemCount ... 719
2.4.277 GetItemDate ... 720

2.4.277.1 Syntax 1 ... 720
2.4.277.2 Syntax 2 ... 721
2.4.277.3 Syntax 3 ... 722

2.4.278 GetItemDateTime ... 724
2.4.278.1 Syntax 1 ... 724
2.4.278.2 Syntax 2 ... 725
2.4.278.3 Syntax 3 ... 726

2.4.279 GetItemNumber ... 728
2.4.279.1 Syntax 1 ... 728
2.4.279.2 Syntax 2 ... 729
2.4.279.3 Syntax 3 ... 730

2.4.280 GetItemObject .. 731
2.4.280.1 Syntax 1 ... 731
2.4.280.2 Syntax 2 ... 733

2.4.281 GetItemObjectJSONString ... 734
2.4.281.1 Syntax 1 ... 734
2.4.281.2 Syntax 2 ... 736
2.4.281.3 Syntax 3 ... 737

2.4.282 GetItemParent .. 738
2.4.283 GetItemString ... 739

2.4.283.1 Syntax 1 ... 739
2.4.283.2 Syntax 2 ... 740
2.4.283.3 Syntax 3 ... 742

2.4.284 GetItemTime .. 743
2.4.284.1 Syntax 1 ... 743
2.4.284.2 Syntax 2 ... 744
2.4.284.3 Syntax 3 ... 745

2.4.285 GetItemType .. 747
2.4.286 GetJsonBlob .. 752
2.4.287 GetJsonString .. 753
2.4.288 GetJWTToken .. 754
2.4.289 GetKey ... 756
2.4.290 GetLargeButton .. 757
2.4.291 GetLastReturn .. 758
2.4.292 GetLibraryList ... 759
2.4.293 GetMajorVersion .. 760
2.4.294 GetMasterItem ... 761
2.4.295 GetMasterItemCount .. 763
2.4.296 GetMenu .. 764
2.4.297 GetMenuByButtonHandle .. 765
2.4.298 GetMessage ... 767
2.4.299 GetMinorVersion .. 768
2.4.300 GetName .. 769
2.4.301 GetNativePointer .. 770
2.4.302 GetNextSheet .. 771
2.4.303 GetNumberType .. 772
2.4.304 GetOAuthToken ... 776
2.4.305 GetObjectRevisionFromRegistry .. 777
2.4.306 GetOrigin .. 778
2.4.307 GetPanel .. 779
2.4.308 GetParagraphSetting ... 780
2.4.309 GetParent ... 781
2.4.310 GetPathByItem ... 782
2.4.311 GetPin (obsolete) ... 783
2.4.312 GetRecentItem ... 785
2.4.313 GetRecentItemCount ... 786
2.4.314 GetRecentTitle ... 787
2.4.315 GetRecordSet .. 789
2.4.316 GetRefreshToken ... 790
2.4.317 GetRemote ... 791

2.4.317.1 Syntax 1: For single DDE requests 791
2.4.317.2 Syntax 2: For DDE requests via an open channel 792

2.4.318 GetRequestHeader .. 794
2.4.319 GetRequestHeaders .. 794
2.4.320 GetResponseBody ... 795
2.4.321 GetResponseHeader ... 797
2.4.322 GetResponseHeaders .. 797
2.4.323 GetResponseStatusCode .. 798
2.4.324 GetResponseStatusText .. 799
2.4.325 GetRootItem ... 800
2.4.326 GetSelectedDate .. 801
2.4.327 GetSelectedRange ... 802
2.4.328 GetSeriesLabelling ... 803
2.4.329 GetSeriesStyle ... 804

2.4.329.1 Syntax 1: For the colors of a series 805

2.4.329.2 Syntax 2: For the line style and width used by a series ... 806
2.4.329.3 Syntax 3: For the fill pattern or symbol of a series 808
2.4.329.4 Syntax 4: For determining whether a series is an
overlay .. 809

2.4.330 GetSeriesTransparency ... 810
2.4.331 GetShortName ... 811
2.4.332 GetSmallButton .. 812
2.4.333 GetSource .. 813
2.4.334 GetSpacing .. 814
2.4.335 GetStatusCode .. 815

2.4.335.1 Syntax 1: for TokenResponse objects 815
2.4.335.2 Syntax 2: for ResourceResponse objects 816

2.4.336 GetStatusText .. 817
2.4.336.1 Syntax 1: for TokenResponse objects 817
2.4.336.2 Syntax 2: for ResourceResponse objects 818

2.4.337 GetStatus (obsolete) .. 818
2.4.338 GetSyncRegistryProperties .. 820
2.4.339 GetTabButton ... 821
2.4.340 GetTabButtonByIndex .. 822
2.4.341 GetTabButtonCount ... 823
2.4.342 GetText .. 824
2.4.343 GetTextColor .. 825
2.4.344 GetTextStyle .. 826
2.4.345 GetTheme .. 827
2.4.346 GetToday ... 827
2.4.347 GetTokenError ... 828
2.4.348 GetTokenType ... 829
2.4.349 GetToolbar ... 830
2.4.350 GetToolbarPos ... 832

2.4.350.1 Syntax 1: For docked toolbars .. 832
2.4.350.2 Syntax 2: For floating toolbars .. 833

2.4.351 GetTransactionName (obsolete) .. 834
2.4.352 GetURL .. 835
2.4.353 GetValue .. 837

2.4.353.1 Syntax 1: for DatePicker control 837
2.4.353.2 Syntax 2: for JSONPackage object 838

2.4.354 GetValueBlob ... 839
2.4.355 GetValueBoolean ... 840
2.4.356 GetValueDate .. 841
2.4.357 GetValueDateTime ... 842
2.4.358 GetValueNumber ... 844
2.4.359 GetValueString ... 845
2.4.360 GetValueTime .. 846
2.4.361 GetValueToDataWindow .. 847
2.4.362 GetVersionName ... 851
2.4.363 GoBack .. 852
2.4.364 GoForward ... 853
2.4.365 Handle .. 854

2.4.366 HexDecode .. 855
2.4.367 HexEncode .. 856
2.4.368 Hide .. 857
2.4.369 HMAC .. 859
2.4.370 Hour ... 860
2.4.371 HyperLinkToURL ... 861
2.4.372 Idle ... 861
2.4.373 ImpersonateClient .. 863
2.4.374 ImportClipboard ... 864
2.4.375 ImportFile ... 866

2.4.375.1 Syntax 1: for Graph controls ... 866
2.4.375.2 Syntax 2: for JSONGenerator objects 870

2.4.376 ImportString ... 872
2.4.376.1 Syntax 1: for Graph controls ... 872
2.4.376.2 Syntax 2: for JSONGenerator objects 874

2.4.377 ImportJSON ... 876
2.4.378 ImportXML ... 877
2.4.379 ImportFromJSONFile ... 878
2.4.380 ImportFromXMLFile ... 879
2.4.381 IncomingCallList ... 880
2.4.382 Init (obsolete) ... 882
2.4.383 InputFieldChangeData ... 884
2.4.384 InputFieldCurrentName .. 885
2.4.385 InputFieldDeleteCurrent ... 886
2.4.386 InputFieldGetData .. 887
2.4.387 InputFieldInsert .. 888
2.4.388 InputFieldLocate .. 888
2.4.389 InsertCategory ... 890

2.4.389.1 Syntax 1: for Graph controls ... 890
2.4.389.2 Syntax 2: for RibbonBar controls 891

2.4.390 InsertCategoryFirst ... 893
2.4.391 InsertCategoryLast ... 894
2.4.392 InsertCheckBox .. 895
2.4.393 InsertCheckBoxFirst ... 897
2.4.394 InsertCheckBoxLast ... 898
2.4.395 InsertClass ... 900
2.4.396 InsertColumn .. 901
2.4.397 InsertComboBox .. 901
2.4.398 InsertComboBoxFirst ... 904
2.4.399 InsertComboBoxLast .. 905
2.4.400 InsertData .. 907
2.4.401 InsertDocument .. 909
2.4.402 InsertFile .. 911
2.4.403 InsertGroup .. 912
2.4.404 InsertGroupFirst ... 913
2.4.405 InsertGroupLast ... 914
2.4.406 InsertItem ... 915

2.4.406.1 Syntax 1: For ListBox and DropDownListBox controls 915

2.4.406.2 Syntax 2: For PictureListBox, DropDownPictureListBox,
RibbonComboBoxItem controls ... 917
2.4.406.3 Syntax 3: For ListView controls 918
2.4.406.4 Syntax 4: For ListView controls 919
2.4.406.5 Syntax 5: For TreeView controls 919
2.4.406.6 Syntax 6: For TreeView controls 920
2.4.406.7 Syntax 7: For RibbonMenu controls 921

2.4.407 InsertItemFirst .. 923
2.4.407.1 Syntax 1: For TreeView controls 923
2.4.407.2 Syntax 2: For TreeView controls 924
2.4.407.3 Syntax 3: For RibbonMenu controls 925

2.4.408 InsertItemLast .. 927
2.4.408.1 Syntax 1: For TreeView controls 928
2.4.408.2 Syntax 2: For TreeView controls 929
2.4.408.3 Syntax 3: For RibbonMenu controls 930

2.4.409 InsertItemSort .. 932
2.4.409.1 Syntax 1: For TreeView controls 932
2.4.409.2 Syntax 2: For TreeView controls 933

2.4.410 InsertLargeButton .. 934
2.4.411 InsertLargeButtonFirst .. 936
2.4.412 InsertLargeButtonLast .. 937
2.4.413 InsertMasterItem .. 939
2.4.414 InsertMasterItemFirst ... 941
2.4.415 InsertMasterItemLast ... 944
2.4.416 InsertObject .. 946
2.4.417 InsertPanel ... 946
2.4.418 InsertPanelFirst .. 948
2.4.419 InsertPanelLast .. 949
2.4.420 InsertPicture ... 950
2.4.421 InsertRecentItem .. 951
2.4.422 InsertRecentItemFirst ... 953
2.4.423 InsertRecentItemLast ... 954
2.4.424 InsertSeries .. 956
2.4.425 InsertSmallButton ... 957
2.4.426 InsertSmallButtonFirst .. 959
2.4.427 InsertSmallButtonLast .. 961
2.4.428 InsertTabButton ... 962
2.4.429 InsertTabButtonFirst ... 964
2.4.430 InsertTabButtonLast ... 966
2.4.431 Int ... 967
2.4.432 Integer .. 968
2.4.433 InternetData ... 969
2.4.434 IntHigh .. 970
2.4.435 IntLow .. 971
2.4.436 InvokePBFunction .. 971
2.4.437 _Is_A (obsolete) ... 973
2.4.438 IsAlive .. 974
2.4.439 IsAllArabic .. 975

2.4.440 IsAllHebrew .. 976
2.4.441 IsAnyArabic .. 976
2.4.442 IsAnyHebrew .. 977
2.4.443 IsArabic .. 978
2.4.444 IsArabicAndNumbers ... 979
2.4.445 IsCallerInRole .. 979
2.4.446 IsDate ... 981
2.4.447 IsHebrew .. 982
2.4.448 IsHebrewAndNumbers ... 983
2.4.449 IsImpersonating ... 983
2.4.450 IsInTransaction (obsolete) ... 984
2.4.451 IsMinimized .. 986
2.4.452 IsNull .. 986
2.4.453 IsNumber ... 987
2.4.454 IsPBApp ... 988
2.4.455 IsPowerClientApp .. 989
2.4.456 IsPreview ... 989
2.4.457 IsSecurityEnabled .. 990
2.4.458 IsTime .. 991
2.4.459 IsTransactionAborted (obsolete) .. 992
2.4.460 IsValid .. 993
2.4.461 KeyCount ... 994
2.4.462 KeyDown .. 995
2.4.463 LastPos .. 998
2.4.464 Left ... 999
2.4.465 LeftA ... 1000
2.4.466 LeftW (obsolete) .. 1001
2.4.467 LeftTrim .. 1001
2.4.468 LeftTrimW (obsolete) ... 1002
2.4.469 Len ... 1003
2.4.470 LenA ... 1004
2.4.471 LenW (obsolete) .. 1005
2.4.472 Length .. 1005
2.4.473 LibraryCreate ... 1006
2.4.474 LibraryDelete .. 1007
2.4.475 LibraryDirectory .. 1008
2.4.476 LibraryDirectoryEx .. 1009
2.4.477 LibraryExport .. 1011
2.4.478 LibraryImport .. 1012
2.4.479 LineCount ... 1014
2.4.480 LineLength ... 1015
2.4.481 LineList ... 1016
2.4.482 LinkTo .. 1017
2.4.483 LoadDockingState .. 1018
2.4.484 LoadFile ... 1018
2.4.485 LoadString .. 1020
2.4.486 LoadInk .. 1022
2.4.487 LoadPicture .. 1023

2.4.488 LoadWithDotNetCore ... 1024
2.4.489 LoadWithDotNetFramework ... 1025
2.4.490 Log ... 1027

2.4.490.1 Syntax 1: For all objects .. 1028
2.4.490.2 Syntax 2: For ErrorLogging objects 1029

2.4.491 LogTen ... 1029
2.4.492 Long ... 1030

2.4.492.1 Syntax 1: For combining integers 1030
2.4.492.2 Syntax 2: For converting strings and blobs 1031

2.4.493 LongLong ... 1032
2.4.493.1 Syntax 1: For combining longs 1032
2.4.493.2 Syntax 2: For converting strings and blobs 1033

2.4.494 Lookup (obsolete) .. 1034
2.4.494.1 Syntax 1: For CORBA-compliant EAServer
components .. 1034
2.4.494.2 Syntax 2: For instances of an EJB component 1035

2.4.495 Lower ... 1038
2.4.496 LowerBound ... 1039
2.4.497 mailAddress ... 1040
2.4.498 mailDeleteMessage .. 1041
2.4.499 mailGetMessages .. 1042
2.4.500 mailHandle ... 1044
2.4.501 mailLogoff .. 1044
2.4.502 mailLogon .. 1045
2.4.503 mailReadMessage ... 1047
2.4.504 mailRecipientDetails ... 1049
2.4.505 mailResolveRecipient ... 1050
2.4.506 mailSaveMessage .. 1052
2.4.507 mailSend .. 1054
2.4.508 Match ... 1056
2.4.509 MatchW (obsolete) ... 1058
2.4.510 Max .. 1059
2.4.511 MD5 ... 1059
2.4.512 MemberDelete ... 1061
2.4.513 MemberExists .. 1062
2.4.514 MemberRename .. 1063
2.4.515 MessageBox .. 1064
2.4.516 Mid ... 1066
2.4.517 MidA ... 1068
2.4.518 MidW (obsolete) ... 1068
2.4.519 Min ... 1068
2.4.520 Minute .. 1069
2.4.521 Mod .. 1070
2.4.522 ModifyData ... 1070

2.4.522.1 Syntax 1: For all graph types except scatter 1071
2.4.522.2 Syntax 2: For scatter graphs ... 1072

2.4.523 Month ... 1073
2.4.524 Move .. 1073

2.4.525 MoveTab .. 1075
2.4.526 _Narrow (obsolete) .. 1075
2.4.527 Navigate ... 1077
2.4.528 NextActivity .. 1078
2.4.529 Now .. 1079
2.4.530 ObjectAtPointer .. 1080
2.4.531 OffsetPos ... 1082
2.4.532 Open .. 1082

2.4.532.1 Syntax 1: For windows of a known datatype 1083
2.4.532.2 Syntax 2: For windows of unknown datatype 1085
2.4.532.3 Syntax 3: For loading an OLE object from a file into a
control .. 1087
2.4.532.4 Syntax 4: For opening an OLE object in memory into a
control .. 1088
2.4.532.5 Syntax 5: For opening an OLE object in a file into an
OLEStorage ... 1089
2.4.532.6 Syntax 6: For opening an OLE storage member into a
storage ... 1091
2.4.532.7 Syntax 7: For opening OLE streams 1093
2.4.532.8 Syntax 8: For opening trace files 1095

2.4.533 OpenChannel ... 1096
2.4.534 OpenSheet ... 1098
2.4.535 OpenSheetAsDocument .. 1100
2.4.536 OpenSheetDocked ... 1101
2.4.537 OpenSheetFromDockingState ... 1102
2.4.538 OpenSheetInTabGroup .. 1103
2.4.539 OpenSheetWithParm ... 1103
2.4.540 OpenSheetWithParmAsDocument ... 1106
2.4.541 OpenSheetWithParmDocked ... 1108
2.4.542 OpenSheetWithParmFromDockingState 1109
2.4.543 OpenSheetWithParmInTabGroup .. 1111
2.4.544 OpenTab .. 1112

2.4.544.1 Syntax 1: For user objects of a known datatype 1112
2.4.544.2 Syntax 2: For user objects of unknown datatype 1114

2.4.545 OpenTabWithParm .. 1116
2.4.545.1 Syntax 1: For user objects of a known datatype 1116
2.4.545.2 Syntax 2: For user objects of unknown datatype 1118

2.4.546 OpenUserObject .. 1120
2.4.546.1 Syntax 1: For user objects of a known datatype 1120
2.4.546.2 Syntax 2: For user objects of unknown datatype 1121

2.4.547 OpenUserObjectWithParm ... 1123
2.4.547.1 Syntax 1: For user objects of a known datatype 1123
2.4.547.2 Syntax 2: For user objects of unknown datatype 1125

2.4.548 OpenWithParm .. 1127
2.4.548.1 Syntax 1: For windows of a known datatype 1127
2.4.548.2 Syntax 2: For windows of unknown datatype 1129

2.4.549 OutgoingCallList ... 1131
2.4.550 PageCount ... 1133

2.4.551 PageCreated .. 1133
2.4.552 ParentWindow .. 1134
2.4.553 Paste .. 1135
2.4.554 PasteLink ... 1137
2.4.555 PasteRTF ... 1138
2.4.556 PasteSpecial .. 1139
2.4.557 PauseDownload ... 1140
2.4.558 PBAddCookie (Obsolete) ... 1141
2.4.559 PBGetCookies (Obsolete) .. 1142
2.4.560 PBGetMenuString .. 1142
2.4.561 Pi .. 1143
2.4.562 PixelsToUnits ... 1144
2.4.563 Play .. 1145
2.4.564 PointerX ... 1146
2.4.565 PointerY ... 1147
2.4.566 PopMenu .. 1148
2.4.567 PopulateError ... 1149
2.4.568 Pos ... 1150
2.4.569 PosA .. 1151
2.4.570 PosW (obsolete) .. 1152
2.4.571 Position .. 1152

2.4.571.1 Syntax 1: For editable controls, except RichTextEdit 1152
2.4.571.2 Syntax 2: For RichTextEdit controls 1153

2.4.572 Post .. 1157
2.4.573 PostData .. 1158
2.4.574 PostDataEnd .. 1159
2.4.575 PostDataStart ... 1160
2.4.576 PostEvent ... 1161
2.4.577 PostURL ... 1164
2.4.578 Preview .. 1166
2.4.579 Print .. 1167

2.4.579.1 Syntax 1: For printing a visual object in a print job 1167
2.4.579.2 Syntax 2: For printing text in a print job 1169
2.4.579.3 Syntax 3: For RichTextEdit controls 1172

2.4.580 PrintAsPDF .. 1173
2.4.581 PrintBitmap .. 1174
2.4.582 PrintCancel .. 1175
2.4.583 PrintClose .. 1176
2.4.584 PrintDataWindow ... 1177
2.4.585 PrintDefineFont .. 1178
2.4.586 PrintEx ... 1180
2.4.587 PrintGetPrinter ... 1181
2.4.588 PrintGetPrinters ... 1181
2.4.589 PrintLine ... 1182
2.4.590 PrintOpen ... 1183
2.4.591 PrintOval .. 1185
2.4.592 PrintPage ... 1186
2.4.593 PrintRect .. 1187

2.4.594 PrintRoundRect .. 1188
2.4.595 PrintScreen .. 1190
2.4.596 PrintSend (obsolete) .. 1190
2.4.597 PrintSetFont ... 1192
2.4.598 PrintSetPrinter .. 1193
2.4.599 PrintSetSpacing ... 1194
2.4.600 PrintSetup .. 1194
2.4.601 PrintSetupPrinter .. 1195
2.4.602 PrintText ... 1196
2.4.603 PrintWidth .. 1197
2.4.604 PrintX ... 1198
2.4.605 PrintY ... 1199
2.4.606 ProfileInt ... 1199
2.4.607 ProfileString ... 1201
2.4.608 Rand .. 1202
2.4.609 Randomize ... 1203
2.4.610 Read .. 1204

2.4.610.1 Syntax 1: For reading into a string 1204
2.4.610.2 Syntax 2: For character arrays or blobs 1205

2.4.611 ReadData ... 1206
2.4.612 Real .. 1208
2.4.613 RecognizeText ... 1209
2.4.614 Refresh .. 1210
2.4.615 RegisterEvent .. 1211
2.4.616 RegistryDelete ... 1212
2.4.617 RegistryGet .. 1213
2.4.618 RegistryKeys .. 1215
2.4.619 RegistrySet .. 1216
2.4.620 RegistryValues ... 1218
2.4.621 RelativeDate .. 1219
2.4.622 RelativeTime .. 1219
2.4.623 ReleaseAutomationNativePointer .. 1220
2.4.624 ReleaseNativePointer .. 1221
2.4.625 Remove .. 1222
2.4.626 RemoveApplicationButton .. 1223
2.4.627 RemoveDirectory ... 1223
2.4.628 RequestResource .. 1224
2.4.629 Repair .. 1225
2.4.630 Replace .. 1226
2.4.631 ReplaceA ... 1228
2.4.632 ReplaceText ... 1229
2.4.633 ReplaceW (obsolete) ... 1230
2.4.634 Reset .. 1230

2.4.634.1 Syntax 1: For list boxes ... 1230
2.4.634.2 Syntax 2: For graphs ... 1231
2.4.634.3 Syntax 3: For trace files .. 1232

2.4.635 ResetArgElements ... 1233
2.4.636 ResetDataColors .. 1234

2.4.637 ResetInk ... 1235
2.4.638 ResetPicture .. 1235
2.4.639 Resize .. 1236
2.4.640 RespondRemote .. 1237
2.4.641 Restart ... 1238
2.4.642 ResumeDownload .. 1239
2.4.643 ResumeTransaction (obsolete) .. 1240
2.4.644 Retrieve .. 1241
2.4.645 RetrieveOne ... 1248
2.4.646 Reverse .. 1250
2.4.647 RevertToSelf .. 1251
2.4.648 RGB ... 1252
2.4.649 Right ... 1253
2.4.650 RightA .. 1254
2.4.651 RightW (obsolete) .. 1255
2.4.652 RightTrim ... 1255
2.4.653 RightTrimW (obsolete) ... 1256
2.4.654 RollbackOnly (obsolete) ... 1256
2.4.655 RollbackTransaction (obsolete) ... 1257
2.4.656 Round .. 1259
2.4.657 RoutineList ... 1260
2.4.658 Run .. 1261
2.4.659 Save ... 1262

2.4.659.1 Syntax 1: For InkPicture controls 1262
2.4.659.2 Syntax 2: For OLE objects .. 1264

2.4.660 SaveAs ... 1265
2.4.660.1 Syntax 1: For graph objects .. 1266
2.4.660.2 Syntax 2: For saving an OLE control to a file 1268
2.4.660.3 Syntax 3: For saving an OLE control to an OLE
storage ... 1269
2.4.660.4 Syntax 4: For saving an OLE storage object to a file 1270
2.4.660.5 Syntax 5: For saving an OLE storage object in another
OLE storage ... 1272

2.4.661 SaveDockingState .. 1273
2.4.662 SaveDocument .. 1273
2.4.663 SaveInk .. 1275
2.4.664 SaveToFile ... 1277
2.4.665 Scroll .. 1278
2.4.666 ScrollNextPage .. 1279
2.4.667 ScrollNextRow ... 1280
2.4.668 ScrollPriorPage .. 1281
2.4.669 ScrollPriorRow ... 1282
2.4.670 ScrollToRow ... 1283
2.4.671 Second ... 1284
2.4.672 SecondsAfter ... 1285
2.4.673 Seek ... 1286

2.4.673.1 Syntax 1: For OLE stream objects 1286
2.4.673.2 Syntax 2: For animation controls 1287

2.4.674 SelectedColumn ... 1288
2.4.675 SelectedIndex .. 1289
2.4.676 SelectedItem .. 1290
2.4.677 SelectedLength .. 1291
2.4.678 SelectedLine .. 1292
2.4.679 SelectedPage ... 1293
2.4.680 SelectedStart ... 1294
2.4.681 SelectedText .. 1295
2.4.682 SelectionRange .. 1296
2.4.683 SelectItem .. 1297

2.4.683.1 Syntax 1: When you know the text of an item 1298
2.4.683.2 Syntax 2: When you know the item number 1299
2.4.683.3 Syntax 3: For TreeView controls 1300

2.4.684 SelectObject ... 1301
2.4.685 SelectTab ... 1302
2.4.686 SelectText .. 1303

2.4.686.1 Syntax 1: For editable controls (except RichTextEdit) ... 1303
2.4.686.2 Syntax 2: For RichTextEdit controls and presentation
styles .. 1304

2.4.687 SelectTextAll .. 1306
2.4.688 SelectTextLine ... 1307
2.4.689 SelectTextWord ... 1308
2.4.690 Send ... 1310
2.4.691 SendDeleteRequest ... 1312
2.4.692 SendGetRequest ... 1313
2.4.693 SendPatchRequest .. 1315
2.4.694 SendPostRequest .. 1317
2.4.695 SendPutRequest .. 1319
2.4.696 SendRequest ... 1321
2.4.697 SeriesCount ... 1324
2.4.698 SeriesName ... 1325
2.4.699 SetAbort ... 1326

2.4.699.1 Syntax 1: For OLETxnObject objects 1326
2.4.699.2 Syntax 2: For TransactionServer objects 1327

2.4.700 SetAccessToken .. 1328
2.4.701 SetActiveCategory ... 1329
2.4.702 SetActiveCategoryByIndex .. 1330
2.4.703 SetAlignment .. 1331
2.4.704 SetApplicationButton .. 1332
2.4.705 SetArgElement ... 1333
2.4.706 SetAutomationLocale ... 1334
2.4.707 SetAutomationPointer .. 1335
2.4.708 SetAutomationTimeout ... 1336
2.4.709 SetBody ... 1338
2.4.710 SetBoldDate ... 1339
2.4.711 SetBoxPictureList ... 1340
2.4.712 SetByte .. 1341
2.4.713 SetCategory ... 1342

2.4.714 SetCheckBox ... 1343
2.4.715 SetColumn ... 1344
2.4.716 SetComboBox .. 1345
2.4.717 SetComplete .. 1346

2.4.717.1 Syntax 1: For OLETxnObject objects 1347
2.4.717.2 Syntax 2: For TransactionServer objects 1347

2.4.718 SetData .. 1349
2.4.719 SetDataDDE .. 1350
2.4.720 SetDataLabelling .. 1352
2.4.721 SetDataPieExplode .. 1353
2.4.722 SetDataStyle .. 1354

2.4.722.1 Syntax 1: For setting a data point's colors 1354
2.4.722.2 Syntax 2: For the line associated with a data point 1356
2.4.722.3 Syntax 3: For the fill pattern and symbol of a data
point ... 1358

2.4.723 SetDataTransparency .. 1360
2.4.724 SetDateLimits ... 1361
2.4.725 SetDropHighlight .. 1362
2.4.726 SetDynamicParm ... 1363
2.4.727 SetFirstVisible .. 1364
2.4.728 SetFocus .. 1365
2.4.729 SetGroup .. 1365
2.4.730 SetGlobalProperty (obsolete) ... 1366
2.4.731 SetHeader .. 1368

2.4.731.1 Syntax 1: for TokenRequest objects 1368
2.4.731.2 Syntax 2: for OAuthRequest objects 1369

2.4.732 SetHeaders .. 1370
2.4.732.1 Syntax 1: for TokenRequest objects 1370
2.4.732.2 Syntax 2: for OAuthRequest objects 1370

2.4.733 SetItem ... 1371
2.4.733.1 Syntax 1: For ListView controls 1372
2.4.733.2 Syntax 2: For ListView controls 1373
2.4.733.3 Syntax 3: For TreeView controls 1374
2.4.733.4 Syntax 4: For RibbonMenu controls 1375
2.4.733.5 Syntax 5: For RibbonBar controls 1376

2.4.734 SetJWTToken .. 1378
2.4.735 SetLargeButton .. 1380
2.4.736 SetLevelPictures .. 1381
2.4.737 SetLibraryList ... 1382
2.4.738 SetMask ... 1383
2.4.739 SetMasterItem .. 1385
2.4.740 SetMenu ... 1386
2.4.741 SetMessage ... 1388
2.4.742 SetMicroHelp ... 1389
2.4.743 SetMinimized ... 1390
2.4.744 SetNewMobiLinkPassword .. 1390
2.4.745 SetNull ... 1391
2.4.746 SetOAuthToken ... 1392

2.4.747 SetOverlayPicture .. 1393
2.4.748 SetPanel .. 1395
2.4.749 SetParagraphSetting .. 1396
2.4.750 SetParm ... 1397
2.4.751 SetPicture .. 1398
2.4.752 SetPointer .. 1399

2.4.752.1 Syntax 1: System-defined shape 1399
2.4.752.2 Syntax 2: File-defined shape ... 1400

2.4.753 SetPosition ... 1401
2.4.753.1 Syntax 1: For positioning windows and controls in
windows ... 1401
2.4.753.2 Syntax 2: For positioning objects within a DataWindow . 1402

2.4.754 SetProfileString .. 1403
2.4.755 SetRange ... 1405
2.4.756 SetRecentItem ... 1406
2.4.757 SetRecentTitle ... 1407
2.4.758 SetRecordSet ... 1408
2.4.759 SetRedraw ... 1410
2.4.760 SetRemote ... 1410

2.4.760.1 Syntax 1: For single DDE requests 1411
2.4.760.2 Syntax 2: For DDE requests via an open channel 1412

2.4.761 SetRequestHeader ... 1413
2.4.762 SetRequestHeaders ... 1414
2.4.763 SetResultSet .. 1415
2.4.764 SetSelectedDate .. 1416
2.4.765 SetSelectedRange ... 1416
2.4.766 SetSeriesLabelling ... 1418
2.4.767 SetSeriesStyle ... 1419

2.4.767.1 Syntax 1: For setting a series' colors 1419
2.4.767.2 Syntax 2: For lines in a graph 1421
2.4.767.3 Syntax 3: For the fill pattern and symbols in a graph 1422
2.4.767.4 Syntax 4: For creating an overlay in a graph 1424

2.4.768 SetSeriesTransparency .. 1426
2.4.769 SetSheetID ... 1427
2.4.770 SetSmallButton .. 1428
2.4.771 SetSpacing ... 1429
2.4.772 SetState ... 1430
2.4.773 SetSyncRegistryProperties .. 1431
2.4.774 SetTabButton ... 1432
2.4.775 SetTextColor .. 1433
2.4.776 SetTextStyle ... 1434
2.4.777 SetTimeout (obsolete) ... 1435
2.4.778 SetToday .. 1437
2.4.779 SetToolbar ... 1438
2.4.780 SetToolbarPos ... 1439

2.4.780.1 Syntax 1: For docked toolbars 1439
2.4.780.2 Syntax 2: For floating toolbars 1441

2.4.781 SetTop ... 1443

2.4.782 SetTraceFileName ... 1444
2.4.783 SetTransPool ... 1445
2.4.784 SetValue .. 1445

2.4.784.1 Syntax 1: for DatePicker control 1445
2.4.784.2 Syntax 2: for JSONPackage object 1446

2.4.785 SetValueBlob ... 1448
2.4.786 SetValueBoolean ... 1449
2.4.787 SetValueByDataWindow .. 1451
2.4.788 SetValueDate ... 1454
2.4.789 SetValueDateTime ... 1455
2.4.790 SetValueNumber .. 1457
2.4.791 SetValueString ... 1458
2.4.792 SetValueTime .. 1459
2.4.793 SHA .. 1460
2.4.794 SharedObjectDirectory ... 1462
2.4.795 SharedObjectGet ... 1463
2.4.796 SharedObjectRegister .. 1465
2.4.797 SharedObjectUnregister ... 1466
2.4.798 Show .. 1467
2.4.799 ShowHeadFoot .. 1468
2.4.800 ShowHelp ... 1469
2.4.801 ShowPopupHelp .. 1470
2.4.802 Sign .. 1471
2.4.803 SignalError ... 1472
2.4.804 Sin .. 1473
2.4.805 Sleep .. 1473
2.4.806 Sort .. 1474

2.4.806.1 Syntax 1: For TreeView controls 1474
2.4.806.2 Syntax 2: For ListView controls 1475

2.4.807 SortAll .. 1476
2.4.808 Space ... 1477
2.4.809 Sqrt .. 1478
2.4.810 Start ... 1478

2.4.810.1 Syntax 1: For executing pipeline objects 1478
2.4.810.2 Syntax 2: For activating timing objects 1481

2.4.811 StartHotLink ... 1485
2.4.812 StartServerDDE ... 1486
2.4.813 State ... 1487
2.4.814 StepIt .. 1488
2.4.815 Stop .. 1489

2.4.815.1 Syntax 1: For deactivating timing objects 1489
2.4.815.2 Syntax 2: For stopping an animation from playing 1490

2.4.816 StopHotLink ... 1491
2.4.817 StopNavigation ... 1492
2.4.818 StopServerDDE ... 1492
2.4.819 String .. 1493

2.4.819.1 Syntax 1: For formatting data .. 1493
2.4.819.2 Syntax 2: For blobs ... 1497

2.4.820 Submit .. 1498
2.4.821 SuspendTransaction (obsolete) ... 1504
2.4.822 SymmetricDecrypt .. 1505
2.4.823 SymmetricEncrypt .. 1507
2.4.824 SymmetricGenerateKey ... 1510
2.4.825 Synchronize ... 1512

2.4.825.1 Syntax 1: For synchronization without parameters 1512
2.4.825.2 Syntax 2: For synchronization with parameters 1512

2.4.826 SyntaxFromSQL .. 1513
2.4.827 SystemRoutine ... 1516
2.4.828 TabPostEvent .. 1517
2.4.829 TabTriggerEvent .. 1518
2.4.830 Tan ... 1519
2.4.831 Text .. 1520

2.4.831.1 Syntax for ListBox, DropDownListBox, PictureListBox,
and DropDownPictureListBox controls .. 1520
2.4.831.2 Syntax for RibbonComboBoxItem controls 1521

2.4.832 TextLine ... 1521
2.4.833 Time ... 1522

2.4.833.1 Syntax 1: For DateTime and blob values 1522
2.4.833.2 Syntax 2: For strings ... 1523
2.4.833.3 Syntax 3: For integers ... 1524

2.4.834 Timer .. 1525
2.4.835 ToAnsi .. 1526
2.4.836 Today ... 1527
2.4.837 Top ... 1527
2.4.838 TotalColumns ... 1528
2.4.839 TotalItems .. 1529
2.4.840 TotalSelected ... 1530
2.4.841 ToUnicode .. 1531
2.4.842 TraceBegin ... 1532
2.4.843 TraceClose ... 1533
2.4.844 TraceDisableActivity ... 1534
2.4.845 TraceEnableActivity ... 1535
2.4.846 TraceEnd ... 1537
2.4.847 TraceError .. 1538
2.4.848 TraceOpen ... 1539
2.4.849 TraceUser .. 1541
2.4.850 TriggerEvent .. 1541
2.4.851 TriggerPBEvent .. 1543
2.4.852 Trim .. 1545
2.4.853 TrimW (obsolete) ... 1546
2.4.854 Truncate ... 1546
2.4.855 TrustVerify (obsolete) .. 1547
2.4.856 TypeOf ... 1550
2.4.857 Uncheck ... 1551
2.4.858 Undo .. 1553
2.4.859 UnitsToPixels ... 1553

2.4.860 UnregisterEvent ... 1554
2.4.861 UpdateLinksDialog ... 1555
2.4.862 Upper ... 1557
2.4.863 UpperBound ... 1557
2.4.864 UrlDecode .. 1559
2.4.865 UrlEncode .. 1560
2.4.866 WebBrowserGet ... 1561
2.4.867 WebBrowserSet ... 1562
2.4.868 Which ... 1564
2.4.869 WordCap .. 1565
2.4.870 WorkSpaceHeight .. 1566
2.4.871 WorkSpaceWidth ... 1567
2.4.872 WorkSpaceX .. 1568
2.4.873 WorkSpaceY .. 1569
2.4.874 Write ... 1570
2.4.875 XMLParseFile .. 1571
2.4.876 XMLParseString ... 1573
2.4.877 Year ... 1576
2.4.878 Yield ... 1577
2.4.879 Zoom .. 1578

Index .. 1580

PowerScript Topics

Page 33

1 PowerScript Topics
This part describes the basics of using the PowerScript language.

1.1 Language Basics

About this chapter

This chapter describes general elements and conventions of PowerScript.

1.1.1 Comments

Description

You can use comments to document your scripts and prevent statements within a script from
executing. There are two methods.

Syntax

Double-slash method

Code // Comment

Slash-and-asterisk method

/* Comment */

Usage

The following table shows how to use each method.

Table 1.1: Methods for adding comments in scripts

Method Marker Can use to Note

Double slash // Designate all text on
the line to the right
of the marker as a
comment

Cannot extend to
multiple lines

Slash and asterisk /*...*/ Designate the text
between the markers
as a comment

Nest comments

• Can extend
over multiple
lines (multiline
comments do
not require a
continuation
character)

• Can be nested

Adding comment markers

In Script views and the Function painter, you can use the Comment Selection button
(or select Edit>Comment Selection from the menu bar) to comment out the line
containing the cursor or a selected group of lines.

PowerScript Topics

Page 34

For information about adding comments to objects and library entries, see the
Section 2.2.4.13, “Modifying comments” in Users Guide.

Examples

Double-slash method

// This entire line is a comment.
// This entire line is another comment.
amt = qty * cost // Rest of the line is comment.

// The following statement was commented out so that it
// would not execute.
// SetNull(amt)

Slash-and-asterisk method

/* This is a single-line comment. */

/* This comment starts here,
continues to this line,
and finally ends here. */
A = B + C /* This comment starts here.
/* This is the start of a nested comment.
 The nested comment ends here. */
The first comment ends here. */ + D + E + F

1.1.2 Identifier names

Description

You use identifiers to name variables, labels, functions, windows, controls, menus, and
anything else you refer to in scripts.

Syntax

Rules for identifiers:

• Must start with a letter or an _ (underscore)

• Cannot be reserved words (see Reserved words)

• Can have up to 40 characters but no spaces

• Are not case sensitive (PART, Part, and part are identical)

• Can include any combination of letters, numbers, and these special characters:

- Dash

_ Underscore

$ Dollar sign

Number sign

% Percent sign

Usage

PowerScript Topics

Page 35

By default, PowerBuilder allows you to use dashes in all identifiers, including in variable
names in a script. However, this means that when you use the subtraction operator or the --
operator in a script, you must surround it with spaces. If you do not, PowerBuilder interprets
the expression as an identifier name.

If you want to disallow dashes in variable names in scripts, you can change the setting of the
Allow Dashes in Identifiers option in the script editor's property sheet. As a result, you do
not have to surround the subtraction operator and the decrement assignment shortcut (--) with
spaces.

Be careful

If you disallow dashes and have previously used dashes in variable names, you will
get errors the next time you compile.

Examples

Valid identifiers

ABC_Code
Child-Id
FirstButton
response35
pay-before%deductions$
ORDER_DATE
Actual-$-amount
Part#

Invalid identifiers

2nd-quantity // Does not start with a letter
ABC Code // Contains a space
Child'sId // Contains invalid special character

1.1.3 Labels

Description

You can include labels in scripts for use with GOTO statements.

Syntax

Identifier:

Usage

A label can be any valid identifier. You can enter it on a line by itself above the statement or
at the start of the line before the statement.

For information about the GOTO statement, see GOTO. For information about valid
identifiers, see Identifier names.

Examples

On a line by itself above the statement

FindCity:IF city=cityname[1] THEN ...

At the start of the line before the statement

PowerScript Topics

Page 36

FindCity: IF city=cityname[1] THEN ...

1.1.4 Special ASCII characters

Description

You can include special ASCII characters in strings. For example, you might want to include
a tab in a string to ensure proper spacing or a bullet to indicate a list item. The tilde character
(~) introduces special characters. The tab is one of the common ASCII characters that can be
entered by typing a tilde followed by a single keystroke. The bullet must be entered by typing
a tilde followed by the decimal, hexadecimal, or octal ASCII value that represents it.

Syntax

Follow the guidelines in the following table.

Table 1.2: Using special ASCII characters in strings

In this category To specify this Enter this More information

Common ASCII
characters

Newline ~n

 Tab ~t

 Vertical tab ~v

 Carriage return ~r

 Form feed ~f

 Backspace ~b

 Double quote ~"

 Single quote ~'

 Tilde ~~

Any ASCII character Decimal ~### ### = a 3-digit
number from 000 to
255

 Hexadecimal ~h## ## = a 2-digit
hexadecimal number
from 01 to FF

 Octal ~o### ### = a 3-digit octal
number from 000 to
377

Examples

Entering ASCII characters

Here is how to use special characters in strings:

Table 1.3:

String Description

"dog~n" A string containing the word dog followed by
a newline character

PowerScript Topics

Page 37

String Description

"dog~tcat~ttiger" A string containing the word dog, a tab
character, the word cat, another tab character,
and the word tiger

Using decimal, hexadecimal, and octal values

Here is how to indicate a bullet (*) in a string by using the decimal, hexadecimal, and octal
ASCII values:

Table 1.4:

Value Description

"~249" The ASCII character with decimal value 249

"~hF9" The ASCII character with hexadecimal value
F9

"~o371" The ASCII character with octal value 371

1.1.5 NULL values

Description

Null means undefined or unknown. It is not the same as an empty string or zero or a date of
0000-00-00. For example, null is neither 0 nor not 0.

Typically, you work with null values only with respect to database values.

Usage

Initial values for variables

Although PowerBuilder supports null values for all variable datatypes, it does not initialize
variables to null. Instead, when a variable is not set to a specific value when it is declared,
PowerBuilder sets it to the default initial value for the datatype -- for example, zero for a
numeric value, false for boolean, and the empty string ("") for a string.

Null variables

A variable can become null if one of the following occurs:

• A null value is read into it from the database. If your database supports null, and a SQL
INSERT or UPDATE statement sends a null to the database, it is written to the database as
null and can be read into a variable by a SELECT or FETCH statement.

Note

Null in a variable

When a null value is read into a variable, the variable remains null unless it is
changed in a script.

• The SetNull function is used in a script to set the variable explicitly to null. For example:

string city // city is an empty string.

PowerScript Topics

Page 38

SetNull(city) // city is set to NULL.

Nulls in functions and expressions

Most functions that have a null value for any argument return null. Any expression that has a
variable with a null value results in null.

A boolean expression that is null is considered undefined and therefore false.

Testing for null

To test whether a variable or expression is null, use the IsNull function. You cannot use an
equal sign (=) to test for null.

Valid

This statement shows the correct way to test for null:

IF IsNull(a) THEN ...

Invalid

This statement shows the incorrect way to test for null:

IF a = NULL THEN ...

Examples

Example 1

None of the following statements make the computer beep (the variable nbr is set to null, so
each statement evaluates to false):

int Nbr
// Set Nbr to NULL.
SetNull(Nbr)
IF Nbr = 1 THEN Beep(1)
IF Nbr <> 1 THEN Beep(1)
IF NOT (Nbr = 1) THEN Beep(1)

Example 2

In this IF...THEN statement, the boolean expression evaluates to false, so the ELSE is
executed:

int a
SetNull(a)
IF a = 1 THEN
 MessageBox("Value", "a = 1")
ELSE
 MessageBox("Value", "a = NULL")
END IF

Example 3

This example is a more useful application of a null boolean expression than Example 2. It
displays a message if no control has focus. When no control has focus, GetFocus returns a
null object reference, the boolean expression evaluates to false, and the ELSE is executed:

IF GetFocus() THEN
 . . . // Some processing
ELSE
 MessageBox("Important", "Specify an option!")
END IF

PowerScript Topics

Page 39

1.1.6 Reserved words

The words PowerBuilder uses internally are called reserved words and cannot be used as
identifiers. If you use a reserved word as an identifier, you get a compiler warning. Reserved
words that are marked with an asterisk (*) can be used as function names.

Table 1.5: PowerScript reserved words

alias

and

autoinstantiate

call

case

catch

choose

close*

commit

connect

constant

continue

create*

cursor

declare

delete

describe*

descriptor

destroy

disconnect

do

dynamic

else

elseif

end

enumerated

event

execute

exit

external

false

fetch

finally

first

for

forward

from

function

global

goto

halt

if

immediate

indirect

insert

into

intrinsic

is

last

library

loop

namespace

native

next

not

of

on

open*

or

parent

post*

prepare

prior

private

privateread

privatewrite

procedure

protected

protectedread

protectedwrite

prototypes

public

readonly

ref

return

rollback

rpcfunc

select

selectblob

shared

static

step

subroutine

super

system

systemread

systemwrite

then

this

throw

throws

to

trigger

true

try

type

until

update*

updateblob

using

variables

while

with

within

xor

_debug

The PowerBuilder system class also includes private variables that you cannot use as
identifiers. If you use a private variable as an identifier, you get an informational message
and should rename your identifier.

PowerScript Topics

Page 40

If you are deploying a DataWindow to the Web, you cannot use JavaScript reserved words
to name fields or bands in the DataWindow object. The list of reserved words is available at
https://docs.microsoft.com/en-us/scripting/javascript/reference/javascript-reserved-words.

1.1.7 Pronouns

Description

PowerScript has pronouns that allow you to make a general reference to an object or control.
When you use a pronoun, the reference remains correct even if the name of the object or
control changes.

Usage

You can use pronouns in function and event scripts wherever you would use an object's
name. For example, you can use a pronoun to:

• Cause an event in an object or control

• Manipulate or change an object or control

• Obtain or change the setting of a property

The following table lists the PowerScript pronouns and summarizes their use.

Table 1.6: PowerScript pronouns

This
pronoun

In a script for a Refers to the

This Window, custom user object, menu,
application object, or control

Object or control itself

Parent Control in a window Window containing the control

 Control in a custom user object Custom user object containing the control

 Menu Item in the menu on the level above the
current menu

Super descendant object or control Parent

 descendant window or user object Immediate ancestor of the window or user
object

 Control in a descendant window or user
object

Immediate ancestor of the control's parent
window or user object

ParentWindow property

You can use the ParentWindow property of the Menu object like a pronoun in Menu scripts.
It identifies the window that the menu is associated with when your program is running. For
more information, see the Section 4.6.6.3, “Referring to objects in your application” in Users
Guide.

The rest of this section describes the individual pronouns in detail.

1.1.7.1 Parent pronoun

Description

https://docs.microsoft.com/en-us/scripting/javascript/reference/javascript-reserved-words

PowerScript Topics

Page 41

Parent in a PowerBuilder script refers to the object that contains the current object.

Usage

You can use the pronoun Parent in scripts for:

• Controls in windows

• Custom user objects

• Menus

Where you use Parent determines what it references:

Window controls

When you use Parent in a script for a control (such as a CommandButton), Parent refers to
the window that contains the control.

User object controls

When you use Parent in a script for a control in a custom user object, Parent refers to the user
object.

Menus

When you use Parent in a menu script, Parent refers to the menu item on the level above the
menu the script is for.

Examples

Window controls

If you include this statement in the script for the Clicked event in a CommandButton within a
window, clicking the button closes the window containing the button:

Close(Parent)

If you include this statement in the script for the CommandButton, clicking the button
displays a horizontal scroll bar within the window (sets the HScrollBar property of the
window to true):

Parent.HScrollBar = TRUE

User object controls

If you include this statement in a script for the Clicked event for a CheckBox in a user object,
clicking the check box hides the user object:

Parent.Hide()

If you include this statement in the script for the CheckBox, clicking the check box disables
the user object (sets the Enabled property of the user object to false):

Parent.Enabled = FALSE

Menus

If you include this statement in the script for the Clicked event in the menu item Select All
under the menu item Select, clicking Select All disables the menu item Select:

Parent.Disable()

PowerScript Topics

Page 42

If you include this statement in the script for the Clicked event in the menu item Select All,
clicking Select All checks the menu item Select:

Parent.Checked = TRUE

1.1.7.2 This pronoun

Description

The pronoun This in a PowerBuilder script refers to the window, user object, menu,
application object, or control that owns the current script.

Usage

Why include This

Using This allows you to make ownership explicit. The following statement refers to the
current object's X property:

This.X = This.X + 50

When optional but helpful

In the script for an object or control, you can refer to the properties of the object or control
without qualification, but it is good programming practice to include This to make the script
clear and easy to read.

When required

There are some circumstances when you must use This. When a global or local variable has
the same name as an instance variable, PowerBuilder finds the global or local variable first.
Qualifying the variable with This allows you to refer to the instance variable instead of the
global variable.

Examples

Example 1

This statement in a script for a menu places a check mark next to the menu selection:

This.Check()

Example 2

In this function call, This passes a reference to the object containing the script:

ReCalc(This)

Example 3

If you omit This, "x" in the following statement refers to a local variable x if there is one
defined (the script adds 50 to the variable x, not to the X property of the control). It refers to
the object's X property if there is no local variable:

x = x + 50

Example 4

Use This to ensure that you refer to the property. For example, in the following statement
in the script for the Clicked event for a CommandButton, clicking the button changes the
horizontal position of the button (changes the button's X property):

PowerScript Topics

Page 43

This.x = This.x + 50

1.1.7.3 Super pronoun

Description

When you write a PowerBuilder script for a descendant object or control, you can call scripts
written for any ancestor. You can directly name the ancestor in the call, or you can use the
reserved word Super to refer to the immediate ancestor.

Usage

Whether to use Super

If you are calling an ancestor function, you only need to use Super if the descendant has a
function with the same name and the same arguments as the ancestor function. Otherwise,
you would simply call the function with no qualifiers.

Restrictions for Super

You cannot use Super to call scripts associated with controls in the ancestor window. You
can only use Super in an event or function associated with a direct descendant of the ancestor
whose function is being called. Otherwise, the compiler returns a syntax error.

To call scripts associated with controls, use the CALL statement.

See the discussion of CALL.

Examples

Example 1

This example calls the ancestor function wf_myfunc (presumably the descendant also has a
function called wf_myfunc):

Super::wf_myfunc(myarg1, myarg2)

This example must be part of a script or function in the descendant window, not one of the
window's controls. For example, if it is in the Clicked event of a button on the descendant
window, you get a syntax error when the script is compiled.

Supplying arguments

Be certain to supply the correct number of arguments for the ancestor function.

Example 2

This example in a CommandButton script calls the Clicked script for the CommandButton in
the immediate ancestor window or user object:

Super::EVENT Clicked()

1.1.8 Statement continuation

Description

Although you typically put one statement on each line, you occasionally need to continue
a statement to more than one line. The statement continuation character is the ampersand
(&). (For the use of the ampersand character in accelerator keys, see the PowerBuilder Users
Guide.)

PowerScript Topics

Page 44

Syntax

Start of statement &
 more statement &
 end of statement

The ampersand must be the last nonwhite character on the line or the compiler considers it
part of the statement.

For information about white space, see White space.

Usage

You do not use a continuation character for:

• Continuing comments

Do not use a continuation character to continue a comment. The continuation character is
considered part of the comment and is ignored by the compiler.

• Continuing SQL statements

You do not need a continuation character to continue a SQL statement. In PowerBuilder,
SQL statements always end with a semicolon (;), and the compiler considers everything
from the start of a SQL statement to a semicolon to be part of the SQL statement. A
continuation character in a SQL statement is considered part of the statement and usually
causes an error.

Examples

Continuing a quoted string

One way

Place an ampersand in the middle of the string and continue the string on the next line:

IF Employee_District = "Eastern United States and&
Eastern Canada" THEN ...

Note that any white space (such as tabs and spaces) before the ampersand and at the
beginning of the continued line is part of the string.

A problem

The following statement uses only the ampersand to continue the quoted string in the
IF...THEN statement to another line; for readability, a tab has been added to indent the
second line. The compiler includes the tab in the string, which might result in an error:

IF Employee_District = "Eastern United States and&
 Eastern Canada" THEN ...

A better way

A better way to continue a quoted string is to enter a quotation mark before the continuation
character ('& or "&, depending on whether the string is delimited by single or double
quotation marks) at the end of the first line of the string and a plus sign and a quotation mark
(+' or +") at the start of the next line. This way, you do not inadvertently include unwanted
characters (such as tabs or spaces) in the string literal:

IF Employee_District = "Eastern United States and "&
 +" Eastern Canada" THEN ...

PowerScript Topics

Page 45

The examples in the PowerBuilder documentation use this method to continue quoted strings.

Continuing a variable name

Do not split a line by inserting the continuation character within a variable name. This causes
an error and the statement fails, because the continuation character splits the variable name
"Quantity":

Total-Cost = Price * Quan&
 tity + (Tax + Shipping)

1.1.9 Statement separation

Description

Although you typically put one statement on each line, you occasionally want to combine
multiple statements on a single line. The statement separation character is the semicolon (;).

Syntax

Statement1; statement2

Examples

The following line contains three short statements:

A = B + C; D = E + F; Count = Count + 1

1.1.10 White space

Description

Blanks, tabs, form feeds, and comments are forms of white space. The compiler treats white
space as a delimiter and does not consider the number of white space characters.

Usage

White space in string literals

The number of white space characters is preserved when they are part of a string literal
(enclosed in single or double quotation marks).

Dashes in identifiers

Unless you have prohibited the use of dashes in identifiers (see Identifier names), you must
surround a dash used as a minus sign with spaces. Otherwise, PowerBuilder considers the
dash as part of a variable name:

Order - Balance // Subtracts Balance from Order
Order-Balance // A variable named Order-Balance

Examples

Example 1

Here the spaces and the comment are white space, so the compiler ignores them:

A + B /*Adjustment factor */+C

Example 2

Here the spaces are within a string literal, so the compiler does not ignore them:

PowerScript Topics

Page 46

"The value of A + B is:"

1.1.11 Conditional compilation

Description

The use of conditional compilation directives causes the PowerBuilder preprocessor to parse
blocks of code before they are passed to the compiler.

Syntax

#IF { NOT } DEFINED predefined_symbols THEN
 action1
{ #ELSEIF DEFINED predefined_symbols THEN
 action2 }
{ #ELSE
 action3 }
#END IF

Table 1.7:

Parameter Description

predefined_symbolsA predefined identifier or a combination of predefined identifiers separated
by AND or OR operators. In the current release, you cannot use a user-
defined identifier.

action1,
action2,
action3

The action you want performed if the condition in the previous statement
was met.

Usage

Conditional compilation enables you to include PowerScript code for a specific target type or
set of target types in an application. You can also include debug code in your application and
specify in the Project painter whether it will be included in your application's executable file.

The preprocessor substitutes blank lines for statements with a leading number (#) sign
character. It passes the code in the action statements to the compiler or converts it to blank
lines depending on whether the condition in the previous preprocessor directive was met.

The following table displays the predefined symbols, the project types to which they
correspond, and their effects on the code passed to the compiler.

Table 1.8: Predefined symbols for conditional compilation

Predefined
symbols

Target type Code in this processing block

PBNATIVE Standard PowerBuilder
client-server or distributed
applications

Fully parsed for the standard application and
converted to blank lines for .NET targets.

PBWEBSERVICE.NET Web Service
component targets

Fully parsed for .NET Web Service targets and
converted to blank lines for all other targets.

DEBUG All PowerBuilder standard
and .NET targets

When a project's Enable DEBUG Symbol
check box is selected, code is fully parsed by
the compiler and included in the deployed

PowerScript Topics

Page 47

Predefined
symbols

Target type Code in this processing block

application. The code is converted to blank
lines when the check box is cleared. The
DEBUG symbol is always defined in the
development environment.

You can use the NOT operator to include code for all target types that are not of the type
that you specify, and you can use AND and OR operators to combine symbols. For example,
code that follows this statement will be parsed for all targets except standard PowerBuilder
applications:

#if NOT defined PBNATIVE then

Comments can be added to conditional code blocks if they are preceded by double slash
marks (//) in the same line of code. You cannot use the PowerScript line continuation
character (&) in a conditional code statement. You must use it in code that you embed in the
conditional block when you use more than one line for a single line of code.

Limitations and error messages

Conditional compilation is not supported in DataWindow syntax, or in structure or menu
objects. You cannot edit the source code for an object to include conditional compilation
blocks that span function, event, or variable definition boundaries.

You must rebuild your application after you add a DEBUG conditional block.

The following table shows the types of error messages displayed for incorrect conditional
compilation code.

Table 1.9: Types of error messages returned by the preprocessor

Error message Description

Invalid if statement #if statement without a defined symbol, with an incorrectly defined
symbol, or without a then clause

#end if directive
expected

#if statement without an #end if statement

Unexpected
preprocessor
directive

Caused by an #else, #elseif, or #end if statement when not preceded
by an #if statement

Preprocessor syntax
error

Caused by including text after an #else or #end if statement when the
text is not preceded by comment characters (//)

Examples

When you run or debug the application in the development environment, the following code
is always parsed and you always see the message box. When you run the executable file,
the code is parsed only if the DEBUG symbol is enabled on the General page in the Project
painter:

#if defined DEBUG then
 MessageBox("Debugging","Ctr value is " + string(i))
#end if

PowerScript Topics

Page 48

1.2 Datatypes
About this chapter

This chapter describes the PowerScript datatypes.

1.2.1 Standard datatypes

The datatypes

The standard datatypes in PowerBuilder are the familiar datatypes that are used in many
programming languages, including char, integer, decimal, long, and string. In PowerScript,
you use these datatypes to declare variables or arrays.

These are the standard PowerScript datatypes, followed by a description of each:

Table 1.10:

Blob LongLong

Boolean Long

Byte Longptr

Char or character Real

Date String

DateTime Time

Decimal or Dec UnsignedInteger, UnsignedInt, or UInt

Double UnsignedLong or ULong

Integer or Int

Blob

Binary large object. Used to store an unbounded amount of data (for example, generic binary,
image, or large text such as a word-processing document).

Boolean

Contains true or false.

Byte

8-bit unsigned integers, from 0 to +255.

Using literals

To assign a literal value, use any whole positive number in the range 0 to 255. The leading
plus sign is not required (18 and +18 are the same). For example:

1 123 200 +55 +200

Char or character

A single Unicode character.

If you have character-based data that you will want to parse in an application, you might
want to define it as an array of type char. Parsing a char array is easier and faster than parsing
strings. If you will be passing character-based data to external functions, you might want to
use char arrays instead of strings.

PowerScript Topics

Page 49

For more information about passing character-based data to external functions, see
Section 5.5.1, “Using external functions” in Application Techniques. For information about
datatype conversion when assigning strings to chars and vice versa, see String and char
datatypes in PowerBuilder.

Using literals

To assign a literal value, enclose the character in either single or double quotation marks. For
example:

char c
c = 'T'
c = "T"

Date

The date, including the full year (1000 to 3000), the number of the month (01 to 12), and the
day (01 to 31).

Using literals

To assign a literal value, separate the year, month, and day with hyphens. For example:

2001-12-25 // December 25, 2001
2003-02-06 // February 6, 2003

DateTime

The date and time in a single datatype, used only for reading and writing DateTime values
from and to a database. To convert DateTime values to datatypes that you can use in
PowerBuilder, use:

• The Date(datetime) function to convert a DateTime value to a PowerBuilder date value
after reading from a database

• The Time(datetime) function to convert a DateTime value to a PowerBuilder time value
after reading from a database

• The DateTime (date, time) function to convert a date and (optional) time to a DateTime
before writing to a DateTime column in a database.

PowerBuilder supports microseconds in the database interface for any DBMS that supports
microseconds.

Decimal or Dec

Signed decimal numbers, positive or negative, with up to 28 digits. You can
place the decimal point anywhere within the 28 digits -- for example, 123.456,
0.000000000000000000000001 or 12345678901234.5678901234.

Using literals

To assign a literal value, use any number with a decimal point and no exponent. The plus sign
is optional (95 and +95 are the same). For numbers between zero and one, the zero to the left
of the decimal point is optional (for example, 0.1 and .1 are the same). For whole numbers,
zeros to the right of the decimal point are optional (32.00, 32.0, and 32. are all the same). For
example:

12.34 0.005 14.0 -6500 +3.5555

PowerScript Topics

Page 50

Double

A signed floating-point number with 15 digits of precision and a range from
2.2250738585073E-308 to 1.79769313486231E+308, and -2.2250738585073E-308 to
-1.79769313486231E+308.

Integer or Int

16-bit signed integers, from -32768 to +32767.

Using literals

To assign a literal value, use any whole number (positive, negative, or zero). The leading plus
sign is optional (18 and +18 are the same). For example:

1 123 1200 +55 -32

Long

32-bit signed integers, from -2147483648 to +2147483647.

Using literals

Use literals as for integers, but longer numbers are permitted.

LongLong

64-bit signed integers, from -9223372036854775808 to 9223372036854775807.

Using literals

Use literals as for integers, but longer numbers are permitted.

Longptr

4 bytes in the 32-bit platform and 8 bytes in the 64-bit platform.

Using literals

In the 32-bit platform, longptr is the same as long; you can continue using long wherever
longptr is required in 32-bit applications. In 64-bit applications, however, using long to hold
longptr variables will lead to data truncation from 8 bytes to 4 bytes, or memory corruption if
you pass a long ref variable when a longptr ref is required. If you want to move to 64-bit, use
longptr wherever required. It does no harm to 32-bit.

Real

A signed floating-point number with six digits of precision and a range from 3.402822E-38 to
3.402822E+38, and -3.402822E-38 to -3.402822E+38.

Using literals

To assign a literal value, use a decimal value, followed by E, followed by an integer; no
spaces are allowed. The decimal number before the E follows all the conventions specified
above for decimal literals. The leading plus sign in the exponent (the integer following the E)
is optional (3E5 and 3E+5 are the same). For example:

2E4 2.5E38 +6.02E3 -4.1E-2
-7.45E16 7.7E+8 3.2E-38

String

Any string of Unicode characters with variable length (0 to 1073741823).

PowerScript Topics

Page 51

Most of the character-based data in your application, such as names, addresses, and so
on, will be defined as strings. PowerScript provides many functions that you can use to
manipulate strings, such as a function to convert characters in a string to uppercase and
functions to remove leading and trailing blanks.

For more information about passing character-based data to external functions, see
Section 5.5.1, “Using external functions” in Application Techniques. For information about
datatype conversion when assigning strings to chars and vice versa, see String and char
datatypes in PowerBuilder.

Using literals

To assign a literal value, enclose as many as 1024 characters in either single or double quotes,
including a string of zero length or an empty string. For example:

string s1
s1 = 'This is a string'
s1 = "This is a string"

You can embed a quotation mark in a string literal if you enclose the literal with the other
quotation mark. For example, the following statements result in the string Here's a string:

string s1
s1 = "Here's a string."

You can also use a tilde (~) to embed a quotation mark in a string literal. For example:

string s1 = 'He said, "It~'s good!"'

Complex nesting

When you nest a string within a string that is nested in another string, you can use tildes
to tell the parser how to interpret the quotation marks. Each pass through the parser strips
away the outermost quotes and interprets the character after each tilde as a literal. Two tildes
become one tilde, and tilde-quote becomes the quote alone.

Example 1

This string has two levels of nesting:

"He said ~"she said ~~~"Hi ~~~" ~" "

The first pass results in:

He said "she said ~"Hi ~" "

The second pass results in:

she said "Hi"

The third pass results in:

Hi

Example 2

A more probable example is a string for the Modify function that sets a DataWindow
property. The argument string often requires complex quotation marks (because you must
specify one or more levels of nested strings). To understand the quotation marks, consider
how PowerBuilder will parse the string. The following string is a possible argument for the
Modify function; it mixes single and double quotes to reduce the number of tildes:

PowerScript Topics

Page 52

"bitmap_1.Invert='0~tIf(empstatus=~~'A~~',0,1)'"

The double quotes tell PowerBuilder to interpret the argument as a string. It contains the
expression being assigned to the Invert property, which is also a string, so it must be quoted.
The expression itself includes a nested string, the quoted A. First, PowerBuilder evaluates the
argument for Modify and assigns the single-quoted string to the Invert property. In this pass
through the string, it converts two tildes to one. The string assigned to Invert becomes:

'0[tab]If(empstatus=~'A~',0,1)'

Finally, PowerBuilder evaluates the property's expression, converting tilde-quote to quote,
and sets the bitmap's colors accordingly.

Example 3

There are many ways to specify quotation marks for a particular set of nested strings. The
following expressions for the Modify function all have the same end result:

"emp.Color = ~"0~tIf(stat=~~~"a~~~",255,16711680)~""
"emp.Color = ~"0~tIf(stat=~~'a~~',255,16711680)~""
"emp.Color = '0~tIf(stat=~~'a~~',255,16711680)'"
"emp.Color = ~"0~tIf(stat='a',255,16711680)~""

Rules for quotation marks and tildes

When nesting quoted strings, the following rules of thumb might help:

• A tilde tells the parser that the next character should be taken as a literal, not a string
terminator

• Pairs of single quotes (') can be used in place of pairs of tilde double quotes (~")

• Pairs of tilde tilde single quotes (~~') can be used in place of pairs of triple tilde double
quotes (~~~")

Time

The time in 24-hour format, including the hour (00 to 23), minute (00 to 59), second (00 to
59), and fraction of second (up to six digits), with a range from 00:00:00 to 23:59:59.999999.

PowerBuilder supports microseconds in the database interface for any DBMS that supports
microseconds.

Using literals

The time in 24-hour format, including the hour (00 to 23), minute (00 to 59), second (00 to
59), and fraction of second (up to six digits), with a range from 00:00:00 to 23:59:59.999999.
You separate parts of the time with colons -- except for the fractions of seconds, which
should be separated by a decimal point. For example:

21:09:15 // 15 seconds after 9:09 pm
06:00:00 // Exactly 6 am
10:29:59 // 1 second before 10:30 am
10:29:59.9 // 1/10 sec before 10:30 am

UnsignedInteger, UnsignedInt, or UInt

16-bit unsigned integers, from 0 to 65535.

UnsignedLong or ULong

PowerScript Topics

Page 53

32-bit unsigned integers, from 0 to 4294967295.

1.2.2 The Any datatype

General information

PowerBuilder also supports the Any datatype, which can hold any kind of value, including
standard datatypes, objects, structures, and arrays. A variable whose type is Any is a
chameleon datatype -- it takes the datatype of the value assigned to it.

Declarations and assignments

You declare Any variables just as you do any other variable. You can also declare an array of
Any variables, where each element of the array can have a different datatype.

You assign data to Any variables with standard assignment statements. You can assign an
array to a simple Any variable.

After you assign a value to an Any variable, you can test the variable with the ClassName
function and find out the actual datatype:

any la_spreadsheetdata
la_spreadsheetdata = ole_1.Object.cells(1,1).value
CHOOSE CASE ClassName(la_spreadsheetdata)
 CASE "integer"
 ...
 CASE "string"
 ...
END CHOOSE

These rules apply to Any assignments:

• You can assign anything into an Any variable.

• You must know the content of an Any variable to make assignments from the Any variable
to a compatible datatype.

Restrictions

If the value of a simple Any variable is an array, you cannot access the elements of the array
until you assign the value to an array variable of the appropriate datatype. This restriction
does not apply to the opposite case of an array of Any variables -- you can access each Any
variable in the array.

If the value of an Any variable is a structure, you cannot use dot notation to access the
elements of the structure until you assign the value to a structure of the appropriate datatype.

After a value has been assigned to an Any variable, it cannot be converted back to a generic
Any variable without a datatype. Even if you set it to NULL, it retains the datatype of the
assigned value until you assign another value.

Operations and expressions

You can perform operations on Any variables as long as the datatype of the data in the Any
variable is appropriate to the operator. If the datatype is not appropriate to the operator, an
execution error occurs.

For example, if instance variables ia_1 and ia_2 contain numeric data, this statement is valid:

any la_3

PowerScript Topics

Page 54

la_3 = ia_1 - ia_2

If ia_1 and ia_2 contain strings, you can use the concatenation operator:

any la_3
la_3 = ia_1 + ia_2

However, if ia_1 contained a number and ia_2 contained a string, you would get an execution
error.

Datatype conversion functions

PowerScript datatype conversion functions accept Any variables as arguments. When you
call the function, the Any variable must contain data that can be converted to the specified
type.

For example, if ia_any contains a string, you can assign it to a string variable:

ls_string = ia_any

If ia_any contains a number that you want to convert to a string, you can call the String
function:

ls_string = String(ia_any)

Other functions

If a function's prototype does not allow Any as a datatype for an argument, you cannot use
an Any variable without a conversion function, even if it contains a value of the correct
datatype. When you compile the script, you get compiler errors such as Unknown function or
Function not found.

For example, the argument for the Len function refers to a string column in a DataWindow,
but the expression itself has a type of Any:

IF Len(dw_notes.Object.Notes[1]) > 0 THEN // Invalid

This works because the string value of the Any expression is explicitly converted to a string:

IF Len(String(dw_notes.Object.Notes[1])) > 0 THEN

Expressions whose datatype is Any

Expressions that access data whose type is unknown when the script is compiled have a
datatype of Any. These expressions include expressions or functions that access data in an
OLE object or a DataWindow object:

myoleobject.application.cells(1,1).value
dw_1.Object.Data[1,1]
dw_1.Object.Data.empid[99]

The objects these expressions point to can change so that the type of data being accessed also
changes.

Expressions that refer to DataWindow data can return arrays and structures and arrays of
structures as Any variables. For best performance, assign the DataWindow expression to the
appropriate array or structure without using an intermediate Any variable.

Overusing the Any datatype

Do not use Any variables as a substitute for selecting the correct datatype in your scripts.
There are two reasons for this:

PowerScript Topics

Page 55

• At execution time, using Any variables is slow

PowerBuilder must do much more processing to determine datatypes before it can make
an assignment or perform an operation involving Any variables. In particular, an operation
performed many times in a loop will suffer greatly if you use Any variables instead of
variables of the appropriate type.

• At compile time, using Any variables removes a layer of error checking from your
programming

The PowerBuilder compiler makes sure datatypes are correct before code gets executed.
With Any variables, some of the errors that can be caught by the compiler are not found
until the code is run.

1.2.3 System object datatypes

Objects as datatypes

System object datatypes are specific to PowerScript. You view a list of all the system objects
by selecting the System tab in the Browser.

In building PowerBuilder applications, you manipulate objects such as windows, menus,
CommandButtons, ListBoxes, and graphs. Internally, PowerBuilder defines each of these
kinds of objects as a datatype. Usually you do not need to concern yourself with these objects
as datatypes -- you simply define the objects in a PowerBuilder painter and use them.

However, sometimes you need to understand how PowerBuilder maintains its system objects
in a hierarchy of datatypes. For example, when you need to define instances of a window,
you define variables whose datatype is window. When you need to create an instance of a
menu to pop up in a window, you define a variable whose datatype is menu.

PowerBuilder maintains its system objects in a class hierarchy. Each type of object is a class.
The classes form an inheritance hierarchy of ancestors and descendants.

Examples

All the classes shown in the Browser are actually datatypes that you can use in your
applications. You can define variables whose type is any class.

For example, the following code defines window and menu variables:

window mywin
menu mymenu

If you have a series of buttons in a window and need to keep track of one of them (such as
the last one clicked), you can declare a variable of type CommandButton and assign it the
appropriate button in the window:

// Instance variable in a window
commandbutton LastClicked
// In Clicked event for a button in the window.
// Indicates that the button was the last one
// clicked by the user.
LastClicked = This

Because it is a CommandButton, the LastClicked variable has all the properties of a
CommandButton. After the last assignment above, LastClicked's properties have the same
values as the most recently clicked button in the window.

PowerScript Topics

Page 56

To learn more about working with instances of objects through datatypes, see About objects.

1.2.4 Enumerated datatypes

About enumerated datatypes

Like the system object datatypes, enumerated datatypes are specific to PowerScript.
Enumerated datatypes are used in two ways:

• As arguments in functions

• To specify the properties of an object or control

You can list all the enumerated datatypes and their values by selecting the Enumerated tab in
the Browser.

You cannot create your own enumerated datatypes. As an alternative, you can declare a set of
constant variables and assign them initial values. See Declaring constants.

A variable of one of the enumerated datatypes can be assigned a fixed set of values. Values of
enumerated datatypes always end with an exclamation point (!). For example, the enumerated
datatype Alignment, which specifies the alignment of text, can be assigned one of the
following three values: Center!, Left!, and Right!:

mle_edit.Alignment=Right!

Incorrect syntax

Do not enclose an enumerated datatype value in quotation marks. If you do, you
receive a compiler error.

Advantages of enumerated types

Enumerated datatypes have an advantage over standard datatypes. When an enumerated
datatype is required, the compiler checks the data and makes sure it is the correct type. For
example, if you set an enumerated datatype variable to any other datatype or to an incorrect
value, the compiler does not allow it.

1.3 Declarations

About this chapter

This chapter explains how to declare variables, constants, and arrays and refer to them in
scripts, and how to declare remote procedure calls (RPCs) and external functions that reside
in dynamic link libraries (DLLs).

1.3.1 Declaring variables

General information

Before you use a variable in a PowerBuilder script, you must declare it (give it a datatype and
a name).

A variable can be a standard datatype, a structure, or an object. Object datatypes can be
system objects as displayed in the Browser or they can be objects you have defined by

PowerScript Topics

Page 57

deriving them from those system object types. For most variables, you can assign it a value
when you declare it. You can always assign it a value within a script.

1.3.1.1 Where to declare variables

Scope

You determine the scope of a PowerScript variable by selecting where you declare it.
Instance variables have additional access keywords that restrict specific scripts from
accessing the variable.

The following table shows the four scopes of variables.

Table 1.11: PowerScript variable scopes

Scope Description

Global Accessible anywhere in the application. It is independent of any object
definition.

Instance Belongs to an object and is associated with an instance of that object (you
can think of it as a property of the object). Instance variables have access
keywords that determine whether scripts of other objects can access them.
They can belong to the application object, a window, a user object, or a menu.

Shared Belongs to an object definition and exists across all instances of the object.
Shared variables retain their value when an object is closed and opened again.

Shared variables are always private. They are accessible only in scripts for
the object and for controls associated with the object. They can belong to the
application object, a window, a user object, or a menu.

Local A temporary variable that is accessible only in the script in which you define
it. When the script has finished executing, the variable constant ceases to
exist.

Global, instance, and shared declarations

Global, instance, and shared variables can be defined in the Script view of the Application,
Window, User Object, or Menu painters. Global variables can also be defined in the Function
painter:

1. Select Declare from the first drop-down list in the Script view.

2. Select the type of variable you want to declare in the second drop-down list of the Script
view.

3. Type the declaration in the scripting area of the Script view.

Local declarations

You declare local variables for an object or control in the script for that object or control.

Declaring SQL cursors

You can also declare SQL cursors that are global, shared, instance, or local. Open a specific
script or select a variable declaration scope in the Script view and type the DECLARE SQL
statement or select Paste SQL from the PainterBar or pop-up menu.

PowerScript Topics

Page 58

1.3.1.2 About using variables

General information

To use or set a variable's value in a PowerBuilder script, you name the variable. The variable
must be known to the compiler -- in other words, it must be in scope.

You can use a variable anywhere you need its value -- for example, as a function argument or
in an assignment statement.

How PowerBuilder looks for variables

When PowerBuilder executes a script and finds an unqualified reference to a variable, it
searches for the variable in the following order:

1. A local variable

2. A shared variable

3. A global variable

4. An instance variable

As soon as PowerBuilder finds a variable with the specified name, it uses the variable's value.

Referring to global variables

To refer to a global variable, you specify its name in a script. However, if the global variable
has the same name as a local or shared variable, the local or shared variable will be found
first.

To refer to a global variable that is masked by a local or shared variable of the same name,
use the global scope operator (::) before the name:

::globalname

For example, this statement compares the value of local and global variables, both named
total:

IF total < ::total THEN ...

Referring to instance variables

You can refer to an instance variable in a script if there is an instance of the object open in the
application. Depending on the situation, you might need to qualify the name of the instance
variable with the name of the object defining it.

Using unqualified names

You can refer to instance variables without qualifying them with the object name in the
following cases:

• For application-level variables, in scripts for the application object

• For window-level variables, in scripts for the window itself and in scripts for controls in
that window

• For user-object-level variables, in scripts for the user object itself and in scripts for controls
in that user object

PowerScript Topics

Page 59

• For menu-level variables, in scripts for a menu object, either the highest-level menu or
scripts for the menu objects included as items on the menu

For example, if w_emp has an instance variable EmpID, then you can reference EmpID
without qualification in any script for w_emp or its controls as follows:

sle_id.Text = EmpID

Using qualified names

In all other cases, you need to qualify the name of the instance variable with the name of the
object using dot notation:

object.instancevariable

This requirement applies only to Public instance variables. You cannot reference Private
instance variables outside the object at all, qualified or not.

For example, to refer to the w_emp instance variable EmpID from a script outside the
window, you need to qualify the variable with the window name:

sle_ID.Text = w_emp.EmpID

There is another situation in which references must be qualified. Suppose that w_emp has
an instance variable EmpID and that in w_emp there is a CommandButton that declares a
local variable EmpID in its Clicked script. In that script, you must qualify all references to the
instance variable:

Parent.EmpID

Using pronouns as name qualifiers

To avoid ambiguity when referring to variables, you might decide to always use qualified
names for object variables. Qualified names leave no doubt about whether a variable is local,
instance, or shared.

To write generic code but still use qualified names, you can use the pronouns This and Parent
to refer to objects. Pronouns keep a script general by allowing you to refer to the object
without naming it specifically.

Window variables in window scripts

In a window script, use the pronoun This to qualify the name of a window instance variable.
For example, if a window has an instance variable called index, then the following statements
are equivalent in a script for that window, as long as there is no local or global variable
named index:

index = 5
This.index = 5

Window variables in control scripts

In a script for a control in a window, use the pronoun Parent to qualify the name of a
window instance variable -- the window is the parent of the control. In this example, the two
statements are equivalent in a script for a control in that window, as long as there is no local
or global variable named "index":

index = 5
Parent.index = 5

PowerScript Topics

Page 60

Naming errors

If a local or global variable exists with the name "index", then the unqualified name refers
to the local or global variable. It is a programming error if you meant to refer to the object
variable. You get an informational message from the compiler if you use the same name for
instance and global variables.

1.3.1.3 Syntax of a variable declaration

Simple syntax

In its simplest form, a PowerScript variable declaration requires only two parts: the datatype
and the variable name. For example:

datatype variablename

Full syntax

The full syntax allows you to specify access and an initial value. Arrays and some datatypes,
such as blobs and decimals, accept additional information:

{ access } datatype { { size } } { { precision } } variablename { = value }
 {, variablename2 { = value2 } }

Table 1.12: Variable declaration parameters

Parameter Description

access
(optional)

(For instance variables only) Keywords specifying the access for the variable.
For information, see Access for instance variables.

datatype The datatype of the variable. You can specify a standard datatype, a system
object, or a previously defined structure.

For blobs and decimals, you can specify the size or precision of the data by
including an optional value in brackets.

{ size }
(optional)

(For blobs only) A number, enclosed in braces, specifying the size in bytes
of the blob. If { size } is omitted, the blob has an initial size of zero and
PowerBuilder adjusts its size each time it is used at runtime.

If you enter a size that exceeds the declared length in a script, PowerBuilder
truncates the blob data.

{ precision }
(optional)

(For decimals only) A number, enclosed in braces, specifying the number of
digits after the decimal point. If you do not specify a precision, the variable
takes the precision assigned to it in the script.

variablename The name of the variable (must be a valid PowerScript identifier, as described
in Identifier names).

You can define additional variables with the same datatype by naming
additional variable names, separated by commas; each variable can have a
value.

value
(optional)

A literal or expression of the appropriate datatype that will be the initial value
of the variable.

Blobs cannot be initialized with a value.

For information, see Initial values for variables.

PowerScript Topics

Page 61

Examples

Declaring instance variables

integer ii_total = 100 // Total shares
date id_date // Date shares were bought

Declaring a global variable

string gs_name

Declaring shared variables

time st_process_start
string ss_process_name

Declaring local variables

string ls_city = "Boston"
integer li_count

Declaring blobs

This statement declares ib_Emp_Picture a blob with an initial length of zero. The length is
adjusted when data is assigned to it:

blob ib_Emp_Picture

This statement declares ib_Emp_Picture a blob with a fixed length of 100 bytes:

blob{100} ib_Emp_Picture

Declaring decimals

These statements declare shared variables sc_Amount and sc_dollars_accumulated as
decimal numbers with two digits after the decimal point:

decimal{2} sc_Amount
decimal{2} sc_dollars_accumulated

This statement declares lc_Rate1 and lc_Rate2 as decimal numbers with four digits after the
decimal point:

dec{4} lc_Rate1, lc_Rate2

This statement declares lc_Balance as a decimal with zero digits after the decimal point:

decimal{0} lc_Balance

This statement does not specify the number of decimal places for lc_Result. After the product
of lc_Op1 and lc_Op2 is assigned to it, lc_Result has four decimal places:

dec lc_Result
dec{2} lc_Op1, lc_Op2
lc_Result = lc_Op1 * lc_Op2

1.3.1.3.1 Datatype of a variable

A PowerScript variable can be declared as one of the following datatypes:

• A standard datatype (such as an integer or string).

• An object or control (such as a window or CommandButton).

PowerScript Topics

Page 62

• An object or structure that you have defined (such as a window called mywindow). An
object you have defined must be in a library on the application's library search path when
the script is compiled.

1.3.1.3.2 Variable names

In a well-planned application, standards determine how you name your PowerScript
variables. Naming conventions make scripts easy to understand and help you avoid name
conflicts. A typical approach is to include a prefix that identifies the scope and the datatype
of the variable. For example, a prefix for an instance variable's name typically begins with
i (such as ii_count or is_empname), a local integer variable's name would be li_total and a
global integer variable's name would be gi_total. For information about naming conventions,
see the Section 2.1.8.3, “Naming conventions” in Users Guide.

X and Y as variable names

Although you might think of x and y as typical variable names, in PowerBuilder they are
also properties that specify an object's onscreen coordinates. If you use them as variables and
forget to declare them, you do not get a compiler error. Instead, PowerBuilder assumes you
want to move the object, which might lead to unexpected results in your application.

1.3.1.3.3 Initial values for variables

When you declare a PowerScript variable, you can accept the default initial value or specify
an initial value in the declaration.

Default values for variables

If you do not initialize a variable when you declare it, PowerBuilder sets the variable to the
default value for its datatype as shown in the following table.

Table 1.13: Default initial values for variables

For this variable datatype PowerBuilder sets this default value

Blob A blob of 0 length; an empty blob

Char (or character) ASCII value 0

Boolean false

Date 1900-01-01 (January 1, 1900)

DateTime 1900-01-01 00:00:00

Numeric (byte, integer, long, longlong,
decimal, real, double, UnsignedInteger, and
UnsignedLong)

0

String Empty string ("")

Time 00:00:00 (midnight)

Specifying a literal as a initial value

To initialize a variable when you declare it, place an equal sign (=) and a literal appropriate
for that variable datatype after the variable. For information about literals for specific
datatypes, see Standard datatypes.

PowerScript Topics

Page 63

Do not use a function's return value

You should not initialize a variable by assigning it the return value of a global user
defined function, because it might not compile correctly, or because it could lead to
confusion about the value assigned. For example, do not use:

integer i = f_return_one()

Although you can use global system functions or expressions to initialize variables with
compile time values in a variable declaration statement, for runtime value assignments, you
must also declare variables and assign their values in separate statements.

This example declares li_count as an integer whose value is 5:

integer li_count=5

This example declares li_a and li_b as integers and initializes li_a to 5 and li_b to 10:

integer li_a=5, li_b=10

This example initializes ls_method with the string "UPS":

string ls_method="UPS"

This example initializes ls_headers to three words separated by tabs:

string ls_headers = "Name~tAddress~tCity"

This example initializes li_a to 1 and li_c to 100, leaving li_b set to its default value of zero:

integer li_a=1, li_b, li_c=100

This example declares ld_StartDate as a date and initializes it with the date February 1, 2004:

date ld_StartDate = 2004-02-01

Specifying an expression as an initial value

You can initialize a variable with the value of an existing variable or expression, such as:

integer i = 100
integer j = i

When you do this, the second variable is initialized with the value of the expression when the
script is compiled. The initialization is not reevaluated at runtime.

If the expression's value changes

Because the expression's value is set to the variable when the script is compiled (not at
runtime) make sure the expression is not one whose value is based on current conditions.
If you want to specify an expression whose value will be different when the application is
executed, do not initialize the variable in the declaration. For such values, declare the variable
and assign the value in separate statements.

In this declaration, the value of d_date is the date the script is compiled:

date d_date = Today()

In contrast, these statements result in d_date being set to the date the application is run:

date d_date

PowerScript Topics

Page 64

d_date = Today()

How shared variables are initialized

When you use a shared variable in a script, the variable is initialized when the first instance
of the object is opened. When the object is closed, the shared variable continues to exist until
you exit the application. If you open the object again without exiting the application, the
shared variable will have the value it had when you closed the object.

For example, if you set the shared variable Count to 20 in the script for a window, then close
the window, and then reopen the window without exiting the application, Count will be equal
to 20.

When using multiple instances of windows

If you have multiple instances of the window in the example above, Count will be
equal to 20 in each instance. Since shared variables are shared among all instances
of the window, changing Count in any instance of the window changes it for all
instances.

How instance variables are initialized

When you define an instance variable for a window, menu, or application object, the instance
variable is initialized when the object is opened. Its initial value is the default value for its
datatype or the value specified in the variable declarations.

When you close the object, the instance variable ceases to exist. If you open the object again,
the instance variable is initialized again.

When to use multiple instances of windows

When you build a script for one of multiple instances of a window, instance variables can
have a different value in each instance of the window. For example, to set a flag based on the
contents of the instance of a window, you would use an instance variable.

When to use shared variables instead

Use a shared variable instead of an instance variable if you need a variable that:

• Keeps the same value over multiple instances of an object

• Continues to exist after the object is closed

1.3.1.3.4 Access for instance variables

Description

The general syntax for declaring PowerScript variables (see Syntax of a variable declaration)
showed that you can specify access keywords in a declaration for an instance variable. This
section describes those keywords.

When you specify an access right for a variable, you are controlling the visibility of the
variable or its visibility access. Access determines which scripts recognize the variable's
name.

For a specified access right, you can control operational access with modifier keywords. The
modifiers specify which scripts can read the variable's value and which scripts can change it.

PowerScript Topics

Page 65

Syntax

{ access-right } { readaccess } { writeaccess } datatype variablename

The following table describes the parameters you can use to specify access rights for instance
variables.

Table 1.14: Instance variable declaration parameters for access rights

Parameter Description

access-right
(optional)

A keyword specifying where the variable's name will be recognized. Values
are:

• PUBLIC -- (Default) Any script in the application can refer to the variable.
In another object's script, you use dot notation to qualify the variable name
and identify the object it belongs to.

• PROTECTED -- Scripts for the object for which the variable is declared
and its descendants can refer to the variable.

• PRIVATE -- Scripts for the object for which the variable is declared can
refer to the variable. You cannot refer to the variable in descendants of the
object.

readaccess
(optional)

A keyword restricting the ability of scripts to read the variable's value. Values
are:

• PROTECTEDREAD -- Only scripts for the object and its descendants can
read the variable.

• PRIVATEREAD -- Only scripts for the object can read the variable.

When access-right is PUBLIC, you can specify either keyword. When access-
right is PROTECTED, you can specify only PRIVATEREAD. You cannot
specify a modifier for PRIVATE access, because PRIVATE is already fully
restricted.

If readaccess is omitted, any script can read the variable.

writeaccess
(optional)

A keyword restricting the ability of scripts to change the variable's value.
Values are:

• PROTECTEDWRITE -- Only scripts for the object and its descendants can
change the variable.

• PRIVATEWRITE -- Only scripts for the object can change the variable.

When access-right is PUBLIC, you can specify either keyword. When access-
right is PROTECTED, you can specify only PRIVATEWRITE. You cannot
specify a modifier for PRIVATE access, because PRIVATE is already fully
restricted.

If writeaccess is omitted, any script can change the variable.

datatype A valid datatype. See Syntax of a variable declaration.

PowerScript Topics

Page 66

Parameter Description

variablename A valid identifier. See Syntax of a variable declaration.

Usage

Access modifiers give you more control over which objects have access to a particular
object's variables. A typical use is to declare a public variable but only allow the owner object
to modify it:

public protectedwrite integer ii_count

You can also group declarations that have the same access by specifying the access-right
keyword as a label (see Another format for access-right keywords).

When you look at exported object syntax, you might see the access modifiers
SYSTEMREAD and SYSTEMWRITE. Only PowerBuilder can access variables with these
modifiers. You cannot refer to variables with these modifiers in your scripts and functions
and you cannot use these modifiers in your own definitions.

Examples

To declare these variables, select Declare>Instance Variables in the appropriate painter.

These declarations use access keywords to control the scripts that have access to the
variables:

private integer ii_a, ii_n
public integer ii_Subtotal
protected integer ii_WinCount

This protected variable can only be changed by scripts of the owner object; descendants of
the owner can read it:

protected privatewrite string is_label

These declarations have public access (the default) but can only be changed by scripts in the
object itself:

privatewrite real ir_accum, ir_current_data

This declaration defines an integer that only the owner objects can write or read but whose
name is reserved at the public level:

public privateread privatewrite integer ii_reserved

Private variable not recognized outside its object

Suppose you have defined a window w_emp with a private integer variable ii_int:

private integer ii_int

In a script you declare an instance of the window called w_myemp. If you refer to the private
variable ii_int, you get a compiler warning that the variable is not defined (because the
variable is private and is not recognized in scripts outside the window itself):

w_emp w_myemp
w_myemp.ii_int = 1 // Variable not defined

Public variable with restricted access

PowerScript Topics

Page 67

Suppose you have defined a window w_emp with a public integer variable ii_int with write
access restricted to private:

public privatewrite integer ii_int

If you write the same script as above, the compiler warning will say that you cannot write to
the variable (the name is recognized because it is public, but write access is not allowed):

w_emp w_myemp
w_myemp.ii_int = 1 // Cannot write to variable

1.3.1.3.5 Another format for access-right keywords

Description

You can also group declarations of PowerScript variables according to access by specifying
the access-right keyword as a label. It appears on its own line, followed by a colon (:).

Syntax

access-right:
{ readaccess } { writeaccess } datatype variablename
{ access-right } { readaccess } { writeaccess } datatype variablename
{ readaccess } { writeaccess } datatype variablename

Within a labeled group of declarations, you can override the access on a single line by
specifying another access-right keyword with the declaration. The labeled access takes effect
again on the following lines.

Examples

In these declarations, the instance variables have the access specified by the label that
precedes them. Another private variable is defined at the end, where private overrides the
public label:

Private:
integer ii_a=10, ii_b=24
string is_Name, is_Address1
Protected:
integer ii_Units
double idb_Results
string is_Lname
Public:
integer ii_Weight
string is_Location="Home"
private integer ii_test

Some of these protected declarations have restricted write access:

Protected:
integer ii_Units
privatewrite double idb_Results
privatewrite string is_Lname

1.3.2 Declaring constants

Description

Any PowerScript variable declaration of a standard datatype that can be assigned an initial
value can be a constant instead of a variable. To make it a constant, include the keyword
CONSTANT in the declaration and assign it an initial value.

PowerScript Topics

Page 68

Syntax

CONSTANT { access } datatype constname = value

The following table shows the parameters used to declare constants.

Table 1.15: Constant variable declaration parameters

Parameter Description

CONSTANTDeclares a constant instead of a variable. The CONSTANT keyword can be
before or after the access keywords.

access
(optional)

(For instance variables only) Keywords specifying the access for the constant.
For information, see Access for instance variables.

datatype A standard datatype for the constant. For decimals, you can include an
optional value in brackets to specify the precision of the data. Blobs cannot be
constants.

For information about PowerBuilder datatypes, see Standard datatypes.

constname The name of the constant (must be a valid PowerScript identifier, as described
in Identifier names).

value A literal or expression of the appropriate datatype that will be the value of
the constant. The value is required. For information, see Initial values for
variables.

Usage

When declaring a constant, an initial value is required. Otherwise, a compiler error occurs.
Assigning a value to a constant after it is declared (that is, redefining a constant in a
descendant object) also causes a compiler error.

Examples

Although PowerScript is not case sensitive, these examples of local constants use a
convention of capitalizing constant names:

constant string LS_HOMECITY = "Boston"
constant real LR_PI = 3.14159265

1.3.3 Declaring arrays

Description

An array is an indexed collection of elements of a single datatype. In PowerBuilder, an array
can have one or more dimensions. One-dimensional arrays can have a fixed or variable size;
multidimensional arrays always have a fixed size. Each dimension of an array can have
2,147,483,647 bytes of elements.

Any simple variable declaration becomes an array when you specify brackets after the
variable name. For fixed-size arrays, you specify the sizes of the dimensions inside those
brackets.

Syntax

{ access } datatype variablename { d1, ..., dn } { = { valuelist } }

PowerScript Topics

Page 69

The following table describes the parameters used to declare array variables.

Table 1.16: Array variable declaration parameters

ParameterDescription

access
(optional)

(For instance variables only) Keywords specifying the access for the variable.
For information, see Access for instance variables.

datatype The datatype of the variable. You can specify a standard datatype, a system
object, or a previously defined structure.

For decimals, you can specify the precision of the data by including an optional
value in brackets after datatype (see Syntax of a variable declaration):

decimal {2} variablename []

For blobs, fixed-length blobs within an array are not supported. If you specify a
size after datatype, it is ignored.

variablenameThe name of the variable (name must be a valid PowerScript identifier, as
described in Identifier names).

You can define additional arrays with the same datatype by naming additional
variable names with brackets and optional value lists, separated by commas.

[{ d1, ...,
dn }]

Brackets and (for fixed-size arrays) one or more integer values (d1 through dn,
one for each dimension) specifying the sizes of the dimensions.

For a variable-size array, which is always one-dimensional, specify brackets
only.

For more information on how variable-size arrays change size, see Size of
variable-size arrays.

For a fixed-size array, the number of dimensions is determined by the number of
integers you specify and is limited only by the amount of available memory.

For fixed-size arrays, you can use TO to specify a range of element numbers
(instead of a dimension size) for one or more of the dimensions. Specifying TO
allows you to change the lower bound of the dimension (upperbound must be
greater than lowbound):

[
d1lowbound TO d1upperbound {, ... ,
dnlowbound TO dnupperbound }
]

{ valuelist }
(optional)

A list of initial values for each position of the array. The values are separated by
commas and the whole list is enclosed in braces. The number of values cannot be
greater than the number of positions in the array. The datatype of the values must
match datatype.

Examples

These declarations create variable-size arrays:

integer li_stats[] // Array of integers.
decimal {2} ld_prices[] // Array of decimals with
 // 2 places of precision.
blob lb_data[] // Array of variable-size

PowerScript Topics

Page 70

 // blobs.
date ld_birthdays[] // Array of dates.
string ls_city[] // Array of strings.
 // Each string can be
 // any length.

This statement declares a variable-size array of decimal number (the declaration does not
specify a precision, so each element in the array takes the precision of the value assigned to
it):

dec lc_limit[]

Fixed arrays

These declarations create fixed-size, one-dimensional arrays:

integer li_TaxCode[3] // Array of 3 integers.
string ls_day[7] // Array of 7 strings.
blob ib_image[10] // Array of 10
 // variable-size blobs.
dec{2} lc_Cost[10] // Array of 10 decimal
 // numbers.
 // Each value has 2 digits
 // following the decimal
 // point.
decimal lc_price[20] // Array of 20 decimal
 // numbers.
 // Each takes the precision
 // of the value assigned.

Using TO to change array index values

These fixed-size arrays use TO to change the range of index values for the array:

real lr_Rate[2 to 5] // Array of 4 real numbers:
 // Rate[2] through Rate[5]
integer li_Qty[0 to 2] // Array of 3 integers
string ls_Test[-2 to 2] // Array of 5 strings
integer li_year[76 to 96] // Array of 21 integers
string ls_name[-10 to 15] // Array of 26 strings

Incorrect declarations using TO

In an array dimension, the second number must be greater than the first. These declarations
are invalid:

integer li_count[10 to 5] // INVALID: 10 is
 // greater than 5
integer li_price[-10 to -20] // INVALID: -10
 // is greater than -20

Arrays with two or more dimensions

This declaration creates a six-element, two-dimensional integer array. The individual
elements are li_score[1,1], li_score[1,2], li_score[1,3], li_score[2,1], li_score[2,2], and
li_score[2,3]:

integer li_score[2,3]

This declaration specifies that the indexes for the dimensions are 1 to 5 and 10 to 25:

integer li_RunRate[1 to 5, 10 to 25]

This declaration creates a 3-dimensional 45,000-element array:

PowerScript Topics

Page 71

long ll_days[3, 300, 50]

This declaration changes the subscript range for the second and third dimension:

integer li_staff[100, 0 to 20, -5 to 5]

More declarations of multidimensional arrays:

string ls_plant[3,10] // two-dimensional array
 // of 30 strings
dec{2} lc_rate[3,4] // two-dimensional array of 12
 // decimals with 2 digits
 // after the decimal point

This declaration creates three decimal arrays:

decimal{3} lc_first[10],lc_second[15,5],lc_third[]

1.3.3.1 Values for array elements

General information

PowerBuilder initializes each element of an array to the same default value as its underlying
datatype. For example, in a newly declared integer array:

integer li_TaxCode[3]

the elements li_TaxCode[1], li_TaxCode[2], and li_TaxCode[3] are all initialized to zero.

For information about default values for basic datatypes, see Initial values for variables.

Simple array

In a simple array, you can override the default values by initializing the elements of the
array when you declare the array. You specify the values in a comma-separated list of values
enclosed in braces. You do not have to initialize all the elements of the array, but you cannot
initialize values in the middle or end without initializing the first elements.

Multidimensional array

In a multidimensional array, you still provide the values in a simple, comma-separated list.
When the values are assigned to array positions, the first dimension is the fastest-varying
dimension, and the last dimension is the slowest-varying. In other words, the values are
assigned to array positions by looping over all the values of the first dimension for each value
of the second dimension, then looping over all the values of the second dimension for each
value of the third, and so on.

Assigning values

You can assign values to an array after declaring it using the same syntax of a list of
values within braces:

integer li_Arr[]
Li_Arr = {1, 2, 3, 4}

Examples

Example 1

This statement declares an initialized one-dimensional array of three variables:

PowerScript Topics

Page 72

real lr_Rate[3]={1.20, 2.40, 4.80}

Example 2

This statement initializes a two-dimensional array:

integer li_units[3,4] = {1,2,3, 1,2,3, 1,2,3, 1,2,3}

As a result:

Li_units[1,1], [1,2], [1,3], and [1,4] are all 1

Li_units[2,1], [2,2], [2,3], and [2,4] are all 2

Li_units[3,1], [3,2], [3,3], and [3,4] are all 3

Example 3

This statement initializes the first half of a 3-dimensional array:

integer li_units[3,4,2] = &
 {1,2,3, 1,2,3, 1,2,3, 1,2,3}

As a result:

Li_units[1,1,1], [1,2,1], [1,3,1], and [1,4,1] are all 1

Li_units[2,1,1], [2,2,1], [2,3,1], and [2,4,1] are all 2

Li_units[3,1,1], [3,2,1], [3,3,1], and [3,4,1] are all 3

Li_units[1,1,2], [1,2,2], [1,3,2], and [1,4,2] are all 0

Li_units[2,1,2], [2,2,2], [2,3,2], and [2,4,2] are all 0

Li_units[3,1,2], [3,2,2], [3,3,2], and [3,4,2] are all 0

1.3.3.2 Size of variable-size arrays

General information

A variable-size array consists of a variable name followed by square brackets but no number.
PowerBuilder defines the array elements by use at execution time (subject only to memory
constraints). Only one-dimensional arrays can be variable-size arrays.

Because you do not declare the size, you cannot use the TO notation to change the lower
bound of the array, so the lower bound of a variable-size array is always 1.

How memory is allocated

Initializing elements of a variable-size array allocates memory for those elements. You
specify initial values just as you do for fixed-size arrays, by listing the values in braces. The
following statement sets code[1] equal to 11, code[2] equal to 242, and code[3] equal to
27. The array has a size of 3 initially, but the size will change if you assign values to higher
positions:

integer li_code[]={11,242,27}

For example, these statements declare a variable-size array and assigns values to three array
elements:

long ll_price[]
ll_price[100] = 2000

PowerScript Topics

Page 73

ll_price[50] = 3000
ll_price[110] = 5000

When these statements first execute, they allocate memory as follows:

• The statement ll_price[100]=2000 will allocate memory for 100 long numbers ll_price[1]
to ll_price[100], then assign 0 (the default for numbers) to ll_price[1] through ll_price[99]
and assign 2000 to ll_price[100].

• The statement ll_price[50]=3000 will not allocate more memory but will assign the value
3000 to the 50th element of the ll_price array.

• The statement ll_price[110]=5000 will allocate memory for 10 more long numbers named
ll_price[101] to ll_price[110] and then assign 0 (the default for numbers) to ll_price[101]
through ll_price[109] and assign 5000 to ll_price[110].

1.3.3.3 More about arrays

This section provides technical details about:

• Assigning one array to another

• Using arraylists to assign values to an array

• Errors that occur when addressing arrays

1.3.3.3.1 Assigning one array to another

General information

When you assign one array to another, PowerBuilder uses the following rules to map the
values of one onto the other.

One-dimensional arrays

To an unbounded array

The target array is the same as the source:

integer a[], b[]
a = {1,2,3,4}
b = a

To a bounded array

If the source array is smaller, values from the source array are copied to the target array and
extra values are set to zero. In this example, b[5] and b[6] are set to 0:

integer a[], b[6]
a = {1,2,3,4}
b = a

If the source array is larger, values from the source array are copied to the target array until
it is full (and extra values from the source array are ignored). In this example, the array b has
only the first three elements of a:

integer a[], b[3]
a = {1,2,3,4}
b = a

PowerScript Topics

Page 74

Multidimensional arrays

PowerBuilder stores multidimensional arrays in column major order, meaning the first
subscript is the fastest varying -- [1,1], [2,1], [3,1]).

When you assign one array to another, PowerBuilder linearizes the source array in column
major order, making it a one-dimensional array. PowerBuilder then uses the rules for one-
dimensional arrays (described above) to assign the array to the target.

Not all array assignments are allowed, as described in the following rules.

One multidimensional array to another

If the dimensions of the two arrays match, the target array becomes an exact copy of the
source:

integer a[2,10], b[2,10]
a = b

If both source and target are multidimensional but do not have matching dimensions, the
assignment is not allowed and the compiler reports an error:

integer a[2,10], b[4,10]
a = b // Compiler error

One-dimensional array to a multidimensional array

A one-dimensional array can be assigned to a multidimensional array. The values are mapped
onto the multidimensional array in column major order:

integer a[], b[2,2]
b = a

Multidimensional array to a one-dimensional array

A multidimensional array can also be assigned to a one-dimensional array. The source is
linearized in column major order and assigned to the target:

integer a[], b[2,2]
a = b

Examples

Suppose you declare three arrays (a, b, and c). One (c) is unbounded and one-dimensional;
the other two (a and b) are multidimensional with different dimensions:

integer c[], a[2,2], b[3,3] = {1,2,3,4,5,6,7,8,9}

Array b is laid out like this:

Table 1.17:

1 for b[1,1] 4 for b[1,2] 7 for b[1,3]

2 for b[2,1] 5 for b[2,2] 8 for b[2,3]

3 for b[3,1] 6 for b[3,2] 9 for b[3,3]

This statement causes a compiler error, because a and b have different dimensions:

a = b // Compiler error

This statement explicitly linearizes b into c:

PowerScript Topics

Page 75

c = b

You can then assign the linearized version of the array to a:

a = c

The values in array a are laid out like this:

Table 1.18:
1 for a[1,1] 3 for a[1,2]

2 for a[2,1] 4 for a[2,2]

Initializing a with an arraylist produces the same result:

integer a[2,2] = {1,2,3,4}

The following section describes arraylists.

1.3.3.3.2 Using arraylists to assign values to an array

General information

In PowerBuilder, an arraylist is a list of values enclosed in braces used to initialize arrays.
An arraylist represents a one-dimensional array, and its values are assigned to the target array
using the rules for assigning arrays described in Assigning one array to another.

Examples

In this declaration, a variable-size array is initialized with four values:

integer a[] = {1,2,3,4}

In this declaration, a fixed-size array is initialized with four values (the rest of its values are
zeros):

integer a[10] = {1,2,3,4}

In this declaration, a fixed-size array is initialized with four values. Because the array's size is
set at 4, the rest of the values in the arraylist are ignored:

integer a[4] = {1,2,3,4,5,6,7,8}

In this declaration, values 1, 2, and 3 are assigned to the first column and the rest to the
second column:

integer a[3,2] = {1,2,3,4,5,6}

Table 1.19:
1 4

2 5

3 6

If you think of a three-dimensional array as having pages of rows and columns, then the first
column of the first page has the values 1 and 2, the second column on the first page has 3 and
4, and the first column on the second page has 5 and 6.

The second column on the second page has zeros:

integer a[2,2,2] = {1,2,3,4,5,6}

PowerScript Topics

Page 76

Table 1.20:

1 3 5 0

2 4 6 0

1.3.3.3.3 Errors that occur when addressing arrays

Fixed-size arrays

In PowerBuilder, referring to array elements outside the declared size causes an error at
runtime; for example:

int test[10]
test[11]=50 // This causes an execution error.
test[0]=50 // This causes an execution error.
int trial[5,10]
trial [6,2]=75 // This causes an execution error.
trial [4,11]=75 // This causes an execution error.

Variable-size arrays

Assigning a value to an element of a variable-size array that is outside its current values
increases the array's size. However, accessing a variable-size array above its largest assigned
value or below its lower bound causes an error at runtime:

integer li_stock[]
li_stock[50]=200
 // Establish array size 50 elements.
IF li_stock[51]=0 then Beep(1)
 // This causes an execution error.
IF li_stock[0]=0 then Beep(1)
 // This causes an execution error.

1.3.4 Declaring external functions

Description

External functions are functions written in languages other than PowerScript and stored
in dynamic link libraries. On Windows, dynamic libraries have the extension DLL. If you
deploy a component written in PowerBuilder to a UNIX server, the dynamic libraries it calls
have the extension .so, .sl, or .a, depending on the UNIX operating system. You can use
external functions that are written in any language that supports dynamic libraries.

Before you can use an external function in a script, you must declare it as one of two types:

• Global external functions

These are available anywhere in the application.

• Local external functions

These are defined for a particular type of window, menu, user object, or user-defined
function. These functions are part of the object's definition and can always be used in
scripts for the object itself. You can also choose to make these functions accessible to other
scripts.

To understand how to declare and call an external function, see the documentation from the
developer of the external function library.

PowerScript Topics

Page 77

Syntax

External function syntax

Use the following syntax to declare an external function:

{ access } FUNCTION returndatatype name ({ { REF } datatype1 arg1,
 ..., { REF } datatypen argn }) LIBRARY "libname"
 ALIAS FOR "extname{;ansi}"

External subroutine syntax

To declare external subroutines (which are the same as external functions except that they do
not return a value), use this syntax:

{ access } SUBROUTINE name ({ { REF } datatype1 arg1, ...,
 { REF } datatypen argn }) LIBRARY "libname"
 ALIAS FOR "extname{;ansi}"

The following table describes the parameters used to declare external functions and
subroutines:

Table 1.21: External function or subroutine declaration parameters

Parameter Description

access
(optional)

(Local external functions only) Public, Protected, or Private specifies the
access level of a local external function. The default is Public.

For more information, see the section about specifying access of local
functions in Usage.

FUNCTION or
SUBROUTINE

A keyword specifying the type of call, which determines the way return
values are handled. If there is a return value, declare it as a FUNCTION; if
it returns nothing or returns VOID, specify SUBROUTINE.

returndatatype The datatype of the value returned by the function.

name The name of a function or subroutine that resides in a DLL. Function
names cannot contain special characters, such as the @ character, because
they cause a compiler error. Use the ALIAS FOR clause described later in
this table if the function name in the DLL contains special characters.

REF A keyword that specifies that you are passing by reference the argument
that follows REF. The function can store a value in arg that will be
accessible to the rest of the PowerBuilder script.

datatype arg The datatype and name of the arguments for the function or subroutine.
The list must match the definition of the function in the DLL. Each
datatype arg pair can be preceded by REF.

For more information on passing arguments, see Section 5.5.1.3, “Passing
arguments” in Application Techniques.

LIBRARY
"libname"

A keyword followed by a string containing the name of the dynamic
library in which the function or subroutine is stored. libname is a dynamic
link library, which is a file that usually has the extension DLL on
Windows.

ALIAS FOR
"extname" (optional)

Keywords followed by a string giving the name of the function as defined
in the dynamic library. If the name in the dynamic library is not the name

PowerScript Topics

Page 78

Parameter Description
you want to use in your script, or if the name in the database is not a legal
PowerScript name, you must specify ALIAS FOR "extname" to establish
the association between the PowerScript name and the external name.

;ansi Required if the function passes a string as an argument or returns a string
that uses ANSI encoding. Even if you use the default name for an ANSI
function, you must always use the ALIAS keyword if you want to specify
that the string uses ANSI encoding, because you must qualify the ALIAS
with the ansi keyword.

Usage

Specifying access of local functions

When declaring a local external function, you can specify its access level -- which scripts
have access to the function.

The following table describes where local external functions can be used when they are
declared with a given access level:

Table 1.22: Access levels for local external functions

Access level Where you can use the local external function

Public Any script in the application.

Private Scripts for events in the object for which the function is declared. You
cannot use the function in descendants of the object.

Protected Scripts for the object for which the function is declared and its descendants.

Use of the access keyword with local external functions works the same as the access-right
keywords for instance variables.

Availability of the dynamic library at runtime

To be available to a PowerBuilder application running on any Windows platform, the DLL
must be in one of the following directories:

• The current directory

• The Windows directory

• The Windows System subdirectory

• Directories on the DOS path

Examples

In the examples application that comes with PowerBuilder, external functions are declared as
local external functions in a user object called u_external_function_win32. The scripts that
call the functions are user object functions, but because they are part of the same user object,
you do not need to use object notation to call them.

Example 1

PowerScript Topics

Page 79

These declarations allow PowerBuilder to call the functions required for playing a sound in
the WINMM.DLL:

//playsoundFUNCTION boolean sndPlaySoundA (string SoundName,
 uint Flags) LIBRARY "WINMM.DLL" ALIAS FOR "sndPlaySoundA;ansi"
FUNCTION uint waveOutGetNumDevs () LIBRARY "WINMM.DLL"

A function called uf_playsound in the examples application provided with PowerBuilder
calls the external functions. Uf_playsound is called with two arguments (as_filename and
ai_option) that are passed through to sndPlaySoundA.

Values for ai_option are as defined in the Windows documentation, as commented here:

//Options as defined in mmystem.h.
//These may be or'd together.
//#define SND_SYNC 0x0000
//play synchronously (default)
//#define SND_ASYNC 0x0001
//play asynchronously
//#define SND_NODEFAULT 0x0002
//do not use default sound
//#define SND_MEMORY 0x0004
//lpszSoundName points to a memory file
//#define SND_LOOP 0x0008
//loop the sound until next sndPlaySound
//#define SND_NOSTOP 0x0010
//do not stop any currently playing sound

uint lui_numdevs

lui_numdevs = WaveOutGetNumDevs()
IF lui_numdevs > 0 THEN
 sndPlaySoundA(as_filename,ai_option)
 RETURN 1
ELSE
 RETURN -1
END IF

Example 2

This is the declaration for the Windows GetSysColor function:

FUNCTION ulong GetSysColor (int index) LIBRARY "USER32.DLL"

This declaration uses longptr instead of ulong:

FUNCTION longptr FindWindowW (ulong classname, string windowname) LIBRARY
 "USER32.DLL"

This statement calls the external function. The meanings of the index argument and the return
value are specified in the Windows documentation:

RETURN GetSysColor (ai_index)

Example 3

This is the declaration for the Windows GetSystemMetrics function:

FUNCTION int GetSystemMetrics (int index) LIBRARY "USER32.DLL"

These statements call the external function to get the screen height and width:

RETURN GetSystemMetrics(1)
RETURN GetSystemMetrics(0)

PowerScript Topics

Page 80

1.3.4.1 Datatypes for external function arguments

When you declare an external function in PowerBuilder, the datatypes of the arguments must
correspond with the datatypes as declared in the function's source definition. This section
documents the correspondence between datatypes in external functions and datatypes in
PowerBuilder. It also includes information on byte alignment when passing structures by
value.

Use the tables to find out what PowerBuilder datatype to use in an external function
declaration. The PowerBuilder datatype you select depends on the datatype in the source code
for the function. The first column lists datatypes in source code. The second column describes
the datatype so you know exactly what it is. The third column lists the PowerBuilder datatype
you should use in the external function declaration.

Boolean

BOOL and Boolean on Windows are 16-bit, signed. Both are declared in PowerBuilder as
boolean.

Pointers

Table 1.23: PowerBuilder datatypes for pointers

Datatype in source code Size, sign, precision PowerBuilder datatype

* (any pointer) 32-bit pointer Long

char * Array of bytes of variable
length

Blob

Windows 32-bit FAR pointers, such as LPBYTE, LPDWORD, LPINT, LPLONG, LPVOID,
and LPWORD, are declared in PowerBuilder as long datatypes. HANDLE is defined as 32
bits unsigned and is declared in PowerBuilder as an UnsignedLong.

Near-pointer datatypes (such as PSTR and NPSTR) are not supported in PowerBuilder.

Characters and strings

Table 1.24: PowerBuilder datatypes for characters and strings

Datatype in source code Size, sign, precision PowerBuilder datatype

char 8 bits, signed Char

string 32-bit pointer to a null-
terminated array of bytes of
variable length

String

The Windows 32-bit FAR pointer LPSTR is declared in PowerBuilder as string.

Reference arguments

When you pass a string to an external function by reference, all memory management
is done in PowerBuilder. The string variable must be long enough to hold the returned
value. To ensure that this is true, first declare the string variable, and then use the
Space function to fill the variable with blanks equal to the maximum number of
characters that you expect the function to return.

Fixed-point values

PowerScript Topics

Page 81

Table 1.25: PowerBuilder datatypes for fixed-point values

Datatype in source code Size, sign, precision PowerBuilder datatype

byte 8 bits, unsigned Byte

short 16 bits, signed Integer

unsigned short 16 bits, unsigned UnsignedInteger

int 32 bits, signed Long

unsigned int 32 bits, unsigned UnsignedLong

long 32 bits, signed Long

unsigned long 32 bits, unsigned UnsignedLong

longlong 64 bits, signed LongLong

The Windows definition WORD is declared in PowerBuilder as UnsignedInteger and the
Windows definition DWORD is declared as an UnsignedLong. You cannot call external
functions with return values or arguments of type short.

Floating-point values

Table 1.26: PowerBuilder datatypes for floating-point values

Datatype in source code Size, sign, precision PowerBuilder datatype

float 32 bits, single precision Real

double 64 bits, double precision Double

PowerBuilder does not support 80-bit doubles on Windows.

Date and time

The PowerBuilder datatypes Date, DateTime, and Time are structures and have no direct
equivalent for external functions in C.

Passing structures by value

You can pass PowerBuilder structures to external C functions if they have the same
definitions and alignment as the structure's components. The DLL or shared library must be
compiled using byte alignment; no padding is added to align fields within the structure.

Using 1-byte structure member alignment in external function

When you use a structure or structure array as parameters to external function in the older
versions of PowerBuilder, the structure member alignment was one byte. However, the
default alignment is 8 bytes on Windows platform, which means that most (if not all)
Windows standard APIs use this value to align arguments with structure members. This
will cause a mismatch between Windows APIs and PB applications in PowerBuilder 12.5
and earlier versions. A well adopted solution to this issue was to add some bytes within
PowerBuilder structures manually to fill those gaps. Such gap filling can be complex and
error-prone if involving complex nested structures. And what is worse, this solution fails
with the introduction of 64-bit application development in PowerBuilder 12.6 because the
number of bytes you have to fill may be different between 64-bit and 32-bit applications. This
was the major reason to make this change in PowerBuilder 12.6. With PowerBuilder 12.6 for
Windows API and Visual C++ the default structure member alignment is now 8 bytes. The
structure member alignment was changed to 8 bytes in PowerBuilder 12.6 for both 64-bit and

PowerScript Topics

Page 82

32-bit applications. This was an intentional change. Customers can now call Windows API
easier and use the same code for both 64-bit and 32-bit applications.

Customers can switch to the old behavior in two ways with PowerBuilder 12.6 build 4058
and above.

1. Check "Use 1-byte structure member alignment in external function" (or set UseZp1=1
in [pb] section, pb.ini, the results are the same). The effect is global with this setting
changed. To make this work at runtime, please remember to deploy your pb.ini file with your
application.

2. Add “progma_pack(1)” external function’s declaration, like this:

FUNCTION int STLAREGIO (ref struc_kfzrechnerneu struc_kfz) LIBRARY
"KFZ_SS.DLL" alias for "STLAREGIO;Ansi" progma_pack(1)

progma_pack(1) is 1-byte align, progma_pack(8) is 8-bytes align. In this way, the effect is
only for external function that is declared with this alignment.

1.3.4.2 Calling external functions

Global external functions

In PowerBuilder, you call global external functions using the same syntax as for calling user-
defined global and system functions. As with other global functions, global external functions
can be triggered or posted but not called dynamically.

Local external functions

Call local functions using the same syntax as for calling object functions. They can be
triggered or posted and called dynamically.

For information

For information, see Syntax for calling PowerBuilder functions and events.

1.3.4.3 Defining source for external functions

You can use external functions written in any language that supports the standard calling
sequence for 32-bit platforms. If you are calling functions on Windows in libraries that
you have written yourself, remember that you need to export the functions. Depending on
your compiler, you can do this in the function prototype or in a linker definition (.DEF) file.
For more information about using external functions, see Section 5.5.1, “Using external
functions” in Application Techniques.

Use _stdcall convention

C and C++ compilers typically support several calling conventions, including _cdecl (the
default calling convention for C programs), _stdcall (the standard convention for Windows
API calls), _fastcall, and thiscall. PowerBuilder, like many other Windows development
tools, requires external functions to be exported using the WINAPI (_stdcall) format.
Attempting to use a different calling convention can cause an application crash.

When you create your own C or C++ DLLs containing functions to be used in PowerBuilder,
make sure that they use the standard convention for Windows API calls.

For example, if you are using a DEF file to export function definitions, you can declare the
function like this:

PowerScript Topics

Page 83

LONG WINAPI myFunc()
{
...
};

1.3.5 Declaring DBMS stored procedures as remote procedure calls

Description

In PowerBuilder, you can use dot notation for calling non-result-set stored procedures as
remote procedure calls (RPCs):

object.function

You can call database procedures in SAP, Oracle, Informix, and other ODBC databases with
stored procedures.

RPCs provide support for Oracle PL/SQL tables and parameters that are defined as both input
and output. You can call overloaded procedures.

Applies to

Transaction object

Syntax

FUNCTION rtndatatype functionname ({ { REF } datatype1 arg1,...,
 { REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }
SUBROUTINE functionname ({ { REF } datatype1 arg1 , ...,
 { REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

Table 1.27: RPC declaration parameters

Argument Description

FUNCTION or
SUBROUTINE

A keyword specifying the type of call, which determines the way return
values are handled. If there is a return value, declare it as a FUNCTION. If
it returns nothing or returns VOID, specify SUBROUTINE.

rtndatatype In a FUNCTION declaration, the datatype of the value returned by the
function.

functionname The name of the database procedure as you will call it in PowerBuilder.
If the name in the DBMS is different, use ALIAS FOR to associate the
DBMS name with the PowerBuilder name.

REF Specifies that you are passing by reference the argument that follows REF.
The stored procedure can store a value in arg that will be accessible to the
rest of the PowerBuilder script.

When you pass a string by reference, all memory management is done
in PowerBuilder. The string variable must be long enough to hold the
returned value. To ensure that this is true, first declare the string variable,
and then use the Space function to fill the variable with blanks equal to the
maximum number of characters that you expect the function to return.

datatype arg The datatype and name of the arguments for the stored procedure. The list
must match the definition of the stored procedure in the database. Each
datatype arg pair can be preceded by REF.

PowerScript Topics

Page 84

Argument Description

RPCFUNC A keyword indicating that this declaration is for a stored procedure in a
DBMS, not an external function in a DLL. For information on declaring
external functions, see Declaring external functions.

ALIAS FOR
"spname" (optional)

Keywords followed by a string naming the procedure in the database. If
the name in the database is not the name you want to use in your script
or if the name in the database is not a legal PowerScript name, you must
specify ALIAS FOR "spname" to establish the association between the
PowerScript name and the database name.

Usage

If a function does not return a value (for example, it returns Void), specify the declaration as
a subroutine instead of a function.

RPC declarations are always associated with a transaction object. You declare them as local
external functions. The Declare Local External Functions dialog box has a Procedures button
(if the connected database supports stored procedures), which gives you access to a list of
stored procedures in the database.

For more information, see Section 4.1.3, “Using Transaction objects to call stored
procedures” in Application Techniques.

Examples

Example 1

This declaration of the GIVE_RAISE_PROC stored procedure is declared in the User Object
painter for a transaction object (the declaration appears on one line):

FUNCTION double GIVE_RAISE(ref double SALARY) RPCFUNC ALIAS FOR "GIVE_RAISE_PROC"

This code calls the function in a script:

double val = 20000
double rv
rv = SQLCA.give_raise(val)

Example 2

This declaration for the stored procedure SPM8 does not need an ALIAS FOR phrase,
because the PowerBuilder and DBMS names are the same:

FUNCTION integer SPM8(integer value) RPCFUNC

This code calls the SPM8 stored procedure:

int myresult
myresult = SQLCA.spm8(myresult)
IF SQLCA.sqlcode <> 0 THEN
 messagebox("Error", SQLCA.sqlerrtext)
END IF

1.4 Operators and Expressions

About this chapter

PowerScript Topics

Page 85

This chapter describes the operators supported in PowerScript and how to use them in
expressions.

1.4.1 Operators in PowerBuilder

General information

Operators perform arithmetic calculations; compare numbers, text, and boolean values;
execute relational operations on boolean values; and concatenate strings and blobs.

Three types

PowerScript supports three types of operators:

• Arithmetic operators for numeric datatypes

• Relational operators for all datatypes

• Concatenation operator for string datatypes

Operators used in DataWindow objects

The documentation for DataWindows describes how operators are used in
DataWindow expressions.

1.4.1.1 Arithmetic operators in PowerBuilder

Description

The following table lists the arithmetic operators used in PowerBuilder.

Table 1.28: PowerBuilder arithmetic operators

Operator Meaning Example

+ Addition Total=SubTotal+Tax

- Subtraction Price=Price-Discount

Unless you have prohibited the use of dashes in identifier
names, you must surround the minus sign with spaces.

* Multiplication Total=Quantity*Price

/ Division Factor=Discount/Price

^ Exponentiation Rank=Rating^2.5

Usage

Operator shortcuts for assignments

For information about shortcuts that combine arithmetic operators with assignments (such as
++ and +=), see Assignment.

Subtraction

If the option Allow Dashes in Identifiers is checked on the Script tab in the Options dialog
box, you must always surround the subtraction operator and the -- operator with spaces.
Otherwise, PowerBuilder interprets the expression as an identifier.

PowerScript Topics

Page 86

For information about dashes in identifiers, see Identifier names.

Multiplication and division

Multiplication and division are carried out to full precision (16-28 digits). Decimal numbers
are rounded (not truncated) on assignment.

Calculation with NULL

When you form an arithmetic expression that contains a NULL value, the expression's value
is null. Thinking of null as undefined makes this easier to understand.

For more information about null values, see NULL values.

Errors and overflows

The following problems can occur when using arithmetic operators:

• Division by zero, exponentiation of negative values, and so on cause errors at runtime.

• Overflow of real, double, and decimal values causes errors at runtime.

• Overflow of signed or unsigned integers and longs causes results to wrap. However,
because integers are promoted to longs in calculations, wrapping does not occur until the
result is explicitly assigned to an integer variable.

For more information about type promotion, see Datatype of PowerBuilder expressions.

Examples

Subtraction

This statement always means subtract B from A:

A - B

If DashesInIdentifiers is set to 1, the following statement means a variable named A-B, but if
DashesInIdentifiers is set to 0, it means subtract B from A:

A-B

Precision for division

These examples show the values that result from various operations on decimal values:

decimal {4} a,b,d,e,f
 decimal {3} c
 a = 20.0/3 // a contains 6.6667
 b = 3 * a // b contains 20.0001
 c = 3 * a // c contains 20.000
 d = 3 * (20.0/3) // d contains 20.0000
 e = Truncate(20.0/3, 4) // e contains 6.6666
 f = Truncate(20.0/3, 5) // f contains 6.6667

Calculations with null

When the value of variable c is null, the following assignment statements all set the variable a
to null:

integer a, b=100, c

 SetNULL(c)

PowerScript Topics

Page 87

 a = b+c // all statements set a to NULL
 a = b - c
 a = b*c
 a = b/c

Overflow

This example illustrates the value of the variable i after overflow occurs:

integer i
 i = 32767
 i = i + 1 // i is now -32768

1.4.1.2 Relational operators in PowerBuilder

Description

PowerBuilder uses relational operators in boolean expressions to evaluate two or more
operands. Logical operators can join relational expressions to form more complex boolean
expressions.

The result of evaluating a boolean expression is always true or false.

The following table lists relational and logical operators.

Table 1.29: PowerBuilder relational and logical operators

Operator Meaning Example

= Equals if Price=100 then Rate=.05

> Greater than if Price>100 then Rate=.05

< Less than if Price<100 then Rate=.05

<> Not equal if Price<>100 then Rate=.05

>= Greater than or equal if Price>=100 then Rate=.05

<= Less than or equal if Price<=100 then Rate=.05

NOT Logical negation if NOT Price=100 then
Rate=.05

AND Logical and if Tax>3 AND Ship <5 then
Rate=.05

OR Logical or if Tax>3 OR Ship<5 then
Rate=.05

Usage

Comparing strings

When PowerBuilder compares strings, the comparison is case sensitive. Trailing blanks are
significant.

For information on comparing strings regardless of case, see the functions Upper and Lower.

To remove trailing blanks, use the RightTrim function. To remove leading blanks, use
the LeftTrim function. To remove leading and trailing blanks, use the Trim function. For
information about these functions, see RightTrim, LeftTrim, and Trim.

Decimal operands

PowerScript Topics

Page 88

Relational operators that operate on numeric values (including =, >, <, <>, >=, and <=) can
take decimal operands. The precision of the decimal operand is maintained in comparisons.

Null value evaluations

When you form a boolean expression that contains a null value, the AND and OR operators
behave differently. Thinking of null as undefined (neither true nor false) makes the results
easier to calculate.

For more information about null values, see NULL values.

Examples

Case-sensitive comparisons

If you compare two strings with the same text but different case, the comparison fails. But
if you use the Upper or Lower function, you can ensure that the case of both strings are the
same so that only the content affects the comparison:

City1 = "Austin"
 City2 = "AUSTIN"
 IF City1 = City2 ... // Returns FALSE

 City1 = "Austin"
 City2 = "AUSTIN"
 IF Upper(City1) = Upper(City2)... // Returns TRUE

Trailing blanks in comparisons

In this example, trailing blanks in one string cause the comparison to fail:

City1 = "Austin"
 City2 = "Austin "
 IF City1 = City2 ... // Returns FALSE

Logical expressions with null values

In this example, the expressions involving the variable f, which has been set to null, have null
values:

boolean d, e = TRUE, f
 SetNull(f)
 d = e and f // d is NULL
 d = e or f // d is TRUE

1.4.1.3 Concatenation operator in PowerBuilder

Description

The PowerBuilder concatenation operator joins the contents of two variables of the same type
to form a longer value. You can concatenate strings and blobs.

The following table shows the concatenation operator.

Table 1.30: PowerBuilder concatenation operator

Operator Meaning Example

+ Concatenate "cat " + "dog"

Examples

Example 1

PowerScript Topics

Page 89

These examples concatenate several strings:

string Test
 Test = "over" + "stock" // Test contains "overstock"
 string Lname, Fname, FullName
 FullName = Lname + ', ' + Fname
 // FullName contains last name and first name,
 // separated by a comma and space.

Example 2

This example shows how a blob can act as an accumulator when reading data from a file:

integer i, fnum, loops
 blob tot_b, b
 . . .
 FOR i = 1 to loops
 bytes_read = FileRead(fnum, b)
 tot_b = tot_b + b
 NEXT

1.4.2 Operator precedence in PowerBuilder expressions

Order of precedence

To ensure predictable results, all operators in a PowerBuilder expression are evaluated in a
specific order of precedence. When the operators have the same precedence, PowerBuilder
evaluates them left to right.

These are the operators in descending order of precedence:

Table 1.31: Order of precedence of operators

Operator Purpose

() Grouping (see note below on overriding)

+, - Unary plus and unary minus (indicates
positive or negative number)

^ Exponentiation

*, / Multiplication and division

+, - Addition and subtraction; string
concatenation

=, >, <, <=, >=, <> Relational operators

NOT Negation

AND Logical and

OR Logical or

How to override

To override the order, enclose expressions in parentheses. This identifies the group and order
in which PowerBuilder will evaluate the expressions. When there are nested groups, the
groups are evaluated from the inside out.

For example, in the expression (x+(y*(a+b))), a+b is evaluated first. The sum of a and b is
then multiplied by y, and this product is added to x.

PowerScript Topics

Page 90

1.4.3 Datatype of PowerBuilder expressions

General information

The datatype of an expression is important when it is the argument for a function or event.
The expression's datatype must be compatible with the argument's definition. If a function is
overloaded, the datatype of the argument determines which version of the function to call.

There are three types: numeric, string, and char datatypes.

1.4.3.1 Numeric datatypes in PowerBuilder

General information

All numeric datatypes are compatible with each other.

What PowerBuilder does

PowerBuilder converts datatypes as needed to perform calculations and make assignments.
When PowerBuilder evaluates a numeric expression, it converts the datatypes of operands to
datatypes of higher precedence according to the operators and the datatypes of other values in
the expression.

1.4.3.1.1 Datatype promotion when evaluating numeric expressions

Order of precedence

The PowerBuilder numeric datatypes are listed here in order of highest to lowest precedence
(the order is based on the range of values for each datatype):

Double
Real
Decimal
LongLong
UnsignedLong
Long
UnsignedInteger
Integer
Byte

Rules for type promotion

Datatypes of operands

If operands in an expression have different datatypes, the value whose type has lower
precedence is converted to the datatype with higher precedence.

Unsigned versus signed

Unsigned has precedence over signed, so if one operand is signed and the other is unsigned,
both are promoted to the unsigned version of the higher type. For example, if one operator is
a long and another UnsignedInteger, both are promoted to UnsignedLong.

Operators

The effects of operators on an expression's datatype are:

• +, -, *

PowerScript Topics

Page 91

The minimum precision for addition, subtraction, and multiplication calculations is long.
Integer types are promoted to long types before doing the calculation and the expression's
resulting datatype is, at a minimum, long. When operands have datatypes of higher
precedence, other operands are promoted to match based on the Datatypes of operands rule
above.

• / and ^

The minimum precision for division and exponentiation is double. All types are promoted
to double before doing the calculation, and the expression's resulting datatype is double.

• Relational

Relational operators do not cause promotion of numeric types.

Datatypes of literals

When a literal is an operand in an expression, its datatype is determined by the literal's value.
The datatype of a literal affects the type promotion of the literal and other operands in an
expression.

Table 1.32: Datatypes of literal operands in an expression

Literal Datatype

Integer literals (no decimal point or
exponent) within the range of Long

Long

Integer literals beyond the range of Long and
within the range of UnsignedLong

UnsignedLong

Integer literals beyond the range of
UnsignedLong and within the range of
LongLong

LongLong

Numeric literals with a decimal point (but no
exponent)

Decimal

Numeric literals with a decimal point and
explicit exponent

Double

Out of range

Integer literals beyond the range of LongLong cause compiler errors.

1.4.3.1.2 Assignment and datatypes

General information

Assignment is not part of expression evaluation. In an assignment statement, the value of an
expression is converted to the datatype of the left-hand variable. In the expression

c = a + b

the datatype of a+b is determined by the datatypes of a and b. Then, the result is converted to
the datatype of c.

PowerScript Topics

Page 92

Overflow on assignment

Even when PowerBuilder performs a calculation at high enough precision to handle the
results, assignment to a lower precision variable can cause overflow, producing the wrong
result.

Example 1

Consider this code:

integer a = 32000, b = 1000
long d
d = a + b

The final value of d is 33000. The calculation proceeds like this:

Convert integer a to long

Convert integer b to long

Add the longs a and b

Assign the result to the long d

Because the variable d is a long, the value 33000 does not cause overflow.

Example 2

In contrast, consider this code with an assignment to an integer variable:

integer a = 32000, b = 1000, c
long e
c = a + b
e = c

The resulting value of c and e is -32536. The calculation proceeds like this:

Add the integers a and b

Assign the result to c

Convert integer c to long and assign the result to e

The assignment to the integer variable c causes the long result of the addition to be truncated,
causing overflow and wrapping. Assigning c to e cannot restore the lost information.

1.4.3.2 String and char datatypes in PowerBuilder

General information

There is no explicit char literal type.

String literals convert to type char using the following rules:

• When a string literal is assigned to a char variable, the first character of the string literal is
assigned to the variable. For example:

char c = "xyz"

results in the character x being assigned to the char variable c.

• Special characters (such as newline, formfeed, octal, hex, and so on) can be assigned to
char variables using string conversion, such as:

PowerScript Topics

Page 93

char c = "~n"

String variables assigned to char variables also convert using these rules. A char variable
assigned to a string variable results in a one-character string.

Assigning strings to char arrays

As with other datatypes, you can use arrays of chars. Assigning strings to char arrays follows
these rules:

• If the char array is unbounded (defined as a variable-size array), the contents of the string
are copied directly into the char array.

• If the char array is bounded and its length is less than or equal to the length of the string,
the string is truncated in the array.

• If the char array is bounded and its length is greater than the length of the string, the entire
string is copied into the array along with its zero terminator. Remaining characters in the
array are undetermined.

Assigning char arrays to strings

When a char array is assigned to a string variable, the contents of the array are copied into the
string up to a zero terminator, if found, in the char array.

Using both strings and chars in an expression

Expressions using both strings and char arrays promote the chars to strings before evaluation.
For example, the following promotes the contents of c to a string before comparison with the
string "x":

char c
 . . .
 if (c = "x") then

Using chars in PowerScript functions

All PowerScript functions that take strings also take chars and char arrays, subject to the
conversion rules described above.

1.5 Structures and Objects
About this chapter

This chapter describes basic concepts for structures and objects and how you define, declare,
and use them in PowerScript.

1.5.1 About structures

General information

A structure is a collection of one or more variables (sometimes called elements) that you
want to group together under a single name. The variables can have any datatype, including
standard and object datatypes and other structures.

Defining structures

PowerScript Topics

Page 94

When you define a structure in the Structure painter or an object painter (such as Window,
Menu, or User Object), you are creating a structure definition. To use the structure, you must
declare it. When you declare it, an instance of it is automatically created for you. When it
goes out of scope, the structure is destroyed.

For details about defining structures, see the Section 3.4, “Working with Structures” in Users
Guide.

Declaring structures

If you have defined a global structure in the Structure painter called str_emp_data, you can
declare an instance of the structure in a script or in an object's instance variables. If you
define the structure in an object painter, you can only declare instances of the structure in the
object's instance variables and scripts.

This declaration declares two instances of the structure str_emp_data:

str_emp_data str_emp1, str_emp2

Referring to structure variables

In scripts, you refer to the structure's variables using dot notation:

structurename.variable

These statements assign values to the variables in str_emp_data:

str_emp1.emp_id = 100
str_emp1.emp_lname = "Jones"
str_emp1.emp_salary = 200

str_emp2.emp_id = 101
str_emp2.emp_salary = str_emp1.salary * 1.05

Using structures as instance variables

If the structure is declared as part of an object, you can qualify the structure name using dot
notation:

objectname.structurename.variable

Suppose that this declaration is an instance variable of the window w_customer:

str_cust_data str_cust1

The following statement in a script for the object refers to a variable of str_cust_data. The
pronoun This is optional, because the structure declaration is part of the object:

This.str_cust1.name

The following statement in a script for some other object qualifies the structure with the
window name:

w_customer.str_cust1.name

1.5.2 About objects

What an object is

In object-oriented programming, an object is a self-contained module containing state
information and associated methods. Most entities in PowerBuilder are objects: visual objects

PowerScript Topics

Page 95

such as windows and controls on windows, nonvisual objects such as transaction and error
objects, and user objects that you design yourself.

An object class is a definition of an object. You create an object's definition in the appropriate
painter: Window, Menu, Application, Structure, or User Object painter. In the painter, you
add controls to be part of the object, specify initial values for the object's properties, define its
instance variables and functions, and write scripts for its events and functions.

An object instance is an occurrence of the object created during the execution of your
application. Your code instantiates an object when it allocates memory for the object and
defines the object based on the definition in the object class.

An object reference is your handle to the object instance. To interact with an object, you need
its object reference. You can assign an object reference to a variable of the appropriate type.

System objects versus user objects

There are two categories of objects supported by PowerBuilder: system objects (also referred
to as system classes) defined by PowerBuilder and user objects you in define in painters.

System objects

The PowerBuilder system objects or classes are inherited from the base class PowerObject.
The system classes are the ancestors of all the objects you define. To see the system class
hierarchy, select the System tab in the Browser, select PowerObject, and select Show
Hierarchy and Expand All from the pop-up menu.

User objects

You can create user object class definitions in several painters: Window, Menu, Application,
Structure, and User Object painters. The objects you define are inherited from one of the
system classes or another of your classes.

Some painters use many classes. In the Window and User Object painters, the main definition
is inherited from the window or user object class. The controls you use are also inherited
from the system class for that control.

1.5.2.1 About user objects

Two types

There are two major types of user objects: visual and class.

Visual user objects

A visual user object is a reusable control or set of controls that has a certain behavior. There
are three types -- standard, custom, and external.

Table 1.33: Visual user object types

Visual user
objects

Description

Standard Inherited from a specific visual control. You can set properties and write
scripts so that the control is ready for use.

It has the same events and properties as the control it is inherited from plus
any that you add.

PowerScript Topics

Page 96

Visual user
objects

Description

Custom Inherited from the UserObject system class. You can include many controls
in the user object and write scripts for their events.

Each control in the user object has the same events and properties as the
controls from which they are inherited plus any that you add.

External A user object that displays a visual control defined in a DLL. The control is
not part of the PowerBuilder object hierarchy. The DLL developer provides
information for setting style bits that control its presentation.

Its events, functions, and properties are specified by the developer of the
DLL.

An external user object is not the same as an OCX, which you can put in an
OLE control.

Class user objects

Class user objects consist of properties, functions, and sometimes events. They have no
visual component. There are two types -- standard and custom.

Table 1.34: Class user object types

Class user
objects

Description

Standard Inherits its definition from a nonvisual PowerBuilder object, such as the
Transaction or Error object. You can add instance variables and functions.

A few nonvisual objects have events to write scripts for these events, you
have to define a class user object.

Custom An object of your own design for which you define instance variables,
events, and functions in order to encapsulate application-specific
programming in an object.

For information on defining and using user objects, see the Section 4.7, “Working with User
Objects” in Users Guide.

1.5.2.2 Instantiating objects

Classes versus instances

Because of the way PowerBuilder object classes and instances are named, it is easy to think
they are the same thing. For example, when you define a window in the Window painter, you
are defining an object class.

One instance

When you open a window with the simplest format of the Open function, you are
instantiating an object instance. Both the class definition and the instance have the same
name. In your application, w_main is a global variable of type w_main:

Open(w_main)

PowerScript Topics

Page 97

When you open a window this way, you can only open one instance of the object.

Several instances

If you want to open more than one instance of a window class, you need to define a variable
to hold each object reference:

w_main w_1, w_2
Open(w_1)
Open(w_2)

You can also open windows by specifying the class in the Open function:

window w_1, w_2
Open(w_1, "w_main")
Open(w_2, "w_main")

For class user objects, you always define a variable to hold the object reference and then
instantiate the object with the CREATE statement:

uo_emp_data uo_1, uo_2
uo_1 = CREATE uo_emp_data
uo_2 = CREATE uo_emp_data

You can have more than one reference to an object. You might assign an object reference to
a variable of the appropriate type, or you might pass an object reference to another object so
that it can change or get information from the object.

For more information about object variables and assignment, see User objects that behave
like structures.

1.5.2.3 Using ancestors and descendants

descendant objects

In PowerBuilder, an object class can be inherited from another class. The inherited or
descendant object has all the instance variables, events, and functions of the ancestor. You
can augment the descendant by adding more variables, events, and functions. If you change
the ancestor, even after editing the descendant, the descendant incorporates the changes.

Instantiating

When you instantiate a descendant object, PowerBuilder also instantiates all its ancestor
classes. You do not have programmatic access to these ancestor instances, except in a few
limited ways, such as when you use the scope operator to access an ancestor version of a
function or event script.

1.5.2.4 Garbage collection

What garbage collection does

The PowerBuilder garbage collection mechanism checks memory automatically for
unreferenced and orphaned objects and removes any it finds, thus taking care of most
memory leaks. You can use garbage collection to destroy objects instead of explicitly
destroying them using the DESTROY statement. This lets you avoid runtime errors that
occur when you destroy an object that was being used by another process or had been passed
by reference to a posted event or function.

When garbage collection occurs

PowerScript Topics

Page 98

Garbage collection occurs:

• When a reference is removed from an object

A reference to an object is any variable whose value is the object. When the variable goes
out of scope, or when it is assigned a different value, PowerBuilder removes a reference to
the object, counts the remaining references, and destroys the object if no references remain.

• When the garbage collection interval is exceeded

When PowerBuilder completes the execution of a system-triggered event, it makes a
garbage collection pass if the set interval between garbage collection passes has been
exceeded. The default interval is 0.5 seconds. The garbage collection pass removes
any objects and classes that cannot be referenced, including those containing circular
references (otherwise unreferenced objects that reference each other).

When you post an event or function and pass an object reference, PowerBuilder adds an
internal reference to the object to prevent it from being collected between the time of the
post and the actual execution of the event or function. This reference is removed when the
event or function is executed.

Exceptions to garbage collection

There are a few objects that are prevented from being collected:

• Visual objects

Any object that is visible on your screen is not collected because when the object is created
and displayed on your screen, an internal reference is added to the object. When any visual
object is closed it is explicitly destroyed.

• Timing objects

Any Timing object that is currently running is not collected because the Start function for a
Timing object adds an internal reference. The Stop function removes the reference.

• Shared objects

Registered shared objects are not collected because the SharedObjectRegister function
adds an internal reference. SharedObjectUnregister removes the internal reference.

Controlling when garbage collection occurs

Garbage collection occurs automatically in PowerBuilder, but you can use the functions
GarbageCollect, GarbageCollectGetTimeLimit, and GarbageCollectSetTimeLimit to force
immediate garbage collection or to change the interval between reference count checks.
By setting the interval between garbage collection passes to a very large number, you can
effectively turn off garbage collection.

1.5.2.5 User objects that behave like structures

In PowerBuilder, a nonvisual user object can provide functionality similar to that of a
structure. Its instance variables form a collection similar to the variables for the structure. In
scripts, you use dot notation to refer to the user object's instance variables, just as you do for
structure variables.

PowerScript Topics

Page 99

Advantages of user objects

The user object can include functions and its own structure definitions, and it allows you to
inherit from an ancestor class. None of this is possible with a structure definition.

Memory allocation differences

Memory allocation is different for user objects and structures. An object variable is a
reference to the object. Declaring the variable does not allocate memory for the object. After
you declare it, you must instantiate it with a CREATE statement. Assignment for a user
object is also different (described in Assignment for objects and structures).

Autoinstantiated objects

If you want a user object that has methods and inheritance but want the memory allocation of
a structure, you can define an autoinstantiated object.

You do not have to create and destroy autoinstantiated objects. Like structures, they are
created when they are declared and destroyed when they go out of scope. However, because
assignment for autoinstantiated objects behaves like structures, the copies made of the object
can be a drawback.

To make a custom class user object autoinstantiated, select the Autoinstantiate check box on
the user object's property sheet.

1.5.3 Assignment for objects and structures

In PowerBuilder, assignment for objects is different from assignment for structures or
autoinstantiated objects:

• When you assign one structure to another, the whole structure is copied so that there are
two copies of the structure.

• When you assign one object variable to another, the object reference is copied so that both
variables point to the same object. There is only one copy of the object.

Events

1.5.3.1 Assignment for structures

Declaring a structure variable creates an instance of that structure:

str_emp_data str_emp1, str_emp2 // Two structure instances

When you assign a structure to another structure, the whole structure is copied and a second
copy of the structure data exists:

str_emp1 = str_emp2

The assignment copies the whole structure from one structure variable to the other. Each
variable is a separate instance of the structure str_emp_data.

Restriction on assignment

If the structures have different definitions, you cannot assign one to another, even if they
have the same set of variable definitions.

For example, this assignment is not allowed:

PowerScript Topics

Page 100

str_emp str_person1
str_cust str_person2
str_person2 = str_person1 // Not allowed

For information about passing structures as function arguments, see Passing arguments to
functions and events.

1.5.3.2 Assignment for objects

Declaring an object variable declares an object reference:

uo_emp_data uo_emp1, uo_emp2 // Two object references

Using the CREATE statement creates an instance of the object:

uo_emp1 = CREATE uo_emp_data

When you assign one object variable to another, a reference to the object instance is copied.
Only one copy of the object exists:

uo_emp2 = uo_emp1 // Both point to same object instance

Ancestor and descendant objects

Assignments between ancestor and descendant objects occur in the same way, with an object
reference being copied to the target object.

Suppose that uo_emp_data is an ancestor user object of uo_emp_active and uo_emp_inactive.

Declare variables of the ancestor type:

uo_emp_data uo_emp1, uo_emp2

Create an instance of the descendant and store the reference in the ancestor variable:

uo_emp1 = CREATE USING "uo_emp_active"

Assigning uo_emp1 to uo_emp2 makes both variables refer to one object that is an instance
of the descendant uo_emp_active:

uo_emp2 = uo_emp1

For information about passing objects as function arguments, see Passing arguments to
functions and events.

1.5.3.3 Assignment for autoinstantiated user objects

Declaring an autoinstantiated user object creates an instance of that object (just like a
structure). The CREATE statement is not allowed for objects with the Autoinstantiate setting.
In the following example, uo_emp_data has the Autoinstantiate setting:

uo_emp_data uo_emp1, uo_emp2 // Two object instances

When you assign an autoinstantiated object to another autoinstantiated object, the whole
object is copied to the second variable:

uo_emp1 = uo_emp2

You never have multiple references to an autoinstantiated user object.

Passing to a function

PowerScript Topics

Page 101

When you pass an autoinstantiated user object to a function, it behaves like a structure:

• Passing by value passes a copy of the object.

• Passing by reference passes a pointer to the object variable, just as for any standard
datatype.

• Passing as read-only passes a copy of the object but that copy cannot be modified.

Restrictions for copying

Assignments are allowed between autoinstantiated user objects only if the object types match
or if the target is a nonautoinstantiated ancestor.

Rule 1

If you assign one autoinstantiated object to another, they must be of the same type.

Rule 2

If you assign an autoinstantiated descendant object to an ancestor variable, the ancestor
cannot have the Autoinstantiate setting. The ancestor variable will contain a reference to a
copy of its descendant.

Rule 3

If you assign an ancestor object to a descendant variable, the ancestor must contain an
instance of the descendant or an execution error occurs.

Examples

To illustrate, suppose you have these declarations. Uo_emp_active and uo_emp_inactive are
autoinstantiated objects that are descendants of non-autoinstantiated uo_emp_data:

uo_emp_data uo_emp1 // Ancestor
uo_emp_active uo_empa, uo_empb // Descendants
uo_emp_inactive uo_empi // Another descendant

Example of rule 1

When assigning one instance to another from the user objects declared above, some
assignments are not allowed by the compiler:

uo_empb = uo_empa // Allowed, same type
uo_empa = uo_empi // Not allowed, different types

Example of rule 2

After this assignment, uo_emp1 contains a copy of the descendant object uo_empa.
Uo_emp_data (the type for uo_emp1) must not be autoinstantiated. Otherwise, the
assignment violates rule 1. If uo_emp1 is autoinstantiated, a compiler error occurs:

uo_emp1 = uo_empa

Example of rule 3

This assignment is only allowed if uo_emp1 contains an instance of its descendant uo_empa,
which it would if the previous assignment had occurred before this one:

uo_empa = uo_emp1

PowerScript Topics

Page 102

If it did not contain an instance of target descendant type, an execution error would occur.

For more information about passing arguments to functions and events, see Passing
arguments to functions and events.

1.6 Calling Functions and Events

About this chapter

This chapter provides background information that will help you understand the different
ways you can use functions and events. It then provides the syntax for calling functions and
events.

1.6.1 About functions and events

Importance of functions and events

Much of the power of the PowerScript language resides in the built-in PowerScript functions
that you can use in expressions and assignment statements.

Types of functions and events

PowerBuilder objects have built-in events and functions. You can enhance objects with your
own user-defined functions and events, and you can declare local external functions for an
object. The PowerScript language also has system functions that are not associated with any
object. You can define your own global functions and declare external functions and remote
procedure calls.

The following table shows the different types of functions and events.

Table 1.35: Types of functions and events

CategoryItem Definition

Events Event An action in an object or control that can start the execution of a
script. A user can initiate an event by an action such as clicking an
object or entering data, or a statement in another script can initiate
the event.

 User event An event you define to add functionality to an object. You specify
the arguments, return value, and whether the event is mapped to a
system message. For information about defining user events, see
Section 3.3.2, “Defining user events” in Users Guide.

 System or
built-in event

An event that is part of an object's PowerBuilder definition. System
events are usually triggered by user actions or system messages.
PowerBuilder passes a predefined set of arguments for use in the
event's script. System events either return a long or do not have a
return value.

FunctionsFunction A program or routine that performs specific processing.

 System
function

A built-in PowerScript function that is not associated with an object.

 Object
function

A function that is part of an object's definition. PowerBuilder has
many predefined object functions and you can define your own.

PowerScript Topics

Page 103

CategoryItem Definition

 User-defined
function

A function you define. You define global functions in the Function
painter and object functions in other painters with Script views.

 Global
function

A function you define that can be called from any script.
PowerScript's system functions are globally accessible, but they
have a different place in the search order.

 Local external
function

An external function that belongs to an object. You declare it in the
Window or User Object painter. Its definition is in another library.

 Global
external
function

An external function that you declare in any painter, making it
globally accessible. Its definition is in another library.

 Remote
procedure call
(RPC)

A stored procedure in a database that you can call from a script.
The declaration for an RPC can be global or local (belonging to an
object). The definition for the procedure is in the database.

Comparing functions and events

Functions and events have the following similarities:

• Both functions and events have arguments and return values.

• You can call object functions and events dynamically or statically. Global or system
functions cannot be called dynamically.

• You can post or trigger a function or event call.

Functions and events have the following differences:

• Functions can be global or part of an object's definition. Events are associated only with
objects.

• PowerBuilder uses different search orders when looking for events and functions.

• A call to an undefined function triggers an error. A call to an undefined event does not
trigger an error.

• Object-level functions can be overloaded. Events (and global functions) cannot be
overloaded.

• When you define a function, you can restrict access to it. You cannot add scope restrictions
when you define events.

• When functions are inherited, you can extend the ancestor function by calling it in the
descendant's script. You can also override the function definition. When events are
inherited, the scripts for those events are extended by default. You can choose to extend or
override the script.

Which to use

PowerScript Topics

Page 104

Whether you write most of your code in user-defined functions or in event scripts is one of
the design decisions you must make. Because there is no performance difference, the decision
is based on how you prefer to interact with PowerBuilder: whether you prefer the interface
for defining user events or that for defining functions, how you want to handle errors, and
whether your design includes overloading.

It is unlikely that you will use either events or functions exclusively, but for ease of
maintenance, you might want to choose one approach for handling most situations.

1.6.2 Finding and executing functions and events

PowerBuilder looks for a matching function or event based on its name and its argument
list. PowerBuilder can make a match between compatible datatypes (such as all the numeric
types). The match does not have to be exact. PowerBuilder ranks compatible datatypes to
quantify how closely one datatype matches another.

A major difference between functions and events is how PowerBuilder looks for them.

1.6.2.1 Finding functions

When calling a function, PowerBuilder searches until it finds a matching function and
executes it -- the search ends. Using functions with the same name but different arguments
is called function overloading. For more information, see Overloading, overriding, and
extending functions and events.

Unqualified function names

If you do not qualify a function name with an object, PowerBuilder searches for the function
and executes the first one it finds that matches the name and arguments. It searches for a
match in the following order:

1. A global external function.

2. A global function.

3. An object function and local external function. If the object is a descendant, PowerBuilder
searches upward through the ancestor hierarchy to find a match for the function prototype.

4. A system function.

DataWindow expression functions

The functions that you use in the DataWindow painter in expressions for computed
fields, filters, validation rules, and graphed data cannot be overridden. For example, if
you create a global function called Today, it is used instead of the PowerScript system
function Today, but it is not used instead of the DataWindow expression function
Today.

Qualified function names

You can qualify an object function using dot notation to ensure that the object function
is found, not a global function of the same name. With a qualified name, the search for a
matching function involves the ancestor hierarchy only (item 3 in the search list above), as
shown in the following examples of function calls:

PowerScript Topics

Page 105

dw_1.Update()
w_employee.uf_process_list()
This.uf_process_list()

When PowerBuilder searches the ancestor hierarchy for a function, you can specify that you
want to call an ancestor function instead of a matching descendant function.

For the syntax for calling ancestor functions, see Calling functions and events in an object's
ancestor.

1.6.2.2 Finding events

PowerBuilder events in descendant objects are, by default, extensions of ancestor events.
PowerBuilder searches for events in the object's ancestor hierarchy until it gets to the top
ancestor or finds an event that overrides its ancestor. Then it begins executing the events,
from the ancestor event down to the descendant event.

Finding functions versus events

The following illustration shows the difference between searching for events and searching
for functions:

1.6.3 Triggering versus posting functions and events

Triggering

In PowerBuilder, when you trigger a function or event, it is called immediately. Its return
value is available for use in the script.

PowerScript Topics

Page 106

Posting

When you post a function or event, it is added to the object's queue and executed in its turn.
In most cases, it is executed when the current script is finished; however, if other system
events have occurred in the meantime, its position in the queue might be after other scripts.
Its return value is not available to the calling script.

Because POST makes the return value unavailable to the caller, you can think of it as turning
the function or event call into a statement.

Use posting when activities need to be finished before the code checks state information or
does further processing (see Example 2 below).

PowerBuilder messages processed first

All events posted by PowerBuilder are processed by a separate queue from the Windows
system queue. PowerBuilder posted messages are processed before Windows posted
messages, so PowerBuilder events that are posted in an event that posts a Windows message
are processed before the Windows message.

For example, when a character is typed into an EditMask control, the PowerBuilder
pdm_keydown event posts the Windows message WM_CHAR to enter the character. If you
want to copy the characters as they are entered from the EditMask control to another control,
do not place the code in an event posted in the pdm_keydown event. The processing must
take place in an event that occurs after the WM_CHAR message is processed, such as in an
event mapped to pdm_keyup.

Restrictions for POST

Because no value is returned, you:

• Cannot use a posted function or event as an operand in an expression

• Cannot use a posted function or event as the argument for another function

• Can only use POST on the last call in a cascaded sequence of calls

These statements cause a compiler error. Both uses require a return value:

IF POST IsNull() THEN ...
w_1.uf_getresult(dw_1.POST GetBorderStyle(2))

TriggerEvent and PostEvent functions

For backward compatibility, the TriggerEvent and PostEvent functions are still
available, but you cannot pass arguments to the called event. You must pass data to
the event in PowerBuilder's Message object.

Examples of posting

The following examples illustrate how to post events.

Example 1

In a sample application, the Open event of the w_activity_manager window calls the
functions uf_setup and uf_set_tabpgsystem. (The functions belong to the user object

PowerScript Topics

Page 107

u_app_actman.) Because the functions are posted, the Open event is allowed to finish before
the functions are called. The result is that the window is visible while setup processing takes
place, giving the user something to look at:

guo_global_vars.iuo_app_actman.POST uf_setup()
guo_global_vars.iuo_com_actman.POST uf_set_tabpgsystem(0)

Example 2

In a sample application, the DoubleClicked event of the tv_roadmap TreeView control in the
u_tabpg_amroadmap user object posts a function that processes the TreeView item. If the
event is not posted, the code that checks whether to change the item's picture runs before the
item's expanded flag is set:

parent.POST uf_process_item ()

1.6.4 Static versus dynamic calls

Calling functions and events

PowerBuilder calls functions and events in three ways, depending on the type of function or
event and the lookup method defined.

Table 1.36: How PowerBuilder calls functions and events

Type of
function

Compiler typing Comments

Global and
system functions

Strongly typed. The function must
exist when the script is compiled.

These functions must exist and
are called directly. They are not
polymorphic, and no substitution is
ever made at execution time.

Object functions
with STATIC
lookup

Strongly typed. The function must
exist when the script is compiled.

The functions are polymorphic. They
must exist when you compile, but
if another class is instantiated at
execution time, its function is called
instead.

Object functions
with DYNAMIC
lookup

Weakly typed. The function does
not have to exist when the script is
compiled.

The functions are polymorphic. The
actual function called is determined at
execution time.

Specifying static or dynamic lookup

For object functions and events, you can choose when PowerBuilder looks for them by
specifying static or dynamic lookup. You specify static or dynamic lookup using the STATIC
or DYNAMIC keywords. The DYNAMIC keyword applies only to functions that are
associated with an object. You cannot call global or system functions dynamically.

1.6.4.1 Static calls

By default, PowerBuilder makes static lookups for functions and events. This means that it
identifies the function or event by matching the name and argument types when it compiles
the code. A matching function or event must exist in the object at compile time.

PowerScript Topics

Page 108

Results of static calls

Static calls do not guarantee that the function or event identified at compile time is the one
that is executed. Suppose that you define a variable of an ancestor type and it has a particular
function definition. If you assign an instance of a descendant object to the variable and the
descendant has a function that overrides the ancestor's function (the one found at compile
time), the function in the descendant is executed.

1.6.4.2 Dynamic calls

When you specify a dynamic call in PowerBuilder, the function or event does not have to
exist when you compile the code. You are indicating to the compiler that there will be a
suitable function or event available at execution time.

For a dynamic call, PowerBuilder waits until it is time to execute the function or event to
look for it. This gives you flexibility and allows you to call functions or events in descendants
that do not exist in the ancestor.

Results of dynamic calls

To illustrate the results of dynamic calls, consider these objects:

• Ancestor window w_a with a function Set(integer).

• Descendant window w_a_desc with two functions: Set(integer) overrides the ancestor
function, and Set(string) is an overload of the function.

Situation 1

Suppose you open the window mywindow of the ancestor window class w_a:

w_a mywindow
Open(mywindow)

This is what happens when you call the Set function statically or dynamically:

Table 1.37:

This statement Has this result

mywindow.Set(1) Compiles correctly because function is found
in the ancestor w_a.

At runtime, Set(integer) in the ancestor is
executed.

mywindow.Set("hello") Fails to compile; no function prototype in
w_a matches the call.

mywindow.DYNAMIC Set("hello") Compiles successfully because of the
DYNAMIC keyword.

An error occurs at runtime because no
matching function is found.

Situation 2

PowerScript Topics

Page 109

Now suppose you open mywindow as the descendant window class w_a_desc:

w_a mywindow
Open(mywindow, "w_a_desc")

This is what happens when you call the Set function statically or dynamically in the
descendant window class:

Table 1.38:

This statement Has this result

mywindow.Set(1) Compiles correctly because function is found
in the ancestor w_a.

At runtime, Set(integer) in the descendant is
executed.

mywindow.Set("hello") Fails to compile; no function prototype in the
ancestor matches the call.

mywindow.DYNAMIC Set("hello") Compiles successfully because of the
DYNAMIC keyword.

At runtime, Set(string) in the descendant is
executed.

Disadvantages of dynamic calls

Slower performance

Because dynamic calls are resolved at runtime, they are slower than static calls. If you need
the fastest performance, design your application to avoid dynamic calls.

Less error checking

When you use dynamic calls, you are foregoing error checking provided by the compiler.
Your application is more open to application errors, because functions that are called
dynamically might be unavailable at execution time. Do not use a dynamic call when a static
call will suffice.

Example using dynamic call

A sample application has an ancestor window w_datareview_frame that defines several
functions called by the menu items of m_datareview_framemenu. They are empty stubs
with empty scripts so that static calls to the functions will compile. Other windows that are
descendants of w_datareview_frame have scripts for these functions, overriding the ancestor
version.

The wf_print function is one of these -- it has an empty script in the ancestor and appropriate
code in each descendant window:

guo_global_vars.ish_currentsheet.wf_print ()

The wf_export function called by the m_export item on the m_file menu does not have a
stubbed-out version in the ancestor window. This code for m_export uses the DYNAMIC
keyword to call wf_export. When the program runs, the value of variable ish_currentsheet is
a descendant window that does have a definition for wf_export:

PowerScript Topics

Page 110

guo_global_vars.ish_currentsheet.DYNAMIC wf_export()

1.6.4.2.1 Errors when calling functions and events dynamically

If you call a function or event dynamically, different conditions create different results, from
no effect to an execution error. The tables in this section illustrate this.

Functions

The rules for functions are similar to those for events, except functions must exist: if a
function is not found, an error always occurs. Although events can exist without a script, if a
function is defined it has to have code. Consider the following statements:

1. This statement calls a function without looking for a return value:

object.DYNAMIC funcname()

2. This statement looks for an integer return value:

int li_int
li_int = object.DYNAMIC funcname()

3. This statement looks for an Any return value:

any la_any
la_any = object.DYNAMIC funcname()

The following table uses these statements as examples.

Table 1.39: Dynamic function calling errors

Condition 1 Condition 2 Result Example

The function does
not exist.

None. Execution error 65:
Dynamic function
not found.

All the statements
cause error 65.

The function is found
and executed but is
not defined with a
return value.

The code is looking
for a return value.

Execution error 63:
Function/event with
no return value used
in expression.

Statements 2 and 3
cause error 63.

Events

Consider these statements:

1. This statement calls an event without looking for a return value:

object.EVENT DYNAMIC eventname()

2. This example looks for an integer return value:

int li_int
li_int = object.EVENT DYNAMIC eventname()

3. This example looks for an Any return value:

any la_any
la_any = object.EVENT DYNAMIC eventname()

PowerScript Topics

Page 111

The following table uses these statements as examples.

Table 1.40: Dynamic event calling errors

Condition 1 Condition 2 Result Example

The event does
not exist.

The code is not
looking for a return
value.

Nothing; the call fails
silently.

Statement 1 fails but
does not cause an error.

 The code is looking
for a return value.

A null of the Any
datatype is returned.

La_any is set to null in
statement 3.

 If the expected datatype is
not Any, execution error
19 occurs: Cannot convert
Any in Any variable to
datatype.

The assignment to li_int
causes execution error
19 in statement 2.

The event is
found but is not
implemented
(there is no
script).

The event has a
defined return value.

A null of the defined
datatype is returned.

If eventname is defined
to return integer,
li_int is set to null in
statement 2.

 The event does not
have a defined return
value.

A null of the Any
datatype is returned.

La_any is set to null in
statement 3.

 If the expected datatype is
not Any, execution error
19 occurs: Cannot convert
Any in Any variable to
datatype.

The assignment to li_int
causes execution error
19 in statement 2.

The event is
found and
executed but is
not defined with
a return value.

The code is looking
for a return value.

Execution error 63:
Function/event with
no return value used in
expression.

Statements 2 and 3
cause error 63.

When an error occurs

You can surround a dynamic function call in a try-catch block to prevent the application from
terminating when an execution error occurs. Although you can also handle the error in the
SystemError event, you should not allow the application to continue once the SystemError
event is invoked -- the SystemError event should only clean up and halt the application.

For information on using try-catch blocks, see Section 2.2.9, “Exception handling in
PowerBuilder” in Application Techniques.

If the arguments do not match

Function arguments are part of the function's definition. Therefore, if the arguments do not
match (a compatible match, not an exact match), it is essentially a different function. The
result is the same as if the function did not exist.

PowerScript Topics

Page 112

If you call an event dynamically and the arguments do not match, the call fails and control
returns to the calling script. There is no error.

Error-proofing your code

Calling functions and events dynamically opens up your application to potential errors. The
surest way to avoid these errors is to always make static calls to functions and events. When
that is not possible, your design and testing can ensure that there is always an appropriate
function or event with the correct return datatype.

One type of error you can check for and avoid is data conversion errors.

The preceding tables illustrated that a function or event can return a null value either as an
Any variable or as a variable of the expected datatype when a function or event definition
exists but is not implemented.

If you always assign return values to Any variables for dynamic calls, you can test for null
(which indicates failure) before using the value in code.

This example illustrates the technique of checking for null before using the return value.

any la_any
integer li_gotvalue
la_any = object.DYNAMIC uf_getaninteger()
IF IsNull(la_any) THEN
 ... // Error handling
ELSE
 li_gotvalue = la_any
END IF

1.6.5 Overloading, overriding, and extending functions and events

In PowerBuilder, when functions are inherited, you can choose to overload or override the
function definition, described in Overloading and overriding functions.

When events are inherited, the scripts for those events are extended by default. You can
choose to extend or override the script, described in Extending and overriding events.

1.6.5.1 Overloading and overriding functions

To create an overloaded function, you declare the function as you would any function using
Insert>Function.

Overriding means defining a function in a descendant object that has the same name and
argument list as a function in the ancestor object. In the descendant object, the function in
the descendant is always called instead of the one in the ancestor -- unless you use the scope
resolution operator (::).

To override a function, open the descendant object in the painter, select the function in
the Script view, and code the new script. The icon that indicates that there is a script for a
function is half shaded when the function is inherited from an ancestor.

You can overload or override object functions only -- you cannot overload global functions.

1.6.5.1.1 Type promotion when matching arguments for overloaded functions

When you have overloaded a function so that one version handles numeric values and another
version handles strings, it is clear to the programmer what arguments to provide to call each

PowerScript Topics

Page 113

version of the function. Overloading with unrelated datatypes is a good idea and can provide
needed functionality for your application.

Problematic overloading

If different versions of a function have arguments of related datatypes (different numeric
types or strings and chars), you must consider how PowerBuilder promotes datatypes in
determining which function is called. This kind of overloading is undesirable because of
potential confusion in determining which function is called.

When you call a function with an expression as an argument, the datatype of the expression
might not be obvious. However, the datatype is important in determining what version of an
overloaded function is called.

Because of the intricacies of type promotion for numeric datatypes, you might decide that
you should not define overloaded functions with different numeric datatypes. Changes
someone makes later can affect the application more drastically than expected if the change
causes a different function to be called.

How type promotion works

When PowerBuilder evaluates an expression, it converts the datatypes of constants and
variables so that it can process or combine them correctly.

Numbers

When PowerBuilder evaluates numeric expressions, it promotes the datatypes of values
according to the operators and the datatypes of the other operands. For example, the datatype
of the expression n/2 is double because it involves division -- the datatype of n does not
matter.

Strings

When evaluating an expression that involves chars and strings, PowerBuilder promotes chars
to strings.

For more information on type promotion, see Datatype of PowerBuilder expressions.

Using conversion functions

You can take control over the datatypes of expressions by calling a conversion function.
The conversion function ensures that the datatype of the expression matches the function
prototype you want to call.

For example, because the expression n/2 involves division, the datatype is double. However,
if the function you want to call expects a long, you can use the Long function to ensure that
the function call matches the prototype:

CalculateHalf(Long(n/2))

1.6.5.2 Extending and overriding events

In PowerBuilder, when you write event scripts in a descendant object, you can extend
or override scripts that have been written in the ancestor. Extending (the default) means
executing the ancestor's script first, then executing code in the descendant's event script.

Overriding means ignoring the ancestor's script and only executing the script in the
descendant.

PowerScript Topics

Page 114

No overloaded events

You cannot overload an event by defining an event with the same name but different
arguments. Event names must be unique.

To select extending or overriding, open the script in the Script view and check or clear the
Extend Ancestor Script item in the Edit or pop-up menu.

1.6.6 Passing arguments to functions and events

In PowerBuilder, arguments for built-in or user-defined functions and events can be passed
three ways:

Table 1.41: Passing arguments to functions and events

Method of
passing

Description

By value A copy of the variable is available in the function or event script. Any changes
to its value affect the copy only. The original variable in the calling script is
not affected.

By
reference

A pointer to the variable is passed to the function or event script. Changes
affect the original variable in the calling script.

Read-only The variable is available in the function or event. Its value is treated as a
constant changes to the variable are not allowed and cause a compiler error.

Read-only provides a performance advantage for some datatypes because
it does not create a copy of the data, as with by value. Datatypes for which
read-only provides a performance advantage are string, blob, date, time, and
DateTime.

For other datatypes, read-only provides documentation for other developers by
indicating something about the purpose of the argument.

1.6.6.1 Passing objects

When you pass an object to a function or event, the object must exist when you refer to its
properties and functions. If you call the function but the object has been destroyed, you get
the execution error for a null object reference. This is true whether you pass by reference, by
value, or read-only.

To illustrate, suppose you have a window with a SingleLineEdit. If you post a function
in the window's Close event and pass the SingleLineEdit, the object does not exist when
the function executes. To use information from the SingleLineEdit, you must pass the
information itself, such as the object's text, rather than the object. When passing an object,
you never get another copy of the object. By reference and by value affect the object
reference, not the object itself.

Objects passed by value

When you pass an object by value, you pass a copy of the reference to the object. That
reference is still pointing to the original object. If you change properties of the object, you
are changing the original object. However, you can change the value of the variable so that it
points to another object without affecting the original variable.

PowerScript Topics

Page 115

Objects passed by reference

When you pass an object by reference, you pass a pointer to the original reference to the
object. Again, if you change properties of the object, you are changing the original object.
You can change the value of the variable that was passed, but the result is different -- the
original reference now points to the new object.

Objects passed as read-only

When you pass an object as read-only, you get a copy of the reference to the object. You
cannot change the reference to point to a new object (because read-only is equivalent to a
CONSTANT declaration), but you can change properties of the object.

1.6.6.2 Passing structures

Structures as arguments behave like simple variables, not like objects.

Structures passed by value

When you pass a structure by value, PowerBuilder passes a copy of the structure. You can
modify the copy without affecting the original.

Structures passed by reference

When you pass a structure by reference, PowerBuilder passes a reference to the structure.
When you changes values in the structure, you are modifying the original. You will not get a
null object reference, because structures always exist until they go out of scope.

Structures passed as read-only

When you pass a structure as read-only, PowerBuilder passes a copy of the structure. You
cannot modify any members of the structure.

1.6.6.3 Passing arrays

When an argument is an array, you specify brackets as part of the argument name in the
declaration for the function or event.

Variable-size array as an argument

For example, suppose a function named uf_convertarray accepts a variable-size array of
integers. If the argument's name is intarray, then for Name enter intarray[] and for Type enter
integer.

In the script that calls the function, you either declare an array variable or use an instance
variable or value that has been passed to you. The declaration of that variable, wherever it is,
looks like this:

integer a[]

When you call the function, omit the brackets, because you are passing the whole array. If
you specified brackets, you would be passing one value from the array:

uf_convertarray(a)

Fixed-size array as an argument

For comparison, suppose the uf_convertarray function accepts a fixed-size array of integers
of 10 elements instead. If the argument's name is intarray, then for Name enter intarray[10],
and for Type enter integer.

PowerScript Topics

Page 116

The declaration of the variable to be passed looks like this:

integer a[10]

You call the function the same way, without brackets:

uf_convertarray(a)

If the array dimensions do not match

If the dimensions of the array variable passed do not match the dimensions declared
for the array argument, then array-to-array assignment rules apply. For more
information, see Declaring arrays.

1.6.7 Using return values

You can use return values of functions and events.

1.6.7.1 Functions

All built-in PowerScript functions return a value. You can use the return value or ignore it.
User-defined functions and external functions might or might not return a value.

To use a return value, assign it to a variable of the appropriate datatype or call the function
wherever you can use a value of that datatype.

Posting a function

If you post a function, you cannot use its return value.

Examples

The built-in Asc function takes a string as an argument and returns the Unicode code point
value of the string's first character:

string S1 = "Carton"
long Test
Test=32+Asc(S1) // Test now contains the value 99
 // (the code point value of "C" is 67).

The SelectRow function expects a row number as the first argument. The return value of the
GetRow function supplies the row number:

dw_1.SelectRow(dw_1.GetRow(), true)

To ignore a return value, call the function as a single statement:

Beep(4) // This returns a value, but it is
 // rarely needed.

1.6.7.2 Events

Most system events return a value. The return value is a long numeric codes have specific
meanings for each event. You specify the event's return code with a RETURN statement in
the event script.

When the event is triggered by user actions or system messages, the value is returned to the
system, not to a script you write.

PowerScript Topics

Page 117

When you trigger a system or user-defined event, the return value is returned to your script
and you can use the value as appropriate. If you post an event, you cannot use its return
value.

1.6.7.3 Using cascaded calling and return values

PowerBuilder dot notation allows you to chain together several object function or event calls.
The return value of the function or event becomes the object for the following call.

This syntax shows the relationship between the return values of three cascaded function calls:

func1returnsobject().func2returnsobject().func3returnsanything()

Disadvantage of cascaded calls

When you call several functions in a cascade, you cannot check their return values
and make sure they succeeded. If you want to check return values (and checking is
always a good idea), call each function separately and assign the return values to
variables. Then you can use the verified variables in dot notation before the final
function name.

Dynamic calls

If you use the DYNAMIC keyword in a chain of cascaded calls, it carries over to all function
calls that follow.

In this example, both func1 and func2 are called dynamically:

object1.DYNAMIC func1().func2()

The compiler reports an error if you use DYNAMIC more than once in a cascaded call. This
example would cause an error:

object1.DYNAMIC func1().DYNAMIC func2() // error

Posted functions and events

Posted functions and events do not return a value to the calling scripts. Therefore, you can
only use POST for the last function or event in a cascaded call. Calls before the last must
return a valid object that can be used by the following call.

System events

System events can only be last in a cascaded list of calls, because their return value is a long
(or they have no return value). They do not return an object that can be used by the next call.

An event you have defined can have a return value whose datatype is an object. You can
include such events in a cascaded call.

1.6.8 Syntax for calling PowerBuilder functions and events

Description

This syntax is used to call all PowerBuilder functions and events. Depending on the
keywords used, this syntax can be used to call system, global, object, user-defined, and
external functions as well as system and user-defined events.

Syntax

PowerScript Topics

Page 118

{ objectname.} { type } { calltype } { when } name ({ argumentlist })

The following table describes the arguments used in function and event calls.

Table 1.42: Arguments for calling functions and events

Argument Description

objectname
(optional)

The name of the object where the function or event is defined followed by a
period or the descendant of that object/the name of the ancestor class followed
by two colons.

If a function name is not qualified, PowerBuilder uses the rules for finding
functions and executes the first matching function it finds.

For system or global functions, omit objectname.

For the rules PowerBuilder uses to find unqualified function names, see
Finding and executing functions and events.

type
(optional)

A keyword specifying whether you are calling a function or event. Values are:

• FUNCTION (Default)

• EVENT

calltype
(optional)

A keyword specifying when PowerBuilder looks for the function or event.
Values are:

• STATIC (Default)

• DYNAMIC

For more information about static versus dynamic calls, see Static versus
dynamic calls. For more information on dynamic calls, see Dynamic calls.

when
(optional)

A keyword specifying whether the function or event should execute
immediately or after the current script is finished. Values are:

• TRIGGER -- (Default) Execute it immediately.

• POST -- Put it in the object's queue and execute it in its turn, after other
pending messages have been handled.

For more about triggering and posting, see Triggering versus posting functions
and events.

name The name of the function or event you want to call.

argumentlist
(optional)

The values you want to pass to name. Each value in the list must have a
datatype that corresponds to the declared datatype in the function or event
definition or declaration.

Usage

Function and event names are not case sensitive. For example, the following three statements
are equivalent:

Clipboard("PowerBuilder")

PowerScript Topics

Page 119

clipboard("PowerBuilder")
CLIPBOARD("PowerBuilder")

Calling arguments

The type, calltype, and when keywords can be in any order after objectname.

Not all options in the syntax apply to all types. For example, there is no point in calling
a system PowerScript object function dynamically. It always exists, and the dynamic call
incurs extra overhead. However, if you had a user-defined function of the same name that
applied to a different object, you might call that function dynamically.

User-defined global functions and system functions can be triggered or posted but they
cannot be called dynamically.

Finding functions

If a global function does not exist with the given name, PowerBuilder will look for an object
function that matches the name and argument list before it looks for a PowerBuilder system
function.

Calling functions and events in the ancestor

If you want to circumvent the usual search order and force PowerBuilder to find a function or
event in an ancestor object, bypassing it in the descendant, use the ancestor operator (::).

For more information about the scope operator for ancestors, see Calling functions and events
in an object's ancestor.

Cascaded calls

Calls can be cascaded using dot notation. Each function or event call must return an object
type that is the appropriate object for the following call.

For more information about cascaded calls, see Using cascaded calling and return values.

Using return values

If the function has a return value, you can call the function on the right side of an assignment
statement, as an argument for another function, or as an operand in an expression.

External functions

Before you can call an external function, you must declare it. For information about declaring
external functions, see Declaring external functions.

Examples

Example 1

The following statements show various function calls using the most simple construction of
the function call syntax.

This statement calls the system function Asc:

charnum = Asc("x")

This statement calls the DataWindow function in a script that belongs to the DataWindow:

Update()

This statement calls the global user-defined function gf_setup_appl:

gf_setup_appl(24, "Window1")

PowerScript Topics

Page 120

This statement calls the system function PrintRect:

PrintRect(job, 250, 250, 7500, 1000, 50)

Example 2

The following statements show calls to global and system functions.

This statement posts the global user-defined function gf_setup_appl. The function is executed
when the calling script finishes:

POST gf_setup_appl(24, "Window1")

This statement posts the system function PrintRect. It is executed when the calling script
finishes. The print job specified in job must still be open:

POST PrintRect(job, 250, 250, 7500, 1000, 50)

Example 3

In a script for a control, these statements call a user-defined function defined in the parent
window. The statements are equivalent, because FUNCTION, STATIC, and TRIGGER are
the defaults:

Parent.FUNCTION STATIC TRIGGER wf_process()
Parent.wf_process()

Example 4

This statement in a DataWindow control's Clicked script calls the DoubleClicked event
for the same control. The arguments the system passed to Clicked are passed on to
DoubleClicked. When triggered by the system, PowerBuilder passes DoubleClicked those
same arguments:

This.EVENT DoubleClicked(xpos, ypos, row, dwo)

This statement posts the same event:

This.EVENT POST DoubleClicked(xpos, ypos, row, dwo)

Example 5

The variable iw_a is an instance variable of an ancestor window type w_ancestorsheet:

w_ancestorsheet iw_a

A menu has a script that calls the wf_export function, but that function is not defined in the
ancestor. The DYNAMIC keyword is required so that the script compiles:

iw_a.DYNAMIC wf_export()

At execution time, the window that is opened is a descendant with a definition of wf_export.
That window is assigned to the variable iw_a and the call to wf_export succeeds.

1.6.9 Calling functions and events in an object's ancestor

Description

In PowerBuilder, when an object is instantiated with a descendant object, even if its class is
the ancestor and that descendant has a function or event script that overrides the ancestor's,
the descendant's version is the one that is executed. If you specifically want to execute the

PowerScript Topics

Page 121

ancestor's version of a function or event, you can use the ancestor operator (::) to call the
ancestor's version explicitly.

Syntax

{ objectname. } ancestorclass ::{ type } { when } name ({ argumentlist })

The following table describes the arguments used to call functions and events in an object's
ancestor.

Table 1.43: Arguments for calling ancestor functions and events

Argument Description

objectname
(optional)

The name of the object whose ancestor contains the function you want to
execute.

ancestorclass The name of the ancestor class whose function or event you want to execute.
The pronoun Super provides the appropriate reference when ancestorobject is
the immediate ancestor of the current object.

type
(optional)

A keyword specifying whether you are calling a function or event. Values are:

• (Default) FUNCTION

• EVENT

when
(optional)

A keyword specifying whether the function or event should execute
immediately or after the current script is finished. Values are:

• TRIGGER -- (Default) Execute it immediately

• POST -- Put it in the object's queue and execute it in its turn, after other
pending messages have been handled

name The name of the object function or event you want to call.

argumentlist
(optional)

The values you want to pass to name. Each value in the list must have a
datatype that corresponds to the declared datatype in the function definition.

Usage

The AncestorReturnValue variable

When you extend an event script in a descendant object, the compiler automatically generates
a local variable called AncestorReturnValue that you can use if you need to know the return
value of the ancestor event script. The variable is also generated if you override the ancestor
script and use the CALL syntax to call the ancestor event script.

The datatype of the AncestorReturnValue variable is always the same as the datatype defined
for the return value of the event. The arguments passed to the call come from the arguments
that are passed to the event in the descendant object.

Extending event scripts

The AncestorReturnValue variable is always available in extended event scripts. When you
extend an event script, PowerBuilder generates the following syntax and inserts it at the
beginning of the event script:

CALL SUPER::event_name

PowerScript Topics

Page 122

You only see the statement if you export the syntax of the object or look at it in the Source
editor.

The following example illustrates the code you can put in an extended event script:

If AncestorReturnValue = 1 THEN
// execute some code
ELSE
// execute some other code
END IF

Overriding event scripts

The AncestorReturnValue variable is only available when you override an event script after
you call the ancestor event using either of these versions of the CALL syntax:

CALL SUPER::event_name
CALL ancestor_name::event_name

The compiler cannot differentiate between the keyword SUPER and the name of the ancestor.
The keyword is replaced with the name of the ancestor before the script is compiled.

The AncestorReturnValue variable is only declared and a value assigned when you use the
CALL event syntax. It is not declared if you use the new event syntax:

ancestor_name::EVENT event_name()

You can use the same code in a script that overrides its ancestor event script, but you must
insert a CALL statement before you use the AncestorReturnValue variable.

// execute code that does some preliminary processing
CALL SUPER::uo_myevent
IF AncestorReturnValue = 1 THEN
...

For information about CALL, see CALL.

Examples

Example 1

Suppose a window w_ancestor has an event ue_process. A descendant window has a script
for the same event.

This statement in a script in the descendant searches the event chain and calls all appropriate
events. If the descendant extends the ancestor script, it calls a script for each ancestor in
turn followed by the descendant script. If the descendant overrides the ancestor, it calls the
descendant script only:

EVENT ue_process()

This statement calls the ancestor event only (this script works if the calling script belongs to
another object or the descendant window):

w_ancestor::EVENT ue_process()

Example 2

You can use the pronoun Super to refer to the ancestor. This statement in a descendant
window script or in a script for a control on that window calls the Clicked script in the
immediate ancestor of that window.

PowerScript Topics

Page 123

Super::EVENT Clicked(0, x, y)

Example 3

These statements call a function wf_myfunc in the ancestor window (presumably, the
descendant also has a function called wf_myfunc):

Super::wf_myfunc()
Super::POST wf_myfunc()

Statements, Events, and Functions

Page 124

2 Statements, Events, and Functions
This part provides reference information about each of the components of the PowerScript
language.

2.1 PowerScript Statements
About this chapter

This chapter describes the PowerScript statements and how to use them in scripts.

2.1.1 Assignment

Description

Assigns values to variables or object properties or object references to object variables.

Syntax

variablename = expression

Table 2.1:

Argument Description

variablenameThe name of the variable or object property to which you want to assign a
value. Variablename can include dot notation to qualify the variable with one or
more object names.

expression An expression whose datatype is compatible with variablename.

Usage

Use assignment statements to assign values to variables. To assign a value to a variable
anywhere in a script, use the equal sign (=). For example:

String1 = "Part is out of stock"
TaxRate = .05

No multiple assignments

Since the equal sign is also a logical operator, you cannot assign more than one variable in a
single statement. For example, the following statement does not assign the value 0 to A and
B:

A=B=0 // This will not assign 0 to A and B.

This statement first evaluates B=0 to true or FALSE and then tries to assign this boolean
value to A. When A is not a boolean variable, this line produces an error when compiled.

Assigning array values

You can assign multiple array values with one statement, such as:

int Arr[]
Arr = {1, 2, 3, 4}

You can also copy array contents. For example, this statement copies the contents of Arr2
into array Arr1:

Arr1 = Arr2

Statements, Events, and Functions

Page 125

Operator shortcuts

The PowerScript shortcuts for assigning values to variables in the following table ave slight
performance advantages over their equivalents.

Table 2.2: Shortcuts for assigning values

Assignment Example Equivalent to

++ i ++ i = i + 1

-- i -- i = i - 1

+= i += 3 i = i + 3

-= i -= 3 i = i -3

*= i *= 3 i = i * 3

/= i /= 3 i = i / 3

^= i ^=3 i = i ^ 3

Unless you have prohibited the use of dashes in variable names, you must leave a space
before -- and -=. If you do not, PowerScript reads the minus sign as part of a variable name.
For more information, see Identifier names.

Examples

Example 1

These statements each assign a value to the variable ld_date:

date ld_date
ld_date = Today()
ld_date = 2006-01-01
ld_date = Date("January 1, 2006")

Example 2

These statements assign the parent of the current control to a window variable:

window lw_current_window
lw_current_window = Parent

Example 3

This statement makes a CheckBox invisible:

cbk_on.Visible = FALSE

Example 4

This statement is not an assignment -- it tests the value of the string in the SingleLineEdit
sle_emp:

IF sle_emp.Text = "N" THEN Open(win_1)

Example 5

These statements concatenate two strings and assign the value to the string Text1:

string Text1
Text1 = sle_emp.Text+".DAT"

Example 6

Statements, Events, and Functions

Page 126

These assignments use operator shortcuts:

int i = 4i ++ // i is now 5.
i -- // i is 4 again.
i += 10 // i is now 14.
i /= 2 // i is now 7.

These shortcuts can be used only in pure assignment statements. They cannot be used with
other operators in a statement. For example, the following is invalid:

int i, j
i = 12
j = i ++ // INVALID

The following is valid, because ++ is used by itself in the assignment:

int i, j
i = 12
i ++
j = i

2.1.2 CALL

Description

Calls an ancestor script from a script for a descendant object. You can call scripts for events
in an ancestor of the user object, menu, or window. You can also call scripts for events for
controls in an ancestor of the user object or window.

When you use the CALL statement to call an ancestor event script, the AncestorReturnValue
variable is generated. For more information on the AncestorReturnValue variable, see About
events.

Syntax

CALL ancestorobject {`controlname}::event

Table 2.3:

Parameter Description

ancestorobject An ancestor of the descendant object

controlname (optional) The name of a control in an ancestor window
or custom user object

event An event in the ancestor object

Usage

Using the standard syntax

For most purposes, you should use the standard syntax for calling functions and
events. For more information about the standard syntax, see Syntax for calling
PowerBuilder functions and events.

The standard syntax allows you to trigger or post an event or function in an ancestor
and then pass arguments, but it does not allow you to call a script for a control in the
ancestor.

Statements, Events, and Functions

Page 127

In some circumstances, you can use the pronoun Super when ancestorobject is the descendant
object's immediate ancestor. See the discussion of Super pronoun.

If the call is being made to an ancestor event, the arguments passed to the current event are
automatically propagated to the ancestor event. If you call a non-ancestor event and pass
arguments, you need to use the new syntax, otherwise null will be passed for each argument.

Examples

Example 1

This statement calls a script for an event in an ancestor window:

CALL w_emp::Open

Example 2

This statement calls a script for an event in a control in an ancestor window:

CALL w_emp`cb_close::Clicked

2.1.3 CHOOSE CASE

Description

A control structure that directs program execution based on the value of a test expression
(usually a variable).

Syntax

CHOOSE CASE testexpression
CASE expressionlist
 statementblock
{ CASE expressionlist
 statementblock
. . .
CASE expressionlist
 statementblock }
CASE ELSE
 statementblock }
END CHOOSE

Table 2.4:

Parameter Description

testexpression The expression on which you want to base the execution of the script

expressionlist One of the following expressions:

• A single value

• A list of values separated by commas (such as 2, 4, 6, 8)

• A TO clause (such as 1 TO 30)

• IS followed by a relational operator and comparison value (such as
IS>5)

• Any combination of the above with an implied OR between expressions
(such as 1, 3, 5, 7, 9, 27 TO 33, IS >42)

Statements, Events, and Functions

Page 128

Parameter Description

statementblock The block of statements you want PowerBuilder to execute if the test
expression matches the value in expressionlist

Usage

At least one CASE clause is required. You must end a CHOOSE CASE control structure with
END CHOOSE.

If testexpression at the beginning of the CHOOSE CASE statement matches a value in
expressionlist for a CASE clause, the statements immediately following the CASE clause are
executed. Control then passes to the first statement after the END CHOOSE clause.

If multiple CASE expressions exist, then testexpression is compared to each expressionlist
until a match is found or the CASE ELSE or END CHOOSE is encountered.

If there is a CASE ELSE clause and the test value does not match any of the expressions,
statementblock in the CASE ELSE clause is executed. If no CASE ELSE clause exists and a
match is not found, the first statement after the END CHOOSE clause is executed.

Examples

Example 1

These statements provide different processing based on the value of the variable Weight:

CHOOSE CASE Weight
 CASE IS<16
 Postage=Weight*0.30
 Method="USPS"
CASE 16 to 48
 Postage=4.50
 Method="UPS"
CASE ELSE
 Postage=25.00
 Method="FedEx"
END CHOOSE

Example 2

These statements convert the text in a SingleLineEdit control to a real value and provide
different processing based on its value:

CHOOSE CASE Real(sle_real.Text)
CASE is < 10.99999
 sle_message.Text = "Real Case < 10.99999"
CASE 11.00 to 48.99999
 sle_message.Text = "Real Case 11 to 48.9999
CASE is > 48.9999
 sle_message.Text = "Real Case > 48.9999"
CASE ELSE
 sle_message.Text = "Cannot evaluate!"
END CHOOSE

2.1.4 CONTINUE

Description

In a DO...LOOP or a FOR...NEXT control structure, skips statements in the loop.
CONTINUE takes no parameters.

Statements, Events, and Functions

Page 129

Syntax

CONTINUE

Usage

When PowerBuilder encounters a CONTINUE statement in a DO...LOOP or FOR...NEXT
block, control passes to the next LOOP or NEXT statement. The statements between the
CONTINUE statement and the loop's end statement are skipped in the current iteration of
the loop. In a nested loop, a CONTINUE statement bypasses statements in the current loop
structure.

For information on how to break out of the loop, see EXIT.

Examples

Example 1

These statements display a message box twice: when B equals 2 and when B equals 3. As
soon as B is greater than 3, the statement following CONTINUE is skipped during each
iteration of the loop:

integer A=1, B=1
DO WHILE A < 100
 A = A+1
 B = B+1
 IF B > 3
THEN CONTINUE
 MessageBox("Hi", "B is " + String(B))
LOOP

Example 2

These statements stop incrementing B as soon as Count is greater than 15:

integer A=0, B=0, Count
FOR Count = 1 to 100
 A = A + 1

 IF Count > 15
THEN CONTINUE
 B = B + 1
NEXT // Upon completion, a=100 and b=15.

2.1.5 CREATE

Description

Creates an object instance for a specified object type. After a CREATE statement, properties
of the created object instance can be referenced using dot notation.

The CREATE statement returns an object instance that can be stored in a variable of the same
type.

Syntax 1 specifies the object type at compilation. Syntax 2 allows the application to choose
the object type dynamically.

Syntax

Syntax 1 (specifies the object type at compilation):

objectvariable = CREATE objecttype

Statements, Events, and Functions

Page 130

Table 2.5:

Parameter Description

objectvariable A global, instance, or local variable whose
datatype is objecttype

objecttype The object datatype

Syntax 2 (allows the application to choose the object type dynamically):

objectvariable = CREATE USING objecttypestring

Table 2.6:

Parameter Description

objectvariable A global, instance, or local variable whose
datatype is the same class as the object being
created or an ancestor of that class

objecttypestring A string whose value is the name of the class
datatype to be created

Usage

Use CREATE as the first reference to any class user object. This includes standard class user
objects such as mailSession or Transaction.

The system provides one instance of several standard class user objects: Message, Error,
Transaction, DynamicDescriptionArea, and DynamicStagingArea. You only need to use
CREATE if you declare additional instances of these objects.

If you need a menu that is not part of an open window definition, use CREATE to create an
instance of the menu. (See the function PopMenu.)

To create an instance of a visual user object or window, use the appropriate Open function
(instead of CREATE).

You do not need to use CREATE to allocate memory for:

• A standard datatype, such as integer or string

• Any structure, such as the Environment object

• Any object whose AutoInstantiate setting is true

• Any object that has been instantiated using a function, such as Open

Specifying the object type dynamically

CREATE USING allows your application to choose the object type dynamically. It is usually
used to instantiate an ancestor variable with an instance of one of its descendants. The
particular descendant is chosen at execution time.

For example, if uo_a has two descendants, uo_a_desc1 and uo_a_desc2, then the application
can select the object to be created based on current conditions:

uo_a uo_a_var
string ls_objectname

Statements, Events, and Functions

Page 131

IF ... THEN
 ls_objectname = "uo_a_desc1"
ELSE
 ls_objectname = "uo_a_desc2"
END IF
uo_a_var = CREATE USING ls_objectname

Destroying objects you create

When you have finished with an object you created, you can call DESTROY to release its
memory. However, you should call DESTROY only if you are sure that the object is not
referenced by any other object. PowerBuilder's garbage collection mechanism maintains a
count of references to each object and destroys unreferenced objects automatically.

For more information about garbage collection, see Garbage collection.

Examples

Example 1

These statements create a new transaction object and stores the object in the variable
DBTrans:

transaction DBTrans
DBTrans = CREATE transaction
DBTrans.DBMS = 'ODBC'

Example 2

These statements create a user object when the application has need of the services it
provides. Because the user object might or might not exist, the code that accesses it checks
whether it exists before calling its functions.

The object that creates the service object declares invo_service as an instance variable:

n_service invo_service

The Open event for the object creates the service object:

//Open event of some object
IF (some condition)
THEN
 invo_service = CREATE n_service
END IF

When another script wants to call a function that belongs to the n_service class, it verifies
that invo_service is instantiated:

IF IsValid(invo_service)
THEN
 invo_service.of_perform_some_work()
END IF

If the service object was created, then it also needs to be destroyed:

IF isvalid(invo_service) THEN DESTROY invo_service

Example 3

When you create a DataStore object, you also have to give it a DataObject and call
SetTransObject before you can use it:

l_ds_delete = CREATE u_ds

Statements, Events, and Functions

Page 132

l_ds_delete.DataObject = 'd_user_delete'
l_ds_delete.SetTransObject(SQLCA)
li_cnt = l_ds_delete.Retrieve(lstr_data.name)

Example 4

In this example, n_file_service_class is an ancestor object, and n_file_service_class_ansi and
n_file_service_class_dbcs are its descendants. They hold functions and variables that provide
services for the application. The code chooses which object to create based on whether the
user is running in a DBCS environment:

n_file_service_class lnv_fileservice
string ls_objectname
environment luo_env
GetEnvironment (luo_env)
IF luo_env.charset = charsetdbcs!
THEN
 ls_objectname = "n_file_service_class_dbcs"
ELSE
 ls_objectname = "n_file_service_class_ansi"
END IF
lnv_fileservice = CREATE USING ls_objectname

2.1.6 DESTROY

Description

Eliminates an object instance that was created with the CREATE statement. After a
DESTROY statement, properties of the deleted object instance can no longer be referenced.

Syntax

DESTROY objectvariable

Table 2.7:

Parameter Description

objectvariable A variable whose datatype is a PowerBuilder
object

Usage

When you are finished with an object that you created, you can call DESTROY to release
its memory. However, you should call DESTROY only if you are sure that the object is not
referenced by any other object. PowerBuilder's garbage collection mechanism maintains a
count of references to each object and destroys unreferenced objects automatically.

For more information about garbage collection, see Garbage collection.

All objects are destroyed automatically when your application terminates.

Examples

Example 1

The following statement destroys the transaction object DBTrans that was created with a
CREATE statement:

DESTROY DBTrans

Example 2

Statements, Events, and Functions

Page 133

This example creates an OLEStorage variable istg_prod_pic in a window's Open event. When
the window is closed, the Close event script destroys the object. The variable's declaration is:

OLEStorage istg_prod_pic

The window's Open event creates an object instance and opens an OLE storage file:

integer li_result
istg_prod_pic = CREATE OLEStorage
li_result = istg_prod_pic.Open("PICTURES.OLE")

The window's Close event destroys istg_prod_pic:

integer li_result
li_result = istg_prod_pic.Save()
IF li_result = 0
THEN
 DESTROY istg_prod_pic
END IF

2.1.7 DO...LOOP

Description

A control structure that is a general-purpose iteration statement used to execute a block of
statements while or until a condition is true.

DO... LOOP has four formats:

• DO WHILE

Executes a block of statements while the specified condition is true. The loop ends when
the condition becomes false. If the condition is false on the first evaluation, the statement
block does not execute.

• LOOP UNTIL

Executes a block of statements at least once and continues until the specified condition is
true.

• LOOP WHILE

Executes a block of statements at least once and continues while the specified condition is
true. The loop ends when the condition becomes false.

In all four formats of the DO...LOOP control structure, DO marks the beginning of the
statement block that you want to repeat. The LOOP statement marks the end.

You can nest DO...LOOP control structures.

Syntax

DO UNTIL condition
 statementblock
LOOP
DO WHILE condition
 statementblock
LOOP
DO
 statementblock

Statements, Events, and Functions

Page 134

LOOP UNTIL condition
DO
 statementblock
LOOP WHILE condition

Table 2.8:

Parameter Description

condition The condition you are testing

statementblock The block of statements you want to repeat

Usage

Use DO WHILE or DO UNTIL when you want to execute a block of statements only if a
condition is true (for WHILE) or false (for UNTIL). DO WHILE and DO UNTIL test the
condition before executing the block of statements.

Use LOOP WHILE or LOOP UNTIL when you want to execute a block of statements at least
once. LOOP WHILE and LOOP UNTIL test the condition after the block of statements has
been executed.

Examples

DO UNTIL

The following DO UNTIL repeatedly executes the Beep function until A is greater than 15:

integer A = 1, B = 1
DO UNTIL A > 15
 Beep(A)
 A = (A + 1) * B
LOOP

DO WHILE

The following DO WHILE repeatedly executes the Beep function only while A is less than or
equal to 15:

integer A = 1, B = 1
DO WHILE A <= 15
 Beep(A)
 A = (A + 1) * B
LOOP

LOOP UNTIL

The following LOOP UNTIL executes the Beep function and then continues to execute the
function until A is greater than 1:

integer A = 1, B = 1
DO
 Beep(A)
 A = (A + 1) * B
LOOP UNTIL A > 15

LOOP WHILE

The following LOOP WHILE repeatedly executes the Beep function while A is less than or
equal to 15:

integer A = 1, B = 1

Statements, Events, and Functions

Page 135

DO
 Beep(A)
 A = (A + 1) * B
LOOP WHILE A <= 15

2.1.8 EXIT

Description

In a DO...LOOP or a FOR...NEXT control structure, passes control out of the current loop.
EXIT takes no parameters.

Syntax

EXIT

Usage

An EXIT statement in a DO...LOOP or FOR...NEXT control structure causes control to
pass to the statement following the LOOP or NEXT statement. In a nested loop, an EXIT
statement passes control out of the current loop structure.

For information on how to jump to the end of the loop and continue looping, see
CONTINUE.

Examples

Example 1

This EXIT statement causes the loop to terminate if an element in the Nbr array equals 0:

int Nbr[10]
int Count = 1 // Assume values get assigned to Nbr array...
DO WHILE Count < 11
 IF Nbr[Count] = 0 THEN EXIT
 Count = Count + 1
LOOP
MessageBox("Hi", "Count is now " + String(Count))

Example 2

This EXIT statement causes the loop to terminate if an element in the Nbr array equals 0:

int Nbr[10]
int Count // Assume values get assigned to Nbr array...
FOR Count = 1 to 10
 IF Nbr[Count] = 0 THEN EXIT
NEXT
MessageBox("Hi", "Count is now " + String(Count))

2.1.9 FOR...NEXT

Description

A control structure that is a numerical iteration, used to execute one or more statements a
specified number of times.

Syntax

FOR varname = start TO end {STEP increment}
 statementblock
NEXT

Statements, Events, and Functions

Page 136

Table 2.9:

Parameter Description

varname The name of the iteration counter variable. It can be any numerical type (byte,
integer, double, real, long, longlong, or decimal), but integers provide the
fastest performance.

start Starting value of varname.

end Ending value of varname.

increment
(optional)

The increment value. Increment must be a constant and the same datatype
as varname. If you enter an increment, STEP is required. +1 is the default
increment.

statementblockThe block of statements you want to repeat.

Ending statement

You can end the FOR loop with the keywords END FOR instead of NEXT.

Usage

Using the start and end parameters

For a positive increment, end must be greater than start. For a negative increment, end must
be less than start.

When increment is positive and start is greater than end, statementblock does not execute.
When increment is negative and start is less than end, statementblock does not execute.

When start and end are expressions, they are reevaluated on each pass through the loop. If the
expression's value changes, it affects the number of loops. Consider this example -- the body
of the loop changes the number of rows, which changes the result of the RowCount function:

FOR n = 1 TO dw_1.RowCount()
 dw_1.DeleteRow(1)
NEXT

A variable as the step increment

If you need to use a variable for the step increment, you can use one of the
DO...LOOP constructions and increment the counter yourself within the loop.

Nesting

You can nest FOR...NEXT statements. You must have a NEXT or END FOR for each FOR.

Avoid overflow

If start or end is too large for the datatype of varname, varname will overflow, which
might create an infinite loop. Consider this statement for the integer li_int:

FOR li_int = 1 TO 50000

The end value 50000 is too large for an integer. When li_int is incremented, it
overflows to a negative value before reaching 50000, creating an infinite loop.

Statements, Events, and Functions

Page 137

Examples

Example 1

These statements add 10 to A as long as n is >=5 and <=25:

FOR n = 5 to 25
 A = A+10
NEXT

Example 2

These statements add 10 to A and increment n by 5 as long as n is >= 5 and <=25:

FOR N = 5 TO 25 STEP 5
 A = A+10
NEXT

Example 3

These statements contain two lines that will never execute because increment is negative and
start is less than end:

FOR Count = 1 TO 100 STEP -1
 IF Count < 1 THEN EXIT // These 2 lines
 Box[Count] = 10 // will never execute.
NEXT

Example 4

These are nested FOR...NEXT statements:

Int Matrix[100,50,200]
FOR i = 1 to 100
 FOR j = 1 to 50
 FOR k = 1 to 200
 Matrix[i,j,k]=1
 NEXT
 NEXT
NEXT

2.1.10 GOTO

Description

Transfers control from one statement in a script to another statement that is labeled.

Syntax

GOTO label

Table 2.10:

Parameter Description

label The label associated with the statement to which you want to transfer
control. A label is an identifier followed by a colon (such as OK:). Do not
use the colon with a label in the GOTO statement.

Examples

Example 1

Statements, Events, and Functions

Page 138

This GOTO statement skips over the Taxable=FALSE line:

Goto NextStep
Taxable=FALSE //This statement never executes.
NextStep:
Rate=Count/Count4

Example 2

This GOTO statement transfers control to the statement associated with the label OK:

GOTO OK
.
.
.
OK:
.
.
.

2.1.11 HALT

Description

Terminates an application.

Syntax

HALT {CLOSE}

Usage

When PowerBuilder encounters Halt without the keyword CLOSE, it immediately terminates
the application.

When PowerBuilder encounters Halt with the keyword CLOSE, it immediately executes the
scripts for application Close event and for the CloseQuery, Close, and Destructor events on
all instantiated objects before terminating the application. If there are no scripts for these
events, PowerBuilder immediately terminates the application.

You should not code a HALT statement in a component that will run in a server environment.
When a PowerBuilder component is running in a J2EE server, and a HALT statement is
encountered, instead of aborting the application, which is in this case the server itself, the
PowerBuilder VM throws a runtime error and continues. The container is responsible for
managing the lifecycle of the component.

Examples

Example 1

This statement stops the application if the user enters a password in the SingleLineEdit
named sle_password that does not match the value stored in a string named CorrectPassword:

IF sle_password.Text <> CorrectPassword THEN HALT

Example 2

This statement executes the script for the Close event for the application before it terminates
the application if the user enters a password in sle_password that does not match the value
stored in the string CorrectPassword:

IF sle_password.Text <> CorrectPassword &

Statements, Events, and Functions

Page 139

 THEN HALT CLOSE

2.1.12 IF...THEN

Description

A control structure used to cause a script to perform a specified action if a stated condition is
true. Syntax 1 uses a single-line format, and Syntax 2 uses a multiline format.

Syntax

Syntax 1 (the single-line format):

IF condition THEN action1 {ELSE action2}

Table 2.11:

ParameterDescription

condition The condition you want to test.

action1 The action you want performed if the condition is true. The action must be a
single statement on the same line as the rest of the IF statement.

action2
(optional)

The action you want performed if the condition is false. The action must be a
single statement on the same line as the rest of the IF statement.

Syntax 2 (the multiline format):

IF condition1 THEN
 action1
{ ELSEIF condition2 THEN
 action2
. . . }
{ ELSE
 action3 }
END IF

Table 2.12:

Parameter Description

condition1 The first condition you want to test.

action1 The action you want performed if condition1 is true. The action can be a
statement or multiple statements that are separated by semicolons or placed on
separate lines. At least one action is required.

condition2
(optional)

The condition you want to test if condition1 is false. You can have multiple
ELSEIF...THEN statements in an IF...THEN control structure.

action2 The action you want performed if condition2 is true. The action can be a
statement or multiple statements that are separated by semicolons or placed on
separate lines.

action3
(optional)

The action you want performed if none of the preceding conditions is true.
The action can be a statement or multiple statements that are separated by
semicolons or placed on separate lines.

Usage

Statements, Events, and Functions

Page 140

You can use continuation characters to place the single-line format on more than one physical
line in the script.

You must end a multiline IF...THEN control structure with END IF (which is two words).

Examples

Example 1

This single-line IF...THEN statement opens window w_first if Num is equal to 1; otherwise,
w_rest is opened:

IF Num = 1 THEN Open(w_first) ELSE Open(w_rest)

Example 2

This single-line IF...THEN statement displays a message if the value in the SingleLineEdit
sle_State is "TX". It uses the continuation character to continue the single-line statement
across two physical lines in the script:

IF sle_State.text="TX" THEN &
 MessageBox("Hello","Tex")

Example 3

This multiline IF...THEN compares the horizontal positions of windows w_first and
w_second. If w_first is to the right of w_second, w_first is moved to the left side of the
screen:

IF w_first.X > w_second.X THEN
 w_first.X = 0
END IF

Example 4

This multiline IF...THEN causes the application to:

• Beep twice if X equals Y

• Display the Parts list box and highlight item 5 if X equals Z

• Display the Choose list box if X is blank

• Hide the Empty button and display the Full button if none of the above conditions is true

IF X=Y THEN
 Beep(2)
ELSEIF X=Z THEN
 Show (lb_parts); lb_parts.SetState(5,TRUE)
ELSEIF X=" " THEN
 Show (lb_choose)
ELSE
 Hide(cb_empty)
 Show(cb_full)
END IF

2.1.13 RETURN

Description

Statements, Events, and Functions

Page 141

Stops the execution of a script or function immediately.

Syntax

RETURN { expression }

Table 2.13:

Parameter Description

expression In a function, any value (or expression) you want the function to return. The
return value must be the datatype specified as the return type in the function.

Usage

When a user's action triggers an event and PowerBuilder encounters RETURN in the event
script, it terminates execution of that script immediately and waits for the next user action.

When a script calls a function or event and PowerBuilder encounters RETURN in the code,
RETURN transfers (returns) control to the point at which the function or event was called.

Examples

Example 1

This script causes the system to beep once; the second beep statement will not execute:

Beep(1)
RETURN
Beep(1) // This statement will not execute.

Example 2

These statements in a user-defined function return the result of dividing Arg1 by Arg2 if
Arg2 is not equal to zero; they return -1 if Arg2 is equal to zero:

IF Arg2 <> 0 THEN
 RETURN Arg1/Arg2
ELSE
 RETURN -1
END IF

2.1.14 THROW

Description

Used to manually trigger exception handling for user-defined exceptions.

Syntax

THROW exlvalue

Table 2.14:

Parameter Description

exlvalue Variable (or expression that evaluates to a valid instance of an object) of type
Throwable. Usually the object type thrown is a user-defined exception class
derived from the system Exception class that inherits from Throwable.

Usage

Statements, Events, and Functions

Page 142

The variable following the THROW reserved word must be a valid object instance or an
expression that produces a valid object instance that derives from the Throwable datatype.
For example, you can use an expression such as:

THROW create ExceptionType

where ExceptionType is an object of type Throwable.

If you attempt to throw a noninstantiated exception, you will not get back the exception
information you want, since the only exception information you retrieve will be a
NullObjectError.

In a method script, you can only throw an exception that you declare in the method prototype
or that you handle in a try-catch block. The PowerScript compiler displays an error message
if you try to throw a user-defined exception without declaring it in the prototype Throws
statement and without surrounding it in an appropriate try-catch block.

When a RuntimeError, or a descendant of RuntimeError, is thrown, the instance variable
containing line number information will be filled in at the point where the THROW statement
occurs. If the error is handled and thrown again, this information will not be updated unless it
has specifically been set to null.

Examples

long ll_result
ll_result = myConnection.ConnectToServer()

 ConnectionException ex
 ex = create ConnectionException
 ex.connectResult = ll_result
 THROW ex
end if

2.1.15 THROWS

Description

Used to declare the type of exception that a method triggers. It is part of the method
prototype.

Syntax

methodname ({arguments}) THROWS ExceptionType { , ExceptionType, ... }

Table 2.15:

Parameter Description

methodname Name of the method that throws an exception.

arguments Arguments of the method that throws an exception. Depending on the method,
the method arguments can be optional.

ExceptionTypeObject of type Throwable. Usually the object type thrown is a user-defined
exception class derived from the system Exception class. If you define
multiple potential exceptions for a method, you can throw each type of
exception in the same clause by separating the exception types with commas.

Usage

Statements, Events, and Functions

Page 143

Internal use only.

You do not type or otherwise add the THROWS clause to function calls in a PowerBuilder
script. However, you can add a THROWS clause to any PowerBuilder function or to any user
event that is not defined by a pbm event ID.

For more information about adding a THROWS clause to a function or event prototype, see
Section 3.2.2.6, “Defining a THROWS clause” in Users Guide. For more information about
exception handling, see Section 2.2.9, “Exception handling in PowerBuilder” in Application
Techniques.

2.1.16 TRY...CATCH...FINALLY...END TRY

Description

Isolates code that can cause an exception, describes what to do if an exception of a given type
is encountered, and allows you to close files or network connections (and return objects to
their original state) whether or not an exception is encountered.

Syntax

TRY trystatements
CATCH (ThrowableType1 exIdentifier1)
 catchstatements1
CATCH (ThrowableType2 exIdentifier2)
 catchstatements2
...
CATCH (ThrowableTypeN exIdentifierN)
 catchstatementsN
FINALLY
 cleanupstatements
END TRY

Table 2.16:

Parameter Description

trystatements Block of code that might potentially throw an exception.

ThrowableTypeNObject type of exception to be caught. A CATCH block is optional if you
include a FINALLY block. You can include multiple CATCH blocks. Every
CATCH block in a try-catch block must include a corresponding exception
object type and a local variable of that type.

exIdentifierN Local variable of type ThrowableTypeN.

catchstatementsNCode to handle the exception being caught.

cleanupstatementsCleanup code. The FINALLY block is optional if you include one or more
CATCH block.

Usage

The TRY block, which is the block of statements between the TRY and CATCH keywords
(or the TRY and FINALLY keywords if there is no CATCH clause), is used to isolate
code that might potentially throw an exception. The statements in the TRY block are run
unconditionally until either the entire block of statements is executed or some statement in
the block causes an exception to be thrown.

Statements, Events, and Functions

Page 144

Use a CATCH block or multiple CATCH blocks to handle exceptions thrown in a TRY
block. In the event that an exception is thrown, execution of the TRY block is stopped and
the statements in the first CATCH block are executed -- if and only if the exception thrown is
of the same type or a descendant of the type of the identifier following the CATCH keyword.

If the exception thrown is not the same type or a descendant type of the identifier in the first
CATCH block, the exception is not handled by this CATCH block. If there are additional
CATCH blocks, they are evaluated in the order they appear. If the exception cannot be
handled by any of the CATCH blocks, the statements in the FINALLY block are executed.

The exception then continues to unwind the call stack to any outer nested try-catch blocks. If
there are no outer nested blocks, the SystemError event on the Application object is fired.

If no exception is thrown, execution continues at the beginning of the FINALLY block if one
exists; otherwise, execution continues on the line following the END TRY statement.

FINALLY clause restriction

Do not use RETURN statements in the FINALLY clause of a TRY-CATCH block.
This can prevent the exception from being caught by its invoker.

See also

THROW

2.2 SQL Statements

About this chapter

This chapter describes the embedded SQL and dynamic SQL statements and how to use them
in scripts.

2.2.1 Using SQL in scripts

PowerScript supports standard embedded SQL statements and dynamic SQL statements in
scripts. In general, PowerScript supports all DBMS-specific clauses and reserved words that
occur in the supported SQL statements. For example, PowerBuilder supports DBMS-specific
built-in functions within a SELECT command.

For information about embedded SQL, see Chapter 6, Using Embedded SQL in Connecting to
Your Database.

Referencing PowerScript variables in scripts

Wherever constants can be referenced in SQL statements, PowerScript variables preceded
by a colon (:) can be substituted. Any valid PowerScript variable can be used. This INSERT
statement uses a constant value:

INSERT INTO EMPLOYEE (SALARY) VALUES (18900) ;

The same statement using a PowerScript variable to reference the constant might look like
this:

int Sal_var
Sal_var = 18900
INSERT INTO EMPLOYEE (SALARY) VALUES (:Sal_var) ;

Statements, Events, and Functions

Page 145

Using indicator variables

PowerBuilder supports indicator variables, which are used to identify null values or
conversion errors after a database retrieval. Indicator variables are integers that are specified
in the HostVariableList of a FETCH or SELECT statement.

Each indicator variable is separated from the variable it is indicating by a space (but no
comma). For example, this statement is a HostVariableList without indicator variables:

:Name, :Address, :City

The same HostVariableList with indicator variables looks like this:

:Name :IndVar1, :Address :IndVar2, :City :IndVar3

Indicator variables have one of these values:

Table 2.17:

Page Meaning

0 Valid, non-null value

-1 Null value

-2 Conversion error

Error reporting

Not all DBMSs return a conversion error when the datatype of a column does not
match the datatype of the associated variable.

The following statement uses the indicator variable IndVar2 to see if Address contains a null
value:

if IndVar2 = -1 then...

You can also use the PowerScript IsNull function to accomplish the same result without
using indicator variables:

if IsNull(Address) then ...

This statement uses the indicator variable IndVar3 to set City to null:

IndVar3 = -1

You can also use the PowerScript SetNull function to accomplish the same result without
using indicator variables:

SetNull(City)

Error handling in scripts

The scripts shown in the SQL examples above do not include error handling, but it is good
practice to test the success and failure codes (the SQLCode attribute) in the transaction object
after every statement. The codes are:

Table 2.18:

Value Meaning

0 Success.

Statements, Events, and Functions

Page 146

Value Meaning

100 Fetched row not found.

-1 Error; the statement failed. Use SQLErrText
or SQLDBCode to obtain the detail.

After certain statements, such as DELETE, FETCH, and UPDATE, you should also check
the SQLNRows property of the transaction object to make sure the action affected at least
one row.

About SQLErrText and SQLDBCode

The string SQLErrText in the transaction object contains the database vendor-supplied
error message. The long named SQLDBCode in the transaction object contains the database
vendor-supplied status code:

IF SQLCA.SQLCode = -1 THEN
 MessageBox("SQL error", SQLCA.SQLErrText)
END IF

Painting standard SQL

You can paint the following SQL statements in scripts and functions:

• Declarations of SQL cursors and stored procedures

• Cursor FETCH, UPDATE, and DELETE statements

• Noncursor SELECT, INSERT, UPDATE, and DELETE statements

For more information about scope, see Where to declare variables.

You can declare cursors and stored procedures at the scope of global, instance, shared, or
local variables. A cursor or procedure can be declared in the Script view using the Paste SQL
button in the PainterBar.

You can paint standard embedded SQL statements in the Script view, the Function painter,
and the Interactive SQL view in the Database painter using the Paste SQL button in the
PainterBar or the Paste Special>SQL item from the pop-up menu.

Supported SQL statements

In general, all DBMS-specific features are supported in PowerScript if they occur within a
PowerScript-supported SQL statement. For example, PowerScript supports DBMS-specific
built-in functions within a SELECT command.

However, any SQL statement that contains a SELECT clause must also contain a FROM
clause in order for the script to compile successfully. To solve this problem, add a FROM
clause that uses a "dummy" table to SELECT statements without FROM clauses. For
example:

string resselect user_name() into:res from dummy;
select db_name() into:res from dummy;
select date('2001-01-02:21:20:53') into:res from dummy;

Disabling database connection when compiling and building

Statements, Events, and Functions

Page 147

When PowerBuilder compiles an application that contains embedded SQL, it connects to
the database profile last used in order to check for database access errors during the build
process. For applications that use multiple databases, this can result in spurious warnings
during the build since the embedded SQL can be validated only against that single last-
used database and not against the databases actually used by the application. In addition, an
unattended build, such as a lengthy overnight rebuild, can stall if the database connection
cannot be made.

To avoid these issues, you can select the Disable Database Connection When Compiling and
Building check box on the general page of the System Options dialog box.

Caution

Select the check box only when you want to compile without signing on to the
database. Compiling without connecting to a database prevents the build process from
checking for database errors and may therefore result in runtime errors later.

2.2.1.1 CLOSE Cursor

Description

Closes the SQL cursor CursorName; ends processing of CursorName.

Syntax

CLOSE CursorName ;

Table 2.19:

Parameter Description

CursorName The cursor you want to close

Usage

This statement must be preceded by an OPEN statement for the same cursor. The USING
TransactionObject clause is not allowed with CLOSE; the transaction object was specified in
the statement that declared the cursor.

CLOSE often appears in the script that is executed when the SQL code after a fetch equals
100 (not found).

Error handling

It is good practice to test the success/failure code after executing a CLOSE cursor
statement.

Examples

This statement closes the Emp_cursor cursor:

CLOSE Emp_cursor ;

2.2.1.2 CLOSE Procedure

Description

Statements, Events, and Functions

Page 148

Closes the SQL procedure ProcedureName; ends processing of ProcedureName.

DBMS-specific

Not all DBMSs support stored procedures.

Syntax

CLOSE ProcedureName;

Table 2.20:

Parameter Description

ProcedureName The stored procedure you want to close

Usage

This statement must be preceded by an EXECUTE statement for the same procedure. The
USING TransactionObject clause is not allowed with CLOSE; the transaction object was
specified in the statement that declared the procedure.

Use CLOSE only to close procedures that return result sets. PowerBuilder automatically
closes procedures that do not return result sets (and sets the return code to 100).

CLOSE often appears in the script that is executed when the SQL code after a fetch equals
100 (not found).

Error handling

It is good practice to test the success/failure code after executing a CLOSE Procedure
statement.

Examples

This statement closes the stored procedure named Emp_proc:

CLOSE Emp_proc ;

2.2.1.3 COMMIT

Description

Permanently updates all database operations since the previous COMMIT, ROLLBACK, or
CONNECT for the specified transaction object.

Syntax

COMMIT {USING TransactionObject};

Table 2.21:

Parameter Description

TransactionObjectThe name of the transaction object for which you want to permanently
update all database operations since the previous COMMIT, ROLLBACK,
or CONNECT. This clause is required only for transaction objects other
than the default (SQLCA).

Statements, Events, and Functions

Page 149

Usage

COMMIT does not cause a disconnect, but it does close all open cursors or procedures. (But
note that the DISCONNECT statement in PowerBuilder does issue a COMMIT.)

Error handling

It is good practice to test the success/failure code after executing a COMMIT
statement.

Examples

Example 1

This statement commits all operations for the database specified in the default transaction
object:

COMMIT ;

Example 2

This statement commits all operations for the database specified in the transaction object
named Emp_tran:

COMMIT USING Emp_tran ;

2.2.1.4 CONNECT

Description

Connects to a specified database.

Syntax

CONNECT {USING TransactionObject};

Table 2.22:

Parameter Description

TransactionObjectThe name of the transaction object containing the required connection
information for the database to which you want to connect. This clause is
required only for transaction objects other than the default (SQLCA).

Usage

This statement must be executed before any actions (such as INSERT, UPDATE, or
DELETE) can be processed using the default transaction object or the specified transaction
object.

Error handling

It is good practice to test the success/failure code after executing a CONNECT
statement.

Examples

Example 1

Statements, Events, and Functions

Page 150

This statement connects to the database specified in the default transaction object:

CONNECT ;

Example 2

This statement connects to the database specified in the transaction object named Emp_tran:

CONNECT USING Emp_tran ;

2.2.1.5 DECLARE Cursor

Description

Declares a cursor for the specified transaction object.

Syntax

DECLARE CursorName CURSOR FOR SelectStatement
 {USING TransactionObject};

Table 2.23:

Parameter Description

CursorName Any valid PowerBuilder name.

SelectStatement Any valid SELECT statement.

TransactionObjectThe name of the transaction object for which you want to declare the
cursor. This clause is required only for transaction objects other than the
default (SQLCA).

Usage

DECLARE Cursor is a nonexecutable command and is analogous to declaring a variable.

To declare a local cursor, open the script in the Script view and select Paste SQL from the
PainterBar or the Edit>Paste Special menu. To declare a global, instance, or shared cursor,
select Declare from the first drop-down list in the Script view and Global Variables, Instance
Variables, or Shared Variables from the second drop-down list, then select Paste SQL.

For information about global, instance, shared, and local scope, see Where to declare
variables.

Examples

This statement declares the cursor called Emp_cur for the database specified in the default
transaction object. It also references the Sal_var variable, which must be set to an appropriate
value before you execute the OPEN Emp_cur command:

DECLARE Emp_cur CURSOR FOR
 SELECT employee.emp_number, employee.emp_name
 FROM employee
 WHERE employee.emp_salary > :Sal_var ;

2.2.1.6 DECLARE Procedure

Description

Declares a procedure for the specified transaction object.

Statements, Events, and Functions

Page 151

DBMS-specific

Not all DBMSs support stored procedures.

Syntax

DECLARE ProcedureName PROCEDURE FOR
 StoredProcedureName
 @Param1=Value1, @Param2=Value2,...
 {USING TransactionObject};

Table 2.24:

Parameter Description

ProcedureName Any valid PowerBuilder name.

StoredProcedureNameAny stored procedure in the database.

@Paramn=ValuenThe name of a parameter (argument) defined in the stored procedure and a
valid PowerBuilder expression; represents the number of the parameter and
value.

TransactionObjectThe name of the transaction object for which you want to declare the
procedure. This clause is required only for transaction objects other than
the default (SQLCA).

Usage

DECLARE Procedure is a nonexecutable command. It is analogous to declaring a variable.

To declare a local procedure, open the script in the Script view and select Paste SQL from
the PainterBar or the Edit>Paste Special menu. To declare a global, instance, or shared
procedure, select Declare from the first drop-down list in the Script view and Global
Variables, Instance Variables, or Shared Variables from the second drop-down list, then
select Paste SQL.

For information about global, instance, shared, and local scope, see Where to declare
variables.

Examples

Example 1

This statement declares the SAP ASE procedure Emp_proc for the database specified in
the default transaction object. It references the Emp_name_var and Emp_sal_var variables,
which must be set to appropriate values before you execute the EXECUTE Emp_proc
command:

DECLARE Emp_proc procedure for GetName
 @emp_name = :Emp_name_var,
 @emp_salary = :Emp_sal_var ;

Example 2

This statement declares the ORACLE procedure Emp_proc for the database specified in
the default transaction object. It references the Emp_name_var and Emp_sal_var variables,
which must be set to appropriate values before you execute the EXECUTE Emp_proc
command:

DECLARE Emp_proc procedure for GetName

Statements, Events, and Functions

Page 152

 (:Emp_name_var, :Emp_sal_var) ;

2.2.1.7 DELETE

Description

Deletes the rows in TableName specified by Criteria.

Syntax

DELETE FROM TableName WHERE Criteria {USING TransactionObject};

Table 2.25:

Parameter Description

TableName The name of the table from which you want to delete rows.

Criteria Criteria that specify which rows to delete.

TransactionObjectThe name of the transaction object that identifies the database containing
the table. This clause is required only for transaction objects other than the
default (SQLCA).

Usage

Error handling

It is good practice to test the success/failure code after executing a DELETE
statement. To see if the DELETE was successful, you can test SLQCode for a failure
code. However, if nothing matches the WHERE clause and no rows are deleted,
SQLCode is still set to zero. To make sure the delete affected at least one row, check
the SQLNRows property of the transaction object.

Examples

Example 1

This statement deletes rows from the Employee table in the database specified in the default
transaction object where Emp_num is less than 100:

DELETE FROM Employee WHERE Emp_num < 100 ;

Example 2

These statements delete rows from the Employee table in the database named in the
transaction object named Emp_tran where Emp_num is equal to the value entered in the
SingleLineEdit sle_number:

int Emp_num
 Emp_num = Integer(sle_number.Text)
 DELETE FROM Employee
 WHERE Employee.Emp_num = :Emp_num ;

The integer Emp_num requires a colon in front of it to indicate it is a variable when it is used
in a WHERE clause.

2.2.1.8 DELETE Where Current of Cursor

Description

Statements, Events, and Functions

Page 153

Deletes the row in which the cursor is positioned.

DBMS-specific

Not all DBMSs support DELETE Where Current of Cursor.

Syntax

DELETE FROM TableName WHERE CURRENT OF CursorName;

Table 2.26:

Parameter Description

TableName The name of the table from which you want
to delete a row

CursorName The name of the cursor in which the table
was specified

Usage

The USING TransactionObject clause is not allowed with this form of DELETE Where
Current of Cursor; the transaction object was specified in the statement that declared the
cursor.

Error handling

It is good practice to test the success/failure code after executing a DELETE Where
Current of Cursor statement.

Examples

This statement deletes from the Employee table the row in which the cursor named Emp_cur
is positioned:

DELETE FROM Employee WHERE current of Emp_curs ;

2.2.1.9 DISCONNECT

Description

Executes a COMMIT for the specified transaction object and then disconnects from the
specified database.

Syntax

DISCONNECT {USING TransactionObject};

Table 2.27:

Parameter Description

TransactionObjectThe name of the transaction object that identifies the database you want to
disconnect from and in which you want to permanently update all database
operations since the previous COMMIT, ROLLBACK, or CONNECT.
This clause is required only for transaction objects other than the default
(SQLCA).

Statements, Events, and Functions

Page 154

Usage

Error handling

It is good practice to test the success/failure code after executing a DISCONNECT
statement.

Examples

Example 1

This statement disconnects from the database specified in the default transaction object:

DISCONNECT ;

Example 2

This statement disconnects from the database specified in the transaction object named
Emp_tran:

DISCONNECT USING Emp_tran ;

2.2.1.10 EXECUTE

Description

Executes the previously declared procedure identified by ProcedureName.

Syntax

EXECUTE ProcedureName;

Table 2.28:

Parameter Description

ProcedureNameThe name assigned in the DECLARE statement of the stored procedure
you want to execute. The procedure must have been declared previously.
ProcedureName is not necessarily the name of the procedure stored in the
database.

Usage

The USING TransactionObject clause is not allowed with EXECUTE; the transaction object
was specified in the statement that declared the procedure.

Error handling

It is good practice to test the success/failure code after executing an EXECUTE
statement.

Examples

This statement executes the stored procedure Emp_proc:

EXECUTE Emp_proc ;

2.2.1.11 FETCH

Description

Statements, Events, and Functions

Page 155

Fetches the row after the row on which Cursor | Procedure is positioned.

Syntax

FETCH Cursor | Procedure INTO HostVariableList;

Table 2.29:

Parameter Description

Cursor or
Procedure

The name of the cursor or procedure from which you want to fetch a row

HostVariableListPowerScript variables into which data values will be retrieved

Usage

The USING TransactionObject clause is not allowed with FETCH; the transaction object was
specified in the statement that declared the cursor or procedure.

If your DBMS supports formats of FETCH other than the customary (and default) FETCH
NEXT, you can specify FETCH FIRST, FETCH PRIOR, or FETCH LAST.

Error handling

It is good practice to test the success/failure code after executing a FETCH statement.
To see if the FETCH was successful, you can test SLQCode for a failure code.
However, if nothing matches the WHERE clause and no rows are fetched, SQLCode
is still set to 100. To make sure the fetch affected at least one row, check the
SQLNRows property of the transaction object.

Examples

Example 1

This statement fetches data retrieved by the SELECT clause in the declaration of the cursor
named Emp_cur and puts it into Emp_num and Emp_name:

int Emp_num
 string Emp_name
 FETCH Emp_cur INTO :Emp_num, :Emp_name ;

Example 2

If sle_emp_num and sle_emp_name are SingleLineEdits, these statements fetch from the
cursor named Emp_cur, store the data in Emp_num and Emp_name, and then convert
Emp_num from an integer to a string, and put them in sle_emp_num and sle_emp_name:

int Emp_num
 string Emp_name
 FETCH Emp_cur INTO :emp_num, :emp_name ;
 sle_emp_num.Text = string(Emp_num)
 sle_emp_name.Text = Emp_name

2.2.1.12 INSERT

Description

Inserts one or more new rows into the table specified in RestOfInsertStatement.

Syntax

Statements, Events, and Functions

Page 156

INSERT RestOfInsertStatement
 {USING TransactionObject} ;

Table 2.30:

Parameter Description

RestOfInsertStatementThe rest of the INSERT statement (the INTO clause, list of columns and
values or source).

TransactionObjectThe name of the transaction object that identifies the database containing
the table. This clause is required only for transaction objects other than the
default (SQLCA).

Usage

Error handling

It is good practice to test the success/failure code after executing an INSERT
statement.

Examples

Example 1

These statements insert a row with the values in EmpNbr and EmpName into the Emp_nbr
and Emp_name columns of the Employee table identified in the default transaction object:

int EmpNbr
 string EmpName
 ...
 INSERT INTO Employee (employee.Emp_nbr, employee.Emp_name)
 VALUES (:EmpNbr, :EmpName) ;

Example 2

These statements insert a row with the values entered in the SingleLineEdits sle_number and
sle_name into the Emp_nbr and Emp_name columns of the Employee table in the transaction
object named Emp_tran:

int EmpNbr
 string EmpName
 EmpNbr = Integer(sle_number.Text)
 EmpName = sle_name.Text
 INSERT INTO Employee (employee.Emp_nbr, employee.Emp_name)
 VALUES (:EmpNbr, :EmpName) USING Emp_tran ;

2.2.1.13 OPEN Cursor

Description

Causes the SELECT specified when the cursor was declared to be executed.

Syntax

OPEN CursorName ;

Table 2.31:

Parameter Description

CursorName The name of the cursor you want to open

Statements, Events, and Functions

Page 157

Usage

The USING TransactionObject clause is not allowed with OPEN; the transaction object was
specified in the statement that declared the cursor.

Error handling

It is good practice to test the success/failure code after executing an OPEN Cursor
statement.

Examples

This statement opens the cursor Emp_curs:

OPEN Emp_curs ;

2.2.1.14 ROLLBACK

Description

Cancels all database operations in the specified database since the last COMMIT,
ROLLBACK, or CONNECT.

Syntax

ROLLBACK {USING TransactionObject} ;

Table 2.32:

Parameter Description

TransactionObjectThe name of the transaction object that identifies the database in which
you want to cancel all operations since the last COMMIT, ROLLBACK, or
CONNECT. This clause is required only for transaction objects other than the
default (SQLCA).

Usage

ROLLBACK does not cause a disconnect, but it does close all open cursors and procedures.

Error handling

It is good practice to test the success/failure code after executing a ROLLBACK
statement.

Examples

Example 1

This statement cancels all database operations in the database specified in the default
transaction object:

ROLLBACK ;

Example 2

This statement cancels all database operations in the database specified in the transaction
object named Emp_tran:

Statements, Events, and Functions

Page 158

ROLLBACK USING emp_tran ;

2.2.1.15 SELECT

Description

Selects a row in the tables specified in RestOfSelectStatement.

Syntax

SELECT RestOfSelectStatement {USING TransactionObject} ;

Table 2.33:

Parameter Description

RestOfSelectStatementThe rest of the SELECT statement (the column list INTO, FROM,
WHERE, and other clauses).

TransactionObjectThe name of the transaction object that identifies the database containing
the table. This clause is required only for transaction objects other than the
default (SQLCA).

Usage

An error occurs if the SELECT statement returns more than one row.

Error handling

It is good practice to test the success/failure code after executing a SELECT
statement. You can test SQLCode for a failure code.

When you use the INTO clause, PowerBuilder does not verify whether the datatype of the
retrieved column matches the datatype of the host variable; it only checks for the existence of
the columns and tables. You are responsible for checking that the datatypes match. Keep in
mind that not all database datatypes are the same as PowerBuilder datatypes.

Examples

The following statements select data in the Emp_LName and Emp_FName columns of a row
in the Employee table and put the data into the SingleLineEdits sle_LName and sle_FName
(the transaction object Emp_tran is used):

int Emp_num
 string Emp_lname, Emp_fname
 Emp_num = Integer(sle_Emp_Num.Text)

 SELECT employee.Emp_LName, employee.Emp_FName
 INTO :Emp_lname, :Emp_fname
 FROM Employee
 WHERE Employee.Emp_nbr = :Emp_num
 USING Emp_tran ;

 IF Emp_tran.SQLCode = 100 THEN
 MessageBox("Employee Inquiry", &
 "Employee Not Found")
 ELSEIF Emp_tran.SQLCode > 0 then
 MessageBox("Database Error", &
 Emp_tran.SQLErrText, Exclamation!)
 END IF

Statements, Events, and Functions

Page 159

 sle_Lname.text = Emp_lname
 sle_Fname.text = Emp_fname

2.2.1.16 SELECTBLOB

Description

Selects a single blob column in a row in the table specified in RestOfSelectStatement.

Syntax

SELECTBLOB RestOfSelectStatement {USING TransactionObject} ;

Table 2.34:

Parameter Description

RestOfSelectStatementThe rest of the SELECT statement (the INTO, FROM, and WHERE
clauses).

TransactionObjectThe name of the transaction object that identifies the database containing
the table. This clause is required only for transaction objects other than the
default (SQLCA).

Usage

An error occurs if the SELECTBLOB statement returns more than one row.

Error handling

It is good practice to test the success/failure code after executing an SELECTBLOB
statement. To make sure the update affected at least one row, check the SQLNRows
property of SQLCA or the transaction object. The SQLCode or SQLDBCode property
will not indicate the success or failure of the SELECTBLOB statement.

You can include an indicator variable in the host variable list (target parameters) in
the INTO clause to check for an empty blob (a blob of zero length) and conversion
errors.

Database information

SAP ASE users must set the AutoCommit property of the transaction object to true
before calling the SELECTBLOB function. For information about the AutoCommit
property, see Connecting to Your Database.

Examples

The following statements select the blob column Emp_pic from a row in the Employee table
and set the picture p_1 to the bitmap in Emp_id_pic (the transaction object Emp_tran is
used):

Blob Emp_id_pic
 SELECTBLOB Emp_pic
 INTO :Emp_id_pic
 FROM Employee
 WHERE Employee.Emp_Num = 100
 USING Emp_tran ;
 p_1.SetPicture(Emp_id_pic)

Statements, Events, and Functions

Page 160

The blob Emp_id_pic requires a colon to indicate that it is a host (PowerScript) variable
when you use it in the INTO clause of the SELECTBLOB statement.

2.2.1.17 UPDATE

Description

Updates the rows specified in RestOfUpdateStatement.

Syntax

UPDATE TableName RestOfUpdateStatement {USING TransactionObject} ;

Table 2.35:

Parameter Description

TableName The name of the table in which you want to update rows.

RestOfUpdateStatementThe rest of the UPDATE statement (the SET and WHERE clauses).

TransactionObjectThe name of the transaction object that identifies the database containing
the table. This clause is required only for transaction objects other than the
default (SQLCA).

Usage

Error handling

It is good practice to test the success/failure code after executing a UPDATE
statement. You can test SQLCode for a failure code. However, if nothing matches the
WHERE clause and no rows are updated, SQLCode is still set to zero. To make sure
the update affected at least one row, check the SQLNRows property of the transaction
object.

Examples

These statements update rows from the Employee table in the database specified in the
transaction object named Emp_tran, where Emp_num is equal to the value entered in the
SingleLineEdit sle_Number:

int Emp_num
 Emp_num=Integer(sle_Number.Text)
 UPDATE Employee
 SET emp_name = :sle_Name.Text
 WHERE Employee.emp_num = :Emp_num
 USING Emp_tran ;

 IF Emptran.SQLNRows > 0 THEN
 COMMIT USING Emp_tran ;
 END IF

The integer Emp_num and the SingleLineEdit sle_name require a colon to indicate they are
host (PowerScript) variables when you use them in an UPDATE statement.

2.2.1.18 UPDATEBLOB

Description

Statements, Events, and Functions

Page 161

Updates the rows in TableName in BlobColumn.

Syntax

UPDATEBLOB TableName
 SET BlobColumn = BlobVariable
 RestOfUpdateStatement {USING TransactionObject} ;

Table 2.36:

Parameter Description

TableName The name of the table you want to update.

BlobColumn The name of the column you want to update in TableName. The datatype
of this column must be blob.

BlobVariable A PowerScript variable of the datatype blob.

RestOfUpdateStatementThe rest of the UPDATE statement (the WHERE clause).

TransactionObject The name of the transaction object that identifies the database containing
the table. This clause is required only for transaction objects other than
the default (SQLCA).

Usage

Error handling

It is good practice to test the success/failure code after executing an UPDATEBLOB
statement. To make sure the update affected at least one row, check the SQLNRows
property of SQLCA or the transaction object. The SQLCode or SQLDBCode property
will not indicate the success or failure of the UPDATEBLOB statement.

Database information

SAP ASE users must set the AutoCommit property of the transaction object to True
before calling the UPDATEBLOB function. For information about the AutoCommit
property, see Connecting to Your Database.

Examples

These statements update the blob column emp_pic in the Employee table, where emp_num is
100:

int fh
 blob Emp_id_pic
 fh = FileOpen("c:\emp_100.bmp", StreamMode!)
 IF fh <> -1 THEN
 FileRead(fh, emp_id_pic)
 FileClose(fh)
 UPDATEBLOB Employee SET emp_pic = :Emp_id_pic
 WHERE Emp_num = 100
 USING Emp_tran ;
 END IF

 IF Emptran.SQLNRows > 0 THEN
 COMMIT USING Emp_tran ;
 END IF

Statements, Events, and Functions

Page 162

The blob Emp_id_pic requires a colon to indicate it is a host (PowerScript) variable in the
UPDATEBLOB statement.

2.2.1.19 UPDATE Where Current of Cursor

Description

Updates the row in which the cursor is positioned using the values in SetStatement.

Syntax

UPDATE TableName SetStatement WHERE CURRENT OF CursorName ;

Table 2.37:

Parameter Description

TableName The name of the table in which you want to
update the row

SetStatement The word SET followed by a comma-
separated list of the form ColumnName =
value

CursorName The name of the cursor in which the table is
referenced

Usage

The USING Transaction Object clause is not allowed with UPDATE Where Current of
Cursor; the transaction object was specified in the statement that declared the cursor.

Examples

This statement updates the row in the Employee table in which the cursor called Emp_curs is
positioned:

UPDATE Employee
 SET salary = 17800
 WHERE CURRENT of Emp_curs ;

2.2.2 Using dynamic SQL

General information

Because database applications usually perform a specific activity, you usually know the
complete SQL statement when you write and compile the script. When PowerBuilder
does not support the statement in embedded SQL (as with a DDL statement) or when the
parameters or the format of the statements are unknown at compile time, the application must
build the SQL statements at runtime. This is called dynamic SQL. The parameters used in
dynamic SQL statements can change each time the program is executed.

Using SQL Anywhere

For information about using dynamic SQL with SQL Anywhere, see the SQL
Anywhere documentation.

Four formats

Statements, Events, and Functions

Page 163

PowerBuilder has four dynamic SQL formats. Each format handles one of the following
situations at compile time:

Table 2.38:

Format When used

Format 1 Non-result-set statements with no input parameters

Format 2 Non-result-set statements with input parameters

Format 3 Result-set statements in which the input parameters and result-set
columns are known at compile time

Format 4 Result-set statements in which the input parameters, the result-set
columns or both are unknown at compile time

• To handle these situations, you use:

• The PowerBuilder dynamic SQL statements

• The dynamic versions of CLOSE, DECLARE, FETCH, OPEN, and EXECUTE

• The PowerBuilder datatypes DynamicStagingArea and DynamicDescriptionArea

About the examples

The examples assume that the default transaction object (SQLCA) has been assigned
valid values and that a successful CONNECT has been executed. Although the
examples do not show error checking, you should check the SQLCode after each SQL
statement.

Dynamic SQL statements

The PowerBuilder dynamic SQL statements are:

DESCRIBE DynamicStagingArea
 INTO DynamicDescriptionArea ;EXECUTE {IMMEDIATE} SQLStatement
 {USING TransactionObject} ;EXECUTE DynamicStagingArea
 USING ParameterList ;EXECUTE DYNAMIC Cursor | Procedure
 USING ParameterList ;OPEN DYNAMIC Cursor | Procedure
 USING ParameterList ;EXECUTE DYNAMIC Cursor | Procedure
 USING DESCRIPTOR DynamicDescriptionArea ;OPEN DYNAMIC Cursor | Procedure
 USING DESCRIPTOR DynamicDescriptionArea ;PREPARE DynamicStagingArea
 FROM SQLStatement {USING TransactionObject} ;

Two datatypes

DynamicStagingArea

DynamicStagingArea is a PowerBuilder datatype. PowerBuilder uses a variable of this type
to store information for use in subsequent statements.

The DynamicStagingArea is the only connection between the execution of a statement and a
transaction object and is used internally by PowerBuilder; you cannot access information in
the DynamicStagingArea.

PowerBuilder provides a global DynamicStagingArea variable named SQLSA that you can
use when you need a DynamicStagingArea variable.

Statements, Events, and Functions

Page 164

If necessary, you can declare and create additional object variables of the type
DynamicStagingArea. These statements declare and create the variable, which must be done
before referring to it in a dynamic SQL statement:

DynamicStagingArea dsa_stage1
dsa_stage1 = CREATE DynamicStagingArea

After the EXECUTE statement is completed, SQLSA is no longer referenced.

DynamicDescriptionArea

DynamicDescriptionArea is a PowerBuilder datatype. PowerBuilder uses a variable of this
type to store information about the input and output parameters used in Format 4 of dynamic
SQL.

PowerBuilder provides a global DynamicDescriptionArea named SQLDA that you can use
when you need a DynamicDescriptionArea variable.

If necessary, you can declare and create additional object variables of the type
DynamicDescriptionArea. These statements declare and create the variable, which must be
done before referring to it in a dynamic SQL statement:

DynamicDescriptionArea dda_desc1
dda_desc1 = CREATE DynamicDescriptionArea

For more information about SQLDA, see Dynamic SQL Format 4.

Preparing to use dynamic SQL

When you use dynamic SQL, you must:

• Prepare the DynamicStagingArea in all formats except Format 1

• Describe the DynamicDescriptionArea in Format 4

• Execute the statements in the appropriate order

Preparing and describing the datatypes

Since the SQLSA staging area is the only connection between the execution of a SQL
statement and a transaction object, an execution error will occur if you do not prepare the
SQL statement correctly.

In addition to SQLSA and SQLDA, you can declare other variables of the
DynamicStagingArea and DynamicDescriptionArea datatypes. However, this is required
only when your script requires simultaneous access to two or more dynamically prepared
statements.

This is a valid dynamic cursor:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;PREPARE SQLSA FROM "SELECT emp_id FROM
 employee" ;OPEN DYNAMIC my_cursor ;

This is an invalid dynamic cursor. There is no PREPARE, and therefore an execution error
will occur:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;OPEN DYNAMIC my_cursor ;

Statement order

Statements, Events, and Functions

Page 165

Where you place the dynamic SQL statements in your scripts is unimportant, but the order of
execution is important in Formats 2, 3, and 4. You must execute:

1. The DECLARE and the PREPARE before you execute any other dynamic SQL statements

2. The OPEN in Formats 3 and 4 before the FETCH

3. The CLOSE at the end

If you have multiple PREPARE statements, the order affects the contents of SQLSA.

These statements illustrate the correct ordering:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA
string sql1, sql2
sql1 = "SELECT emp_id FROM department "&
WHERE salary > 90000"
sql2 = "SELECT emp_id FROM department "&
WHERE salary > 20000"
IF deptId = 200 then
 PREPARE SQLSA FROM :sql1 USING SQLCA ;
ELSE
 PREPARE SQLSA FROM :sql2 USING SQLCA ;
END IF
OPEN DYNAMIC my_cursor ; // my_cursor maps to the
 // SELECT that has been
 // prepared.

Declaring a procedure with the SQL Native Client database interface

When you connect to Microsoft SQL Server using the PowerBuilder SQL Native Client
(SNC) database interface, the syntax for declaring a procedure is:

DECLARE logical_procedure_name PROCEDURE FOR
 [@rc=]procedure_name
 {@param1 = value1 [OUTPUT], @param2 = value2 [OUTPUT], ...}
 {USING transaction_object};

[@rc=] indicates that you want to get the procedure's return value.

Use the keyword OUTPUT or OUT to indicate an output parameter if you want to get the
output parameter's value.

If the BindSPInput database parameter is 0, value1, value2,... can be either PowerBuilder
script variables or literal values. If BindSPInput is 1, value1, value2, ... must be PowerBuilder
script variables. If you specify literal values, the SNC interface returns a runtime error.

When you declare a dynamic SQL statement with a procedure, enter a question mark (?) for
each IN/OUT parameter in the statement. Value substitution is positional. For examples, see
Dynamic SQL Format 3 and 4.

2.2.2.1 Dynamic SQL Format 1

Description

Use this format to execute a SQL statement that does not produce a result set and does not
require input parameters. You can use this format to execute all forms of Data Definition
Language (DDL).

Syntax

Statements, Events, and Functions

Page 166

EXECUTE IMMEDIATE SQLStatement {USING TransactionObject} ;

Table 2.39:

Parameter Description

SQLStatement A string containing a valid SQL statement. The string can be a string
constant or a PowerBuilder variable preceded by a colon (such as :mysql).
The string must be contained on one line and cannot contain expressions.

TransactionObject
(optional)

The name of the transaction object that identifies the database.

Examples

These statements create a database table named Trainees. The statements use the string Mysql
to store the CREATE statement.

For SAP ASE users

If you are connected to an ASE database, set AUTOCOMMIT to true before
executing the CREATE.

string MyASE
 MyASE = "CREATE TABLE Trainees "&
 +"(emp_id integer not null,"&
 +"emp_fname char(10) not null, "&
 +"emp_lname char(20) not null)"
 EXECUTE IMMEDIATE :MyASE ;

These statements assume a transaction object named My_trans exists and is connected:

string MyASE
 MyASE="INSERT INTO department Values (1234,"&
 +"'Purchasing',1234)"
 EXECUTE IMMEDIATE :MyASE USING My_trans ;

2.2.2.2 Dynamic SQL Format 2

Description

Use this format to execute a SQL statement that does not produce a result set but does require
input parameters. You can use this format to execute all forms of Data Definition Language
(DDL).

Syntax

PREPARE DynamicStagingArea FROM SQLStatement
 {USING TransactionObject} ;
 EXECUTE DynamicStagingArea USING {ParameterList} ;

Table 2.40:

Parameter Description

DynamicStagingAreaThe name of the DynamicStagingArea (usually SQLSA).

If you need a DynamicStagingArea variable other than SQLSA, you must
declare it and instantiate it with the CREATE statement before using it.

Statements, Events, and Functions

Page 167

Parameter Description

SQLStatement A string containing a valid SQL statement. The string can be a string
constant or a PowerBuilder variable preceded by a colon (such as :mysql).
The string must be contained on one line and cannot contain expressions.

Enter a question mark (?) for each parameter in the statement. Value
substitution is positional; reserved word substitution is not allowed.

TransactionObject
(optional)

The name of the transaction object that identifies the database.

ParameterList
(optional)

A comma-separated list of PowerScript variables. Note that PowerScript
variables are preceded by a colon (:).

Usage

To specify a null value, use the SetNull function.

Examples

These statements prepare a DELETE statement with one parameter in SQLSA and then
execute it using the value of the PowerScript variable Emp_id_var:

INT Emp_id_var = 56
 PREPARE SQLSA
 FROM "DELETE FROM employee WHERE emp_id=?" ;
 EXECUTE SQLSA USING :Emp_id_var ;

These statements prepare an INSERT statement with three parameters in SQLSA and then
execute it using the value of the PowerScript variables Dept_id_var, Dept_name_var, and
Mgr_id_var (note that Mgr_id_var is null):

INT Dept_id_var = 156
 INT Mgr_id_var
 String Dept_name_var
 Dept_name_var = "Department"
 SetNull(Mgr_id_var)
 PREPARE SQLSA
 FROM "INSERT INTO department VALUES (?,?,?)" ;
 EXECUTE SQLSA
 USING :Dept_id_var,:Dept_name_var,:Mgr_id_var ;

2.2.2.3 Dynamic SQL Format 3

Description

Use this format to execute a SQL statement that produces a result set in which the input
parameters and result set columns are known at compile time.

Syntax

DECLARE Cursor | Procedure
 DYNAMIC CURSOR | PROCEDURE
 FOR DynamicStagingArea ;
 PREPARE DynamicStagingArea FROM SQLStatement
 {USING TransactionObject} ;
 OPEN DYNAMIC Cursor
 {USING ParameterList} ;
 EXECUTE DYNAMIC Procedure
 {USING ParameterList} ;
 FETCH Cursor | Procedure

Statements, Events, and Functions

Page 168

 INTO HostVariableList ;
 CLOSE Cursor | Procedure ;

Table 2.41:

Parameter Description

Cursor or
Procedure

The name of the cursor or procedure you want to use.

DynamicStagingAreaThe name of the DynamicStagingArea (usually SQLSA).

If you need a DynamicStagingArea variable other than SQLSA, you must
declare it and instantiate it with the CREATE statement before using it.

SQLStatement A string containing a valid SQL SELECT statement The string can be
a string constant or a PowerBuilder variable preceded by a colon (such
as :mysql). The string must be contained on one line and cannot contain
expressions.

Enter a question mark (?) for each parameter in the statement. Value
substitution is positional; reserved word substitution is not allowed.

TransactionObject
(optional)

The name of the transaction object that identifies the database.

ParameterList
(optional)

A comma-separated list of PowerScript variables. Note that PowerScript
variables are preceded by a colon (:).

HostVariableList The list of PowerScript variables into which the data values will be
retrieved.

Usage

To specify a null value, use the SetNull function.

The DECLARE statement is not executable and can be declared globally.

If your DBMS supports formats of FETCH other than the customary (and default) FETCH
NEXT, you can specify FETCH FIRST, FETCH PRIOR, or FETCH LAST.

The FETCH and CLOSE statements in Format 3 are the same as in standard embedded SQL.

To declare a local cursor or procedure, open the script in the Script view and select Paste
SQL from the PainterBar or the Edit>Paste Special menu. To declare a global, instance, or
shared cursor or procedure, select Declare from the first drop-down list in the Script view,
and select Global Variables, Instance Variables, or Shared Variables from the second drop-
down list. Then, select Paste SQL.

For information about global, instance, shared, and local scope, see Where to declare
variables.

Examples

Example 1

These statements associate a cursor named my_cursor with SQLSA, prepare a SELECT
statement in SQLSA, open the cursor, and return the employee ID in the current row into the
PowerScript variable Emp_id_var:

integer Emp_id_var
 DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;

Statements, Events, and Functions

Page 169

 PREPARE SQLSA FROM "SELECT emp_id FROM employee" ;
 OPEN DYNAMIC my_cursor ;
 FETCH my_cursor INTO :Emp_id_var ;
 CLOSE my_cursor ;

You can loop through the cursor as you can in embedded static SQL.

Example 2

These statements associate a cursor named my_cursor with SQLSA, prepare a SELECT
statement with one parameter in SQLSA, open the cursor, and substitute the value of the
variable Emp_state_var for the parameter in the SELECT statement. The employee ID in the
active row is returned into the PowerBuilder variable Emp_id_var:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
 integer Emp_id_var
 string Emp_state_var = "MA"
 string sqlstatement

 sqlstatement = "SELECT emp_id FROM employee "&
 +"WHERE state = ?"
 PREPARE SQLSA FROM :sqlstatement ;
 OPEN DYNAMIC my_cursor using :Emp_state_var ;
 FETCH my_cursor INTO :Emp_id_var ;
 CLOSE my_cursor ;

Example 3

These statements perform the same processing as the preceding example but use a database
stored procedure called Emp_select:

// The syntax of emp_select is:
 // create procedure emp_select (@stateparm char(2)) as
 // SELECT emp_id FROM employee WHERE state=@stateparm.
 DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;
 integer Emp_id_var
 string Emp_state_var

 PREPARE SQLSA FROM "execute emp_select @stateparm=?" ;
 Emp_state_var = "MA"
 EXECUTE DYNAMIC my_proc USING :Emp_state_var ;
 FETCH my_proc INTO :Emp_id_var ;
 CLOSE my_proc ;

Example 4

These statements are for a stored procedure with a return value for a SQL Native Client
(SNC) connection:

integer var1, ReturnVal
string var2

PREPARE SQLSA FROM "execute @rc = myproc @parm1=?, @parm2=? OUTPUT ";
DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;

EXECUTE DYNAMIC my_proc USING :var1, :var2 ;

//fetch result set
. . .

//fetch return value and output parameter
FETCH my_proc INTO : ReturnVal, :var2;

CLOSE my_proc ;

Statements, Events, and Functions

Page 170

2.2.2.4 Dynamic SQL Format 4

Description

Use this format to execute a SQL statement that produces a result set in which the number of
input parameters, or the number of result-set columns, or both, are unknown at compile time.

Syntax

DECLARE Cursor | Procedure
 DYNAMIC CURSOR | PROCEDURE
 FOR DynamicStagingArea ;
 PREPARE DynamicStagingArea FROM SQLStatement
 {USING TransactionObject} ;
 DESCRIBE DynamicStagingArea
 INTO DynamicDescriptionArea ;
 OPEN DYNAMIC Cursor
 USING DESCRIPTOR DynamicDescriptionArea ;
 EXECUTE DYNAMIC Procedure
 USING DESCRIPTOR DynamicDescriptionArea ;
 FETCH Cursor | Procedure
 USING DESCRIPTOR DynamicDescriptionArea ;
 CLOSE Cursor | Procedure ;

Table 2.42:

Parameter Description

Cursor or
Procedure

The name of the cursor or procedure you want to use.

DynamicStagingAreaThe name of the DynamicStagingArea (usually SQLSA).

If you need a DynamicStagingArea variable other than SQLSA, you must
declare it and instantiate it with the CREATE statement before using it.

SQLStatement A string containing a valid SQL SELECT statement. The string can be
a string constant or a PowerBuilder variable preceded by a colon (such
as :mysql). The string must be contained on one line and cannot contain
expressions.

Enter a question mark (?) for each parameter in the statement. Value
substitution is positional; reserved word substitution is not allowed.

TransactionObject
(optional)

The name of the transaction object that identifies the database.

DynamicDescriptionAreaThe name of the DynamicDescriptionArea (usually SQLDA).

If you need a DynamicDescriptionArea variable other than SQLDA, you
must declare it and instantiate it with the CREATE statement before using it.

Usage

The DECLARE statement is not executable and can be defined globally.

If your DBMS supports formats of FETCH other than the customary (and default) FETCH
NEXT, you can specify FETCH FIRST, FETCH PRIOR, or FETCH LAST.

To declare a local cursor or procedure, open the script in the Script view and select Paste
SQL from the PainterBar or the Edit>Paste Special menu. To declare a global, instance, or
shared cursor or procedure, select Declare from the first drop-down list in the Script view and

Statements, Events, and Functions

Page 171

Global Variables, Instance Variables, or Shared Variables from the second drop-down list,
then select Paste SQL.

For information about global, instance, shared, and local scope, see Where to declare
variables.

Accessing attribute information

When a statement is described into a DynamicDescriptionArea, this information is available
to you in the attributes of that DynamicDescriptionArea variable:

Table 2.43:

Information Attribute

Number of input parameters NumInputs

Array of input parameter types InParmType

Number of output parameters NumOutputs

Array of output parameter types OutParmType

Setting and accessing parameter values

The array of input parameter values and the array of output parameter values are also
available. You can use the SetDynamicParm function to set the values of an input parameter
and the following functions to obtain the value of an output parameter:

Table 2.44:

GetDynamicDate

GetDynamicDateTime

GetDynamicDecimal

GetDynamicNumber

GetDynamicString

GetDynamicTime

For information about these functions, see

GetDynamicDate

GetDynamicDateTime

GetDynamicDecimal

GetDynamicNumber

GetDynamicString

GetDynamicTime.

Parameter values

The following enumerated datatypes are the valid values for the input and output parameter
types:

Table 2.45:

TypeBoolean!

TypeByte!

TypeDate!

TypeLong!

TypeLongLong!

TypeReal!

Statements, Events, and Functions

Page 172

TypeDateTime!

TypeDecimal!

TypeDouble!

TypeInteger!

TypeString!

TypeTime!

TypeUInt!

TypeULong!

TypeUnknown!

Input parameters

You can set the type and value of each input parameter found in the PREPARE statement.
PowerBuilder populates the SQLDA attribute NumInputs when the DESCRIBE is executed.
You can use this value with the SetDynamicParm function to set the type and value of a
specific input parameter. The input parameters are optional; but if you use them, you should
fill in all the values before executing the OPEN or EXECUTE statement.

Output parameters

You can access the type and value of each output parameter found in the PREPARE
statement. If the database supports output parameter description, PowerBuilder populates
the SQLDA attribute NumOutputs when the DESCRIBE is executed. If the database does
not support output parameter description, PowerBuilder populates the SQLDA attribute
NumOutputs when the FETCH statement is executed.

You can use the number of output parameters in the NumOutputs attribute in functions
to obtain the type of a specific parameter from the output parameter type array in the
OutParmType attribute. When you have the type, you can call the appropriate function after
the FETCH statement to retrieve the output value.

Examples

Example 1

These statements assume you know that there will be only one output descriptor and that it
will be an integer. You can expand this example to support any number of output descriptors
and any datatype by wrapping the CHOOSE CASE statement in a loop and expanding the
CASE statements:

string Stringvar, Sqlstatement
 integer Intvar
 Long LongVar
 Sqlstatement = "SELECT emp_id FROM employee"
 PREPARE SQLSA FROM :Sqlstatement ;
 DESCRIBE SQLSA INTO SQLDA ;
 DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
 OPEN DYNAMIC my_cursor USING DESCRIPTOR SQLDA ;
 FETCH my_cursor USING DESCRIPTOR SQLDA ;
 // If the FETCH is successful, the output
 // descriptor array will contain returned
 // values from the first row of the result set.
 // SQLDA.NumOutputs contains the number of
 // output descriptors.
 // The SQLDA.OutParmType array will contain
 // NumOutput entries and each entry will contain
 // a value of the enumerated datatype ParmType
 // (such as TypeInteger!, TypeLongLong!, or
 // TypeString!).
 CHOOSE CASE SQLDA.OutParmType[1]

Statements, Events, and Functions

Page 173

 CASE TypeString!
 Stringvar = GetDynamicString(SQLDA, 1)
 CASE TypeInteger!
 Intvar = GetDynamicNumber(SQLDA, 1)
 CASE TypeLongLong!
 Longvar = GetDynamicDecimal(SQLDA, 1)
 END CHOOSE
 CLOSE my_cursor ;

Example 2

These statements assume you know there is one string input descriptor and sets the parameter
to MA:

string Sqlstatement, sValue
 Sqlstatement = "SELECT emp_fname, emp_lname " &
 + "FROM employee WHERE state = ?"
 PREPARE SQLSA FROM :Sqlstatement ;

 DESCRIBE SQLSA INTO SQLDA ;

 // If the DESCRIBE is successful, the input
 // descriptor array will contain one input
 // descriptor that you must fill prior to the OPEN

 DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
 SetDynamicParm(SQLDA, 1, "MA")

 OPEN DYNAMIC my_cursor USING DESCRIPTOR SQLDA ;

 FETCH my_cursor USING DESCRIPTOR SQLDA ;

 // If the FETCH is successful, the output
 // descriptor array will contain returned
 // values from the first row of the result set
 // as in the first example.

 // To test and see the values:
 sValue = SQLDA.GetDynamicString(1)
 //messagebox("",sValue)
 sValue = SQLDA.GetDynamicString(2)
 //messagebox("",sValue)
 Do While sqlca.sqlcode <> 100
 FETCH my_cursor USING DESCRIPTOR SQLDA ;
 sValue = SQLDA.GetDynamicString(1)
 //messagebox("",sValue)
 sValue = SQLDA.GetDynamicString(2)
 //messagebox("",sValue)
 Loop

 CLOSE my_cursor ;

Example 3

This example is for a stored procedure with a return value for a SQL Native Client (SNC)
connection:

integer var1, ReturnVal
string var2

PREPARE SQLSA FROM "execute @rc = myproc @parm1=?, @parm2=? OUTPUT ";

DESCRIBE SQLSA INTO SQLDA ;

Statements, Events, and Functions

Page 174

DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;

SetDynamicParm(SQLDA, 1, var1)
SetDynamicParm(SQLDA, 2, var2)

EXECUTE DYNAMIC my_proc USING DESCRIPTOR SQLDA ;

//fetch result set
. . .

//fetch return value and output parameter
FETCH my_proc USING DESCRIPTOR SQLDA ;

//get return value
CHOOSE CASE SQLDA.OutParmType[1]
CASE TypeInteger!
 rc = GetDynamicNumber(SQLDA, 1)
CASE TypeLong!
 rc = GetDynamicNumber(SQLDA, 1)
CASE TypeString!
 Var2 = GetDynamicString(SQLDA, 1)
END CHOOSE

//get output value

CHOOSE CASE SQLDA.OutParmType[2]
CASE TypeString!
 Var2 = GetDynamicString(SQLDA, 2)
CASE TypeInteger!
 rc = GetDynamicNumber(SQLDA, 2)
CASE TypeLong!
 rc = GetDynamicNumber(SQLDA, 2)
END CHOOSE

CLOSE my_proc ;

2.3 PowerScript Events
About this chapter

This chapter discusses events in general and then documents the arguments, event IDs, and
return codes for the events defined for all PowerBuilder controls and objects except the
DataWindow and DataStore. Usage notes and examples provide information about what is
typically done in an event's script.

For information about DataWindow and DataStore events, see Part I, “DataWindow
Reference”.

Contents

The events are listed in alphabetical order.

2.3.1 About events

In PowerBuilder, there are several types of events.

Table 2.46: PowerBuilder event types

Type Occurs in response to

System events with an ID User actions or other system messages or a
call in your scripts

Statements, Events, and Functions

Page 175

Type Occurs in response to

System events without an ID PowerBuilder messages or a call in your
scripts

User-defined events with an ID User actions or other system messages or a
call in your scripts

User-defined events without an ID A call in your scripts

The following information about event IDs, arguments, and return values applies to all types
of events.

Event IDs

An event ID connects an event to a system message. Events that can be triggered by user
actions or other system activity have event IDs. In PowerBuilder's objects, PowerBuilder
defines events for commonly used event IDs. These events are documented in this chapter.
You can define your own events for other system messages using the event IDs listed in the
Event Declaration dialog box.

Events without IDs

Some system events, such as the application object's Open event, do not have an event ID.
They are associated with PowerBuilder activity, not system activity. PowerBuilder triggers
them itself when appropriate.

Arguments

System-triggered events

Each system event has its own list of zero or more arguments. When PowerBuilder triggers
the event in response to a system message, it supplies values for the arguments, which
become available in the event script.

Events you trigger

If you trigger a system event in another event script, you specify the expected arguments. For
example, in the Clicked event for a window, you can trigger the DoubleClicked event with
this statement, passing its flags, xpos, and ypos arguments on to the DoubleClicked event.

w_main.EVENT DoubleClicked(flags, xpos, ypos)

Because DoubleClicked is a system event, the argument list is fixed -- you cannot supply
additional arguments of your own.

Calling events without specifying their arguments

If you use the CALL statement, you can trigger a system event without specifying its
arguments. However, CALL is obsolete and you should not use it in new applications
except as described in CALL.

Return values

Where does the return value go?

Most events have a return value. When the event is triggered by the system, the return value
is returned to the system.

Statements, Events, and Functions

Page 176

When your script triggers a user-defined or system event, you can capture the return value in
an assignment statement:

li_rtn = w_main.EVENT process_info(mydata)

When you post an event, the return value is lost because the calling script is no longer
running when the posted script is actually run. The compiler does not allow a posted event in
an assignment statement.

Return codes

System events with return values have a default return code of 0, which means, "take no
special action and continue processing". Some events have additional codes that you can
return to change the processing that happens after the event. For example, a return code might
allow you to suppress an error message or prevent a change from taking place.

A RETURN statement is not required in an event script, but for most events it is good
practice to include one. For events with return values, if you do not have a RETURN
statement, the event returns 0.

Some system events have no return value. For these events, the compiler does not allow a
RETURN statement.

Ancestor event script return values

Sometimes you want to perform some processing in an event in a descendant object, but
that processing depends on the return value of the ancestor event script. You can use a local
variable called AncestorReturnValue that is automatically declared and assigned the value of
the ancestor event.

For more information about AncestorReturnValue, see Calling functions and events in an
object's ancestor.

User-defined events

With an ID

When you declare a user-defined event that will be triggered by a system message, you select
an event ID from the list of IDs. The pbm (PowerBuilder Message) codes listed in the Event
dialog box map to system messages.

The return value and arguments associated with the event ID become part of your event
declaration. You cannot modify them.

When the corresponding system message occurs, PowerBuilder triggers the event and passes
values for the arguments to the event script.

Without an ID

When you declare a user event that will not be associated with a system message, you do not
select an event ID for the event.

You can specify your own arguments and return datatype in the Event Declaration dialog
box.

The event will never be triggered by user actions or system activity. You trigger the event
yourself in your application's scripts.

For more information

Statements, Events, and Functions

Page 177

If you want to trigger events, including system events, see Syntax for calling PowerBuilder
functions and events for information on the calling syntax.

To learn more about user-defined events, see Section 3.3, “Working with User Events” in
Users Guide.

2.3.2 Activate

Description

Occurs just before the window becomes active.

Event ID

Table 2.47:

Event ID Objects

pbm_activate Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When an Activate event occurs, the first object in the tab order for the window gets focus. If
there are no visible objects in the window, the window gets focus.

An Activate event occurs for a newly opened window because it is made active after it is
opened.

The Activate event is frequently used to enable and disable menu items.

Examples

Example 1

In the window's Activate event, this code disables the Sheet menu item for menu m_frame on
the File menu:

m_frame.m_file.m_sheet.Enabled = FALSE

Example 2

This code opens the sheet w_sheet in a layered style when the window activates:

w_sheet.ArrangeSheets(Layer!)

See also

Close

Open

Show

Statements, Events, and Functions

Page 178

2.3.3 AddressChange

Description

Occurs when the frame's address changes.

Event ID

Table 2.48:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.49:

Argument Description

newUrl The frame’s new address.

Return Values

None

See also

CertificateError

DownloadingStart

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationError

NavigationProgressIndex

NavigationStart

NavigationStateChanged

PdfPrintFinished

ResourceRedirect

TitleTextChanged

2.3.4 BeginDownload

Description

Occurs at the beginning of a download procedure

Event ID

Table 2.50:

Event ID Objects

None MLSynchronization, MLSync

Statements, Events, and Functions

Page 179

Arguments

None

Return Values

None

Usage

Use this event to add custom actions at the beginning of the download stage of a
synchronization.

When the MobiLink synchronization server receives data, it updates the consolidated
database, then builds a download stream that contains all relevant changes and sends it
back to the remote site. At the end of each successful synchronization, the consolidated and
remote databases are consistent. Either a whole transaction is synchronized, or none of it is
synchronized. This ensures transactional integrity at each database.

The BeginDownload event marks the beginning of the download transaction.

For a complete list of connection and synchronization events, and examples of their use, see
the MobiLink documentation.

See also

BeginSync

BeginUpload

ConnectMobiLink

2.3.5 BeginDrag

The BeginDrag event has different arguments for different objects:

Table 2.51:

Object See

ListView control Syntax 1

TreeView control Syntax 2

2.3.5.1 Syntax 1: For ListView controls

Description

Occurs when the user presses the left mouse button in the ListView control and begins
dragging.

Event ID

Table 2.52:

Event ID Objects

pbm_lvnbegindrag ListView

Arguments

Statements, Events, and Functions

Page 180

Table 2.53:

Argument Description

index Integer by value (the index of the ListView item being dragged)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

BeginDrag and BeginRightDrag events occur when the user presses the mouse button and
drags, whether or not dragging is enabled. To enable dragging, you can:

• Set the DragAuto property to true. If the ListView's DragAuto property is true, a drag
operation begins automatically when the user clicks.

• Call the Drag function. If DragAuto is false, then in the BeginDrag event script, the
programmer can call the Drag function to begin the drag operation.

Dragging a ListView item onto another control causes its standard drag events (DragDrop,
DragEnter, DragLeave, and DragWithin) to occur. The standard drag events occur for
ListView when another control is dragged within the borders of the ListView.

Examples

This example moves a ListView item from one ListView to another. ilvi_dragged_object is a
window instance variable whose type is ListViewItem. To copy the item, omit the code that
deletes it from the source ListView.

This code is in the BeginDrag event script of the source ListView:

// If the ListView's DragAuto property is FALSE
This.Drag(Begin!)

This.GetItem(This.SelectedIndex(), &
 ilvi_dragged_object)

// To copy, rather than move, omit these two lines
This.DeleteItem(This.SelectedIndex())
This.Arrange()

This code is in the DragDrop event of the target ListView:

This.AddItem(ilvi_dragged_object)
This.Arrange()

See also

BeginRightDrag

DragDrop

DragEnter

DragLeave

DragWithin

Statements, Events, and Functions

Page 181

2.3.5.2 Syntax 2: For TreeView controls

Description

Occurs when the user presses the left mouse button on a label in the TreeView control and
begins dragging.

Event ID

Table 2.54:

Event ID Objects

pbm_tvnbegindrag TreeView

Arguments

Table 2.55:

Argument Description

handle Long by value (handle of the TreeView item being dragged)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

BeginDrag and BeginRightDrag events occur when the user presses the mouse button and
drags, whether or not dragging is enabled. To enable dragging, you can:

• Set the DragAuto property to true. If the TreeView's DragAuto property is true, a drag
operation begins automatically when the user clicks.

• Call the Drag function. If DragAuto is false, then in the BeginDrag event script, the
programmer can call the Drag function to begin the drag operation.

The user cannot drag a highlighted item.

Dragging a TreeView item onto another control causes the control's standard drag events
(DragDrop, DragEnter, DragLeave, and DragWithin) to occur. The standard drag events
occur for TreeView when another control is dragged within the borders of the TreeView.

Examples

This example moves the first TreeView item in the source TreeView to another TreeView
when the user drags there. itvi_dragged_object is a window instance variable whose type is
TreeViewItem. To copy the item, omit the code that deletes it from the source TreeView.

This code is in the BeginDrag event script of the source TreeView:

long itemnum

// If the TreeView's DragAuto property is FALSE
This.Drag(Begin!)
itemnum = 1
This.GetItem(itemnum, itvi_dragged_object)

Statements, Events, and Functions

Page 182

// To copy, rather than move, omit these two lines
This.DeleteItem(itemnum)
This.SetRedraw(TRUE)

This code is in the DragDrop event of the target TreeView:

This.InsertItemLast(0, itvi_dragged_object)
This.SetRedraw(TRUE)

Instead of deleting the item from the source TreeView immediately, consider deleting it after
the insertion in the DragDrop event succeeds.

See also

BeginRightDrag

DragDrop

DragEnter

DragLeave

DragWithin

2.3.6 BeginLabelEdit

The BeginLabelEdit event has different arguments for different objects:

Table 2.56:

Object See

ListView control Syntax 1

TreeView control Syntax 2

2.3.6.1 Syntax 1: For ListView controls

Description

Occurs when the user clicks on the label of an item after selecting the item.

Event ID

Table 2.57:

Event ID Objects

pbm_lvnbeginlabeledit ListView

Arguments

Table 2.58:

Argument Description

index Integer by value (the index of the selected ListView item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

Statements, Events, and Functions

Page 183

0 -- Allow editing of the label

1 -- Prevent editing of the label

Usage

When editing is allowed, a box appears around the label with the text highlighted. The user
can replace or change the existing text.

Examples

This example uses the BeginLabelEdit event to display the name of the ListView item being
edited:

ListViewItem lvi
This.GetItem(index lvi)
sle_info.text = "Editing " + string(lvi.label)

See also

EndLabelEdit

2.3.6.2 Syntax 2: For TreeView controls

Description

Occurs when the user clicks on the label of an item after selecting the item.

Event ID

Table 2.59:

Event ID Objects

pbm_tvnbeginlabeledit TreeView

Arguments

Table 2.60:

Argument Description

handle Long by value (the handle of the selected TreeView item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Allow editing of the label

1 -- Prevent editing of the label

Usage

When editing is allowed, a box appears around the label with the text highlighted. The user
can replace or change the existing text.

Examples

This example uses the BeginLabelEdit to display the name of the TreeView item being edited
in a SingleLineEdit:

Statements, Events, and Functions

Page 184

TreeViewItem tvi
This.GetItem(index, tvi)
sle_info.text = "Editing " + string(tvi.label)

See also

EndLabelEdit

2.3.7 BeginLogScan

Description

Occurs before dbmlsync scans the transaction log to assemble the upload data stream.

Event ID

Table 2.61:

Event ID Objects

None MLSync

Arguments

Table 2.62:

Argument Description

rescanlog Boolean indicating whether the log has already been scanned for the
current synchronization.

Return Values

None

Usage

Use this event to add custom actions immediately before the transaction log is scanned for
upload. The following events are triggered while the upload stream is prepared, but before
synchronization begins: BeginLogScan, ProgressInfo, and EndLogScan.

If this is the first time the transaction log has been scanned for this synchronization, the
rescanlog value is false; otherwise it is true. The log is scanned twice when the MobiLink
synchronization server and dbmlsync have different information about where scanning should
begin.

See also

EndLogScan

ProgressIndex

2.3.8 BeginRightDrag

The BeginRightDrag event has different arguments for different objects:

Table 2.63:

Object See

ListView control Syntax 1

Statements, Events, and Functions

Page 185

Object See

TreeView control Syntax 2

2.3.8.1 Syntax 1: For ListView controls

Description

Occurs when the user presses the right mouse button in the ListView control and begins
dragging.

Event ID

Table 2.64:

Event ID Objects

pbm_lvnbeginrightdrag ListView

Arguments

Table 2.65:

Argument Description

index Integer by value (the index of the ListView item being dragged)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

BeginDrag and BeginRightDrag events occur when the user presses the mouse button and
drags, whether or not dragging is enabled. To enable dragging, you can:

• Set the DragAuto property to true. If the ListView's DragAuto property is true, a drag
operation begins automatically when the user clicks.

• Call the Drag function. If DragAuto is false, then in the BeginRightDrag event script, the
programmer can call the Drag function to begin the drag operation.

Dragging a ListView item onto another control causes its standard drag events (DragDrop,
DragEnter, DragLeave, and DragWithin) to occur. The standard drag events occur for
ListView when another control is dragged within the borders of the ListView.

Examples

See the example for the BeginDrag event. It is also effective for the BeginRightDrag event.

See also

BeginDrag

DragDrop

DragEnter

Statements, Events, and Functions

Page 186

DragLeave

DragWithin

2.3.8.2 Syntax 2: For TreeView controls

Description

Occurs when the user presses the right mouse button in the TreeView control and begins
dragging.

Event ID

Table 2.66:

Event ID Objects

pbm_tvnbeginrightdrag TreeView

Arguments

Table 2.67:

Argument Description

handle Long by value (the handle of the TreeView item being dragged)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

BeginDrag and BeginRightDrag events occur when the user presses the mouse button and
drags, whether or not dragging is enabled. To enable dragging, you can:

• Set the DragAuto property to true. If the ListView's DragAuto property is true, a drag
operation begins automatically when the user clicks.

• Call the Drag function. If DragAuto is false, then in the BeginRightDrag event script, the
programmer can call the Drag function to begin the drag operation.

The user cannot drag a highlighted item. Dragging a TreeView item onto another control
causes its standard drag events (DragDrop, DragEnter, DragLeave, and DragWithin) to occur.
The standard drag events occur for TreeView when another control is dragged within the
borders of the TreeView.

Examples

See the example for the BeginDrag event.

See also

BeginDrag

DragDrop

Statements, Events, and Functions

Page 187

DragEnter

DragLeave

DragWithin

2.3.9 BeginSync

Description

Occurs at the beginning of the synchronization.

Event ID

Table 2.68:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.69:

Argument Description

mlusername Read-only string identifying the MobiLink user name.

pubnames Read-only string identifying the publication to be synchronized. If there
is more than one publication, this is a comma-separated list.

Return Values

None

Usage

Use this event to add custom actions at the beginning of a synchronization. The following
synchronization object events correspond to events occurring on the synchronization
server (in the order displayed): BeginSync, ConnectMobiLink, BeginUpload, EndUpload,
BeginDownload, EndDownload, DisconnectMobiLink, and EndSync.

See also

BeginDownload

BeginUpload

ConnectMobiLink

2.3.10 BeginUpload

Description

Occurs at the beginning of the synchronization upload procedure.

Event ID

Table 2.70:

Event ID Objects

None MLSynchronization, MLSync

Statements, Events, and Functions

Page 188

Arguments

None

Return Values

None

Usage

Use this event to add custom actions immediately before the transmission of the upload to the
MobiLink synchronization server.

The BeginUpload event marks the beginning of the upload transaction. Applicable inserts
and updates to the consolidated database are performed for all remote tables, then rows are
deleted as applicable for all remote tables. After EndUpload, upload changes are committed.

See also

BeginDownload

ConnectMobiLink

EndUpload

2.3.11 CategoryCollapsed

Description

Occurs when the category is collapsed. When the RibbonBar is minimized, the category
will be expanded when the user clicks the category title, and will be collapsed when the user
clicks the title again or clicks outside of the category.

Event ID

Table 2.71:

Event ID Objects

None RibbonBar

Arguments

Table 2.72:

Argument Description

Index Long by value (the index of the currently collapsed category)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

//Adjust the position and height of dw_1 after RibbonBar is collapsed
dw_1.Y = 464 - 364
dw_1.Height = 400 + 364

Statements, Events, and Functions

Page 189

See also

CategorySelectionChanged

CategorySelectionChanging

CategoryExpanded

ItemUnselected

2.3.12 CategoryExpanded

Description

Occurs when the category is expanded. When the RibbonBar is minimized, the category will
be expanded when the user clicks the category title.

Event ID

Table 2.73:

Event ID Objects

None RibbonBar

Arguments

Table 2.74:

Argument Description

Index Long by value (the index of the currently popup category)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

//Adjust the position and height of dw_1 after RibbonBar is expanded
dw_1.Height = 400
dw_1.Y = 464

See also

CategorySelectionChanged

CategorySelectionChanging

CategoryCollapsed

ItemUnselected

2.3.13 CategorySelectionChanged

Description

Just after the selection changes to another category. CategorySelectionChanged is triggered
when the category is created and the initial selection is established.

Statements, Events, and Functions

Page 190

Event ID

Table 2.75:

Event ID Objects

None RibbonBar

Arguments

Table 2.76:

Argument Description

OldIndex Long by value (the index of the category that was previously selected)

NewIndex Long by value (the index of the category that has become selected)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

RibbonCategoryItem lr_Category
//st_status is statictext
If rbb_1.GetCategoryByIndex(NewIndex, lr_Category) = 1 Then
 st_status.Text = "Category:[" + lr_Category.Text + "]"
End If

See also

CategorySelectionChanging

CategoryExpanded

CategoryCollapsed

ItemUnselected

2.3.14 CategorySelectionChanging

Description

Occurs when another category is about to be selected.

Event ID

Table 2.77:

Event ID Objects

None RibbonBar

Arguments

Table 2.78:

Argument Description

OldIndex Long by value (the index of the currently selected category)

Statements, Events, and Functions

Page 191

Argument Description

NewIndex Long by value (the index of the category that is about to be selected)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Allow the selection to change

1 -- Prevent the selection from changing

Examples

Boolean lb_Auth
lb_Auth = gb_Auth //Global Variable
Choose Case NewIndex
 Case 2,3
 //Whether to authorize
 If lb_Auth Then
 Return 0
 Else
 Return 1
 End If
End Choose

See also

CategorySelectionChanged

CategoryExpanded

CategoryCollapsed

ItemUnselected

2.3.15 CertificateError

Description

Occurs when failed to validate the server certificate.

Event ID

Table 2.79:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.80:

Argument Description

errorText The error description.

requestUrl The URL of the server currently being requested.

certificateInfo The certificate information which includes certificate issuer, certificate
subject, certificate expiration time, and certificate PEM encoding.

Statements, Events, and Functions

Page 192

Return Values

0 -- to continue browsing the current page.

1 -- to cancel the browsing of the current page.

Examples

Integer CertificateError(string errorText, string requestUrl, string
 certificateInfo)
{
strMessage = "[CERTIFICATE_ERROR_TEXT]: " + "~r~n"
strMessage += "ErrorText : " + errortext + "~r~n"
strMessage += "RequestUrl : " + requesturl + "~r~n"
strMessage += "Certificate : " + certificateInfo + "~r~n"
strMessage += "Yes #to continue browsing the web page. No : to concel browsing the
 web page ~r~n"

if MessageBox('server certificate error', strMessage, Question!, YesNo!) = 1 then
 // Continue browsing the web page
 Ln_Result = 0
else
 // Cancel browsing the web page
 Ln_Result = 1
end if

return Ln_Result
}

See also

AddressChanged

DownloadingStart

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationError

NavigationProgressIndex

NavigationStateChanged

NavigationStart

PdfPrintFinished

ResourceRedirect

TitleTextChanged

2.3.16 Clicked

The Clicked event has different arguments for different objects:

Table 2.81:

Object See

Menus Syntax 1

ListView and Toolbar controls Syntax 2

Tab controls Syntax 3

Statements, Events, and Functions

Page 193

Object See

TreeView controls Syntax 4

Window and progress bar controls Syntax 5

Ribbon controls Syntax 6

Other controls Syntax 7

For information about the DataWindow control's Clicked event, see Section 8.8, “Clicked” in
DataWindow Reference.

2.3.16.1 Syntax 1: For menus

Description

Occurs when the user chooses an item on a menu.

Event ID

Table 2.82:

Event ID Objects

None Menu

Arguments

None

Return Values

None (do not use a RETURN statement)

Usage

If the user highlights the menu item without choosing it, its Selected event occurs.

If the user chooses a menu item that has a cascaded menu associated with it, the Clicked
event occurs, and the cascaded menu is displayed.

Examples

This script is for the Clicked event of the New menu item for the frame window. The
wf_newsheet function is a window function. The window w_genapp_frame is part of the
application template you can generate when you create a new application:

/* Create a new sheet */
w_genapp_frame.wf_newsheet()

See also

Selected

2.3.16.2 Syntax 2: For ListView and Toolbar controls

Description

Occurs when the user clicks within the ListView control, either on an item or in the blank
space around items.

Event ID

Statements, Events, and Functions

Page 194

Table 2.83:

Event ID Objects

pbm_lvnclicked ListView

Arguments

Table 2.84:

Argument Description

index Integer by value (the index of the ListView item the user clicked). The
value of index is -1 if the user clicks within the control but not on a
specific item.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The Clicked event occurs when the user presses the mouse button. The Clicked event can
occur during a double-click, in addition to the DoubleClicked event.

In addition to the Clicked event, ItemChanging and ItemChanged events can occur when the
user clicks on an item that does not already have focus. BeginLabelEdit can occur when the
user clicks on a label of an item that has focus.

Using the ItemActivate event for ListView controls

You can use the ItemActivate event (with the OneClickActivate property set to true)
instead of the Clicked event for ListView controls.

Examples

This code changes the label of the item the user clicks to uppercase:

IF index = -1 THEN RETURN 0

This.GetItem(index, llvi_current)
llvi_current.Label = Upper(llvi_current.Label)
This.SetItem(index, llvi_current)
RETURN 0

See also

ColumnClick

DoubleClicked

ItemActivate

ItemChanged

ItemChanging

RightClicked

Statements, Events, and Functions

Page 195

RightDoubleClicked

2.3.16.3 Syntax 3: For Tab controls

Description

Occurs when the user clicks on the tab portion of a Tab control.

Event ID

Table 2.85:

Event ID Objects

pbm_tcnclicked Tab

Arguments

Table 2.86:

Argument Description

index Integer by value (the index of the tab page the user clicked)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The Clicked event occurs when the mouse button is released.

When the user clicks in the display area of the Tab control, the tab page user object (not the
Tab control) gets a Clicked event.

The Clicked event can occur during a double-click, in addition to the DoubleClicked event.

In addition to the Clicked event, the SelectionChanging and SelectionChanged events
can occur when the user clicks on a tab page label. If the user presses an arrow key to
change tab pages, the Key event occurs instead of Clicked before SelectionChanging and
SelectionChanged.

Examples

This code makes the tab label bold for the fourth tab page only:

IF index = 4 THEN
 This.BoldSelectedText = TRUE
ELSE
 This.BoldSelectedText = FALSE
END IF

See also

DoubleClicked

RightClicked

RightDoubleClicked

SelectionChanged

Statements, Events, and Functions

Page 196

SelectionChanging

2.3.16.4 Syntax 4: For TreeView controls

Description

Occurs when the user clicks an item in a TreeView control.

Event ID

Table 2.87:

Event ID Objects

pbm_tvnclicked TreeView

Arguments

Table 2.88:

Argument Description

handle Long by value (the handle of the TreeView item the user clicked)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The Clicked event occurs when the user presses the mouse button.

The Clicked event can occur during a double-click, in addition to the DoubleClicked event.

In addition to the Clicked event, GetFocus occurs if the control does not already have focus.

Examples

This code in the Clicked event changes the label of the item the user clicked to uppercase:

TreeViewItem ltvi_current

This.GetItem(handle, ltvi_current)
ltvi_current.Label = Upper(ltvi_current.Label)
This.SetItem(handle, ltvi_current)

See also

DoubleClicked

RightClicked

RightDoubleClicked

SelectionChanged

SelectionChanging

2.3.16.5 Syntax 5: For windows and progress bars

Description

Statements, Events, and Functions

Page 197

Occurs when the user clicks in an unoccupied area of the window or progress bar (any area
with no visible, enabled object).

Event ID

Table 2.89:

Event ID Objects

pbm_lbuttonclk Window

pbm_lbuttondwn HProgressBar, VProgressBar

Arguments

Table 2.90:

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons that are
pressed).

Values are:

• 1 -- Left mouse button

• 2 -- Right mouse button (windows only)

• 4 -- Shift key

• 8 -- Ctrl key

• 16 -- Middle mouse button (windows only)

In the Clicked event for windows, the left mouse button is being released,
so 1 is not summed in the value of flags.

For an explanation of flags, see Syntax 2 of MouseMove.

xpos Integer by value (the distance of the pointer from the left edge of the
window workspace or control in pixels).

ypos Integer by value (the distance of the pointer from the top of the window's
workspace or control in pixels).

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The Clicked event occurs when the user presses the mouse button down in progress bars and
when the user releases the mouse button in windows.

If the user clicks on a control or menu in a window, that object (rather than the window) gets
a Clicked event. No Clicked event occurs when the user clicks the window's title bar.

Statements, Events, and Functions

Page 198

When the user clicks on a window, the window's MouseDown and MouseUp events also
occur.

When the user clicks on a visible disabled control or an invisible enabled control, the window
gets a Clicked event.

Examples

If the user clicks in the upper left corner of the window, this code sets focus to the button
cb_clear:

IF (xpos <= 600 AND ypos <= 600) THEN
 cb_clear.SetFocus()
END IF

See also

DoubleClicked

MouseDown

MouseMove

MouseUp

RButtonDown

2.3.16.6 Syntax 6: For Ribbon controls

Description

This is a user event which occurs when the user clicks on an item within a RibbonBar control.

Make sure the parameter (quantities and types) of the user event is correctly defined
according to the requirement of the ribbon control.

Applies to

Ribbon controls (including RibbonTabButtonItem, RibbonLargeButtonItem,
RibbonSmallButtonItem, RibbonCheckBoxItem, and RibbonMenuItem)

Arguments for RibbonTabButtonItem, RibbonLargeButtonItem,
RibbonSmallButtonItem, RibbonCheckBoxItem

Table 2.91:

Argument Description

ItemHandle Long. The handle of the item.

Arguments for RibbonMenuItem (of Normal(0) type)

Table 2.92:

Argument Description

ItemHandle Long. The handle of the button the menu is associated with.

Index Long. The index of the menu item clicked.

SubIndex Long. The index of the submenu item clicked. 0 indicates the event is
triggered by the main menu.

Statements, Events, and Functions

Page 199

Arguments for RibbonMenuItem (of Recent(2) type)

Table 2.93:

Argument Description

ItemHandle Long. The handle of the button the menu is associated with.

Index Long. The index of the menu item clicked.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

This example is a user event for a tab button. In this example, the Ue_TabButtonClicked user
event must be defined with a long parameter for receiving the handle of TabButton where the
mouse is clicking.

RibbonTabButtonItem lr_TabButton
lr_TabButton.Clicked = "Ue_TabButtonClicked"

//Ue_TabButtonClicked user event must have a long parameter for receiving
//the handle of TabButton where the mouse is clicking, as below
event type long ue_tabbuttonclicked(long itemhandle);
RibbonTabButtonItem lr_TabButton
rbb_1.GetTabButton(ItemHandle,lr_TabButton)
//...
Return 1
end event

This example is a user event for a menu item in the ribbon menu. In this example, the
Ue_MenuClicked user event must be defined with three long parameters for receiving the
handle of the tab/large/small button and the index numbers of the menu and sub menu. Each
menu item can be bound with different events or the same event.

//Ue_MenuClicked user event must have three long parameters for receiving the
//handle of Tab/Large/Small Button and the index number of the menu and
//sub menu. Each MenuItem can bind with different events or the same event.

//In the following example, the same event is bound to get RibbonMenu:
event type long ue_menuclicked(long itemhandle, long index, long subindex);
Integer li_Return
RibbonMenu lr_Menu
RibbonMenuItem lr_MenuItem

li_Return = rbb_1.GetMenuByButtonHandle (ItemHandle, lr_Menu)
If li_Return = 1 Then
 If SubIndex = 0 Then
 li_Return = lr_Menu.GetItem (Index, lr_MenuItem)
 //...
 Else
 li_Return = lr_Menu.GetItem (Index, SubIndex, lr_MenuItem)
 //...
 End If
Else
 Return 0
End If

Statements, Events, and Functions

Page 200

Return 1
end event

This example is a user event for a master menu item in the application menu. In this example,
the Ue_MasterMenuClicked user event must be defined with three Long parameters for
receiving the handle of the application button and the index numbers of the master menu item
and submenu item. Each menu item can be bound with different events or the same event.

//Ue_MasterMenuClicked user event must have three Long parameters for receiving the
//handle of Application Button and the index numbers of the master menu and
//sub menu. Each MenuItem can bind with different events or the same event.

//In the following example, the same event is bound to get RibbonApplicationMenu:
event type long ue_mastermenuclicked(long itemhandle, long index, long subindex);
Integer li_Return
RibbonApplicationMenu lr_Menu
RibbonMenuItem lr_MenuItem

li_Return = rbb_1.GetMenuByButtonHandle(ItemHandle, lr_Menu)
If li_Return = 1 Then
 If SubIndex = 0 Then
 li_Return = lr_Menu.GetMasterItem(Index, lr_MenuItem)
 //...
 Else
 li_Return = lr_Menu.GetMasterItem(Index,SubIndex, lr_MenuItem)
 //...
 End If
Else
 Return 0
End If

Return 1
end event

This example is a user event for the recent menu item in the application menu. In this
example, the Ue_RecentMenuClicked user event must be defined with two Long parameters
for receiving the handle of the application button and the index number of the recent menu
item. Each menu item can be bound with different events or the same event.

//Ue_RecentMenuClicked user event must have two Long parameters for receiving the
//handle of Application Button and the index number of Recent Menu.
//Each MenuItem can bind with different events or the same event.

//In the following example, the same event is bound to get RibbonApplicationMenu.
event type long ue_recentmenuclicked(long itemhandle, long index);
Integer li_Return
RibbonApplicationMenu lr_Menu
RibbonMenuItem lr_MenuItem

li_Return = rbb_1.GetMenuByButtonHandle(ItemHandle,lr_Menu)
If li_Return = 1 Then
 li_Return = lr_Menu.GetRecentItem(Index,lr_MenuItem)
 //...
Else
 Return 0
End If

Return 1
end event

See also

Modified

Statements, Events, and Functions

Page 201

Selected

SelectionChanged

2.3.16.7 Syntax 7: For other controls

Description

Occurs when the user clicks on the control.

Event ID

Table 2.94:

Event ID Objects

pbm_bnclicked CheckBox, CommandButton, Graph, OLE, Picture, PictureHyperLink,
PictureButton, RadioButton, StaticText, StaticHyperLink

pbm_lbuttondownDatePicker, MonthCalendar

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The Clicked event occurs when the user releases the mouse button.

If another control had focus, then a GetFocus and a Clicked event occur for the control the
user clicks.

Examples

This code in an OLE control's Clicked event activates the object in the control:

integer li_success
li_success = This.Activate(InPlace!)

See also

GetFocus

RButtonDown

2.3.17 Close

The Close event has different arguments for different objects:

Table 2.95:

Object See

Application Syntax 1

Statements, Events, and Functions

Page 202

Object See

OLE control Syntax 2

Window Syntax 3

2.3.17.1 Syntax 1: For the application object

Description

Occurs when the user closes the application.

Event ID

Table 2.96:

Event ID Objects

None Application

Arguments

None

Return Values

None (do not use a RETURN statement)

Usage

The Close event occurs when the last window (for MDI applications the MDI frame) is
closed.

See also

Open

SystemError

2.3.17.2 Syntax 2: For OLE controls

Description

Occurs when the object in an OLE control has been activated offsite (the OLE server displays
the object in the server's window) and that server is closed.

Event ID

Table 2.97:

Event ID Objects

pbm_omnclose OLE

Arguments

None

Return Values

Long.

Return code: Ignored

Statements, Events, and Functions

Page 203

Usage

If the user closed the OLE server, the user's choices might cause the OLE object in the
control to be updated, triggering the Save or DataChange events.

If you want to retrieve the ObjectData blob value of an OLE control during the processing of
this event, you must post a user event back to the control or you will generate a runtime error.

See also

DataChange

Save

2.3.17.3 Syntax 3: For windows

Description

Occurs just before a window is removed from display.

Event ID

Table 2.98:

Event ID Objects

pbm_close Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When you call the Close function for the window, a CloseQuery event occurs before the
Close event. In the CloseQuery event, you can specify a return code to prevent the Close
event from occurring and the window from closing.

Do not trigger the Close event to close a window; call the Close function instead. Triggering
the event simply runs the script and does not close the window.

See also

CloseQuery

Open

2.3.18 CloseQuery

Description

Occurs when a window is closed, before the Close event.

Event ID

Statements, Events, and Functions

Page 204

Table 2.99:

Event ID Objects

pbm_closequery Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Allow the window to be closed

1 -- Prevent the window from closing

Usage

If the CloseQuery event returns a value of 1, the closing of the window is aborted and the
Close event that usually follows CloseQuery does not occur.

If the user closes the window with the Close box (instead of using buttons whose scripts can
evaluate the state of the data in the window), the CloseQuery event still occurs, allowing you
to prompt the user about saving changes or to check whether data the user entered is valid.

Obsolete techniques

You no longer need to set the ReturnValue property of the Message object. Use a
RETURN statement instead.

Examples

This statement in the CloseQuery event for a window asks if the user really wants to close the
window and if the user answers no, prevents it from closing:

IF MessageBox("Closing window", "Are you sure?", &
 Question!, YesNo!) = 2 THEN
 RETURN 1
ELSE
 RETURN 0
END IF

This script for the CloseQuery event tests to see if the DataWindow dw_1 has any pending
changes. If it has, it asks the user whether to update the data and close the window, close the
window without updating, or leave the window open without updating:

integer li_rc

// Accept the last data entered into the datawindow
dw_1.AcceptText()

//Check to see if any data has changed
IF dw_1.DeletedCount()+dw_1.ModifiedCount() > 0 THEN
 li_rc = MessageBox("Closing", &
 "Update your changes?", Question!, &
 YesNoCancel!, 3)

 //User chose to up data and close window

Statements, Events, and Functions

Page 205

 IF li_rc = 1 THEN
 Window lw_window
 lw_window = w_genapp_frame.GetActiveSheet()
 lw_window.TriggerEvent("ue_update")
 RETURN 0

 //User chose to close window without updating
 ELSEIF li_rc = 2 THEN
 RETURN 0

 //User canceled
 ELSE
 RETURN 1
 END IF

ELSE
 // No changes to the data, window will just close
 RETURN 0
END IF

See also

Close

2.3.19 CloseUp

Description

Occurs when the user has selected a date from the drop-down calendar and the calendar
closes.

Event ID

Table 2.100:

Event ID Objects

pbm_dtpcloseup DatePicker

Arguments

None.

Return Values

Long.

Return code: Ignored.

2.3.20 ColumnClick

Description

Occurs when the user clicks a column header.

Event ID

Table 2.101:

Event ID Objects

pbm_lvncolumnclick ListView

Statements, Events, and Functions

Page 206

Arguments

Table 2.102:

Argument Description

column The index of the clicked column

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The ColumnClicked event is only available when the ListView displays in report view and
the ButtonHeader property is set to true.

Examples

This example uses the ColumnClicked event to set up a instance variable for the column
argument, retrieve column alignment information, and display it to the user:

string ls_label, ls_align
integer li_width
alignment la_align

ii_col = column
This.GetColumn(column, ls_label, la_align, &
 li_width)

CHOOSE CASE la_align
CASE Right!
 rb_right.Checked = TRUE
 ls_align = "Right!"

CASE Left!
 rb_left.Checked = TRUE
 ls_align = "Left!"

CASE Center!
 rb_center.Checked = TRUE
 ls_align = "Center!"

CASE Justify!
 rb_just.Checked = TRUE
 ls_align = "Justify!"
END CHOOSE

sle_info.Text = String(column) &
 + " " + ls_label &
 + " " + ls_align &
 + " " + String(li_width)

See also

Clicked

2.3.21 ConnectMobiLink

Description

Statements, Events, and Functions

Page 207

Occurs when the MobiLink synchronization server connects to the consolidated database
server.

Event ID

Table 2.103:

Event ID Objects

None MLSynchronization, MLSync

Arguments

None

Return Values

None

Usage

When an application forms or reforms a connection with the MobiLink synchronization
server, the MobiLink synchronization server temporarily allocates one connection with the
database server for the duration of that synchronization.

Use the ConnectMobiLink event to add custom actions immediately before the remote
database connects to the MobiLink synchronization server. At this stage, dbmlsync has
generated the upload stream.

The following synchronization object events correspond to events occurring on the
synchronization server (in the order displayed): BeginSync, ConnectMobiLink, BeginUpload,
EndUpload, BeginDownload, EndDownload, DisconnectMobiLink, and EndSync.

See also

BeginDownload

BeginSync

BeginUpload

DisconnectMobiLink

2.3.22 Constructor

Description

Occurs when the control or object is created, just before the Open event for the window that
contains the control.

Event ID

Table 2.104:

Event ID Objects

pbm_constructor All objects

Arguments

None

Return Values

Statements, Events, and Functions

Page 208

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

You can write a script for a control's Constructor event to affect the control's properties
before the window is displayed.

When a window or user object opens, a Constructor event for each control in the window or
user object occurs. The order of controls in a window's Control property (which is an array)
determines the order in which Constructor events are triggered. If one of the controls in the
window is a user object, the Constructor events of all the controls in the user object occur
before the Constructor event for the next control in the window.

When you call OpenUserObject to add a user object to a window dynamically, its
Constructor event and the Constructor events for all of its controls occur.

When you use the CREATE statement to instantiate a class (nonvisual) user object, its
Constructor event occurs.

When a class user object variable has an Autoinstantiate setting of true, its Constructor event
occurs when the variable comes into scope. Therefore, the Constructor event occurs for:

• Global variables when the system starts up

• Shared variables when the object with the shared variables is loaded

• Instance variables when the object with the instance variables is created

• Local variables when the function that declares them begins executing

Examples

This example retrieves data for the DataWindow dw_1 before its window is displayed:

dw_1.SetTransObject(SQLCA)
dw_1.Retrieve()

See also

Destructor

Open

2.3.23 DataChange

Description

Occurs when the server application notifies the control that data has changed.

Event ID

Table 2.105:

Event ID Objects

pbm_omndatachange OLE

Statements, Events, and Functions

Page 209

Arguments

None

Return Values

Long.

Return code: Ignored

See also

PropertyRequestEdit

PropertyChanged

Rename

ViewChange

2.3.24 DateChanged

Description

Occurs immediately after a date is selected.

Event ID

Table 2.106:

Event ID Objects

pbm_mcdatechanged MonthCalendar

Arguments

None

Return Values

Long.

Return code: Ignored

Usage

If you code a call to a MessageBox function in this event, the message box does not display
if the user selects a new date using the mouse. This is because the mouse click captures the
mouse. Message boxes do not display when the mouse is captured because unexpected results
can occur. The message box does display if the user selects a new date using the arrow keys.

SetSelectedDate and SetSelectedRange trigger a DateChanged event. You should not call
either method in a DateChanged event, particularly using the Post method.

See also

DateSelected

2.3.25 DateSelected

Description

Occurs when the user selects a date using the mouse.

Statements, Events, and Functions

Page 210

Event ID

Table 2.107:

Event ID Objects

pbm_mcdatesel MonthCalendar

Arguments

None

Return Values

Long.

Return code: Ignored

Usage

This event is similar to DateChanged, but it occurs only when the user has selected a specific
date using the mouse. The DateChanged event occurs whenever the date changes -- when a
date is selected using the mouse, when the date is changed in a script, and when the user uses
the arrow key on the keyboard to select a different date or the arrow on the control to scroll to
a different month.

Examples

The following script in the DateSelected event writes the date the user selected using the
mouse to a single-line edit box:

date dt_selected
integer li_ret
string ls_date

li_ret = GetSelectedDate(dt_selected)
ls_date = string(dt_selected)
sle_2.text = ls_date

See also

DateChanged

2.3.26 DBError

Description

Triggered when an error occurs during a transaction or an attempted transaction.

Event ID

Table 2.108:

Event ID Objects

None Transaction objects

Arguments

Table 2.109:

Argument Description

code Long by value. A database-specific error code.

Statements, Events, and Functions

Page 211

Argument Description
See your DBMS documentation for information on the meaning of the
code.

When there is no error code from the DBMS, code contains one of these
values:

-1 -- Cannot connect to the database

-2 -- Writing a blob to the database failed

-4 -- All other errors (see Usage note for more detail)

sqlerrortext String by value. A database-specific error message.

sqlsyntax String by value. The full text of the SQL statement being sent to the
DBMS when the error occurred.

Return Values

Long, but this return code has no meaning to PowerBuilder.

Usage

Error codes

For any database related error, the error code comes from the database driver. The error
text is also from the database drivers. The sqlsyntax argument shows what SQL syntax was
executing when the error occurred.

For errors that are not related to database drivers, the code argument is set to -4. If the
PowerBuilder VM cannot get the syntax for these types of errors, an empty string is passed to
the sqlsyntax argument. PowerBuilder cannot get the syntax for the following types of errors:

Table 2.110:

• "Cursor is not open" • "Cursor is already open"

• "Procedure has not been executed or has
no results"

• "Procedure has already been executed"

• "Transaction not connected" • "Transaction already connected"

• "Transaction not connected. Transaction
Pool limit exceeded"

• "Database does not support FETCH
(FIRST/LAST/PRIOR)"

The PowerBuilder VM can get the SQL syntax for the following types of errors, and passes it
to the Transaction object's DBError event for the following types of errors:

Table 2.111:

• "Select returned more than one row" • "Blob variable for UPDATEBLOB cannot
be empty"

• "Mismatch between prepared number
of substitution variables and execute
parameters"

• "Open <cursor> or execute <procedure>
must reference DESCRIPTOR"

• "Mismatch between retrieve columns and
fetch columns"

• "Database does not support WHERE
CURRENT OF <cursor-name>"

Statements, Events, and Functions

Page 212

• "Database statement must refer to blob
variable"

Use with embedded SQL

By default, whenever an error occurs in the Transaction object, the DBError event is called.
The error code and error message are passed to this event. You can add code to the DBError
event to handle these errors.

Use with DataWindow/DataStore

When using a Transaction object with a DataWindow, the DataWindow DBError event
is triggered before the DBError event of the Transaction object. The return value for the
DataWindow DBError event is used to indicate whether the Transaction object's DBError
event should be triggered in turn. When the return value of the DataWindow DBError event
is 0 or 1, the Transaction object's DBError event is also triggered if it is defined. When the
return value of the DataWindow DBError event is 2 or 3, the Transaction object's DBError
event is ignored.

Examples

The following code in the DBError event displays the error message and the SQL statement
sent to the DBMS when a transaction error occurs:

Messagebox("Transaction error","Error message: "&
 +sqlerrortext + "~r~n Occurred for this statement:"&
 +sqlsyntax)

See also

DBError in Section 8.12, “DBError” in DataWindow Reference

SQLPreview

2.3.27 DBNotification

Description

Triggered by a PowerBuilder script or DataWindow database operation command if a
PowerBuilder database driver receives a notification from the database server. This event is
supported only with the Oracle 10g (O10) native database interface.

Event ID

Table 2.112:

Event ID Objects

pbm_dbnotification Transaction

Arguments

Table 2.113:

Argument Description

notification A value of the DBNotification enumerated datatype. The database
interface determines the type of the notification received from the server,

Statements, Events, and Functions

Page 213

Argument Description
triggers the DBNotification event, and passes the notification type in this
argument. Values are:

• DBServerDown! = 1. The server has been shut down. This notification
type is used only by the O10 (Oracle 10g) database interface.

• DBFailover! = 2. The database client is failing over.

• DBDataTruncate! = 3. Data has been truncated.

DBServerDown! is used for Oracle RAC database HA events.
DBFailover! and DBDataTruncate! can be used with other databases for
failover and data truncation warnings.

command A string that informs users which command was being executed when the
notification occurred.

dbmessage A string that describes the reason why the event occurred.

Return Values

Long.

Return code choices (specify in a RETURN statement):

• 0 -- Continue to process the database command. If the event does not exist or does not have
a script, the return value is 0 by default.

• Any other value -- Ignored if the notification argument is DBFailover!. If the value of
the notification argument is DBServerDown! or DBDataTruncate!, the current command
returns with an error. SQLCA.SQLCode is set to -1 and SQLCA.SQLDBCode is set to the
return value.

Usage

Oracle Real Application Clusters (RAC) is a cluster database that uses a shared cache
architecture. In Oracle 10g Release 2, a High Availability (HA) client connected to an RAC
database can register a callback to indicate that it wants the server to notify it in case of a
database failure event that affects a connection made by the client. The DBNotification event
is triggered when the client is notified that such an event has occurred.

The default transaction object, SQLCA, does not support this event. To use the event, create
a new standard class user object that inherits from the Transaction object and add code to the
DBNotification event script. You can then use this Transaction object in your application, or
substitute it for SQLCA on the Variable Types tab page in the Application Properties dialog
box.

To be notified when the server shuts down, your application must be connected to an Oracle
10g RAC database using the O10 database interface and the HANotification database
parameter must be set to 1. When the server shuts down, the O10 driver is notified. The
DBNotification event is triggered if the application continues to attempt to access the server.
The value of the notification argument is set to DBServerDown!, the command string is set to

Statements, Events, and Functions

Page 214

the syntax of the current command, and the dbmessage string is populated with information
about the shutdown.

If your application does not execute any SQL statements on the current connection after the
server shuts down, the DBNotification event is not triggered until Disconnect is called.

You can code the return value of the DBNotification event to specify whether the application
should continue to execute the current command:

• If the event returns 0, the current command continues executing until failover occurs and
completes successfully (if failover is supported), then the application continues. If failover
is not supported, the application will receive an error for the current command.

• If the event returns any other value, the current command execution is stopped
immediately and the Transaction object property SQLCode is set to -1, SQLDBCode is set
to the return value, SQLErrText is set to the value of the dbmessage string, and failover
does not happen. After the event, only Disconnect can be called on the current transaction.

Inside the DBNotification event script, the current connection of the Transaction object
is protected and database operations with the connection are not allowed. All database
commands will return as failed. However, the application can still access the database with
another Transaction object.

If the SvrFailover database parameter is set to Yes, the DBNotification event is triggered with
the notification argument set to DBFailover!

The event can be triggered several times during the failover, as when the failover begins
and ends. You do not need to be connected to an Oracle RAC database or to set the
HANotification database parameter to be notified when a failover occurs.

2.3.28 Deactivate

Description

Occurs when the window becomes inactive.

Event ID

Table 2.114:

Event ID Objects

pbm_deactivate Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When a window is closed, a Deactivate event occurs.

Statements, Events, and Functions

Page 215

See also

Activate

Show

2.3.29 DeleteAllItems

Description

Occurs when all the items in the ListView are deleted.

Event ID

Table 2.115:

Event ID Objects

pbm_lvndeleteallitems ListView

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

This example uses the DeleteAllItems event to ensure that there is a default item in the
ListView control:

This.AddItem("Default item", 1)

See also

DeleteItem

InsertItem

2.3.30 DeleteItem

The DeleteItem event has different arguments for different objects:

Table 2.116:

Object See

ListView control Syntax 1

TreeView control Syntax 2

2.3.30.1 Syntax 1: For ListView controls

Description

Occurs when an item is deleted.

Event ID

Statements, Events, and Functions

Page 216

Table 2.117:

Event ID Objects

pbm_lvndeleteitem ListView

Arguments

Table 2.118:

Argument Description

index Integer by value (the index of the deleted item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

This example for the DeleteItem event displays a message with the number of the deleted
item:

MessageBox("Message", "Item " + String(index) &
 + " deleted.")

See also

DeleteAllItems

InsertItem

2.3.30.2 Syntax 2: For TreeView controls

Description

Occurs when an item is deleted.

Event ID

Table 2.119:

Event ID Objects

pbm_tvndeleteitem TreeView

Arguments

Table 2.120:

Argument Description

handle Long by value (the handle of the deleted item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Statements, Events, and Functions

Page 217

Examples

This example displays the name of the deleted item in a message:

TreeViewItem ll_tvi

This.GetItem(handle, ll_tvi)
MessageBox("Message", String(ll_tvi.Label) &
 + " has been deleted.")

2.3.31 Destructor

Description

Occurs when the user object or control is destroyed, immediately after the Close event of a
window.

Event ID

Table 2.121:

Event ID Objects

pbm_destructor All objects

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When a window is closed, each control's Destructor event destroys the control and removes
it from memory. After they have been destroyed, you can no longer refer to those controls in
other scripts. If you do, a runtime error occurs.

See also

Constructor

Close

2.3.32 DisconnectMobiLink

Description

Occurs when the MobiLink synchronization server disconnects from the consolidated
database server.

Event ID

Table 2.122:

Event ID Objects

None MLSynchronization, MLSync

Statements, Events, and Functions

Page 218

Arguments

None

Return Values

None

Usage

Use this event to add custom actions immediately after the remote database disconnects from
the MobiLink synchronization server.

When an application forms or reforms a connection with the MobiLink synchronization
server, the MobiLink synchronization server temporarily allocates one connection with the
database server for the duration of that synchronization.

The following synchronization object events correspond to events occurring on the
synchronization server (in the order displayed): BeginSync, ConnectMobiLink, BeginUpload,
EndUpload, BeginDownload, DisconnectMobiLink, and EndSync.

See also

ConnectMobiLink

EndDownload

EndSync

EndUpload

2.3.33 DisplayMessage

Description

Occurs on display of an informational message from a MobiLink synchronization.

Event ID

Table 2.123:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.124:

Argument Description

infomsg Read-only string containing the text of an informational message returned
from the synchronization server.

Return Values

None

Usage

The following events are triggered when different types of messages are sent by the
synchronization server: DisplayMessage, ErrorMessage, FileMessage, and WarningMessage.

Statements, Events, and Functions

Page 219

See also

ErrorMessage

FileMessage

WarningMessage

2.3.34 DoubleClicked

The DoubleClicked event has different arguments for different objects:

Table 2.125:

Object See

ListBox, PictureListBox, ListView, and Tab
controls

Syntax 1

TreeView control Syntax 2

Window Syntax 3

Other controls Syntax 4

For information about the DataWindow control's DoubleClicked event, see the Section 8.14,
“DoubleClicked” in DataWindow Reference.

2.3.34.1 Syntax 1: For ListBox, PictureListBox, ListView, and Tab controls

Description

Occurs when the user double-clicks on the control.

Event ID

Table 2.126:

Event ID Objects

pbm_lbndblclk ListBox, PictureListBox

pbm_lvndoubleclicked ListView

pbm_tcndoubleclicked Tab

Arguments

Table 2.127:

Argument Description

index Integer by value. The index of the item the user double-clicked (for tabs,
the index of the tab page).

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Statements, Events, and Functions

Page 220

Usage

You can use the ItemActivate event (with the OneClickActivate property set to false) instead
of the DoubleClicked event for ListView controls.

In a ListBox or PictureListBox, double-clicking on an item also triggers a SelectionChanged
event.

Examples

This example uses the DoubleClicked event to begin editing the double-clicked ListView
item:

This.EditLabels = TRUE

See also

Clicked

ColumnClick

ItemActivate

ItemChanged

ItemChanging

RightClicked

RightDoubleClicked

SelectionChanged

SelectionChanging

2.3.34.2 Syntax 2: For TreeView controls

Description

Occurs when the user double-clicks on the control.

Event ID

Table 2.128:

Event ID Objects

pbm_tvndoubleclicked TreeView

Arguments

Table 2.129:

Argument Description

handle Long by value (the handle of the item the user double-clicked)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Statements, Events, and Functions

Page 221

Examples

This example turns on editing for the double-clicked TreeView item:

TreeViewItem ltvi_current
ltvi_current = tv_1.FindItem(CurrentTreeItem!, 0)
This.EditLabel(ltvi_current)

See also

Clicked

RightClicked

RightDoubleClicked

SelectionChanged

SelectionChanging

2.3.34.3 Syntax 3: For windows

Description

Occurs when the user double-clicks in an unoccupied area of the window (any area with no
visible, enabled object).

Event ID

Table 2.130:

Event ID Objects

pbm_lbuttondblclk Window

Arguments

Table 2.131:

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons that are
pressed).

Values are:

• 1 -- Left mouse button

• 2 -- Right mouse button

• 4 -- Shift key

• 8 -- Ctrl key

• 16 -- Middle mouse button

In the Clicked event, the left mouse button is being released, so 1 is not
summed in the value of flags.

For an explanation of flags, see Syntax 2 of MouseMove.

Statements, Events, and Functions

Page 222

Argument Description

xpos Integer by value (the distance of the pointer from the left edge of the
window's workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the window's
workspace in pixels).

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The xpos and ypos arguments provide the same values the functions PointerX and PointerY
return when you call them for the window.

See also

Clicked

MouseDown

MouseMove

MouseUp

RButtonDown

2.3.34.4 Syntax 4: For other controls

Description

Occurs when the user double-clicks on the control.

Event ID

Table 2.132:

Event ID Objects

pbm_bndoubleclicked Graph, OLE, Picture, PictureHyperLink,
StaticText, StaticHyperLink

pbm_cbndblclk DropDownListBox,
DropDownPictureListBox

pbm_lbuttondblclk DatePicker, MonthCalendar

pbm_prndoubleclicked HProgressBar, VProgressBar

pbm_rendoubleclicked RichTextEdit

Arguments

None

Return Values

Long.

Statements, Events, and Functions

Page 223

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The DoubleClicked event for DropDownListBoxes is only active when the Always Show
List property is on.

See also

Clicked

RButtonDown

2.3.35 DownloadingStart

Description

Occurs before a download begins.

Event ID

Table 2.133:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.134:

Argument Description

itemId The ID used to specify the file.

fileName The full path name of the file to be downloaded and saved locally.

Return Values

None

See also

AddressChanged

CertificateError

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationError

NavigationProgressIndex

NavigationStateChanged

NavigationStart

PdfPrintFinished

ResourceRedirect

Statements, Events, and Functions

Page 224

TitleTextChanged

2.3.36 DownloadingStateChanged

Description

Occurs when the download status or progress information has been updated.

Event ID

Table 2.135:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.136:

Argument Description

itemId The ID used to specify the file.

speed The download speed estimated in bytes every second.

received The number of bytes received.

total The total number of bytes to be downloaded.

percent A rough percentage of completion or -1 if the received total size is
unknown.

Return Values

None

Usage

The DownloadingStateChanged event will be triggered for uncertain times even if the
download percentage has reached 100%.

The DownloadingStateChanged event will still be triggered after PauseDownload is called.

See also

AddressChanged

CertificateError

DownloadingStart

EvaluateJavascriptFinished

NavigationError

NavigationProgressIndex

NavigationStart

NavigationStateChanged

PdfPrintFinished

ResourceRedirect

Statements, Events, and Functions

Page 225

TitleTextChanged

2.3.37 DragDrop

The DragDrop event has different arguments for different objects:

Table 2.137:

Object See

ListBox, PictureListBox, ListView, and Tab
controls

Syntax 1

TreeView control Syntax 2

Windows and other controls Syntax 3

For information about the DataWindow control's DragDrop event, see the Section 8.15,
“DragDrop” in DataWindow Reference.

2.3.37.1 Syntax 1: For ListBox, PictureListBox, ListView, and Tab controls

Description

Occurs when the user drags an object onto the control and releases the mouse button to drop
the object.

Event ID

Table 2.138:

Event ID Objects

pbm_lbndragdrop ListBox, PictureListBox

pbm_lvndragdrop ListView

pbm_tcndragdrop Tab

Arguments

Table 2.139:

Argument Description

source DragObject by value (a reference to the control being dragged)

index Integer by value (the index of the target ListView item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Obsolete functions

You no longer need to call the DraggedObject function in a drag event. Use the source
argument instead.

Statements, Events, and Functions

Page 226

Examples

For ListView controls, see the example for BeginDrag.

This example inserts the dragged ListView item:

This.AddItem(ilvi_dragged_object)
This.Arrange()

See also

BeginDrag

BeginRightDrag

DragEnter

DragLeave

DragWithin

2.3.37.2 Syntax 2: For TreeView controls

Description

Occurs when the user drags an object onto the control and releases the mouse button to drop
the object.

Event ID

Table 2.140:

Event ID Objects

pbm_tvndragdrop TreeView

Arguments

Table 2.141:

Argument Description

source DragObject by value (a reference to the control being dragged)

handle Long by value (the handle of the target TreeView item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Obsolete functions

You no longer need to call the DraggedObject function in a drag event. Use the source
argument instead.

Examples

This example inserts the dragged object as a child of the TreeView item it is dropped upon:

Statements, Events, and Functions

Page 227

TreeViewItem ltv_1
This.GetItem(handle, ltv_1)
This.SetDropHighlight(handle)
This.InsertItemFirst(handle, itvi_drag_object)
This.ExpandItem(handle)
This.SetRedraw(TRUE)

See also

DragEnter

DragLeave

DragWithin

2.3.37.3 Syntax 3: For windows and other controls

Description

Occurs when the user drags an object onto the control and releases the mouse button to drop
the object.

Event ID

Table 2.142:

Event ID Objects

pbm_bndragdrop CheckBox, CommandButton, Graph, InkEdit, InkPicture, Picture,
PictureHyperLink, PictureButton, RadioButton

pbm_cbndragdrop DropDownListBox, DropDownPictureListBox

pbm_dragdrop DatePicker, MonthCalendar

pbm_endragdrop SingleLineEdit, EditMask, MultiLineEdit, StaticText, StaticHyperLink

pbm_omndragdrop OLE

pbm_prndragdrop HProgressBar, VProgressBar

pbm_rendragdrop RichTextEdit

pbm_sbndragdrop HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_uondragdrop UserObject

pbm_dragdrop Window

Arguments

Table 2.143:

Argument Description

source DragObject by value (a reference to the control being dragged)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Statements, Events, and Functions

Page 228

When a control's DragAuto property is true, a drag operation begins when the user presses a
mouse button.

Obsolete functions

You no longer need to call the DraggedObject function in a drag event. Use the source
argument instead.

Examples

Example 1

In this example, the code in the DoubleClicked event for the DataWindow dw_orddetail starts
a drag operation:

IF dw_orddetail.GetRow() > 0 THEN
 dw_orddetail.Drag(Begin!)
 This.DragIcon = "dragitem.ico"
END IF

Then, in the DragDrop event for a trashcan Picture control, this code deletes the row the user
clicked and dragged from the DataWindow control:

long ll_currow
dwitemstatus ldwis_delrow

ll_currow = dw_orddetail.GetRow()

// Save the row's status flag for later use
ldwis_delrow = dw_orddetail.GetItemStatus &
 (ll_currow, 0, Primary!)

// Now, delete the current row from dw_orddetail
dw_orddetail.DeleteRow(0)

Example 2

This example for a trashcan Picture control's DragDrop event checks whether the source of
the drag operation is a DataWindow. If so, it asks the user whether to delete the current row
in the source DataWindow:

DataWindow ldw_Source
Long ll_RowToDelete
Integer li_Choice

IF source.TypeOf() = DataWindow! THEN

 ldw_Source = source
 ll_RowToDelete = ldw_Source.GetRow()

 IF ll_RowToDelete > 0 THEN
 li_Choice = MessageBox("Delete", &
 "Delete this row?", Question!, YesNo!, 2)
 IF li_Choice = 1 THEN
 ldw_Source.DeleteRow(ll_RowToDelete)
 END IF
 ELSE
 Beep(1)
 END IF

ELSE
 Beep(1)
END IF

Statements, Events, and Functions

Page 229

See also

DragEnter

DragLeave

DragWithin

2.3.38 DragEnter

Description

Occurs when the user is dragging an object and enters the control.

Event ID

Table 2.144:

Event ID Objects

pbm_bndragenter CheckBox, CommandButton, Graph, InkEdit, InkPicture, Picture,
PictureHyperlink, PictureButton, RadioButton

pbm_cbndragenterDropDownListBox, DropDownPictureListBox

pbm_dragenter DatePicker, MonthCalendar

pbm_dwndragenterDataWindow

pbm_endragenter SingleLineEdit, EditMask, MultiLineEdit, StaticText, StaticHyperLink

pbm_lbndragenter ListBox, PictureListBox

pbm_lvndragenter ListView

pbm_omndragenterOLE

pbm_prndragenterHProgressBar, VProgressBar

pbm_rendragenter RichTextEdit

pbm_sbndragenterHScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcndragenter Tab

pbm_tvndragenter TreeView

pbm_uondragenterUserObject

pbm_dragenter Window

Arguments

Table 2.145:

Argument Description

source DragObject by value (a reference to the control being dragged)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Statements, Events, and Functions

Page 230

Usage

Obsolete functions

You no longer need to call the DraggedObject function in a drag event. Use the source
argument instead.

Examples

This example for a Picture control's DragDrop event adds a border to itself when another
Picture control (the source) is dragged within its boundaries:

IF source.TypeOf() = Picture! THEN
 This.Border = TRUE
END IF

See also

DragDrop

DragLeave

DragWithin

2.3.39 DragLeave

Description

Occurs when the user is dragging an object and leaves the control.

Event ID

Table 2.146:

Event ID Objects

pbm_bndragleave CheckBox, CommandButton, Graph, InkEdit, InkPicture, Picture,
PictureHyperLink, PictureButton, RadioButton

pbm_cbndragleaveDropDownListBox, DropDownPictureListBox

pbm_dragleave DatePicker, MonthCalendar

pbm_dwndragleaveDataWindow

pbm_endragleave SingleLineEdit, EditMask, MultiLineEdit, StaticText, StaticHyperLink

pbm_lbndragleaveListBox, PictureListBox

pbm_lvndragleaveListView

pbm_omndragleaveOLE

pbm_prndragleaveHProgressBar, VProgressBar

pbm_rendragleaveRichTextEdit

pbm_sbndragleaveHScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcndragleaveTab

pbm_tvndragleaveTreeView

pbm_uondragleaveUserObject

pbm_dragleave Window

Statements, Events, and Functions

Page 231

Arguments

Table 2.147:

Argument Description

source DragObject by value (a reference to the control being dragged)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Obsolete functions

You no longer need to call the DraggedObject function in a drag event. Use the source
argument instead.

Examples

This example checks the name of the control being dragged, and if it is, cb_1 it cancels the
drag operation:

IF ClassName(source) = "cb_1" THEN
 cb_1.Drag(Cancel!)
END If

This example for a Picture control's DragDrop event removes its own border when another
Picture control (the source) is dragged beyond its boundaries:

IF source.TypeOf() = Picture! THEN
 This.Border = TRUE
END IF

See also

DragDrop

DragEnter

DragWithin

2.3.40 DragWithin

The DragWithin event has different arguments for different objects:

Table 2.148:

Object See

ListBox, PictureListBox, ListView, and Tab
controls

Syntax 1

TreeView control Syntax 2

Windows and other controls Syntax 3

For information about the DataWindow control's DragWithin event, see Section 8.18,
“DragWithin” in DataWindow Reference.

Statements, Events, and Functions

Page 232

2.3.40.1 Syntax 1: For ListBox, PictureListBox, ListView, and Tab controls

Description

Occurs when the user is dragging an object within the control.

Event ID

Table 2.149:

Event ID Objects

pbm_lbndragwithin ListBox, PictureListBox

pbm_lvndragwithin ListView

pbm_tcndragwithin Tab

Arguments

Table 2.150:

Argument Description

source DragObject by value (a reference to the control being dragged)

index Integer by value (a reference to the ListView item under the pointer in the
ListView control)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Obsolete functions

You no longer need to call the DraggedObject function in a drag event. Use the source
argument instead.

Examples

This example changes the background color of the ListView when a DragObject enters its
border:

This.BackColor = RGB(128, 0, 128)

See also

DragDrop

DragEnter

DragLeave

2.3.40.2 Syntax 2: For TreeView controls

Description

Occurs when the user is dragging an object within the control.

Statements, Events, and Functions

Page 233

Event ID

Table 2.151:

Event ID Objects

pbm_tvndragwithin TreeView

Arguments

Table 2.152:

Argument Description

source DragObject by value (a reference to the control being dragged)

handle Long (a reference to the ListView item under the pointer in the TreeView
control)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Obsolete functions

You no longer need to call the DraggedObject function in a drag event. Use the source
argument instead.

Examples

This example changes the background color of the TreeView when a DragObject enters its
border:

This.BackColor = RGB(128, 0, 128)

See also

DragDrop

DragEnter

DragLeave

2.3.40.3 Syntax 3: For windows and other controls

Description

Occurs when the user is dragging an object within the control.

Event ID

Table 2.153:

Event ID Objects

pbm_bndragwithinCheckBox, CommandButton, Graph, InkEdit, InkPicture, Picture,
PictureHyperLink, PictureButton, RadioButton

pbm_cbndragwithinDropDownListBox, DropDownPictureListBox

Statements, Events, and Functions

Page 234

Event ID Objects

pbm_dragwithin DatePicker, MonthCalendar

pbm_endragwithinSingleLineEdit, EditMask, MultiLineEdit, StaticText, StaticHyperLink

pbm_omndragwithinOLE

pbm_prndragwithinHProgressBar, VProgressBar

pbm_rendragwithinRichTextEdit

pbm_sbndragwithinHScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_uondragwithinUserObject

pbm_dragwithin Window

Arguments

Table 2.154:

Argument Description

source DragObject by value (a reference to the control being dragged)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Obsolete functions

You no longer need to call the DraggedObject function in a drag event. Use the source
argument instead.

See also

DragDrop

DragEnter

DragLeave

2.3.41 DropDown

Description

Occurs when the user has clicked the drop-down arrow in a DatePicker control just before the
drop-down calendar displays.

Event ID

Table 2.155:

Event ID Objects

pbm_dtpdropdown DatePicker

Arguments

Statements, Events, and Functions

Page 235

None.

Return Values

Long.

Return code: Ignored.

2.3.42 EndDownload

Description

Occurs at the end of a download procedure

Event ID

Table 2.156:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.157:

Argument Description

upsertrows Long identifying the inserted and updated rows.

deleterows Long identifying the deleted rows.

Return Values

None

Usage

Use this event to add custom actions at the end of the download stage of synchronization.

The BeginDownload event marks the beginning of the download transaction. Applicable
deletes are performed for all remote tables, and then rows are added as applicable for all
remote tables in the download cursor. After EndDownload, download changes are committed.

See also

BeginDownload

ConnectMobiLink

EndSync

EndUpload

2.3.43 EndLabelEdit

The EndLabelEdit event has different arguments for different objects:

Table 2.158:

Object See

ListView control Syntax 1

Statements, Events, and Functions

Page 236

Object See

TreeView control Syntax 2

2.3.43.1 Syntax 1: For ListView controls

Description

Occurs when the user finishes editing an item's label.

Event ID

Table 2.159:

Event ID Objects

pbm_lvnendlabeledit ListView

Arguments

Table 2.160:

Argument Description

index Integer. The index of the ListView item for which you have edited the
label.

newlabel The string that represents the new label for the ListView item.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Allow the new text to become the item's label.

1 -- Prevent the new text from becoming the item's label.

Usage

The user triggers this event by pressing Enter or Tab after editing the text.

Examples

This example displays the old label and the new label in a SingleLineEdit:

ListViewItem lvi
sle_info.text = "Finished editing " &
 + String(lvi.label) &
 +". Item changed to "+ String(newlabel)

See also

BeginLabelEdit

2.3.43.2 Syntax 2: For TreeView controls

Description

Occurs when the user finishes editing an item's label.

Event ID

Statements, Events, and Functions

Page 237

Table 2.161:

Event ID Objects

pbm_tvnendlabeledit TreeView

Arguments

Table 2.162:

Argument Description

handle Integer. The index of the TreeView item for which you have edited the
label.

newtext The string that represents the new label for the TreeView item.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Allow the new text to become the item's label

1 -- Prevent the new text from becoming the item's label

Usage

The user triggers this event by pressing Enter or Tab after editing the text.

Examples

This example displays the old label and the new label in a SingleLineEdit:

TreeViewItem tvi

This.GetItem(handle, tvi)
sle_info.Text = "Finished editing " &
 + String(tvi.Label) &
 + ". Item changed to " &
 + String(newtext)

See also

BeginLabelEdit

2.3.44 EndLogScan

Description

Occurs after the scan of the transaction log completes for upload.

Event ID

Table 2.163:

Event ID Objects

None MLSync

Arguments

Statements, Events, and Functions

Page 238

None

Return Values

None

Usage

Use this event to add custom actions immediately after the transaction log is scanned for
upload.

The following events are triggered while the upload stream is prepared, but before
synchronization begins: BeginLogScan, ProgressInfo, and EndLogScan.

See also

BeginLogScan

ProgressIndex

2.3.45 EndSync

Description

Occurs at the end of synchronization.

Event ID

Table 2.164:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.165:

Argument Description

rc Long datatype value that indicates whether a synchronization error
occurred.

restart Boolean value passed by reference that, if true, causes dbmlsync to restart
the synchronization.

Return Values

None

Usage

Use this event to add custom actions when a synchronization is complete.

An rc value of 0 indicates a successful synchronization. When the rc value is anything other
than 0, an error has occurred. If the restart value changes to true, dbmlsync restarts the
synchronization.

See also

BeginSync

Statements, Events, and Functions

Page 239

DisconnectMobiLink

EndDownload

EndUpload

2.3.46 EndUpload

Description

Occurs after transmission of the upload to the synchronization server.

Event ID

Table 2.166:

Event ID Objects

None MLSynchronization, MLSync

Arguments

None

Return Values

None

Usage

Use this event to add custom actions immediately after transmission of the upload stream
from dbmlsync to the MobiLink synchronization server.

The BeginUpload event marks the beginning of the upload transaction. Applicable inserts
and updates to the consolidated database are performed for all remote tables, then rows are
deleted as applicable for all remote tables. After EndUpload, upload changes are committed.

See also

BeginUpload

DisconnectMobiLink

EndDownload

EndSync

2.3.47 Error

2.3.47.1 Syntax 1: for Connection, DataWindow, DataStore, OLE, OLEObject, OLETxnObject

Description

Occurs when an error is found in a data or property expression for an external object or a
DataWindow object.

Improved error-handling capability in PowerBuilder

The Error event is maintained for backward compatibility. If you do not script the
Error event or change its action argument, information from this event is passed to

Statements, Events, and Functions

Page 240

RuntimeError objects, such as DWRuntimeError or OLERuntimeError. You can
handle these errors in a try-catch block.

Event ID

Table 2.167:

Event ID Objects

None Connection, DataWindow, DataStore, OLE,
OLEObject, OLETxnObject

Arguments

Table 2.168:

Argument Description

errornumber Unsigned integer by value (PowerBuilder's error number)

errortext String, read-only (PowerBuilder's error message)

errorwindowmenu String, read-only (the name of the window or menu that is the parent of
the object whose script caused the error)

errorobject String, read-only (the name of the object whose script caused the error)

errorscript String, read-only (the full text of the script in which the error occurred)

errorline Unsigned integer by value (the line in the script where the error occurred)

action ExceptionAction by reference.

A value you specify to control the application's course of action as a
result of the error. Values are:

• ExceptionFail! -- fail as if this script were not implemented. The
error condition triggers any active event handlers, or if none, the
SystemError event.

• ExceptionIgnore! -- ignore this error and return as if no error occurred
(use this option with caution because the conditions that caused the
error can cause another error).

• ExceptionRetry! -- execute the function or evaluate the expression
again in case the OLE server was not ready. This option is not valid for
DataWindows.

• ExceptionSubstituteReturnValue! -- use the value specified in the
returnvalue argument instead of the value returned by the OLE server
or DataWindow, and cancel the error condition.

returnvalue Any by reference (a value whose datatype matches the expected value
that the OLE server or DataWindow would have returned).

This value is used when the value of action is
ExceptionSubstituteReturnValue!.

Return Values

Statements, Events, and Functions

Page 241

None. Do not use a RETURN statement.

Usage

DataWindow and OLE objects are dynamic. Expressions that use dot notation to refer to data
and properties of these objects might be valid under some runtime conditions but not others.
The Error event allows you to respond to this dynamic situation with error recovery logic.

The Error event also allows you to respond to communications errors in the client component
of a distributed application. In the Error event for a custom connection object, you can tell
PowerBuilder what action to take when an error occurs during communications between the
client and the server.

The Error event gives you an opportunity to substitute a default value when the error is
not critical to your application. Its arguments also provide information that is helpful in
debugging. For example, the arguments can help you debug DataWindow data expressions
that cannot be checked by the compiler -- such expressions can only be evaluated at runtime.

When to substitute a return value

The ExceptionSubstituteReturnValue! action allows you to substitute a return value
when the last element of an expression causes an error. Do not use it to substitute
a return value when an element in the middle of an expression causes an error.
The substituted return value does not match the datatype of the unresolved object
reference and causes a system error.

The ExceptionSubstituteReturnValue! action can be useful for handling errors in data
expressions.

For DataWindows, when an error occurs while evaluating a data or property expression, error
processing occurs like this:

1. The Error event occurs.

2. If the Error event has no script or its action argument is set to ExceptionFail!, any active
exception handler for a DWRuntimeError or its RuntimeError ancestor is invoked.

3. If no exception handler exists, or if the existing exception handlers do not handle the
exception, the SystemError event is triggered.

4. If the SystemError event has no script, an application error occurs and the application is
terminated.

The error processing in the client component of a distributed application is the same as for
DataWindows.

For information about error processing in OLE controls, see the ExternalException event. For
information about data and property expressions for DataWindow objects, see Section 5.3,
“PowerBuilder: DataWindow property expressions” in DataWindow Reference.

For information about handling communications errors in a multitier application, see
Chapter 6, Developing Distributed Applications in Application Techniques.

Examples

Statements, Events, and Functions

Page 242

This example displays information about the error that occurred and allows the script to
continue:

MessageBox("Error Number " + string(errornumber)&
 + " Occurred", "Errortext: " + String(errortext))
action = ExceptionIgnore!

See also

DBError in Section 8.12, “DBError” in DataWindow Reference

ExternalException

SystemError

2.3.47.2 Syntax 2: for CompressorObject objects

Description

Occurs when an error is found in the file compression operation.

Event ID

Table 2.169:

Event ID Objects

None CompressorObject

Arguments

Table 2.170:

Argument Description

ErrorNumber Unsigned integer by value (PowerBuilder's error number)

1 -- Success

-1 -- A general error occurred. If the CompressorObject object is used in
asynchronous mode, this function will return the general error.

-2 -- The password entered is illegal.

-3 -- The operation is not supported for the source file format.

-4 -- The task thread is aborted.

-5 -- A task thread is currently running.

-6 -- The folder to be compressed does not exist.

-7 -- The folder to be compressed is empty.

-8 -- The compression format does not support multi-file compression.

-9 -- Failed to read file from the folder for compression.

-10 -- The target path does not exist.

-11 -- More than one source file has the same file name.

-12 -- Invalid compressed file name or no compressed file name is
specified in the "dest" argument.

Statements, Events, and Functions

Page 243

Argument Description
-13 -- Failed to compress.

ErrorText String, read-only (PowerBuilder's error message)

Return Values

None

See also

Finished

ProcessingFile

SizeCompleted

Start

2.3.47.3 Syntax 3: for ExtractorObject objects

Description

Occurs when an error is found in the archive extraction operation.

Event ID

Table 2.171:

Event ID Objects

None ExtractorObject

Arguments

Table 2.172:

Argument Description

ErrorNumber Unsigned integer by value (PowerBuilder's error number)

1 -- Success

-1 -- A general error occurred. If the ExtractorObject object is used in
asynchronous mode, this function will return the general error.

-2 -- The password entered is illegal.

-3 -- The operation is not supported for the source file format.

-4 -- The task thread is aborted.

-5 -- A task thread is currently running.

-6 -- No password is entered. You must enter the password.

-7 -- The password is incorrect.

-8 -- Failed to get new memory when saving the decompressed file.

-9 -- Failed to read the compressed file.

-10 -- Unrecognized format or the encrypted file name option is used
when compressing the document.

Statements, Events, and Functions

Page 244

Argument Description
-11 -- Access denied when extracting the archive.

-12 -- The compressed file does not exist.

-13 -- The directory where the decompressed file will be saved does not
exist.

-14 -- Failed to extract the compressed file.

ErrorText String, read-only (PowerBuilder's error message)

Return Values

None

See also

Finished

ProcessingFile

SizeCompleted

Start

2.3.48 ErrorMessage

Description

Occurs on display of an error message from a MobiLink synchronization.

Event ID

Table 2.173:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.174:

Argument Description

errmsg Read-only string containing the text of the error message returned from
the synchronization server.

Return Values

None

Usage

Use this event to receive error information logged by dbmlsync.

The following events can be triggered when different types of messages are sent by the
synchronization server: DisplayMessage, ErrorMessage, FileMessage, and WarningMessage.

See also

Statements, Events, and Functions

Page 245

DisplayMessage

FileMessage

WarningMessage

2.3.49 EvaluateJavascriptFinished

Description

Occurs after the EvaluateJavascriptAsync function is executed.

Event ID

Table 2.175:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.176:

Argument Description

result The result of script execution. The execution result is represented in
JSON format. The supported JavaScript data types are bool, int, double,
string, date, array. When the above types are mapped to the PowerBuilder
data types, they are boolean, integer, double, string, datetime, array.

error The error information if an error occurs during execution or an empty
string if there is no error.

Return Values

None

Examples

The following example shows that the EvaluateJavascriptFinished event parses the JavaScript
execution result via the JSONParser object:

//Event EvaluateJavascriptFinished
JsonParser lnv_JsonParser
Long ll_RootObject
String ls_Type

If Len(Result) > 0 Then
 lnv_JsonParser = Create JsonParser
 lnv_JsonParser.LoadString(result)
 ll_RootObject = lnv_JsonParser.GetRootItem()
 ls_Type = lnv_JsonParser.GetItemString(ll_RootObject, "type")
 If IsValid(lnv_JsonParser) Then Destroy (lnv_JsonParser)
End If

See also

AddressChanged

CertificateError

Statements, Events, and Functions

Page 246

DownloadingStart

DownloadingStateChanged

NavigationError

NavigationProgressIndex

NavigationStart

NavigationStateChanged

PdfPrintFinished

ResourceRedirect

TitleTextChanged

2.3.50 ExternalException

Description

Occurs when an OLE automation command caused an exception on the OLE server.

Improved error-handling capability in PowerBuilder

The ExternalException event is maintained for backward compatibility. If you do not
script this event or change its action argument, information from this event is passed
to RuntimeError objects, such as OLERuntimeError. You can handle these errors in a
try-catch block.

Event ID

Table 2.177:

Event ID Objects

None OLE, OLEObject, OLETxnObject

Arguments

Table 2.178:

Argument Description

resultcode UnsignedLong by value (a PowerBuilder number identifying the
exception that occurred on the server).

exceptioncode UnsignedLong by value (a number identifying the error that occurred on
the server. For the meaning of the code, see the server documentation).

source String by value (the name of the server, which the server provides).

description String by value (a description of the exception, which the server
provides).

helpfile String by value (the name of a Help file containing information about the
exception, which the server provides).

helpcontext UnsignedLong by value (the context ID of a Help topic in helpfile
containing information about the exception, which the server provides).

Statements, Events, and Functions

Page 247

Argument Description

action ExceptionAction by reference.

A value you specify to control the application's course of action as a
result of the error. Values are:

• ExceptionFail! -- fail as if this script were not implemented. The error
condition triggers the SystemError event.

• ExceptionIgnore! -- ignore this error and return as if no error occurred
(use this option with caution because the conditions that caused the
error can cause another error).

• ExceptionRetry! -- execute the function or evaluate the expression
again in case the OLE server was not ready.

• ExceptionSubstituteReturnValue! -- use the value specified in the
returnvalue argument instead of the value returned by the OLE server
or DataWindow and cancel the error condition.

returnvalue Any by reference.

A value whose datatype matches the expected value that the OLE server
would have returned. This value is used when the value of action is
ExceptionSubstituteReturnValue!.

Return Values

None. (Do not use a RETURN statement.)

Usage

OLE objects are dynamic. Expressions that refer to data and properties of these objects might
be valid under some runtime conditions but not others. If the expression causes an exception
on the server, PowerBuilder triggers the ExternalException event. The ExternalException
event gives you information about the error that occurred on the OLE server.

The server defines what it considers exceptions. Some errors, such as mismatched datatypes,
generally do not cause an exception but do trigger the Error event. In some cases you might
not consider the cause of the exception to be an error. To determine the reason for the
exception, see the documentation for the server.

When an exception occurs because of a call to an OLE server, error handling occurs like this:

1. The ExternalException event occurs.

2. If the ExternalException event has no script or its action argument is set to ExceptionFail!,
the Error event occurs.

3. If the Error event has no script or its action argument is set to ExceptionFail!, any active
exception handler for an OLERuntimeError or its RuntimeError ancestor is invoked.

4. If no exception handler exists, or if the existing exception handlers do not handle the
exception, the SystemError event is triggered.

Statements, Events, and Functions

Page 248

5. If the SystemError event has no script, an application error occurs and the application is
terminated.

Examples

Suppose your window has two instance variables: one for specifying the exception action,
and another of type Any for storing a potential substitute value. Before accessing the OLE
property, a script sets the instance variables to appropriate values:

ie_action = ExceptionSubstituteReturnValue!
ia_substitute = 0
li_currentsetting = ole_1.Object.Value

If the command fails, a script for the ExternalException event displays the Help topic named
by the OLE server, if any. It substitutes the return value you prepared and returns control to
the calling script. The assignment of the substitute value to li_currentsetting works correctly
because their datatypes are compatible:

string ls_context

// Command line switch for WinHelp numeric context ID
ls_context = "-n " + String(helpcontext)
If Len(HelpFile) > 0 THEN
 Run("winhelp.exe " + ls_context + " " + helpfile)
END IF

action = ie_action
returnvalue = ia_substitute

Because the event script must serve for every automation command for the control, you need
to set the instance variables to appropriate values before each automation command.

See also

Error

2.3.51 FileExists

Description

Occurs when a file is saved in the RichTextEdit control and the file already exists.

Event ID

Table 2.179:

Event ID Objects

pbm_renfileexists RichTextEdit

Arguments

Table 2.180:

Argument Description

filename The name of the file

Return Values

Long.

Statements, Events, and Functions

Page 249

Return code choices (specified in a RETURN statement):

0 -- Continue processing

1 -- Saving of document is canceled

Usage

The SaveDocument function can trigger the FileExists event.

Examples

This script for FileExists checks a flag to see if the user is performing a save (which will
automatically overwrite the opened file) or wants to rename the file using Save As. For the
Save As case, the script asks the user to confirm overwriting the file:

integer li_answer

// If user asked to Save to same file,
// do not prompt for overwriting
IF ib_saveas = FALSE THEN RETURN 0

li_answer = MessageBox("FileExists", &
 filename + " already exists. Overwrite?", &
 Exclamation!, YesNo!)
 MessageBox("Filename arg", filename)

// Returning a non-zero value cancels save
IF li_answer = 2 THEN RETURN 1

2.3.52 FileMessage

Description

Occurs on display of a detailed information message from a MobiLink synchronization.

Event ID

Table 2.181:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.182:

Argument Description

filemsg Read-only string containing the text of the message returned from the
synchronization server.

Return Values

None

Usage

Use this event to receive information logged by dbmlsync.

The following events can be triggered when different types of messages are sent by the
synchronization server: DisplayMessage, ErrorMessage, FileMessage, and WarningMessage.

Statements, Events, and Functions

Page 250

See also

DisplayMessage

ErrorMessage

WarningMessage

2.3.53 Finished

Description

Occurs when the file compression or extraction is completed.

Event ID

Table 2.183:

Event ID Objects

None CompressorObject and ExtractorObject

Arguments

Table 2.184:

Argument Description

Result A boolean value specifying the file compression or decompression result:

True -- Success

False -- Failed

Return Values

None

See also

Error

ProcessingFile

SizeCompleted

Start

2.3.54 Gesture

Description

Occurs when an application gesture recognized by the control is completed. A gesture is a
stroke or series of strokes that is recognized by the application as indicating an action. This
event can only be triggered on a Tablet PC.

Event ID

Table 2.185:

Event ID Objects

pbm_inkegesture InkEdit

Statements, Events, and Functions

Page 251

Event ID Objects

pbm_inkpgesture InkPicture

Arguments

Table 2.186:

Argument Description

gest Integer identifying the gesture recognized. See the tables in the Usage
section for argument values.

Return Values

Boolean.

Return false to accept the gesture and true to ignore it.

Usage

The Gesture event is triggered only on a Tablet PC. On a Tablet PC, the InkEdit control
recognizes the following gestures that represent keystrokes that are frequently used in edit
controls. To ensure that the gestures are recognized, users should draw straight lines and
sharp right angles without removing the stylus from the control. InkEdit controls on other
computers behave as MultiLineEdit controls and cannot accept ink input from a mouse.

Table 2.187:

Gesture Gesture name Argument value Keystroke

Left 0 Backspace

Right 1 Space

UpRightLong 2 Tab

DownLeftLong 3 Enter

UpRight 4 Tab

DownLeft 5 Enter

On a Tablet PC, the InkPicture control recognizes the following gestures that are equivalent
to mouse clicks:

Table 2.188:

Gesture name Argument value Mouse action

Tap 1 Left Click

Statements, Events, and Functions

Page 252

Gesture name Argument value Mouse action

Double Tap 2 Left Double Click

When you tap the stylus or click a mouse in an InkPicture control on a Tablet PC, the
Gesture event is triggered. On other computers, a mouse click triggers the Stroke event. The
CollectionMode property must be set to GestureOnly! for a double tap to be recognized. Only
single-stroke gestures are recognized when CollectionMode is set to InkAndGesture!. If a
gesture is not recognized, the value of the argument is 0.

Examples

This code in the Gesture event of an InkEdit control confirms to the user that the gesture was
recognized:

CHOOSE CASE gest
 CASE 0
 MessageBox("Gesture recognized", &
 "You entered a space")
 CASE 1
 MessageBox("Gesture recognized", &
 "You entered a backspace")

 CASE 2,4
 MessageBox("Gesture recognized", &
 "You entered a tab")
 CASE 3,5
 MessageBox("Gesture recognized", &
 "You entered a return")
END CHOOSE

return false

See also

RecognitionResult

Stroke

2.3.55 GetFocus

Description

Occurs just before the control receives focus (before it is selected and becomes active).

GetFocus applies to all controls

Event ID

Table 2.189:

Event ID Objects

pbm_bnsetfocus CheckBox, CommandButton, Graph, OLE, Picture, PictureHyperLink,
PictureButton, RadioButton

pbm_cbnsetfocus DropDownListBox, DropDownPictureListBox

pbm_dwnsetfocus DataWindow

pbm_ensetfocus SingleLineEdit, EditMask, MultiLineEdit, StaticText, StaticHyperLink

pbm_lbnsetfocus ListBox, PictureListBox

Statements, Events, and Functions

Page 253

Event ID Objects

pbm_lvnsetfocus ListView

pbm_rensetfocus RichTextEdit

pbm_sbnsetfocus HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_setfocus HProgressBar, VProgressBar, DatePicker, MonthCalendar, InkEdit,
InkPicture

pbm_tcnsetfocus Tab

pbm_tvnsetfocus TreeView

Arguments

None

Return Values

Long.

Return code choices (specified in a RETURN statement):

0 -- Continue processing

Examples

Example 1

This example in a SingleLineEdit control's GetFocus event selects the text in the control
when the user tabs to it:

This.SelectText(1, Len(This.Text))

Example 2

In Example 1, when the user clicks the SingleLineEdit rather than tabbing to it, the control
gets focus and the text is highlighted, but then the click deselects the text. If you define a user
event that selects the text and then post that event in the GetFocus event, the highlighting
works when the user both tabs and clicks. This code is in the GetFocus event:

This. EVENT POST ue_select()

This code is in the ue_select user event:

This.SelectText(1, Len(This.Text))

See also

Clicked

LoseFocus

2.3.56 Help

Description

Occurs when the user drags the question-mark button from the title bar to a menu item or a
control and then clicks, or when the user clicks in a control (giving it focus) and then presses
the F1 key.

Event ID

Statements, Events, and Functions

Page 254

Table 2.190:

Event ID Objects

pbm_help Window, Menu, DragObject

Arguments

Table 2.191:

Argument Description

xpos Integer by value (the distance of the Help message from the left edge of
the screen, in PowerBuilder units)

ypos Integer by value (the distance of the Help message from the top of the
screen, in PowerBuilder units)

Return Values

Long.

Return code choices (specified in a RETURN statement):

0 -- Continue processing

Usage

The question-mark button only appears in the title bar of response windows. You must set the
ContextHelp property to true to enable this event.

You can script Help messages for individual menu items and controls. PowerBuilder
dispatches the associated Windows message to the appropriate menu item or control.

Examples

This example codes a message box to open when the user drags and clicks the question-mark
button over a TrackBar control:

MessageBox("Context Help Message", "Move the TrackBar" &
 + " slider to~r~n change the DataWindow magnification.")

See also

ShowHelp

2.3.57 Hide

Description

Occurs just before the window is hidden.

Event ID

Table 2.192:

Event ID Objects

pbm_hidewindow Window

Arguments

None

Statements, Events, and Functions

Page 255

Return Values

Long.

Return code choices (specified in a RETURN statement):

0 -- Continue processing

Usage

A Hide event can occur when a sheet in an MDI frame is closed. It does not occur when
closing a main, response, or pop-up window.

See also

Close

Show

2.3.58 HotLinkAlarm

Description

Occurs after a Dynamic Data Exchange (DDE) server application has sent new (changed)
data and the client DDE application has received it.

Event ID

Table 2.193:

Event ID Objects

pbm_ddedata Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

After establishing a hot link with a DDE server application with the StartHotLink function,
actions on the server can trigger the HotLinkAlarm event.

Examples

This script in the HotLinkAlarm event gets information about the DDE server application and
the new data:

string ls_data, ls_appl, ls_topic, ls_item
GetDataDDEOrigin(ls_appl, ls_topic, ls_item)
GetDataDDE(ls_data)

2.3.59 Idle

Description

Statements, Events, and Functions

Page 256

Occurs when the Idle function has been called in an application object script and the specified
number of seconds have elapsed with no mouse or keyboard activity.

Event ID

Table 2.194:

Event ID Objects

None Application

Arguments

None

Return Values

None. (Do not use a RETURN statement.)

Examples

This statement in an application script causes the Idle event to be triggered after 300 seconds
of inactivity:

Idle(300)

In the Idle event itself, this statement closes the application:

HALT CLOSE

2.3.60 InputFieldSelected

Description

In a RichTextEdit control, occurs when the user double-clicks an input field, allowing the
user to edit the data in the field.

Event ID

Table 2.195:

Event ID Objects

pbm_reninputfieldselected RichTextEdit

Arguments

Table 2.196:

Argument Description

fieldname String by value (the name of the input field that was selected)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

Statements, Events, and Functions

Page 257

This script for the InputFieldSelected event of a RichTextEdit control gets the data in the
input field the user is about to edit:

string ls_fieldvalue
ls_fieldvalue = This.InputFieldGetData(fieldname)

See also

PictureSelected

2.3.61 InsertItem

Description

Occurs when an item is inserted in the ListView.

Event ID

Table 2.197:

Event ID Objects

pbm_lvninsertitem ListView

Arguments

Table 2.198:

Argument Description

index An integer that represents the index of the item being inserted into the
ListView

Return Values

Long.

Return code choices (specified in a RETURN statement):

0 -- Continue processing

Examples

This example displays the label and index of the inserted item:

ListViewItem lvi
This.GetItem(index, lvi)
sle_info.Text = "Inserted "+ String(lvi.Label) &
 + " into position " &
 + String(index)

See also

DeleteItem

2.3.62 ItemActivate

Description

Occurs when a ListView item is clicked or double-clicked. The actual firing mechanism
depends on the OneClickActivate and TwoClickActivate property settings.

Statements, Events, and Functions

Page 258

Event ID

Table 2.199:

Event ID Objects

pbm_lvnitemactivate ListView

Arguments

Table 2.200:

Argument Description

Index An integer that represents the index of the item being inserted into the
ListView

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Use the ItemActivate event instead of the Clicked or DoubleClicked event in new
applications.

The following ListView property settings determine which user action fires the event:

Table 2.201:

OneClickActivate TwoClickActivate Firing mechanism

True True Single click

True False Single click

False True Single click on selected
item or double-click on
nonselected item

False False Double-click

Examples

This code changes a ListView item text label to uppercase lettering. The change is made in
the second column of the item the user clicks or double-clicks, depending on the ListView
property settings:

listviewitem llvi_current

This.GetItem(index, 2, llvi_current)
llvi_current.Label = Upper(llvi_current.Label)
This.SetItem(index, 2, llvi_current)
RETURN 0

See also

ItemChanged

Statements, Events, and Functions

Page 259

ItemChanging

2.3.63 ItemChanged

Description

Occurs when an ListView item has changed.

Event ID

Table 2.202:

Event ID Objects

pbm_lvnitemchanged ListView

Arguments

Table 2.203:

Argument Description

index The index of the item that is changing

focuschanged Boolean (specifies if focus has changed for the item)

hasfocus Boolean (specifies whether the item has focus)

selectionchange Boolean (specifies whether the selection has changed for the item)

selected Boolean (specifies whether the item is selected)

otherchange Boolean (specifies if anything other than focus or selection has changed
for the item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

This example checks whether the event is occurring because focus has changed to the item:

ListViewItem l_lvi

lv_list.GetItem(index, l_lvi)
IF focuschange and hasfocus THEN
 sle1.Text = String(lvi.label) +" has focus."
END IF

See also

ItemChanged in Section 8.27, “ItemChanged” in DataWindow Reference

ItemChanging

2.3.64 ItemChanging

Description

Statements, Events, and Functions

Page 260

Occurs just before a ListView changes.

Event ID

Table 2.204:

Event ID Objects

pbm_lvnitemchanging ListView

Arguments

Table 2.205:

Argument Description

index The index of the item that has changed

focuschange Boolean (specifies if focus is changing for the item)

hasfocus Boolean (specifies whether the item has focus)

selectionchange Boolean (specifies whether the selection is changing for the item)

selected Boolean (specifies whether the item is selected)

otherchange Boolean (specifies if anything other than focus or selection has changed
for the item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

See also

ItemChanged

2.3.65 ItemCollapsed

Description

Occurs when a TreeView item has collapsed.

Event ID

Table 2.206:

Event ID Objects

pbm_tvnitemcollapsed TreeView

Arguments

Table 2.207:

Argument Description

handle Long by reference (the handle of the collapsed TreeViewItem)

Statements, Events, and Functions

Page 261

Return Values

Long.

Return code choices (specified in a RETURN statement):

0 -- Continue processing

Examples

This example changes the picture for the collapsed item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_tvi)

CHOOSE CASE l_tvi.Level
 CASE 1
 l_tvi.PictureIndex = 1
 l_tvi.SelectedPictureIndex = 1
 CASE 2
 l_tvi.PictureIndex = 2
 l_tvi.SelectedPictureIndex = 2
 CASE 3
 l_tvi.PictureIndex = 3
 l_tvi.SelectedPictureIndex = 3
 CASE 4
 l_tvi.PictureIndex = 4
 l_tvi.SelectedPictureIndex = 4
END CHOOSE
This.SetItem(handle, l_tvi)

See also

ItemCollapsing

2.3.66 ItemCollapsing

Description

Occurs when a TreeView item is collapsing.

Event ID

Table 2.208:

Event ID Objects

pbm_tvnitemcollapsing TreeView

Arguments

Table 2.209:

Argument Description

handle Long by reference (the handle of the collapsing item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

Statements, Events, and Functions

Page 262

0 -- Continue processing

Usage

The ItemCollapsing event occurs before the ItemCollapsed event.

Examples

This example changes the picture for the collapsing item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_vti)

CHOOSE CASE l_tvi.level
 CASE 1
 l_tvi.PictureIndex = 1
 l_tvi.SelectedPictureIndex = 1
 CASE 2
 l_tvi.PictureIndex = 2
 l_tvi.SelectedPictureIndex = 2
 CASE 3
 l_tvi.PictureIndex = 3
 l_tvi.SelectedPictureIndex = 3
 CASE 4
 l_tvi.PictureIndex = 4
 l_tvi.SelectedPictureIndex = 4
END CHOOSE

This.SetItem(handle, l_tvi)

See also

ItemCollapsed

2.3.67 ItemExpanded

Description

Occurs when a TreeView item has expanded.

Event ID

Table 2.210:

Event ID Objects

pbm_tvnitemexpanded TreeView

Arguments

Table 2.211:

Argument Description

handle Long by reference (the handle of the expanded item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

Statements, Events, and Functions

Page 263

0 -- Continue processing

Usage

The ItemExpanded event occurs after the ItemExpanding event.

Examples

This example sets the picture and selected picture for the expanded item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_tvi)

CHOOSE CASE l_tvi.Level
 CASE 1
 l_tvi.PictureIndex = 5
 l_tvi.SelectedPictureIndex = 1
 CASE 2
 l_tvi.PictureIndex = 5
 l_tvi.SelectedPictureIndex = 2
 CASE 3
 l_tvi.PictureIndex = 5
 l_tvi.SelectedPictureIndex = 3
 CASE 4
 l_tvi.PictureIndex = 4
 l_tvi.SelectedPictureIndex = 5
END CHOOSE
This.SetItem(handle, l_tvi)

See also

ItemExpanding

2.3.68 ItemExpanding

Description

Occurs while a TreeView item is expanding.

Event ID

Table 2.212:

Event ID Objects

pbm_tvnitemexpanding TreeView

Arguments

Table 2.213:

Argument Description

handle Long by reference (the handle of the expanding TreeView item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Statements, Events, and Functions

Page 264

1 -- Prevents the TreeView from expanding

Usage

The ItemExpanding event occurs before the ItemExpanded event.

Examples

This example sets the picture and selected picture for the expanding item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_tvi)

CHOOSE CASE l_tvi.Level
 CASE 1
 l_tvi.PictureIndex = 5
 l_tvi.SelectedPictureIndex = 1
 CASE 2
 l_tvi.PictureIndex = 5
 l_tvi.SelectedPictureIndex = 2
 CASE 3
 l_tvi.PictureIndex = 5
 l_tvi.SelectedPictureIndex = 3
 CASE 4
 l_tvi.PictureIndex = 4
 l_tvi.SelectedPictureIndex = 5
END CHOOSE

This.SetItem(handle, l_tvi)

See also

ItemExpanded

2.3.69 ItemPopulate

Description

Occurs when a TreeView item is being populated with children.

Event ID

Table 2.214:

Event ID Objects

pbm_tvnitempopulate TreeView

Arguments

Table 2.215:

Argument Description

handle Long by reference (the handle of the TreeView item being populated)

Return Values

Long.

Return code choices (specified in a RETURN statement):

Statements, Events, and Functions

Page 265

0 -- Continue processing

Examples

This example displays the name of the TreeView item you are populating in a
SingleLineEdit:

TreeViewItem tvi

This.GetItem(handle, tvi)
sle_get.Text = "Populating TreeView item " &
 + String(tvi.Label) + " with children"

See also

ItemExpanding

2.3.70 ItemUnselected

Description

Occurs when an item changes from highlight to another state.

Event ID

Table 2.216:

Event ID Objects

None RibbonBar

Arguments

None.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

//st_status is statictext
st_status.Text = "Ready"

See also

CategorySelectionChanged

CategorySelectionChanging

CategoryExpanded

CategoryCollapsed

2.3.71 Key

Description

Occurs when the user presses a key.

Statements, Events, and Functions

Page 266

Event ID

Table 2.217:

Event ID Objects

pbm_lvnkeydown ListView

pbm_renkey RichTextEdit

pbm_tcnkeydown Tab

pbm_tvnkeydown TreeView

pbm_keydown Window

Arguments

Table 2.218:

Argument Description

key KeyCode by value. A value of the KeyCode enumerated datatype
indicating the key that was pressed (for example, KeyA! or KeyF1!).

keyflags UnsignedLong by value (the modifier keys that were pressed with the
key).

Values are:

1 Shift key

2 Ctrl key

3 Shift and Ctrl keys

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

1 -- Do not process the key (RichTextEdit controls only)

Usage

Some PowerBuilder controls capture keystrokes so that the window is prevented from getting
a Key event. These include ListView, TreeView, Tab, RichTextEdit, and the DataWindow
edit control. When these controls have focus you can respond to keystrokes by writing a
script for an event for the control. If there is no predefined event for keystrokes, you can
define a user event and associate it with a pbm code.

For a RichTextEdit control, pressing a key can perform document formatting. For example,
Ctrl+b applies bold formatting to the selection. If you specify a return value of 1, the
document formatting associated with the key will not be performed.

If the user presses a modifier key and holds it down while pressing another key, the Key
event occurs twice: once when the modifier key is pressed and again when the second key
is pressed. If the user releases the modifier key before pressing the second key, the value of
keyflags will change in the second occurrence.

Statements, Events, and Functions

Page 267

When the user releases a key, the Key event does not occur. Therefore, if the user releases
a modifier key, you do not know the current state of the modifier keys until another key is
pressed.

Examples

This example causes a beep when the user presses F1 or F2, as long as Shift and Ctrl are not
pressed:

IF keyflags = 0 THEN
 IF key = KeyF1! THEN
 Beep(1)
 ELSEIF key = KeyF2! THEN
 Beep(20)
 END IF
END IF

This line displays the value of keyflags when a key is pressed.

st_1.Text = String(keyflags)

See also

SystemKey

2.3.72 LineDown

Description

Occurs when the user clicks the down arrow of the vertical scroll bar or presses the down
arrow on the keyboard when the focus is on a track bar.

Event ID

Table 2.219:

Event ID Objects

pbm_sbnlinedown VScrollBar, VTrackBar

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When the user clicks in a vertical scroll bar or presses the down arrow key with focus in a
vertical track bar, nothing happens unless you have scripts that change the bar's Position
property. For the scroll bar arrows and arrow keys for the track bar, use the LineUp and
LineDown events; for clicks in the scroll bar or track bar background above and below the
thumb, use the PageUp and PageDown event; for dragging the thumb itself, use the Moved
event.

Examples

Statements, Events, and Functions

Page 268

This code in the LineDown event causes the thumb to move down when the user clicks on
the down arrow of the vertical scroll bar and displays the resulting position in the StaticText
control st_1:

IF This.Position > This.MaxPosition - 1 THEN
 This.Position = MaxPosition
ELSE
 This.Position = This.Position + 1
END IF

st_1.Text = "LineDown " + String(This.Position)

See also

LineLeft

LineRight

LineUp

PageDown

2.3.73 LineLeft

Description

Occurs when the user clicks in the left arrow of the horizontal scroll bar or presses the left
arrow key on the keyboard when focus is on a horizontal track bar.

Event ID

Table 2.220:

Event ID Objects

pbm_sbnlineup HScrollBar, HTrackBar

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When the user clicks in a horizontal scroll bar or presses the left arrow key on the keyboard
in a horizontal track bar, nothing happens unless you have scripts that change the bar's
Position property. For the scroll bar arrows and left arrow keys in a track bar, use the
LineLeft and LineRight events; for clicks in the background above and below the thumb, use
the PageLeft and Right events; for dragging the thumb itself, use the Moved event.

Examples

This code in the LineLeft event causes the thumb to move left when the user clicks on the left
arrow of the horizontal scroll bar and displays the resulting position in the StaticText control
st_1:

Statements, Events, and Functions

Page 269

IF This.Position < This.MinPosition + 1 THEN
 This.Position = MinPosition
ELSE
 This.Position = This.Position - 1
END IF

st_1.Text = "LineLeft " + String(This.Position)

See also

LineDown

LineRight

LineUp

PageLeft

2.3.74 LineRight

Description

Occurs when the user clicks in the right arrow of the horizontal scroll bar or presses the right
arrow key on the keyboard when focus is on a horizontal track bar.

Event ID

Table 2.221:

Event ID Objects

pbm_sbnlinedown HScrollBar, HTrackBar

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When the user clicks in a horizontal scroll bar or presses the right arrow key on the keyboard
in a horizontal track bar, nothing happens unless you have scripts that change the bar's
Position property. For the scroll bar arrows and arrow keys in a track bar, use the LineLeft
and LineRight events; for clicks in the background above and below the thumb, use the
PageLeft and Right events; for dragging the thumb itself, use the Moved event.

Examples

This code in the LineRight event causes the thumb to move right when the user clicks on the
right arrow of the horizontal scroll bar and displays the resulting position in the StaticText
control st_1:

IF This.Position > This.MaxPosition - 1 THEN
 This.Position = MaxPosition
ELSE
 This.Position = This.Position + 1

Statements, Events, and Functions

Page 270

END IF

st_1.Text = "LineRight " + String(This.Position)

See also

LineDown

LineLeft

LineUp

PageRight

2.3.75 LineUp

Description

Occurs when the user clicks the up arrow of the vertical scroll bar or presses the up arrow on
the keyboard when the focus is on a track bar

Event ID

Table 2.222:

Event ID Objects

pbm_sbnlineup VScrollBar, VTrackBar

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When the user clicks in a vertical scroll bar or presses the up arrow key with focus in a
vertical track bar, nothing happens unless you have scripts that change the bar's Position
property. For the scroll bar arrows and arrow keys for the track bar, use the LineUp and
LineDown events; for clicks in the scroll bar or track bar background above and below the
thumb, use the PageUp and PageDown event; for dragging the thumb itself, use the Moved
event.

Examples

This code in the LineUp event causes the thumb to move up when the user clicks on the up
arrow of the vertical scroll bar and displays the resulting position in the StaticText control
st_1:

IF This.Position < This.MinPosition + 1 THEN
 This.Position = MinPosition
ELSE
 This.Position = This.Position - 1
END IF

Statements, Events, and Functions

Page 271

st_1.Text = "LineUp " + String(This.Position)

See also

LineDown

LineLeft

LineRight

PageUp

2.3.76 LoseFocus

Description

Occurs just before a control loses focus (before it becomes inactive).

Event ID

Table 2.223:

Event ID Description

pbm_controltypekillfocusUserObject (standard visual user objects only)

pbm_bnkillfocus CheckBox, CommandButton, Graph, OLE, Picture, PictureHyperLink,
PictureButton, RadioButton, StaticText, StaticHyperLink

pbm_cbnkillfocus DropDownListBox, DropDownPictureListBox

pbm_dwnkillfocusDataWindow

pbm_enkillfocus SingleLineEdit, EditMask, MultiLineEdit

pbm_killfocus HProgressBar, VProgressBar, DatePicker, MonthCalendar, InkEdit,
InkPicture

pbm_lbnkillfocus ListBox, PictureListBox

pbm_lvnkillfocus ListView

pbm_renkillfocus RichTextEdit

pbm_sbnkillfocus HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcnkillfocus Tab

pbm_tvnkillfocus TreeView

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Write a script for a control's LoseFocus event if you want some processing to occur when the
user changes focus to another control.

Statements, Events, and Functions

Page 272

For controls that contain editable text, losing focus can also cause a Modified event to occur.

In a RichTextEdit control, a LoseFocus event occurs when the user clicks on the control's
toolbar. The control does not actually lose focus.

Because the MessageBox function grabs focus, you should not use it when focus is changing,
such as in a LoseFocus event. Instead, you might display a message in the window's title or a
MultiLineEdit.

Examples

Example 1

In this script for the LoseFocus event of a SingleLineEdit sle_town, the user is reminded to
enter information if the text box is left empty:

IF sle_town.Text = "" THEN
 st_status.Text = "You have not specified a town."
END IF

Example 2

Statements in the LoseFocus event for a DataWindow control dw_emp can trigger a user
event whose script validates the last item the user entered.

This statement triggers the user event ue_accept:

dw_emp.EVENT ue_accept()

This statement in ue_accept calls the AcceptText function:

dw_emp.AcceptText()

This script for the LoseFocus event of a RichTextEdit control performs processing when the
control actually loses focus:

GraphicObject l_control

// Check whether the RichTextEdit still has focus
l_control = GetFocus()
IF TypeOf(l_control) = RichTextEdit! THEN RETURN 0

// Perform processing only if RichTextEdit lost focus
...

This script gets the name of the control instead:

GraphicObject l_control
string ls_name
l_control = GetFocus()
ls_name = l_control.Classname()

See also

GetFocus

2.3.77 Modified

2.3.77.1 Syntax 1: For Ribbon controls

Description

Statements, Events, and Functions

Page 273

This is a user event which occurs when the ribbon combo box control loses focus, the text has
been changed, or Enter or Tab is pressed.

Make sure the parameter (quantities and types) of the user event is correctly defined
according to the requirement of the ribbon combo box control.

Applies to

RibbonComboBoxItem controls

Arguments

Table 2.224:

Argument Description

ItemHandle Long. The handle of the item.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Example

This example is a user event for a combo box; in this example, the Ue_ComboBoxModified
user event must be defined with a long parameter for receiving the handle of the combo box
that is modified.

//Ue_ComboBoxModified user event must have a long parameter for
//receiving the handle of ComboBox that is modified
event type long ue_comboboxmodified(long itemhandle);
RibbonComboBoxItem lr_ComboBox
rbb_1.GetComboBox(ItemHandle,lr_ComboBox)
//...
return 1
end event

See also

Clicked

Selected

SelectionChanged

2.3.77.2 Syntax 2: For all other controls

Description

Occurs when the contents in the control have changed.

Event ID

Table 2.225:

Event ID Objects

pbm_cbnmodified DropDownListBox,
DropDownPictureListBox

Statements, Events, and Functions

Page 274

Event ID Objects

pbm_enmodified SingleLineEdit, EditMask, MultiLineEdit

pbm_inkemodified InkEdit

pbm_renmodified RichTextEdit

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

For plain text controls, the Modified event occurs when the user indicates being finished by
pressing Enter or tabbing away from the control.

For InkEdit and RichText Edit controls, the value of the Modified property controls the
Modified event. If the property is false, the event occurs when the first change occurs to
the contents of the control. The change also causes the property to be set to true, which
suppresses the Modified event. You can restart checking for changes by setting the property
back to false.

Resetting the Modified property is useful when you insert text or a document in the control,
which triggers the event and sets the property (it is reporting the change to the control's
contents). To find out when the user begins making changes to the content, set the Modified
property back to false in the script that opens the document. When the user begins editing, the
property will be reset to true and the event will occur again.

A Modified event can be followed by a LoseFocus event.

Examples

In this example, code in the Modified event performs validation on the text the user entered
in a SingleLineEdit control sle_color. If the user did not enter RED, WHITE, or BLUE, a
message box indicates what is valid input; for valid input, the color of the text changes:

string ls_color

This.BackColor = RGB(150,150,150)

ls_color = Upper(This.Text)
CHOOSE CASE ls_color
 CASE "RED"
 This.TextColor = RGB(255,0,0)
 CASE "BLUE"
 This.TextColor = RGB(0,0,255)
 CASE "WHITE"
 This.TextColor = RGB(255,255,255)
 CASE ELSE
 This.Text = ""
 MessageBox("Invalid input", &
 "Enter RED, WHITE, or BLUE.")
END CHOOSE

Statements, Events, and Functions

Page 275

This is not a realistic example: user input of three specific choices is more suited to a list box;
in a real situation, the allowed input might be more general.

See also

LoseFocus

2.3.78 MouseDown

The MouseDown event has different arguments for different objects:

Table 2.226:

Object See

RichTextEdit control Syntax 1

Window Syntax 2

2.3.78.1 Syntax 1: For RichTextEdit controls

Description

Occurs when the user presses the left mouse button on the RichTextEdit control.

Event ID

Table 2.227:

Event ID Objects

pbm_renlbuttondown RichTextEdit

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

This code in a RichTextEdit control's MouseDown event assigns text to the SingleLineEdit
sle_1 when the user presses the left mouse button:

sle_1.text = "Mouse Down"

See also

Clicked

MouseMove

MouseUp

2.3.78.2 Syntax 2: For windows

Description

Statements, Events, and Functions

Page 276

Occurs when the user presses the left mouse button in an unoccupied area of the window (any
area with no visible, enabled object).

Event ID

Table 2.228:

Event ID Objects

pbm_lbuttondown Window

Arguments

Table 2.229:

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons that are
pressed).

Values are:

• 1 -- Left mouse button

• 2 -- Right mouse button

• 4 -- Shift key

• 8 -- Ctrl key

• 16 -- Middle mouse button

In the MouseDown event, the left mouse button is always down, so 1
is always summed in the value of flags. For an explanation of flags, see
Syntax 2 of MouseMove.

xpos Integer by value (the distance of the pointer from the left edge of the
window's workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the window's
workspace in pixels).

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

Example 1

This code in the MouseDown event displays the window coordinates of the pointer as
reported in the xpos and ypos arguments:

sle_2.Text = "Position of Pointer is: " + &
 String(xpos) + "," + String(ypos)

Statements, Events, and Functions

Page 277

Example 2

This code in the MouseDown event checks the value of the flags argument, and reports which
modifier keys are pressed in the SingleLineEdit sle_modkey:

CHOOSE CASE flags
 CASE 1
 sle_mkey.Text = "No modifier keys pressed"
 CASE 5
 sle_mkey.Text = "SHIFT key pressed"
 CASE 9
 sle_mkey.Text = "CONTROL key pressed"
 CASE 13
 sle_mkey.Text = "SHIFT and CONTROL keys pressed"
END CHOOSE

See also

Clicked

MouseMove

MouseUp

2.3.79 MouseMove

The MouseMove event has different arguments for different objects:

Table 2.230:

Object See

RichTextEdit control Syntax 1

Window Syntax 2

2.3.79.1 Syntax 1: For RichTextEdit controls

Description

Occurs when the mouse has moved within the RichTextEdit control.

Event ID

Table 2.231:

Event ID Objects

pbm_renmousemove RichTextEdit

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

See also

Statements, Events, and Functions

Page 278

Clicked

MouseDown

MouseUp

2.3.79.2 Syntax 2: For windows

Description

Occurs when the pointer is moved within the window.

Event ID

Table 2.232:

Event ID Objects

pbm_mousemove Window

Arguments

Table 2.233:

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons that are
pressed).

Values are:

• 1 -- Left mouse button

• 2 -- Right mouse button

• 4 -- Shift key

• 8 -- Ctrl key

• 16 -- Middle mouse button

Flags is the sum of all the buttons and keys that are pressed.

xpos Integer by value (the distance of the pointer from the left edge of the
window's workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the window's
workspace in pixels).

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Because flags is a sum of button and key numbers, you can find out what keys are pressed by
subtracting the largest values one by one and checking the value that remains. For example:

Statements, Events, and Functions

Page 279

• If flags is 5, the Shift key (4) and the left mouse button (1) are pressed.

• If flags is 14, the Ctrl key (8), the Shift key (4), and the right mouse button (2) are pressed.

This code handles all the buttons and keys (the local boolean variables are initialized to false
by default):

boolean lb_left_button, lb_right_button
boolean lb_middle_button, lb_Shift_key, lb_control_key
integer li_flags

li_flags = flags
IF li_flags 15 THEN
 // Middle button is pressed
 lb_middle_button = TRUE
 li_flags = li_flags - 16
END IF

IF li_flags 7 THEN
 // Control key is pressed
 lb_control_key = TRUE
 li_flags = li_flags - 8
END IF

IF li_flags > 3 THEN
 // Shift key is pressed
 lb_Shift_key = TRUE
 li_flags = li_flags - 4
END IF

IF li_flags > 1 THEN
 // Right button is pressed
 lb_lb_right_button = TRUE
 li_flags = li_flags - 2
END IF

IF li_flags = 1 THEN lb_left_button = TRUE

Most controls in a window do not capture MouseMove events -- the MouseMove event is
not mapped by default. If you want the window's MouseMove event to be triggered when
the mouse moves over a control, you must map a user-defined event to the pbm_mousemove
event for the control. The following code in the control's user-defined MouseMove event
triggers the window's MouseMove event:

Parent.EVENT MouseMove(0, Parent.PointerX(), Parent.PointerY())

Examples

This code in the MouseMove event causes a meter OLE custom control to rise and fall
continually as the mouse pointer is moved up and down in the window workspace:

This.uf_setmonitor(ypos, ole_verticalmeter, &
 This.WorkspaceHeight())

Uf_setmonitor is a window function that scales the pixels to the range of the gauge. It accepts
three arguments: the vertical position of the mouse pointer, an OLECustomControl reference,
and the maximum range of the mouse pointer for scaling purposes:

double ld_gaugemax, ld_gaugemin
double ld_gaugerange, ld_value

Statements, Events, and Functions

Page 280

// Ranges for monitor-type control
ld_gaugemax = ocxitem.Object.MaxValue
ld_gaugemin = ocxitem.Object.MinValue
ld_gaugerange = ld_gaugemax - ld_gaugemin

// Horizontal position of mouse within window
ld_value = data * ld_gaugerange / range + ld_gaugemin

// Set gauge
ocxitem.Object.Value = Round(ld_value, 0)

RETURN 1

The OLE custom control also has a MouseMove event. This code in that event keeps the
gauge responding when the pointer is over the gauge. (You need to pass values for the
arguments that are usually handled by the system; the mouse position values are specified in
relation to the parent window.) For example:

Parent.EVENT MouseMove(0, Parent.PointerX(), &
Parent.PointerY())

See also

Clicked

MouseDown

MouseUp

2.3.80 MouseUp

The MouseUp event has different arguments for different objects:

Table 2.234:

Object See

RichTextEdit control Syntax 1

Window Syntax 2

2.3.80.1 Syntax 1: For RichTextEdit controls

Description

Occurs when the user releases the left mouse button in a RichTextEdit control.

Event ID

Table 2.235:

Event ID Objects

pbm_renlbuttonup RichTextEdit

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

Statements, Events, and Functions

Page 281

0 -- Continue processing

Usage

A Clicked event also occurs when the mouse button is released.

Examples

The following code in a RichTextEdit control's MouseUp event assigns text to the
SingleLineEdit sle_1 when the user releases the left mouse button:

sle_1.Text = "Mouse Up"

See also

Clicked

MouseDown

MouseMove

2.3.80.2 Syntax 2: For windows

Description

Occurs when the user releases the left mouse button in an unoccupied area of the window
(any area with no visible enabled object).

Event ID

Table 2.236:

Event ID Objects

pbm_lbuttonup Window

Arguments

Table 2.237:

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons that are
pressed).

Values are:

• 1 -- Left mouse button

• 2 -- Right mouse button

• 4 -- Shift key

• 8 -- Ctrl key

• 16 -- Middle mouse button

In the MouseUp event, the left mouse button is being released, so 1 is not
summed in the value of flags. For an explanation of flags, see Syntax 2 of
MouseMove.

Statements, Events, and Functions

Page 282

Argument Description

xpos Integer by value (the distance of the pointer from the left edge of the
window's workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the window's
workspace in pixels).

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

A Clicked event also occurs when the mouse button is released.

Examples

Example 1

This code in the window's MouseUp event displays in the SingleLineEdit sle_2 the window
coordinates of the pointer when the button is released as reported in the xpos and ypos
arguments.

sle_2.Text = "Position of Pointer is: " + &
 String(xpos) + "," + String(ypos)

Example 2

This code in the window's MouseUp event checks the value of the flags argument and reports
which modifier keys are pressed in the SingleLineEdit sle_modkey.

CHOOSE CASE flags
 CASE 0
 sle_mkey.Text = "No modifier keys pressed"

 CASE 4
 sle_mkey.Text = "SHIFT key pressed"

 CASE 8
 sle_mkey.Text = "CONTROL key pressed"

 CASE 12
 sle_mkey.Text = "SHIFT and CONTROL keys pressed"

END CHOOSE

See also

Clicked

MouseDown

MouseMove

2.3.81 Moved

Description

Statements, Events, and Functions

Page 283

Occurs when the user moves the scroll box, either by clicking on the arrows or by dragging
the box itself.

Event ID

Table 2.238:

Event ID Objects

pbm_sbnthumbtrack HScrollBar, HTrackBar, VScrollBar,
VTrackBar

Arguments

Table 2.239:

Argument Description

scrollpos Integer by value (a number indicating position of the scroll box within the
range of values specified by the MinPosition and MaxPosition properties)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The Moved event updates the Position property of the scroll bar with the value of scrollpos.

Examples

This statement in the Moved event displays the new position of the scroll box in a StaticText
control:

st_1.Text = "Moved " + String(scrollpos)

See also

LineDown

LineLeft

LineRight

LineUp

PageDown

PageLeft

PageRight

PageUp

2.3.82 NavigationError

Description

Occurs when the navigation fails or is cancelled.

Statements, Events, and Functions

Page 284

Event ID

Table 2.240:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.241:

Argument Description

errorCode The error code number.

errorText The error text.

failedUrl The URL that the browser failed to load.

Return Values

None

See also

AddressChanged

CertificateError

DownloadingStart

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationProgressIndex

NavigationStart

NavigationStateChanged

PdfPrintFinished

ResourceRedirect

TitleTextChanged

2.3.83 NavigationProgressIndex

Description

Occurs when the overall page loading progress changes.

Event ID

Table 2.242:

Event ID Objects

None WebBrowser controls

Arguments

Statements, Events, and Functions

Page 285

Table 2.243:

Argument Description

progressIndex The page loading progress.

Return Values

None

Usage

The NavigationProgressIndex event will be triggered for uncertain times even if the page has
been 100% loaded.

The NavigationProgressIndex event will be triggered if the page's URL has changed.

See also

AddressChanged

CertificateError

DownloadingStart

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationError

NavigationStart

NavigationStateChanged

PdfPrintFinished

ResourceRedirect

TitleTextChanged

2.3.84 NavigationStart

Description

Occurs after a navigation has been committed and before the browser begins loading contents
in the frame.

Event ID

Table 2.244:

Event ID Objects

None WebBrowser controls

Arguments

None

Return Values

None

See also

Statements, Events, and Functions

Page 286

AddressChanged

CertificateError

DownloadingStart

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationError

NavigationProgressIndex

NavigationStateChanged

PdfPrintFinished

ResourceRedirect

TitleTextChanged

2.3.85 NavigationStateChanged

Description

Occurs when the navigation state changes.

Event ID

Table 2.245:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.246:

Argument Description

canGoBack A boolean value specifying whether to be able to go back to the last page:

True -- To be able to go back

False -- Not to able to go back

canGoForward A boolean value specifying whether to be able to move forward to the
next page:

True -- To be able to move forward

False -- Not to be able to move forward

Return Values

None

See also

AddressChanged

CertificateError

DownloadingStart

Statements, Events, and Functions

Page 287

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationError

NavigationProgressIndex

NavigationStart

PdfPrintFinished

ResourceRedirect

TitleTextChanged

2.3.86 Notify

Description

Occurs when a TreeView control sends a WM_NOTIFY message to its parent.

Event ID

Table 2.247:

Event ID Objects

pbm_notify TreeView controls

Arguments

Table 2.248:

Argument Description

wparam UnsignedLong by value containing the ID of the control sending the
message. This value is not guaranteed to be unique.

lparam Long by value containing a pointer to a structure that contains the
window handle and identifier of the control sending a message and a
notification code.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The lparam argument can point to an NMHDR structure or to a larger structure that contains
an NMHDR structure as its first member. Since the wparam value is not guaranteed to be
unique, you should use the identifier in the NMHDR structure.

You can use this event to process custom drawing messages.

2.3.87 Open

The Open event has different arguments for different objects:

Statements, Events, and Functions

Page 288

Table 2.249:

Object See

Application Syntax 1

Window Syntax 2

2.3.87.1 Syntax 1: For the application object

Description

Occurs when the user starts the application.

Event ID

Table 2.250:

Event ID Objects

None Application

Arguments

Table 2.251:

Argument Description

commandline String by value. Additional arguments are included on the command line
after the name of the executable program.

Return Values

None (do not use a RETURN statement)

Usage

This event can establish database connection parameters and open the main window of the
application.

On Windows

You can specify command line arguments when you use the Run command from the
Start menu or as part of the Target specification when you define a shortcut for your
application.

There is no way to specify command line values when you are testing your application in the
development environment.

In other events and functions, you can call the CommandParm function to get the command
line arguments.

For an example of parsing the string in commandline, see CommandParm.

Examples

This example populates the SQLCA global variable from the application's initialization file,
connects to the database, and opens the main window:

/* Populate SQLCA from current myapp.ini settings */
SQLCA.DBMS = ProfileString("myapp.ini", "database", &
 "dbms", "")

Statements, Events, and Functions

Page 289

SQLCA.Database = ProfileString("myapp.ini", &
 "database", "database", "")
SQLCA.Userid = ProfileString("myapp.ini", "database", &
 "userid", "")
SQLCA.DBPass = ProfileString("myapp.ini", "database", &
 "dbpass", "")
SQLCA.Logid = ProfileString("myapp.ini", "database", &
 "logid", "")
SQLCA.Logpass = ProfileString("myapp.ini", &
 "database", "LogPassWord", "")
SQLCA.Servername = ProfileString("myapp.ini", &
 "database", "servername", "")
SQLCA.DBParm = ProfileString("myapp.ini", "database", &
 "dbparm", "")

CONNECT;

IF SQLCA.Sqlcode <> 0 THEN
 MessageBox("Cannot Connect to Database", &
 SQLCA.SQLErrText)
 RETURN
END IF

/* Open MDI frame window */
Open(w_genapp_frame)

See also

Close

2.3.87.2 Syntax 2: For windows

Description

Occurs when a window is opened by one of the Open functions. The event occurs after the
window has been opened but before it is displayed.

Event ID

Table 2.252:

Event ID Objects

pbm_open Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

These functions trigger the Open event:

Open
OpenWithParm
OpenSheet

Statements, Events, and Functions

Page 290

OpenSheetWithParm

When the Open event occurs, the controls on the window already exist (their Constructor
events have occurred). In the Open event script, you can refer to objects in the window and
affect their appearance or content. For example, you can disable a button or retrieve data for a
DataWindow.

Some actions are not appropriate in the Open event, even though all the controls exist. For
example, calling the SetRedraw function for a control fails because the window is not yet
visible.

Closing a window by calling the Close function in any of the window's events or in an event
of any control on the window can cause PowerBuilder to crash if the Close function is not
the last statement in the event script. You can avoid this issue by calling the Close function in
the last statement of the event script, or in a user-defined event that is posted from the event
script. For example, the following code in the Open event script for a window called w_1 can
cause a crash:

// w_1 Open event script
close(this)
open(w_2) // causes crash

This code does not cause a crash:

// w_1 ue_postopen event script
close(this)

// w_1 Open event script
open(w_2)
this.Post Event ue_postopen()

Changing the WindowState property

Do not change the WindowState property in the Open event of a window opened as a
sheet. Doing so might result in duplicate controls on the title bar. You can change the
property in other scripts once the window is open.

When a window is opened, other events occur, such as Constructor for each control in
the window, Activate and Show for the window, and GetFocus for the first control in the
window's tab order.

When a sheet is opened in an MDI frame, other events occur, such as Show and Activate for
the sheet and Activate for the frame.

Examples

When the window contains a DataWindow control, you can retrieve data for it in the Open
event. In this example, values for the transaction object SQLCA have already been set up:

dw_1.SetTransObject(SQLCA)
dw_1.Retrieve()

See also

Activate

Constructor

Show

Statements, Events, and Functions

Page 291

2.3.88 Other

Description

Occurs when a system message occurs that is not a PowerBuilder message.

Event ID

Table 2.253:

Event ID Objects

pbm_other Windows and controls that can be placed in
windows

Arguments

Table 2.254:

Argument Description

wparam UnsignedLong by value

lparam Long by value

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The Other event is no longer useful, because you can define your own user events. You
should avoid using it, because it slows performance while it checks every Windows message.

2.3.89 PageDown

Description

Occurs when the user clicks in the open space below the scroll box.

Event ID

Table 2.255:

Event ID Objects

pbm_sbnpagedown VScrollBar, VTrackBar

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Statements, Events, and Functions

Page 292

Usage

When the user clicks in a vertical scroll bar, nothing happens unless you have scripts that
change the scroll bar's Position property. For the scroll bar arrows, use the LineUp and
LineDown events; for clicks in the scroll bar background above and below the thumb, use the
PageUp and PageDown events; for dragging the thumb itself, use the Moved event.

Examples

Example 1

This code in the VScrollBar's PageDown event uses a predetermined paging value stored in
the instance variable ii_pagesize to change the position of the scroll box (you would need
additional code to change the view of associated controls according to the scroll bar position):

IF This.Position > &
 This.MaxPosition - ii_pagesize THEN
 This.Position = MaxPosition
ELSE
 This.Position = This.Position + ii_pagesize
END IF
RETURN 0

Example 2

This example changes the position of the scroll box by a predetermined page size stored in
the instance variable ii_pagesize and scrolls forward through a DataWindow control 10 rows
for each page:

long ll_currow, ll_nextrow

This.Position = This.Position + ii_pagesize
ll_currow = dw_1.GetRow()
ll_nextrow = ll_currow + 10
dw_1.ScrollToRow(ll_nextrow)
dw_1.SetRow(ll_nextrow)

See also

LineDown

PageLeft

PageRight

PageUp

2.3.90 PageLeft

Description

Occurs when the open space to the left of the scroll box is clicked.

Event ID

Table 2.256:

Event ID Objects

pbm_sbnpageup HScrollBar, HTrackBar

Arguments

Statements, Events, and Functions

Page 293

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When the user clicks in a horizontal scroll bar, nothing happens unless you have scripts that
change the scroll bar's Position property. For the scroll bar arrows, use the LineLeft and
LineRight events; for clicks in the scroll bar background above and below the thumb, use the
PageLeft and Right events; for dragging the thumb itself, use the Moved event.

Examples

This code in the PageLeft event causes the thumb to move left a predetermined page size
when the user clicks on the left arrow of the horizontal scroll bar (the page size is stored in
the instance variable ii_pagesize):

IF This.Position < &
This.MinPosition + ii_pagesize THEN
 This.Position = MinPosition
ELSE
 This.Position = This.Position - ii_pagesize
END IF

See also

LineLeft

PageDown

PageRight

PageUp

2.3.91 PageRight

Description

Occurs when the open space to the right of the scroll box is clicked.

Event ID

Table 2.257:

Event ID Objects

pbm_sbnpagedown HScrollBar, HTrackBar

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

Statements, Events, and Functions

Page 294

0 -- Continue processing

Usage

When the user clicks in a horizontal scroll bar, nothing happens unless you have scripts that
change the scroll bar's Position property:

• For the scroll bar arrows, use the LineLeft and LineRight events.

• For clicks in the scroll bar background above and below the thumb, use the PageLeft and
Right event.

• For dragging the thumb itself, use the Moved event.

Examples

This code in the PageRight event causes the thumb to move right when the user clicks on
the right arrow of the horizontal scroll bar (the page size is stored in the instance variable
ii_pagesize):

IF This.Position > &
This.MaxPosition - ii_pagesize THEN
 This.Position = MaxPosition
ELSE
 This.Position = This.Position + ii_pagesize
END IF

See also

LineRight

PageDown

PageLeft

PageUp

2.3.92 PageUp

Description

Occurs when the user clicks in the open space above the scroll box (also called the thumb).

Event ID

Table 2.258:

Event ID Objects

pbm_sbnpageup VScrollBar, VTrackBar

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Statements, Events, and Functions

Page 295

Usage

When the user clicks in a vertical scroll bar, nothing happens unless you have scripts that
change the scroll bar's Position property:

• For the scroll bar arrows, use the LineUp and LineDown events.

• For clicks in the scroll bar background above and below the thumb, use the PageUp and
PageDown events.

• For dragging the thumb itself, use the Moved event.

Examples

Example 1

This code in the PageUp event causes the thumb to move up when the user clicks on the up
arrow of the vertical scroll bar (the page size is stored in the instance variable ii_pagesize):

IF This.Position < &
This.MinPosition + ii_pagesize THEN
 This.Position = MinPosition
ELSE
 This.Position = This.Position - ii_pagesize
END IF

Example 2

This example changes the position of the scroll box by a predetermined page size stored in
the instance variable ii_pagesize and scrolls backwards through a DataWindow control 10
rows for each page:

long ll_currow, ll_prevrow
This.Position = This.Position - ii_pagesize
ll_currow = dw_1.GetRow()
ll_prevrow = ll_currow - 10
dw_1.ScrollToRow(ll_prevrow)
dw_1.SetRow(ll_prevrow)

See also

LineUp

PageDown

PageLeft

PageRight

2.3.93 PictureSelected

Description

Occurs when the user selects a picture in the RichTextEdit control by clicking it.

Event ID

Table 2.259:

Event ID Objects

pbm_renpictureselected RichTextEdit

Statements, Events, and Functions

Page 296

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

When the user clicks a picture in a RichTextEdit control rte_1, the picture is selected. This
code for the PictureSelected event selects the rest of the contents, copies the contents to a
string with RTF formatting intact, and pastes the formatted text into a second RichTextEdit
rte_2:

string ls_transfer_rtf

This.SelectTextAll()
ls_transfer_rtf = This.CopyRTF()

rte_2.PasteRTF(ls_transfer_rtf)

See also

InputFieldSelected

2.3.94 PipeEnd

Description

Occurs when pipeline processing is completed.

Event ID

Table 2.260:

Event ID Objects

pbm_pipeend Pipeline

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

You can use the PipeEnd event to check the status of pipeline processing.

The Start and Repair functions initiate pipeline processing.

For a complete example of using a Pipeline object, see Section 4.6.2.1, “Building a Pipeline
object” in Application Techniques.

Statements, Events, and Functions

Page 297

Examples

This code in a Pipeline user object's PipeEnd event reports pipeline status in a StaticText
control:

ist_status.Text = "Finished Pipeline Execution ..."

See also

PipeMeter

PipeStart

2.3.95 PipeMeter

Description

Occurs during pipeline processing after each block of rows is read or written. The Commit
factor specified for the Pipeline in the Pipeline painter determines the size of each block.

Event ID

Table 2.261:

Event ID Objects

pbm_pipemeter Pipeline

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The Start and Repair functions initiate pipeline processing.

In the Pipeline painter, you can specify a Commit factor specifying the number of rows that
will be transferred before they are committed to the database. The PipeMeter event occurs for
each block of rows as specified by the Commit factor.

For a complete example of using a Pipeline object, see Section 4.6.2.1, “Building a Pipeline
object” in Application Techniques.

Examples

This code in a Pipeline user object's PipeMeter event report the number of rows that have
been piped to the destination database:

ist_status.Text = String(This.RowsWritten) &
 + " rows written to the destination database."

See also

PipeEnd

PipeStart

Statements, Events, and Functions

Page 298

2.3.96 PipeStart

Description

Occurs when pipeline processing begins.

Event ID

Table 2.262:

Event ID Objects

pbm_pipestart Pipeline

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

You can use the PipeStart event to check the status of pipeline processing.

The Start and Repair functions initiate pipeline processing.

For a complete example of using a Pipeline object, see Section 4.6.2.1, “Building a Pipeline
object” in Application Techniques.

Examples

This code in a Pipeline user object's PipeStart event reports pipeline status in a StaticText
control:

ist_status.Text = "Beginning Pipeline Execution ..."

See also

PipeEnd

PipeMeter

2.3.97 PrintFooter (obsolete)

Description

Occurs when the footer of a page of the document in the RichTextEdit control is about to be
printed.

Obsolete event

The PrintHeader and PrintFooter events are obsolete. They are no longer triggered
under any circumstance. You must use the ShowHeadFoot function to edit headers
and footers of pages in a rich text control at runtime.

Event ID

Statements, Events, and Functions

Page 299

Table 2.263:

Event ID Objects

pbm_renprintfooter RichTextEdit

2.3.98 PrintHeader (obsolete)

Description

Occurs when the header of a page of the document in the RichTextEdit control is about to be
printed.

Obsolete event

The PrintHeader and PrintFooter events are obsolete. They are no longer triggered
under any circumstance. You must use the ShowHeadFoot function to edit headers
and footers of pages in a rich text control at runtime.

Event ID

Table 2.264:

Event ID Objects

pbm_renprintheader RichTextEdit

2.3.99 PdfPrintFinished

Description

Occurs when the process of printing PDF is completed.

Event ID

Table 2.265:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.266:

Argument Description

pdfFile The path and file name of the PDF file to be saved.

result The result of operation. TRUE indicates success; FALSE indicates
failure.

Return Values

None

See also

AddressChanged

CertificateError

Statements, Events, and Functions

Page 300

DownloadingStart

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationError

NavigationProgressIndex

NavigationStart

NavigationStateChanged

ResourceRedirect

TitleTextChanged

2.3.100 ProcessingFile

Description

Occurs during the file compression or extraction process. This event can be used to display
the full path name of the file that is being compressed or decompressed.

If one of the files in the compressed archive failed to be extracted, the Error event instead of
the ProcessingFile event will be triggered.

Event ID

Table 2.267:

Event ID Objects

None CompressorObject and ExtractorObject

Arguments

Table 2.268:

Argument Description

FileFullPath A readonly string whose value is the full path name of the file that is
being compressed or decompressed.

Return Values

None

See also

Error

Finished

SizeCompleted

Start

2.3.101 ProgressIndex

Description

Statements, Events, and Functions

Page 301

Occurs periodically during synchronization after updates to a synchronization progress bar.

Event ID

Table 2.269:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.270:

Argument Description

progress_idx Long value representing the progress of the synchronization.

progress_max Long value indicating the progress limit of the synchronization.

Return Values

None

Usage

Use this event to update a progress indicator such as a progress bar.

A progress_max value of 0 indicates the maximum value has not changed since the last time
the event was fired.

See also

BeginLogScan

EndLogScan

2.3.102 PropertyChanged

Description

Occurs after the OLE server changes the value of a property of the OLE object.

Event ID

Table 2.271:

Event ID Objects

None OLE

Arguments

Table 2.272:

Argument Description

propertyname The name of the property whose value changed. If propertyname is an
empty string, a more general change occurred, such as changes to more
than one property.

Return Values

Statements, Events, and Functions

Page 302

None (do not use a RETURN statement)

Usage

Property change notifications are not supported by all OLE servers. The PropertyRequestEdit
and PropertyChanged events occur only when the server supports these notifications.

Property notifications are not sent when the object is being created or loaded. Otherwise,
notifications are sent for all bindable properties, no matter how the property is being changed.

The PropertyChanged event occurs after the property's value has changed. You can obtain the
new value through the automation interface. The change can no longer be canceled. If you
want to cancel a change, write a script for the PropertyRequestEdit event.

See also

DataChange

PropertyRequestEdit

Rename

ViewChange

2.3.103 PropertyRequestEdit

Description

Occurs when the OLE server is about to change the value of a property of the object in the
OLE control.

Event ID

Table 2.273:

Event ID Objects

None OLE

Arguments

Table 2.274:

Argument Description

propertyname String by value (the name of the property whose value changed).

If propertyname is an empty string, a more general change occurred, such
as changes to more than one property.

cancelchange Boolean by reference; determines whether the change will be canceled.
Values are:

• FALSE -- (Default) the change is allowed.

• TRUE -- the change is canceled.

Return Values

None. Do not use a RETURN statement.

Statements, Events, and Functions

Page 303

Usage

Property change notifications are not supported by all OLE servers. The PropertyRequestEdit
and PropertyChanged events only occur when the server supports these notifications.

Property notifications are not sent when the object is being created or loaded. Otherwise,
notifications are sent for all bindable properties, no matter how the property is being changed.

The PropertyRequestEdit event gives you a chance to access the property's old value using
the automation interface and save it. To cancel the change, set the cancelchange argument to
true.

See also

DataChange

PropertyChanged

Rename

ViewChange

2.3.104 RButtonDown

The RButtonDown event has different arguments for different objects:

Table 2.275:

Object See

Controls and windows, except RichTextEdit Syntax 1

RichTextEdit control Syntax 2

2.3.104.1 Syntax 1: For controls and windows, except RichTextEdit

Description

For a window, occurs when the right mouse button is pressed in an unoccupied area of the
window (any area with no visible, enabled object). The window event will occur if the cursor
is over an invisible or disabled control.

For a control, occurs when the right mouse button is pressed on the control.

Event ID

Table 2.276:

Event ID Objects

pbm_rbuttondown Windows and controls that can be placed on
a window, except RichTextEdit

Arguments

Table 2.277:

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons that are
pressed).

Statements, Events, and Functions

Page 304

Argument Description
Values are:

• 1 -- Left mouse button

• 2 -- Right mouse button

• 4 -- Shift key

• 8 -- Ctrl key

• 16 -- Middle mouse button

In the RButtonDown event, the right mouse button is always pressed, so
2 is always summed in the value of flags.

For an explanation of flags, see Syntax 2 of MouseMove.

xpos Integer by value (the distance of the pointer from the left edge of the
window's workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the window's
workspace in pixels).

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

These statements in the RButtonDown script for the window display a pop-up menu at
the cursor position. Menu4 was created in the Menu painter and includes a menu called
m_language. Menu4 is not the menu for the active window and therefore needs to be created.
NewMenu is an instance of Menu4 (datatype Menu4):

Menu4 NewMenu
NewMenu = CREATE Menu4
NewMenu.m_language.PopMenu(xpos, ypos)

In a Multiple Document Interface (MDI) application, the arguments for PopMenu need to
specify coordinates relative to the MDI frame:

NewMenu.m_language.PopMenu(&
 w_frame.PointerX(), w_frame.PointerY())

See also

Clicked

2.3.104.2 Syntax 2: For RichTextEdit controls

Description

Occurs when the user presses the right mouse button on the RichTextEdit control and the
control's PopMenu property is set to false.

Statements, Events, and Functions

Page 305

Event ID

Table 2.278:

Event ID Objects

pbm_renrbuttondown RichTextEdit

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

If the control's PopMenu property is true, the standard RichTextEdit pop-up menu is
displayed instead, and the RButtonDown event does not occur.

You can use the RButtonDown event to implement your own pop-up menu.

See also

Clicked

RButtonDown

2.3.105 RButtonUp

Description

Occurs when the right mouse button is released.

Event ID

Table 2.279:

Event ID Objects

pbm_renrbuttonup RichTextEdit

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

1 -- Prevent processing

See also

RButtonDown

Statements, Events, and Functions

Page 306

2.3.106 RecognitionResult

Description

Occurs when an InkEdit control gets results from a call to the RecognizeText function.

Event ID

Table 2.280:

Event ID Objects

pbm_inkerecognition InkEdit

Arguments

None

Return Values

None

Examples

This code in the RecognitionResult event allows the application to wait a few seconds while
the Text property of the ie_id InkEdit control is updated, then writes the recognized text to
the string variable ls_inktext:

Sleep(3)
ls_inktext = ie_id.Text

See also

GetFocus

Stroke

2.3.107 RemoteExec

Description

Occurs when a DDE client application has sent a command.

Event ID

Table 2.281:

Event ID Objects

pbm_ddeexecute Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

See also

Statements, Events, and Functions

Page 307

RemoteRequest

RemoteSend

2.3.108 RemoteHotLinkStart

Description

Occurs when a DDE client application wants to start a hot link.

Event ID

Table 2.282:

Event ID Objects

pbm_ddeadvise Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

When both the DDE client and server are PowerBuilder applications, this example in a script
in the client application triggers the RemoteHotLinkStart event in the server application
window:

StartHotLink("mysle","pb_dde_server","mytest")

In the RemoteHotLinkStart event in the server application, set a boolean instance variable
indicating that a hot link has been established:

ib_hotlink = TRUE

See also

HotLinkAlarm

RemoteHotLinkStop

SetDataDDE

StartServerDDE

StopServerDDE

2.3.109 RemoteHotLinkStop

Description

Occurs when a DDE client application wants to end a hot link.

Event ID

Statements, Events, and Functions

Page 308

Table 2.283:

Event ID Objects

pbm_ddeunadvise Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

When both the DDE client and server are PowerBuilder applications, this example in a script
in the client application triggers the RemoteHotLinkStop event in the server application
window:

StopHotLink("mysle","pb_dde_server","mytest")

In the RemoteHotLinkStart event in the server application, set a boolean instance variable
indicating that a hot link no longer exists:

ib_hotlink = FALSE

See also

HotLinkAlarm

RemoteHotLinkStart

SetDataDDE

StartServerDDE

StopServerDDE

2.3.110 RemoteRequest

Description

Occurs when a DDE client application requests data.

Event ID

Table 2.284:

Event ID Objects

pbm_dderequest Window

Arguments

None

Return Values

Long.

Statements, Events, and Functions

Page 309

Return code choices (specify in a RETURN statement):

0 -- Continue processing

See also

RemoteExec

RemoteSend

2.3.111 RemoteSend

Description

Occurs when a DDE client application has sent data.

Event ID

Table 2.285:

Event ID Objects

pbm_ddepoke Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

See also

RemoteExec

RemoteRequest

2.3.112 Rename

Description

Occurs when the server application notifies the control that the object has been renamed.

Event ID

Table 2.286:

Event ID Objects

pbm_omnrename OLE

Arguments

None

Return Values

Long.

Statements, Events, and Functions

Page 310

Return code: Ignored

Usage

If you want to retrieve the ObjectData blob value of an OLE control during the processing of
this event, you must post a user event back to the control or you will generate a runtime error.

See also

DataChange

PropertyRequestEdit

PropertyChanged

ViewChange

2.3.113 Resize

Description

Occurs when the user or a script opens or resizes the client area of a window or DataWindow
control.

Event ID

Table 2.287:

Event ID Objects

pbm_dwnresize DataWindow

pbm_size Window

Arguments

Table 2.288:

Argument Description

sizetype UnsignedLong by value. The values are:

• 0 -- (SIZE_RESTORED) The window or DataWindow has been
resized, but it was not minimized or maximized. The user might have
dragged the borders or a script might have called the Resize function.

• 1 -- (SIZE_MINIMIZED) The window or DataWindow has been
minimized.

• 2 -- (SIZE_MAXIMIZED) The window or DataWindow has been
maximized.

• 3 -- (SIZE_MAXSHOW) This window is a pop-up window and some
other window in the application has been restored to its former size
(does not apply to DataWindow controls).

• 4 -- (SIZE_MAXHIDE) This window is a pop-up window and some
other window in the application has been maximized (does not apply to
DataWindow controls).

Statements, Events, and Functions

Page 311

Argument Description

newwidth Integer by value (the width of the client area of a window or
DataWindow control in PowerBuilder units).

newheight Integer by value (the height of the client area of a window or
DataWindow control in PowerBuilder units).

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

2.3.114 ResourceRedirect

Description

Occurs when a resource load is redirected.

Event ID

Table 2.289:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.290:

Argument Description

redirectUrl The new URL to be redirected to.

headers The response headers.

Return Values

None

See also

AddressChanged

CertificateError

DownloadingStart

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationError

NavigationProgressIndex

NavigationStart

NavigationStateChanged

Statements, Events, and Functions

Page 312

PdfPrintFinished

TitleTextChanged

2.3.115 RightClicked

The RightClicked event has different arguments for different objects:

Table 2.291:

Object See

ListView and Tab control Syntax 1

TreeView control Syntax 2

2.3.115.1 Syntax 1: For ListView and Tab controls

Description

Occurs when the user clicks the right mouse button on the ListView control or the tab portion
of the Tab control.

Event ID

Table 2.292:

Event ID Objects

pbm_lvnrclicked ListView

pbm_tcnrclicked Tab

Arguments

Table 2.293:

Argument Description

index Integer by value (the index of the item or tab the user clicked)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

When the user clicks in the display area of the Tab control, the tab page user object gets an
RButtonDown event rather than a RightClicked event for the Tab control.

Examples

This example for the RightClicked event of a ListView control displays a pop-up menu when
the user clicks the right mouse button:

// Declare a menu variable of type m_main
m_main m_lv_popmenu
// Create an instance of the menu variable
m_lv_popmenu = CREATE m_main

Statements, Events, and Functions

Page 313

// Display menu at pointerposition
m_lv_popmenu.m_entry.PopMenu(Parent.PointerX(), &
 Parent.PointerY())

See also

Clicked

RightDoubleClicked

2.3.115.2 Syntax 2: For TreeView controls

Description

Occurs when the user clicks the right mouse button on the TreeView control.

Event ID

Table 2.294:

Event ID Objects

pbm_tvnrclicked TreeView

Arguments

Table 2.295:

Argument Description

handle Long by value (the handle of the item the user clicked)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

This example for the RightClicked event of a TreeView control displays a pop-up menu when
the user clicks the right mouse button:

// Declare a menu variable of type m_main
m_main m_tv_popmenu

// Create an instance of the menu variable
m_tv_popmenu = CREATE m_main

// Display menu at pointer position
m_tv_popmenu.m_entry.PopMenu(Parent.PointerX(), &
 Parent.PointerY())

See also

Clicked

RightDoubleClicked

2.3.116 RightDoubleClicked

The RightDoubleClicked event has different arguments for different objects:

Statements, Events, and Functions

Page 314

Table 2.296:

Object See

ListView and Tab control Syntax 1

TreeView control Syntax 2

2.3.116.1 Syntax 1: For ListView and Tab controls

Description

Occurs when the user double-clicks the right mouse button on the ListView control or the tab
portion of the Tab control.

Event ID

Table 2.297:

Event ID Objects

pbm_lvnrdoubleclicked ListView

pbm_tcnrdoubleclicked Tab

Arguments

Table 2.298:

Argument Description

index Integer by value (the index of the item or tab the user double-clicked)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

This example deletes an item from the ListView when the user right-double-clicks on it and
then rearranges the items:

integer li_rtn

// Delete the item
li_rtn = This.DeleteItem(index)

IF li_rtn = 1 THEN
 This.Arrange()
ELSE
 MessageBox("Error", Deletion failed!")
END IF

See also

DoubleClicked

RightClicked

Statements, Events, and Functions

Page 315

2.3.116.2 Syntax 2: For TreeView controls

Description

Occurs when the user double-clicks the right mouse button on the TreeView control.

Event ID

Table 2.299:

Event ID Objects

pbm_tvnrdoubleclicked TreeView

Arguments

Table 2.300:

Argument Description

handle Long by value (the handle of the item the user double-clicked)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

This example toggles between displaying and hiding TreeView lines when the user right-
double-clicks on the control:

IF This.HasLines = FALSE THEN
 This.HasLines = TRUE
 This.LinesAtRoot = TRUE
ELSE
 This.HasLines = FALSE
 This.LinesAtRoot = FALSE
END IF

See also

DoubleClicked

RightClicked

2.3.117 Save

Description

Occurs when the server application notifies the control that the data has been saved.

Event ID

Table 2.301:

Event ID Objects

pbm_omnsave OLE

Arguments

Statements, Events, and Functions

Page 316

None

Return Values

Long.

Return code: Ignored

Usage

If you want to retrieve the ObjectData blob value of an OLE control during the processing of
this event, you must post a user event back to the control or you generate a runtime error.

Examples

In this example, a table in a database tracks changes of OLE objects; when the user saves an
Excel spreadsheet in an OLE control, this code puts the current date in a DataWindow so that
the database table can be updated:

long ll_row
// Find the row with information for the Excel file
ll_row = dw_1.Find("file_name = 'expenses.xls'", &
 1, 999)

IF ll_row > 0 THEN
 // Make the found row current
 dw_1.SetRow(ll_row)

 // Put today's date in the last_updated column
 dw_1.Object.last_updated[ll_row] = Today()

 // Update and refresh the DataWindow
 dw_1.Update()
 dw_1.Retrieve()
ELSE
 MessageBox("Find", "No row found")
END IF

See also

Close

SaveObject

2.3.118 SaveObject

Description

Occurs when the server application saves the object in the control.

Event ID

Table 2.302:

Event ID Objects

pbm_omnsaveobject OLE

Arguments

None

Return Values

Statements, Events, and Functions

Page 317

Long.

Return code: Ignored

Usage

Using the SaveObject event is the preferred technique for retrieving the ObjectData blob
value of an OLE control when the server saves the data in the embedded object. Unlike the
Save and Close events, the SaveObject event does not require you to post a user event back to
the control to prevent the generation of a runtime error.

Because of differences in the behavior of individual servers, this event is not triggered
consistently across all server applications. Using Microsoft Word or Excel, the
SaveObject event is triggered when the DisplayType property of the control is
set to DisplayAsActiveXDocument! or DisplayAsIcon!, but not when it is set to
DisplayAsContent!. For other applications, such as Paint Shop Pro, the event is triggered
when the display type is DisplayAsContent! but not when it is DisplayAsActiveXDocument!.

Because some servers might also fire the PowerBuilder Save event and the relative timing of
the two events cannot be guaranteed, your program should handle only the SaveObject event.

Examples

In this example, when the user or the server application saves a Word document in an OLE
control, the data is saved as a blob in a file. The file can then be opened as a Word document:

blob l_myobjectdata
l_myobjectdata = this.objectdata
integer l_file
l_file = FileOpen("c:\myfile.doc", StreamMode!, Write!)
FileWrite(l_file, l_myobjectdata)
FileClose(l_file)

See also

Close

Save

2.3.119 Selected

2.3.119.1 Syntax 1: For Ribbon controls

Description

This is a user event which occurs when the user highlights an item within the RibbonBar
control.

Make sure the parameter (quantities and types) of the user event is correctly defined
according to the requirement of the ribbon control.

Applies to

Ribbon controls (including RibbonTabButtonItem, RibbonLargeButtonItem,
RibbonSmallButtonItem, RibbonCheckBoxItem, RibbonComboBoxItem, and
RibbonMenuItem)

Arguments for RibbonTabButtonItem, RibbonLargeButtonItem,
RibbonSmallButtonItem, RibbonCheckBoxItem, RibbonComboBoxItem

Statements, Events, and Functions

Page 318

Table 2.303:

Argument Description

ItemHandle Long. The handle of the item.

Arguments for RibbonMenuItem (of Normal(0) type)

Table 2.304:

Argument Description

ItemHandle Long. The handle of the button the menu is associated with.

Index Long. The index of the menu item the mouse is on.

SubIndex Long. The index of the submenu item the mouse is on. 0 indicates the
event is triggered by the main menu.

Arguments for RibbonMenuItem (of Recent(2) type)

Table 2.305:

Argument Description

ItemHandle Long. The handle of the button the menu is associated with.

Index Long. The index of the menu item the mouse is on.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Example

This example is a user event for a tab button. In this example, the Ue_TabButtonSelected
user event must be defined with a long parameter for receiving the handle of the tab button
where the mouse is hovering.

RibbonTabButtonItem lr_TabButton
lr_TabButton.Selected = "Ue_TabButtonSelected"

//Ue_TabButtonSelected user event must have a long parameter for receiving
//the handle of TabButton where the mouse is hovering, as below
event type long ue_tabbuttonselected(long itemhandle);
RibbonTabButtonItem lr_TabButton
rbb_1.GetTabButton(ItemHandle,lr_TabButton)
//...
Return 1
end event

This example is a user event for a menu item in the ribbon menu. In this example, the
Ue_MenuSelected user event must be defined with three long parameters for receiving the
handle of the tab/large/small button and the index numbers of the menu item and submenu
item. Each menu item can be bound with different events or the same event.

//Ue_MenuSelected user event must have three long parameters for receiving the
//handle of Tab/Large/Small Button and the index number of the menu and

Statements, Events, and Functions

Page 319

//sub menu. Each MenuItem can bind with different events or the same event.

//In the following example, the same event is bound to get RibbonMenu:

event type long ue_menuselected(long itemhandle, long index, long subindex);
Integer li_Return
RibbonMenu lr_Menu
RibbonMenuItem lr_MenuItem

li_Return = rbb_1.GetMenuByButtonHandle(ItemHandle, lr_Menu)
If li_Return = 1 Then
 If SubIndex = 0 Then
 li_Return = lr_Menu.GetItem(Index, lr_MenuItem)
 //...
 Else
 li_Return = lr_Menu.GetItem(Index, SubIndex, lr_MenuItem)
 //...
 End If
Else
 Return 0
End If

Return 1
end event

This example is a user event for a master menu item in the application button. In this
example, the Ue_MasterMenuSelected user event must be defined with three Long
parameters for receiving the handle of the application button and the index number of the
master menu item and submenu item. Each menu item can be bound with different events or
the same event.

//Ue_MasterMenuSelected user event must have three Long parameters for receiving
//the handle of Application Button and the index number of the master menu and
//sub menu. Each MenuItem can bind with different events or the same event.

//In the following example, the same event is bound to get RibbonApplicationMenu:

event type long ue_mastermenuselected(long itemhandle, long index, long subindex);
Integer li_Return
RibbonApplicationMenu lr_Menu
RibbonMenuItem lr_MenuItem

li_Return = rbb_1.GetMenuByButtonHandle(ItemHandle, lr_Menu)
If li_Return = 1 Then
 If SubIndex = 0 Then
 li_Return = lr_Menu.GetMasterItem(Index, lr_MenuItem)
 //...
 Else
 li_Return = lr_Menu.GetMasterItem(Index, SubIndex, lr_MenuItem)
 //...
 End If
Else
 Return 0
End If

Return 1
end event

This example is a user event for the recent menu item in the application menu. In this
example, the Ue_RecentMenuSelected user event must be defined with two Long parameters
for receiving the handle of the application button and the index number of the recent menu
item. Each menu item can be bound with different events or the same event.

Statements, Events, and Functions

Page 320

//Ue_RecentMenuSelected user event must have two Long parameters for receiving
//the handle of ApplicationButton and the index number of Recent
//Menu. Each MenuItem can bind with different events or the same event.

//In the following example, the same event is bound to get RibbonApplicationMenu.
event type long ue_recentmenuselected(long itemhandle, long index);
Integer li_Return
RibbonApplicationMenu lr_Menu
RibbonMenuItem lr_MenuItem

li_Return = rbb_1.GetMenuByButtonHandle(ItemHandle,lr_Menu)
If li_Return = 1 Then
 li_Return = lr_Menu.GetRecentItem(Index,lr_MenuItem)
 //...
Else
 Return 0
End If

Return 1
end event

See also

Clicked

Modified

SelectionChanged

2.3.119.2 Syntax 2: for all other controls

Description

Occurs when the user highlights an item on the menu using the arrow keys or the mouse,
without choosing it to be executed.

Event ID

Table 2.306:

Event ID Objects

None Menu

Arguments

None

Return Values

None. (Do not use a RETURN statement.)

Usage

You can use the Selected event to display MicroHelp for the menu item. One way to store the
Help text is in the menu item's Tag property.

Examples

This example uses the tag value of the current menu item to display Help text. The function
wf_SetMenuHelp takes the text passed (the tag) and assigns it to a MultiLineEdit control. A
Timer function and the Timer event are used to clear the Help text.

This code in the Selected event calls the function that sets the text:

Statements, Events, and Functions

Page 321

w_test.wf_SetMenuHelp(This.Tag)

This code for the wf_SetMenuHelp function sets the text in the MultiLineEdit
mle_menuhelp; its argument is called menuhelpstring:

mle_menuhelp.Text = menuhelpstring
Timer(4)

This code in the Timer event clears the Help text and stops the timer:

w_test.wf_SetMenuHelp("")
Timer(0)

See also

Clicked

2.3.120 SelectionChanged

The SelectionChanged event has different arguments for different objects:

Table 2.307:

Object See

DropDownListBox,
DropDownPictureListBox, ListBox,
PictureListBox controls

Syntax 1

Tab control Syntax 2

TreeView control Syntax 3

Ribbon control Syntax 4

2.3.120.1 Syntax 1: For Listboxes

Description

Occurs when an item is selected in the control.

Event ID

Table 2.308:

Event ID Objects

pbm_cbnselchange DropDownListBox,
DropDownPictureListBox

pbm_lbnselchange ListBox, PictureListBox

Arguments

Table 2.309:

Argument Description

index Integer by value (the index of the item that has become selected)

Return Values

Statements, Events, and Functions

Page 322

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

For DropDownListBoxes, the SelectionChanged event applies to selections in the drop-down
portion of the control, not the edit box.

The SelectionChanged event occurs when the user clicks on any item in the list, even if it is
the currently selected item. When the user makes a selection using the mouse, the Clicked
(and if applicable the DoubleClicked event) occurs after the SelectionChanged event.

Examples

This example is for the lb_value ListBox in the window w_graph_sheet_with_list in the
PowerBuilder Examples application. When the user chooses values, they are graphed as
series in the graph gr_1. The MultiSelect property for the ListBox is set to true, so index has
no effect. The script checks all the items to see if they are selected:

integer itemcount,i,r
string ls_colname

gr_1.SetRedraw(FALSE)

// Clear out categories, series and data from graph
gr_1.Reset(All!)

// Loop through all selected values and
// create as many series as the user specified
FOR i = 1 to lb_value.TotalItems()
 IF lb_value.State(i) = 1 THEN
 ls_colname = lb_value.Text(i)

 // Call window function to set up the graph
 wf_set_a_series(ls_colname, ls_colname, &
 lb_category.text(1))
 END IF
NEXT
gr_1.SetRedraw(TRUE)

See also

Clicked

2.3.120.2 Syntax 2: For Tab controls

Description

Occurs when a tab is selected.

Event ID

Table 2.310:

Event ID Objects

pbm_tcnselchanged Tab

Arguments

Statements, Events, and Functions

Page 323

Table 2.311:

Argument Description

oldindex Integer by value (the index of the tab that was previously selected)

newindex Integer by value (the index of the tab that has become selected)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The SelectionChanged event occurs when the Tab control is created and the initial selection
is set.

See also

Clicked

SelectionChanging

2.3.120.3 Syntax 3: For TreeView controls

Description

Occurs when the item is selected in a TreeView control.

Event ID

Table 2.312:

Event ID Objects

pbm_tvnselchanged TreeView

Arguments

Table 2.313:

Argument Description

oldhandle Long by value (the handle of the previously selected item)

newhandle Long by value (the handle of the currently selected item)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The SelectionChanged event occurs after the SelectionChanging event.

Examples

This example tracks items in the SelectionChanged event:

Statements, Events, and Functions

Page 324

TreeViewItem l_tvinew, l_tviold

// get the treeview item that was the old selection
This.GetItem(oldhandle, l_tviold)

// get the treeview item that is currently selected
This.GetItem(newhandle, l_tvinew)

// Display the labels for the two items in sle_get
sle_get.Text = "Selection changed from " &
 + String(l_tviold.Label) + " to " &
 + String(l_tvinew.Label)

See also

Clicked

SelectionChanging

2.3.120.4 Syntax 4: For Ribbon controls

Description

This is a user event which occurs when the item is selected in the ribbon combo box control.

Make sure the parameter (quantities and types) of the user event is correctly defined
according to the requirement of the ribbon combo box control.

Applies to

RibbonComboBoxItem controls

Arguments

Table 2.314:

Argument Description

ItemHandle Long. The handle of the item.

index Long. The index of the item selected.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Example

This example is a user event for a combo box. In this example, the
Ue_ComboBoxSelectionChanged user event must be defined with two long parameters for
receiving the handle and index number of the combo box which is selected.

//Ue_ComboBoxSelectionChanged user event must have two long parameters for
//receiving the handle and index number of ComboBox which is selected
event type long ue_comboboxselectionchanged(long itemhandle, long index);
Integer li_Return
String ls_Text

RibbonComboBoxItem lr_ComboBox
li_Return = rbb_1.GetComboBox(ItemHandle,lr_ComboBox)
If li_Return = 1 Then

Statements, Events, and Functions

Page 325

 ls_Text = lr_ComboBox.Text(Index)
End If

Return 1
end event

See also

Clicked

Modified

Selected

2.3.121 SelectionChanging

The SelectionChanging event has different arguments for different objects:

Table 2.315:

Object See

Tab control Syntax 1

TreeView control Syntax 2

2.3.121.1 Syntax 1: For Tab controls

Description

Occurs when another tab is about to be selected.

Event ID

Table 2.316:

Event ID Objects

pbm_tcnselchanging Tab

Arguments

Table 2.317:

Argument Description

oldindex Integer by value (the index of the currently selected tab)

newindex Integer by value (the index of the tab that is about to be selected)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Allow the selection to change

1 -- Prevent the selection from changing

Usage

Use the SelectionChanging event to prevent the selection from changing or to do processing
for the newly selected tab page before it becomes visible. If CreateOnDemand is true and

Statements, Events, and Functions

Page 326

this is the first time the tab page is selected, the controls on the page do not exist yet, and you
cannot refer to them in the event script.

Examples

When the user selects a tab, this code sizes the DataWindow control on the tab page to match
the size of another DataWindow control. The resizing happens before the tab page becomes
visible. This example is from tab_uo in the w_phone_dir window in the PowerBuilder
Examples:

u_tab_dir luo_Tab
luo_Tab = This.Control[newindex]
luo_Tab.dw_dir.Height = dw_list.Height
luo_Tab.dw_dir.Width = dw_list.Width

See also

Clicked

SelectionChanged

2.3.121.2 Syntax 2: For TreeView controls

Description

Occurs when the selection is about to change in the TreeView control.

Event ID

Table 2.318:

Event ID Objects

pbm_tvnselchanging TreeView

Arguments

Table 2.319:

Argument Description

oldhandle Long by value (the handle of the currently selected item)

newhandle Long by value (the handle of the item that is about to be selected)

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Allow the selection to change

1 -- Prevent the selection from changing

Usage

The SelectionChanging event occurs before the SelectionChanged event.

Examples

This example displays the status of changing TreeView items in a SingleLineEdit:

TreeViewItem l_tvinew, l_tviold

Statements, Events, and Functions

Page 327

// Get TreeViewItem that was the old selection
This.GetItem(oldhandle, l_tviold)

// Get TreeViewItem that is currently selected
This.GetItem(newhandle, l_tvinew)

//Display the labels for the two items in display
sle_status.Text = "Selection changed from " &
 + String(l_tviold.Label) + " to " &
 + String(l_tvinew.Label)

See also

Clicked

SelectionChanged

2.3.122 Show

Description

Occurs just before the window is displayed.

Event ID

Table 2.320:

Event ID Objects

pbm_showwindow Window

Arguments

Table 2.321:

Argument Description

show Boolean by value (whether the window is being shown). The value is
always true.

status Long by value (the status of the window).

Values are:

• 0 -- The current window is the only one affected.

• 1 -- The window's parent is also being minimized or a pop-up window
is being hidden.

• 3 -- The window's parent is also being displayed or maximized or a
pop-up window is being shown.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Statements, Events, and Functions

Page 328

The Show event occurs when the window is opened.

See also

Activate

Hide

Open

2.3.123 SizeCompleted

Description

Occurs during the file compression or extraction process. This event can be used to display
the total number of bytes in the file that has been compressed or decompressed.

Event ID

Table 2.322:

Event ID Objects

None CompressorObject and ExtractorObject

Arguments

Table 2.323:

Argument Description

CompletedSize A longlong whose value is the total number of bytes in the file that has
been compressed or decompressed.

Return Values

None

See also

Error

Finished

ProcessingFile

Start

2.3.124 Sort

The Sort event has different arguments for different objects:

Table 2.324:

Object See

ListView control Syntax 1

TreeView control Syntax 2

2.3.124.1 Syntax 1: For ListView controls

Description

Statements, Events, and Functions

Page 329

Occurs for each comparison when the ListView is being sorted.

Event ID

Table 2.325:

Event ID Objects

pbm_lvnsort ListView

Arguments

Table 2.326:

Argument Description

index1 Integer by value (the index of one item being compared during a sorting
operation)

index2 Integer by value (the index of the second item being compared)

column Integer by value (the number of the column containing the items being
sorted)

Return Values

Long.

Return code choices (specify in a RETURN statement):

-1 -- index1 is less than index2

0 -- index1 is equal to index2

1 -- index1 is greater than index2

Usage

The Sort event allows you to fine-tune the sort order of the items being sorted. You can
examine the properties of each item and tell the Sort function how to sort them by selecting
one of the return codes.

You typically use the Sort event when you want to sort ListView items based on multiple
criteria such as a PictureIndex and Label.

The Sort event occurs if you call the Sort event, or when you call the Sort function using the
UserDefinedSort! argument.

Examples

This example sorts ListView items according to PictureIndex and Label sorting by
PictureIndex first, and then by label:

ListViewItem lvi, lvi2

This.GetItem(index1, lvi)
This.GetItem(index2, lvi2)

IF lvi.PictureIndex > lvi2.PictureIndex THEN
 RETURN 1
ELSEIF lvi.PictureIndex < lvi2.PictureIndex THEN
 RETURN -1
ELSEIF lvi.label > lvi2.label THEN
 RETURN 1

Statements, Events, and Functions

Page 330

ELSEIF lvi.label < lvi2.label THEN
 RETURN -1
ELSE
 RETURN 0
END IF

2.3.124.2 Syntax 2: For TreeView controls

Description

Occurs for each comparison when the TreeView is being sorted.

Event ID

Table 2.327:

Event ID Objects

pbm_tvnsort TreeView

Arguments

Table 2.328:

Argument Description

handle1 Long by value (the handle of one item being compared during a sorting
operation)

handle2 Long by value (the handle of the second item being compared)

Return Values

Long.

Return code choices (specify in a RETURN statement):

-1 -- handle1 is less than handle2

0 -- handle1 is equal to handle2

1 -- handle1 is greater than handle2

Usage

The Sort event allows you to fine-tune the sort order of the items being sorted. You can
examine the properties of each item and tell the Sort function how to sort them by selecting
one of the return codes.

You typically use the Sort event when you want to sort TreeView items based on multiple
criteria such as a PictureIndex and Label.

The Sort event occurs if you call the Sort event, or when you call the Sort function using the
UserDefinedSort! argument.

Examples

This example sorts TreeView items according to PictureIndex and Label sorting by
PictureIndex first, then by label:

TreeViewItem tvi, tvi2

This.GetItem(handle1, tvi)

Statements, Events, and Functions

Page 331

This.GetItem(handle2, tvi2)

IF tvi.PictureIndex > tvi2.PictureIndex THEN
 RETURN 1
ELSEIF tvi.PictureIndex < tvi2.PictureIndex THEN
 RETURN -1
ELSEIF tvi.Label > tvi2.Label THEN
 RETURN 1
ELSEIF tvi.Label < tvi2.Label THEN
 RETURN -1
ELSE
 RETURN 0
END IF

2.3.125 SQLPreview

Description

Occurs immediately before a SQL statement is submitted to the DBMS.

Event ID

Table 2.329:

Event ID Objects

None Transaction objects

Arguments

Table 2.330:

Argument Description

sqlfunc The SQLFunction system enumeration passed by value. This
enumeration indicates the function that initiated database activity.
Values for this enumeration are: SQLDBInsert! SQLDBUpdate!,
SQLDBDelete!, SQLDBSelect!, SQLDBProcedure!, SQLDBRPC!, and
SQLDBOthers!.

sqlsyntax String by value. The full text of the SQL statement.

Return Values

Long. Set the return code to affect the outcome of the event:

0 -- Continue processing

1 -- Stop processing

Usage

Use with embedded SQL

This event is triggered before SQL statements are passed to the DBMS.

Use with DataWindow/DataStore

When using this event of the Transaction object with a DataWindow that also defines a
SQLPreview event, the DataWindow's event is fired first. If the return value of DataWindow
SQLPreview event is 0 (continue processing), the Transaction object's SQLPreview event is
triggered next.

Statements, Events, and Functions

Page 332

Examples

In this embedded SQL cursor example, the SQLPreview event is invoked just before the
OPEN Emp_curs; statement is executed:

DECLARE Emp_cur CURSOR FOR SELECT employee.emp_number,
 employee.emp_name FROM employee
WHERE employee.emp_salary > :Sal_var ;
OPEN Emp_curs ;

In this dynamic SQL example, the SQLPreview event is invoked just before the EXECUTE
DYNAMIC my_proc DESCRIPTOR SQLDA statement is executed:

PREPARE SQLSA FROM "execute @rc = myproc @parm1=?,
 @parm2=? OUTPUT ";
DESCRIBE SQLSA INTO SQLDA ;
DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;
SetDynamicParm(SQLDA, 1, var1)
SetDynamicParm(SQLDA, 2, var2)
EXECUTE DYNAMIC my_proc DESCRIPTOR SQLDA ;

See also

DBError

SQLPreview in Section 8.53, “SQLPreview” in DataWindow Reference

2.3.126 Start

2.3.126.1 Syntax 1: for Animation controls

Description

Occurs when an animation has started playing.

Event ID

Table 2.331:

Event ID Objects

pbm_animatestart Animation

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

See also

Stop

2.3.126.2 Syntax 2: for CompressorObject and ExtractorObject objects

Description

Statements, Events, and Functions

Page 333

Occurs before the file compression or extraction starts. This event can be used to display the
total number of bytes in the file that will be compressed or decompressed.

Event ID

Table 2.332:

Event ID Objects

None CompressorObject and ExtractorObject

Arguments

Table 2.333:

Argument Description

TotalSize For CompressorObject, it is a longlong whose value is the total number
of bytes in the file that will be compressed, plus the size of some
additional meta data.

For ExtractorObject, it is a longlong whose value is the original size of all
files in the compressed archive.

Return Values

None

See also

Error

Finished

ProcessingFile

SizeCompleted

2.3.127 Stop

Description

Occurs when an animation has stopped playing.

Event ID

Table 2.334:

Event ID Objects

pbm_animatestop Animation

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Statements, Events, and Functions

Page 334

See also

Timer

2.3.128 Stroke

Description

Occurs when the user draws a new stroke.

Event ID

Table 2.335:

Event ID Objects

pbm_inkestroke, pbm_inkpstroke InkEdit, InkPicture

Arguments

None

Return Values

Boolean.

Return true to erase the stroke and false otherwise.

Usage

If the InkMode property of an InkEdit control is set to InkDisabled!, or the
InkCollectionMode property of an InkPicture control is set to GestureOnly!, the Stroke event
is not triggered.

See also

Gesture

RecognitionResult

2.3.129 SyncPreview

Description

Returns generated dbmlsync command arguments immediately prior to launching the
synchronization process.

Event ID

Table 2.336:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.337:

Argument Description

command_args String passed by reference that includes dbmlsync command arguments
for launching the synchronization process.

Statements, Events, and Functions

Page 335

Return Values

None

Usage

Use this event to receive and display dbmlsync command line arguments. The event
is called by the Synchronize function just before it launches dbmlsync. The generated
command arguments for dbmlsync are passed by reference in the command_args string.
You can change the command_args string with PowerScript code or with the debugger. If
command_args are changed, the Synchronize function will use the new argument string.

See also

BeginDownload

BeginSync

2.3.130 SystemError

Description

Occurs when a serious runtime error occurs (such as trying to open a nonexistent window) if
the error is not handled in a try-catch block.

Event ID

Table 2.338:

Event ID Objects

None Application

Arguments

None

Return Values

None. (Do not use a RETURN statement.)

Usage

If there is no script for the SystemError event, PowerBuilder displays a message box with the
PowerBuilder error number and error message text. For information about error messages,
see Section 7.1.3.2, “Handling errors at runtime” in Users Guide.

If you comment out the entire script in the SystemError event, in a standard PowerBuilder
application the event is still triggered and the message box does not display.

For errors involving external objects and DataWindows, you can handle the error in the
ExternalException or Error events and prevent the SystemError event from occurring. The
ExternalException and Error events are maintained for backward compatibility.

You can prevent the SystemError event from occurring by handling errors in try-catch blocks.
Well-designed exception-handling code gives application users a better chance to recover
from error conditions and run the application without interruption. For information about
exception handling, see Section 2.2.9, “Exception handling in PowerBuilder” in Application
Techniques.

Statements, Events, and Functions

Page 336

When a SystemError event occurs, your current script terminates and your system might
become unstable. It is generally not a good idea to continue running the application, but
you can use the SystemError event script to clean up and disconnect from the DBMS before
closing the application.

Examples

This statement in the SystemError event halts the application immediately:

HALT CLOSE

See also

Error

ExternalException

TRY...CATCH...FINALLY...END TRY

2.3.131 SystemKey

Description

Occurs when the insertion point is not in a line edit, and the user presses the Alt key (alone or
with another key).

Event ID

Table 2.339:

Event ID Objects

pbm_syskeydown Window

Arguments

Table 2.340:

Argument Description

key KeyCode by value. A value of the KeyCode enumerated datatype
indicating the key that was pressed, for example, KeyA! or KeyF1!.

keyflags UnsignedLong by value (the modifier keys that were pressed with the
key). The only modifier key is the Shift key.

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

Pressing the Ctrl key prevents the SystemKey event from firing when the Alt key is pressed.

Examples

This example displays the name of the key that was pressed with the Alt key:

string ls_key

Statements, Events, and Functions

Page 337

CHOOSE CASE key

CASE KeyF1!
 ls_key = "F1"
CASE KeyA!
 ls_key = "A"
CASE KeyF2!
 ls_key = "F2"
END CHOOSE

This example causes a beep if the user presses Alt+Shift+F1.

IF keyflags = 1 THEN
 IF key = KeyF1 THEN
 Beep(1)
 END IF
END IF

See also

Key

2.3.132 Timer

Description

Occurs when a specified number of seconds elapses after the Start or Timer function has been
called.

Event ID

Table 2.341:

Event ID Objects

pbm_timer Timing or Window

Arguments

None

Return Values

Long.

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Examples

These examples show how to use a timing object's Timer event and a window's Timer event.

Using a timing object

This example uses a timing object to refresh a list of customers retrieved from a database at
specified intervals. The main window of the application, w_main, contains a DataWindow
control displaying a list of customers and two buttons, Start Timer and Retrieve. The
window's Open event connects to the database:

CONNECT using SQLCA;

IF sqlca.sqlcode <> 0 THEN

Statements, Events, and Functions

Page 338

 MessageBox("Database Connection", &
 sqlca.sqlerrtext)
END IF

The following code in the clicked event of the Start Timer button creates an instance of a
timing object, nvo_timer, and opens a response window to obtain a timing interval. Then, it
starts the timer with the specified interval:

MyTimer = CREATE nvo_timer
open(w_interval)
MyTimer.Start(d_interval)

MessageBox("Timer", "Timer Started. Interval is " &
 + string(MyTimer.interval) + " seconds")

In the timing object's Constructor event, the following code creates an instance of a datastore:

ds_datastore = CREATE datastore

The timing object's Timer event calls an object-level function called refresh_custlist that
refreshes the datastore. This is the code for refresh_custlist:

long ll_rowcount

ds_datastore.dataobject = "d_customers"
ds_datastore.SetTransObject (SQLCA)
ll_rowcount = ds_datastore.Retrieve()

RETURN ll_rowcount

The Retrieve button on w_main simply shares the data from the DataStore with the
DataWindow control:

ds_datastore.ShareData(dw_1)

Using a window object

This example causes the current time to be displayed in a StaticText control in a window.
Calling Timer in the window's Open event script starts the timer. The script for the Timer
event refreshes the displayed time.

In the window's Open event script, this code displays the time initially and starts the timer:

st_time.Text = String(Now(), "hh:mm")
Timer(60)

In the window's Timer event, which is triggered every minute, this code displays the current
time in the StaticText st_time:

st_time.Text = String(Now(), "hh:mm")

See also

Start

Timer

2.3.133 TitleTextChanged

Description

Occurs when the page title changes.

Statements, Events, and Functions

Page 339

Event ID

Table 2.342:

Event ID Objects

None WebBrowser controls

Arguments

Table 2.343:

Argument Description

titletext The title of the page you browse.

Return Values

None

See also

AddressChanged

CertificateError

DownloadingStart

DownloadingStateChanged

EvaluateJavascriptFinished

NavigationError

NavigationProgressIndex

NavigationStart

NavigationStateChanged

PdfPrintFinished

ResourceRedirect

2.3.134 ToolbarMoved

Description

Occurs in an MDI frame window when the user moves any FrameBar or SheetBar.

Event ID

Table 2.344:

Event ID Objects

pbm_tbnmoved Window

Arguments

None

Return Values

Long.

Statements, Events, and Functions

Page 340

Return code choices (specify in a RETURN statement):

0 -- Continue processing

Usage

The event is not triggered for sheet windows.

To get information about the toolbars' positions, call the GetToolbar and GetToolbarPos
functions.

This event occurs when you change a toolbar's position with SetToolbarPos.

2.3.135 UploadAck

Description

Occurs on completion of upload processing.

Event ID

Table 2.345:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.346:

Argument Description

uploadack_status Long indicating the status returned by MobiLink to the remote after the
upload stream is processed. Values are:

• 0 for StatCommitted

• 1 for StatFailed

• 248 for StatRetry

See the Usage note for the meaning of these values.

Return Values

None

Usage

Use this event to add custom actions after dbmlsync has received acknowledgement of the
upload stream from the MobiLink synchronization server.

Values for the uploadack_status argument can be:

• StatCommitted

Indicates that the upload stream was received by the MobiLink synchronization server and
committed.

• StatRetry

Statements, Events, and Functions

Page 341

Indicates that the MobiLink synchronization server and the remote database had different
values for the log offset from which the upload stream should start. The upload stream was
not committed by the MobiLink synchronization server. The component attempts to send
another upload stream starting from the MobiLink synchronization server's log offset.

• StatFailed

Indicates that the MobiLink synchronization server did not commit the upload stream.

See also

BeginUpload

ConnectMobiLink

EndUpload

WaitForUploadAck

2.3.136 UserString

Description

Occurs when the user has edited the contents of the control and the control has lost focus. The
AllowEdit property must be set to true.

Event ID

Table 2.347:

Event ID Objects

pbm_dtpuserstring DatePicker

Arguments

Table 2.348:

Argument Description

flag Unsigned long by reference. The value of flag is 0 by default and should
not be changed.

userstr String entered in the control by the user.

dtm A DateTime value by reference to which the validated date should be
assigned.

Return Values

Long.

Return code: Ignored.

Usage

When a user tabs into a DatePicker control, it is in normal editing mode and one part of the
date (year, month, or day) can be edited. If the AllowEdit property is set to true, the user
can press F2 or click in the control to select all the text in the control for editing. When the
control loses focus, the control returns to normal editing mode and the UserString event is

Statements, Events, and Functions

Page 342

fired, allowing you to test whether the text in the control is a valid date. The UserString event
fires whether or not the text was modified.

The text entered in the control must be in a format that can be converted into a valid
DateTime variable. If the string entered by the user can be converted to a valid DateTime
value, you can assign the parsed DateTime value to the dtm argument to change the Value
property of the control.

The ValueChanged event is fired after the UserString event if the value changed.

Examples

This code in the UserString event script tests whether the string entered by the user is a valid
date. If it is valid, the code converts the date to a DateTime so that it can be assigned to the
DatePicker's Value property. Otherwise it displays an error message to the user:

IF IsDate(userstr) THEN
 dtm = DateTime(Date(userstr))
ELSE
 MessageBox("Invalid date", userstr)
END IF

2.3.137 ValueChanged

Description

Occurs when the Value property in a DatePicker control changes.

Event ID

Table 2.349:

Event ID Objects

pbm_dtpvaluechanged DatePicker

Arguments

Table 2.350:

Argument Description

flag Unsigned long that defaults to 0 and can be ignored

dtm The new DateTime value

Return Values

Long.

Return code: Ignored.

Usage

When a user selects a date from the drop-down calendar or changes the date using the up-
down control, the DateTime value selected is passed to the ValueChanged event.

Examples

This code in the ValueChanged event script displays a confirmation message to the user:

MessageBox("Start date", "You selected " + &
 String(dtm, "mmm dd, yyyy") + ".~r~n" + &

Statements, Events, and Functions

Page 343

 "If this is incorrect, please select again.")

2.3.138 ViewChange

Description

Occurs when the server application notifies the control that the view shown to the user has
changed.

Event ID

Table 2.351:

Event ID Objects

pbm_omnviewchange OLE

Arguments

None

Return Values

Long.

Return code: Ignored

Usage

If you want to retrieve the ObjectData blob value of an OLE control during the processing of
this event, you must post a user event back to the control or you will generate a runtime error.

See also

DataChange

PropertyRequestEdit

PropertyChanged

Rename

2.3.139 WaitForUploadAck

Description

Occurs when the synchronization process starts a new waiting period for upload
acknowledgement.

Event ID

Table 2.352:

Event ID Objects

None MLSynchronization, MLSync

Arguments

None

Return Values

None

Statements, Events, and Functions

Page 344

Usage

Use this event to add custom actions when the component is waiting for upload
acknowledgement from the MobiLink synchronization server.

See also

BeginUpload

EndUpload

2.3.140 WarningMessage

Description

Occurs on display of a warning message.

Event ID

Table 2.353:

Event ID Objects

None MLSynchronization, MLSync

Arguments

Table 2.354:

Argument Description

warnmsg Read-only string containing the text of the warning message returned
from the synchronization server.

Return Values

None

Usage

Use this event to receive warning information logged by dbmlsync.

The following events can be triggered when different types of messages are sent by the
synchronization server: DisplayMessage, ErrorMessage, FileMessage, and WarningMessage.

See also

DisplayMessage

ErrorMessage

FileMessage

2.4 PowerScript Functions

About this chapter

This chapter provides syntax, descriptions, and examples for PowerScript functions.

Contents

The functions are listed alphabetically.

Statements, Events, and Functions

Page 345

See also

For information about functions that apply to DataWindows or DataStores, see also
Part I, “DataWindow Reference”. Methods that apply to DataWindows, but not to other
PowerBuilder controls, are listed only in Part I, “DataWindow Reference”.

2.4.1 Abs

Description

Calculates the absolute value of a number.

Syntax

Abs (n)

Table 2.355:

Argument Description

n The number for which you want the absolute value

Return value

The datatype of n. Returns the absolute value of n. If n is null, Abs returns null.

Examples

All these statements set num to 4:

integer i, num

i = 4
num = Abs(i)
num = Abs(4)
num = Abs(+4)
num = Abs(-4)

This statement returns 4.2:

Abs(-4.2)

See also

Abs method for DataWindows in Section 2.4.1, “Abs” in DataWindow Reference

2.4.2 ACos

Description

Calculates the arccosine of an angle.

Syntax

ACos (n)

Table 2.356:

Argument Description

n The ratio of the lengths of two sides of a triangle for which you want a
corresponding angle (in radians). The ratio must be a value between -1
and 1.

Statements, Events, and Functions

Page 346

Return value

Double.

Returns the arccosine of n.

Examples

This statement returns 0:

ACos(1)

This statement returns 3.141593 (rounded to six places):

ACos(-1)

This statement returns 1.000000 (rounded to six places):

ACos(.540302)

This code in the Clicked event of a button catches a runtime error that occurs when an
arccosine is taken for a user-entered value -- passed in a variable -- that is outside of the
permitted range:

Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)
 MessageBox("Runtime Error", er.getmessage())
END TRY

See also

Cos

ASin

ATan

ACos method for DataWindows in Section 2.4.2, “ACos” in DataWindow Reference

2.4.3 AccessToken

Description

Sends a request to get the token information.

Applies to

OAuthClient objects

Syntax

objectname.AccessToken (TokenRequest tokenRequest, TokenResponse tokenResponse)

Table 2.357:

Argument Description

objectname A reference to the OAuthClient object.

tokenRequest A reference to the TokenRequest object specifying the request
information.

Statements, Events, and Functions

Page 347

Argument Description

tokenResponse A reference to the TokenResponse object into which the function returns
the object.

Return value

Integer.

Returns the value as follows. If any argument's value is null, the method returns null.

1 -- Success

-1 -- A general error occurred

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

Examples

The following example shows the use of the AccessToken function to get the token
information:

int li_return
OAuthClient lnv_OAuthClient
TokenRequest lnv_TokenRequest
TokenResponse lnv_TokenResponse

lnv_OAuthClient = create OAuthClient

li_return = lnv_OAuthClient.accesstoken(lnv_TokenRequest, lnv_TokenResponse)

See also

RequestResource

2.4.4 Activate

Description

Activates the object in an OLE container, allowing the user to work with the object using the
server's commands.

Applies to

OLE controls and OLE DWObjects (objects within a DataWindow object that is within a
DataWindow control)

Syntax

objectref.Activate (activationtype)

Table 2.358:

Argument Description

objectref The name of the OLE control or the fully qualified name of a OLE
DWObject within a DataWindow control that contains the object you
want to activate.

The fully qualified name for a DWObject has this syntax:

Statements, Events, and Functions

Page 348

Argument Description
dwcontrol.Object.dwobjectname

activationtype
(optional)

A value of the enumerated datatype omActivateType specifying where
the user will work with the OLE object. Values are:

• InPlace! -- (Default) The object is activated within the control. The
subset of menus provided by the server application are merged with the
PowerBuilder application's menus.

• OffSite! -- The object is activated in the server application, which
gives the user access to more of the server application's functionality.

For the OLE control, activationtype is required.

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Container is empty

-2 -- Invalid verb for object

-3 -- Verb not implemented by object

-4 -- No verbs supported by object

-5 -- Object cannot execute verb now

-9 -- Other error

If any argument's value is null, Activate returns null.

Examples

This example activates the object in ole_1 in the server application:

integer result
result = ole_1.Activate(OffSite!)

This example activates the OLE DWObject ole_graph in the DataWindow control dw_1 in
the Microsoft Graph server application:

integer result
result = dw_1.Object.ole_graph.Activate(OffSite!)

See also

DoVerb

OLEActivate method for DataWindows in Section 9.110, “OLEActivate” in DataWindow
Reference.

SelectObject

2.4.5 AddCategory

Description

Statements, Events, and Functions

Page 349

Adds a new category to the category axis of a graph. AddCategory is for a category axis
whose datatype is string.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects because their data comes directly from the DataWindow.

Syntax

controlname.AddCategory (categoryname)

Table 2.359:

Argument Description

controlname The name of the graph to which you want to add a category.

categoryname A string whose value is the name of the category you want to add to
controlname. The category will appear as a label on the category axis.

Return value

Integer.

Returns the number assigned to the category if it succeeds. If categoryname already exists
as a label on the category axis, AddCategory returns the number of the existing category.
Returns -1 if an error occurs. If any argument's value is null, AddCategory returns null.

Usage

AddCategory adds a category to the end of the category axis. The category becomes an empty
slot in each series to which you can assign a data point. A tick mark exists on the category
axis for all the categories associated with the graph.

When the datatype of the category axis is string, you can specify the empty string ("") as the
category name. However, because category names must be unique, there can be only one
category with that name. Category names are unique if they have different capitalization.

To add categories when the axis datatype is date, DateTime, number, or time, use
InsertCategory. To insert a category in the middle of a series, use InsertCategory. You can
also use InsertCategory to add a category to the end of a series, as AddCategory does, but it
requires an additional argument to do so.

To add data to a series in the graph, use the AddData or InsertData function. You can add a
data value and put it in a new category, or you can add or change data in an existing category.
To add a series to the graph, use the AddSeries function.

Examples

This statement adds a category named PCs to the graph gr_product_data:

gr_product_data.AddCategory("PCs")

See also

AddData

AddSeries

DeleteData

Statements, Events, and Functions

Page 350

DeleteSeries

2.4.6 AddColumn

Description

Adds a column with a specified label, alignment, and width.

Applies to

ListView controls

Syntax

listviewname.AddColumn (label, alignment, width)

Table 2.360:

Argument Description

listviewname The name of the ListView control to which you want to add a column.

label A string whose value is the name of the column you are adding.

alignment A value of the enumerated datatype Alignment specifying the alignment
of the column you are adding. Values are:

• Center!

• Justify!

• Left!

• Right!

width An integer whose value is the width of the column you are adding, in
PowerBuilder units.

Return value

Integer.

Returns the column index if it succeeds and -1 if an error occurs.

Usage

The AddColumn function adds a column at the end of the existing columns unlike the
InsertColumn function which inserts a column at a specified location.

Use SetItem and SetColumn to change the values for existing items. To add new items, use
AddItem. To create columns for the report view of a ListView control, use AddColumn.

Examples

This script for a ListView event creates three columns in a ListView control:

integer index

FOR index = 3 to 25
 This.AddItem ("Category " + String (index), 1)
NEXT

Statements, Events, and Functions

Page 351

This.AddColumn("Name" , Left! , 1000)
This.AddColumn("Size" , Left! , 400)
This.AddColumn("Date" , Left! , 300)

See also

AddItem

DeleteColumn

InsertColumn

2.4.7 AddData

Adds a value to the end of a series of a graph. The syntax you use depends on the type of
graph.

Table 2.361:

To add data to Use

Any graph type except scatter Syntax 1

Scatter graphs Syntax 2

2.4.7.1 Syntax 1: For all graph types except scatter

Description

Adds a data point to a series in a graph. Use Syntax 1 for any graph type except scatter
graphs.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects because their data comes directly from the DataWindow.

Syntax

controlname.AddData (seriesnumber, datavalue {, categoryvalue })

Table 2.362:

Argument Description

controlname The name of the graph in which you want to add data to a series. The
graph's type should not be scatter.

seriesnumber The number that identifies the series to which you want to add data.

datavalue The value of the data you want to add.

categoryvalue
(optional)

The category for this data value on the category axis. The datatype of the
categoryvalue should match the datatype of the category axis. In most
cases you should include categoryvalue. Otherwise, an uncategorized
value will be added to the series.

Return value

Long.

Returns the position of the data value in the series if it succeeds and -1 if an error occurs. If
any argument's value is null, AddData returns null.

Statements, Events, and Functions

Page 352

Usage

When you use Syntax 1, AddData adds a value to the end of the specified series or to the
specified category, if it already exists. If categoryvalue is a new category, the category is
added to the end of the series with a label for the data point's tick mark. If the axis is sorted,
the new category is incorporated into the existing order. If the category already exists, the
new data replaces the old data at the data point for the category.

For example, if the third category label specified in series 1 is March and you add data in
series 4 and specify the category label March, the data is added at data point 3 in series 4.

When the axis datatype is string, you can specify the empty string ("") as the category name.
Because category names must be unique, there can be only one category with a blank name.
If you use AddData to add data without specifying a category, you will have data points
without categories, which is not the same as a category whose name is "".

To insert data in the middle of a series, use InsertData. You can also use InsertData to add
data to the end of a series, as AddData does, although it requires an additional argument to do
it.

For a comparison of AddData, InsertData, and ModifyData, see Equivalent Syntax in
InsertData.

Examples

These statements add a data value of 1250 to the series named Costs and assign the data point
the category label Jan in the graph gr_product_data:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.AddData(SeriesNbr, 1250, "Jan")

These statements add a data value of 1250 to the end of the series named Costs in the graph
gr_product_data but do not assign the data point to a category:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.AddData(SeriesNbr, 1250)

See also

DeleteData

FindSeries

GetData

InsertData

2.4.7.2 Syntax 2: For scatter graphs

Description

Adds a data point to a series in a scatter graph.

Syntax

Statements, Events, and Functions

Page 353

controlname.AddData (seriesnumber, xvalue, yvalue)

Table 2.363:

Argument Description

controlname The name of the scatter graph in which you want to add data to a series.
The graph's type should be scatter.

seriesnumber The number that identifies the series to which you want to add data.

xvalue The x value of the data point you want to add.

yvalue The y value of the data point you want to add.

Return value

Long.

Returns the position of the data value in the series if it succeeds and -1 if an error occurs. If
any argument's value is null, AddData returns null.

Examples

These statements add the x and y values of a data point to the series named Costs in the
scatter graph gr_sales_yr:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = gr_sales_yr.FindSeries("Costs")
gr_sales_yr.AddData(SeriesNbr, 12, 3)

See also

DeleteData

FindSeries

GetData

2.4.8 AddItem

Adds an item to a list control.

Table 2.364:

To add an item to Use

A ListBox or DropDownListBox control Syntax 1

A PictureListBox, DropDownPictureListBox, and
RibbonComboBoxItem control

Syntax 2

A ListView control when you only need to specify the item name and
picture index

Syntax 3

A ListView control when you need to specify all the properties for the
item

Syntax 4

2.4.8.1 Syntax 1: For ListBox and DropDownListBox controls

Description

Statements, Events, and Functions

Page 354

Adds a new item to the list of values in a list box.

Applies to

ListBox and DropDownListBox controls

Syntax

listboxname.AddItem (item)

Table 2.365:

Argument Description

listboxname The name of the ListBox or DropDownListBox in which you want to add
an item

item A string whose value is the text of the item you want to add

Return value

Integer.

Returns the position of the new item. If the list is sorted, the position returned is the position
of the item after the list is sorted. Returns -1 if it fails. If any argument's value is null,
AddItem returns null.

Usage

If the ListBox already contains items, AddItem adds the new item to the end of the list. If the
list is sorted (its Sorted property is true), PowerBuilder re-sorts the list after the item is added.

A list can have duplicate items. Items in the list are tracked by their position in the list, not
their text.

AddItem and InsertItem do not update the Items property array. You can use FindItem to find
items added at runtime.

Adding many items to a list with a horizontal scroll bar

If a ListBox or the ListBox portion of a DropDownListBox will have a large number of items
and you want to display an HScrollBar, call the SetRedraw function to turn Redraw off, add
the items, call SetRedraw again to set Redraw on, and then set the HScrollBar property to
true. Otherwise, it may take longer than expected to add the items.

Examples

This example adds the item Edit File to the ListBox lb_Actions:

integer rownbr
string s

s = "Edit File"
rownbr = lb_Actions.AddItem(s)

If lb_Actions contains Add and Run and the Sorted property is false, the statement above
returns 3 (because Edit File becomes the third and last item). If the Sorted property is true,
the statement above returns 2 (because Edit File becomes the second item after the list is
sorted alphabetically).

See also

Statements, Events, and Functions

Page 355

DeleteItem

FindItem

InsertItem

Reset

TotalItems

2.4.8.2 Syntax 2: For PictureListBox, DropDownPictureListBox, and RibbonComboBoxItem
controls

Description

Adds a new item to the list of values in a picture list box.

Applies to

PictureListBox, DropDownPictureListBox, and RibbonComboBoxItem controls

Syntax

listboxname.AddItem (item {, pictureindex })

Table 2.366:

Argument Description

listboxname The name of the PictureListBox or DropDownPictureListBox or
RibbonComboBoxItem in which you want to add an item

item A string whose value is the text of the item you want to add

pictureindex
(optional)

An integer specifying the index of the picture you want to associate with
the newly added item

Return value

Integer.

Returns the position of the new item. If the list is sorted, the position returned is the position
of the item after the list is sorted. Returns -1 if it fails. If any argument's value is null,
AddItem returns null.

Usage

If you do not specify a picture index, the newly added item will not have a picture.

If you specify a picture index that does not exist, that number is still stored with the picture.
If you add pictures to the picture array so that the index becomes valid, the item will then
show the corresponding picture.

For additional notes about items in list boxes, see Syntax 1.

Example 1

This example adds the item Cardinal to the PictureListBox plb_birds:

integer li_pic, li_position
string ls_name, ls_pic

li_pic = plb_birds.AddPicture("c:\pics\cardinal.bmp")

Statements, Events, and Functions

Page 356

ls_name = "Cardinal"
li_position = plb_birds.AddItem(ls_name, li_pic)

If plb_birds contains Robin and Swallow and the Sorted property is false, the AddItem
function above returns 3 because Cardinal becomes the third and last item. If the Sorted
property is true, AddItem returns 1 because Cardinal is first when the list is sorted
alphabetically.

Example 2

This example adds two items to the ribbon combo box:

Integer li_Return
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.SetBoxPictureList("PaperSizeA0Small!,PaperSizeA1Small!")
li_Return = lr_ComboBox.AddItem("Item1")
li_Return = lr_ComboBox.AddItem("Item2",1)

See also

DeleteItem

FindItem

InsertItem

Reset

TotalItems

2.4.8.3 Syntax 3: For ListView controls

Description

Adds an item to a ListView control.

Applies to

ListView controls

Syntax

listviewname.AddItem (label, pictureindex)

Table 2.367:

Argument Description

listviewname The name of the ListView control to which you are adding a picture or
item

label The name of the item you are adding

pictureindex The index of the picture you want to associate with the newly added item

Return value

Integer.

Returns the index of the item if it succeeds and -1 if an error occurs.

Usage

Statements, Events, and Functions

Page 357

Use this syntax if you only need to specify the label and picture index of the item you are
adding to the ListView. If you need to specify more than the label and picture index, use
Syntax 4.

Examples

This example uses AddItem in the Constructor event to add three items to a ListView control:

lv_1.AddItem("Sanyo" , 1)
lv_1.AddItem("Onkyo" , 1)
lv_1.AddItem("Aiwa" , 1)

See also

DeleteItem

FindItem

InsertItem

Reset

TotalItems

2.4.8.4 Syntax 4: For ListView controls

Description

Adds an item to a ListView control by referencing all the attributes in the ListView item.

Applies to

ListView controls

Syntax

listviewname.AddItem (item)

Table 2.368:

Argument Description

listviewname The name of the List View control to which you are adding a picture or
item

item The ListViewItem variable containing properties of the item you are
adding

Return value

Integer.

Returns the index of the item if it succeeds and -1 if an error occurs.

Usage

Use this syntax if you need to specify all the properties for the item you want to add. If you
only need to specify the label and picture index, use Syntax 3.

Examples

This example uses AddItem in a CommandButton Clicked event to add a ListView item for
each click:

Statements, Events, and Functions

Page 358

count = count + 1
listviewitem l_lvi
l_lvi.PictureIndex = 2
l_lvi.Label = "Item "+ string(count)
lv_1.AddItem(l_lvi)

See also

DeleteItem

FindItem

InsertItem

Reset

TotalItems

2.4.9 AddItemArray

Description

Adds a child item of JsonArrayItem type in the JSON generator object.

Applies to

JSONGenerator objects

Syntax

objectname.AddItemArray (ParentItemHandle)

objectname.AddItemArray (ParentItemHandle, Key)

objectname.AddItemArray (ParentItemPath)

objectname.AddItemArray (ParentItemPath, Key)

Table 2.369:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an item

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Return value

Long.

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This example creates an array root item and adds an array child item. The result is
[[101,102,103]].

Long ll_RootArray, ll_ChildArray

Statements, Events, and Functions

Page 359

JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Create an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Add an array child item
ll_ChildArray = lnv_JsonGenerator.AddItemArray(ll_RootArray)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 101)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 102)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 103)

Example 2

This example creates an object root item and adds an array child item. The result is {"id":
[101,102,103]}.

Long ll_RootObject, ll_ChildArray
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Create an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject()

// Add an array child item
ll_ChildArray = lnv_JsonGenerator.AddItemArray(ll_RootObject, "id")
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 101)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 102)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 103)

Example 3

This example creates an array root item and adds an array child item. The result is
[[101,102,103]].

String ls_RootPath, ls_ChildPath
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_RootPath = "/"

// Adds an array child item
lnv_JsonGenerator.AddItemArray(ls_RootPath)
ls_ChildPath = ls_RootPath + "1"
lnv_JsonGenerator.AddItemNumber(ls_ChildPath, 101)
lnv_JsonGenerator.AddItemNumber(ls_ChildPath, 102)
lnv_JsonGenerator.AddItemNumber(ls_ChildPath, 103)

Example 4

This example creates an object root item and adds an array child item. The result is {"id":
[101,102,103]}.

String ls_RootPath, ls_ChildPath
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject()
ls_RootPath = "/"

// Adds an array child item

Statements, Events, and Functions

Page 360

lnv_JsonGenerator.AddItemArray(ls_RootPath, "id")
ls_ChildPath = ls_RootPath + "id"
lnv_JsonGenerator.AddItemNumber(ls_ChildPath, 101)
lnv_JsonGenerator.AddItemNumber(ls_ChildPath, 102)
lnv_JsonGenerator.AddItemNumber(ls_ChildPath, 103)

See also

AddItemBlob

AddItemBoolean

AddItemDate

AddItemDateTime

AddItemNull

AddItemNumber

AddItemObject

AddItemString

AddItemTime

2.4.10 AddItemBlob

Description

Adds a child item of JsonStringItem type in the JSON generator object.

Applies to

JSONGenerator objects

Syntax

objectname.AddItemBlob (ParentItemHandle, Value)

objectname.AddItemBlob (ParentItemHandle, Key, Value)

objectname.AddItemBlob (ParentItemPath, Value)

objectname.AddItemBlob (ParentItemPath, Key, Value)

Table 2.370:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an item

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Value A blob whose value is the value of the child item

Return value

Long.

Statements, Events, and Functions

Page 361

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This example creates an array root item and adds a blob child item. The result is
["dABoAGkAcwAgAGkAcwAgAGIAbABvAGIA"].

Long ll_RootArray
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Adds a blob child item
lnv_JsonGenerator.AddItemBlob(ll_RootArray, Blob("this is blob"))

Example 2

This example creates an object root item and adds a blob child item. The result is
{"Blob":"dABoAGkAcwAgAGkAcwAgAGIAbABvAGIA"}.

Long ll_RootObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds a blob child item
lnv_JsonGenerator.AddItemBlob(ll_RootObject, "blob", Blob("this is blob"))

Example 3

This example creates an array root item and adds a blob child item.

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// Adds a blob child item
lnv_JsonGenerator.AddItemBlob(ls_Path, Blob("this is blob"))

Example 4

This example creates an object root item and adds a blob child item.

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject ()
ls_Path = "/"

// Adds a blob child item
lnv_JsonGenerator.AddItemBlob(ls_Path, "blob", Blob("this is blob"))

See also

Statements, Events, and Functions

Page 362

AddItemArray

AddItemBoolean

AddItemDate

AddItemDateTime

AddItemNull

AddItemNumber

AddItemObject

AddItemString

AddItemTime

2.4.11 AddItemBoolean

Description

Adds a child item of JsonBooleanItem type in the JSON generator object.

Applies to

JSONGenerator objects

Syntax

objectname.AddItemBoolean (ParentItemHandle, Value)

objectname.AddItemBoolean (ParentItemHandle, Key, Value)

objectname.AddItemBoolean (ParentItemPath, Value)

objectname.AddItemBoolean (ParentItemPath, Key, Value)

Table 2.371:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an item

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Value A boolean whose value is the value of the child item

Return value

Long.

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This example creates an array root item and adds a boolean child item.

JsonGenerator lnv_JsonGenerator

Statements, Events, and Functions

Page 363

Long ll_RootArray
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Adds a boolean child item
lnv_JsonGenerator.AddItemBoolean(ll_RootArray, true)

Example 2

This example creates an object root item and adds a boolean child item.

JsonGenerator lnv_JsonGenerator
Long ll_RootObject
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds a boolean child item
lnv_JsonGenerator.AddItemBoolean(ll_RootObject, "boolean", true)

Example 3

This example creates an array root item and adds a boolean child item.

JsonGenerator lnv_JsonGenerator
String ls_Path
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// Adds a boolean child item
lnv_JsonGenerator.AddItemBoolean(ls_Path, true)

Example 4

This example creates an object root item and adds a boolean child item.

JsonGenerator lnv_JsonGenerator
String ls_Path
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject ()
ls_Path = "/"

// Adds a boolean child item
lnv_JsonGenerator.AddItemBoolean(ls_Path, "boolean", true)

See also

AddItemArray

AddItemBlob

AddItemDate

AddItemDateTime

AddItemNull

AddItemNumber

Statements, Events, and Functions

Page 364

AddItemObject

AddItemString

AddItemTime

2.4.12 AddItemDate

Description

Adds a child item of JsonStringItem type in the JSON generator object.

Applies to

JSONGenerator objects

Syntax

objectname.AddItemDate (ParentItemHandle, Value)

objectname.AddItemDate (ParentItemHandle, Key, Value)

objectname.AddItemDate (ParentItemPath, Value)

objectname.AddItemDate (ParentItemPath, Key, Value)

Table 2.372:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an item

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Value A date whose value is the value of the child item.

Return value

Long.

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This example creates an array root item and adds a date child item.

Long ll_RootArray
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Adds a date child item
lnv_JsonGenerator.AddItemDate(ll_RootArray, date("2017-12-09"))

Example 2

This example creates an object root item and adds a date child item.

Statements, Events, and Functions

Page 365

Long ll_RootObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds a date child item
lnv_JsonGenerator.AddItemDate(ll_RootObject, "date", date("2017-12-09"))

Example 3

This example creates an array root item and adds a date child item.

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// Adds a date child item
lnv_JsonGenerator.AddItemDate(ls_Path, date("2017-12-09"))

Example 4

This example creates an object root item and adds a date child item.

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject ()
ls_Path = "/"

// Adds a date child item
lnv_JsonGenerator.AddItemDate(ls_Path, "date", date("2017-12-09"))

See also

AddItemArray

AddItemBlob

AddItemBoolean

AddItemDateTime

AddItemNull

AddItemNumber

AddItemObject

AddItemString

AddItemTime

2.4.13 AddItemDateTime

Description

Adds a child item of JsonStringItem or JsonNumberItem type in the JSON generator object.

Statements, Events, and Functions

Page 366

Applies to

JSONGenerator objects

Syntax

objectname.AddItemDateTime (ParentItemHandle, Value)

objectname.AddItemDateTime (ParentItemHandle, Value, Flag)

objectname.AddItemDateTime (ParentItemHandle, Key, Value)

objectname.AddItemDateTime (ParentItemHandle, Key, Value, Flag)

objectname.AddItemDateTime (ParentItemPath, Value)

objectname.AddItemDateTime (ParentItemPath, Value, Flag)

objectname.AddItemDateTime (ParentItemPath, Key, Value)

objectname.AddItemDateTime (ParentItemPath, Key, Value, Flag)

Table 2.373:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an
item.

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type.

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type.

Key A string whose value is the key of the child item.

Value A datetime whose value is the value of the child item.

Flag A boolean whose value is the type of the child item.

True -- JsonNumberItem type. A JsonNumberItem type value is a UTC
timestamp converted from the local time using the local timezone.

False -- JsonStringItem type. A JsonStringItem type value is a string
converted from the local time directly (no timezone conversion).

Return value

Long.

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This example creates an array root item and adds a DateTime child item. The result is
["2017-12-09 12:15:00"].

Long ll_RootArray
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

Statements, Events, and Functions

Page 367

// Adds a DateTime child item
lnv_JsonGenerator.AddItemDateTime(ll_RootArray, datetime("2017-12-09 12:15:00"))

Example 2

This example creates an array root item and adds a DateTime child item with and without
timezone conversion.

Long ll_RootArray
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Adds a DateTime child item
lnv_JsonGenerator.AddItemDateTime(ll_RootArray, datetime("2017-12-09 12:15:00"),
 false)
//Result is ["2017-12-09 12:15:00"]

lnv_JsonGenerator.AddItemDateTime(ll_RootArray, datetime("2017-12-09 12:15:00"),
 true)
//Result is [1512821700]

Example 3

This example creates an object root item and adds a DateTime child item. The result is
{"datetime":"2017-12-09 12:15:00"}.

Long ll_RootObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds a DateTime child item
lnv_JsonGenerator.AddItemDateTime(ll_RootObject, "datetime", datetime("2017-12-09
 12:15:00"))

Example 4

This example creates an object root item and adds a DateTime child item using the local
timezone conversion.

Long ll_RootObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds a DateTime child item
lnv_JsonGenerator.AddItemDateTime(ll_RootObject, "datetime", datetime("2017-12-09
 12:15:00"), true)

Example 5

This example creates an array root item and adds a DateTime child item. The result is
["2017-12-09 12:15:00"].

String ls_Path
JsonGenerator lnv_JsonGenerator

Statements, Events, and Functions

Page 368

lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// Adds a DateTime child item
lnv_JsonGenerator.AddItemDateTime(ls_Path, datetime("2017-12-09 12:15:00"))

Example 6

This example creates an array root item and adds a DateTime child item with and without
timezone conversion.

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// Adds a DateTime child item
lnv_JsonGenerator.AddItemDateTime(ls_Path, datetime("2017-12-09 12:15:00"), false)
//Result is ["2017-12-09 12:15:00"]

lnv_JsonGenerator.AddItemDateTime(ls_Path, datetime("2017-12-09 12:15:00"), true)
//Result is [1512821700]

Example 7

This example creates an object root item and adds a DateTime child item. The result is
{"datetime":"2017-12-09 12:15:00"}.

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject()
ls_Path = "/"

// Adds a DateTime child item
lnv_JsonGenerator.AddItemDateTime(ls_Path, "datetime", datetime("2017-12-09
 12:15:00"))

Example 8

This example creates an object root item and adds a DateTime child item using the local
timezone conversion.

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject ()
ls_Path = "/"

// Adds a DateTime child item
lnv_JsonGenerator.AddItemDateTime(ls_Path, "datetime", datetime("2017-12-09
 12:15:00"), true)

See also

Statements, Events, and Functions

Page 369

AddItemArray

AddItemBlob

AddItemBoolean

AddItemDate

AddItemNull

AddItemNumber

AddItemObject

AddItemString

AddItemTime

2.4.14 AddItemNull

Description

Adds a child item of JsonNullItem type in the JSON generator object.

Applies to

JSONGenerator objects

Syntax

objectname.AddItemNull (ParentItemHandle)

objectname.AddItemNull (ParentItemHandle, Key)

objectname.AddItemNull (ParentItemPath)

objectname.AddItemNull (ParentItemPath, Key)

Table 2.374:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an item

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Return value

Long.

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This example creates an array root item and adds a null child item. The result is [null].

Long ll_RootArray
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

Statements, Events, and Functions

Page 370

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Adds a null child item
lnv_JsonGenerator.AddItemNull(ll_RootArray)

Example 2

This example creates an object root item and adds a null child item. The result is
{"null":null}.

Long ll_RootObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds a null child item
lnv_JsonGenerator.AddItemNull(ll_RootObject, "null")

Example 3

This example creates an array root item and adds a null child item.

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// Adds a null child item
lnv_JsonGenerator.AddItemNull(ls_Path)

Example 4

This example creates an object root item and adds a null child item.

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject()
ls_Path = "/"

// Adds a null child item
lnv_JsonGenerator.AddItemNull(ls_Path, "null")

See also

AddItemArray

AddItemBlob

AddItemBoolean

AddItemDate

AddItemDateTime

AddItemNumber

Statements, Events, and Functions

Page 371

AddItemObject

AddItemString

AddItemTime

2.4.15 AddItemNumber

Description

Adds a child item of JsonNumberItem type in the JSON generator object.

Applies to

JSONGenerator objects

Syntax

objectname.AddItemNumber (ParentItemHandle, Value)

objectname.AddItemNumber (ParentItemHandle, Key, Value)

objectname.AddItemNumber (ParentItemHandle, Type)

objectname.AddItemNumber (ParentItemHandle, Key, Type)

objectname.AddItemNumber (ParentItemPath, Value)

objectname.AddItemNumber (ParentItemPath, Key, Value)

objectname.AddItemNumber (ParentItemPath, Type)

objectname.AddItemNumber (ParentItemPath, Key, Type)

Table 2.375:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an item

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Value A double whose value is the value of the child item

Type A JsonNumberType whose value is the value type of the child item. If the
type is JsonNumber!, the value will be converted to number 0.

Return value

Long.

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This example creates an array root item and adds a child item of number type:

JsonGenerator lnv_JsonGenerator
Long ll_RootArray

Statements, Events, and Functions

Page 372

lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Adds a number child item
lnv_JsonGenerator.AddItemNumber(ll_RootArray, 100)

Example 2

This example creates an object root item and adds a child item of number type:

JsonGenerator lnv_JsonGenerator
Long ll_RootObject
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds a number child item
lnv_JsonGenerator.AddItemNumber(ll_RootObject, "year", 2017)

Example 3

This example creates an array root item and adds three child items of number type:

JsonGenerator lnv_JsonGenerator
JsonNumberType ljsn_Type
Long ll_RootArray
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Adds NaN, Infinity, -Infinity number child items
ljsn_Type = JsonNaN!
lnv_JsonGenerator.AddItemNumber(ll_RootArray, ljsn_Type)
ljsn_Type = JsonPositiveInfinity!
lnv_JsonGenerator.AddItemNumber(ll_RootArray, ljsn_Type)
ljsn_Type = JsonNegativeInfinity!
lnv_JsonGenerator.AddItemNumber(ll_RootArray, ljsn_Type)

Example 4

This example creates an object root item and adds three child items of number type:

JsonGenerator lnv_JsonGenerator
JsonNumberType ljsn_Type
Long ll_RootObject
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds NaN, Infinity, -Infinity number child items
ljsn_Type = JsonNaN!
lnv_JsonGenerator.AddItemNumber(ll_RootObject, "NaN", ljsn_Type)
ljsn_Type = JsonPositiveInfinity!
lnv_JsonGenerator.AddItemNumber(ll_RootObject, "PositiveInfinity", ljsn_Type)
ljsn_Type = JsonNegativeInfinity!
lnv_JsonGenerator.AddItemNumber(ll_RootObject, "NegativeInfinity", ljsn_Type)

Example 5

This example creates an array root item and adds a child item of number type:

Statements, Events, and Functions

Page 373

JsonGenerator lnv_JsonGenerator
String ls_Path
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// Adds a number child item
lnv_JsonGenerator.AddItemNumber(ls_Path, 100)

Example 6

This example creates an object root item and adds a child item of number type:

JsonGenerator lnv_JsonGenerator
String ls_Path
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject ()
ls_Path = "/"

// Adds a number child item
lnv_JsonGenerator.AddItemNumber(ls_Path, "year", 2017)

Example 7

This example creates an array root item and adds three child items of number type:

JsonGenerator lnv_JsonGenerator
JsonNumberType ljsn_Type
String ls_Path
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// Adds NaN, Infinity, -Infinity number child item
ljsn_Type = JsonNaN!
lnv_JsonGenerator.AddItemNumber(ls_Path, ljsn_Type)
ljsn_Type = JsonPositiveInfinity!
lnv_JsonGenerator.AddItemNumber(ls_Path, ljsn_Type)
ljsn_Type = JsonNegativeInfinity!
lnv_JsonGenerator.AddItemNumber(ls_Path, ljsn_Type)

Example 8

This example creates an object root item and adds three child items of number type:

JsonGenerator lnv_JsonGenerator
JsonNumberType ljsn_Type
String ls_Path
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject ()
ls_Path = "/"

// Adds NaN, Infinity, -Infinity number child item
ljsn_Type = JsonNaN!
lnv_JsonGenerator.AddItemNumber(ls_Path, "NaN", ljsn_Type)
ljsn_Type = JsonPositiveInfinity!
lnv_JsonGenerator.AddItemNumber(ls_Path, "PositiveInfinity", ljsn_Type)

Statements, Events, and Functions

Page 374

ljsn_Type = JsonNegativeInfinity!
lnv_JsonGenerator.AddItemNumber(ls_Path, "NegativeInfinity", ljsn_Type)

See also

AddItemArray

AddItemBlob

AddItemBoolean

AddItemDate

AddItemDateTime

AddItemNull

AddItemObject

AddItemString

AddItemTime

2.4.16 AddItemObject

Description

Adds a child item of JsonObjectItem type in the JSON generator object.

Applies to

JSONGenerator objects

Syntax

objectname.AddItemObject (ParentItemHandle)

objectname.AddItemObject (ParentItemHandle, Key)

objectname.AddItemObject (ParentItemPath)

objectname.AddItemObject (ParentItemPath, Key)

Table 2.376:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an item

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Return value

Long.

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

Statements, Events, and Functions

Page 375

This example creates an array root item and adds an object child item. The result is
[{"year":2017,"date":"2017-09-21","time":"12:00:00"}].

Long ll_RootArray, ll_ChildObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Adds an object child item
ll_ChildObject = lnv_JsonGenerator.AddItemObject(ll_RootArray)
lnv_JsonGenerator.AddItemNumber(ll_ChildObject, "year", 2017)
lnv_JsonGenerator.AddItemDate(ll_ChildObject, "date", 2017-09-21)
lnv_JsonGenerator.AddItemTime(ll_ChildObject, "time", 12:00:00)

Example 2

This example creates an object root item and adds an object child item. The result is
{"object":{"year":2017,"date":"2017-09-21","time":"12:00:00"}}.

Long ll_RootObject, ll_ChildObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds an object child item
ll_ChildObject = lnv_JsonGenerator.AddItemObject(ll_RootObject, "object")
lnv_JsonGenerator.AddItemNumber(ll_ChildObject, "year", 2017)
lnv_JsonGenerator.AddItemDate(ll_ChildObject, "date", 2017-09-21)
lnv_JsonGenerator.AddItemTime(ll_ChildObject, "time", 12:00:00)

Example 3

This example creates an array root item and adds an object child item. The result is
[{"year":2017,"date":"2017-09-21","time":"12:00:00"}].

String ls_RootPath, ls_ChildPath
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Create an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_RootPath = "/"

// Add an object child item
lnv_JsonGenerator.AddItemObject(ls_RootPath)
ls_ChildPath = ls_RootPath + "1"
lnv_JsonGenerator.AddItemNumber(ls_ChildPath, "year", 2017)
lnv_JsonGenerator.AddItemDate(ls_ChildPath, "date", 2017-09-21)
lnv_JsonGenerator.AddItemTime(ls_ChildPath, "time", 12:00:00)

Example 4

This example creates an object root item and adds an object child item. The result is
{"object":{"year":2017,"date":"2017-09-21","time":"12:00:00"}}.

String ls_RootPath, ls_ChildPath
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

Statements, Events, and Functions

Page 376

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject()
ls_RootPath = "/"

// Adds an object child item
lnv_JsonGenerator.AddItemObject(ls_RootPath, "object")
ls_ChildPath = ls_RootPath + "object"
lnv_JsonGenerator.AddItemNumber(ls_ChildPath, "year", 2017)
lnv_JsonGenerator.AddItemDate(ls_ChildPath, "date", 2017-09-21)
lnv_JsonGenerator.AddItemTime(ls_ChildPath, "time", 12:00:00)

See also

AddItemArray

AddItemBlob

AddItemBoolean

AddItemDate

AddItemDateTime

AddItemNull

AddItemNumber

AddItemString

AddItemTime

2.4.17 AddItemString

Description

Adds a child item of JsonStringItem type in the JSON generator object.

Applies to

JSONGenerator objects

Syntax

objectname.AddItemString (ParentItemHandle, Value)

objectname.AddItemString (ParentItemHandle, Key, Value)

objectname.AddItemString (ParentItemPath, Value)

objectname.AddItemString (ParentItemPath, Key, Value)

Table 2.377:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an item

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Value A string whose value is the value of the child item

Statements, Events, and Functions

Page 377

Return value

Long.

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This example creates an array item and then adds a string child item:

JsonGenerator lnv_JsonGenerator
Long ll_RootArray
lnv_JsonGenerator = Create JsonGenerator

ll_RootArray = lnv_JsonGenerator.CreateJsonArray()
lnv_JsonGenerator.AddItemString(ll_RootArray, "string")

Example 2

This example creates an object item and then adds a string child item:

JsonGenerator lnv_JsonGenerator
Long ll_RootObject
lnv_JsonGenerator = Create JsonGenerator

ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()
lnv_JsonGenerator.AddItemString(ll_RootObject, "string", "value")

Example 3

This example creates an array item and then adds a string child item:

JsonGenerator lnv_JsonGenerator
String ls_RootPath
lnv_JsonGenerator = Create JsonGenerator

lnv_JsonGenerator.CreateJsonArray()
ls_RootPath = "/"
lnv_JsonGenerator.AddItemString(ls_RootPath, "string")

Example 4

This example creates an object item and then adds a string child item:

JsonGenerator lnv_JsonGenerator
String ls_RootPath
lnv_JsonGenerator = Create JsonGenerator

lnv_JsonGenerator.CreateJsonObject ()
ls_RootPath = "/"
lnv_JsonGenerator.AddItemString(ls_RootPath, "string", "value")

See also

AddItemArray

AddItemBlob

AddItemBoolean

AddItemDate

AddItemDateTime

AddItemNull

Statements, Events, and Functions

Page 378

AddItemNumber

AddItemObject

AddItemTime

2.4.18 AddItemTime

Description

Adds a child item of JsonStringItem type in the JSON generator object.

Applies to

JSONGenerator objects

Syntax

objectname.AddItemTime (ParentItemHandle, Value)

objectname.AddItemTime (ParentItemHandle, Key, Value)

objectname.AddItemTime (ParentItemPath, Value)

objectname.AddItemTime (ParentItemPath, Key, Value)

Table 2.378:

Argument Description

objectname The name of the JSONGenerator object in which you want to add an item

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Value A time whose value is the value of the child item

Return value

Long.

Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This example creates an array root item and adds a time child item:

Long ll_RootArray
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Adds a time child item
lnv_JsonGenerator.AddItemTime(ll_RootArray, time("12:15:00"))

Example 2

This example creates an object root item and adds a time child item:

Statements, Events, and Functions

Page 379

Long ll_RootObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Adds a time child item
lnv_JsonGenerator.AddItemTime(ll_RootObject, "time", time("12:15:00"))

Example 3

This example creates an array root item and adds a time child item:

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// Adds a time child item
lnv_JsonGenerator.AddItemTime(ls_Path, time("12:15:00"))

Example 4

This example creates an object root item and adds a time child item:

String ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject()
ls_Path = "/"

// Adds a time child item
lnv_JsonGenerator.AddItemTime(ls_Path, "time", time("12:15:00"))

See also

AddItemArray

AddItemBlob

AddItemBoolean

AddItemDate

AddItemDateTime

AddItemNull

AddItemNumber

AddItemObject

AddItemString

2.4.19 AddLargePicture

Description

Adds a bitmap, icon, or cursor to the large image list.

Statements, Events, and Functions

Page 380

Applies to

ListView controls

Syntax

listviewname.AddLargePicture (picturename)

Table 2.379:

Argument Description

listviewname The name of the ListView control to which you are adding a bitmap,
icon, or cursor

picturename The name of the bitmap, icon, or cursor you are adding to the large image
list

Return value

Integer.

Returns the picture index if it succeeds and -1 if an error occurs.

Usage

When you add a large picture to a ListView, it is given the next available picture index in the
ListView. For example, if your ListView has two pictures, the next picture you add will be
assigned picture index number 3.

Before you add large pictures, you can specify scaling for the pictures by setting the
LargePictureWidth and LargePictureHeight properties. The dimensions in effect when you
add the first picture determine the scaling for all pictures. Changing the property values after
you add pictures has no effect.

If you do not specify values for LargePictureWidth and LargePictureHeight before you add
pictures, the dimensions of the first image determine the scaling for all pictures you add.

When you add a bitmap, specify the color in the bitmap that will be transparent by setting
the LargePictureMaskColor property before calling AddLargePicture. You can change the
LargePictureMaskColor property between calls.

Examples

This example adds the file "folder.ico" to the large picture index of the ListView lv_files:

// Add large picture
integer index
index = lv_files.AddLargePicture("folder.ico")

See also

DeleteLargePicture

2.4.20 AddMasterSeparatorItem

Description

Adds a menu separator to the master menu of the application menu.

Applies to

Statements, Events, and Functions

Page 381

RibbonApplicationMenu controls

Syntax

controlname.AddMasterSeparatorItem ({ Long ParentIndex })

Table 2.380:

Argument Description

controlname The name of the RibbonApplicationMenu control into which you want to
insert a menu separator.

ParentIndex The index of the menu item (RibbonMenuItem) into which you want to
insert a submenu separator.

It cannot be an index of a separator. If not specified, a separator will be
added at the end of the menu; if specified to a valid value, a separator will
be added at the end of the submenu under the menu item (whose index is
ParentIndex); if specified to an invalid value, an error would occur and
this operation would return -1.

Return value

Long.

Returns the position of the new item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

The menu separator is a horizontal line used to visually distinguish between groups of menu
items. The separator can only be added in the master menu of RibbonApplicationMenu
(AddMasterSeparatorItem) or in the menu of RibbonMenu (AddSeparatorItem); it cannot be
added to the recent menu of RibbonApplicationMenu.

Examples

This example inserts a menu separator below the "Account" master menu item and inserts
another menu separator in the submenu of "Account".

Long ll_Return, ll_Index
RibbonApplicationMenu lr_AppMenu

ll_Return = lr_AppMenu.AddMasterSeparatorItem()
ll_Index = lr_AppMenu.InsertMasterItemFirst ("Account", "AccountBig!",
 "Ue_AccountMasterItemClicked")
ll_Return = lr_AppMenu.AddMasterSeparatorItem (ll_Index)

See also

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

Statements, Events, and Functions

Page 382

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.21 AddPicture

Description

Adds a bitmap, icon, or cursor to the main image list.

Applies to

PictureListBox, DropDownPictureListBox, and TreeView controls

Syntax

controlname.AddPicture (picturename)

Table 2.381:

Argument Description

controlname The name of the control to which you want to add an icon, cursor, or
bitmap to the main image list

picturename The name of the icon, cursor, or bitmap you want to add to the main
image list

Return value

Integer.

Returns the picture index number if it succeeds and -1 if an error occurs.

Usage

The picture is assigned an index in the order in which it is added to the control.

Adding pictures at runtime does not update the PictureName property array. Because the
picture is added at the end of the list, the return value from AddPicture is the number of
pictures associated with the control.

Before you add pictures, you can specify scaling for the pictures by setting the PictureWidth
and PictureHeight properties. The dimensions in effect when you add the first picture
determine the scaling for all pictures. Changing the property values after you add pictures has
no effect.

Statements, Events, and Functions

Page 383

If you do not specify values for PictureWidth and PictureHeight before you add pictures, the
dimensions of the first image determine the scaling for all pictures you add.

When a you add a bitmap, specify the color in the bitmap that will be transparent by
setting the PictureMaskColor property before calling AddPicture. You can change the
PictureMaskColor property between calls.

Examples

This example adds a picture to a TreeView control and associates it with a new TreeView
item:

long ll_tvi
integer li_picture
li_picture = &
tv_list.AddPicture("c:\apps_pb\staff.ico")
ll_tvi = tv_list.FindItem(RootTreeItem!, 0)
tv_list.InsertItemFirst(ll_tvi, "Dept.", li_picture)

See also

DeletePicture

2.4.22 AddSeparatorItem

Description

Adds a menu separator to the ribbon menu.

Applies to

RibbonMenu controls

Syntax

controlname.AddSeparatorItem ({ Long ParentIndex })

Table 2.382:

Argument Description

controlname The name of the RibbonMenu control into which you want to insert a
menu separator.

ParentIndex The index of the menu item (RibbonMenuItem) into which you want to
insert a submenu separator.

It cannot be an index of a separator. If not specified, a separator will be
added at the end of the menu; if specified to a valid value, a separator will
be added at the end of the submenu under the menu item (whose index is
ParentIndex); if specified to an invalid value, an error would occur and
this operation would return -1.

Return value

Long.

Returns the position of the new item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

Statements, Events, and Functions

Page 384

The menu separator is a horizontal line used to visually distinguish between groups of menu
items. The separator can only be added in the master menu of RibbonApplicationMenu
(AddMasterSeparatorItem) or in the menu of RibbonMenu (AddSeparatorItem); it cannot be
added to the recent menu of RibbonApplicationMenu.

Examples

This example inserts a menu separator below the "MenuItem1" menu item and inserts another
menu separator in the submenu of "MenuItem1".

Long ll_Return,ll_Index
RibbonMenu lr_Menu

ll_Return = lr_Menu.AddSeparatorItem()
ll_Index = lr_Menu.InsertItemFirst ("MenuItem1", "AddSmall!", "Ue_MenuItemClicked")
ll_Return = lr_Menu.AddSeparatorItem (ll_Index)

See also

DeleteItem

GetItem

GetItemCount

InsertItem

InsertItemFirst

InsertItemLast

SetItem

2.4.23 AddSeries

Description

Adds a series to a graph, naming it with the specified name. The new series is also assigned
a number. A graph's series are numbered consecutively, according to the order in which they
are added.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects because their data comes directly from the DataWindow.

Syntax

controlname.AddSeries (seriesname)

Table 2.383:

Argument Description

controlname The name of the graph in which you want to add a series

seriesname A string whose value is the name of the series you want to add to
controlname

Return value

Integer.

Statements, Events, and Functions

Page 385

Returns the number assigned to the series if it succeeds. If seriesname is a duplicate,
AddSeries returns the number of the existing series. If an error occurs, it returns -1. If any
argument's value is null, AddSeries returns null.

Usage

Adds seriesname to the graph controlname and assigns the series a number. The number
identifies the series within the graph. The numbers are assigned in sequence. The first series
you add to the graph is assigned number 1 and is the first series displayed in the graph; the
next is assigned 2; and so on.

The series name must be unique within the graph. If you specify a name that already exists
in the graph, AddSeries returns the number of the existing series. Series names are unique
if they have different capitalization. The series name can be an empty string (""). However,
because series names must be unique, only one series can have a blank name. If you want to
insert a series in the middle of the list, use InsertSeries. You can also use InsertSeries to add a
series to the end of the list, as AddSeries does, although it requires an additional argument to
do it.

To add data to a series in the graph, use the AddData or InsertData function. To add a
category to a series, use the InsertCategory or AddCategory function.

Examples

These statements add the series named Costs to the graph gr_product_data:

integer series_nbr
series_nbr = gr_product_data.AddSeries("Costs")

These statements add an unnamed series to the graph gr_product_data:

integer series_nbr
series_nbr = gr_product_data.AddSeries("")

See also

AddCategory

AddData

DeleteData

DeleteSeries

FindSeries

InsertCategory

InsertSeries

SeriesCount

SeriesName

2.4.24 AddSmallPicture

Description

Adds a bitmap, icon, or cursor to the small image list.

Applies to

Statements, Events, and Functions

Page 386

ListView controls

Syntax

listviewname.AddSmallPicture (picturename)

Table 2.384:

Argument Description

listviewname The name of the ListView control to which you are adding a small image

picturename The name of the bitmap, icon, or cursor you are adding to the ListView
control small image list

Return value

Integer.

Returns the picture index if it succeeds and -1 if an error occurs.

Usage

When you add a small picture to a ListView control, it is given the next available picture
index in the ListView. For example, if your ListView has two pictures, the next picture you
add will have index number 3.

Before you add small pictures, you can specify scaling for the pictures by setting the
SmallPictureWidth and SmallPictureHeight properties. The dimensions in effect when you
add the first picture determine the scaling for all pictures. Changing the property values after
you add pictures has no effect.

If you do not specify values for SmallPictureWidth and SmallPictureHeight before you add
pictures, the dimensions of the first image determine the scaling for all pictures you add.

Before you call AddSmallPicture, specify the color in the bitmap that will be transparent by
setting the SmallPictureMaskColor property. You can change the SmallPictureMaskColor
property between calls.

Examples

This example adds the file "shortcut.ico" to the small picture index of the ListView lv_files:

//Add small picture
integer index
index = lv_files.AddSmallPicture("shortcut.ico")

See also

DeleteSmallPicture

2.4.25 AddStatePicture

Description

Adds a bitmap, icon, or cursor to the state image list.

Applies to

ListView and TreeView controls

Syntax

controlname.AddStatePicture (picturename)

Statements, Events, and Functions

Page 387

Table 2.385:

Argument Description

controlname The name of the ListView or TreeView control to which you are adding a
bitmap, cursor, or icon

picturename The name of the bitmap, icon, or cursor you are adding

Return value

Integer.

Returns the picture index if it succeeds and -1 if an error occurs.

Usage

For ListViews in large icon view, the state picture is a picture displayed to the left of the
large picture, by default in a smaller size. For TreeViews, the state picture is displayed to the
left of the regular picture and the item is moved to the right to make room for it.

If you specify either StatePictureWidth or StatePictureHeight, the picture is scaled to the size
specified by that property.

When a you add a bitmap, specify the color in the bitmap that will be transparent by
setting the StatePictureMaskColor property before calling AddPicture. You can change the
StatePictureMaskColor property between calls.

Examples

This example adds the file star.ico to the state picture index of the ListView lv_files:

//Add state picture
integer index
index = lv_files.AddStatePicture("star.ico")

See also

DeleteStatePicture

2.4.26 AddToLibraryList

Description

Adds new files to the library search path of an application or component at runtime.

Syntax

AddToLibraryList (filelist)

Table 2.386:

Argument Description

filelist A comma-separated list of file names. Specify the full file name with its
extension. If you do not specify a path, PowerBuilder uses the system's
search path to find the file.

Return value

Integer.

Returns 1 if it succeeds. If an error occurs, it returns:

Statements, Events, and Functions

Page 388

-1 -- The application or component is being run in the PowerBuilder development
environment, rather than from a standalone executable or server.

-2 -- The new library list or existing library list is empty, or another internal error has
occurred.

Usage

When an application needs to load an object, PowerBuilder searches for the object first in the
executable file and then in the dynamic libraries specified for the application. For a deployed
component, PowerBuilder searches the PBD files in the component's library list. You can
specify additional library files with AddToLibraryList.

Calling AddToLibraryList appends a new list of files, in the order in which they are specified
in filelist, to the list of library files specified in the target. If filelist contains a file name that
is already in the library list, that file name is not added to the library list. If filelist contains
more than one occurrence of a given file name, the first occurrence is added to the library list.

PowerBuilder cannot check whether the libraries you specify are appropriate for the
application. It is up to you to make sure the libraries contain the objects that the application
or component needs.

This function has no effect in the PowerBuilder development environment.

Examples

This example adds different PBDs to the library search path depending on whether product or
customer processing is to be performed:

CHOOSE CASE processkind
 CASE "product"
 AddToLibraryList("prod.pbd")
 CASE "customer"
 AddToLibraryList("cust.pbd")
END CHOOSE

See also

GetLibraryList

SetLibraryList

2.4.27 AppendParam

Description

Appends the parameter to the request for Extension Grant only.

Applies to

TokenRequest objects

Syntax

objectname.AppendParam (string param, string value)

Table 2.387:

Argument Description

objectname A reference to the TokenRequest object in which you want to append the
parameter.

Statements, Events, and Functions

Page 389

Argument Description

param A string specifying the parameter name.

value A string specifying the parameter value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the AppendParam function to append a parameter:

int li_return
string ls_param, ls_value
TokenRequest lnv_TokenRequest

li_return = lnv_TokenRequest.appendparam(ls_param,ls_value)

See also

ClearHeaders

GetHeader

GetHeaders

SetHeader

SetHeaders

2.4.28 ApplyTheme

Description

Applies a theme to the current application UI. This method should be called when all
windows are closed, in order for windows and controls to take effect.

Syntax

ApplyTheme (String theme)

Table 2.388:

Argument Description

theme A string whose value is the theme name (or theme path and name) you
want to apply to the current application.

The theme path is optional. If not specified, the default value is
"%AppeonInstallPath%\PowerBuilder [version]\IDE\theme" when the
app is run from the IDE (at the development environment), and the
default value is the "theme" under the root of the application installation
directory when the application's executable file is run (at the production
environment). If specified, it can be an absolute path or a relative path;
and cannot be a UNC path (for example, "\\172.16.0.1\theme\Flat Design
Blue" is unsupported). The relative path is relative to the PBT file at

Statements, Events, and Functions

Page 390

Argument Description
the development environment; and relative to the root of the installation
directory of the app's executable file at the production environment.

The theme name should be the sub-folder name under the specified theme
path or the default path that contain the files for the theme, therefore the
sub-folder name represents the theme name.

In Windows system, the maximum length for a path is defined as 260
characters. Therefore, it is recommended the theme path (including theme
name) should be less than 260 characters and the path alone (excluding
theme name) should be less than 200 characters.

Return value

Integer. Returns 1 if it succeeds and -1 if it fails. If any argument's value is null, the method
returns null.

Usage

The ApplyTheme method should be called when all windows are closed, for example, it can
be called in the Application Open event when all of the child windows are not yet opened.

The theme path and name set by the ApplyTheme function takes precedence over those
selected in the PowerBuilder painter. See the following code examples for illustration.

The ApplyTheme method is effective to the window, DataWindow, and all visual controls
in your current application, except Line, Oval, Rectangle, RoundRectangle, Picture,
PictureHyperLink, and Animation.

Once you apply a theme to the application, you should not select the Windows classic style
option in the System Options and/or project painter, otherwise, the application UI will be
rendered in the Windows classic style instead of the selected theme.

When the application is run in the Windows system and if the Windows system theme is
set to "Windows Classic", then the application UI will be rendered in the Windows Classic
theme instead of the selected theme.

The "Use Windows XP style DPI scaling" option in Windows 7 and Windows Server 2012
will be automatically selected, if the scaling percentage is set to 125% or lower. This will
prevent the selected theme working correctly. In such case, you should manually uncheck the
"Use Windows XP style DPI scaling" option.

If the current operating system is Windows Server 2003, 2008, or 2008 R2 (or if the
"Windows classic style" option is selected when building the application), the ApplyTheme
function will not take effect and will return -1.

The ApplyTheme method can apply a theme, but it cannot turn off a theme. To turn off a
theme, you should remove the ApplyTheme method (as well as the theme settings in the
PowerBuilder painter), and then restart the application for the change to take effect. Or create
a custom theme that has {“drawing”:false} for every control type, and use this theme in the
ApplyTheme method.

Before switching between themes or turning off the theme thru the ApplyTheme method, it is
the best practice to prompt end users to reopen the current window, in order to refresh the UI
correctly.

Statements, Events, and Functions

Page 391

Example 1

This example applies the "Flat Design Blue" theme (the theme name selected in the painter
will be ignored).

When the app is run from the IDE, the script reads the theme files from the Theme Path set
in the painter; when the app's executable file is run, the script reads the theme files from the
"theme" folder under the root of the application installation directory.

ApplyTheme ("Flat Design Blue")

Example 2

This example applies the "Flat Design Blue" theme and both the theme path and the theme
name selected in the painter will be ignored.

The script reads the theme files from "D:\App1SourceCode\themes\" no matter when the app
is run from the IDE or when the app's executable file is run.

ApplyTheme("D:\App1SourceCode\themes\Flat Design Blue")

Example 3

This example applies the "Flat Design Blue" theme and both the theme path and the theme
name selected in the painter will be ignored.

When the app is run from the IDE, the script reads the theme files from the path relative to
the PBT file; when the app's executable file is run, the script reads the theme files from the
path relative to the root of the application installation directory.

ApplyTheme(".\themes\Flat Design Blue")

ApplyTheme(".\..\themes\Flat Design Blue")

ApplyTheme("themes\Flat Design Blue")

See also

GetTheme

Specifying the UI theme for the application in Users Guide

2.4.29 Arrange

Description

Arranges the icons in rows.

Applies to

ListView controls

Syntax

listviewname.Arrange ()

Table 2.389:

Argument Description

listviewname The name of the ListView control in which you want to arrange icons

Return value

Statements, Events, and Functions

Page 392

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Can only be used with large icon and small icon views.

Examples

This example arranges the icons in a ListView control:

lv_list.Arrange()

2.4.30 ArrangeSheets

Description

Arranges the windows contained in an MDI frame. (Windows that are contained in an MDI
frame are called sheets.) You can arrange the open sheets and the icons of minimized sheets
or just the icons.

Applies to

MDI frame windows

Syntax

mdiframe.ArrangeSheets (arrangetype)

Table 2.390:

Argument Description

mdiframe The name of an MDI frame window.

arrangetype A value of the ArrangeTypes enumerated datatype specifying how you
want the open sheets arranged in the MDI frame window. Values are:

• Cascade! -- Cascade the sheets that are not minimized so that each
sheet's title bar is visible and arrange icons of minimized sheets in a
row at the bottom of the frame.

• Layer! -- Layer the sheets that are not minimized so that each sheet
completely covers the one below it and arrange icons of minimized
sheets in a row at the bottom of the frame.

• Tile! -- Tile the sheets that are not minimized so that they do not
overlap and arrange icons of minimized sheets in a row at the bottom
of the frame.

• TileHorizontal! -- Tile the sheets that are not minimized so that each is
beside the other without overlapping and arrange icons of minimized
sheets in a row at the bottom of the frame.

• Icons! -- Arrange the minimized sheets in a row at the bottom of the
frame.

Return value

Statements, Events, and Functions

Page 393

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
ArrangeSheets returns null.

Examples

This statement in the script for the Clicked event for an item on a menu tiles the open sheets
that are not minimized in the MDI frame window called MDI_User:

MDI_User.ArrangeSheets(Tile!)

This statement in the script for the Clicked event for an item on a menu arranges the icons of
the minimized sheets at the bottom of the MDI frame window called MDI_User:

MDI_User.ArrangeSheets(Icons!)

See also

GetActiveSheet

OpenSheet

2.4.31 Asc

Description

Converts the first character of a string to its Unicode code point. A code point is the
numerical integer value given to a Unicode character.

Syntax

Asc (string)

Table 2.391:

Argument Description

string The string for which you want the code point value of the first character

Return value

Unsigned Integer. Returns the code point value of the first character in string. If string is null,
Asc returns null.

Usage

You can use Asc to find out the case of a character by testing whether its code point value is
within the appropriate range.

Examples

This statement returns 65, the code point value for uppercase A:

Asc("A")

This example checks if the first character of string ls_name is uppercase:

String ls_name
IF Asc(ls_name) > 64 and Asc(ls_name) < 91 THEN ...

See also

AscA

Statements, Events, and Functions

Page 394

Char

Mid

Asc method for DataWindows in Section 2.4.3, “Asc” in DataWindow Reference.

2.4.32 AscA

Description

Converts the first character of a string to its ASCII integer value.

Syntax

AscA (string)

Table 2.392:

Argument Description

string The string for which you want the ASCII value of the first character

Return value

Integer.

Returns the ASCII value of the first character in string. If string is null, AscA returns null.

Usage

You can use AscA to find out the case of a character by testing whether its ASCII value is
within the appropriate range. A separate function, Asc, is provided to return the Unicode code
point of a character.

Examples

This statement returns 65, the ASCII value for uppercase A:

AscA("A")

This example checks if the first character of string ls_name is uppercase:

String ls_name
IF AscA(ls_name) > 64 and AscA(ls_name) < 91 THEN ...

This example is a function that converts an array of integers into a string. Each integer
specifies two characters. Its low byte is the first character in the pair and the high byte (ASCII
* 256) is the second character. The function has an argument (iarr) which is the integer array:

string str_from_int, hold_str
integer arraylen

arraylen = UpperBound(iarr)

FOR i = 1 to arraylen
 // Convert first character of pair to a char
 hold_str = CharA(iarr[i])

 // Add characters to string after converting
 // the integer's high byte to char
 str_from_int += hold_str + &
 CharA((iarr[i] - AscA(hold_str)) / 256)
NEXT

Statements, Events, and Functions

Page 395

For sample code that builds the integer array from a string, see Mid.

See also

Asc

CharA

Mid

AscA method for DataWindows in Section 2.4.4, “AscA” in DataWindow Reference.

2.4.33 ASin

Description

Calculates the arcsine of an angle.

Syntax

ASin (n)

Table 2.393:

Argument Description

n The ratio of the lengths of two sides of a triangle for which you want a
corresponding angle (in radians). The ratio must be a value between -1
and 1.

Return value

Double. Returns the arcsine of n.

Examples

This statement returns .999998 (rounded to six places):

ASin(.84147)

This statement returns .520311 (rounded to six places):

ASin(LogTen (Pi (1)))

This statement returns 0:

ASin(0)

This code in the Clicked event of a button catches a runtime error that occurs when an arcsine
is taken for a user-entered value -- passed in a variable -- that is outside of the permitted
range:

Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (asin (ld_num))
CATCH (runtimeerror er)
 MessageBox("Runtime Error", er.getmessage())
END TRY

See also

Sin

Statements, Events, and Functions

Page 396

ACos

ATan

Pi

ASin method for DataWindows in Section 2.4.5, “ASin” in DataWindow Reference.

2.4.34 AsymmetricDecrypt

Description

Decrypts a blob value with asymmetric algorithm.

Applies to

CrypterObject objects

Syntax

crypter.AsymmetricDecrypt (algorithm, variable, privKey)

Table 2.394:

Argument Description

crypter The name of the CrypterObject object

algorithm A value of the AsymmetricAlgorithm enumerated type that specifies the
type of asymmetric algorithm.

Values are:

• RSA! – The Rivest-Shamir-Adleman cryptopsystem

• Rabin! – The Rabin Algorithm

Note: DSA! is designed to be used in signature, not in encryption and
decryption.

variable A blob whose value is the data you want to decrypt with Public-Key
cipher.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

privKey A blob specifying the private key. The private key format must be
PKCS#8.

Return value

Blob. Returns the result of the decrypt if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement encrypts the data using RSA and then returns the encrypted data.

Blob lblb_data

Statements, Events, and Functions

Page 397

Blob lblb_privKey
Blob lblb_pubKey
Blob lblb_encrypt
Blob lblb_decrypt

lblb_data = Blob("Test Rsa", EncodingANSI!)

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

// Generate the private key
lnv_CrypterObject.AsymmetricGenerateKey(RSA!, 1024, lblb_privKey, lblb_pubKey)

// Encrypt data using RSA
lblb_encrypt = lnv_CrypterObject.AsymmetricEncrypt(RSA!, lblb_data, lblb_pubKey)

// Decrypt data using RSA
lblb_decrypt = lnv_CrypterObject.AsymmetricDecrypt(RSA!, lblb_encrypt,
 lblb_privKey)

messagebox("AsymmetricDecrypt", string(lblb_decrypt, EncodingANSI!))

See also

SymmetricEncrypt

SymmetricDecrypt

SymmetricGenerateKey

AsymmetricEncrypt

AsymmetricSign

AsymmetricVerifySign

AsymmetricGenerateKey

MD5

SHA

HMAC

2.4.35 AsymmetricEncrypt

Description

Encrypts a blob value with asymmetric algorithm.

Applies to

CrypterObject objects

Syntax

crypter.AsymmetricEncrypt (algorithm, variable, pubKey)

Table 2.395:

Argument Description

crypter The name of the CrypterObject object

algorithm A value of the AsymmetricAlgorithm enumerated type that specifies the
type of asymmetric algorithm.

Statements, Events, and Functions

Page 398

Argument Description
Values are:

• RSA! – The Rivest-Shamir-Adleman cryptopsystem

• Rabin! – The Rabin Algorithm

Note: DSA! is designed to be used in signature, not in encryption and
decryption.

variable A blob whose value is the data you want to encrypt with Public-Key
cipher.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

pubKey A blob specifying the public key. Note: A 512-bit pubKey can encrypt a
variable of up to 22 bytes; a 1024-bit pubKey can encrypt a variable of up
to 86 bytes; A 2048-bit pubKey can encrypt a variable of up to 214 bytes.

Return value

Blob. Returns the result of the encryption if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement encrypts the data using RSA and then returns the encrypted data.

Blob lblb_data
Blob lblb_privKey
Blob lblb_pubKey
Blob lblb_encrypt

lblb_data = Blob("Test Rsa", EncodingANSI!)

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

// Generate the private key
lnv_CrypterObject.AsymmetricGenerateKey(RSA!, 1024, lblb_privKey, lblb_pubKey)

// Encrypt data using RSA
lblb_encrypt = lnv_CrypterObject.AsymmetricEncrypt(RSA!, lblb_data, lblb_pubKey)

See also

SymmetricEncrypt

SymmetricDecrypt

SymmetricGenerateKey

AsymmetricDecrypt

AsymmetricSign

AsymmetricVerifySign

Statements, Events, and Functions

Page 399

AsymmetricGenerateKey

MD5

SHA

HMAC

2.4.36 AsymmetricGenerateKey

Description

Generates a secret key for asymmetric algorithm.

Applies to

CrypterObject objects

Syntax

crypter.AsymmetricGenerateKey (algorithm, len, privKey, pubKey)

Table 2.396:

Argument Description

crypter The name of the CrypterObject object

algorithm A value of the AsymmetricAlgorithm enumerated type that specifies the
type of asymmetric algorithm.

Values are:

• RSA! – The Rivest-Shamir-Adleman cryptopsystem

• DSA! – The Digital Signature Algorithm. It is designed to be used in
signature, not in encryption and decryption.

• Rabin! – The Rabin Algorithm

len An integer specifying the key length. Recommended key length:
512/1024/2048.

privKey A blob receiving the private key.

pubKey A blob receiving the public key.

Return value

Integer. Returns 1 if it succeeds and -1 if it failed. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

This statement generates a public key and a private key.

Integer li_return
Blob lblb_privKey
Blob lblb_pubKey

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

Statements, Events, and Functions

Page 400

// Generate the key
li_return = lnv_CrypterObject.AsymmetricGenerateKey(RSA!, 1024, lblb_privKey,
 lblb_pubKey)
if li_return = 1 then
 messagebox("Success", "Key is generated successfully!")
else
 messagebox("Error", "Failed to generate the key!")
end if

See also

SymmetricEncrypt

SymmetricDecrypt

SymmetricGenerateKey

AsymmetricEncrypt

AsymmetricDecrypt

AsymmetricSign

AsymmetricVerifySign

MD5

SHA

HMAC

2.4.37 AsymmetricSign

Description

Calculates the signature of the data with asymmetric algorithm.

Applies to

CrypterObject objects

Syntax

crypter.AsymmetricSign (algorithm, variable, privKey)

Table 2.397:

Argument Description

crypter The name of the CrypterObject object

algorithm A value of the AsymmetricAlgorithm enumerated type that specifies the
type of asymmetric algorithm.

Values are:

• RSA! – The Rivest-Shamir-Adleman cryptopsystem

• DSA! – The Digital Signature Algorithm. It is designed to be used in
signature, not in encryption and decryption.

• Rabin! – The Rabin Algorithm

variable A blob whose value is the data you want to sign with Public-Key cipher.

Statements, Events, and Functions

Page 401

Argument Description
When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

privKey A blob specifying the private key.

Return value

Blob. Returns the signature of the data if it succeeds.. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement signs the data with RAS.

Blob lblb_data
Blob lblb_privKey
Blob lblb_pubKey
Blob lblb_signature

lblb_data = Blob("Test Rsa", EncodingANSI!)

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

// Generate the private key
lnv_CrypterObject.AsymmetricGenerateKey(RSA!, 1024, lblb_privKey, lblb_pubKey)

// Sign with RSA
lblb_signature = lnv_CrypterObject.AsymmetricSign(RSA!, lblb_data, lblb_privKey)

See also

SymmetricEncrypt

SymmetricDecrypt

SymmetricGenerateKey

AsymmetricEncrypt

AsymmetricDecrypt

AsymmetricVerifySign

AsymmetricGenerateKey

MD5

SHA

HMAC

2.4.38 AsymmetricVerifySign

Description

Verifies the signature of the data with asymmetric algorithm.

Applies to

Statements, Events, and Functions

Page 402

CrypterObject objects

Syntax

crypter.AsymmetricVerifySign (algorithm, variable, pubKey, sign)

Table 2.398:

Argument Description

crypter The name of the CrypterObject object

algorithm A value of the AsymmetricAlgorithm enumerated type that specifies the
type of asymmetric algorithm.

Values are:

• RSA! – The Rivest-Shamir-Adleman cryptopsystem

• DSA! – The Digital Signature Algorithm. It is designed to be used in
signature, not in encryption and decryption.

• Rabin! – The Rabin Algorithm

variable A blob whose value is the data you want to verify with Public-Key
cipher.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

pubKey A blob specifying the public key.

sign A blob specifying the signature.

Return value

Integer. Returns 1 if it succeeds and -1 if it failed. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

This statement signs the data with RAS and validates the signature.

Blob lblb_data
Blob lblb_privKey
Blob lblb_pubKey
Blob lblb_signature
Integer li_isPass

lblb_data = Blob("Test Rsa", EncodingANSI!)

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

// Generate the private key
lnv_CrypterObject.AsymmetricGenerateKey(RSA!, 1024, lblb_privKey, lblb_pubKey)

// Sign data with RSA
lblb_signature = lnv_CrypterObject.AsymmetricSign(RSA!, lblb_data, lblb_privKey)

Statements, Events, and Functions

Page 403

// Validate the RSA signature
li_isPass = lnv_CrypterObject.AsymmetricVerifySign(RSA!, lblb_data, lblb_pubKey,
 lblb_signature)
if li_isPass = 1 then
 messagebox("Success", "Verification succeeded!")
else
 messagebox("Error", "Verification failed!")
end if

See also

SymmetricEncrypt

SymmetricDecrypt

SymmetricGenerateKey

AsymmetricEncrypt

AsymmetricDecrypt

AsymmetricSign

AsymmetricGenerateKey

MD5

SHA

HMAC

2.4.39 ATan

Description

Calculates the arctangent of an angle.

Syntax

ATan (n)

Table 2.399:

Argument Description

n The ratio of the lengths of two sides of a triangle for which you want a
corresponding angle (in radians)

Return value

Double. Returns the arctangent of n.

Examples

This statement returns 0:

ATan(0)

This statement returns 1.000 (rounded to three places):

ATan(1.55741)

This statement returns 1.267267 (rounded to six places):

ATan(Pi(1))

Statements, Events, and Functions

Page 404

See also

Tan

ASin

ACos

ATan method for DataWindows in Section 2.4.6, “ATan” in DataWindow Reference.

2.4.40 Base32Decode

Description

Decodes a string value using Base32 decoder.

Applies to

CoderObject object

Syntax

coder.Base32Decode (variable)

Table 2.400:

Argument Description

coder The name of the CoderObject object.

variable A string whose value is the data you want to decode with Base32
decoder.

Return value

Blob. Returns the result of the decoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement decodes the data that is encoded using Base32.

CoderObject lco_Code
Blob lbb_Data
String ls_Return, ls_Data

lco_Code = Create CoderObject

ls_Data = "KRSXG5BAIJQXGZJTGJCW4L2EMVRW6ZDF"
lbb_Data = lco_Code.Base32Decode(ls_Data)
ls_Return = String (lbb_Data, EncodingUTF8!)

Destroy (lco_Code)

See also

HexDecode

HexEncode

Base32Encode

Base64Decode

Base64Encode

Statements, Events, and Functions

Page 405

Base64UrlDecode

Base64UrlEncode

UrlEncode

UrlDecode

2.4.41 Base32Encode

Description

Encodes a blob value using Base32 encoder.

Applies to

CoderObject object

Syntax

coder.Base32Encode (variable)

Table 2.401:

Argument Description

coder The name of the CoderObject object.

variable A blob whose value is the data you want to encode with Base32 encoder.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

Return value

String. Returns the result of the encoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement encodes the data using Base32 and returns the encoded data.

CoderObject lco_Code
Blob lbb_Data
String ls_Return

lco_Code = Create CoderObject

lbb_Data = Blob ("Test Base32En/Decode", EncodingUTF8!)
ls_Return = lco_Code.Base32Encode(lbb_Data)

Destroy (lco_Code)

See also

HexDecode

HexEncode

Base32Decode

Base64Decode

Statements, Events, and Functions

Page 406

Base64Encode

Base64UrlDecode

Base64UrlEncode

UrlEncode

UrlDecode

2.4.42 Base64Decode

Description

Decodes a string value using Base64 decoder.

Applies to

CoderObject object

Syntax

coder.Base64Decode (variable)

Table 2.402:

Argument Description

coder The name of the CoderObject object.

variable A string whose value is the data you want to decode with Base64
decoder.

Return value

Blob. Returns the result of the decoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement decodes the data that is encoded using Base64.

Blob lblb_data
String ls_Base64Str

CoderObject lnv_CoderObject
lnv_CoderObject = Create CoderObject

//ls_Base64Str = lnv_CoderObject.Base64Encode(Blob("Test Base64", EncodingANSI!))
ls_Base64Str = "VGVzdCBCYXNlNjQ="

lblb_data = lnv_CoderObject.Base64Decode(ls_Base64Str)
messagebox("Base64Decode", string(lblb_data, EncodingANSI!))

See also

HexDecode

HexEncode

Base32Decode

Base32Encode

Base64Encode

Statements, Events, and Functions

Page 407

Base64UrlDecode

Base64UrlEncode

UrlEncode

UrlDecode

2.4.43 Base64Encode

Description

Encodes a blob value using Base64 encoder.

Applies to

CoderObject object

Syntax

coder.Base64Encode (variable)

Table 2.403:

Argument Description

coder The name of the CoderObject object.

variable A blob whose value is the data you want to encode with Base64 encoder.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

Return value

String. Returns the result of the encoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement encodes the data using Base64 and returns the encoded data.

Blob lblb_data
String ls_Base64Str

lblb_data = Blob("Test Base64", EncodingANSI!)

CoderObject lnv_CoderObject
lnv_CoderObject = Create CoderObject

ls_Base64Str = lnv_CoderObject.Base64Encode(lblb_data)

See also

HexDecode

HexEncode

Base32Decode

Base32Encode

Statements, Events, and Functions

Page 408

Base64Decode

Base64UrlDecode

Base64UrlEncode

UrlEncode

UrlDecode

2.4.44 Base64UrlDecode

Description

Decodes a string value using Base64Url decoder.

Applies to

CoderObject object

Syntax

coder.Base64UrlDecode (variable)

Table 2.404:

Argument Description

coder The name of the CoderObject object.

variable A string whose value is the data you want to decode with Base64Url
decoder.

Return value

Blob. Returns the result of the decoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

CoderObject lco_Code
Blob lbb_Data
String ls_Return, ls_Data

lco_Code = Create CoderObject

ls_Data = "VGVzdCBCYXNlNjRVcmw"
lbb_Data = lco_Code.Base64UrlDeCode(ls_Data)
ls_Return = String (lbb_Data, EncodingUTF8!)

Destroy (lco_Code)

See also

HexDecode

HexEncode

Base32Decode

Base32Encode

Base64Encode

Base64Decode

Statements, Events, and Functions

Page 409

Base64UrlEncode

UrlEncode

UrlDecode

2.4.45 Base64UrlEncode

Description

Encodes a blob value using Base64Url encoder. Base64UrlEncode is an improved
Base64Encode for URL. Base64UrlEncode and Base64Encode character sets are the same
except for the last set of characters where Base64Url replaces "+" with "-" and "/" with "_".

Applies to

CoderObject object

Syntax

coder.Base64UrlEncode (variable)

Table 2.405:

Argument Description

coder The name of the CoderObject object.

variable A blob whose value is the data you want to encode with Base64Url
encoder.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

Return value

String. Returns the result of the encoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement encodes the data using Base64Url and returns the encoded data.

CoderObject lco_Code
Blob lbb_Data
String ls_Return

lco_Code = Create CoderObject

lbb_Data = Blob ("Test Base64Url", EncodingUTF8!)
ls_Return = lco_Code.Base64UrlEncode(lbb_Data)

Destroy (lco_Code)

See also

HexDecode

HexEncode

Base32Decode

Statements, Events, and Functions

Page 410

Base32Encode

Base64Encode

Base64Decode

Base64UrlDecode

UrlEncode

UrlDecode

2.4.46 Beep

Description

Causes the computer to beep up to 10 times.

Syntax

Beep (n)

Table 2.406:

Argument Description

n The number of times you want the computer to beep. If n is greater than
10, the computer beeps 10 times.

Return value

Integer.

Returns 1 if it succeeds and -1 if it fails. If n is null, Beep returns null. The return value
usually is not used.

Examples

This statement causes the computer to beep five times:

Beep(5)

2.4.47 BeginTransaction (obsolete)

Description

Creates an EAServer transaction and associates it with the calling thread.

Obsolete function

BeginTransaction is obsolete, because EAServer is no longer supported since
PowerBuilder 2017. An obsolete feature is no longer eligible for technical support and
will no longer be enhanced, although it is still available.

Applies to

CORBACurrent objects

Syntax

CORBACurrent.BeginTransaction ()

Statements, Events, and Functions

Page 411

Table 2.407:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance

Return value

Boolean.

Returns true if it succeeds and false if the transaction could not be created.

Usage

The BeginTransaction function creates a transaction and modifies the transaction context
of the calling thread so that it is associated with the transaction. This enables the calling
thread to obtain information about the transaction and control commits and rollbacks.
BeginTransaction can be called by a client or a component that is marked as OTS style.
EAServer must be using the two-phase commit transaction coordinator (OTS/XA). If the
calling thread is already associated with a transaction, BeginTransaction returns false. Nested
transactions are not supported.

Examples

This example shows the use of BeginTransaction to create a transaction from a client:

// Instance variables:
// CORBACurrent corbcurr
// Connection myconnect
long ll_rc
integer li_rc1, li_rc2
boolean lb_success
ll_rc = myconnect.ConnectToServer()
// insert error handling ...
li_rc1 = this.GetContextService("CORBACurrent", &
 corbcurr)
// insert error handling ...
li_rc2 = corbcurr.Init(myconnect)
// insert error handling ...
lb_success = corbcurr.BeginTransaction()
IF NOT lb_success THEN
 MessageBox ("Create Transaction Failed", &
 "The client may already be in a transaction")
 RETURN
ELSE
 ll_rc = myconnect.CreateInstance(lcst_mybookstore)
 // begin processing
...

See also

CommitDocking

GetContextService

GetStatus (obsolete)

GetTransactionName (obsolete)

Init (obsolete)

ResumeTransaction (obsolete)

RollbackOnly (obsolete)

Statements, Events, and Functions

Page 412

RollbackTransaction (obsolete)

SetTimeout (obsolete)

SuspendTransaction (obsolete)

2.4.48 Blob

Converts a string or byte array to a blob.

Table 2.408:

To Use

Convert a string to a blob Syntax 1

Convert a string or byte array to a blob Syntax 2

Syntax 1: Convert a string to a blob

Description

Converts a string to a blob datatype.

Syntax

Blob (text {, encoding})

Table 2.409:

Argument Description

text The string you want to convert to a blob datatype

encoding Character encoding of the resulting blob. Values are:

• EncodingANSI!

• EncodingUTF8!

• EncodingUTF16LE! (default)

• EncodingUTF16BE!

Return value

Blob.

Returns the converted string in a blob with the requested encoding, if specified. If text is null,
Blob returns null.

Usage

If the encoding argument is not provided, Blob converts a Unicode string to a Unicode blob.
You must provide the encoding argument if the blob has a different encoding.

Examples

This example saves a text string as a Unicode blob:

Blob B
B = Blob("Any Text")

Statements, Events, and Functions

Page 413

This example saves a text string as a blob with UTF-8 encoding:

Blob Blb
Blb = Blob("Any Text", EncodingUTF8!)

See also

BlobEdit

BlobMid

String

Syntax 2: Convert a string or a byte array to a blob

Description

Converts a string or an array of bytes to a blob datatype.

Syntax

Blob (array[])

Table 2.410:

Argument Description

stringorbytearray An Any variable that holds a string or an array of bytes you want to
convert to a blob datatype

Return value

Blob.

Returns the converted string or byte array in a blob.

Examples

This example saves an array of bytes as a blob, then copies the contents of the blob to another
byte array:

Blob lblb_1
Any a
byte lbyte_array[], lbyte_array2[]

// initialize array
lbyte_array[] = {1,10,100,200,255}
a = lbyte_array

lblb_1 = Blob(a)
lbyte_array2[] = GetByteArray(lblb_1)

See also

GetByteArray

2.4.49 BlobEdit

Description

Inserts data of any PowerBuilder datatype into a blob variable.

Syntax

Statements, Events, and Functions

Page 414

BlobEdit (blobvariable, n, data {, encoding})

Table 2.411:

Argument Description

blobvariable An initialized variable of the blob datatype into which you want to copy a
standard PowerBuilder datatype

n The number (1 to 4,294,967,295) of the position in blobvariable at which
you want to begin copying the data

data Data of a valid PowerBuilder datatype that you want to copy into
blobvariable

encoding Character encoding of the blob variable in which you want to insert data
of datatype string. Values are:

• EncodingANSI!

• EncodingUTF8!

• EncodingUTF16LE! (default)

• EncodingUTF16BE!

Return value

Unsigned long. Returns the position at which the next data can be copied if it succeeds, and
returns null if there is not enough space in blobvariable to copy the data. If any argument's
value is null, BlobEdit returns null.

If the data argument is a string, the position in the blobvariable in which you want to copy
data will be the length of the string + 2. If the data argument is a string converted to a blob,
the position will be the length of the string + 1. This is because a string contains a null
terminating character that it loses when it is converted to a blob. Thus, BlobEdit (blob_var, 1,
"ZZZ'') returns 5, while BlobEdit (blob_var, 1, blob (''ZZZ'')) returns 4.

Use the encoding parameter if the data argument is a string and you want to generate a blob
with a specific encoding.

Examples

This example copies a bitmap in the blob emp_photo starting at position 1, stores the position
at which the next copy can begin in nbr, and then copies a date into the blob emp_photo after
the bitmap data:

blob{1000} emp_photo
blob temp
date pic_date
ulong nbr

... // Read BMP file containing employee picture
... // into temp using FileOpen and FileRead.
pic_date = Today()

nbr = BlobEdit(emp_photo, 1, temp)
BlobEdit(emp_photo, nbr, pic_date)
UPDATEBLOB Employee SET pic = :emp_photo

Statements, Events, and Functions

Page 415

 WHERE ...

This example copies a string into the blob blb_data starting at position 1 and specifies that the
blob should use ANSI encoding:

blob{100} blb_data
string str1 = "This is a string"
ulong ul_pos

ul_pos = BlobEdit (blb_data, 1, str1, EncodingANSI!)

See also

Blob

BlobMid

2.4.50 BlobMid

Description

Extracts data from a blob variable.

Syntax

BlobMid (data, n {, length })

Table 2.412:

Argument Description

data Data of the blob datatype

n The number (1 to 4,294,967,295) of the first byte you want returned

length (optional) The number of bytes (1 to 4,294,967,295) you want returned

Return value

Blob. Returns length bytes from data starting at byte n. If n is greater than the number of
bytes in data, BlobMid returns an empty blob. If together length and n add up to more bytes
than the blob contains, BlobMid returns the remaining bytes, and the returned blob will be
shorter than the specified length. If any argument's value is null, BlobMid returns null.

Include terminator character

String variables contain a zero terminator, which accounts for one byte. Include the
terminator character when calculating how much data to extract.

Examples

In this example, the first call to BlobMid stores 10 bytes of the blob datablob starting at
position 5 in the blob data_1; the second call stores the bytes of datablob from position 5 to
the end in data_2:

blob data_1, data_2, datablob

... // Read a blob datatype into datablob.

data_1 = BlobMid(datablob, 5, 10)
data_2 = BlobMid(datablob, 5)

Statements, Events, and Functions

Page 416

This code copies a bitmap in the blob emp_photo starting at position 1, stores the position at
which the next copy can begin in nbr, and then copies a date into the blob emp_photo after
the bitmap data. Then, using the date's start position, it extracts the date from the blob and
displays it in the StaticText st_1:

blob{1000} emp_photo
blob temp
date pic_date
ulong nbr

... // Read BMP file containing employee picture
... // into temp using FileOpen and FileRead.

pic_date = Today()
nbr = BlobEdit(emp_photo, 1, temp)
BlobEdit(emp_photo, nbr, pic_date)
st_1.Text = String(Date(BlobMid(emp_photo, nbr)))

See also

Blob

BlobEdit

2.4.51 BuildModel

Description

Builds either a performance analysis or trace tree model based on the trace file you have
specified with the SetTraceFileName function. Optional arguments let you monitor the
progress of the build or interrupt it.

You must specify the trace file to be modeled using the SetTraceFileName function before
calling BuildModel.

Applies to

Profiling and TraceTree objects

Syntax

instancename.BuildModel ({ progressobject, eventname, triggerpercent })

Table 2.413:

Argument Description

instancename Instance name of the Profiling or TraceTree object

progressobject
(optional)

A PowerObject that represents the number of activities that have been
processed

eventname
(optional)

A string specifying the name of an event you define

triggerpercent
(optional)

A long identifying the number of activities the BuildModel function
should process before triggering the eventname event

Return value

ErrorReturn. Returns one of the following values:

Statements, Events, and Functions

Page 417

• Success! -- The function succeeded

• FileNotSetError! -- TraceFileName has not been set

• ModelExistsError! -- A model has already been built

• EnterpriseOnlyFeature! -- (Obsolete) This function is supported only in the Enterprise
edition of PowerBuilder 12.6 and earlier versions.

• EventNotFoundError! -- The event cannot be found on the passed progressobject, so the
model cannot be built

• EventWrongPrototypeError! -- The event was found but does not have the proper
prototype, so the model cannot be built

• SourcePBLError! -- The source libraries cannot be found, so the model cannot be built

Usage

The BuildModel function extracts raw data from a trace file and maps it to objects that can be
acted upon by PowerScript functions. If you want to build a model of your trace file without
recording the progress of the build, call BuildModel without any of its optional arguments. If
you want to receive progress information while the model is being created or if you want to
be able to interrupt a BuildModel that is taking too long to complete, call BuildModel with its
optional arguments.

The event eventname on the passed progressobject is triggered when the number of activities
indicated by the triggerpercent argument are processed. If the value of triggerpercent is 0,
eventname is triggered for every activity. If the value of triggerpercent is greater than 100,
eventname is never triggered. You define this event using this syntax:

eventname (currentactivity, totalnumberofactivities)

Table 2.414:

Argument Description

eventname Name of the event

currentactivity A long identifying the number of the current activity

totalnumberofactivitiesA long identifying the total number of activities in the trace file

Eventname returns a boolean value. If it returns false, the processing initiated by the
BuildModel function is canceled and any temporary storage is cleaned up. If you need to stop
BuildModel processing that is taking too long, you can return a false value from eventname.
The script you write for eventname determines how progress is monitored. For example, you
might display progress or simply check whether the processing must be canceled.

Examples

This example creates a performance analysis model of a trace file:

Profiling lpro_model
String ls_filename

lpro_model = CREATE Profiling

Statements, Events, and Functions

Page 418

lpro_model.SetTraceFileName(ls_filename)
lpro_model.BuildModel()

This example creates a trace tree model of a trace file:

TraceTree ltct_model
String ls_filename

ltct_model = CREATE TraceTree
ltct_model.SetTraceFileName(ls_filename)
ltct_model.BuildModel()

This example creates a performance analysis model that provides progress information as the
model is built. The eventname argument to BuildModel is called ue_progress and is triggered
each time five percent of the activities have been processed. The progress of the build is
shown in a window called w_progress that includes a Cancel button:

Profiling lpro_model
String ls_filename
Boolean lb_cancel

lpro_model = CREATE Profiling
lb_cancel = false
lpro_model.SetTraceFileName(ls_filename)

Open(w_progress)
// Call the of_init window function to initialize
// the w_progress window
w_progress.of_init(lpro_model.NumberOfActivities, &
 'Building Model', This, 'ue_cancel')

lpro_model.BuildModel(This, 'ue_progress', 5)

// Clicking the cancel button in w_progress
// sets lb_cancel to true and returns
// false to ue_progress
IF lb_cancel THEN &
 Close(w_progress)
 RETURN -1
END IF

See also

SetTraceFileName

DestroyModel

2.4.52 Byte

Description

Converts a number into a Byte datatype or obtains a Byte value stored in a blob.

Syntax

Byte (stringorblob)

Table 2.415:

Argument Description

stringorblob A String or any numeric datatype that you want to return as a Byte, or a
Blob datatype in which the initial value is the Byte value that you want to

Statements, Events, and Functions

Page 419

Argument Description
return. The stringorblob variable can also have an Any datatype as long
as it references a string, integer, uint, long, longlong, or blob.

Return value

Byte.

Returns the value of the stringorblob variable as a Byte datatype if it succeeds; it returns 0
if the stringorblob variable is not a valid PowerScript number or if it has an incompatible
datatype. If stringorblob is null, Byte returns null.

Usage

If the number you convert exceeds the upper range of the Byte datatype (>255), the Byte
method returns the difference between the number you pass in the stringorblob argument and
the nearest multiple of 256 below that number.

If you pass a blob in the stringorblob argument, only the value of the initial character is
converted to a byte value. (There is no "overflow" when you use a blob argument.) To get the
byte value for a character at a different position in the blob, you can use the GetByte method.

Examples

This example converts a string entered in a SingleLineEdit control to a byte value:

Byte ly_byte
ly_byte = Byte(sle_1.text)

If the text entered in the SingleLineEdit is 4, the byte value of ly_byte is 4. If the text entered
is 257, the value of ly_byte is 1. For 256 or text such as "ABC12", the value of ly_byte is 0.

This example returns the ASCII value of the initial character that you enter in a
SingleLineEdit control:

Byte lb_byte
Blob myBlob
myBlob = Blob(sle_1.text)
lb_byte = Byte(myBlob)

See also

GetByte

SetByte

2.4.53 Cancel

2.4.53.1 Syntax 1: for Pipeline objects

Description

Stops the execution of a pipeline object.

Applies to

Pipeline objects

Syntax

Statements, Events, and Functions

Page 420

pipelineobject.Cancel ()

Table 2.416:

Argument Description

pipelineobject The name of a pipeline user object that contains the pipeline object to be
executed

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Call this function only when Start or Repair is executing.

When you stop a pipeline with Cancel, data is committed as if the pipeline had reached the
maximum errors limit. You control how the pipeline behaves when it reaches the limit in the
Data Pipeline painter (see the Section 5.2, “Working with Data Pipelines” in Users Guide).

Examples

This statement for a CommandButton's Clicked script allows the user to stop the execution of
the pipeline i_pipe:

i_pipe.Cancel()

See also

Repair

Start

2.4.53.2 Syntax 2: for CompressorObject and ExtractorObject objects

Description

Cancels the current compression or extraction operation. Only used for the asynchronous
interface.

Applies to

CompressorObject and ExtractorObject objects

Syntax

objectname.Cancel ()

Table 2.417:

Argument Description

objectname The name of the CompressorObject or ExtractorObject object.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples

Statements, Events, and Functions

Page 421

This statement for a CompressorObject's Clicked script allows the user to stop the execution
of the compression lnv_compress:

lnv_compress.Cancel()

See also

Compress

2.4.54 CancelDownload

Description

Cancels the download progress of the file.

Applies to

WebBrowser controls

Syntax

controlname.CancelDownload (integer ItemId)

Table 2.418:

Argument Description

controlname The name of the WebBrowser control.

ItemId The ID used to identify the file. The minimum value is 1.

ItemId should be the return value of DownloadingStart or
DownloadingStateChanged event.

Return value

Integer.

• 1 -- Success.

• -2 -- Failed to get the browser instance.

• -6 -- The specified download task does not exist.

Examples

Integer li_rtn, li_itemid
li_rtn = wb_1.CancelDownload(li_itemid)

See also

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

GoForward

Navigate

Statements, Events, and Functions

Page 422

PauseDownload

PrintAsPDF

RegisterEvent

ResumeDownload

Refresh

StopNavigation

UnregisterEvent

Zoom

2.4.55 CancelSync

Description

Cancels the synchronization process and rolls back any changes accumulated during the
processing.

Applies to

MLSynchronization, MLSync controls

Syntax

SyncObject.CancelSync ()

Table 2.419:

Argument Description

syncObject The name of the synchronization object that started a synchronization
process that you want to stop.

Return value

Integer.

Returns 1 for success and -1 for failure.

Examples

The following code in the Clicked event of the Cancel button on a wizard-generated
synchronization progress window cancels the synchronization:

long rc
rc = i_uosync.cancelsync()
IF rc = 1 THEN
 mle_status.text += 'Synchronization Cancelled~r~n'
ELSE
 mle_status.text += 'Cancel request failed.~r~n'
END IF

See also

Synchronize

2.4.56 CanUndo

Description

Statements, Events, and Functions

Page 423

Tests whether Undo can reverse the most recent edit for an editable control.

Applies to

Any editable control (DataWindow, MultiLineEdit, SingleLineEdit, RichTextEdit)

Syntax

editname.CanUndo ()

Table 2.420:

Argument Description

editname The name of the DataWindow control, MultiLineEdit, SingleLineEdit, or
RichTextEdit for which you want to determine whether the last edit can
be reversed by the Undo function. In a DataWindow, CanUndo applies to
the edit control over the current row and column.

Return value

Boolean. Returns true if the last edit can be reversed (undone) using the Undo function and
false if the last edit cannot be reversed. If editname is null, CanUndo returns null.

Examples

These statements check to see if the last edit in mle_contact can be reversed; if yes the
statements reverse it, and if no they display a message:

IF mle_contact.CanUndo() THEN
 mle_contact.Undo()
ELSE
 MessageBox(Parent.Title, "Nothing to Undo")
END IF

See also

Undo

2.4.57 CategoryCount

Description

Counts the number of categories on the category axis of a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.CategoryCount ({ graphcontrol })

Table 2.421:

Argument Description

controlname The name of the graph for which you want the number of categories, or
the name of a DataWindow control containing the graph.

graphcontrol
(DataWindow

A string whose value is the name of the graph in the DataWindow for
which you want the number of categories. Graphcontrol is required if
controlname is a DataWindow control.

Statements, Events, and Functions

Page 424

Argument Description
control only)
(optional)

Return value

Integer.

Returns the count if it succeeds and -1 if an error occurs. If any argument's value is null,
CategoryCount returns null.

Examples

These statements get the number of categories in the graph gr_revenues in the DataWindow
control dw_findata:

integer li_count
li_count = &
 dw_findata.CategoryCount("gr_revenues")

These statements get the number of categories in the graph gr_product_data:

integer li_count
li_count = gr_product_data.CategoryCount()

See also

DataCount

SeriesCount

2.4.58 CategoryName

Description

Obtains the category name associated with the specified category number.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls .

Syntax

controlname.CategoryName ({ graphcontrol, } categorynumber)

Table 2.422:

Argument Description

controlname The name of the graph in which you want to find the name of a specific
category, or the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow for
which you want the name of a specific category. Graphcontrol is required
if controlname is a DataWindow control.

categorynumber The number of the category for which you want the name.

Return value

String.

Statements, Events, and Functions

Page 425

Returns the name of categorynumber in controlname. If an error occurs, it returns the empty
string (""). If any argument's value is null, CategoryName returns null.

Usage

Categories are numbered consecutively, from 1 to the value returned by CategoryCount.
When you delete a category, the categories are renumbered to keep the numbering
consecutive. You can use CategoryName to find out the named category associated with a
category number.

Examples

These statements obtain the name of category 5 in the graph gr_product_data:

string ls_name
ls_name = gr_product_data.CategoryName(5)

These statements obtain the name of category 5 in the graph gr_revenues in the DataWindow
control dw_findata:

string ls_name
ls_name = &
 dw_findata.CategoryName("gr_revenues", 5)

See also

AddCategory

SeriesName

2.4.59 Ceiling

Description

Determines the smallest whole number that is greater than or equal to a specified limit.

Syntax

Ceiling (n)

Table 2.423:

Argument Description

n The number for which you want the smallest whole number that is greater
than or equal to it

Return value

The datatype of n. Returns the smallest whole number that is greater than or equal to n. If n is
null, Ceiling returns null.

Examples

These statements set num to 5:

decimal dec, num
dec = 4.8
num = Ceiling(dec)

These statements set num to -4:

decimal num

Statements, Events, and Functions

Page 426

num = Ceiling(-4.2)
num = Ceiling(-4.8)

See also

Int

Round

Truncate

Ceiling method for DataWindows in Section 2.4.10, “Ceiling” in DataWindow Reference.

2.4.60 ChangeDirectory

Description

Changes the current directory.

Syntax

ChangeDirectory (directoryname)

Table 2.424:

Argument Description

directoryname String for the name of the directory you want to set as the current
directory

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Examples

This example changes the current directory to the parent directory of the current directory and
displays the new current directory in a SingleLineEdit control:

ChangeDirectory("..")
sle_1.text= GetCurrentDirectory()

See also

CreateDirectory

GetCurrentDirectory

2.4.61 ChangeMenu

Description

Changes the menu associated with a window. If the window is an MDI frame window,
ChangeMenu appends the list of open sheets to the currently active menu.

Applies to

Window objects

Syntax

windowname.ChangeMenu (menuname {, position })

Statements, Events, and Functions

Page 427

Table 2.425:

Argument Description

windowname The name of the window for which you want to change the menu.

menuname The name of the menu you want to make the current menu.

position (MDI
frame windows
only)

The number of the item on the menu bar to which you want to append
the names of the open sheets. Items on the menu bar are numbered from
the left, beginning with 1. The default is 0, which lists the open sheets
on the menu bar's next-to-last menu (or the last menu if there is only one
available).

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
ChangeMenu returns null. The return value is usually not used.

Usage

If you are changing the menu associated with an MDI frame window, the new menu will not
be visible if an open sheet with its own menu is active. When a sheet has its own menu, the
list of open sheets appears on its menu, as well as on the hidden menu for the frame.

In an MDI frame window, if you change to a menu with a different menu and toolbar style
(traditional or contemporary), the style of the menu changes but the style of the toolbar does
not.

Examples

This statement changes the top-level menu of the w_Employee window to m_Emp1:

w_Employee.ChangeMenu(m_Emp1)

2.4.62 Char

Description

Extracts the first Unicode character of a string or converts an integer to a char.

Syntax

Char (n)

Table 2.426:

Argument Description

n A string that begins with the character you want, an integer you want
to convert to a character, or a blob in which the first value is a string or
integer. The rest of the contents of the string or blob is ignored. N can
also be an Any variable containing a string, integer, or blob.

Return value

Char.

Returns the first Unicode character of n. If n is null, Char returns null.

Statements, Events, and Functions

Page 428

Examples

This example sets ls_S to an asterisk, the character corresponding to the ASCII value 42:

string ls_S
ls_S = Char(42)

These statements generate delivery codes A to F for the values 1 through 6 of
li_DeliveryNbr:

string ls_Delivery
integer li_DeliveryNbr

FOR li_DeliveryNbr = 1 to 6
 ls_Delivery = Char(64 + li_DeliveryNbr)
 ... // Additional processing of ls_Delivery
NEXT

See also

Asc

CharA

2.4.63 CharA

Description

Extracts the first ASCII character of a string or converts an integer to a char.

Syntax

CharA (n)

Table 2.427:

Argument Description

n A string that begins with the character you want, an integer you want
to convert to a character, or a blob in which the first value is a string or
integer. The rest of the contents of the string or blob is ignored. N can
also be an Any variable containing a string, integer, or blob.

Return value

Char.

Returns the first character of n. If n is null, CharA returns null.

Examples

This example sets ls_S to an asterisk, the character corresponding to the ASCII value 42:

string ls_S
ls_S = CharA(42)

These statements generate delivery codes A to F for the values 1 through 6 of
li_DeliveryNbr:

string ls_Delivery
integer li_DeliveryNbr

FOR li_DeliveryNbr = 1 to 6
 ls_Delivery = CharA(64 + li_DeliveryNbr)

Statements, Events, and Functions

Page 429

 ... // Additional processing of ls_Delivery
NEXT

See also

AscA

Char

Char method for DataWindows in Section 2.4.11, “Char” in DataWindow Reference.

2.4.64 Check

Description

Displays a checkmark next to a menu item in a drop-down or cascading menu and sets the
menu item's Checked property to true.

Applies to

Menu objects

Syntax

menuname.Check ()

Table 2.428:

Argument Description

menuname The fully qualified name of the menu next to which you want to display a
checkmark. The item must be in a drop-down or cascading menu, not an
item on a menu bar.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If menuname is null, Check returns null.

Usage

A checkmark next to a menu item indicates that the menu option is currently on and that
the user can turn the option on and off by choosing it. For example, in the Window painter's
Design menu, a checkmark is displayed next to Grid when the grid is on.

You can use Check in an item's Clicked script to mark a menu item when the user turns the
option on and Uncheck to remove the check when the user turns the option off.

Equivalent syntax

You can set a menu object's Checked property instead of calling Check.

menuname.Checked = true

This statement:

Menu_Appl.M_View.M_Grid.Checked = TRUE

is equivalent to:

Menu_Appl.M_View.M_Grid.Check()

Examples

Statements, Events, and Functions

Page 430

This statement displays a checkmark next to the menu item m_Grid in the m_View drop-
down menu on the menu bar m_Appl:

m_Appl.m_View.m_Grid.Check()

See also

Uncheck

2.4.65 ChooseColor

Description

Displays the standard color selection dialog box.

Syntax

ChooseColor (color {, customcolors [] })

Table 2.429:

Argument Description

color A long passed by reference that represents the color selected in the dialog
box

customcolors
(optional)

A long array of custom colors passed by reference to the color selection
dialog box

Return value

Integer.

Returns 1 if the function succeeds, 0 if the user selects cancel (or the dialog box is closed), -1
if an error occurs.

Examples

This example displays the color selection dialog box with a base color of red and with two
different custom colors defined:

long red, green, blue
long custom[]
integer li_color
red = 255
custom[1]=rgb(red, 200, blue)
custom[2]=8344736
li_color = ChooseColor(red, custom [])

See also

RGB

2.4.66 ClassList

Description

Provides a list of the classes included in a performance analysis model.

Applies to

Profiling object

Statements, Events, and Functions

Page 431

Syntax

instancename.ClassList (list)

Table 2.430:

Argument Description

instancename Instance name of the Profiling object.

list An unbounded array variable of datatype ProfileClass in which ClassList
stores a ProfileClass object for each class included in the model. This
argument is passed by reference.

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• ModelNotExistsError! -- The function failed because no model exists

Usage

You use the ClassList function to extract a list of the classes included in a performance
analysis model. You must have previously created the performance analysis model from a
trace file using the BuildModel function. Each class listed is defined as a ProfileClass object
and provides the class name, its parent class and type, and a list of the routines associated
with that class. The classes are listed in no particular order.

Examples

This example lists the classes included in the performance analysis model:

ProfileClass lproclass_list[], lproclass_class
Profiling lpro_model
Long ll_limitclass, ll_indexclass

lpro_model = CREATE Profiling
lpro_model.BuildModel()

lpro_model.ClassList(lproclass_list)
ll_limitclass = UpperBound(lproclass_list)

FOR ll_indexclass = 1 TO ll_limitclass
 lproclass_class = lproclass_list[ll_indexclass]
 ...
NEXT

See also

BuildModel

2.4.67 ClassName

Determines the class of an object or the datatype of a variable.

Table 2.431:

To determine Use

The class of an object Syntax 1

Statements, Events, and Functions

Page 432

To determine Use

The class (or datatype) of a variable Syntax 2

2.4.67.1 Syntax 1: For any object

Description

Provides the class (or name) of the specified object.

Applies to

Any control

Syntax

controlname.Classname ()

Table 2.432:

Argument Description

controlname The name of the control for which you want to know the name assigned
to the control in the style window (the class of the control)

Return value

String. Returns the class of controlname, the name assigned to the control. Returns the empty
string ("") if an error occurs. If controlname is null, ClassName returns null.

Usage

The class is the name of an object. You assign the name when you save the object in its
painter. Usually the class and the object itself appear to be the same (because PowerBuilder
declares a variable with the same name as the class for the object). However, if you have
declared multiple instances of an object, it is clear that the object's class and the object's
variable are different.

If an ancestor object has been instantiated with one of its descendants, you can use
ClassName to find the name of the descendant.

TypeOf reports an object's built-in object type. The types are values of the Object enumerated
datatype, such as Window! or CheckBox!. ClassName reports the class of the object in the
ancestor-descendant hierarchy.

Examples

These statements return the class of the dragged control Source:

DragObject Source
string which_class

Source = DraggedObject()
which_class = Source.ClassName()

These statements return the class of the objects in the control array and store them in
the_class array:

string the_class[]
windowobject the_object[]
integer i

Statements, Events, and Functions

Page 433

FOR i = 1 TO UpperBound(control[])
 the_object[i] = control[i]
 the_class[i] = the_object[i].ClassName()
NEXT

Suppose your object hierarchy has a window named ancestor_window and it has descendants
called win1 and win2, and the user can choose which descendant to open as a sheet. The
following code tests which descendant window class is currently active (the MDI frame is
w_frame):

ancestor_window active_window
active_window = w_frame.GetActiveSheet()
IF ClassName(active_window) = "win1" THEN
 . . .
END IF

See also

DraggedObject (obsolete)

TypeOf

2.4.67.2 Syntax 2: For variables

Description

Provides the datatype of a variable.

Syntax

ClassName (variable)

Table 2.433:

Argument Description

variable The name of the variable for which you want to know its name (that is, its
datatype)

Return value

String. Returns the name of variable. Returns the empty string ("") if variable is an
enumerated datatype or if an error occurs. If variable is null, ClassName returns null.

Usage

ClassName cannot determine the datatype if variable is an enumerated datatype. In this case,
ClassName returns the empty string.

Examples

If gd_double is a global double variable, ClassName sets varname to double:

string varname
varname = ClassName(gd_double)

2.4.68 Clear

Deletes selected text or an OLE object from the specified control, but does not store it in the
clipboard.

Statements, Events, and Functions

Page 434

Table 2.434:

To Use

Clears selected text in a control Syntax 1

Clears selected text, including table grids, in RichTextEdit controls Syntax 2

Deletes all of the keys in JSONPackage objects Syntax 3

2.4.68.1 Syntax 1: For selected text

Description

Deletes selected text or an OLE object from the specified control, but does not store it in the
clipboard.

Applies to

DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, DropDownPictureListBox, OLE controls, and OLEStorage objects

Syntax

objectname.Clear ()

Table 2.435:

Argument Description

objectname One of the following:

• The name of the DataWindow control, EditMask, MultiLineEdit,
SingleLineEdit, RichTextEdit, DropDownListBox or
DropDownPictureListBox from which you want to delete (clear)
selected text.

• The name of an OLE control or storage object variable (type
OLEStorage) from which you want to release its OLE object.

If objectname is a DropDownListBox or DropDownPictureListBox, its
AllowEdit property must be true.

Return value

Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For edit controls, returns the number of characters that Clear removed from objectname. If
no text is selected, no characters are removed and Clear returns 0. If an error occurs, Clear
returns -1.

For OLE controls and storage variables, returns 0 if it succeeds and -9 if an error occurs.

If objectname is null, Clear returns null.

Usage

To select text for deleting, the user can use the mouse or keyboard. You can also call the
SelectText function in a script.

To delete selected text and store it in the clipboard, use the Cut function.

Statements, Events, and Functions

Page 435

Clearing the OLE object from an OLE control deletes all references to it. Any changes to the
object are not saved in its storage object or file.

Clearing an OLEStorage object variable breaks any connections established by Open or
SaveAs between it and a storage file (when Open or SaveAs is called for the OLEStorage
object variable). It also breaks connections between it and any OLE controls that have called
Open or SaveAs to connect to the object in the storage variable.

Examples

If the text in sle_comment1 is Draft and it is selected, this statement clears Draft from
sle_comment1 and returns 5:

sle_comment1.Clear()

If the text in sle_comment1 is Draft, the first statement selects the D and the second clears D
from sle_comment1 and returns 1:

sle_comment1.SelectText(1,1)
sle_comment1.Clear()

This example clears the object associated with the OLE control ole_1, leaving the control
empty:

integer result
result = ole_1.Clear()

This example clears the object in the OLEStorage object variable olest_stuff. It also leaves
any OLE controls that have opened the object in olest_stuff empty:

integer result
result = olest_stuff.Clear()

See also

ClearAll

Close

Cut

Paste

ReplaceText

SelectText

2.4.68.2 Syntax 2: For RichTextEdit controls

Description

Deletes selected text, but also removes any table grids in the selection when the gridFlag
argument is set to true.

Applies to

RichTextEdit

Syntax

objectname.Clear (gridFlag)

Statements, Events, and Functions

Page 436

Table 2.436:

Argument Description

objectname Name of the RichTextEdit control

gridFlag Boolean that determines whether table grids in selected text are deleted
along with the selected text. Values are:

• TRUE -- Table grids in the current selection are deleted along with the
selected text.

• FALSE -- (Default) Performs exactly as Syntax 1, deleting selected
text for RichTextEdit controls, but not any table grid lines in the
selection.

Return value

Long. Returns the number of characters removed from the RichTextEdit control.

Usage

Use to remove table grid lines along with any selected text. If the whole text of a table row is
selected, Clear (true) deletes the text and the grid line for this row. If only some of the text in
a table row is selected, Clear (false) deletes the selected text only.

See also

ClearAll

2.4.68.3 Syntax 3: For JSONPackage objects

Description

Deletes all of the keys.

Applies to

JSONPackage

Syntax

objectname.Clear ()

Table 2.437:

Argument Description

objectname Name of the JSONPackage object

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes all of the keys and then calls KeyCount to check if all keys are deleted:

long ll_KeyCount
JsonPackage lnv_package

lnv_package = create JsonPackage

Statements, Events, and Functions

Page 437

lnv_package.SetValue("d_employee", dw_employee)
lnv_package.Clear()
// ll_KeyCount will return 0
ll_KeyCount = lnv_package.KeyCount()

See also

KeyCount

2.4.69 ClearAll

Description

Deletes all content from the specified control, but does not store it in the clipboard.

Applies to

RichTextEdit

Syntax

objectname.ClearAll ()

Table 2.438:

Argument Description

objectname Name of the RichTextEdit control

Return value

Long.

Returns the number of characters removed from the RichTextEdit control.

Usage

Use to remove all content from a RichTextEdit control, including any table grids. To just
delete selected text, use the Clear function. To delete text and store it in the clipboard, use the
Cut function.

Examples

This statement clears all content from the rte_1 RichTextEdit control.

rte_1.ClearAll()

See also

Clear

Cut

2.4.70 ClearBoldDates

Description

Clears all bold date settings that had been set with SetBoldDate.

Applies to

MonthCalendar control

Syntax

Statements, Events, and Functions

Page 438

controlname.ClearBoldDates ()

Table 2.439:

Argument Description

controlname The name of the MonthCalendar control from which you want to clear
the bold dates

Return value

Integer.

Returns 0 for success and -1 for failure.

Usage

You can use the SetBoldDate function to specify that selected dates, such as holidays, display
in bold. ClearBoldDates clears all such settings. To clear individual bold dates, use the
SetBoldDate function with the onoff parameter set to false.

Examples

This example clears all bold settings in the control monthCalVacations:

integer li_return
li_return = monthCalVacation.ClearBoldDates()

See also

SetBoldDate

2.4.71 ClearHeaders

2.4.71.1 Syntax 1: for TokenRequest objects

Description

Clears the header of requests.

Applies to

TokenRequest objects

Syntax

objectname.ClearHeaders ()

Table 2.440:

Argument Description

objectname A reference to the TokenRequest object in which you want to clear the
request header.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

Statements, Events, and Functions

Page 439

The following example shows the use of the ClearHeaders function to clear the value of all
headers:

int li_return
TokenRequest lnv_TokenRequest

li_return = lnv_TokenRequest.clearheaders()

See also

AppendParam

GetHeader

GetHeaders

SetHeader

SetHeaders

2.4.71.2 Syntax 2: for OAuthRequest objects

Description

Clears the header of requests.

Applies to

OAuthRequest objects

Syntax

objectname.ClearHeaders ()

Table 2.441:

Argument Description

objectname A reference to the OAuthRequest object in which you want to clear the
request header.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

The following example shows the use of the ClearHeaders function to clear the value of all
headers:

int li_return
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.clearheaders()

See also

GetBody

GetHeader

GetHeaders

Statements, Events, and Functions

Page 440

SetAccessToken

SetBody

SetHeader

SetHeaders

2.4.72 ClearParams

Description

Clears all of the parameters appended by the AppendParam function.

Applies to

TokenRequest objects

Syntax

objectname.ClearParams ()

Table 2.442:

Argument Description

objectname A reference to the TokenRequest object in which you want to clear the
parameter.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

The following example shows the use of the ClearParams function to clear the appended
parameters:

int li_return
TokenRequest lnv_TokenRequest

li_return = lnv_TokenRequest.clearparams()

See also

AppendParam

ClearHeaders

GetHeader

GetHeaders

SetHeader

SetHeaders

2.4.73 ClearRecentItems

Description

Removes all recent menu items from the application menu.

Statements, Events, and Functions

Page 441

Applies to

RibbonApplicationMenu controls

Syntax

controlname.ClearRecentItems ()

Table 2.443:

Argument Description

controlname The name of the RibbonApplicationMenu control from which you want
to remove the recent menu items.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example inserts three recent menu items and then removes all of them.

Integer li_Return
Long ll_Return
RibbonApplicationMenu lr_AppMenu

ll_Return = lr_AppMenu.InsertRecentItem (1,"Recent2", "Ue_RecentItem2Clicked")
ll_Return = lr_AppMenu.InsertRecentItemFirst ("Recent1", "Ue_RecentItem1Clicked")
ll_Return = lr_AppMenu.InsertRecentItemLast ("Recent3", "Ue_RecentItem3Clicked")
li_Return = lr_AppMenu.ClearRecentItems()

See also

AddMasterSeparatorItem

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

Statements, Events, and Functions

Page 442

SetRecentItem

SetRecentTitle

2.4.74 ClearRequestHeaders

Description

Clears the headers of the request.

Applies to

HTTPClient and RestClient objects

Syntax

objectname.ClearRequestHeaders ()

Table 2.444:

Argument Description

objectname The name of the HTTPClient or RestClient object from which you want
to clear the request header

Return value

Integer.

Returns 1 for success and -1 for failure.

Examples

This example clears the request headers in the object lnv_HttpClient:

HttpClient lnv_HttpClient
integer li_return
lnv_HttpClient = Create HttpClient

li_return = lnv_HttpClient.ClearRequestHeaders()

See also

GetRequestHeader

GetRequestHeaders

SetRequestHeader

SetRequestHeaders

2.4.75 Clipboard

Retrieves or replaces the contents of the system clipboard.

Table 2.445:

To Use

Retrieve or replace the contents of the system clipboard with text Syntax 1

Replace the contents of the system clipboard with a bitmap image of a
graph

Syntax 2

Statements, Events, and Functions

Page 443

2.4.75.1 Syntax 1: For text

Description

Retrieves or replaces the contents of the system clipboard with text.

Syntax

Clipboard ({ string })

Table 2.446:

Argument Description

string (optional) A string whose value is the text you want to place in the clipboard. The
string replaces the current contents of the clipboard, if any.

Return value

String.

Returns the current contents of the clipboard if the clipboard contains text. If string is
specified, Clipboard returns the current contents and replaces it with string.

Returns the empty string ("") if the clipboard is empty or it contains nontext data, such as
a bitmap. If string is specified, the nontext data is replaced with string. If string is null,
Clipboard returns null.

Usage

You can use Syntax 1 with the Paste, Replace, or ReplaceText function to insert the clipboard
contents in an editable control or StaticText control.

Calling Clipboard in a DataWIndow control or DataStore object

To retrieve or replace the contents of the system clipboard with text from a DataWindow item
(cell value), you must first assign the value to a string and then call the system Clipboard
function as follows:

string ls_data = dw_1.object.column_name[row_number]
::Clipboard(ls_data)

The DataWindow version of Clipboard, documented in Syntax 2 (and in Section 10.3,
“Clipboard” in DataWindow Reference), is only applicable to graphs.

Examples

These statements put the contents of the clipboard in the variable ls_CoName:

string ls_CoName
ls_CoName = Clipboard()

The following statements place the contents of the clipboard in Heading, and then replace the
contents of the clipboard with the string Employee Data:

string Heading
Heading = Clipboard("Employee Data")

The following statement replaces the selected text in the MultiLineEdit mle_terms with the
contents of the clipboard:

mle_terms.ReplaceText(Clipboard())

Statements, Events, and Functions

Page 444

The following statement exchanges the contents of the StaticText st_welcome with the
contents of the clipboard:

st_welcome.Text = Clipboard(st_welcome.Text)

See also

Clear

Copy

Cut

Paste

Replace

ReplaceText

2.4.75.2 Syntax 2: For bitmaps of graphs

Description

Replaces the contents of the system clipboard with a bitmap image of a graph. You can paste
the image into other applications.

Applies to

Graph objects in windows and user objects, and graphs in DataWindow controls and
DataStore objects

Syntax

name.Clipboard ({ graphobject })

Table 2.447:

Argument Description

name The name of the graph or the DataWindow control or DataStore
containing the graph you want to copy to the clipboard

graphobject
(DataWindow
control and
DataStore only)
(optional)

A string whose value is the name of the graph in the DataWindow object
that you want to copy to the clipboard

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, Clipboard
returns null.

Examples

This statement copies the graph gr_products_data to the clipboard:

gr_products_data.Clipboard()

This statement copies the graph gr_employees in the DataWindow control dw_emp_data to
the clipboard:

Statements, Events, and Functions

Page 445

dw_emp_data.Clipboard("gr_employees")

2.4.76 Close

Closes a window, an OLE storage or stream, or a trace file.

Table 2.448:

To close Use

A window Syntax 1

An OLEStorage object variable, saving the object and clearing
connections between it and a storage file or object

Syntax 2

A stream associated with the specified OLEStream object variable Syntax 3

A trace file Syntax 4

2.4.76.1 Syntax 1: For windows

Description

Closes a window and releases the storage occupied by the window and all the controls in the
window.

Applies to

Window objects

Syntax

Close (windowname)

Table 2.449:

Argument Description

windowname The name of the window you want to close

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If windowname is null, Close returns null.
The return value is usually not used.

Usage

Use Syntax 1 to close a window and release the storage occupied by the window and all the
controls in the window.

When you call Close, PowerBuilder removes the window from view, closes it, executes
the scripts for the CloseQuery and Close events (if any), and then executes the rest of the
statements in the script that called the Close function. Do not call Close from the CloseQuery
or Close events, since this produces an endless loop.

After a window is closed, its properties, instance variables, and controls can no longer
be referenced in scripts. If a statement in the script references the closed window or its
properties or instance variables, an execution error will result.

Statements, Events, and Functions

Page 446

Closing a window by calling the Close function in any of the window's events or in an event
of any control on the window can cause PowerBuilder to crash if the Close function is not
the last statement in the event script. You can avoid this issue by calling the Close function in
the last statement of the event script, or in a user-defined event that is posted from the event
script. For example, the following code in the Open event script for a window called w_1 can
cause a crash:

// w_1 Open event script
close(this)
open(w_2) // causes crash

This code does not cause a crash:

// w_1 ue_postopen event script
close(this)

// w_1 Open event script
open(w_2)
this.Post Event ue_postopen()

Preventing a window from closing

You can prevent a window from being closed with a return code of 1 in the script for
the CloseQuery event. Use the RETURN statement.

Examples

These statements close the window w_employee and then open the window w_departments:

Close(w_employee)
Open(w_departments)

After you call Close, the following statements in the script for the CloseQuery event prompt
the user for confirmation and prevent the window from closing:

IF MessageBox('ExitApplication', &
'Exit?', Question!, YesNo!) = 2 THEN
 // If no, stop window from closing
 RETURN 1
END IF

See also

Hide

Open

2.4.76.2 Syntax 2: For OLEStorage objects

Description

Closes an OLEStorage object, saving the object in the associated storage file or object and
clearing the connection between them. Close also severs connections with any OLE controls
that have opened the object. Calling Close is the same as calling Save and then Clear.

Applies to

OLEStorage objects

Syntax

Statements, Events, and Functions

Page 447

olestorage.Close ()

Table 2.450:

Argument Description

olestorage The OLEStorage object variable that you want to save and close

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The storage is not open

-9 -- Other error

If olestorage is null, Close returns null.

Examples

This example saves and clears the object in the OLEStorage object variable olest_stuff. It
also leaves any OLE controls that have opened the object in olest_stuff empty:

integer result
result = olest_stuff.Close()

See also

Open

Save

SaveAs

2.4.76.3 Syntax 3: For OLEStream objects

Description

Closes an OLEStream object.

Applies to

OLEStream objects

Syntax

olestream.Close ()

Table 2.451:

Argument Description

olestream The OLEStream object variable that you want to close

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The storage is not open

-9 -- Other error

Statements, Events, and Functions

Page 448

If olestream is null, Close returns null.

Examples

This example closes the OLEStream object stm_pic_label and releases the variable's
memory:

integer result
result = stm_pic_label.Close()
DESTROY stm_pic_label

See also

Open

2.4.76.4 Syntax 4: For trace files

Description

Closes an open trace file.

Applies to

TraceFile objects

Syntax

instancename.Close ()

Table 2.452:

Argument Description

instancename Instance name of the TraceFile object

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FileNotOpenError! -- A trace file has not been opened

Usage

You use the Close function to close a trace file you previously opened with the Open
function. You use the Close and Open functions as well as the properties and functions of the
TraceFile object to access the contents of a trace file directly. You use these functions if you
want to perform your own analysis of the tracing data instead of building a model with the
Profiling or TraceTree object and the BuildModel function.

Examples

This example closes a trace file:

ift_file.Close()
DESTROY ift_file

See also

Reset

Statements, Events, and Functions

Page 449

Open

NextActivity

2.4.77 CloseChannel

Description

Closes a DDE channel.

Syntax

CloseChannel (handle {, windowhandle })

Table 2.453:

Argument Description

handle A long that identifies the DDE channel that will be closed. It is the
same value returned by the OpenChannel function that opened the DDE
channel.

windowhandle
(optional)

The handle to the PowerBuilder window that is acting as the DDE client.

Return value

Integer.

Returns 1 if it succeeds.If an error occurs, CloseChannel returns a negative integer. Possible
values are:

-1 -- Open failed

-2 -- The channel refuses to close

-3 -- No confirmation from the server

-9 -- Handle is null

Usage

Use CloseChannel to close a channel to a DDE server application that was opened by calling
the OpenChannel function.

Although you can usually close the DDE channel by specifying just the channel's handle,
it is a good idea to also specify the handle for PowerBuilder window associated with the
channel. If you specify windowhandle, CloseChannel closes the DDE channel in the window
identified by windowhandle. If you do not specify windowhandle, CloseChannel only closes
the channel if it is associated with the active window. You can use the Handle function to
obtain a window's handle.

Examples

These statements open and close the channel identified by handle. The channel is associated
with the window w_sheet:

long handle
handle = OpenChannel("Excel", "REGION.XLS", &
 Handle(w_sheet))
... // Some processing

Statements, Events, and Functions

Page 450

CloseChannel(handle, Handle(w_sheet))

See also

GetRemote

OpenChannel

SetRemote

2.4.78 CloseTab

Description

Removes a tab page from a Tab control that was opened previously with the OpenTab or
OpenTabWithParm function. CloseTab executes the scripts for the user object's Destructor
event.

Applies to

Tab controls

Syntax

tabcontrolname.CloseTab (userobjectvar)

Table 2.454:

Argument Description

tabcontrolname The name of the Tab control containing the tab page you want to close

userobjectvar The name of the user object you want to close

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, CloseTab
returns null. The return value is usually not used.

Usage

CloseTab closes a user object that has been opened as a tab page and releases the storage
occupied by the object and its controls.

When you call CloseTab, PowerBuilder removes the tab page from the control, closes
it, executes the script for the Destructor event (if any), and then executes the rest of the
statements in the script that called the CloseTab function.

CloseTab also removes the user object from the Tab control's Control array, which is a
property that lists the tab pages within the Tab control. If the closed tab page was not the last
element in the array, the index for all subsequent tab pages is reduced by one.

After a user object is closed, its properties, instance variables, and controls can no longer
be referenced in scripts. If a statement in the script references the closed user object or its
properties or instance variables, an execution error will result.

Examples

These statements close the tab page user object u_employee and then open the user object
u_departments in the Tab control tab_personnel:

Statements, Events, and Functions

Page 451

tab_personnel.CloseTab(u_employee)
tab_personnel.OpenTab(u_departments)

When the user chooses a menu item that closes a user object, the following excerpt from the
menu item's script prompts the user for confirmation before closing the u_employee user
object in the window to which the menu is attached:

IF MessageBox("Close ", "Close?", &
 Question!, YesNo!) = 1 THEN
 // User chose Yes, close user object.
 ParentWindow.CloseTab(u_employee)
 // If user chose No, take no action.
END IF

See also

OpenTab

2.4.79 CloseUserObject

Description

Closes a visual user object by removing it from view and executing the scripts for its
Destructor event.

Applies to

Window objects and visual user objects

Syntax

objectname.CloseUserObject (targetobjectname)

Table 2.455:

Argument Description

objectname The name of the window or user object that will close the target user
object

targetobjectname The name of the visual user object to be closed.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
CloseUserObject returns null. The return value is usually not used.

Usage

Use CloseUserObject to close a user object and release the storage occupied by the object and
its controls.

When you call CloseUserObject, PowerBuilder removes the target object from view, closes
it, executes the script for the Destructor event (if any), and then executes the rest of the
statements in the script that called the CloseUserObject function.

CloseUserObject also removes the target object from the first object's Control array, which is
a property that lists the object's controls. If the closed user object was not the last element in
the array, the index for all subsequent user objects is reduced by one.

Statements, Events, and Functions

Page 452

After the target object is closed, its properties, instance variables, and controls can no longer
be referenced in scripts. If a script references the closed user object or its properties or
instance variables, an execution error results.

Examples

This statement prompts the user for confirmation before the parent of the current object
closes the u_employee target:

IF MessageBox("Close ", "Close?", &
 Question!, YesNo!) = 1 THEN
 // User chose Yes, close user object.
 parent.CloseUserObject(u_employee)
 // If user chose No, take no action.
END IF

See also

OpenUserObject

2.4.80 CloseWithReturn

Description

Closes a window and stores a return value in the Message object. You should use
CloseWithReturn only for response windows.

Applies to

Window objects

Syntax

CloseWithReturn (windowname, returnvalue)

Table 2.456:

Argument Description

windowname The name of the window you want to close.

returnvalue The value you want to store in the Message object when the window is
closed. Returnvalue must be one of these datatypes:

• String

• Numeric

• PowerObject

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
CloseWithReturn returns null. The return value is usually not used.

Usage

The purpose of CloseWithReturn is to close a response window and return information from
the response window to the window that opened it. Use CloseWithReturn to close a window,

Statements, Events, and Functions

Page 453

release the storage occupied by the window and all the controls in the window, and return a
value.

Just as with Close, CloseWithReturn removes a window from view, closes it, and executes
the script for the CloseQuery and Close events, if any. Do not call Close or CloseWithReturn
from these events, since this produces an endless loop.

Before executing the event scripts, CloseWithReturn stores returnvalue in the Message
object, and PowerBuilder executes the rest of the script that called the CloseWithReturn
function.

After a window is closed, its properties, instance variables, and controls can no longer
be referenced in scripts. If a statement in the script references the closed window or its
properties or instance variables, an execution error results.

PowerBuilder stores returnvalue in the Message object properties according to its datatype.
In the script that called CloseWithReturn, you can access the returned value by specifying the
property of the Message object that corresponds to the return value's datatype.

Table 2.457: Message object properties where return values are stored

Return value
datatype

Message object property

Numeric Message.DoubleParm

PowerObject
(such as a
structure)

Message.PowerObjectParm

String Message.StringParm

Returning several values as a structure

To return several values, create a user-defined structure to hold the values and access
the PowerObjectParm property of the Message object in the script that opened the
response window. The structure is passed by value so you can access the information
even if the original variable has been destroyed.

Referencing controls

User objects and controls are passed by reference, not by value. You cannot use
CloseWithReturn to return a reference to a control on the closed window (because the
control no longer exists after the window is closed). Instead, return the value of one or
more properties of that control.

Preventing a window from closing

You can prevent a window from being closed with a return code of 1 in the script for
the CloseQuery event. Use a RETURN statement.

Examples

This statement closes the response window w_employee_response, returning the string
emp_name to the window that opened it:

Statements, Events, and Functions

Page 454

CloseWithReturn(Parent, "emp_name")

Suppose that a menu item opens one window if the user is a novice and another window
if the user is experienced. The menu item displays a response window called w_signon
to prompt for the user's experience level. The user types an experience level in the
SingleLineEdit control sle_signon_id. The OK button in the response window passes the text
in sle_signon_id back to the menu item script. The menu item script checks the StringParm
property of the Message object and opens the desired window.

The script for the Clicked event of the OK button in the w_signon response window is a
single line:

CloseWithReturn(Parent, sle_signon_id.Text)

The script for the menu item is:

string ls_userlevel

// Open the response window
Open(w_signon)

// Check text returned in Message object
ls_userlevel = Message.StringParm

IF ls_userlevel = "Novice" THEN
 Open(win_novice)
ELSE
 Open(win_advanced)
END IF

See also

Close

OpenSheetWithParm

OpenUserObjectWithParm

OpenWithParm

2.4.81 CollapseItem

Description

Collapses the specified item.

Applies to

TreeView controls

Syntax

treeviewname.CollapseItem (itemhandle)

Table 2.458:

Argument Description

treeviewname The TreeView control in which you want to collapse an item

itemhandle The handle of the item you want to collapse

Return value

Statements, Events, and Functions

Page 455

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

If there is only one level-one entry, you can use the RootTreeItem handle as the argument
to collapse the tree so that only the top-level node is displayed. However, CollapseItem
collapses only the current item, so that if the children of the top-level item were expanded
when the tree was collapsed, they will still be expanded when the top-level item is expanded.

If there is more than one level-one entry, using the RootTreeItem handle as the argument
collapses only the first level-one entry.

Examples

This example collapses an item in a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(currenttreeitem!, 0)
tv_list.CollapseItem(ll_tvi)

This example collapses the top-level item in a TreeView control that has only one level-one
entry:

long ll_tvi
ll_tvi = tv_list.FindItem(roottreeitem!, 0)
tv_list.CollapseItem(ll_tvi)

See also

ExpandItem

ExpandAll

FindItem

2.4.82 CommandParm

Description

Retrieves the argument string, if any, that followed the program name when the application
was executed.

Syntax

CommandParm ()

Return value

String.

Returns the application's argument string if it succeeds and the empty string ("") if it fails or
if there were no arguments.

Usage

Command arguments can follow the program name in the command line of a Windows
program item or in the Program Manager's Run response window. For example, when the
user chooses File>Run in the Program Manager and enters:

MyAppl C:\EMPLOYEE\EMPLIST.TXT

Statements, Events, and Functions

Page 456

CommandParm retrieves the string C:\EMPLOYEE\EMPLIST.TXT.

If the application's command line includes several arguments, CommandParm returns them
all as a single string. You can use string functions, such as Mid and Pos, to parse the string.

You do not need to call CommandParm in the application's Open event. Use the
commandline argument instead.

Examples

These statements retrieve the command line arguments and save them in the variable
ls_command_line:

string ls_command_line
ls_command_line = CommandParm()

If the command line holds several arguments, you can use string functions to separate
the arguments. This example stores a variable number of arguments, obtained with
CommandParm, in an array. The code assumes each argument is separated by one space. For
each argument, the Pos function searches for a space; the Left function copies the argument
to the array; and Replace removes the argument from the original string so the next argument
moves to the first position:

string ls_cmd, ls_arg[]
integer i, li_argcnt

// Get the arguments and strip blanks
// from start and end of string
ls_cmd = Trim(CommandParm())

li_argcnt = 1
DO WHILE Len(ls_cmd) > 0
 // Find the first blank
 i = Pos(ls_cmd, " ")

 // If no blanks (only one argument),
 // set i to point to the hypothetical character
 // after the end of the string
 if i = 0 then i = Len(ls_cmd) + 1

 // Assign the arg to the argument array.
 // Number of chars copied is one less than the
 // position of the space found with Pos
 ls_arg[li_argcnt] = Left(ls_cmd, i - 1)

 // Increment the argument count for the next loop
 li_argcnt = li_argcnt + 1

 // Remove the argument from the string
 // so the next argument becomes first
 ls_cmd = Replace(ls_cmd, 1, i, "")
LOOP

2.4.83 CommitDocking

Description

After all persisted sheets are opened, this function arranges them and makes them visible.

Applies to

Windows objects

Statements, Events, and Functions

Page 457

Syntax

CommitDocking ()

Usage

When all persisted sheets are opened using the LoadDockingState and
OpenSheetFromDockingState or OpenSheetWithParmFromDockingState, the
CommitDocking does the work of arranging everything in place and making it all visible.

Examples

Restore all sheets for register

string s1[], s2[]
string is_register = "Appeon\PowerBuilder\Examples\Docking\"
integer li_start, li_end, li_i, li_rtn
li_rtn = LoadDockingState(is_register,s1,s2)
window lw_window
li_start = lowerbound(s1)
li_end = upperbound(s2)

for li_i = li_start to li_end
 openSheetFromDockingState(lw_window,s1[li_i], this, s2[li_i])
next
CommitDocking()

2.4.84 CommitTransaction (obsolete)

Description

Declares that the EAServer transaction associated with the calling thread should be
committed.

Obsolete function

CommitTransaction is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

CORBACurrent objects

Syntax

CORBACurrent.CommitTransaction (breportheuristics)

Table 2.459:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance

breportheuristics A boolean specifying whether heuristic decisions should be reported for
the transaction associated with the calling thread

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

Statements, Events, and Functions

Page 458

-1 -- Failed for unknown reason

-2 -- No transaction is associated with the calling thread

-3 -- The calling thread does not have permission to commit the transaction

-4 -- The HeuristicRollback exception was raised

-5 -- The HeuristicMixed exception was raised

-6 -- The HeuristicHazard exception was raised

Usage

The CommitTransaction function completes the transaction associated with the calling
thread. Use the BeginTransaction function to begin a transaction and associate it with the
calling thread. The transaction is not completed if any other participants in the transaction
vote to roll back the transaction.

CommitTransaction can be called by a client or a component that is marked as OTS style.
EAServer must be using the two-phase commit transaction coordinator (OTS/XA).

Examples

In this example, the client calls the dopayroll method on the CmpnyAcct EAServer
component, which processes a company payroll. The method returns 1 if the company has
sufficient funds to meet the payroll, and the client then commits the transaction:

// Instance variables:
// CORBACurrent corbcurr
integer li_rc
boolean lb_rv
long ll_rc
// Create an instance of the CORBACurrent object
// and initialize it
...
lb_rv = corbcurr.BeginTransaction()
IF lb_rv THEN
 ll_rc = myconnect.CreateInstance(CmpnyAcct)
 // handle error
 li_rc = CmpnyAcct.dopayroll()
 IF li_rc = 1 THEN
 corbcurr.CommitTransaction(
 ELSE
 corbcurr.RollbackTransaction()
 END IF
ELSE
 // handle error
END IF

See also

BeginTransaction (obsolete)

GetContextService

GetStatus (obsolete)

GetTransactionName (obsolete)

Init (obsolete)

ResumeTransaction (obsolete)

RollbackOnly (obsolete)

Statements, Events, and Functions

Page 459

RollbackTransaction (obsolete)

SetTimeout (obsolete)

SuspendTransaction (obsolete)

2.4.85 Compress

Description

Compresses the folder or one or more files, or the byte data stream.

Applies to

CompressorObject objects

Syntax

objectname.Compress (string source, string dest {, ArchiveFormat format })

objectname.Compress (string source[], string dest {, ArchiveFormat format })

objectname.Compress (blob source, ref blob dest {, ArchiveFormat format })

Table 2.460:

Argument Description

objectname The name of the CompressorObject object.

source A string whose value is the full directory of the folder or one or more
files that will be compressed. If there are more than one source file with
the same name, they will be recognized as the same file, although they
are from different directories; and in such case the method will return the
error code -11.

Or a blob whose value is the byte data that will be compressed.

dest A string whose value is the target directory as well as the file name where
the compressed file or folder will be located.

Or a blob value specifying the target compressed stream.

format (optional) A value of the enumerated datatype ArchiveFormat specifying the the
format of the target file. The supported values are:

• ArchiveFormatZIP! -- zip file. Supports AES-256 encryption for
password. This is the default value.

• ArchiveFormat7Zip! -- 7zip file. Supports AES-256 encryption for
password.

• ArchiveFormatGZip! -- gzip format archive. Supports compressing a
single file.

• ArchiveFormatTAR! -- tar format archive.

If the extension in "dest" is inconsistent with the format specified in
"format", the file or folder will be compressed according to the format
specified in "format" and the extension of "dest" will not be revised.

Statements, Events, and Functions

Page 460

Usage

The Compress method cannot append files or folders to an existing compressed file; instead it
will overwrite the existing compressed file with the subsequent files or folders.

Return value

Integer.

Returns the following value. If any argument's value is null, the method returns null.

1 -- Success

-1 -- A general error occurred. If the CompressorObject object is used in asynchronous mode,
this function will return the general error.

-2 -- The password entered is illegal.

-3 -- The operation is not supported for the source file format.

-4 -- The task thread is aborted.

-5 -- A task thread is currently running.

-6 -- The folder to be compressed does not exist.

-7 -- The folder to be compressed is empty.

-8 -- The compression format does not support multi-file compression.

-9 -- Failed to read file from the folder for compression.

-10 -- The target path does not exist.

-11 -- More than one source file has the same file name.

-12 -- Invalid compressed file name or no compressed file name is specified in the "dest"
argument.

-13 -- Failed to compress.

Example 1

This example demonstrates how to compress a folder.

CompressorObject lnv_compress
Integer li_return
string ls_source, ls_target
ls_source = "C:\Program Files (x86)\Appeon\PowerBuilder 19.0\IDE\theme"
ls_target = "D:\testcom"
lnv_compress = create CompressorObject
li_return = lnv_compress.Compress(ls_source,ls_target, ArchiveFormat7Zip!)

Example 2

This example demonstrates how to compress a single file.

CompressorObject lnv_compress
Integer li_return
string ls_source, ls_target
ls_source = "C:\Program Files (x86)\Appeon\PowerBuilder 19.0\egreg.txt"
ls_target = "D:\testcom"
lnv_compress = create CompressorObject
li_return = lnv_compress.Compress(ls_source,ls_target, ArchiveFormat7Zip!)

Example 3

Statements, Events, and Functions

Page 461

This example demonstrates how to compress multiple files.

CompressorObject lnv_compress
Integer li_return
string ls_source[], ls_target
ls_source[1] = "C:\Program Files (x86)\Appeon\PowerBuilder 19.0\egreg.txt"
ls_source[2] = "C:\Program Files (x86)\Appeon\PowerBuilder 19.0\zlib.dll"
ls_target = "D:\testcom"
lnv_compress = create CompressorObject
li_return = lnv_compress.Compress(ls_source,ls_target, ArchiveFormat7Zip!)

Example 4

This example demonstrates how to compress the data stream.

CompressorObject lnv_compress
Integer li_return
blob lb_source,lb_target

lb_source = blob("A123456")
lnv_compress = create CompressorObject
li_return = lnv_compress.Compress(lb_source,lb_target, ArchiveFormat7Zip!)

See also

Cancel

2.4.86 ConnectToNewObject

Description

Creates a new object in the specified server application and associates it with a PowerBuilder
OLEObject variable. ConnectToNewObject starts the server application if necessary.

Applies to

OLEObject objects, OLETxnObject objects

Syntax

oleobject.ConnectToNewObject (classname)

Table 2.461:

Argument Description

oleobject The name of an OLEObject variable that you want to connect to an
automation server or COM object. You cannot specify an OLEObject that
is the Object property of an OLE control.

classname A string whose value is a programmatic identifier or class ID that
identifies an automation server or COM server.

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Invalid Call: the argument is the Object property of a control

-2 -- Class name not found

Statements, Events, and Functions

Page 462

-3 -- Object could not be created

-4 -- Could not connect to object

-9 -- Other error

-15 -- COM+ is not loaded on this computer

-16 -- Invalid Call: this function not applicable

If any argument's value is null, ConnectToNewObject returns null.

Usage

The OLEObject variable can be used for automation, in which the PowerBuilder application
asks the server application to manipulate the OLE object programmatically. It can also be
used to connect to a COM object that is registered on a local or remote computer or that is
installed in COM+.

The OLETxnObject variable is used to provide COM+ transaction control to PowerBuilder
clients. Calling ConnectToNewObject with an OLETxnObject variable creates a new object
instance within the transaction context associated with the variable. If COM+ is not loaded
on the client computer, the ConnectToNewObject call fails. Use SetAbort to abort the
transaction or SetComplete to complete it if all other participants in the transaction concur.

For more information about automation and connecting to COM objects, see
ConnectToObject.

Deprecated support for COM and COM+ components

COM and COM+ are obsolete technologies and might not be supported in future
releases of PowerBuilder.

Examples

This example creates an OLEObject variable and calls ConnectToNewObject to create a new
Excel object and connect to it:

integer result
OLEObject myoleobject
myoleobject = CREATE OLEObject
result = myoleobject.ConnectToNewObject(&
 "excel.application")

This example creates an OLETxnObject variable and calls ConnectToNewObject to create
and connect to a new instance of a PowerBuilder COM object on a COM+ server:

OLETxnObject EmpObj
Integer li_rc
EmpObj = CREATE OLETxnObject
li_rc = EmpObj.ConnectToNewObject("PB125COM.employee")
IF li_rc < 0 THEN
 DESTROY EmpObj
 MessageBox("Connecting to COM Object Failed", &
 "Error: " + String(li_rc))
 Return
END IF

// Perform some work with the COM object
...
// If the work completed successfully, commit

Statements, Events, and Functions

Page 463

// the transaction and disconnect the object
EmpObj.SetComplete()
EmpObj.DisconnectObject()

See also

ConnectToObject

DisconnectObject

SetAbort

SetComplete

2.4.87 ConnectToNewRemoteObject

Description

Creates a new OLE object in the specified remote server application (if security on the
server allows it) and associates the new object with a PowerBuilder OLEObject variable.
ConnectToNewRemoteObject starts the server application if necessary.

Applies to

OLEObject objects

Syntax

oleobject.ConnectToNewRemoteObject (hostname, classname)

Table 2.462:

Argument Description

oleobject The name of an OLEObject variable which you want to connect to
an OLE object. You cannot specify an OLEObject that is the Object
property of an OLE control.

hostname A string whose value is the name of the remote host where the COM
server is located.

classname A string whose value is the name of an OLE class, which identifies
an OLE server application and a type of object that the server can
manipulate via OLE.

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Invalid call: the argument is the Object property of a control

-2 -- Class name not found

-3 -- Object could not be created

-4 -- Could not connect to object

-9 -- Other error

-10 -- Feature not supported on this platform

Statements, Events, and Functions

Page 464

-11 -- Server name is invalid

-12 -- Server does not support operation

-13 -- Access to remote host denied

-14 -- Server unavailable

-15 -- COM+ is not loaded on this computer

-16 -- Invalid Call: this function not applicable to OLETxnObject

Usage

The OLEObject variable is used for OLE automation, in which the PowerBuilder
application asks the server application to manipulate the OLE object programmatically.
ConnectToNewRemoteObject can only be used with servers that support remote activation.

For more information about OLE automation, see ConnectToObject. For information about
connecting to objects on a remote host, see ConnectToRemoteObject.

Examples

This example creates an OLEObject variable and calls ConnectToNewRemoteObject to
create and connect to a new Excel object on a remote host named ulysses:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToNewRemoteObject(&
 "ulysses", "Excel.application")

See also

ConnectToObject

ConnectToRemoteObject

2.4.88 ConnectToObject

Description

Associates an OLE object with a PowerBuilder OLEObject variable and starts the server
application. The OLEObject variable and ConnectToObject are used for OLE automation, in
which the PowerBuilder application asks the server application to manipulate the OLE object
programmatically.

Applies to

OLEObject objects

Syntax

oleobject.ConnectToObject (filename {, classname })

Table 2.463:

Argument Description

oleobject The name of an OLEObject variable which you want to connect to
an OLE object. You cannot specify an OLEObject that is the Object
property of an OLE control.

Statements, Events, and Functions

Page 465

Argument Description

filename A string whose value is the name of an OLE storage file.

You can specify the empty string for filename, in which case you must
specify classname. Oleobject is connected to the active object in the
server application specified in classname.

classname
(optional)

A string whose value is the name of an OLE class, which identifies
an OLE server application and a type of object that the server can
manipulate via OLE.

If you omit classname, PowerBuilder uses the extension of filename to
determine what server application to start.

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Invalid call: the argument is the Object property of a control

-2 -- Class name not found

-3 -- Object could not be created

-4 -- Could not connect to object

-5 -- Ca not connect to the currently active object

-6 -- Filename is not valid

-7 -- File not found or file could not be opened

-8 -- Load from file not supported by server

-9 -- Other error

-15 -- COM+ is not loaded on this computer

-16 -- Invalid Call: this function not applicable to OLETxnObject

If any argument's value is null, ConnectToObject returns null.

Usage

After you have created an OLEObject variable and connected it to an OLE object and
its server application, you can set properties and call functions supported by the OLE
server. PowerBuilder's compiler will not check the syntax of functions that you call for
an OLEObject variable. If the functions are not present when the application is run or the
property names are invalid, an execution error occurs.

Declare and create an OLEObject variable

You must use the CREATE statement to allocate memory for an OLEObject variable,
as shown in the example below.

When you create an OLEObject variable, make sure you destroy the object before it goes out
of scope. When the object is destroyed it is disconnected from the server and the server is

Statements, Events, and Functions

Page 466

closed. If the object goes out of scope without disconnecting, there will be no way to halt the
server application.

Check the documentation for the server application to find out what properties and functions
it supports. Some applications support a large number. For example, Excel has approximately
4000 operations you can automate.

The OLEObject datatype supports OLE automation as a background activity in your
application. You can also invoke server functions and properties for an OLE object in an
OLE control. To do so, specify the Object property of the control before the server function
name. When you want to automate an object in a control, you do not need an OLEObject
variable.

For example, the following changes a value in an Excel cell for the object in the OLE control
ole_1:

ole_1.Object.application.cells(1,1).value = 14

Examples

This example declares and creates an OLEObject variable and connects to an Excel
worksheet, which is opened in Excel. It then sets a value in the worksheet, saves it, and
destroys the OLEObject variable, which exits the Excel:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToObject(&
 "c:\excel\expense.xls")

IF result = 0 THEN
 myoleobject.application.workbooks(1).&
 worksheets(1).cells(1,1).value = 14
 myoleobject.application.workbooks(1).save()
END IF
DESTROY myoleobject

This example connects to an Excel chart (using a Windows path name):

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToObject(&
 "c:\excel\expense.xls", "excel.chart")

This example connects to the currently active object in Excel, which is already running:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToObject("", &
 "excel.application")

See also

ConnectToNewObject

DisconnectObject

Statements, Events, and Functions

Page 467

2.4.89 ConnectToRemoteObject

Description

Associates an OLE object with a PowerBuilder OLEObject variable and starts the server
application.

Applies to

OLEObject objects

Syntax

oleobject.ConnectToRemoteObject (hostname, filename {, classname })

Table 2.464:

Argument Description

oleobject The name of an OLEObject variable that you want to connect to an OLE
object. You cannot specify an OLEObject that is the Object property of
an OLE control.

hostname A string whose value is the name of the remote host where the COM
server is located.

filename A string whose value is the name of an OLE storage file. You cannot
specify an empty string. COM looks for filename on the local (client)
machine. If filename is located on the remote host, its location must be
made available to the local host by sharing. Use the share name for the
remote drive to specify a file on a remote host -- for example, \\hostname
\shared_directory\test.ext.

classname
(optional)

A string whose value is the name of an OLE class, which identifies
an OLE server application and a type of object that the server can
manipulate via OLE. If you omit classname and filename, is an OLE
structured storage file, PowerBuilder uses the class ID in filename.
Otherwise, PowerBuilder uses the filename extension to determine what
server application to start.

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Invalid call: the argument is the Object property of a control

-2 -- Class name not found

-3 -- Object could not be created

-4 -- Could not connect to object

-5 -- Could not connect to the currently active object

-6 -- File name is invalid

-7 -- File not found or could not be opened

-8 -- Load from file not supported by server

Statements, Events, and Functions

Page 468

-9 -- Other error

-10 -- Feature not supported on this platform

-11 -- Server name is invalid

-12 -- Server does not support operation

-13 -- Access to remote host denied

-14 -- Server unavailable

-15 -- COM+ is not loaded on this computer

-16 -- Invalid Call: this function not applicable to OLETxnObject

Usage

The OLEObject variable is used for OLE automation, in which the PowerBuilder
application asks the server application to manipulate the OLE object programmatically.
ConnectToRemoteObject can only be used with servers that support remote activation.

The following information applies to creating or instantiating and binding to OLE objects on
remote hosts.

For general information about OLE automation, see ConnectToObject.

Security

Security on the server must be configured correctly to launch objects on remote hosts.
Security is configured using registry keys. You must specify attributes for allowing and
disallowing launching of servers and connections to running objects to allow client access.
You can update the registry manually or with a tool such as DCOMCNFG.EXE or OLE
Viewer.

Registry entries

The server application must be registered on both the server and the client.

To find files other than OLE structured storage files, registry entries must include a file
extension entry, such as .xls for Excel. If the file is a structured storage file, then COM reads
the file and extracts the server identity from the file; otherwise, the registry entry for the file
extension is used and the appropriate server application is launched.

If the DCOM server uses a custom interface, the proxy/stub DLL for the interface must
be registered on the client. The proxy/stub DLL is created by the designer of the custom
interface. It handles the marshaling of parameters through the proxy on the client and the stub
on the server so that a remote procedure call can take place.

Examples

This example declares and creates an OLEObject variable and connects to an Excel
worksheet on a remote host named falco. The drive where the worksheet resides is mapped as
f:\excel on the local host:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToRemoteObject(&
 "falco", "f:\excel\expense.xls")

Statements, Events, and Functions

Page 469

This example connects to the same object on the remote host but opens it as an Excel chart:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToRemoteObject(&
 "falco", "f:\excel\expense.xls", "Excel.chart")

See also

ConnectToNewRemoteObject

ConnectToObject

DisconnectObject

2.4.90 ConnectToServer (obsolete)

Description

Connects a client application to a server component. The client application must call
ConnectToServer before it can use a remote object on the server.

This function applies to distributed applications only.

Obsolete function

ConnectToServer is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

Connection objects

Syntax

connection.ConnectToServer ()

Table 2.465:

Argument Description

connection The name of the Connection object you want to use to establish the
connection. The Connection object has properties that specify how the
connection will be established.

Return value

Long. Returns 0 if it succeeds and one of the following values if an error occurs:

50 -- Distributed service error

52 -- Distributed communications error

53 -- Requested server not active

54 -- Server not accepting requests

55 -- Request terminated abnormally

56 -- Response to request incomplete

Statements, Events, and Functions

Page 470

57 -- Connection object not connected to server

62 -- Server busy

92 -- Required property is missing or invalid

Usage

Before calling ConnectToServer, you assign values to the properties of the Connection
object.

Examples

In this example, the client application connects to a server application using the Connection
object myconnect:

// Global variable:
// connection myconnect
long ll_rc
myconnect = create connection
myconnect.driver = "jaguar"
myconnect.location = "Jagserver1:2000"
myconnect.application = "PB_pkg_1"
myconnect.userID = "bjones"
myconnect.password = "mypass"
ll_rc = myconnect.ConnectToServer()
IF ll_rc <> 0 THEN
 MessageBox("Connection failed", ll_rc)
END IF

You can enclose the ConnectToServer function in a try-catch block to catch exceptions
thrown during the attempt to connect. This example uses SSLServiceProvider and
SSLCallBack objects to create a secure connection. An exception or other error in any of the
SSLCallback functions raises the CTSSecurity::UserAbortedException. The error-handling
code shown in the example displays a message box with the text of the error message, but
your code should take additional appropriate action:

SSLServiceProvider sp
// set QOP
getcontextservice("SSLServiceProvider", sp)
sp.setglobalproperty("QOP", "sybpks_simple")
// set PB callback handler
sp.setglobalproperty("CallbackImpl", &
 "uo_sslcallback_handler")

// connect to the server
connection cxn
cxn.userid = "jagadmin"
cxn.password = "sybase"
cxn.driver = "jaguar"
cxn.application = "dbgpkg"
cxn.options = "ORBLogFile='d:\PBJagClient.Log'"
cxn.location = "iiops://localhost:9001"

TRY
 l_rc = cxn.ConnectToServer()
CATCH (userabortedexception uae)
 MessageBox("UserAbortedException Caught", &
 "ConnectToServer caught: " + uae.getMessage())
 l_rc = 999
CATCH (CORBASystemException cse)
 MessageBox("CORBASystemException Caught", &
 "ConnectToServer caught: " + cse.getMessage())

Statements, Events, and Functions

Page 471

 l_rc = 998
CATCH (RuntimeError re)
 MessageBox("RuntimeError Exception Caught", &
 "ConnectToServer caught: " + re.getMessage())
 l_rc = 997
CATCH (Exception ex)
 MessageBox("Exception Caught", &
 "ConnectToServer caught: " + ex.getMessage())
 l_rc = 996
END TRY

IF l_rc <> 0 THEN
 MessageBox("Error", "Connection Failed - code: " &
 + string(l_rc))
 MessageBox("Error Info", "ErrorCode= " + &
 string(cxn.ErrCode) + "~nErrText= " + &
 cxn.ErrText)
ELSE
 MessageBox("OK", "Connection Established")
END IF

See also

DisconnectServer

2.4.91 ContainsKey

Description

Checks if the key name exists. It only checks the key at the first level of the JSON string.

If more than one key with the same name exists, it will only check the first key. Notice that
the JSONPackage IgnoreCase property (true by default) determines whether the key name
will be matched in a case-sensitive manner.

Applies to

JSONPackage and JSONParser objects

Syntax for JSONPackage

objectname.ContainsKey (Key)

Syntax for JSONParser

objectname.ContainsKey (ParentItemHandle, Key)

objectname.ContainsKey (ParentItemPath, Key)

Table 2.466:

Argument Description

objectname The name of the JSONPackage or JSONParser object whose key you
want to check.

ParentItemHandle A long value specifying the parent item handle which is JsonObjectItem
type.

ParentItemPath A string value specifying the parent item path which is JsonObjectItem
type.

Key A string value specifying the key name.

Statements, Events, and Functions

Page 472

Return value

Boolean. Returns true if the key exists and false if the key does not exist. If any argument's
value is null, the method returns null.

Example 1

This example sets the value for key and then checks if the specified key exists:

boolean lb_emp, lb_depart
JsonPackage lnv_package
lnv_package = create JsonPackage

// Packages the data
lnv_package.SetValue("d_employee", dw_employee)

// lb_emp returns true and lb_depart returns false
lb_emp = lnv_package.ContainsKey("d_employee")
lb_depart = lnv_package.ContainsKey("d_department")

Example 2

This example loads a JSON string into a JSONParser object and checks if the specified key
exists:

String ls_Return
Long ll_RootHandle
Boolean lb_Contains
Long ll_ItemHandle
Long ll_Object
JSONItemType ljit_Dept

JsonParser ljp_ContainsKey
ljp_ContainsKey = Create JsonParser

// Loads JSON string to JSONParser object
ls_Return = ljp_ContainsKey.LoadString ('{"Boolean":false, "Name":"A&DName",
 "object":{"1":"1"}, "dept":[{"dept_id":100, "dept_name":"R & D8",
 "dept_head_id":105}, {"dept_id":200, "dept_name":"Sales", "dept_head_id":129}]}'
)
If Trim(ls_Return)<>"" Then
 // Prints the error message
 Return
End If
ll_RootHandle = ljp_ContainsKey.GetRootitem()
// Checks if Jsonparser parent node contains a Boolean key
// This script returns TRUE
lb_Contains = ljp_ContainsKey.Containskey(ll_RootHandle, "Boolean")

lb_Contains = ljp_ContainsKey.Containskey(ll_RootHandle, "dept")
If lb_Contains Then
 ljit_Dept = ljp_ContainsKey.getitemtype(ll_RootHandle, "dept")
 If ljit_Dept = JsonArrayItem! Then
 // Gets the handle of array object in the JSON string
 ll_ItemHandle = ljp_ContainsKey.GetItemarray(ll_RootHandle, "dept")
 // Gets the handle of the first element of the array object
 ll_Object = ljp_ContainsKey.GetChildItem(ll_ItemHandle, 1)
 // Checks if the first element contains dept_name key
 // This script returns TRUE
 lb_Contains = ljp_ContainsKey.Containskey(ll_Object, "dept_name")
 // Checks if the first element contains a Boolean key.
 // This script returns FALSE
 lb_Contains = ljp_ContainsKey.Containskey(ll_Object, "Boolean")

Statements, Events, and Functions

Page 473

 Else
 // Prints error message: the dept key is JsonArrayItem
 End If
Else
 // Prints the error message
End If

Example 3

This example loads a JSON string into a JSONParser object and checks if the specified key
exists:

String ls_Return, ls_RootPath, ls_ChildPath
Boolean lb_Contains
JSONItemType ljit_Dept

JsonParser ljp_ContainsKey
ljp_ContainsKey = Create JsonParser

// Loads JSON string to JSONParser object
ls_Return = ljp_ContainsKey.LoadString ('{"Boolean":false, "Name":"A&DName",
 "object":{"1":"1"}, "dept":[{"dept_id":100, "dept_name":"R & D8",
 "dept_head_id":105}, {"dept_id":200, "dept_name":"Sales", "dept_head_id":129}]}'
)
If Trim(ls_Return)<>"" Then
 // Prints the error message
 Return
End If
ls_RootPath = "/"
// Checks if Jsonparser parent node contains a Boolean key
// This script returns TRUE
lb_Contains = ljp_ContainsKey.Containskey(ls_RootPath,"Boolean")

lb_Contains = ljp_ContainsKey.Containskey(ls_RootPath, "dept")
If lb_Contains Then
 ls_ChildPath = "/dept"
 ljit_Dept = ljp_ContainsKey.getitemtype(ls_ChildPath)
 If ljit_Dept = JsonArrayItem! Then
 // Checks if the first element contains a dept_name key
 // This script returns TRUE
 ls_ChildPath = "/dept/1"
 lb_Contains = ljp_ContainsKey.Containskey(ls_ChildPath,"dept_name")
 // Checks if the first element contains a Boolean key.
 // This script returns FALSE
 lb_Contains = ljp_ContainsKey.Containskey(ls_ChildPath, "Boolean")

 Else
 // Prints error message: the dept key is JsonArrayItem
 End If
Else
 // Prints the error message
End If

See also

SetValue (JSONPackage)

ContainsPath (JSONParser)

2.4.92 ContainsPath

Description

Checks if the path exists.

Statements, Events, and Functions

Page 474

Applies to

JSONParser objects

Syntax

objectname.ContainsPath (ItemPath)

Table 2.467:

Argument Description

objectname The name of the JSONParser object whose path you want to check.

ItemPath A string whose value is the path of the item of JsonArrayItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

Boolean. Returns true if the item path exists and false if an error occurs. If any argument's
value is null, the method returns null.

Example 1

This example loads a JSON string into a JSONParser object and checks if the specified path
exists:

String ls_Return, ls_Path
Boolean lb_Contains
JSONItemType ljit_Dept

JsonParser ljp_ContainsPath
ljp_ContainsPath = Create JsonParser

// Loads JSON string to JSONParser object
ls_Return = ljp_ContainsPath.LoadString ('{"Boolean":false, "Name":"A&DName",
 "object":{"1":"1"}, "dept":[{"dept_id":100, "dept_name":"R & D8",
 "dept_head_id":105}, {"dept_id":200, "dept_name":"Sales", "dept_head_id":129}]}'
)
If Trim(ls_Return)<>"" Then
 // Prints the error message
 Return
End If
// Checks if JSONParser parent node contains a Boolean path
// This script returns TRUE
ls_Path = "/Boolean"
lb_Contains = ljp_ContainsPath.ContainsPath(ls_Path)

ls_Path = "/dept"
lb_Contains = ljp_ContainsPath.ContainsPath(ls_Path)
If lb_Contains Then
 ljit_Dept = ljp_ContainsPath.getitemtype(ls_Path)
 If ljit_Dept = JsonArrayItem! Then
 // Checks if the first element contains a dept_name path
 // This script returns TRUE
 ls_Path = "/dept/1/dept_name"
 lb_Contains = ljp_ContainsPath.ContainsPath(ls_Path)

 // Checks if the first element contains a Boolean path
 // This script returns FALSE
 ls_Path = "/dept/1/Boolean"

Statements, Events, and Functions

Page 475

 lb_Contains = ljp_ContainsPath.ContainsPath(ls_Path)
 Else
 // Prints error message: the dept path is JsonArrayItem
 End If
Else
 // Prints the error message
End If

See also

ContainsKey

2.4.93 Copy

Description

Puts selected text or an OLE object on the clipboard. Copy does not change the source text or
object.

Applies to

DataWindow, InkEdit, MultiLineEdit, SingleLineEdit, RichTextEdit, DropDownListBox,
DropDownPictureListBox, OLE controls, and OLE DWObjects (objects within a
DataWindow object that is within a DataWindow control)

Syntax

objectref.Copy ()

Table 2.468:

Argument Description

objectref One of the following:

• The name of the DataWindow control, EditMask, InkEdit,
MultiLineEdit, SingleLineEdit, RichTextEdit, DropDownListBox or
DropDownPictureListBox containing the text you want to copy to the
clipboard.

• The name of the OLE control or the fully qualified name of a OLE
DWObject within a DataWindow control that contains the object you
want to copy to the clipboard.

The fully qualified name for a DWObject has this syntax:

dwcontrol.Object.dwobjectname

If objectref is a DataWindow, text is copied from the edit control over
the current row and column. If objectref is a DropDownListBox or
DropDownPictureListBox, its AllowEdit property must be true.

Return value

Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For RichTextEdit controls, Copy returns a long. For other edit controls and OLE objects,
Copy returns an integer.

Statements, Events, and Functions

Page 476

For edit controls, Copy returns the number of characters that were copied to the clipboard.
If no text is selected in objectref, no characters are copied and Copy returns 0. If an error
occurs, Copy returns -1.

For OLE controls and OLE DWObjects, Copy returns 0 if it succeeds and one of the
following negative values if an error occurs:

-1 -- Container is empty

-2 -- Copy Failed

-9 -- Other error

If objectref is null, Copy returns null.

Usage

To select text for copying, the user can use the mouse or keyboard. You can also call the
SelectText function in a script. For RichTextEdit controls, there are several additional
functions for selecting text: SelectTextAll, SelectTextLine, and SelectTextWord.

To insert the contents of the clipboard into a control, use the Paste function.

Copy does not delete the selected text or OLE object. To delete the data, use the Clear or Cut
function.

Examples

Assuming the selected text in mle_emp_address is Temporary Address, these statements copy
Temporary Address from mle_emp_address to the clipboard and store 17 in copy_amt:

integer copy_amt
copy_amt = mle_emp_address.Copy()

This example copies the OLE object in the OLE control ole_1 to the clipboard:

integer result
result = ole_1.Copy()

See also

Clear

Clipboard

Cut

Paste

ReplaceText

SelectText

2.4.94 CopyRTF

Description

Returns the selected text, pictures, and input fields in a RichTextEdit control or RichText
DataWindow as a string with rich text formatting. Bitmaps and input fields are included in
the string.

Applies to

Statements, Events, and Functions

Page 477

DataWindow controls, DataStore objects, and RichTextEdit controls

Syntax

rtename.CopyRTF ({ selected {, band } })

Table 2.469:

Argument Description

rtename The name of the DataWindow control, DataStore object, or RichTextEdit
control from which you want to copy the selection in rich text format.
The DataWindow object in the DataWindow control or DataStore must
be a RichText DataWindow.

selected
(optional)

A boolean value indicated whether to copy selected text only. Values are:

• TRUE -- (Default) Copy selected text only

• FALSE -- Copy the entire contents of the band

band (optional) A value of the Band enumerated datatype specifying the band from which
to copy text. Values are:

• Detail! -- Copy text from the detail band

• Header! -- Copy text from the header band

• Footer! -- Copy text from the footer band

The default is the band that contains the insertion point.

Return value

String.

Returns the selected text as a string.

CopyRTF returns an empty string ("") if:

• There is no selection and selected is true

• An error occurs

Usage

CopyRTF does not involve the clipboard. The copied information is stored in a string. If
you use the standard clipboard functions (Copy and Cut) the clipboard will contain the text
without any formatting.

To incorporate the text with RTF formatting into another RichTextEdit control, use
PasteRTF. For more information about rich text format, see the chapter about implementing
rich text in Application Techniques.

Examples

This statement returns the text that is selected in the RichTextEdit rte_message and stores it
in the string ls_richtext:

Statements, Events, and Functions

Page 478

string ls_richtext
ls_richtext = rte_message.CopyRTF()

This example copies the text in rte_1, saving it in ls_richtext, and pastes it into rte_2. The
user clicks the RadioButton rb_true to copy selected text and rb_false to copy all the text. The
number of characters pasted is saved in ll_numchars reported in the StaticText st_status:

string ls_richtext
boolean lb_selected
long ll_numchars

IF rb_true.Checked = TRUE THEN
 lb_selected = TRUE
ELSE
 lb_selected = FALSE
END IF

ls_richtext = rte_1.CopyRTF(lb_selected)
ll_numchars = rte_2.PasteRTF(ls_richtext)
st_status.Text = String(ll_numchars)

See also

PasteRTF

2.4.95 Cos

Description

Calculates the cosine of an angle.

Syntax

Cos (n)

Table 2.470:

Argument Description

n The angle (in radians) for which you want the cosine

Return value

Double.

Returns the cosine of n. If n is null, Cos returns null.

Examples

This statement returns 1:

Cos(0)

This statement returns .540302:

Cos(1)

This statement returns -1:

Cos(Pi(1))

See also

ACos

Statements, Events, and Functions

Page 479

Pi

Sin

Tan

Cos method for DataWindows in Section 2.4.13, “Cos” in DataWindow Reference.

2.4.96 Cpu

Description

Reports the amount of CPU time that has elapsed since the application started.

Syntax

Cpu ()

Return value

Long.

Returns the number of milliseconds of CPU time elapsed since the start of your PowerBuilder
application.

Examples

These statements determine the amount of CPU time that elapsed while a group of statements
executed:

long ll_start, ll_used
// Set the start equal to the current CPU usage.
ll_start = Cpu()
... // Executable statements being timed

// Set ll_used to the number of CPU seconds
// that were used (current CPU time - start).
ll_used = Cpu() - ll_start

2.4.97 CreateDirectory

Description

Creates a directory.

Applies to

File system

Syntax

CreateDirectory (directoryname)

Table 2.471:

Argument Description

directoryname String for the name of the directory you want to create

Return value

Integer.

Statements, Events, and Functions

Page 480

Returns 1 if the function succeeds and -1 if an error occurs.

Examples

This example creates a new subdirectory in the current path and then makes the new
subdirectory the current directory:

string ls_path="my targets"
integer li_filenum
CreateDirectory (ls_path)
li_filenum = ChangeDirectory(ls_path)

See also

GetCurrentDirectory

RemoveDirectory

2.4.98 CreateInstance

2.4.98.1 Syntax 1: for TransactionServer objects

Description

Creates an instance of a component running on the COM+ server. This function is called
from within a component instance running on COM+.

Applies to

TransactionServer objects

Syntax

transactionserver.CreateInstance (objectvariable {, classname })

Table 2.472:

Argument Description

transactionserver Reference to the TransactionServer service instance.

objectvariable A global, instance, or local variable whose datatype is the same class as
the object being created or an ancestor of that class.

classname
(optional)

A string whose value is the name of the class datatype to be created.

For COM+ components, you can optionally prepend a
ProgID followed by a period to the class name (for example,
"PowerBuilder.HTMLDataWindow".

Return value

Long.

Returns 0 if it succeeds and one of the following values if an error occurs:

50 -- Distributed service error

52 -- Distributed communications error

53 -- Requested server not active

54 -- Server not accepting requests

Statements, Events, and Functions

Page 481

55 -- Request terminated abnormally

56 -- Response to request incomplete

57 -- Not connected

62 -- Server busy

Usage

The CreateInstance function on the TransactionServer context object allows you to access
other COM+ components running on the current server. The created instance inherits all the
transaction and security attributes of the current object.

The CreateInstance function on the TransactionServer context object uses the same user and
password information that applies to the component from which it is called.

Before you can use the transaction context service, you need to declare a variable of type
TransactionServer and call the GetContextService function to create an instance of the
service.

Examples

This example shows the syntax for creating an instance of a COM component:

Integer rc
OleObject lole
TransactionServer lts

lole = create OleObjectrc = this.GetContextService("TransactionServer", lts)
IF rc <> 1 THEN
 return "Error from GetContextService " + String (rc)
END IF

// PBCOM is the ProgID, n_genapp is the class namerc = lts.CreateInstance(lole,
 "PBCOM.n_genapp")

IF rc <> 0 THEN
 return "Error from CreateInstance " + String (rc)
END IFiole.my_func ()

See also

EnableCommit

IsInTransaction (obsolete)

IsTransactionAborted (obsolete)

Lookup (obsolete)

SetAbort

SetComplete

Which

2.4.98.2 Syntax 2: for DotNetAssembly objects

Description

Creates an instance of the .NET class and associates it with the DotNetObject object. The
DotNetObject object must be instantiated first.

Statements, Events, and Functions

Page 482

The instance of the class can be used to access the functions/properties in the
corresponding .NET class.

Applies to

DotNetAssembly objects

Syntax

objectname.CreateInstance (readonly string classname, CSharpObjcet DotNetObject {,
 arg1, arg2,..., argn })

Table 2.473:

Argument Description

objectname Reference to the DotNetAssembly object instance.

classname The name of the .NET class.

It must contain the namespace and the class name: [namespace].[class],
for example, AppeonSample.StandardTest.

DotNetObject The name of the DotNetObject object.

{, arg1, arg2,...,
argn } (optional)

The .NET constructor argument.

Constructor argument is optional. If no argument is passed in, the
application will automatically call the constructor that takes no
parameter; and if there is no such parameterless constructor, the instance
will fail to create.

Return value

Integer.

Returns values as follows. If the classname or DotNetObject argument's value is null, the
method returns null.

1 -- Success.

-1 -- Unknown error.

-2 -- Could not find the assembly.

-6 -- Could not find the class name.

Usage

The class name is case insensitive. The application will ignore the case of the class name and
find the first class in the order that matches.

If there is a nested class, you should use the plus sign ("+") instead of the dot (".") to
access the nested class, in this format: [namespace].[class]+[nested-class], for example,
AppeonSample.StandardTest+MathTest.

The value of the constructor argument can be of any standard data type. See Section 5.1.2.1,
“Data types” in Application Techniques.

Passing parameters by reference to a constructor function is unsupported. The modified data
cannot be returned.

For Char data type, it will be passed to .NET as String type by default; and if there is no
constructor function that matches the type, the instance will fail to create.

Statements, Events, and Functions

Page 483

If the instance failed to create, the exception message returned from .NET will be stored in
the ErrorText property.

Examples

DotNetAssembly lcs_ass
DotNetObject lcs_obj
long ll_return

//Instantiates the objects
lcs_ass = create DotNetAssembly
lcs_obj = create DotNetObject

//Loads the DLL
ll_return = lcs_ass.LoadWithDotNetFramework ("Appeon.Simple.dll")
//ll_return = lcs_ass.LoadWithDotNetCore ("Appeon.Simple.dll")
if ll_return < 0 then
 messagebox ("Load Dll Failed", lcs_ass.errortext)
 return
end if

//Creats the instance
ll_return = lcs_ass.createinstance ("Appeon.Simple.AppeonCase01", lcs_obj,
 "appeon123")
if ll_return < 0 then
 messagebox ("CreateInstance Failed", lcs_ass.errortext)
 return
end if

See also

GetDotNetCoreVersion

LoadWithDotNetCore

LoadWithDotNetFramework

2.4.99 CreateJsonArray

Description

Creates the array of JsonArrayItem type as root item to initialize instance.

Applies to

JSONGenerator objects

Syntax

objectname.CreateJsonArray ()

Table 2.474:

Argument Description

objectname Reference to the JSONGenerator object instance.

Return value

Long.

Returns the root item handle if it succeeds and -1 if an error occurs.

Examples

Statements, Events, and Functions

Page 484

This example create the JSON root item of array type:

JsonGenerator lnv_JsonGenerator
Long ll_RootArray
lnv_JsonGenerator = Create JsonGenerator

ll_RootArray = lnv_JsonGenerator.CreateJsonArray()
if ll_RootArray <> -1 then
 ...
end if

See also

CreateJsonObject

2.4.100 CreateJsonObject

Description

Creates the object of JsonObjectItem type as root item to initialize instance.

Applies to

JSONGenerator objects

Syntax

objectname.CreateJsonObject ()

Table 2.475:

Argument Description

objectname Reference to the JSONGenerator object instance.

Return value

Long.

Returns the root item handle if it succeeds and -1 if an error occurs.

Examples

This example creates the JSON root item of object type:

JsonGenerator lnv_JsonGenerator
Long ll_RootObject
lnv_JsonGenerator = Create JsonGenerator

ll_RootObject = lnv_JsonGenerator.CreateJsonObject()
if ll_RootObject <> -1 then
 ...
end if

See also

CreateJsonArray

2.4.101 CreatePage

Description

Creates a tab page if it has not already been created.

Statements, Events, and Functions

Page 485

Applies to

User objects used as tab pages

Syntax

userobject.CreatePage ()

Table 2.476:

Argument Description

userobject The name of the tab page you want to create

Return value

Integer.

Returns one of the following values:1 if the page is successfully created and -1 if the page
was already created or if it is not a tab page.

1 -- The tab page was successfully created

0 -- The tab page has already been created

-1 -- The user object is not a tab page

Usage

A window will open more quickly if the creation of graphical representations is delayed for
tab pages with many controls. However, scripts cannot refer to a control on a tab page until
the control's Constructor event has run and a graphical representation of the control has been
created. When the CreateOnDemand property of the Tab control is selected, scripts cannot
reference controls on tab pages that the user has not viewed. CreatePage allows you to create
a tab page if it has not already been created.

Examples

This example tests whether tabpage_2 has been created and, if not, creates it:

IF tab_1.CreateOnDemand = True THEN
 IF tab_1.tabpage_2.PageCreated() = False THEN
 tab_1.tabpage_2.CreatePage()
 END IF
END IF

See also

PageCreated

2.4.102 Cut

Description

Deletes selected text or an OLE object from the specified control and stores it on the
clipboard, replacing the clipboard contents with the deleted text or object.

Applies to

DataWindow, InkEdit, MultiLineEdit, SingleLineEdit, DropDownListBox,
DropDownPictureListBox, and OLE controls

Syntax

Statements, Events, and Functions

Page 486

controlname.Cut ()

Table 2.477:

Argument Description

controlname The name of the DataWindow, InkEdit, MultiLineEdit, SingleLineEdit,
RichTextEdit, DropDownListBox, DropDownPictureListBox, or OLE
control containing the text or object to be cut.

If controlname is a DataWindow, text is cut from the edit control over
the current row and column. If controlname is a DropDownListBox or
DropDownPictureListBox, the AllowEdit property must be true.

Return value

Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For editable controls, Cut returns the number of characters that were cut from controlname
and stored in the clipboard. If no text is selected, no characters are cut and Cut returns 0. If an
error occurs, Cut returns -1.

For OLE controls, Cut returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 -- Container is empty

-2 -- Cut failed

-9 -- Other error

If controlname is null, Cut returns null.

Usage

To select text for deleting, the user can use the mouse or keyboard. You can also call the
SelectText function in a script. For RichTextEdit controls, there are several additional
functions for selecting text: SelectTextAll, SelectTextLine, and SelectTextWord.

To insert the contents of the clipboard into a control, use the Paste function.

To delete selected text or an OLE object but not store it in the clipboard, use the Clear
function.

Cutting an OLE object breaks any connections between it and its source file or storage, just
as Clear does.

Examples

Assuming the selected text in mle_emp_address is Temporary, this statement deletes
Temporary from mle_emp_address, stores it in the clipboard, and returns 9:

mle_emp_address.Cut()

This example cuts the OLE object in the OLE control ole_1 and puts it on the clipboard:

integer result
result = ole_1.Cut()

See also

Copy

Statements, Events, and Functions

Page 487

Clear

ClearAll

Clipboard

DeleteItem

Paste

2.4.103 DataCount

Description

Reports the number of data points in the specified series in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls and
DataStore objects

Syntax

controlname.DataCount ({ graphcontrol, } seriesname)

Table 2.478:

Argument Description

controlname The name of the graph in which you want the number of data points in
a specific series, or the name of the DataWindow control or DataStore
containing the graph

graphcontrol
(DataWindow
control or
DataStore only)

(Optional) The name of the graph in the DataWindow control or
DataStore for which you want the data point count for the series

seriesname A string whose value is the name of the series for which you want the
number of data points

Return value

Long.

Returns the number of data points in the specified series if it succeeds and -1 if an error
occurs. If any argument's value is null, DataCount returns null.

Examples

These statements store in ll_count the number of data points in the series named Costs in the
graph gr_product_data:

long ll_count
ll_count = gr_product_data.DataCount("Costs")

These statements store in ll_count the number of data points in the series named Salary in the
graph gr_dept in the DataWindow control dw_employees:

long ll_count
ll_count = &

Statements, Events, and Functions

Page 488

 dw_employees.DataCount("gr_dept", "Salary")

See also

AddSeries

InsertSeries

SeriesCount

2.4.104 DataSource

Description

Allows a RichTextEdit control to share data with a DataWindow and display the data in its
input fields. If there are input fields in the RichTextEdit control that match the names of
columns in the DataWindow, the data in the DataWindow is assigned to those input fields.
The document in the RichTextEdit control is repeated so that there is an instance of the
document for each row in the DataWindow.

Applies to

RichTextEdit controls

Syntax

rtename.DataSource (dwsource)

Table 2.479:

Argument Description

rtename The name of the RichTextEdit control for which you want to get data in a
DataWindow

dwsource The name of the DataWindow control, DataStore, or child DataWindow
that contains the data to be connected with input fields in rtename

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

When names of input fields match names of columns in the DataWindow object, the data in
the columns is assigned to the matching input fields.

The document in the RichTextEdit control is associated with one row in the DataWindow.
There is an instance of the document for each retrieved row. The text in the RichTextEdit
control is repeated, with all its formatting, in every document instance. The content of
the input fields changes as the data in each row changes. Except for the contents of the
input fields, the contents of each instance is the same -- you cannot make changes to the
surrounding text that affect individual instances only.

If the InputFieldNamesVisible property of the RichTextEdit control is true, the fields will
show their names instead of the data they contain. Change the property value to false to see
the data. The following RichTextEdit functions operate on or report information about an
instance of the document:

Statements, Events, and Functions

Page 489

Table 2.480:

LineCount

PageCount

InsertDocument

SaveDocument

SelectedPage

SelectedStart

SelectedLine

SelectText

SelectTextAll

The following RichTextEdit function affects the collection of documents:

Print

Examples

This example establishes the DataWindow control dw_1 as the data source for the
RichTextEdit rte_1:

rte_1.DataSource(dw_1)

This example inserts a document called LETTER.RTF into the RichTextEdit rte_letter (the
names of the document's input fields match the columns in a DataWindow object d_emp),
creates a DataStore, associates it with d_emp, and retrieves data. Then it inserts the document
in rte_letter and sets up the DataStore as the data source for rte_1:

DataStore ds_empinfo
ds_empinfo = CREATE DataStore
ds_empinfo.DataObject = "d_emp"
ds_empinfo.SetTransObject(SQLCA)
ds_empinfo.Retrieve()

rte_letter.InsertDocument("LETTER.RTF", TRUE)
rte_letter.DataSource(ds_empinfo)

See also

InputFieldChangeData

InputFieldCurrentName

InputFieldDeleteCurrent

InputFieldGetData

InputFieldInsert

2.4.105 Date

Converts DateTime, string, or numeric data to data of type date or extracts a date value from
a blob. You can use one of several syntaxes, depending on the datatype of the source data.

Table 2.481:

To Use

Extract the date from DateTime data or extract a date stored in a blob Syntax 1

Convert a string to a date Syntax 2

Combine numeric data into a date Syntax 3

Statements, Events, and Functions

Page 490

Platform information for Windows

To make sure you get correct return values for the year, you must verify that yyyy
is the Short Date Style for year in the Regional Settings of the user's Control Panel.
Your program can check this with the RegistryGet function.

If the setting is not correct, you can ask the user to change it manually or have the
application change it (by calling the RegistrySet function). The user may need to
reboot after the setting is changed.

2.4.105.1 Syntax 1: For DateTime data and blobs

Description

Extracts a date from a DateTime value or from a blob whose first value is a date or DateTime
value.

Syntax

Date (datetime)

Table 2.482:

Argument Description

datetime A DateTime value or a blob in which the first value is a date or DateTime
value. The rest of the contents of the blob is ignored. Datetime can also
be an Any variable containing a DateTime or blob.

Return value

Date.

Returns the date in datetime as a date. If datetime contains an invalid date or an incompatible
datatype, Date returns 1900-01-01. If datetime is null, Date returns null.

Examples

After a value for the DateTime variable ldt_StartDateTime has been retrieved from the
database, this example sets ld_StartDate equal to the date in ldt_StartDateTime:

DateTime ldt_StartDateTime
date ld_StartDate
ld_StartDate = Date(ldt_StartDateTime)

Assuming the value of a blob variable ib_blob contains a DateTime value beginning at byte
32, the following statement converts it to a date value:

date ld_date
ld_date = Date(BlobMid(ib_blob, 32))

See also

DateTime

2.4.105.2 Syntax 2: For strings

Description

Converts a string whose value is a valid date to a date value.

Statements, Events, and Functions

Page 491

Syntax

Date (string)

Table 2.483:

Argument Description

string A string containing a valid date (such as January 1, 2002, or 12-31-99)
that you want returned as a date. Datetime can also be an Any variable
containing a string.

Return value

Date.

Returns the date in string as a date. If string contains an invalid date or an incompatible
datatype, Date returns 1900-01-01. If string is null, Date returns null.

Usage

Valid dates in strings can include any combination of day (1 to 31), month (1 to 12 or the
name or abbreviation of a month), and year (2 or 4 digits). PowerBuilder assumes a 4-digit
number is a year. Leading zeros are optional for month and day. The month, whether a name,
an abbreviation, or a number, must be in the month location specified in the system setting
for a date's format. If you do not know the system setting, use the standard datatype date
format yyyy-mm-dd.

PowerBuilder attempts to match the input string to a date format in the regional settings on
the computer. If a complete match is not found, PowerBuilder attempts a partial match. For
example, if you use Date('01-JAN-1900') and PowerBuilder finds the partial match (dd-
MMM-yy), PowerBuilder parses the first two numbers of the year and gets 19. The 2-digit
year is interpreted as a year between 1930 and 2029, and the date returned is 1/1/2019.

Date literals do not need to be converted with the Date function.

Examples

Example 1

These statements all return the date datatype for text expressing the date July 4, 2004
(2004-07-04). The system setting for a date's format is set with the month's position in the
middle:

Date("2004/07/04")
Date("2004 July 4")
Date("04 July 2004")

Example 2

The following groups of statements check to be sure the date in sle_start_date is a valid date
and display a message if it is not. The first version checks the result of the Date function to
see if the date was valid. The second uses the IsDate function to check the text before using
Date to convert it:

Version 1:

// Windows Control Panel date format is YY/MM/DD
date ld_my_date

Statements, Events, and Functions

Page 492

ld_my_date = Date(sle_start_date.Text)
IF ld_my_date = Date("1900-01-01") THEN
 MessageBox("Error", "This date is invalid: " &
 + sle_start_date.Text)
END IF

Version 2:

date ld_my_date

IF IsDate(sle_start_date.Text) THEN
 ld_my_date = Date(sle_start_date.Text)
ELSE
 MessageBox("Error", "This date is invalid: " &
 + sle_start_date.Text)
END IF

See also

DateTime

IsDate

RelativeDate

RelativeTime

Date method for DataWindows in Section 2.4.27, “Date” in DataWindow Reference

2.4.105.3 Syntax 3: For combining numbers into a date

Description

Combines numbers representing the year, month, and day into a date value.

Syntax

Date (year, month, day)

Table 2.484:

Argument Description

year The 4-digit year (1 to 9999) of the date

month The 1- or 2-digit integer for the month (1 to 12) of the year

day The 1- or 2-digit integer for the day (1 to 31) of the month

Return value

Date.

Returns the date specified by the integers for year, month, and day as a date datatype. If
any value is invalid (out of the range of values for dates), Date returns 1900-01-01. If any
argument's value is null, Date returns null.

Examples

These statements use integer values to set ld_my_date to 2005-10-15:

date ld_my_date
ld_my_date = Date(2005, 10, 15)

See also

Statements, Events, and Functions

Page 493

DateTime

DaysAfter

RelativeDate

RelativeTime

2.4.106 DateTime

Manipulates DateTime values. There are three syntaxes.

Table 2.485:

To Use

Combine a date and a time value into a DateTime value Syntax 1

Obtain a DateTime value that is stored in a blob Syntax 2

Obtain a DateTime value that is stored in a string Syntax 3

2.4.106.1 Syntax 1: For creating DateTime values

Description

Combines a date value and a time value into a DateTime value.

Syntax

DateTime (date {, time })

Table 2.486:

Argument Description

date A value of type date.

time (optional) A value of type time. If you omit time, PowerBuilder sets time to
00:00:00.000000 (midnight). If you specify time, only the hour portion is
required.

Return value

DateTime.

Returns a DateTime value based on the values in date and optionally time. If any argument's
value is null, DateTime returns null.

Usage

DateTime data is used only for reading and writing DateTime values to and from a database.
To use the date and time values in scripts, use the Date and Time functions to assign values to
date and time variables.

Examples

These statements convert the date and time stored in ld_OrderDate and lt_OrderTime to a
DateTime value that can be used to update the database:

DateTime ldt_OrderDateTime
date ld_OrderDate
time lt_OrderTime

Statements, Events, and Functions

Page 494

ld_OrderDate = Date(sle_orderdate.Text)
lt_OrderTime = Time(sle_ordertime.Text)
ldt_OrderDateTime = DateTime(&
 ld_OrderDate, lt_OrderTime)

See also

Date

Time

DateTime method for DataWindows in Section 2.4.28, “DateTime” in DataWindow
Reference

2.4.106.2 Syntax 2: For extracting DateTime values from blobs

Description

Extracts a DateTime value from a blob.

Syntax

DateTime (blob)

Table 2.487:

Argument Description

blob A blob in which the first value is a DateTime value. The rest of the
contents of the blob is ignored. Blob can also be an Any variable
containing a blob.

Return value

DateTime.

Returns the DateTime value stored in blob. If blob is null, DateTime returns null.

Usage

DateTime data is used only for reading and writing DateTime values to and from a database.
To use the date and time values in scripts, use the Date and Time functions to assign values to
date and time variables.

Examples

After assigning blob data from the database to lb_blob, the following example obtains the
DateTime value stored at position 20 in the blob (the length you specify for BlobMid must be
at least as long as the DateTime value but can be longer):

DateTime dt
dt = DateTime(BlobMid(lb_blob, 20, 40))

See also

Date

Time

2.4.106.3 Syntax 3: For extracting DateTime values from strings

Description

Statements, Events, and Functions

Page 495

Extracts a DateTime value from a string whose value is valid datetime.

Syntax

DateTime (string)

Table 2.488:

Argument Description

string A string containing a valid datetime.

Return value

DateTime.

Returns the DateTime value stored in the string. If string does not contain a valid datetime,
DateTime returns null.

Usage

DateTime data is used only for reading and writing DateTime values to and from a database.
To use the date and time values in scripts, use the Date and Time functions to assign values to
date and time variables.

To make sure you get correct return values for the year, you must verify that yyyy is the
Short Date Style for year in the Regional Settings of the user's Control Panel. Your program
can check this with the RegistryGet function. If the setting is not correct, you can ask the
user to change it manually or to have the application change it (by calling the RegistrySet
function). The user might need to reboot the computer after the setting is changed.

Examples

The following example converts the date and time stored in a string to the datetime July 23,
2019 (2019-07-23) 13:25:59.

DateTime dt
dt = DateTime('2019/7/23 13:25:59')
//dt = DateTime('2019 July 23 13:25:59')

See also

Date

Time

2.4.107 Day

Description

Obtains the day of the month in a date value.

Syntax

Day (date)

Table 2.489:

Argument Description

date A date value from which you want the day

Statements, Events, and Functions

Page 496

Return value

Integer.

Returns an integer (1 to 31) representing the day of the month in date. If date is null, Day
returns null.

Examples

These statements extract the day (31) from the date literal 2004-01-31 and set li_day_portion
to that value:

integer li_day_portion
li_day_portion = Day(2004-01-31)

These statements check to be sure the date in sle_date is valid, and if so set li_day_portion to
the day in the sle_date:

integer li_day_portion

IF IsDate(sle_date.Text) THEN
 li_day_portion = Day(Date(sle_date.Text))
ELSE
 MessageBox("Error", &
 "This date is invalid: " &
 + sle_date.Text)
END IF

See also

Date

IsTime

Month

Year

Day method for DataWindows in Section 2.4.29, “Day” in DataWindow Reference.

2.4.108 DayName

Description

Determines the day of the week in a date value and returns the weekday's name.

Syntax

DayName (date)

Table 2.490:

Argument Description

date A date value for which you want the name of the day

Return value

String.

Returns a string whose value is the weekday (Sunday, Monday, and so on) of date. If date is
null, DayName returns null.

Usage

Statements, Events, and Functions

Page 497

DayName returns a name in the language of the runtime files available on the machine
where the application is run. If you have installed localized runtime files in the development
environment or on a user's machine, then on that machine the name returned by DayName is
in the language of the localized files.

For information about localized runtime files, which are available in French, German,
Italian, Spanish, Dutch, Danish, Norwegian, and Swedish, see Section 8.1.4, “Localizing the
product” in Application Techniques.

Examples

These statements evaluate the date literal 2003-07-04 and set day_name to Sunday:

string day_name
day_name = DayName(2003-07-04)

These statements check to be sure the date in sle_date is valid, and if so set day_name to the
day in sle_date:

string day_name

IF IsDate(sle_date.Text) THEN
 day_name = DayName(Date(sle_date.Text))
ELSE
 MessageBox("Error", &
 "This date is invalid: " &
 + sle_date.Text)
END IF

See also

Day

DayNumber

IsDate

DayName method for DataWindows in Section 2.4.30, “DayName” in DataWindow
Reference.

2.4.109 DayNumber

Description

Determines the day of the week of a date value and returns the number of the weekday.

Syntax

DayNumber (date)

Table 2.491:

Argument Description

date The date value from which you want the number of the day of the week

Return value

Integer.

Returns an integer (1-7) representing the day of the week of date. Sunday is day 1, Monday is
day 2, and so on. If date is null, DayNumber returns null.

Statements, Events, and Functions

Page 498

Examples

These statements evaluate the date literal 2000-01-31 and set day_nbr to 4 (January 31, 2000,
was a Wednesday):

integer day_nbr
day_nbr = DayNumber(2000-01-31)

These statements check to be sure the date in sle_date is valid, and if so set day_nbr to the
number of the day in the sle_date:

integer day_nbr

IF IsDate(sle_date.Text) THEN
 day_nbr = DayNumber(Date(sle_date.Text))
ELSE
 MessageBox("Error", &
 "This date is invalid: " &
 + sle_date.Text)
END IF

See also

Day

DayName

IsDate

DayNumber method for DataWindows in Section 2.4.31, “DayNumber” in DataWindow
Reference.

2.4.110 DaysAfter

Description

Determines the number of days one date occurs after another.

Syntax

DaysAfter (date1, date2)

Table 2.492:

Argument Description

date1 A date value that is the start date of the interval being measured

date2 A date value that is the end date of the interval

Return value

Long.

Returns a long whose value is the number of days date2 occurs after date1. If date2 occurs
before date1, DaysAfter returns a negative number. If any argument's value is null, DaysAfter
returns null.

Examples

This statement returns 4:

DaysAfter(2002-12-20, 2002-12-24)

Statements, Events, and Functions

Page 499

This statement returns -4:

DaysAfter(2002-12-24, 2002-12-20)

This statement returns 0:

DaysAfter(2003-12-24, 2003-12-24)

This statement returns 5:

DaysAfter(2003-12-29, 2004-01-03)

If you declare date1 and date2 date variables and assign February 16, 2003, to date1 and
April 28, 2003, to date2 as follows:

date date1, date2
date1 = 2003-02-16
date2 = 2003-04-28

then each of the following statements returns 71:

DaysAfter(date1, date2)
DaysAfter(2003-02-16, date2)
DaysAfter(date1, 2003-04-28)
DaysAfter(2003-02-16, 2003-04-28)

See also

RelativeDate

RelativeTime

SecondsAfter

DaysAfter method for DataWindows in Section 2.4.32, “DaysAfter” in DataWindow
Reference.

2.4.111 DBHandle

Description

Reports the handle for your DBMS.

Applies to

Transaction objects

Syntax

transactionobject.DBHandle ()

Table 2.493:

Argument Description

transactionobject The current transaction object

Return value

UnsignedLong.

Returns the handle for your DBMS. Transactionobject must exist, and the database must be
connected. If transactionobject is null, DBHandle returns null. If transactionobject does not

Statements, Events, and Functions

Page 500

exist, an execution error occurs. If there is not enough memory to connect to your DBMS,
DBHandle returns a negative number.

Usage

DBHandle returns a valid handle only if you are connected to the database. It is not able to
determine if the database connection does not exist or has been lost.

PowerBuilder uses the database handle internally to communicate with the database. If your
database supports an API with functions that PowerBuilder does not support, you can use
DBHandle to provide the handle as an argument to one of these external functions.

Examples

For examples, see Section 6.1.3.1, “DBHandle” in Connecting to Your Database.

2.4.112 DebugBreak

Description

Suspends execution and opens the Debug window.

Syntax

DebugBreak ()

Return value

None

Usage

Insert a call to the DebugBreak function into a script at a point at which you want to suspend
execution and examine the application. Then enable just-in-time debugging and run the
application in the development environment.

When PowerBuilder encounters the DebugBreak function, the Debug window opens showing
the current context.

Examples

This statement tests whether a variable is null and opens the Debug window if it is:

IF IsNull(auo_ext) THEN DebugBreak()

2.4.113 Dec

Description

Converts a string to a decimal number or obtains a decimal value stored in a blob.

Syntax

Dec (stringorblob)

Table 2.494:

Argument Description

stringorblob A string whose value you want returned as a decimal value or a blob in
which the first value is the decimal you want. The rest of the contents of

Statements, Events, and Functions

Page 501

Argument Description
the blob is ignored. Stringorblob can also be an Any variable containing a
string or blob.

Return value

Decimal.

Returns the value of stringorblob as a decimal. If stringorblob is not a valid PowerScript
number or if it contains an incompatible datatype, Dec returns 0. If stringorblob is null, Dec
returns null.

Examples

This statement returns 24.3 as a decimal datatype:

Dec("24.3")

This statement returns the contents of the SingleLineEdit sle_salary as a decimal number:

Dec(sle_salary.Text)

For an example of assigning and extracting values from a blob, see Real.

See also

Double

Integer

Long

Real

2.4.114 DeleteCategory

2.4.114.1 Syntax 1: for Graph controls

Description

Deletes a category and the data values for that category from the category axis of a graph.

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects (because their data comes directly from the DataWindow).

Syntax

controlname.DeleteCategory (categoryvalue)

Table 2.495:

Argument Description

controlname The graph in which you want to delete a category.

categoryvalue A value that is the category you want to delete from controlname. The
value you specify must be the same datatype as the datatype of the
category axis.

Return value

Integer.

Statements, Events, and Functions

Page 502

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
DeleteCategory returns null.

Examples

These statements delete the category whose name is entered in the SingleLineEdit sle_delete
from the graph gr_product_data:

string CategName
CategName = sle_delete.Text
gr_product_data.DeleteCategory(CategName)

See also

DeleteData

DeleteSeries

2.4.114.2 Syntax 2: for RibbonBar controls

Description

Removes a category from the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.DeleteCategory (Long ItemHandle)

Table 2.496:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the category you want to delete.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also delete an item according to the handle by using the DeleteItem function.

Examples

This example gets the category whose index number is 1 and then deletes it according to its
handle.

Integer li_Return
Long ll_Handle
RibbonCategoryItem lr_Category

ll_Handle = rbb_1.InsertCategoryLast("MyCategory")
li_Return = rbb_1.GetCategoryByIndex(1,lr_Category)
If li_Return = 1 Then
 li_Return = rbb_1.DeleteCategory(lr_Category.ItemHandle)
End If

Statements, Events, and Functions

Page 503

See also

InsertCategory

InsertCategoryFirst

InsertCategoryLast

SetCategory

GetCategory

GetCategoryByIndex

GetCategoryCount

SetActiveCategory

GetActiveCategory

2.4.115 DeleteCheckBox

Description

Removes a check box from the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.DeleteCheckBox (Long ItemHandle)

Table 2.497:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the check box you want to delete.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also delete an item according to the handle by using the DeleteItem function.

Examples

The example gets the check box whose index number is 1 in the "MyPanel" panel and then
deletes it according to its handle.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_CheckBox
RibbonCheckBoxItem lr_CheckBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_CheckBox = rbb_1.InsertCheckBoxFirst (ll_Handle_Panel, "MyCheckBox",
 "Ue_AddButtonClicked")

Statements, Events, and Functions

Page 504

li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_CheckBox)
If li_Return = 1 Then
 li_Return = rbb_1.DeleteCheckBox (lr_CheckBox.ItemHandle)
End If

See also

InsertCheckBox

InsertCheckBoxFirst

InsertCheckBoxLast

SetCheckBox

GetCheckBox

2.4.116 DeleteColumn

Description

Deletes a column.

ListView controls

Syntax

listviewname.DeleteColumn (index)

Table 2.498:

Argument Description

listviewname The name of the ListView control from which you want to delete a
column

index The index number of the column you want to delete

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes the second column in a ListView control:

lv_list.DeleteColumn(2)

See also

DeleteColumns

2.4.117 DeleteColumns

Description

Deletes all columns.

Applies to

ListView controls

Syntax

Statements, Events, and Functions

Page 505

listviewname.DeleteColumns ()

Table 2.499:

Argument Description

listviewname The name of the ListView control from which you want to delete all
columns

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes all columns in a ListView control:

lv_list.DeleteColumns()

See also

DeleteColumn

2.4.118 DeleteComboBox

Description

Removes a combo box from the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.DeleteComboBox (Long ItemHandle)

Table 2.500:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the combo box you want to delete.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also delete an item according to the handle by using the DeleteItem function.

Examples

The example gets the combo box whose index number is 1 in the "MyPanel" panel and then
deletes it according to its handle.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_ComboBox
RibbonComboBoxItem lr_ComboBox

Statements, Events, and Functions

Page 506

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_ComboBox = rbb_1.InsertComboBoxFirst (ll_Handle_Panel,
 "Ue_ComboBoxSelectionChanged")
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_ComboBox)
If li_Return = 1 Then
 li_Return = rbb_1.DeleteComboBox (lr_ComboBox.ItemHandle)
End If

See also

InsertComboBox

InsertComboBoxFirst

InsertComboBoxLast

SetComboBox

GetComboBox

GetChildItemByIndex

2.4.119 DeleteData

Description

Deletes a data point from a series of a graph. The remaining data points in the series are
shifted left to fill the data point's category.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects (because their data comes directly from the DataWindow).

Syntax

controlname.DeleteData (seriesnumber, datapointnumber)

Table 2.501:

Argument Description

controlname The name of the graph in which you want to delete a data value

seriesnumber The number of the series containing the data value you want to delete
from controlname

datapointnumber The number of the data point containing the data you want to delete

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, DeleteData
returns null.

Examples

These statements delete the data at data point 7 in the series named Costs in the graph
gr_product_data:

integer SeriesNbr

Statements, Events, and Functions

Page 507

// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.DeleteData(SeriesNbr, 7)

See also

AddData

DeleteCategory

DeleteSeries

FindSeries

2.4.120 DeleteGroup

Description

Removes a group from the panel of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.DeleteGroup (Long ItemHandle)

Table 2.502:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the group you want to delete.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also delete an item according to the handle by using the DeleteItem function.

Examples

The example gets the group whose index number is 1 in the "MyPanel" panel and then
deletes it according to its handle.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Group
RibbonGroupItem lr_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_Group = rbb_1.InsertGroupFirst (ll_Handle_Panel)
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_Group)
If li_Return = 1 Then
 li_Return = rbb_1.DeleteGroup (lr_Group.ItemHandle)
End If

See also

Statements, Events, and Functions

Page 508

InsertGroup

InsertGroupFirst

InsertGroupLast

SetGroup

GetGroup

GetChildItemByIndex

2.4.121 DeleteItem

Deletes an item from a ListBox, RibbonComboBoxItem, ListView, TreeView, RibbonMenu,
or RibbonBar control.

Table 2.503:

To delete an item from Use

A ListBox, DropDownListBox, PictureListBox,
DropDownPictureListBox, or RibbonComboBoxItem control

Syntax 1

A ListView control Syntax 2

A TreeView control Syntax 3

A RibbonMenu control Syntax 4

A RibbonBar control Syntax 5

2.4.121.1 Syntax 1: For ListBox, DropDownListBox, and RibbonComboBoxItem controls

Description

Deletes an item from the list of values for a list box control.

Applies to

ListBox, DropDownListBox, PictureListBox, DropDownPictureListBox, and
RibbonComboBoxItem controls

Syntax

listboxname.DeleteItem (index)

Table 2.504:

Argument Description

listboxname The name of the ListBox, DropDownListBox, PictureListBox,
DropDownPictureListBox, or RibbonComboBoxItem from which you
want to delete an item

index The position number of the item you want to delete

Return value

Integer.

Returns the number of items remaining in the list of values after the item is deleted. If an
error occurs, DeleteItem returns -1. If any argument's value is null, DeleteItem returns null.

Statements, Events, and Functions

Page 509

Usage

If the control's Sorted property is set, the order of the list is probably different from the order
you specified when you defined the control. If you know the item's text, use FindItem to
determine the item's index.

Examples

Assuming lb_actions contains 10 items, this statement deletes item 5 from lb_actions and
returns 9:

lb_actions.DeleteItem(5)

These statements delete the first selected item in lb_actions:

integer li_Index
li_Index = lb_actions.SelectedIndex()
lb_actions.DeleteItem(li_Index)

This statement deletes the item "Personal" from the ListBox lb_purpose:

lb_purpose.DeleteItem(&
 lb_purpose.FindItem("Personal", 1))

These statements deletes an item from the ribbon combo box:

Integer li_Return
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.SetBoxPictureList("PaperSizeA0Small!,PaperSizeA1Small!")
li_Return = lr_ComboBox.AddItem("Item1")
li_Return = lr_ComboBox.AddItem("Item2",1)
li_Return = lr_ComboBox.DeleteItem(1)

See also

AddItem

FindItem

InsertItem

SelectItem

2.4.121.2 Syntax 2: For ListView controls

Description

Deletes the specified item from a ListView control.

Applies to

ListView controls

Syntax

listviewname.DeleteItem (index)

Table 2.505:

Argument Description

listviewname The name of the ListView control from which you want to delete an item

Statements, Events, and Functions

Page 510

Argument Description

index The index number of the item you want to delete

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example uses SelectedIndex to find the index of the selected ListView item and then
deletes the corresponding item:

integer index
index = lv_list.selectedindex()
lv_list.DeleteItem(index)

See also

AddItem

FindItem

InsertItem

SelectItem

DeleteItems

2.4.121.3 Syntax 3: For TreeView controls

Description

Deletes an item from a control and all its child items, if any.

Applies to

TreeView controls

Syntax

treeviewname.DeleteItem (itemhandle)

Table 2.506:

Argument Description

treeviewname The name of the TreeView control from which you want to delete an item

itemhandle The handle of the item you want to delete

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

If all items are children of a single item at the root level, you can delete all items in the
TreeView with the handle for RootTreeItem as the argument for DeleteItem. Otherwise, you
need to loop through the items at the first level.

Statements, Events, and Functions

Page 511

Examples

This example deletes an item from a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
tv_list.DeleteItem(ll_tvi)

This example deletes all items from a TreeView control when there are several items at the
first level:

long tvi_hdl = 0
DO UNTIL tv_1.FindItem(RootTreeItem!, 0) = -1
 tv_1.DeleteItem(tvi_hdl)
LOOP

See also

AddItem

FindItem

InsertItem

SelectItem

DeleteItems

2.4.121.4 Syntax 4: For RibbonMenu controls

Description

Removes a menu item from the ribbon menu.

Applies to

RibbonMenu controls

Syntax

controlname.DeleteItem ({ Long ParentIndex, } Long Index)

Table 2.507:

Argument Description

controlname The name of the RibbonMenu control from which you want to delete an
item

ParentIndex
(optional)

The index of the menu item (RibbonMenuItem) whose submenu you
want to delete.

If not specified, the menu item will be deleted; if specified to a valid
value, the submenu of the menu item (whose index is ParentIndex) will
be deleted; if specified to an invalid value, an error would occur and this
operation would return -1.

Index The index of the menu item or submenu item you want to delete. If index
is invalid, an error would occur and this operation would return -1.

Return value

Integer.

Statements, Events, and Functions

Page 512

Returns the number of items remaining in the list of values after the item is deleted if it
succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Examples

This example inserts a "MenuItem1" menu item and a "SubMenuItem1" submenu item and
then deletes them according to their index number.

Long ll_Return,ll_Index,ll_Index2
RibbonMenu lr_Menu
RibbonMenuItem lr_MenuItem1,lr_SubMenuItem1

lr_MenuItem1.Text = "MenuItem1"
lr_SubMenuItem1.Text = "SubMenuItem1"

ll_Index = lr_Menu.InsertItemLast (lr_MenuItem1)
ll_Index2 = lr_Menu.InsertItemLast (ll_Index,lr_SubMenuItem1)
ll_Return = lr_Menu.DeleteItem (ll_Index,ll_Index2)
ll_Return = lr_Menu.DeleteItem (ll_Index)

See also

AddSeparatorItem

GetItem

GetItemCount

InsertItem

InsertItemFirst

InsertItemLast

SetItem

2.4.121.5 Syntax 5: For RibbonBar controls

Description

Removes an item from the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.DeleteItem (Long ItemHandle)

Table 2.508:

Argument Description

controlname The name of the RibbonBar control from which you want to delete an
item.

ItemHandle The handle of the item which you want to delete.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Statements, Events, and Functions

Page 513

Usage

This function can be used to delete items including ApplicationButton, TabButton, Category,
Panel, Group, CheckBox, ComboBox, LargeButton, and SmallButton; but cannot delete
RibbonMenuItem. To delete RibbonMenuItem, you can use the DeleteItem Syntax 4,
DeleteMasterItem, and DeleteRecentItem functions.

You can also use the following functions to delete the individual item control:
RemoveApplicationButton, DeleteCategory, DeleteCheckBox, DeleteComboBox,
DeleteGroup, DeleteLargeButton, DeletePanel, DeleteSmallButton, and DeleteTabButton.

Examples

This example gets and deletes the categories one by one in a loop. It gets the category by
index and deletes it by handle.

Long ll_CateGoryCount, ll_i
Integer li_return
RibbonCategoryItem lr_CateGory

rbb_1.InsertCategoryFirst("MyCategory1")
rbb_1.InsertCategoryLast ("MyCategory2")

//Deletes all categories
ll_CateGoryCount = Rbb_1.GetCateGorycount()
For ll_i = ll_CateGoryCount To 1 Step -1
 If rbb_1.getcategoryByIndex(ll_i, lr_CateGory) = 1 Then
 //Deletes a cateogory
 li_return = rbb_1.DeleteItem(lr_Category.itemhandle)
 End If
Next

2.4.122 DeleteItems

Description

Deletes all items from a ListView control.

Applies to

ListView controls

Syntax

listviewname.DeleteItems ()

Table 2.509:

Argument Description

listviewname The name of the ListView control from which you want to delete all
items

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes all the items in a ListView control:

lv_list.DeleteItems()

Statements, Events, and Functions

Page 514

See also

DeleteItem

2.4.123 DeleteLargeButton

Description

Removes a large button from the panel of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.DeleteLargeButton (Long ItemHandle)

Table 2.510:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the large button you want to delete.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also delete an item according to the handle by using the DeleteItem function.

Examples

The example gets the large button whose index number is 1 in the "MyPanel" panel and then
deletes it according to its handle.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton
RibbonLargeButtonItem lr_LargeButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_LargeButton = rbb_1.InsertLargeButtonFirst (ll_Handle_Panel, "Add",
 "AddBig!", "Ue_AddButtonClicked")
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_LargeButton)
If li_Return = 1 Then
 li_Return = rbb_1.DeleteLargeButton (lr_LargeButton.ItemHandle)
End If

See also

InsertLargeButton

InsertLargeButtonFirst

InsertLargeButtonLast

SetLargeButton

Statements, Events, and Functions

Page 515

GetLargeButton

GetChildItemByIndex

2.4.124 DeleteLargePicture

Description

Deletes a picture from the large image list.

Applies to

ListView controls

Syntax

listviewname.DeleteLargePicture (index)

Table 2.511:

Argument Description

listviewname The name of the ListView control to which you want to delete a large
picture from the image list

index The index entry for the large picture you want to delete

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes a large picture from a ListView control:

lv_list.DeleteLargePicture(1)

See also

DeleteLargePictures

2.4.125 DeleteLargePictures

Description

Deletes all large pictures from a ListView control.

Applies to

ListView controls

Syntax

listviewname.DeleteLargePictures ()

Table 2.512:

Argument Description

listviewname The name of the ListView control from which you want to delete all
pictures from the large picture image list

Statements, Events, and Functions

Page 516

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes all large pictures from a ListView control:

lv_list.DeleteLargePictures()

See also

DeleteLargePicture

2.4.126 DeleteMasterItem

Description

Removes a master menu item from the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.DeleteMasterItem ({ Long ParentIndex, } Long Index)

Table 2.513:

Argument Description

controlname The name of the RibbonApplicationMenu control from which you want
to remove the master menu item.

ParentIndex
(optional)

The index of the master menu item (RibbonMenuItem) whose submenu
you want to delete.

If not specified, the master menu item will be deleted; if specified to a
valid value, the submenu item of the master menu item (whose index
is ParentIndex) will be deleted; if specified to an invalid value, an error
would occur and this operation would return -1.

Index The index of the master menu item or submenu item which you want to
delete. If index is invalid, an error would occur and this operation would
return -1.

Return value

Integer.

Returns the number of items remaining in the list of values after the item is deleted if it
succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Examples

This example inserts a "MenuItem1" master menu item and a "SubMenuItem1" submenu
item and then deletes them according to their index number.

Long ll_Return,ll_Index,ll_Index2

Statements, Events, and Functions

Page 517

RibbonApplicationMenu lr_AppMenu
RibbonMenuItem lr_MenuItem1,lr_MenuItem2

lr_MenuItem1.Text = "MenuItem1"
lr_MenuItem2.Text = "SubMenuItem1"

ll_Index = lr_AppMenu.InsertMasterItemLast(lr_MenuItem1)
ll_Index2 = lr_AppMenu.InsertMasterItemLast(ll_Index,lr_MenuItem2)
ll_Return = lr_AppMenu.DeleteMasterItem(ll_Index,ll_Index2)
ll_Return = lr_AppMenu.DeleteMasterItem(ll_Index)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.127 DeletePanel

Description

Removes a panel from the category of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.DeletePanel (Long ItemHandle)

Table 2.514:

Argument Description

controlname The name of the RibbonBar control.

Statements, Events, and Functions

Page 518

Argument Description

ItemHandle The handle of the panel you want to delete.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also delete an item according to the handle by using the DeleteItem function.

Examples

This example gets the panel whose index number is 1 in the "MyCategory" category and then
deletes it according to its handle.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel
RibbonPanelItem lr_Panel

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Category, 1, lr_Panel)
If li_Return = 1 Then
 li_Return = rbb_1.DeletePanel (lr_Panel.ItemHandle)
End If

See also

InsertPanel

InsertPanelFirst

InsertPanelLast

SetPanel

GetPanel

GetChildItemByIndex

2.4.128 DeletePicture

Description

Deletes a picture from the image list.

Applies to

PictureListBox, DropDownPictureListBox, and TreeView controls

Syntax

controlname.DeletePicture (index)

Table 2.515:

Argument Description

controlname The control from which you want to delete a picture

Statements, Events, and Functions

Page 519

Argument Description

index The index number of the picture you want to delete from the TreeView
control's image list

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

When you delete a picture from the image list for a control, all subsequent pictures in the list
are renumbered to fill the gap. Because the picture index for an item does not change, the
pictures for items that use the affected index numbers will change.

Examples

This example deletes the sixth image from the image list:

tv_list.DeletePicture(6)

See also

AddPicture

DeletePictures

2.4.129 DeletePictures

Description

Deletes all pictures from an image list.

Applies to

PictureListBox, DropDownPictureListBox, and TreeView controls

Syntax

controlname.DeletePictures ()

Table 2.516:

Argument Description

controlname The control in which you want to delete all pictures from the image list

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes all images from a TreeView control image list:

tv_list.DeletePictures()

See also

AddPicture

DeletePicture

Statements, Events, and Functions

Page 520

2.4.130 DeleteRecentItem

Description

Removes a recent menu item from the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.DeleteRecentItem (Long Index)

Table 2.517:

Argument Description

controlname The name of the RibbonApplicationMenu control from which you want
to remove the recent menu item.

Index The index of the recent menu item which you want to delete.

Return value

Long.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Examples

This example inserts the "RecentItem1" recent menu item and then deletes it according to its
index number.

Integer li_Return
Long ll_Index
RibbonApplicationMenu lr_AppMenu

ll_Index = lr_AppMenu.InsertRecentItemFirst ("RecentItem1",
 "Ue_RecentItem1Clicked")
li_Return = lr_AppMenu.DeleteRecentItem (ll_Index)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

Statements, Events, and Functions

Page 521

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.131 DeleteSeries

Description

Deletes a series and its data values from a graph.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects (because their data comes directly from the DataWindow).

Syntax

controlname.DeleteSeries (seriesname)

Table 2.518:

Argument Description

controlname The graph in which you want to delete a series

seriesname A string whose value is the name of the series you want to delete from
controlname

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, DeleteSeries
returns null.

Usage

The series in a graph are numbered consecutively, in the order they were added to the graph.
When a series is deleted, the remaining series are renumbered.

Examples

This script for the SelectionChanged event of a DropDownListBox assumes that the list box
lists the series in the graph gr_data. When the user chooses an item, DeleteSeries deletes the
series from the graph and DeleteItem deletes the name from the list box:

string ls_name
ls_name = This.Text
gr_data.DeleteSeries(ls_name)
This.DeleteItem(This.FindItem(ls_name, 0))

See also

AddSeries

DeleteCategory

Statements, Events, and Functions

Page 522

DeleteData

FindSeries

2.4.132 DeleteSmallButton

Description

Removes a small button from the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.DeleteSmallButton (Long ItemHandle)

Table 2.519:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the small button you want to delete.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also delete an item according to the handle by using the DeleteItem function.

Examples

This example gets the small button whose index number is 1 in the "MyPanel" panel and then
deletes it according to its handle.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_SmallButton
RibbonSmallButtonItem lr_SmallButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_SmallButton = rbb_1.InsertSmallButtonFirst (ll_Handle_Panel, "Add",
 "AddSmall!", "Ue_AddButtonClicked")
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_SmallButton)
If li_Return = 1 Then
 li_Return = rbb_1.DeleteSmallButton (lr_SmallButton.ItemHandle)
End If

See also

InsertSmallButton

InsertSmallButtonFirst

InsertSmallButtonLast

SetSmallButton

Statements, Events, and Functions

Page 523

GetSmallButton

GetChildItemByIndex

2.4.133 DeleteSmallPicture

Description

Deletes a small picture from a ListView control.

Applies to

ListView controls

Syntax

listviewname.DeleteSmallPicture (index)

Table 2.520:

Argument Description

listviewname The name of the ListView control from which you want to delete a small
picture from the image list

index The index number of the small picture you want to delete

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes a small picture from a ListView control:

lv_list.DeleteSmallPicture(1)

See also

DeleteSmallPictures

2.4.134 DeleteSmallPictures

Description

Deletes all small pictures from a ListView control.

Applies to

ListView controls

Syntax

listviewname.DeleteSmallPictures ()

Table 2.521:

Argument Description

listviewname The name of the ListView control from which you want to delete all
small pictures

Statements, Events, and Functions

Page 524

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes all small pictures from a ListView control:

lv_list.DeleteSmallPictures()

See also

DeleteStatePicture

2.4.135 DeleteStatePicture

Description

Deletes a state picture from a control.

Applies to

ListView and TreeView controls

Syntax

controlname.DeleteStatePicture (index)

Table 2.522:

Argument Description

controlname The name of the ListView or TreeView control from which you want to
delete a picture from the state image list

index The index number of the state picture you want to delete

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes a state picture from a ListView control:

lv_list.DeleteStatePicture(1)

See also

DeleteStatePictures

2.4.136 DeleteStatePictures

Description

Deletes all state pictures from a control.

Applies to

ListView and TreeView controls

Statements, Events, and Functions

Page 525

Syntax

controlname.DeleteStatePictures ()

Table 2.523:

Argument Description

controlname The name of the ListView or TreeView control from which you want to
delete all state pictures

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example deletes all state pictures from a ListView control:

lv_list.DeleteStatePictures()

See also

DeleteStatePicture

2.4.137 DeleteTabButton

Description

Removes a tab button from the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.DeleteTabButton (Long ItemHandle)

Table 2.524:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the tab button you want to delete.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also delete an item according to the handle by using the DeleteItem function.

Examples

This example gets the tab button whose index number is 1 and then deletes it according to its
handle.

Integer li_Return

Statements, Events, and Functions

Page 526

Long ll_Handle
RibbonTabButtonItem lr_TabButton

ll_Handle = rbb_1.InsertTabButtonFirst ("MyTabButton", "ArrowUpSmall!",
 "Ue_TabButtonClicked")
li_Return = rbb_1.GetTabButtonByIndex (1, lr_TabButton)
If li_Return = 1 Then
 li_Return = rbb_1.DeleteTabButton (ll_Handle)
End If

See also

InsertTabButton

InsertTabButtonFirst

InsertTabButtonLast

SetTabButton

GetTabButton

GetTabButtonByIndex

GetTabButtonCount

2.4.138 DestroyModel

Description

Destroys the current performance analysis or trace tree model.

Applies to

Profiling and TraceTree objects

Syntax

instancename.DestroyModel ()

Table 2.525:

Argument Description

instancename Instance name of the Profiling or TraceTree object

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• ModelNotExistsError! -- The function failed because no model exists

Usage

When you are finished with the performance analysis or trace tree model you created using
the BuildModel function, you must call DestroyModel to destroy the model as well as all the
objects associated with that model. The memory allocated to a model will not be released
until the object is destroyed.

Examples

Statements, Events, and Functions

Page 527

This example destroys the performance analysis model previously created using the
BuildModel function:

lpro_model.DestroyModel()
DESTROY lpro_model

See also

BuildModel

2.4.139 DirectoryExists

Description

Determines if the named directory exists.

Syntax

DirectoryExists (directoryname)

Table 2.526:

Argument Description

directoryname String for the name of the directory you want to verify as existing

Return value

Returns true if the directory exists. Returns false if the directory does not exist or if you pass
a file name in the directoryname argument.

Usage

You can use this method before attempting to move a file or delete a directory using other file
system methods.

Examples

This example determines if a directory exists before attempting to move a file to it; otherwise
it displays a message box indicating that the path does not exist:

string ls_path="monthly targets"

If DirectoryExists (ls_path) Then
 FileMove ("2000\may.csv", ls_path+"\may.csv")
 MessageBox ("File Mgr", "File moved to "&
 + ls_path + ".")
Else
 MessageBox ("File Mgr", "Directory " + ls_path+&
 " does not exist")
End If

See also

FileMove

GetCurrentDirectory

RemoveDirectory

2.4.140 DirList

Description

Statements, Events, and Functions

Page 528

Populates a ListBox with a list of files. You can specify a path, a mask, and a file type to
restrict the set of files displayed. If the window has an associated StaticText control, DirList
can display the current drive and directory as well.

Applies to

ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox controls

Syntax

listboxname.DirList (filespec, filetype {, statictext })

Table 2.527:

Argument Description

listboxname The name of the ListBox control you want to populate.

filespec A string whose value is the file pattern. This is usually a mask (for
example, *.INI or *.TXT). If you include a path, it becomes the current
drive and directory.

filetype An unsigned integer representing one or more types of files you want to
list in the ListBox. Types are:

• 0 -- Read/write files

• 1 -- Read-only files

• 2 -- Hidden files

• 4 -- System files

• 16 -- Subdirectories

• 32 -- Archive (modified) files

• 16384 -- Drives

• 32768 -- Exclude read/write files from the list

To list several types, add the numbers associated with the types.
For example, to list read-write files, subdirectories, and drives, use
0+16+16384 or 16400 for filetype.

statictext
(optional)

The name of the StaticText in which you want to display the current drive
and directory.

Return value

Boolean.

Returns true if the search path is valid so that the ListBox is populated or the list is empty.
DirList returns false if the ListBox cannot be populated (for example, filespec is a file, not a
directory, or specifies an invalid path). If any argument's value is null, DirList returns null.

Usage

Statements, Events, and Functions

Page 529

You can call DirList when the window opens to populate the list initially. You should also
call DirList in the script for the SelectionChanged event to repopulate the list box based on
the new selection. (See the example in DirSelect.)

Alternatives

Although DirList's features allow you to emulate the standard File Open and File
Save windows, you can get the full functionality of these standard windows by calling
GetFileOpenName and GetFileSaveName instead of DirList.

Examples

This statement populates the ListBox lb_emp with a list of read/write files with the file
extension TXT in the search path C:\EMPLOYEE*.TXT:

lb_emp.DirList("C:\EMPLOYEE*.TXT", 0)

This statement populates the ListBox lb_emp with a list of read-only files with the file
extension DOC in the search path C:\EMPLOYEE*.DOC and displays the path specification
in the StaticText st_path:

lb_emp.DirList("C:\EMPLOYEE*.DOC", 1, st_path)

These statements in the script for a window Open event initialize a ListBox to all files in the
current directory that match *.TXT:

String s_filespec
s_filespec = "*.TXT"
lb_filelist.DirList(s_filespec, 16400, st_filepath)

See also

DirSelect

GetFolder

2.4.141 DirSelect

Description

When a ListBox has been populated with the DirList function, DirSelect retrieves the current
selection and stores it in a string variable.

Applies to

ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox controls

Syntax

listboxname.DirSelect (selection)

Table 2.528:

Argument Description

listboxname The name of the ListBox control from which you want to retrieve the
current selection. The ListBox must have been populated using DirList,
and the selection must be a drive letter, a file, or the name of a directory.

selection A string variable in which the selected path name will be put.

Statements, Events, and Functions

Page 530

Return value

Boolean.

Returns true if the current selection is a drive letter or a directory name (which can contain
files and other directories) and false if it is a file (indicating the user's final choice). If any
argument's value is null, DirSelect returns null.

Usage

Use DirSelect in the SelectionChanged event to find out what the user chose. When the user's
selection is a drive or directory, use the selection as a new directory specification for DirList.

Examples

The following script for the SelectionChanged event for the ListBox lb_FileList calls
DirSelect to test whether the user's selection is a file. If not, the script joins the directory
name with the file pattern, and calls DirList to populate the ListBox and display the current
drive and directory in the StaticText st_FilePath. If the current selection is a file, other code
processes the file name:

string ls_filename, ls_filespec = "*.TXT"

IF lb_FileList.DirSelect(ls_filename) THEN
 //If ls_filename is not a file,
 //append directory to ls_filespec.
 ls_filename = ls_filename + ls_filespec
 lb_filelist.DirList(ls_filename, &
 16400, st_FilePath)
ELSE
 ... //Process the file.
END IF

See also

DirList

GetFolder

2.4.142 Disable

Description

Disables an item on a menu. The menu item is dimmed (its color is changed to the user's
disabled text color, usually gray), and the user cannot select it.

Applies to

Menu objects

Syntax

menuname.Disable ()

Table 2.529:

Argument Description

menuname The name of the menu selection you want to deactivate (disable)

Return value

Statements, Events, and Functions

Page 531

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If menuname is null, Disable returns null.

Equivalent syntax

Setting the menu's Enabled property is the same as calling Disable.

menuname.Enabled = false

This statement:

m_appl.m_edit.Enabled = FALSE

is equivalent to:

m_appl.m_edit.Disable()

Examples

This statement disables the m_edit menu item on the menu m_appl:

m_appl.m_edit.Disable()

See also

Enable

2.4.143 DisableCommit

Description

Declares that a component's transaction updates are inconsistent and cannot be committed in
their present state.

Applies to

TransactionServer objects

Syntax

transactionserver.DisableCommit ()

Table 2.530:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

The DisableCommit function indicates that the current transaction cannot be committed
because the component's work has not been completed; the instance remains active after the
current method returns.

Examples

Statements, Events, and Functions

Page 532

The following example shows the use of the DisableCommit in a component method that
performs database updates:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts
Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", &
 ts)
IF li_rc <> 1 THEN
 // handle the error
END IF
...
ll_rv = ids_datastore.Update()

IF ll_rv = 1 THEN
 ts.EnableCommit()
ELSE
 ts.DisableCommit()
END IF

See also

EnableCommit

IsInTransaction (obsolete)

IsTransactionAborted (obsolete)

SetAbort

SetComplete

Which

2.4.144 DisconnectObject

Description

Releases any object that is connected to the specified OLEObject variable.

Applies to

OLEObject objects

Syntax

oleobject.DisconnectObject ()

Table 2.531:

Argument Description

oleobject The name of an OLEObject variable that you want to disconnect from
an OLE object. You cannot specify an OLEObject that is the Object
property of an OLE control.

Return value

Integer.

Statements, Events, and Functions

Page 533

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Invalid call: the argument is the Object property of a control

-9 -- Other error

If oleobject is null, DisconnectObject returns null.

Usage

The OLEObject variable is used for OLE automation, in which the PowerBuilder application
asks the server application to manipulate the OLE object programmatically.

For more information about OLE automation, see ConnectToObject.

Examples

This example creates an OLEObject variable and connects it to a new Excel object; then after
some unspecified code, it disconnects:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToNewObject(&
 "excel.application")
. . .
result = myoleobject.DisconnectObject()

See also

ConnectToObject

ConnectToNewObject

2.4.145 DisconnectServer

Description

Disconnects a client application from a server application.

Applies to

Connection objects

Syntax

connection.DisconnectServer ()

Table 2.532:

Argument Description

connection The name of the Connection object used to establish the connection you
want to delete

Return value

Long.

Returns 0 if it succeeds and one of the following values if an error occurs:

50 -- Distributed service error

Statements, Events, and Functions

Page 534

52 -- Distributed communications error

53 -- Requested server not active

54 -- Server not accepting requests

55 -- Request terminated abnormally

56 -- Response to request incomplete

57 -- Not connected

62 -- Server busy

Usage

After disconnecting from the server application, the client application needs to destroy the
Connection object.

DisconnectServer causes all remote objects and proxy objects created for the client
connection to be destroyed.

Examples

In this example, the client application disconnects from the server application using the
Connection object myconnect:

myconnect.DisconnectServer()
destroy myconnect

See also

ConnectToServer (obsolete)

2.4.146 Double

Description

Converts a string to a double or obtains a double value that is stored in a blob.

Syntax

Double (stringorblob)

Table 2.533:

Argument Description

stringorblob A string whose value you want returned as a double or a blob in which
the first value is the double value. The rest of the contents of the blob is
ignored. Stringorblob can also be an Any variable containing a double or
blob.

Return value

Double.

Returns the contents of stringorblob as a double. If stringorblob is not a valid PowerScript
number or if it contains a non-numeric datatype, Double returns 0. If stringorblob is null,
Double returns null.

Usage

Statements, Events, and Functions

Page 535

To distinguish between a string whose value is the number 0 and a string whose value is not a
number, use the IsNumber function before calling the Double function.

Examples

This statement returns 24.372 as a double:

Double("24.372")

This statement returns the contents of the SingleLineEdit sle_distance as a double:

Double(sle_distance.Text)

After assigning blob data from the database to lb_blob, this example obtains the double value
stored at position 20 in the blob (the length you specify for BlobMid must be at least as long
as the value but can be longer):

double lb_num
lb_num = Double(BlobMid(lb_blob, 20, 40))

For an example of assigning and extracting values from a blob, see Real.

See also

Dec

Integer

Long

Real

2.4.147 DoVerb

Description

Requests the OLE server application to execute the specified verb for the OLE object in an
OLE control or OLE DWObject.

Applies to

OLE controls and OLE DWObjects (objects within a DataWindow object that is within a
DataWindow control)

Syntax

objectref.DoVerb (verb)

Table 2.534:

Argument Description

objectref The name of the OLE control or the fully qualified name of a OLE
DWObject within a DataWindow control for which you want to execute a
verb. The fully qualified name for a DWObject has this syntax:

dwcontrol.Object.dwobjectname

verb An integer identifying a verb known to the OLE server application. Verbs
are operations that the server can perform on the OLE object. Check the
documentation for the server's OLE implementation to find out what
verbs it supports.

Statements, Events, and Functions

Page 536

Return value

Integer.

Returns 0 if it succeeds and one of the following values if an error occurs:

-1 -- Container is empty

-2 -- Invalid verb for object

-3 -- Verb not implemented by object

-4 -- No verbs supported by object

-5 -- Object cannot execute verb now

-9 -- Other error

If any argument's value is null, DoVerb returns null.

Examples

This example executes verb 7 for the object in the OLE control ole_1:

integer result
result = ole_1.DoVerb(7)

This example executes verb 7 for the object in the OLE DWObject ole_graph:

integer result
result = dw_1.Object.ole_graph.DoVerb(7)

See also

Activate

OLEActivate method for DataWindows in Section 9.110, “OLEActivate” in DataWindow
Reference.

SelectObject

2.4.148 Drag

Description

Starts or ends the dragging of a control.

Applies to

All controls except drawing objects (Lines, Ovals, Rectangles, and Rounded Rectangles)

Syntax

control.Drag (dragmode)

Table 2.535:

Argument Description

control The name of the control you want to drag or stop dragging

dragmode A value of the DragMode datatype indicating the action you want to take
on control:

• Begin! -- Put control in drag mode

Statements, Events, and Functions

Page 537

Argument Description
• Cancel! -- Stop dragging control but do not cause a DragDrop event

• End! -- Stop dragging control and if control is over a target object,
cause a DragDrop event

Return value

Integer.

For all controls except OLE controls, returns 1 if it succeeds and -1 if you try to nest drag
events or try to cancel the drag when control is not in drag mode. The return value is usually
not used.

For OLE controls, returns the following values:

2 -- Object was moved

1 -- Drag was canceled

0 -- Drag succeeded

-1 -- Control is empty

-9 -- Unspecified error

If any argument's value is null, Drag returns null.

Usage

To see the list of draggable controls, open the Browser. All the objects in the hierarchy below
dragobject are draggable.

If you set the control's DragAuto property to true, PowerBuilder automatically puts the
control in drag mode when the user clicks it. The user must hold the mouse button down to
drag.

When you use Drag(Begin!) in a control's Clicked event to manually put the control in drag
mode, the user can drag the control by moving the mouse without holding down the mouse
button. Clicking the left mouse button ends the drag. CANCEL! and END! are required only
if you want to end the drag without requiring the user to click the left mouse button.

Dragging DataWindow controls

The Clicked event of a DataWindow control occurs when the user presses the
mouse button, not when the mouse button is released. If you place Drag(Begin!) in
a DataWindow control's Clicked event, releasing the mouse button ends the drag.
To achieve the same behavior as with other controls, define a user-defined event for
the DataWindow control called lbuttonup and map it to the pbm_lbuttonup event ID.
Then place the following code in the lbuttonup event script (ib_dragflag is a boolean
instance variable):

IF NOT ib_dragflag THEN
 this.Drag(Begin!)
 ib_dragflag = TRUE
ELSE
 ib_dragflag = FALSE

Statements, Events, and Functions

Page 538

END IF

To make something happen when the user drags a control onto a target object, write
scripts for one or more of the target's drag events (DragDrop, DragEnter, DragLeave, and
DragWithin).

Examples

This statement puts sle_emp into drag mode:

sle_emp.Drag(Begin!)

See also

DraggedObject (obsolete)

2.4.149 DraggedObject (obsolete)

Description

Returns a reference to the control that triggered a drag event.

Obsolete function

You no longer need to call the DraggedObject function in a drag event. Use the
event's source argument instead.

Syntax

DraggedObject ()

Return value

DragObject, a special datatype that includes all draggable controls (all the controls but no
drawing objects). Returns a reference to the control that is currently being dragged.

No control

If no control is being dragged, an execution error message is displayed.

Usage

Call DraggedObject in a drag event for the target object. The drag events are DragDrop,
DragEnter, DragLeave, and DragWithin. Use TypeOf to obtain the datatype of the control.
To access the properties of the control, you can assign the DragObject reference to a variable
of that control's datatype (see the example).

Examples

These statements set which_control equal to the datatype of the control that is currently being
dragged, and then set ls_text_value to the text property of the dragged control:

SingleLineEdit sle_which
CommandButton cb_which
string ls_text_value
DragObject which_control

which_control = DraggedObject()

Statements, Events, and Functions

Page 539

CHOOSE CASE TypeOf(which_control)

CASE CommandButton!
 cb_which = which_control
 ls_text_value = cb_which.Text
CASE SingleLineEdit!
 sle_which = which_control
 ls_text_value = sle_which.Text
END CHOOSE

See also

Drag

TypeOf

2.4.150 Draw

Description

Draws a picture control at a specified location in the current window.

Applies to

Picture controls

Syntax

picture.Draw (xlocation, ylocation)

Table 2.536:

Argument Description

picture The name of the picture control you want to draw in the current window

xlocation The x coordinate of the location (in PowerBuilder units) at which you
want to draw the picture

ylocation The y coordinate of the location (in PowerBuilder units) at which you
want to draw the picture

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, Draw returns
null. The return value is usually not used.

Usage

Using the Draw function is faster and produces less flicker than successively changing the X
property of a picture. This is because the Draw function draws directly on the window rather
than recreating a small window with the picture in it for each change. Therefore, use Draw to
draw pictures in animation.

To create animation, you can place a picture outside the visible portion of the window and
then use the Draw function to draw it at different locations in the window. However, the
image remains at all the positions where you draw it. If you change the position by small
increments, each new drawing of the picture covers up most of the previous image.

Statements, Events, and Functions

Page 540

Using Draw does not change the position of the picture control -- it just displays the control's
image at the specified location. Use the Move function to actually change the position of the
control.

Examples

This statement draws the bitmap p_Train at the location specified by the X and Y coordinates
100 and 200:

p_Train.Draw(100, 200)

These statements draw the bitmap p_Train in many different locations so it appears to move
from left to right across the window:

integer horizontal
FOR horizontal = 1 TO 2000 STEP 8
 p_Train.Draw(horizontal, 100)
NEXT

See also

Move

2.4.151 EditLabel

Put a label in a ListView or TreeView control into edit mode.

Table 2.537:

To enable editing of a label in a Use

ListView control Syntax 1

TreeView control Syntax 2

2.4.151.1 Syntax 1: For editing a label in a ListView

Description

Puts a label in a ListView into edit mode.

Applies to

ListView controls

Syntax

listviewname.EditLabel (index)

Table 2.538:

Argument Description

listviewname The ListView control in which you want to enable label editing

index The index of the ListView item to be edited

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Statements, Events, and Functions

Page 541

Usage

The EditLabels property for the ListView must be set to true to enable editing of labels.
When this property is true, calling the EditLabel function sets focus on the item and enables
editing. To disable editing when the user has finished editing the label, set the EditLabels
property to false in the EndLabelEdit event.

If the EditLabels property is set to false, the EditLabel function does not enable editing.

Examples

This example allows the user to edit the label of the first selected item in the ListView control
lv_1:

integer li_selected
li_selected = lv_1.SelectedIndex()
lv_1.EditLabels = TRUElv_1.EditLabel(li_selected)

See also

FindItem

2.4.151.2 Syntax 2: For editing a label in a TreeView

Description

Puts a label in a TreeView into edit mode.

Applies to

TreeView controls

Syntax

treeviewname.EditLabel (itemhandle)

Table 2.539:

Argument Description

treeviewname The TreeView control in which you want to enable label editing

itemhandle The handle of the item to be edited

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

The EditLabels property for the TreeView must be set to true to enable editing of labels.
When this property is true, calling the EditLabel function sets focus on the item and enables
editing. To disable editing when the user has finished editing the label, set the EditLabels
property to false in the EndLabelEdit event.

If the EditLabels property is set to false, the EditLabel function does not enable editing.

Examples

This example allows the user to edit the label of the current TreeView item:

Statements, Events, and Functions

Page 542

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
tv_list.EditLabels = TRUE
tv_list.EditLabel(ll_tvi)

See also

FindItem

2.4.152 Enable

Description

Enables an item on a menu so a user can select it.

Applies to

Menu objects

Syntax

menuname.Enable ()

Table 2.540:

Argument Description

menuname The name of the menu selection you want to enable

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If menuname is null, Enable returns null.

Usage

Enabling a menu item changes its color to the active color (not the dimmed, or disabled,
color). Calling Enable sets the item's Enabled property to true.

Equivalent syntax

Setting the menu's Enabled property is the same as calling Enable.

menuname.Enabled = TRUE

This statement:

menu_appl.m_delete.Enabled = TRUE

is equivalent to:

menu_appl.m_delete.Enable()

Examples

This statement enables the m_delete menu selection on the menu m_appl:

m_appl.m_delete.Enable()

See also

Disable

Statements, Events, and Functions

Page 543

2.4.153 EnableCommit

Description

Declares that a component's work may be incomplete but its transaction updates are
consistent and can be committed.

Applies to

TransactionServer objects

Syntax

transactionserver.EnableCommit ()

Table 2.541:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

The EnableCommit function indicates that the component should not be deactivated after the
current method invocation. However, if the component instance is deactivated, the current
transaction can be committed.

Examples

The following example shows the use of EnableCommit in a component method that
performs database updates:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts
Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", ts)
IF li_rc <> 1 THEN
 // handle the error
END IF
...
ll_rv = ids_datastore.Update()
IF ll_rv = 1 THEN
 ts.EnableCommit()
ELSE
 ts.DisableCommit()
END IF

See also

DisableCommit

IsInTransaction (obsolete)

IsTransactionAborted (obsolete)

Statements, Events, and Functions

Page 544

Lookup (obsolete)

SetAbort

SetComplete

Which

2.4.154 EntryList

Description

Provides a list of the top-level entries included in a trace tree model.

Applies to

TraceTree objects

Syntax

instancename.EntryList (list)

Table 2.542:

Argument Description

instancename Instance name of the TraceTree object.

list An unbounded array variable of datatype TraceTreeNode in which
EntryList stores a TraceTreeNode object for each top-level entry in the
trace tree model. This argument is passed by reference.

Return value

ErrorReturn. Returns the following values:

• Success! -- The function succeeded

• ModelNotExistsError! -- The function failed because no model exists

Usage

You use the EntryList function to extract a list of the top-level entries or nodes included
in a trace tree model. Each top-level entry listed is defined as a TraceTreeNode object and
provides the type of activity represented by that node.

You must have previously created the trace tree model from a trace file using the BuildModel
function.

Examples

This example gets the top-level entries or nodes in a trace tree model and then loops
through the list extracting information about each node. The of_dumpnode function takes a
TraceTreeNode object and a level as arguments and returns a string containing information
about the node:

TraceTree ltct_model
TraceTreeNode ltctn_list[], ltctn_node
Long ll_index,ll_limit
String ls_line

Statements, Events, and Functions

Page 545

ltct_model = CREATE TraceTree
ltct_model.BuildModel()
ltct_model.EntryList(ltctn_list)
ll_limit = UpperBound(ltctn_list)
FOR ll_index = 1 TO ll_limit
 ltctn_node = ltctn_list[ll_index]
 ls_line += of_dumpnode(ltctn_node,0)
NEXT
...

See also

BuildModel

2.4.155 EvaluateJavascriptAsync

Description

Executes JavaScript asynchronously. This function triggers the EvaluateJavascriptFinished
event.

Applies to

WebBrowser controls

Syntax

controlname.EvaluateJavascriptAsync (string script)

Table 2.543:

Argument Description

controlname The name of the WebBrowser control.

script The JavaScript to be evaluated.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Basic and digest authentications

When the web page to be accessed needs basic or digest authentication, the WebBrowser
control will automatically display a login window for the user to enter the user name and
password for authentication. If the authentication fails, this window will display again until
the authentication is successful or the authentication operation is cancelled.

Examples

String ls_JS
Integer li_Return

ls_JS = "window.alert('This is Appeon PowerBuilder!');"
li_Return = wb_1.EvaluateJavascriptAsync(ls_JS)

See also

CancelDownload

EvaluateJavascriptSync

Statements, Events, and Functions

Page 546

GetSource

GoBack

GoForward

Navigate

PrintAsPDF

PauseDownload

RegisterEvent

ResumeDownload

Refresh

StopNavigation

UnregisterEvent

Zoom

2.4.156 EvaluateJavascriptSync

Description

Executes JavaScript synchronously.

Applies to

WebBrowser controls

Syntax

controlname.EvaluateJavascriptSync (string script{, ref string result{, ref string
 error}})

Table 2.544:

Argument Description

controlname The name of the WebBrowser control.

script The JavaScript to be evaluated. The JavaScript cannot have statements
that show dialog boxes. If a dialog box must be displayed in JavaScript,
the script must be executed asynchronously.

If there are multiple JavaScript statements, only the last JavaScript
statement will have its result returned.

result The result of script execution. The execution result is represented in a
JSON string. The supported JavaScript data types are bool, int, double,
string, date, array. When the above types are mapped to the PowerBuilder
data types, they are boolean, integer, double, string, datetime, array.

For example,

{"type":"double","value":1585620350123};//returns a double-type value

{"type":"string","value":"12d6_1585674123456_74563"};//returns a
string-type value

Statements, Events, and Functions

Page 547

Argument Description

error The error information if an error occurs during execution. The error
information is represented in a JSON string. For example,

{"type":"error","value":"Uncaught TypeError: Cannot read property
'style' "}

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

The following example executes a JavaScript and gets the current time (double type):

String ls_JS, ls_Result, ls_Error
Integer li_Return

ls_JS = "(new Date()).getTime();"
li_Return = wb_1.EvaluateJavascriptSync(ls_JS, ls_Result)

The following example executes a JavaScript and returns an array:

String ls_JS, ls_Result, ls_Error
Integer li_Return

ls_JS = "new Array(123, new Date(), 'Appeon', 2 > 1)"
li_Return = wb_1.EvaluateJavascriptSync(ls_JS, ls_Result, ls_Error)

The following example executes a JavaScript and parses the result (a JSON string) via the
JSONParser object:

String ls_JS, ls_Result, ls_Error, ls_Type
Integer li_Return
DateTime ldt_DateTime
JsonParser lnv_JsonParser
Long ll_RootObject

lnv_JsonParser = Create JsonParser

ls_JS = "function getNow(){return (new Date());} getNow();"
li_Return = wb_1.EvaluateJavascriptSync(ls_JS, ls_Result, ls_Error)

If li_Return = 1 Then
 lnv_JsonParser.LoadString(ls_Result)
 ll_RootObject = lnv_JsonParser.GetRootItem()
 ls_Type = lnv_JsonParser.GetItemString(ll_RootObject, "type")
 ldt_DateTime = lnv_JsonParser.GetItemDateTime(ll_RootObject, "value")
End If

If IsValid(lnv_JsonParser) Then Destroy (lnv_JsonParser)

See also

CancelDownload

EvaluateJavascriptAsync

GetSource

GoBack

Statements, Events, and Functions

Page 548

GoForward

Navigate

PrintAsPDF

PauseDownload

RegisterEvent

ResumeDownload

Refresh

StopNavigation

UnregisterEvent

Zoom

2.4.157 ExecRemote

Asks a DDE server application to execute the specified command.

Table 2.545:

To send Use

A single command to a DDE server application (a cold link) Syntax 1

A command to a DDE server application after you have opened a channel
(a warm link)

Syntax 2

2.4.157.1 Syntax 1: For sending single commands

Description

Sends a single command to a DDE server application, called a cold link.

Syntax

ExecRemote (command, applname, topicname)

Table 2.546:

Argument Description

command A string whose value is the command you want a DDE server application
to execute. To determine the correct command format, see the
documentation for the server application.

applname A string whose value is the DDE name of the server application.

topicname A string identifying the data or the instance of the DDE application you
want to use with the command. In Microsoft Excel, for example, the topic
name could be system or the name of an open spreadsheet.

Return value

Integer.

Returns 1 if it succeeds. If it fails, it returns a negative integer. Possible values are:

-1 -- Link was not started

Statements, Events, and Functions

Page 549

-2 -- Request denied

-3 -- Could not terminate server

If any argument's value is null, ExecRemote returns null.

Usage

The DDE server application must already be running when you call a DDE function. Use the
Run function to start the application if necessary.

The ExecRemote function allows you to start a cold link or use a warm link between the
PowerBuilder client application and the DDE server application.

A cold link is a single DDE command and is not associated with a DDE channel. Each time
you call ExecRemote without opening a channel (Syntax 1), Windows polls all running
applications to find one that acknowledges the request. The is also true for the related
functions GetRemote and SetRemote.

A warm link is associated with a DDE channel (see Syntax 2).

A DDE hot link, which enables automatic updating of data in the PowerBuilder client
application, involves other functions. For more information, see the StartHotLink function.

Examples

This statement asks Microsoft Excel to save the active spreadsheet as file REGION.XLS. A
channel is not open, so the function arguments specify the application and topic (the name of
the spreadsheet):

ExecRemote("[Save()]", "Excel", "REGION.XLS")

See also

CloseChannel

GetRemote

OpenChannel

SetRemote

StartHotLink

2.4.157.2 Syntax 2: For commands over an opened channel

Description

Sends a command to a DDE server application when you have already called OpenChannel
and established a warm link with the server.

Syntax

ExecRemote (command, handle {, windowhandle })

Table 2.547:

Argument Description

command A string whose value is the command you want a DDE server application
to execute. The format of the command depends on the DDE application
you want to execute the command.

Statements, Events, and Functions

Page 550

Argument Description

handle A long that identifies the channel to the DDE server application. The
OpenChannel function returns handle when you call it to open a DDE
channel.

windowhandle
(optional)

The handle to the window that you want to act as the DDE client. Specify
this parameter to control which window is acting as the DDE client
when you have more than one open window. If you do not specify
windowhandle, the active window acts as the DDE client.

Return value

Integer.

Returns 1 if it succeeds. If an error occurs, ExecRemote returns a negative integer. Possible
values are:

-1 -- Link was not started

-2 -- Request denied

-9 -- Handle is null

Usage

The DDE server application must already be running when you call a DDE function. Use the
Run function to start the application if necessary.

The ExecRemote function allows you start a cold link or use warm link between the
PowerBuilder client application and the DDE server application.

A cold link is a single DDE command and is not associated with a DDE channel (see Syntax
1).

A warm link is associated with a DDE channel. You establish a channel for the DDE
conversation with OpenChannel before sending commands with this syntax of ExecRemote.
A warm link is useful when you need to send several commands to the DDE server
application. Because the channel is open, ExecRemote does not need to have Windows poll
all running applications again. After you have called ExecRemote or the related functions
GetRemote or SetRemote, and finished the work with the DDE server, call CloseChannel to
end the DDE conversation.

A DDE hot link, which enables automatic updating of data in the PowerBuilder client
application, involves other functions. For more information, see the StartHotLink function.

Examples

This excerpt from a script asks the DDE channel to Microsoft Excel to save the active
spreadsheet as file REGION.XLS. The OpenChannel function names the server application
and the topic, so ExecRemote only needs to specify the channel handle. The script is
associated with a button on a window, whose handle is specified as the last argument of
OpenChannel:

long handle

handle = OpenChannel("Excel", "REGION.XLS", &
 Handle(Parent))
. . . // Some processing

Statements, Events, and Functions

Page 551

ExecRemote("[Save]", handle)
CloseChannel(handle, Handle(Parent))

See also

CloseChannel

GetRemote

OpenChannel

SetRemote

2.4.158 Exp

Description

Raises e to the specified power.

Syntax

Exp (n)

Table 2.548:

Argument Description

n The power to which you want to raise e (2.71828)

Return value

Double.

Returns e raised to the power n. If n is null, Exp returns null.

Inverse of Exp

The inverse of the Exp function is the Log function.

Examples

This statement returns 7.38905609893065.

Exp(2)

These statements convert a natural logarithm (base e) back to a regular number. When
executed, Exp sets value to 200:

double value, x = log(200)
value = Exp(x)

See also

Log

LogTen

Exp method for DataWindows in Section 2.4.35, “Exp” in DataWindow Reference.

2.4.159 ExpandAll

Description

Statements, Events, and Functions

Page 552

Recursively expands a specified item.

Applies to

TreeView controls

Syntax

treeviewname.ExpandAll (itemhandle)

Table 2.549:

Argument Description

treeviewname The TreeView control in which you want to expand an item and all the
subordinate items in its hierarchy

itemhandle The handle of the item you want to expand

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

To expand all levels in a TreeViewItem, use the ExpandAll function for the RootTreeItem.

Examples

This example expands all levels of a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(RootTreeItem! , 0)
tv_list.ExpandAll(ll_tvi)

See also

CollapseItem

ExpandItem

FindItem

2.4.160 ExpandItem

Description

Expands a specified item.

Applies to

TreeView controls

Syntax

treeviewname.ExpandItem (itemhandle)

Table 2.550:

Argument Description

treeviewname The TreeView control in which you want to expand an item

itemhandle The handle of the item you want to expand

Statements, Events, and Functions

Page 553

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

ExpandItem expands only a single item. To expand a specified item including its children,
use ExpandAll.

Examples

This example expands the current level of a TreeView:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)
tv_list.ExpandItem(ll_tvi)

See also

CollapseItem

ExpandAll

FindItem

2.4.161 ExportJSON

Description

Saves the RibbonBar content to a JSON string. ECMA-404 JSON standard is supported.

Applies to

RibbonBar controls

Syntax

controlname.ExportJSON ()

Table 2.551:

Argument Description

controlname The name of the RibbonBar control.

Return value

String.

Returns the JSON string if it succeeds and an empty string "" if an error occurs.

Examples

string ls_Return
ls_Return = rbb_1.ExportJson()

See also

ExportXML

ExportToJSONFile

Statements, Events, and Functions

Page 554

ExportToXMLFile

ImportJSON

ImportXML

ImportFromJSONFile

ImportFromXMLFile

2.4.162 ExportXML

Description

Saves the RibbonBar content to an XML string. XML version 1.0 is supported.

Applies to

RibbonBar controls

Syntax

controlname.ExportXML ()

Table 2.552:

Argument Description

controlname The name of the RibbonBar control.

Return value

String.

Returns the XML string if it succeeds and an empty string "" if an error occurs.

Examples

string ls_Return
ls_Return = rbb_1.ExportXML()

See also

ExportJSON

ExportToJSONFile

ExportToXMLFile

ImportJSON

ImportXML

ImportFromJSONFile

ImportFromXMLFile

2.4.163 ExportToJSONFile

Description

Saves the RibbonBar content to a JSON file. The ECMA-404 JSON standard is supported.

Applies to

Statements, Events, and Functions

Page 555

RibbonBar controls

Syntax

controlname.ExportToJSONFile (String FileName {, Encoding encoding })

Table 2.553:

Argument Description

FileName The file path and file name where the JSON file will be saved.

encoding
(optional)

Character encoding of the file to which the data is saved. If you do not
specify an encoding parameter, the file is saved in UTF8 format.

Values are:

• EncodingANSI!

• EncodingUTF8! (default)

• EncodingUTF16LE!

• EncodingUTF16BE!

Return value

Integer.

1 - Successful.

-1 - An error occurs.

-2 - Failed to load library.

-3 - The specified file does not exist.

If any argument's value is null, returns null.

Examples

Integer li_return
li_return = rbb_1.ExportToJSONFile ("Export1.json", EncodingUTF8!)

See also

ExportJSON

ExportXML

ExportToXMLFile

ImportJSON

ImportXML

ImportFromJSONFile

ImportFromXMLFile

2.4.164 ExportToXMLFile

Description

Statements, Events, and Functions

Page 556

Saves the RibbonBar content to an XML file. The XML version 1.0 is supported.

Applies to

RibbonBar controls

Syntax

controlname.ExportToXMLFile (String FileName {, Encoding encoding })

Table 2.554:

Argument Description

FileName The file path and file name where the XML file will be saved.

encoding
(optional)

Character encoding of the file to which the data is saved. If you do not
specify an encoding parameter, the file is saved in UTF8 format.

Values are:

• EncodingANSI!

• EncodingUTF8! (default)

• EncodingUTF16LE!

• EncodingUTF16BE!

Return value

Integer.

1 - Successful.

-1 - An error occurs.

-2 - Failed to load library.

-3 - The specified file does not exist.

If any argument's value is null, returns null.

Examples

Integer li_return
li_return = rbb_1.ExportToXMLFile ("Export2.xml", EncodingUTF8!)

See also

ExportJSON

ExportXML

ExportToJSONFile

ImportJSON

ImportXML

ImportFromJSONFile

ImportFromXMLFile

Statements, Events, and Functions

Page 557

2.4.165 Extract

Description

Extracts the compressed archive or data stream.

Applies to

ExtractorObject objects

Syntax 1: Extracts the compressed archive

objectname.Extract (string source, string target)

Syntax 2: Extracts the specified files (or folders) from the specified package

objectname.Extract (string source, string items[], string target)

Syntax 3: Extracts the specified file from the compressed package into a blob

objectname.Extract (string source, string item, ref blob target)

Syntax 4: Extracts the compressed blob data

objectname.Extract (blob source, ref blob target {, ArchiveFormat format })

Table 2.555:

Argument Description

objectname The name of the ExtractorObject object.

source A string whose value is the full directory of the compressed archive.

Or a blob whose value is the compressed data stream.

items[] The specified files (or folders) to extract. The files (or folders) can be
obtained through GetFilesList.

If you specify a single file in a subfolder, the method will create the
whole folder structure to the file on target.

item The specified file to extract. You can only extract one file (cannot be
multiple files or a folder) into a blob.

target A string whose value is the directory where the compressed archive will
be extracted. The existing files with the same name on target will be
overwritten.

Or a blob where the decompression results will be stored.

format (optional) A value of the enumerated datatype ArchiveFormat specifying the format
of the source file. Values are:

• ArchiveFormatZIP!: zip file. This is the default value.

• ArchiveFormat7Zip!: 7zip file. File size of 7zip file may not be
obtained correctly during extraction.

• ArchiveFormatRAR!: rar file.

• ArchiveFormatGZip!: gzip format archive.

Statements, Events, and Functions

Page 558

Argument Description
• ArchiveFormatTAR!: tar format archive.

• ArchiveFormatLZMA!: lzma format archive.

• ArchiveFormatLZMA86!: lzma86 format archive.

Usage

The Extract method determines the archive format according to the file extension; therefore,
if the file extension has been changed manually (for example, from .rar to .zip), the Extract
method will fail to extract the file and will return the error code -10.

When extracting to a blob data, you can only extract one file (rather than a folder or multiple
files) into a blob.

Return value

Integer.

Returns the following value. If any argument's value is null, the method returns null.

1 -- Success

-1 -- A general error occurred.

-2 -- The password entered is illegal.

-3 -- The operation is not supported for the source file format.

-4 -- The task thread is aborted.

-5 -- A task thread is currently running.

-6 -- No password is entered. You must enter the password.

-7 -- The password is incorrect.

-8 -- Failed to get new memory when saving the decompressed file.

-9 -- Failed to read the compressed file.

-10 -- Unrecognized format or the encrypted file name option is used when compressing the
document.

-11 -- Access denied when extracting the archive.

-12 -- The compressed file does not exist.

-13 -- The directory where the decompressed file will be saved does not exist.

-14 -- Failed to extract the compressed file.

-15 -- The file to be decompressed is not in the package.

-16 -- The current operation does not support the folder decompression.

Example 1

This example demonstrates how to extract a compressed package.

ExtractorObject lnv_extractor
Integer li_return
string ls_source, ls_target

Statements, Events, and Functions

Page 559

ls_source = "D:\testcom.7Z"
ls_target = "D:\testextract"
lnv_extractor = Create ExtractorObject
li_return = lnv_extractor.extract (ls_source, ls_target)

Example 2

This example demonstrates how to compress and extract a blob data.

CompressorObject lnv_compress
ExtractorObject lnv_extractor
Integer li_return
blob lb_source, lb_target, lb_extract

lb_source = blob ("A123456")
lnv_compress = create CompressorObject
lnv_extractor = create ExtractorObject
li_return = lnv_compress.Compress (lb_source, lb_target, ArchiveFormat7Zip!)
if li_return = 1 then
 li_return = lnv_extractor.extract (lb_target, lb_extract, ArchiveFormat7Zip!)
end if

Example 3

This example extracts two files (test1.txt, test2.txt) and a folder (test_folder) from the
package.

ExtractorObject lnv_extractor
string ls_source, ls_password, ls_extractfiles[], ls_target
long ll_return

lnv_extractor = create ExtractorObject
ls_source = "E:\Test.rar"
ls_extractfiles[1] = "test1.txt"
ls_extractfiles[2] = "test2.txt"
//Suppose a folder is specified to be extracted, then all
//of the files contained in this folder will be extracted.
ls_extractfiles[3] = "test_folder"
ls_target = "E:\"

//Suppose the package requires a password
lnv_extractor.Password = ls_password
ll_return = lnv_extractor.extract (ls_source, ls_extractfiles, ls_target)

Example 4

This example extracts test1.txt from the package into a blob data. You can only extract one
file (not a folder or multiple files) into a blob.

ExtractorObject lnv_extractor
string ls_source, ls_password, ls_extractfile
long ll_return
blob blb_target

lnv_extractor = create ExtractorObject
ls_source = "E:\Test.rar"
ls_extractfile = "test1.txt"
//Suppose the package requires a password
lnv_extractor.Password = ls_password

//Extract one file (cannot be multiple files or a folder) into a blob
ll_return = lnv_extractor.extract (ls_source, ls_extractfile, blb_target)

See also

Statements, Events, and Functions

Page 560

Cancel

GetFilesCount

GetFilesList

2.4.166 Fact

Description

Determines the factorial of a number.

Syntax

Fact (n)

Table 2.556:

Argument Description

n The number for which you want the factorial

Return value

Double.

Returns the factorial of n. If n is null, Fact returns null.

Examples

This statement returns 24 (that is, 1 * 2 * 3 * 4):

Fact(4)

Both these statements return 1:

Fact(1)

Fact(0)

See also

Fact method for DataWindows in Section 2.4.36, “Fact” in DataWindow Reference.

2.4.167 FileClose

Description

Closes the file associated with the specified file number. The file number was assigned to the
file with the FileOpen function.

Syntax

FileClose (file#)

Table 2.557:

Argument Description

file# The integer assigned to the file you want to close. The FileOpen function
returns the file number when it opens the file.

Return value

Statements, Events, and Functions

Page 561

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If file# is null, FileClose returns null.

Usage

The file is saved in the encoding format in which it was opened.

Examples

These statements open and then close the file EMPLOYEE.DAT. The variable li_FileNum
stores the number assigned to the file when FileOpen opens the file. FileClose uses that
number to close the file:

integer li_FileNum
li_FileNum = FileOpen("EMPLOYEE.DAT")
. . . // Some processing
FileClose(li_FileNum)

See also

FileLength

FileOpen

FileReadEx

FileWriteEx

2.4.168 FileCopy

Description

Copies one file to another, optionally overwriting the target file.

Syntax

FileCopy (sourcefile, targetfile {, replace })

Table 2.558:

Argument Description

sourcefile String for the name of the file you want to copy

targetfile String for the name of the file you are copying to

replace(optional) Boolean specifying whether to replace the target file (true) or not (false)

Return value

Integer.

Returns values as follows:

1 -- Success

-1 -- Error opening sourcefile

-2 -- Error writing targetfile

Usage

If you do not specify a fully qualified path for sourcefile or for targetfile, the function works
relative to the current directory. If you do not specify the replace argument, the FileCopy

Statements, Events, and Functions

Page 562

function does not replace a file in the target directory that has the same name as the name you
specify in the targetfile argument (This is equivalent to setting the replace value to false).

Examples

The following example copies a file from the current directory to a different directory and
saves the return value in a variable. It does not replace a file of the same name if one already
exists in the target directory:

integer li_FileNum
li_FileNum = FileCopy ("jazz.gif" , &
 "C:\emusic\jazz.gif", FALSE)

See also

FileMove

GetCurrentDirectory

2.4.169 FileDelete

Description

Deletes the named file.

Syntax

FileDelete (filename)

Table 2.559:

Argument Description

filename A string whose value is the name of the file you want to delete

Return value

Boolean.

Returns true if it succeeds, false if an error occurs. If filename is null, FileDelete returns null.

Examples

These statements delete the file the user selected in the Open File window:

integer ret, value
string docname, named

value = GetFileOpenName("Select File," &
 docname, named, "DOC", &
 "Doc Files (*.DOC),*.DOC")

IF value = 1 THEN ret = MessageBox("Delete", &
 "Delete file?", Question!, OKCancel!)
IF ret = 1 THEN FileDelete(docname)

See also

FileExists

2.4.170 FileEncoding

Description

Statements, Events, and Functions

Page 563

Checks the encoding of the specified file.

Syntax

FileEncoding (filename)

Table 2.560:

Argument Description

filename The name of the file you want to test for encoding type

Return value

A value of the enumerated datatype encoding. Values are:

EncodingANSI!

EncodingUTF8!

EncodingUTF16LE!

EncodingUTF16BE!

If filename does not exist, returns null.

Usage

Use this function to determine the encoding used in an external file before attempting to use it
in a PowerBuilder application.

Examples

The following example opens a file in stream mode and tests to determine whether it uses
ANSI encoding. If it does, it reads data from the file into a blob and uses the String function
to convert the blob to a Unicode string:

long ll_filenum
integer li_bytes
string ls_unicode
blob lb_ansi
encoding eRet

ll_filenum = FileOpen("employee.dat", StreamMode!, Read!, LockWrite!, Replace!)

// test the file's encoding
eRet = FileEncoding("employee.dat")

if eRet = EncodingANSI! then
 li_ bytes = FileReadEx(ll_filenum, lb_ansi)
 ls_unicode = string(lb_ansi, EncodingANSI!)
else
 li_ bytes = FileReadEx(ll_filenum, ls_unicode)
end if
FileClose(ll_filenum)

See also

Blob

FileClose

FileOpen

FileReadEx

Statements, Events, and Functions

Page 564

FileWriteEx

String

2.4.171 FileExists

Description

Reports whether the specified file exists.

Syntax

FileExists (filename)

Table 2.561:

Argument Description

filename A string whose value is the name of a file

Return value

Boolean.

Returns true if the file exists, false if it does not exist. If filename is null, FileExists returns
null.

Usage

If filename is locked by another application, causing a sharing violation, FileExists also
returns false.

Examples

This example determines if the file the user selected in the Save File window exists and, if so,
asks the user if the file can be overwritten:

string ls_docname, ls_named
integer li_ret
boolean lb_exist

GetFileSaveName("Select File," ls_docname, &
 ls_named, "pbl", &
 "Doc Files (*.DOC),*.DOC")

lb_exist = FileExists(ls_docname)
IF lb_exist THEN li_ret = MessageBox("Save", &
 "OK to write over" + ls_docname, &
 Question!, YesNo!)

See also

FileDelete

2.4.172 FileLength

Description

Reports the length of a file whose size does not exceed 2GB in bytes.

Syntax

FileLength (filename)

Statements, Events, and Functions

Page 565

Table 2.562:

Argument Description

filename A string whose value is the name of the file for which you want to know
the length. If filename is not on the current application library search
path, you must specify the fully qualified name.

Return value

Long.

Returns the length in bytes of the file identified by filename. If the file does not exist,
FileLength returns -1. If filename is null, FileLength returns null.

Usage

Call FileLength before or after you call FileOpen to check the length of a file before you call
FileRead. The FileRead function can read a maximum of 32,765 bytes at a time. The length
returned by FileLength always includes the byte-order mark (BOM). For example, suppose
the hexadecimal display of the file SomeFile.txt is FF FE 54 00 68 00 69 00 73 00, then the
following statement returns 10,which includes the BOM:

ll_length = FileLength("SomeFile.txt")

File security

If any security is set for the file (for example, if you are sharing the file on a network),
you must call FileLength before FileOpen or after FileClose. Otherwise, you get a
sharing violation.

The FileLength function cannot return the length of files whose size exceeds 2GB. Use
FileLength64 to find the length of larger files.

Examples

This statement returns the length of the file EMPLOYEE.DAT in the current directory:

FileLength("EMPLOYEE.DAT")

These statements determine the length of the EMP.TXT file in the EAST directory and open
the file:

long LengthA
integer li_FileNum
LengthA = FileLength("C:\EAST\EMP.TXT")
li_FileNum = FileOpen("C:\EAST\EMP.TXT", &
 TextMode!, Read!, LockReadWrite!)

The examples for FileRead illustrate reading files of different lengths.

See also

FileClose

FileLength64

FileOpen

FileReadEx

FileWriteEx

Statements, Events, and Functions

Page 566

2.4.173 FileLength64

Description

Reports the length of a file of any size in bytes.

Syntax

FileLength64 (filename)

Table 2.563:

Argument Description

filename A string whose value is the name of the file for which you want to know
the length. If filename is not on the current application library search
path, you must specify the fully qualified name.

Return value

Longlong.

Returns the length in bytes of the file identified by filename. If the file does not exist,
FileLength64 returns -1. If filename is null, FileLength64 returns null.

Usage

Call FileLength64 before or after you call FileOpen to check the length of a file before you
call FileRead. The FileRead function can read a maximum of 32,765 bytes at a time. Use the
FileReadEx function to read longer files.

The length returned by FileLength64 always includes the byte-order mark (BOM). For
example, suppose the hexadecimal display of the file SomeFile.txt is FF FE 54 00 68 00 69
00 73 00, then the following statement returns 10,which includes the BOM:

ll_length = FileLength64("SomeFile.txt")

File security

If any security is set for the file (for example, if you are sharing the file on a network),
you must call FileLength64 before FileOpen or after FileClose. Otherwise, you get a
sharing violation.

Examples

This statement returns the length of the file EMPLOYEE.DAT in the current directory:

FileLength64("EMPLOYEE.DAT")

These statements determine the length of the EMP.TXT file in the EAST directory and open
the file:

long LengthA
integer li_FileNum
LengthA = FileLength64("C:\EAST\EMP.TXT")
li_FileNum = FileOpen("C:\EAST\EMP.TXT", &
 LineMode!, Read!, LockReadWrite!)

The examples for FileRead illustrate reading files of different lengths.

See also

Statements, Events, and Functions

Page 567

FileClose

FileLength

FileOpen

FileReadEx

FileWriteEx

2.4.174 FileMove

Description

Moves a file.

Syntax

FileMove (sourcefile, targetfile)

Table 2.564:

Argument Description

sourcefile String for the name of the file you want to move

targetfile String for the name of the location you are moving the file

Return value

Integer.

Returns values as follows:

1 -- Success

-1 -- Error opening sourcefile

-2 -- Error writing targetfile

Usage

You cannot write to a target file if a file with the same name already exists in the target
directory. If you want to copy over a target file, you can use FileCopy and set the replace
argument to true.

Examples

This example moves a file from the current directory to a different directory and saves the
return value in the li_FileNum variable:

integer li_FileNum
li_FileNum = FileMove ("june.csv", &
 "H:/project/june2000.csv")

See also

FileCopy

GetCurrentDirectory

2.4.175 FileOpen

Description

Statements, Events, and Functions

Page 568

Opens the specified file for reading or writing and assigns it a unique integer file number.
You use this integer to identify the file when you read, write, or close the file. The optional
arguments filemode, fileaccess, filelock, and writemode determine the mode in which the file
is opened.

Syntax

FileOpen (filename {, filemode {, fileaccess {, filelock {, writemode {,
 encoding }}}}})

Table 2.565:

Argument Description

filename A string whose value is the name of the file you want to open. If filename
is not on the current directory's relative search path, you must enter the
fully qualified name.

filemode
(optional)

A value of the FileMode enumerated type that specifies how the end of a
file read or file write is determined. Values are:

• LineMode! -- (Default) Read or write the file a line at a time

• StreamMode! -- Read blocks of binary data

• TextMode! -- Read text blocks

For more information, see Usage below.

fileaccess
(optional)

A value of the FileAccess enumerated type that specifies whether the file
is opened for reading or writing. Values are:

• Read! -- (Default) Read-only access

• Write! -- Write-only access

If PowerBuilder does not find the file, a new file is created if the
fileaccess argument is set to Write!

filelock
(optional)

A value of the FileLock enumerated type specifying whether others have
access to the opened file. Values are:

• LockReadWrite! -- (Default) Only the user who opened the file has
access

• LockRead! -- Only the user who opened the file can read it, but
everyone has write access

• LockWrite! -- Only the user who opened the file can write to it, but
everyone has read access

• Shared! -- All users have read and write access.

writemode
(optional)

A value of the WriteMode enumerated datatype. When fileaccess is
Write!, specifies whether existing data in the file is overwritten. Values
are:

Statements, Events, and Functions

Page 569

Argument Description
• Append! -- (Default) Write data to the end of the file

• Replace! -- Replace all existing data in the file

Writemode is ignored if the fileaccess argument is Read!

encoding Character encoding of the file you want to create. Specify this argument
when you create a new text file using text or line mode. If you do not
specify an encoding, the file is created with ANSI encoding. Values are:

• EncodingANSI! (default)

• EncodingUTF8!

• EncodingUTF16LE!

• EncodingUTF16BE!

Return value

Integer.

Returns the file number assigned to filename if it succeeds and -1 if an error occurs. If any
argument's value is null, FileOpen returns null.

Usage

The mode in which you open a file determines the behavior of the functions used to read and
write to a file. There are two functions that read data from a file: FileRead and FileReadEx,
and two functions that write data to a file: FileWrite and FileWriteEx. FileRead and FileWrite
have limitations on the amount of data that can be read or written and are maintained for
backward compatibility. They do not support text mode. For more information, see FileRead
and FileWrite.

The support for reading from and writing to blobs and strings for the FileReadEx and
FileWriteEx functions depends on the mode. The following table shows which datatypes are
supported in each mode.

Table 2.566: FileReadEx and FileWriteEx datatype support by mode

Mode Blob String

Line Not supported Supported

Stream Supported Not supported

Text Supported Supported

When a file has been opened in line mode, each call to the FileReadEx function reads until
it encounters a carriage return (CR), linefeed (LF), or end-of-file mark (EOF). Each call to
FileWriteEx adds a CR and LF at the end of each string it writes.

When a file has been opened in stream mode or text mode, FileReadEx reads the whole file
until it encounters an EOF or until it reaches a length specified in an optional parameter.
FileWriteEx writes the full contents of the string or blob or until it reaches a length specified
in an optional parameter.

Statements, Events, and Functions

Page 570

The optional length parameter applies only to blob data. If the length parameter is provided
when the datatype of the second parameter is string, the code will not compile.

In all modes, PowerBuilder can read ANSI, UTF-16, and UTF-8 files.

The behavior in stream and text modes is very similar. However, stream mode is intended
for use with binary files, and text mode is intended for use with text files. When you open an
existing file in stream mode, the file's internal pointer, which indicates the next position from
which data will be read, is set to the first byte in the file.

A byte-order mark (BOM) is a character code at the beginning of a data stream that indicates
the encoding used in a Unicode file. For UTF-8, the BOM uses three bytes and is EF BB BF.
For UTF-16, the BOM uses two bytes and is FF FE for little endian and FE FF for big endian.

When you open an existing file in text mode, the file's internal pointer is set based on the
encoding of the file:

• If the encoding is ANSI, the pointer is set to the first byte

• If the encoding is UTF-16LE or UTF-16BE, the pointer is set to the third byte,
immediately after the BOM

• If the encoding is UTF-8, the pointer is set to the fourth byte, immediately after the BOM

If you specify the optional encoding argument and the existing file does not have the same
encoding, FileOpen returns -1.

File not found

If PowerBuilder does not find the file, it creates a new file, giving it the specified
name, if the fileaccess argument is set to Write!. If the argument is not set to Write!,
FileOpen returns -1.

If the optional encoding argument is not specified and the file does not exist, the file
is created with ANSI encoding.

When you create a new text file using FileOpen, use line mode or text mode. If you specify
the encoding parameter, the BOM is written to the file based on the specified encoding.

When you create a new binary file using stream mode, the encoding parameter, if provided, is
ignored.

Examples

This example uses the default arguments and opens the file EMPLOYEE.DAT for reading.
The default settings are LineMode!, Read!, LockReadWrite!, and EncodingANSI!.
FileReadEx reads the file line by line and no other user is able to access the file until it is
closed:

integer li_FileNum
li_FileNum = FileOpen("EMPLOYEE.DAT")

This example opens the file EMPLOYEE.DAT in the DEPT directory in stream mode
(StreamMode!) for write only access (Write!). Existing data is overwritten (Replace!). No
other users can write to the file (LockWrite!):

Statements, Events, and Functions

Page 571

integer li_FileNum
li_FileNum = FileOpen("C:\DEPT\EMPLOYEE.DAT", &
 StreamMode!, Write!, LockWrite!, Replace!)

This example creates a new file that uses UTF8 encoding. The file is called new.txt and is in
the D:\temp directory. It is opened in text mode with write-only access, and no other user can
read or write to the file:

integer li_ret
string ls_file
ls_file = "D:\temp\new.txt"
li_ret = FileOpen(ls_file, TextMode!, Write!, &
 LockReadWrite!, Replace!, EncodingUTF8!)

See also

FileClose

FileLength64

FileRead

FileReadEx

FileWrite

FileWriteEx

2.4.176 FileRead

Description

Reads data from the file associated with the specified file number, which was assigned to the
file with the FileOpen function. FileRead is maintained for backward compatibility. Use the
FileReadEx function for new development.

Syntax

FileRead (file#, variable)

Table 2.567:

Argument Description

file# The integer assigned to the file when it was opened

variable The name of the string or blob variable into which you want to read the
data

Return value

Integer.

Returns the number of bytes read. If an end-of-file mark (EOF) is encountered before any
characters are read, FileRead returns -100. If the file is opened in LineMode and a CR or LF
is encountered before any characters are read, FileRead returns 0. If an error occurs, FileRead
returns -1. If any argument's value is null, FileRead returns null. If the file length is greater
than 32,765 bytes, FileRead returns 32,765.

Usage

FileRead can read files with ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding.

Statements, Events, and Functions

Page 572

If the file is an ANSI or UTF-8 file and is read into a string, FileRead converts the text to
Unicode before saving it in the string variable. No conversion is needed for UTF-16 files. For
Unicode files, the BOM is not written to the string.

If the file is read into a blob, FileRead saves the contents of the file with no conversion. For
Unicode files, the BOM is not written to the blob in text mode, but it is written to the blob in
stream mode.

If the file was opened in line mode, FileRead reads a line of the file (that is, until it
encounters a CR, LF, or EOF). It stores the contents of the line in the specified variable, skips
the line-end characters, and positions the file pointer at the beginning of the next line. If the
second argument is a blob, FileRead returns -1.

If the file was opened in text mode, FileRead returns -1. Use FileReadEx to read a file in text
mode.

If the file was opened in stream mode, FileRead reads to the end of the file or the next 32,765
bytes, whichever is shorter. FileRead begins reading at the file pointer, which is positioned at
the beginning of the file when the file is opened for reading. If the file is longer than 32,765
bytes, FileRead automatically positions the pointer after each read operation so that it is ready
to read the next chunk of data.

FileRead can read a maximum of 32,765 bytes at a time. Therefore, before calling the
FileRead function, call the FileLength64 function to check the file length. If your system
has file sharing or security restrictions, you might need to call FileLength64 before you call
FileOpen. Use FileReadEx to read longer files.

An end-of-file mark is a null character (ASCII value 0). Therefore, if the file being read
contains null characters, FileRead stops reading at the first null character, interpreting it as
the end of the file. For Unicode files and files that you convert to Unicode, you must make
sure that the file length value is an even number. Otherwise FileRead cannot parse the entire
file.

Examples

This example reads the file EMP_DATA.TXT if it is short enough to be read with one call to
FileRead:

integer li_FileNum
string ls_Emp_Input
long ll_FLength

ll_FLength = FileLength64("C:\HR\EMP_DATA.TXT")
li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &
 LineMode!)
IF ll_FLength < 32767 THEN
 FileRead(li_FileNum, ls_Emp_Input)
END IF

This example reads the file EMP_PIC1.BMP and stores the data in the blob Emp_Id_Pic. The
number of bytes read is stored in li_bytes:

integer li_fnum, li_bytes
blob Emp_Id_Pic

li_fnum = FileOpen("C:\HR\EMP_PIC1.BMP", &
 StreamMode!)
li_bytes = FileRead(li_fnum, Emp_Id_Pic)

Statements, Events, and Functions

Page 573

See also

FileClose

FileLength64

FileOpen

FileReadEx

FileSeek64

FileWriteEx

2.4.177 FileReadEx

Description

Reads data from the file associated with the specified file number, which was assigned to the
file with the FileOpen function.

Syntax

FileReadEx (file#, blob {, length })
FileReadEx (file#, string)

Table 2.568:

Argument Description

file# The integer assigned to the file when it was opened.

blob or string The name of the string or blob variable into which you want to read the
data.

length In text or stream mode, the number of bytes a retrieve requires. The
default value is the length of the file.

Return value

Long.

Returns the number of bytes read. If an end-of-file mark (EOF) is encountered before any
characters are read, FileReadEx returns -100. If the file is opened in LineMode and a CR or
LF is encountered before any characters are read, FileReadEx returns 0. If an error occurs,
FileReadEx returns -1. FileReadEx returns -1 if you attempt to read from a string in stream
mode or read from a blob in line mode. If any argument's value is null, FileReadEx returns
null.

FileReadEx returns long

Unlike the FileRead function that it replaces, the FileReadEx function returns a long
value.

Usage

FileReadEx can read files with ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding.

If the file is opened in line mode, FileReadEx reads a line of the file (that is, until it
encounters a CR, LF, or EOF). It stores the contents of the line in the specified variable, skips
the line-end characters, and positions the file pointer at the beginning of the next line.

Statements, Events, and Functions

Page 574

The optional length parameter applies only to blob data. If the length parameter is provided
when the datatype of the second parameter is string, the code will not compile.

If the file was opened in stream or text mode, FileReadEx reads to the end of the file or the
next length bytes, whichever is shorter. FileReadEx begins reading at the file pointer, which
is positioned at the beginning of the file when the file is opened for reading. If the file is
longer than length bytes, FileReadEx automatically positions the pointer after each read
operation so that it is ready to read the next chunk of data.

An end-of-file mark is a null character (ASCII value 0). Therefore, if the file being read
contains null characters, FileReadEx stops reading at the first null character, interpreting it as
the end of the file. For Unicode files and files that you convert to Unicode, you must make
sure that the file length value is an even number. Otherwise FileReadEx cannot parse the
entire file.

If the file is an ANSI or UTF-8 file and is read into a string, FileReadEx converts the text to
Unicode before saving it in the string variable. The BOM is not written to the string.

If the file is an ANSI or UTF-8 file and is read into a blob, FileReadEx saves the contents of
the file with no conversion. The BOM is not written to the blob in text mode, but it is written
to the blob in stream mode.

If the file is in Unicode, no conversion is required.

Examples

This example reads the file EMP_DATA.TXT into a string in text mode. If the file is not in
Unicode format, its contents, apart from the BOM, are converted to Unicode and written to
the string:

integer li_FileNum
string ls_Emp_Input
li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &
 TextMode!)
FileReadEx(li_FileNum, ls_Emp_Input)

This example reads the file EMP_PIC1.BMP and stores the data in the blob Emp_Id_Pic. The
number of bytes read is stored in ll_bytes:

integer li_fnum
long ll_bytes
blob Emp_Id_Pic

li_fnum = FileOpen("C:\HR\EMP_PIC1.BMP", &
 StreamMode!)
ll_bytes = FileReadEx(li_fnum, Emp_Id_Pic)

See also

FileClose

FileLength64

FileOpen

FileRead

FileSeek64

FileWriteEx

Statements, Events, and Functions

Page 575

2.4.178 FileSeek

Description

Moves the file pointer to the specified position in a file whose size does not exceed 2GB. The
file pointer is the position in the file at which the next read or write begins.

Syntax

FileSeek (file#, position, origin)

Table 2.569:

Argument Description

file# The integer assigned to the file when it was opened.

position A long whose value is the new position of the file pointer relative to the
position specified in origin, in bytes.

origin The value of the SeekType enumerated datatype specifying where you
want to start the seek. Values are:

• FromBeginning! -- (Default) At the beginning of the file

• FromCurrent! -- At the current position

• FromEnd! -- At the end of the file

Return value

Long.

Returns the file position after the seek operation has been performed. If any argument's value
is null, FileSeek returns null.

Usage

Use FileSeek to move within a binary file that you have opened in stream mode. FileSeek
positions the file pointer so that the next FileReadEx or FileWriteEx occurs at that position
within the file.

If origin is set to FromBeginning!, and the file is not opened in stream mode, the byte-order
mark is ignored automatically. For example, suppose the file's hexadecimal display is FF FE
54 00 68 00 69 00 73 00, the following example illustrates the behavior:

long ll_pos

// after the following statement, the file pointer is
// at 68, not 54, and ll_pos = 2, not 4
ll_pos = FileSeek(filenum, 2, FromBeginning!)
// ll_pos = 2, not 4
ll_pos = FileSeek(filenum, 0, FromCurrent!)
// ll_pos = 2, not 4
ll_pos = FileSeek(filenum, -6, FromEnd!)

The FileSeek function cannot handle files whose size exceeds 2GB. Use FileSeek64 to move
the file pointer in larger files.

Examples

This example positions the file pointer 14 bytes from the end of the file:

Statements, Events, and Functions

Page 576

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek(li_FileNum, -14, FromEnd!)

This example moves the file pointer from its current position 14 bytes toward the end of
the file. In this case, if no processing has occurred after FileOpen to affect the file pointer,
specifying FromCurrent! is the same as specifying FromBeginning!:

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek(li_FileNum, 14, FromCurrent!)

See also

FileReadEx

FileSeek64

FileWriteEx

2.4.179 FileSeek64

Description

Moves the file pointer to the specified position in a file of any size. The file pointer is the
position in the file at which the next read or write begins.

Syntax

FileSeek64 (file#, position, origin)

Table 2.570:

Argument Description

file# The integer assigned to the file when it was opened.

position A long whose value is the new position of the file pointer relative to the
position specified in origin, in bytes.

origin The value of the SeekType enumerated datatype specifying where you
want to start the seek. Values are:

• FromBeginning! -- (Default) At the beginning of the file

• FromCurrent! -- At the current position

• FromEnd! -- At the end of the file

Return value

Longlong.

Returns the file position after the seek operation has been performed. If any argument's value
is null, FileSeek64 returns null.

Usage

Use FileSeek64 to move within a binary file that you have opened in stream mode.
FileSeek64 positions the file pointer so that the next FileReadEx or FileWriteEx occurs at
that position within the file.

Statements, Events, and Functions

Page 577

If origin is set to FromBeginning!, and the file is not opened in stream mode, the byte-order
mark is ignored automatically. For example, suppose the file's hexadecimal display is FF FE
54 00 68 00 69 00 73 00, the following example illustrates the behavior:

long ll_pos

// after the following statement, the file pointer is
// at 68, not 54, and ll_pos = 2, not 4
ll_pos = FileSeek64(filenum, 2, FromBeginning!)
// ll_pos = 2, not 4
ll_pos = FileSeek64(filenum, 0, FromCurrent!)
// ll_pos = 2, not 4
ll_pos = FileSeek64(filenum, -6, FromEnd!)

Examples

This example positions the file pointer 14 bytes from the end of the file:

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek64(li_FileNum, -14, FromEnd!)

This example moves the file pointer from its current position 14 bytes toward the end of
the file. In this case, if no processing has occurred after FileOpen to affect the file pointer,
specifying FromCurrent! is the same as specifying FromBeginning!:

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek64(li_FileNum, 14, FromCurrent!)

See also

FileReadEx

FileSeek

FileWriteEx

2.4.180 FileWrite

Description

Writes data to the file associated with the specified file number. The file number was
assigned to the file with the FileOpen function. FileWrite is maintained for backward
compatibility. Use the FileWriteEx function for new development.

Syntax

FileWrite (file#, variable)

Table 2.571:

Argument Description

file# The integer assigned to the file when the file was opened

variable A string or blob whose value is the data you want to write to the file

Return value

Integer.

Statements, Events, and Functions

Page 578

Returns the number of bytes written if it succeeds and it returns -1 if an error occurs. If any
argument's value is null, FileWrite returns null.

Usage

FileWrite can write to files with ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding.

FileWrite writes its data at the position identified by the file pointer. If the file was opened
with the writemode argument set to Replace!, the file pointer is initially at the beginning of
the file. After each call to FileWrite, the pointer is immediately after the last write. If the file
was opened with the writemode argument set to Append!, the file pointer is initially at the
end of the file and moves to the end of the file after each write.

FileWrite sets the file pointer following the last character written. If the file was opened in
line mode, FileWrite writes a carriage return (CR) and linefeed (LF) after the last character in
variable and places the file pointer after the CR and LF.

If the data is in a string and the associated file uses ANSI or UTF-8 encoding, FileWrite
converts the string to ANSI or UTF-8 encoding before saving it to the associated file.

The behavior of the FileWrite function when the file is opened with the EncodingANSI!
parameter or with no encoding parameter is platform dependent. On the Windows and Solaris
platforms, FileWrite does not convert multilanguage characters to UTF-8 and saves the file
with ANSI encoding. On the Linux platform, if the string contains multilanguage characters,
FileWrite converts the multi-language characters to UTF-8 and saves the file with UTF-8
encoding.

If the file is opened in stream mode, no conversion is done. If the file was opened in text
mode, FileWrite returns -1. Use FileWriteEx to write to files in text mode.

For Unicode files and files that you convert to Unicode, you must make sure that the file
length value is an even number. Otherwise FileWrite cannot parse the entire file.

Length limit

FileWrite can write only 32,766 bytes at a time, which includes the string terminator
character. If the length of variable exceeds 32,765 bytes, FileWrite writes the first
32,765 bytes and returns 32,765. Use FileWriteEx to handle variables that have more
than 32,765 bytes.

Examples

This script excerpt opens EMP_DATA.TXT and writes the string New Employees at the end
of the file. The variable li_FileNum stores the number of the opened file:

integer li_FileNum
li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &
 LineMode!, Write!, LockWrite!, Append!)
FileWrite(li_FileNum, "New Employees")

The following example reads a blob from the database and writes it to a file. The SQL
SELECT statement assigns the picture data to the blob Emp_Id_Pic. Then FileOpen opens
a file for writing in stream mode and FileWrite writes the blob to the file. You could use the
Len function to test whether the blob was too big for a single FileWrite call:

integer li_FileNum
blob emp_id_pic

Statements, Events, and Functions

Page 579

SELECTBLOB salary_hist INTO : emp_id_pic
 FROM Employee WHERE Employee.Emp_Num = 100
 USING Emp_tran;
li_FileNum = FileOpen(&
 "C:\EMPLOYEE\EMP_PICS.BMP", &
 StreamMode!, Write!, Shared!, Replace!)
FileWrite(li_FileNum, emp_id_pic)

See also

FileClose

FileLength64

FileOpen

FileRead

FileReadEx

FileSeek64

FileWriteEx

2.4.181 FileWriteEx

Description

Writes data to the file associated with the specified file number. The file number was
assigned to the file with the FileOpen function.

Syntax

FileWriteEx (file#, blob {, length })
FileWriteEx (file#, string)

Table 2.572:

Argument Description

file# The integer assigned to the file when the file was opened

blob or string A blob or string whose value is the data you want to write to the file.

length In text or stream mode, the number of bytes to be written. The default
value is the length of the file.

Return value

Long.

Returns the number of bytes written if it succeeds and -1 if an error occurs. FileWriteEx
returns -1 if you attempt to write to a string in stream mode or to a blob in line mode. If any
argument's value is null, FileWriteEx returns null.

FileWriteEx returns long

Unlike the FileWrite function that it replaces, the FileWriteEx function returns a long
value.

Usage

Statements, Events, and Functions

Page 580

FileWriteEx can write to files with ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding.

FileWriteEx writes its data at the position identified by the file pointer. If the file was opened
with the writemode argument set to Replace!, the file pointer is initially at the beginning of
the file. After each call to FileWriteEx, the pointer is immediately after the last write. If the
file was opened with the writemode argument set to Append!, the file pointer is initially at the
end of the file and moves to the end of the file after each write.

FileWriteEx sets the file pointer following the last character written. If the file was opened in
line mode, FileWriteEx writes a carriage return (CR) and linefeed (LF) after the last character
in variable and places the file pointer after the CR and LF.

If the file was opened in stream or text mode, FileWriteEx writes the full contents of the
string or blob or the next length bytes, whichever is shorter. The optional length parameter
applies only to blob data. If the length parameter is provided when the datatype of the second
parameter is string, the code will not compile.

If the data is in a string and the associated file uses ANSI or UTF-8 encoding, FileWriteEx
converts the string to ANSI or UTF-8 encoding before saving it to the associated file. If
the file is opened in stream mode, no conversion is done. For Unicode files and files that
you convert to Unicode, you must make sure that the file length value is an even number.
Otherwise FileWriteEx cannot parse the entire file.

If the file does not have a byte-order mark (BOM) it is created automatically.

Examples

This script excerpt opens EMP_DATA.TXT and writes the string New Employees at the end
of the file. The variable li_FileNum stores the number of the opened file:

integer li_FileNum
li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &
 TextMode!, Write!, LockWrite!, Append!)
FileWriteEx(li_FileNum, "New Employees")

The following example reads a blob from the database and writes it to a file. The SQL
SELECT statement assigns the picture data to the blob Emp_Id_Pic. Then FileOpen opens a
file for writing in stream mode and FileWriteEx writes the blob to the file. You could use the
Len function to test whether the blob was too big for a single FileWrite call:

integer li_FileNum
blob emp_id_pic
SELECTBLOB salary_hist INTO : emp_id_pic
 FROM Employee WHERE Employee.Emp_Num = 100
 USING Emp_tran;
li_FileNum = FileOpen("C:\EMPLOYEE\EMP_PICS.BMP", &
 StreamMode!, Write!, Shared!, Replace!)
FileWriteEx(li_FileNum, emp_id_pic)

See also

FileClose

FileLength64

FileOpen

FileReadEx

FileSeek64

Statements, Events, and Functions

Page 581

2.4.182 Fill

Description

Builds a string of the specified length by repeating the specified characters until the result
string is long enough.

Syntax

Fill (chars, n)

Table 2.573:

Argument Description

chars A string whose value will be repeated to fill the return string

n A long whose value is the length of the string you want returned

Return value

String.

Returns a string n characters long filled with the characters in the argument chars. If the
argument chars has more than n characters, the first n characters of chars are used to fill the
return string. If the argument chars has fewer than n characters, the characters in chars are
repeated until the return string has n characters. If any argument's value is null, Fill returns
null.

Usage

Use Fill in printing routines to create a line or other special effect. For example, you can
fill the amount line of a check with asterisks, or simulate a total line in a screen display by
repeating hyphens below a column of figures.

Examples

This statement returns a string whose value is 35 stars:

Fill("*", 35)

This statement returns the string -+-+-+-:

Fill("-+", 7)

This statement returns 10 tildes (~):

Fill("~~", 10)

See also

Space

Fill method for DataWindows in Section 2.4.37, “Fill” in DataWindow Reference.

2.4.183 FillA

Description

Builds a string of the specified length in bytes by repeating the specified characters until the
result string is long enough.

Statements, Events, and Functions

Page 582

Syntax

FillA (chars, n)

Table 2.574:

Argument Description

chars The string whose value is repeated to fill the return string

n A long specifying the number of bytes in the return string

Return value

String.

Returns a string n bytes long filled with the characters in the argument chars. If the argument
chars has more than n bytes, the first n bytes of chars are used to fill the return string. If the
argument chars has fewer than n bytes, the characters in chars are repeated until the return
string has n bytes. If any argument's value is null, FillA returns null.

Usage

FillA replaces the functionality that Fill had in DBCS environments in PowerBuilder 9.

In SBCS environments, Fill, FillW, and FillA return the same results.

2.4.184 FillW (obsolete)

Description

Builds a string of the specified length by repeating the specified characters until the result
string is long enough.

This function is obsolete. It has the same behavior as Fill in SBCS and DBCS environments.

Syntax

FillW (chars, n)

2.4.185 Find

Description

Finds data in a DataWindow control or DataStore, or text in a RichTextEdit control or
RichTextEdit DataWindow or DataStore.

You can specify search direction and whether to match whole words and case. Finds the
specified text in the control and highlights the text if found.

For syntax for DataWindows and DataStores, see the Find method for DataWindows in
Section 9.33, “Find” in DataWindow Reference.

Applies to

RichTextEdit controls and DataWindow controls (or DataStore objects) whose content has
the RichTextEdit presentation style

Syntax

controlname.Find (searchtext, forward, insensitive, wholeword, cursor)

Statements, Events, and Functions

Page 583

Table 2.575:

Argument Description

controlname The name of the RichTextEdit, DataWindow control, or DataStore whose
contents you want to search.

searchtext A string whose value is the text you want to find. For the RichTextEdit
control, searchtext is limited to 99 characters.

forward A boolean value indicating the direction you want to search. Values are:

• TRUE -- The search proceeds forward from the cursor position or, if
cursor is false, from the start of the document.

• FALSE -- The search proceeds backward from the cursor position or, if
cursor is false, from the end of the document.

insensitive A boolean value indicating the search string and the found text must
match case. Values are:

• TRUE -- The search is not sensitive to case.

• FALSE -- The search is case-sensitive.

wholeword A boolean value indicating that the found text must be a whole word.
Values are:

• TRUE -- The found text must be a whole word.

• FALSE -- The found text can be a partial word.

cursor A boolean value indicating where the search begins. Values are:

• TRUE -- The search begins at the cursor position.

• FALSE -- The search begins at the start of the document if forward is
true or at the end if forward is false.

Return value

Integer.

Returns the number of characters found. Find returns 0 if no matching text is found, and
returns -1 if the DataWindow's presentation style is not RichTextEdit or an error occurs.

Examples

This example searches the RichTextEdit rte_1 for text the user specifies in the SingleLineEdit
sle_search. The search proceeds forward from the cursor position. The search is case
insensitive and not limited to whole words:

integer li_charsfound
li_charsfound = rte_1.Find(sle_search.Text, &
 TRUE, TRUE, FALSE, TRUE)

See also

FindNext

Statements, Events, and Functions

Page 584

2.4.186 FindCategory

Description

Obtains the number of a category in a graph when you know the category's label.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.FindCategory ({ graphcontrol, } categoryvalue)

Table 2.576:

Argument Description

controlname A string whose value is the name of the graph in which you want to find a
specific category, or the name of the DataWindow control containing the
graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to find a specific category.

categoryvalue A value that is the category for which you want the number. The value
you specify must be the same datatype as the datatype of the category
axis.

Return value

Integer.

Returns the number of the category named in categoryvalue in the graph controlname, or
if controlname is a DataWindow control, in graphcontrol. If an error occurs, FindCategory
returns -1. If any argument's value is null, FindCategory returns null.

Usage

Most of the category manipulation functions require a category number, rather than a name.
However, when you delete and insert categories, existing categories are renumbered to keep
the numbering consecutive. Use FindCategory when you know only a category's label or
when the numbering may have changed.

Examples

These statements obtain the number of a category in the graph gr_prod_data. The category
name is the text in the SingleLineEdit sle_ctory:

integer CtgryNbr
CtgryNbr =gr_prod_data.FindCategory(sle_ctgry.Text)

These statements obtain the number of the category named Qty in the graph gr_computers in
the DataWindow control dw_equip:

integer CtgryNbr
CtgryNbr = dw_equip.FindCategory("gr_computers", "Qty")

See also

AddCategory

Statements, Events, and Functions

Page 585

DeleteData

DeleteSeries

FindSeries

2.4.187 FindClassDefinition

Description

Searches for an object in one or more PowerBuilder libraries (PBLs) and provides
information about its class definition.

Syntax

FindClassDefinition (classname {, librarylist })

Table 2.577:

Argument Description

classname The name of an object (also called a class or class definition) for which
you want information.

librarylist
(optional)

An array of strings whose values are the fully qualified pathnames of
PBLs. If you omit librarylist, FindClassDefinition searches the library list
associated with the running application.

Return value

ClassDefinition. Returns an object reference with information about the definition of
classname. If any arguments are null, FindClassDefinition returns null.

Usage

There are two ways to get a ClassDefinition object containing class definition information:

• For an instantiated object in your application, use its ClassDefinition property

• For an object stored in a PBL, call FindClassDefinition

Examples

This example searches the libraries for the running application to find the class definition for
w_genapp_frame:

ClassDefinition cd_windef
cd_windef = FindClassDefinition("w_genapp_frame")

This example searches the libraries in the array ls_libraries to find the class definition for
w_genapp_frame:

ClassDefinition cd_windef
string ls_libraries[]

ls_libraries[1] = "c:\pwrs\bizapp\windows.pbl"
ls_libraries[2] = "c:\pwrs\framewk\windows.pbl"
ls_libraries[3] = "c:\pwrs\framewk\ancestor.pbl"

cd_windef = FindClassDefinition(
 "w_genapp_frame", ls_libraries)

Statements, Events, and Functions

Page 586

See also

FindFunctionDefinition

FindMatchingFunction

FindTypeDefinition

2.4.188 FindFunctionDefinition

Description

Searches for a global function in one or more PowerBuilder libraries (PBLs) and provides
information about the script definition.

Syntax

FindFunctionDefinition (functionname {, librarylist })

Table 2.578:

Argument Description

functionname The name of a global function for which you want information.

librarylist
(optional)

An array of strings whose values are the fully qualified pathnames of
PBLs. If you omit librarylist, FindFunctionDefinition searches the library
list associated with the running application.

Return value

ScriptDefinition. Returns an object reference with information about the script of
functionname. If any arguments are null, FindFunctionDefinition returns null.

Usage

You can call FindClassDefinition to get a class definition for a global function. However, the
ScriptDefinition object provides information tailored for functions.

Examples

This example searches the libraries for the running application to find the function definition
for f_myfunction:

ScriptDefinition sd_myfunc
sd_myfunc = FindFunctionDefinition("f_myfunction")

This example searches the libraries in the array ls_libraries to find the class definition for
w_genapp_frame:

ScriptDefinition sd_myfunc
string ls_libraries[]

ls_libraries[1] = "c:\pwrs\bizapp\windows.pbl"
ls_libraries[2] = "c:\pwrs\framewk\windows.pbl"
ls_libraries[3] = "c:\pwrs\framewk\ancestor.pbl"

sd_myfunc = FindFunctionDefinition(&
 "f_myfunction", ls_libraries)

See also

FindClassDefinition

Statements, Events, and Functions

Page 587

FindMatchingFunction

FindTypeDefinition

2.4.189 FindItem

Finds the next item in a list.

Table 2.579:

To find the next item Use

In a ListBox, DropDownListBox, PictureListBox,
DropDownPictureListBox, or RibbonComboBoxItem control

Syntax 1

In a ListView control based upon its label Syntax 2

By relative position in a ListView control Syntax 3

By relative position in a TreeView control Syntax 4

2.4.189.1 Syntax 1: For ListBox, DropDownListBox, and RibbonComboBoxItem controls

Description

Finds the next item in a ListBox that begins with the specified search text.

Applies to

ListBox, DropDownListBox, PictureListBox, DropDownPictureListBox, and
RibbonComboBoxItem controls

Syntax

listboxname.FindItem (text, index)

Table 2.580:

Argument Description

listboxname The name of the ListBox control in which you want to find an item.

text A string whose value is the starting text of the item you want to find.

index The number of the item just before the first item to be searched. To
search the whole list, specify 0.

Return value

Integer.

Returns the index of the first matching item. To match, the item must start with the specified
text; however, the text in the item can be longer than the specified text. If no match is found
or if an error occurs, FindItem returns -1. If any argument's value is null, FindItem returns
null.

Usage

When FindItem finds the matching item, it returns the index of the item but does not select
(highlight) the item. To find and select the item, use the SelectItem function.

Examples

Statements, Events, and Functions

Page 588

Assume the ListBox lb_actions contains the following list:

Table 2.581:

Index number Item text

1 Open files

2 Close files

3 Copy files

4 Delete files

Then these statements start searching for Delete starting with item 2 (Close files). FindItem
sets Index to 4:

integer Index
Index = lb_actions.FindItem("Delete", 1)

These statements search for items in the RibbonBar ComboBox:

Integer li_Return
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.AddItem("Item1")
li_Return = lr_ComboBox.AddItem("Item2")
li_Return = lr_ComboBox.FindItem("Item2",0)

See also

AddItem

DeleteItem

InsertItem

SelectItem

2.4.189.2 Syntax 2: For ListView controls

Description

Searches for the next item whose label matches the specified search text.

Applies to

ListView controls

Syntax

listviewname.FindItem (startindex, label, partial, wrap)

Table 2.582:

Argument Description

listviewname The ListView control for which you want to search for items

startindex The index number from which you want your search to begin

label The string that is the target of the search

partial If set to true, the search looks for a partial label match

wrap If set to true, the search returns to the first index item after it has finished

Statements, Events, and Functions

Page 589

Return value

Integer.

Returns the index of the item found if it succeeds and -1 if an error occurs.

Usage

The search starts from startindex + 1 by default. To search from the beginning, specify 0.

If partial is set to true, the search string matches any label that begins with the specified text.
If partial is set to false, the search string must match the entire label.

If wrap is set to true, the search wraps around to the first index item after searching to the
end. If wrap is set to false, the search stops at the last index item in the ListView.

FindItem does not select the item it finds. You must use the item's selected property in
conjunction with FindItem to select the resulting match.

Examples

This example takes the value from a SingleLineEdit control and passes it to FindItem:

listviewitem l_lvi
integer li_index
string ls_label

ls_label = sle_find.Text
IF ls_label = "" THEN
 MessageBox("Error" , &
 "Enter the name of a list item")
 sle_find.SetFocus()
ELSE
 li_index = lv_list.FindItem(0,ls_label, TRUE,TRUE)
END IF
IF li_index = -1 THEN
 MessageBox("Error", "Item not found.")
ELSE
 lv_list.GetItem (li_index, l_lvi)
 l_lvi.HasFocus = TRUE
 l_lvi.Selected = TRUE
 lv_list.SetItem(li_index,l_lvi)
END IF

See also

AddItem

DeleteItem

InsertItem

SelectItem

2.4.189.3 Syntax 3: For ListView controls

Description

Search for the next item relative to a specific location in the ListView control.

Applies to

ListView controls

Syntax

Statements, Events, and Functions

Page 590

listviewname.FindItem (startindex, direction, focused, selected, cuthighlighted,
 drophighlighted)

Table 2.583:

Argument Description

listviewname The ListView control for which you want to search for items.

startindex The index number from which you want your search to begin.

direction The direction in which to search. Values are:

DirectionAll!

DirectionUp!

DirectionDown!

DirectionLeft!

DirectionRight!

focused If set to true, the search looks for the next ListView item that has focus.

selected If set to true, the search looks for the next ListView item that is selected.

cuthighlighted If set to true, the search looks for the next ListView item that is the target
of a cut operation.

drophighlighted If set to true, the search looks for next ListView item that is the target of
a drag and drop operation.

Return value

Integer.

Returns the index of the item found if it succeeds and -1 if an error occurs.

Usage

The search starts from startindex + 1 by default. If you want to search from the beginning,
specify 0.

FindItem does not select the item it finds. You must use the item's selected property in
conjunction with FindItem to select the resulting match.

If focused, selected, cuthighlighted, and drophighlighted are set to false, the search finds the
next item in the ListView control.

Examples

This example uses FindItem to search from the selected ListView item:

listviewitem l_lvi
integer li_index, li_startindex

li_startindex = lv_list.SelectedIndex()
li_index = lv_list.FindItem(li_startindex, &
 DirectionDown!, FALSE, FALSE ,FALSE, FALSE)

IF li_index = -1 THEN
 MessageBox("Error", "Item not found.")
ELSE
 lv_list.GetItem (li_index, l_lvi)

Statements, Events, and Functions

Page 591

 l_lvi.HasFocus = TRUE
 l_lvi.Selected = TRUE
 lv_list.SetItem(li_index,l_lvi)
END IF

See also

AddItem

DeleteItem

InsertItem

SelectItem

2.4.189.4 Syntax 4: For TreeView controls

Description

Find an item based on its position in a TreeView control.

Applies to

TreeView controls

Syntax

treeviewname.FindItem (navigationcode, itemhandle)

Table 2.584:

Argument Description

treeviewname The name of the TreeView control in which you want to find a specified
item.

navigationcode A value of the TreeNavigation enumerated datatype specifying the
relationship between itemhandle and the item you want to find. See the
table in Usage note for a list of valid values.

itemhandle A long for the handle of an item related via navigationcode to the item for
which you are searching.

Return value

Long.

Returns the item handle if it succeeds and -1 if an error occurs.

Usage

FindItem does not select the item it finds. You must use the item's selected property in
conjunction with FindItem to select the result of the FindItem search.

FindItem never finds a collapsed item, except when looking for ChildTreeItem!, which
causes an item to expand. CurrentItem! is not changed until after the clicked event occurs. To
return the correct handle for the current item when the user clicks it, create a custom event to
return the handle and post it in the clicked event.

If navigationcode is RootTreeItem!, FirstVisibleTreeItem!, CurrentTreeItem!, or
DropHighlightTreeItem!, set itemhandle to 0.

Statements, Events, and Functions

Page 592

The following table shows valid values for the navigationcode argument.

Table 2.585: Valid values for the navigationcode argument of FindItem

Navigationcode
value

What FindItem finds

RootTreeItem! The first item at level 1. Returns -1 if no items have been inserted into the
control.

NextTreeItem! The sibling after itemhandle. A sibling is an item at the same level with
the same parent. Returns -1 if there are no more siblings.

PreviousTreeItem!The sibling before itemhandle. Returns -1 if there are no more siblings.

ParentTreeItem! The parent of itemhandle. Returns -1 if the item is at level 1.

ChildTreeItem! The first child of itemhandle. If the item is collapsed, ChildtreeItem!
causes the node to expand. Returns -1 if the item has no children or if the
item is not populated yet.

FirstVisibleTreeItem!The first item visible in the control, regardless of level. The position of
the scroll bar determines the first visible item.

NextVisibleTreeItem!The next expanded item after itemhandle, regardless of level. The
NextVisible and PreviousVisible values allow you to walk through all the
visible children and branches of an expanded node. Returns -1 if the item
is the last expanded item in the control.

To scroll to an item that is beyond the reach of the visible area of the
control, use FindItem and then SelectItem.

PreviousVisibleTreeItem!The next expanded item before itemhandle, regardless of level. Returns
-1 if the item is the first root item.

CurrentTreeItem! The selected item. Returns -1 if the control never had focus and nothing
has been selected.

DropHighlightTreeItem!The item whose DropHighlighted property was most recently set. Returns
-1 if the property was never set or if it has been set back to false because
of other activity in the control.

Examples

To return the correct handle when the current item is clicked, place this code in a custom
event that is posted in the item's clicked event:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)

This example finds the first item on the first level of a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(RootTreeItem!, 0)

See also

DeleteItem

GetItem

InsertItem

Statements, Events, and Functions

Page 593

SelectItem

2.4.190 FindMatchingFunction

Description

Finds out what function in a class matches a specified signature. The signature is a
combination of a script name and an argument list.

Applies to

ClassDefinition objects

Syntax

classdefobject.FindMatchingFunction (scriptname, argumentlist)

Table 2.586:

Argument Description

classdefobject The name of the ClassDefinition object describing the class in which you
want to find a function.

scriptname A string whose value is the name of the function.

argumentlist An unbounded array of strings whose values are the datatypes of the
function arguments. If the variable is passed by reference, the string must
include "ref" before the datatype. If the variable is an array, you must
include array brackets after the datatype.

The format is:

{ ref } datatype { [] }

For a bounded array, the argument must include the range, as in:

ref integer[1 TO 10]

Return value

ScriptDefinition. Returns an object instance with information about the matching function. If
no matching function is found, FindMatchingFunction returns null. If any argument is null, it
also returns null.

Usage

In searching for the function, PowerBuilder examines the collapsed inheritance hierarchy.
The found function may be defined in the current object or in any of its ancestors.

Arguments passed by reference

To find a function with an argument that is passed by reference, you must specify the
REF keyword. If you have a VariableDefinition object for a function argument, check the
CallingConvention argument to determine if the argument is passed by reference.

In documentation for PowerBuilder functions, arguments passed by reference are described
as a variable, rather than simply a value. The PowerBuilder Browser does not report which
arguments are passed by reference.

Examples

Statements, Events, and Functions

Page 594

This example gets the ScriptDefinition object that matches the PowerBuilder window object
function OpenUserObjectWithParm and looks for the version with four arguments. If it finds
a match, the example calls the function uf_scriptinfo, which creates a report about the script:

string ls_args[]
ScriptDefinition sd

ls_args[1] = "ref dragobject"
ls_args[2] = "double"
ls_args[3] = "integer"
ls_args[4] = "integer"

sd = c_obj.FindMatchingFunction(&
 "OpenUserObjectWithParm", ls_args)
IF NOT IsValid(sd) THEN
 mle_1.Text = "No matching script"
ELSE
 mle_1.Text = uf_scriptinfo(sd)
END IF

The uf_scriptinfo function gets information about the function that matched the signature and
builds a string. Scriptobj is the ScriptDefinition object passed to the function:

string s, lineend
integer li
lineend = "~r~n"

// Script name
s = s + scriptobj.Name + lineend
// datatype of the return value
s = s + scriptobj.ReturnType.DataTypeOf + lineend

// List argument names
s = s + "Arguments:" + lineend
FOR li = 1 to UpperBound(scriptobj.ArgumentList)
 s = s + scriptobj.ArgumentList[li].Name + lineend
NEXT

// List local variables
s = s + "Local variables:" + lineend
FOR li = 1 to UpperBound(scriptobj.LocalVariableList)
 s = s + scriptobj.LocalVariableList[li].Name &
 + lineend
NEXT
RETURN s

See also

FindClassDefinition

FindFunctionDefinition

FindTypeDefinition

2.4.191 FindNext

Description

Finds the next occurrence of text in the control and highlights it, using criteria set up in a
previous call of the Find function.

Applies to

Statements, Events, and Functions

Page 595

RichTextEdit controls and DataWindow controls whose content has the RichTextEdit
presentation style

Syntax

controlname.FindNext ()

Table 2.587:

Argument Description

controlname The name of the RichTextEdit or DataWindow control whose contents
you want to search

Return value

Integer.

Returns the number of characters found. FindNext returns 0 if no matching text is found and
-1 if the DataWindow's presentation style is not RichTextEdit or an error occurs.

Examples

This example searches the RichTextEdit rte_1 for text the user specifies in the SingleLineEdit
sle_search. The search proceeds forward from the cursor position, is case insensitive, and is
not limited to whole words:

integer li_charsfound
li_charsfound = rte_1.Find(sle_search.Text, &
 TRUE, TRUE, FALSE, TRUE)

A second button labeled FindNext would have a script like this:

rte_1.FindNext()

See also

Find

2.4.192 FindSeries

Description

Obtains the number of a series in a graph when you know the series' name.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.FindSeries ({ graphcontrol, } seriesname)

Table 2.588:

Argument Description

controlname The name of the graph containing the series for which you want the
number, or the name of the DataWindow control containing the graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control containing the series

Statements, Events, and Functions

Page 596

Argument Description

seriesname A string whose value is the name of the series for which you want the
number

Return value

Integer.

Returns the number of the series named in seriesname in the graph controlname, or if
controlname is a DataWindow control, in graphcontrol. If an error occurs, FindSeries returns
-1. If any argument's value is null, FindSeries returns null.

Usage

Most of the series manipulation functions require a series number, rather than a name.
However, when you delete and insert series, existing series are renumbered so that the series
are numbered consecutively. Use FindSeries when you know only a series' name or when the
numbering may have changed.

Examples

These statements store the number of the series in the graph gr_product_data that was entered
in the SingleLineEdit sle_series in SeriesNbr:

integer SeriesNbr
SeriesNbr = &
 gr_product_data.FindSeries(sle_series.Text)

These statements obtain the number of the series named PCs in the graph gr_computers in the
DataWindow control dw_equipment and store it in SeriesNbr:

integer SeriesNbr
SeriesNbr = &
 dw_equipment.FindSeries("gr_computers", "PCs")

See also

AddSeries

DeleteSeries

FindCategory

2.4.193 FindTypeDefinition

Description

Searches for a type in one or more PowerBuilder libraries (PBLs) and provides information
about its type definition. You can also get type definitions for system types.

Syntax

FindTypeDefinition (typename {, librarylist })

Table 2.589:

Argument Description

typename The name of a simple datatype, enumerated datatype, or class for which
you want information. To find a type definition for a nested type, use this
form:

Statements, Events, and Functions

Page 597

Argument Description
libraryEntryName`typename

librarylist
(optional)

An array of strings whose values are the fully qualified pathnames of
PBLs. If you omit librarylist, FindTypeDefinition searches the library list
associated with the running application.

PowerBuilder also searches its own libraries for built-in definitions, such
as enumerated datatypes and system classes.

Return value

TypeDefinition. Returns an object reference with information about the definition of
typename. If any arguments are null, FindTypeDefinition returns null.

Usage

The returned TypeDefinition object is a ClassDefinition, SimpleTypeDefinition, or
EnumerationDefinition object. You can test the Category property to find out which one it is.

If you want to get information for a class, call FindClassDefinition instead. The
arguments are the same and you are saved the step of checking that the returned object is a
ClassDefinition object.

If you want to get information for a global function, call FindFunctionDefinition.

Examples

This example gets a TypeDefinition object for the grGraphType enumerated datatype. It
checks the category of the type definition and, since it is an enumeration, assigns it to an
EnumerationDefinition object type and saves the name in a string:

TypeDefinition td_graphtype
EnumerationDefinition ed_graphtype
string enumname

td_graphtype = FindTypeDefinition("grgraphtype")
IF td_graphtype.Category = EnumeratedType! THEN
 ed_graphtype = td_graphtype
 enumname = ed_graphtype.Enumeration[1].Name
END IF

This example is a function that takes a definition name as an argument. The argument is
typename. It finds the named TypeDefinition object, checks its category, and assigns it to the
appropriate definition object:

TypeDefinition td_def
SimpleTypeDefinition std_def
EnumerationDefinition ed_def
ClassDefinition cd_def

td_def = FindTypeDefinition(typename)
CHOOSE CASE td_def.Category
CASE SimpleType!
 std_def = td_def
CASE EnumeratedType!
 ed_def = td_def
CASE ClassOrStructureType!
 cd_def = td_def
END CHOOSE

Statements, Events, and Functions

Page 598

This example searches the libraries in the array ls_libraries to find the class definition for
w_genapp_frame:

TypeDefinition td_windef
string ls_libraries[]

ls_libraries[1] = "c:\pwrs\bizapp\windows.pbl"
ls_libraries[2] = "c:\pwrs\framewk\windows.pbl"
ls_libraries[3] = "c:\pwrs\framewk\ancestor.pbl"

td_windef = FindTypeDefinition("w_genapp_frame", ls_libraries)

See also

FindClassDefinition

FindFunctionDefinition

FindMatchingFunction

2.4.194 FromAnsi

Description

Converts a blob containing an ANSI character string to a Unicode string.

Syntax

FromAnsi (blob)

Table 2.590:

Argument Description

blob A blob containing an ANSI character string you want to convert to a
Unicode string

Return value

String.

Returns a character string if it succeeds and an empty string if it fails.

Usage

The FromAnsi function converts an ANSI character string contained in a blob to a Unicode
character string.

FromAnsi has the same result as String(blob, EncodingANSI!) and will be obsolete in a
future release of PowerBuilder.

Unicode file format

Unicode files sometimes have two extra bytes at the start of the file to indicate that
they are Unicode files.

See also

FromUnicode

String

Statements, Events, and Functions

Page 599

ToAnsi

ToUnicode

2.4.195 FromUnicode

Description

Converts a blob containing a Unicode character string to a string in the file format of the
current version of PowerBuilder.

Syntax

FromUnicode (blob)

Table 2.591:

Argument Description

blob A blob containing a Unicode character string you want to convert to a
string in the file format of the current version of PowerBuilder

Return value

String.

Returns a character string if it succeeds and an empty string if it fails.

Usage

The FromUnicode function converts a Unicode blob to a Unicode character string and
has the same result as String(blob). This function will be obsolete in a future release of
PowerBuilder.

Unicode file format

Unicode files sometimes have two extra bytes at the start of the file to indicate that
they are Unicode files. If you are opening a Unicode file in stream mode, skip the first
two bytes if they are present.

See also

FromAnsi

ToAnsi

ToUnicode

2.4.196 GarbageCollect

Description

Forces immediate garbage collection.

Syntax

GarbageCollect ()

Return value

Statements, Events, and Functions

Page 600

None

Usage

Forces garbage collection to occur immediately. PowerBuilder makes a pass to identify
unused objects, including those with circular references, then deletes unused objects and
classes.

Examples

This statement initiates garbage collection:

GarbageCollect()

See also

GarbageCollectGetTimeLimit

GarbageCollectSetTimeLimit

2.4.197 GarbageCollectGetTimeLimit

Description

Gets the current minimum interval for garbage collection.

Syntax

GarbageCollectGetTimeLimit ()

Return value

Long.

Returns the current minimum garbage collection interval.

Usage

Reads the current minimum period between garbage collection passes.

Examples

This statement returns the interval between garbage collection passes in the variable
CollectTime:

long CollectTime

CollectTime = GarbageCollectGetTimeLimit()

See also

GarbageCollect

GarbageCollectSetTimeLimit

2.4.198 GarbageCollectSetTimeLimit

Description

Sets the minimum interval between garbage collection passes.

Syntax

GarbageCollectSetTimeLimit (newtimeinmilliseconds)

Statements, Events, and Functions

Page 601

Table 2.592:

Argument Description

newtimeinmillisecondsA long (in milliseconds) that you want to set as the minimum period
between garbage collection cycles.

If null, the existing interval is not changed.

Return value

Long.

Returns the interval that existed before this function was called. If newTime is null, then null
is returned and the current interval is not changed.

Usage

Specifies the minimum interval between garbage collection passes: garbage collection
passes will not happen before this interval has expired. Garbage collection can effectively
be disabled by setting the minimum limit to a very large number. If garbage collection is
disabled, unused classes will not be flushed out of the class cache.

Examples

This example sets the interval between garbage collection passes to 1 second and sets the
variable OldTime to the length of the previous interval:

long OldTime, NewTime
NewTime = 1000 /* 1 second */
OldTime = GarbageCollectSetTimeLimit(NewTime)

See also

GarbageCollect

GarbageCollectGetTimeLimit

2.4.199 GetAccessToken

Description

Gets the access token returned by the authorization server.

Applies to

TokenResponse objects

Syntax

objectname.GetAccessToken ()

Table 2.593:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
access token.

Return value

String.

Statements, Events, and Functions

Page 602

Returns the access token if it succeeds and empty string ("") if an error occurs.

Examples

The following example shows the use of the GetAccessToken function to get the access
token:

string ls_accesstoken
TokenResponse lnv_TokenResponse

ls_accesstoken = lnv_TokenResponse.getaccesstoken()

See also

GetBody

GetExpiresIn

GetHeader

GetHeaders

GetRefreshToken

GetStatusCode

GetStatusText

GetTokenError

GetTokenType

2.4.200 GetActiveCategory

Description

Gets the active category in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetActiveCategory (ref RibbonCategoryItem Item)

Table 2.594:

Argument Description

controlname The name of the RibbonBar control.

Item A RibbonCategoryItem variable in which you want to store the active
category.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Examples

The following code example gets a copy of the active category and stores it in the
lr_Category variable.

Statements, Events, and Functions

Page 603

Integer li_Return
Long ll_Handle
RibbonCategoryItem lr_Category

ll_Handle = rbb_1.InsertCategoryFirst("MyCategory")
li_Return = rbb_1.GetActiveCategory(lr_Category)

See also

InsertCategory

InsertCategoryFirst

InsertCategoryLast

DeleteCategory

SetCategory

GetCategory

GetCategoryByIndex

GetCategoryCount

SetActiveCategory

2.4.201 GetActiveSheet

Description

Returns the currently active sheet in an MDI frame window.

Applies to

MDI frame windows

Syntax

mdiframewindow.GetActiveSheet ()

Table 2.595:

Argument Description

mdiframewindow The MDI frame window for which you want the active sheet

Return value

Window. Returns the sheet that is currently active in mdiframewindow. If no sheet is active,
GetActiveSheet returns an invalid value. If mdiframewindow is null, GetActiveSheet returns
null.

Usage

Use the IsValid function to determine whether GetActiveSheet has returned a valid window
value.

Examples

These statements determine the active sheet in the MDI frame window w_frame and change
the text of the menu selection m_close on the menu m_file on the menu bar m_main. If no
sheet is active, the text is Close Window:

// Declare variable for active sheet

Statements, Events, and Functions

Page 604

window activesheet
string mtext

activesheet = w_frame.GetActiveSheet()
IF IsValid(activesheet) THEN
 // There is an active sheet, so get its title;
 // change the text of the menu to read
 // Close plus the title of the active sheet
 mtext = "Close " + activesheet.Title
 m_main.m_file.m_close.Text = mtext

ELSE
 // No sheet is active, menu says Close Window
 m_main.m_file.m_close.Text = "Close Window"
END IF

See also

IsValid

2.4.202 GetAlignment

Description

Obtains the alignment of the paragraph containing the insertion point in a RichTextEdit
control.

Applies to

RichTextEdit controls

Syntax

rtename.GetAlignment ()

Table 2.596:

Argument Description

rtename The name of the RichTextEdit control in which you want to find out the
alignment of the paragraph containing the insertion point

Return value

Alignment. A value of the Alignment enumerated datatype indicating the alignment of the
paragraph containing the insertion point.

Usage

When several paragraphs are selected, the insertion point is at the beginning or end of the
selection, depending on how the user made the selection. The value reported depends on the
location of the insertion point.

Examples

This examples saves the alignment setting of the paragraph that contains the insertion point:

alignment l_align
l_align = rte_1.GetAlignment()

See also

GetSpacing

Statements, Events, and Functions

Page 605

GetTextStyle

SetAlignment

SetSpacing

SetTextStyle

2.4.203 GetApplication

Description

Gets the handle of the current Application object so you can get and set properties of the
application.

Syntax

GetApplication ()

Return value

Application. Returns the handle of the current application object.

Usage

The GetApplication function lets you write generic code for an application, making it
reusable in other applications. You do not have to code the actual name of the application
when you want to set application properties.

Examples

To change whether Toolbar Tips are displayed, you can get the handle of the application
object and set the ToolbarTips property:

application app
app = GetApplication()
app.ToolbarTips = FALSE

The previous example could be coded more simply as follows:

GetApplication().ToolbarTips = FALSE

2.4.204 GetApplicationButton

Description

Gets the application button of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetApplicationButton (ref RibbonApplicationButtonItem Item)

Table 2.597:

Argument Description

controlname The name of the RibbonBar control.

Item A RibbonApplicationButtonItem variable in which you want to store the
application button.

Statements, Events, and Functions

Page 606

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

Only one application button is allowed in a ribbon bar, therefore, you can directly get (set
or remove) the application button without needing to insert the application button first or
identify the application button by its handle.

Examples

This example sets the Text property of the application button to "MyApp" and then gets a
copy of the application button and stores it in the lr_AppButton2 variable.

Integer li_Return
RibbonApplicationButtonItem lr_AppButton, lr_AppButton2

lr_AppButton.Text = "MyApp"
li_Return = rbb_1.SetApplicationButton(lr_AppButton)
li_Return = rbb_1.GetApplicationButton(lr_AppButton2)

See also

RemoveApplicationButton

SetApplicationButton

2.4.205 GetArgElement

Description

Returns the value in the specified argument.

Applies to

Window ActiveX controls

Syntax

activexcontrol.GetArgElement (index)

Table 2.598:

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window ActiveX control.
When used in HTML, the ActiveX control is the NAME attribute of
the OBJECT element. When used in other environments, references the
control that contains the PowerBuilder window ActiveX.

index Integer specify the argument to return.

Return value

Any.

Returns the specified argument.

Usage

Statements, Events, and Functions

Page 607

Call this function after calling InvokePBFunction or TriggerPBEvent to access the updated
value in an argument passed by reference.

JavaScript scripts must use this function to access arguments passed by reference. VBScript
scripts can use this function if they established the argument list via calls to SetArgElement.

Examples

This JavaScript example calls the GetArgElement function:

...
 theArg = f.textToPB.value;
 PBRX1.SetArgElement(1, theArg);
 theFunc = "of_argref";
 retcd = PBRX1.InvokePBFunction(theFunc, numargs);
 rc = parseInt(PBRX1.GetLastReturn());

 IF (rc != 1) {
 alert("Error. Empty string.");
 }
 backByRef = PBRX1.GetArgElement(1);
...

See also

GetLastReturn

InvokePBFunction

SetArgElement

TriggerPBEvent

2.4.206 GetAutomationNativePointer

Description

Gets a pointer to the OLE object associated with the OLEObject variable. The pointer lets
you call OLE functions in an external DLL for the object.

Applies to

OLEObject

Syntax

oleobject.GetAutomationNativePointer (pointer)

Table 2.599:

Argument Description

oleobject The name of an OLEObject variable containing the object for which you
want the native pointer.

pointer An UnsignedLong variable in which you want to store the pointer. If
GetAutomationNativePointer cannot get a valid pointer, pointer is set to
0.

Return value

Integer.

Statements, Events, and Functions

Page 608

Returns 0 if it succeeds and -1 if an error occurs.

Usage

Pointer is a pointer to OLE's IUnknown interface. You can use it with the
OLE QueryInterface function to get other interface pointers. When you call
GetAutomationNativePointer, PowerBuilder calls OLE's AddRef function, which locks the
pointer. You can release the pointer in your DLL function or in a PowerBuilder script with
the ReleaseAutomationNativePointer function.

This function is useful only for external DLL calls. It is not related to the
SetAutomationPointer function.

Examples

This example creates an OLEObject object, connects to an automation server, and gets a
pointer for making external function calls. After processing, the pointer is released:

OLEObject oleobj_report
UnsignedLong lul_oleptr
integer li_rtn

oleobj_report = CREATE OLEObject
oleobj_report.ConnectToObject("report.doc")
li_rtn = &
oleobj_report.GetAutomationNativePointer(lul_oleptr)
IF li_rtn = 0 THEN
 ... // Call external functions for automation
 oleobj_report.&
 ReleaseAutomationNativePointer(lul_oleptr)
END IF

See also

GetNativePointer

ReleaseAutomationNativePointer

ReleaseNativePointer

2.4.207 GetBestHeight

Description

Gets the height of the RibbonBar control which is automatically adjusted to best fit the
content (when AutosizeHeight is enabled).

Applies to

RibbonBar controls

Syntax

controlname.GetBestHeight ()

Return value

Integer.

Returns the height of the RibbonBar control, in PowerBuilder units. If any argument's value
is null, returns null.

Examples

Statements, Events, and Functions

Page 609

Integer li_Height
li_Height = rbb_1.GetBestHeight()

2.4.208 GetBody

2.4.208.1 Syntax 1: for TokenResponse objects

Description

Gets the response body into a string.

Applies to

TokenResponse objects

Syntax

objectname.GetBody (string data)

Table 2.600:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
response body.

data A string variable into which the function returns data.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetBody function to get the response body:

int li_return
string ls_data
TokenResponse lnv_tokenResponse

li_return = lnv_tokenResponse.getbody(ls_data)

See also

GetAccessToken

GetExpiresIn

GetHeader

GetHeaders

GetRefreshToken

GetStatusCode

GetStatusText

GetTokenError

GetTokenType

Statements, Events, and Functions

Page 610

2.4.208.2 Syntax 2: for OAuthRequest objects

Description

Gets the body into a string.

Applies to

OAuthRequest objects

Syntax

objectname.GetBody (string data)

objectname.GetBody (blob data)

objectname.GetBody (string data, encoding encodingType)

Table 2.601:

Argument Description

objectname A reference to the OAuthRequest object in which you want to get the
body.

data A string or blob variable into which the function returns data.
The following data encodings are supported: EncodingANSI!,
EncodingUTF8!, EncodingUTF16LE! and EncodingUTF16BE!.

encodingType An encoding value specifying the data which is converted to
EncodingUTF16LE!.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetBody function to get the response body of
string data type:

int li_return
string ls_data
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.getbody(ls_data)

The following example shows the use of the GetBody function to get the response body of
string data type in encodingUTF8!:

int li_return
string ls_data
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.getbody(ls_data, encodingUTF8!)

The following example shows the use of the GetBody function to get the response body of
blob data type:

int li_return

Statements, Events, and Functions

Page 611

blob lblb_data
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.getbody(lblb_data)

See also

ClearHeaders

GetHeader

GetHeaders

SetAccessToken

SetBody

SetHeader

SetHeaders

2.4.208.3 Syntax 3: for ResourceResponse objects

Description

Gets the response body into a string.

Applies to

ResourceResponse objects

Syntax

objectname.GetBody (string data)

objectname.GetBody (blob data)

objectname.GetBody (string data, encoding encodingType)

Table 2.602:

Argument Description

objectname A reference to the ResourceResponse object in which you want to get the
response body.

data A string or blob variable into which the function returns data.
The following data encodings are supported: EncodingANSI!,
EncodingUTF8!, EncodingUTF16LE! and EncodingUTF16BE!.

encodingType An encoding value specifying the data which is converted to
EncodingUTF16LE!.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetBody function to get the response body of
string data type:

Statements, Events, and Functions

Page 612

int li_return
string ls_data
ResourceResponse lnv_ResourceResponse

li_return = lnv_ResourceResponse.getbody(ls_data)

The following example shows the use of the GetBody function to get the response body of
string data type in encodingUTF8!:

int li_return
string ls_data
ResourceResponse lnv_ResourceResponse

li_return = lnv_ResourceResponse.getbody(ls_data, encodingUTF8!)

The following example shows the use of the GetBody function to get the response body of
blob data type:

int li_return
blob lblb_data
ResourceResponse lnv_ResourceResponse

li_return = lnv_ResourceResponse.getbody(lblb_data)

See also

GetHeader

GetHeaders

GetStatusCode

GetStatusText

2.4.209 GetBoxPictureList

Description

Gets the list of picture files that are set for the items in the ribbon combo box.

Applies to

RibbonComboBoxItem control

Syntax

controlname.GetBoxPictureList ()

Table 2.603:

Argument Description

controlname The name of the RibbonComboBoxItem control

Return value

String.

Returns the current picture list with full paths. Multiple pictures are separated by commas.

Examples

This example sets two built-in picture files for the items in the ribbon combo box and then
gets the list of picture files of the combo box.

Statements, Events, and Functions

Page 613

Integer li_Return
String ls_PictureList
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.SetBoxPictureList ("PaperSizeA0Small!, PaperSizeA1Small!")
ls_PictureList = lr_ComboBox.GetBoxPictureList()

See also

SetBoxPictureList

2.4.210 GetByte

Description

Extracts data of type Byte from a blob variable.

Syntax

GetByte (blobvariable, n, b)

Table 2.604:

Argument Description

blobvariable A variable of the Blob datatype from which you want to extract a value of
the Byte datatype

n Tthe number of the position in blobvariable at which you want to retrieve
a value of the Byte datatype

b Variable of the Byte datatype in which you want to store the returned
data of type Byte

Return value

Integer.

Returns 1 if it succeeds or -1 if n exceeds the scope of blobvariable; it returns null if the value
of any of its arguments is null.

Usage

If you want to get the value of the initial character in a blob, you can use the Byte function
without using an argument defining the position of the character.

Examples

This example converts the text in a SingleLineEdit to a blob before obtaining the byte value
of the character at the third position:

Int li_rtn
Byte lb_byte
Blob myBlob
myBlob = Blob (sle_1.text, EncodingUTF8!)
li_rtn = GetByte(myBlob, 3, lb_byte)
messagebox("getbyte", string(lb_byte))

See also

Byte

SetByte

Statements, Events, and Functions

Page 614

2.4.211 GetByteArray

Description

Obtains an array of Byte values stored in a blob.

Syntax

GetByteArray (input)

Table 2.605:

Argument Description

input A Blob datatype that you want to return as an array of bytes.

Return value

Any.

Returns the value of the input variable as an array of Byte datatypes if it succeeds; it returns 0
if the input variable is not a valid blob.

Usage

The returned value can be assigned directly to a byte array.

Examples

This example converts a blob passed in an argument to an array of bytes:

Byte ly_byte[]
ly_byte[] = GetByteArray(blobarg)

See also

Blob

GetByte

2.4.212 GetCategory

Description

Gets the category according to its handle in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetCategory (Long ItemHandle, ref RibbonCategoryItem Item)

Table 2.606:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the category you want to obtain.

Item A RibbonCategoryItem variable in which you want to store the category
identified by the item handle.

Statements, Events, and Functions

Page 615

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get the category according to its index by using the GetCategoryByIndex
function.

You can also get an item according to the handle by using the GetItem function.

Examples

The following code example inserts a "MyCategory" category and then gets a copy of the
category by handle and stores it in the lr_Category variable.

Integer li_Return
Long ll_Handle
RibbonCategoryItem lr_Category

ll_Handle = rbb_1.InsertCategoryLast ("MyCategory")
li_Return = rbb_1.GetCategory (ll_Handle, lr_Category)

See also

InsertCategory

InsertCategoryFirst

InsertCategoryLast

DeleteCategory

SetCategory

GetCategoryByIndex

GetCategoryCount

SetActiveCategory

GetActiveCategory

2.4.213 GetCategoryByIndex

Description

Gets the category according to its index in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetCategoryByIndex (Long Index, ref RibbonCategoryItem Item)

Table 2.607:

Argument Description

controlname The name of the RibbonBar control.

Statements, Events, and Functions

Page 616

Argument Description

Index The index of the category which you want to obtain.

Item A RibbonCategoryItem variable in which you want to store the category
identified by the index.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get the category according to its handle by using the GetCategory function or
the GetItem function.

Examples

The following code example gets a copy of the category whose index number is 1 and stores
the copy in the lr_Category variable.

Integer li_Return
Long ll_Handle
RibbonCategoryItem lr_Category

ll_Handle = rbb_1.InsertCategoryLast ("MyCategory")
li_Return = rbb_1.GetCategoryByIndex (1, lr_Category)

See also

InsertCategory

InsertCategoryFirst

InsertCategoryLast

DeleteCategory

SetCategory

GetCategory

GetCategoryCount

GetCategoryIndex

SetActiveCategory

GetActiveCategory

2.4.214 GetCategoryCount

Description

Determines the total number of categories in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetCategoryCount ()

Statements, Events, and Functions

Page 617

Table 2.608:

Argument Description

controlname The name of the RibbonBar control.

Return value

Long.

Returns the total number of categories in RibbonBar. If RibbonBar contains no categories,
returns 0. If an error occurs, returns -1.

Examples

Long ll_Return
ll_Return = rbb_1.GetCategoryCount()

See also

InsertCategory

InsertCategoryFirst

InsertCategoryLast

DeleteCategory

SetCategory

GetCategory

GetCategoryByIndex

SetActiveCategory

GetActiveCategory

2.4.215 GetCategoryIndex

Description

Gets the index of the category in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetCategoryIndex (Long ItemHandle)

Table 2.609:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle for the category you want to obtain the index.

Return value

Long.

Returns the index of the category if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Statements, Events, and Functions

Page 618

Examples

This example gets the index number of "MyCategory2".

Long ll_Return
Long ll_Handle, ll_Handle2
RibbonCategoryItem lr_Category

ll_Handle = rbb_1.InsertCategoryFirst("MyCategory1")
ll_Handle2 = rbb_1.InsertCategoryLast("MyCategory2")
ll_Return = rbb_1.GetCategoryIndex(ll_Handle2)

See also

InsertCategory

InsertCategoryFirst

InsertCategoryLast

DeleteCategory

SetCategory

GetCategory

GetCategoryByIndex

GetCategoryCount

SetActiveCategory

GetActiveCategory

2.4.216 GetCertificateLabel (obsolete)

Description

Called by EAServer to allow the user to select one of the available SSL certificate labels for
authentication. This function is used by PowerBuilder clients connecting to EAServer.

Obsolete function

GetCertificateLabel is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

SSLCallBack objects

Syntax

sslcallback.GetCertificateLabel (thesessioninfo, labels)

Table 2.610:

Argument Description

sslcallback An instance of a customized SSLCallBack object.

thesessioninfo A CORBAObject that contains information about the SSL session. This
information can optionally be displayed to the user to provide details
about the session.

Statements, Events, and Functions

Page 619

Argument Description

labels An array of string values that contains the available certificate labels. The
user must select one of these labels.

Return value

String.

Returns one of the labels passed to the function.

Usage

A PowerBuilder application does not usually call the GetCertificateLabel function directly.
GetCertificateLabel is called by EAServer when an EAServer client has not specified a
certificate label for an SSL connection that requires it.

To override the behavior of any of the functions of the SSLCallBack object, create a standard
class user object that descends from SSLCallBack and customize this object as necessary.
To let EAServer know which object to use when a callback is required, specify the name of
the object in the callbackImpl SSL property. You can set this property value by calling the
SetGlobalProperty function.

If you do not provide an implementation of GetCertificateLabel, EAServer receives the
CORBA::NO_IMPLEMENT exception and the default implementation of this callback is
used. The default implementation always returns the first certificate in the list of labels. If no
labels are supplied, the CtsSecurity::NoCertificateException is raised. Any exceptions that
may be raised by the function should be added to its prototype.

If your implementation of the callback returns an empty string, the default implementation
described above is used and the first certificate label in the list is returned. If the server
requires mutual authentication and that certificate is acceptable to the server, the connection
proceeds. If the certificate is not acceptable, the connection is refused.

To obtain a useful return value, provide the user with available certificate labels from the
labels array passed to the function and ask the user to select one of them. You can also supply
additional information obtained from the passed thesessioninfo object.

You can enable the user to cancel the attempt to connect by throwing an exception
in this callback function. All exceptions thrown in SSLCallback functions return a
CTSSecurity::UserAbortedException to the server. You need to catch the exception by
wrapping the ConnectToServer function in a try-catch block.

Examples

This example checks whether any certificate labels are available. To give the user more
context, it displays host and port information obtained from the SSL session information
object in the message box that informs the user that no certificates are available. If certificates
are available, it opens a response window that displays available certificate labels.

The response window returns the text of the selected item using CloseWithReturn:

int idx, numLabels
long rc
String ls_rc, sText, sLocation
w_response w_ssl_response
CTSSecurity_sslSessionInfo mySessionInfo

Statements, Events, and Functions

Page 620

rc = thesessioninfo._narrow(mySessionInfo, &
 "SessionInfo")
sLocation = mySessionInfo.getProperty("host") + &
 ":" + mySessionInfo.getProperty("port")
numLabels = upperbound(labels)

IF numLabels <= 0 THEN
 MessageBox ("Personal certificate required", &
 "A certificate is required for connection to " &
 + sLocation + "~nNo certificates are available")
 ls_rc = ""
 ELSE
 sText = "Available certificates: "
 FOR idx=1 to numLabels
 sText += "~nCertificate[" + &
 string(idx) + "]: " + labels[idx]
 NEXT
 OpenWithParm(w_ssl_response, SText)
 ls_rc = Message.StringParm
 IF ls_rc = "cancel" then
 userabortedexception uae
 uae = create userabortedexception
 uae.setmessage("User cancelled connection" &
 + " when asked for certificate")
 throw uae
 END IF
END IF
RETURN ls_rc

See also

ConnectToServer (obsolete)

GetCredentialAttribute (obsolete)

GetPin (obsolete)

TrustVerify (obsolete)

2.4.217 GetCheckBox

Description

Gets the check box according to the handle in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetCheckBox (Long ItemHandle, ref RibbonCheckBoxItem Item)

Table 2.611:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle for the check box you want to obtain.

Item A RibbonCheckBoxItem variable in which you want to store the check
box identified by the item handle.

Statements, Events, and Functions

Page 621

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get an item according to the handle by using the GetItem function.

Examples

The following code example inserts a "MyCheckBox" check box to the "MyPanel" panel and
then gets a copy of the check box according to its handle and stores it in the lr_CheckBox
variable.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_CheckBox
RibbonCheckBoxItem lr_CheckBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_CheckBox = rbb_1.InsertCheckBoxFirst (ll_Handle_Panel, "MyCheckBox",
 "Ue_CheckBoxClicked")
li_Return = rbb_1.GetCheckBox (ll_Handle_CheckBox, lr_CheckBox)

See also

InsertCheckBox

InsertCheckBoxFirst

InsertCheckBoxLast

DeleteCheckBox

SetCheckBox

GetChildItemByIndex

2.4.218 GetChildCount

Description

Gets the child item count in a JSON parser object.

Applies to

JSONParser objects

Syntax

objectname.GetChildCount (ParentItemHandle)

objectname.GetChildCount (ParentItemPath)

Table 2.612:

Argument Description

objectname The name of the JSONParser object whose item count you want to
obtain.

Statements, Events, and Functions

Page 622

Argument Description

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem or
JsonArrayItem type.

ParentItemPath A string whose value is the path of the parent item of JsonObjectItem or
JsonArrayItem type. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

Long.

Returns the child item count if it succeeds and -1 if an error occurs. If any argument's value is
null, the method returns null.

Example 1

This example gets the total number of child items according to the parent item handle and
then gets the values of child items in a loop:

JsonParser lnv_JsonParser
Long ll_RootObject, ll_ChildCount, ll_Index
String ls_Json, ls_key
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "active":true}'

// Loads a JSON string
lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()

ll_ChildCount = lnv_JsonParser.GetChildCount(ll_RootObject)
// Obtains the values of child items
for ll_Index = 1 to ll_ChildCount
 ls_key = lnv_JsonParser.GetChildKey(ll_RootObject, ll_Index)
next

Example 2

This example gets the total number of child items according to the parent item handle and
then gets the value of every array item in a loop:

String ls_Json, ls_Name
Long ll_ChildCount, ll_Index, ll_Id, ll_ArrayItem, ll_ObjectItem
Datetime ldt_Birthday
JsonParser lnv_JsonParser

lnv_JsonParser = Create JsonParser

ls_Json = '[{"id":1, "name":"evan1", "birthday":2340323884}, {"id":2,
 "name":"evan2", "birthday":5340324801}]'

// Loads a JSON string
lnv_JsonParser.LoadString(ls_Json)
Long ll_ArrayItem = lnv_JsonParser.GetRootItem() // Root item is JsonArrayItem!
ll_ChildCount = lnv_JsonParser.GetChildCount(ll_ArrayItem)

// Gets the array item in a loop
for ll_Index = 1 to ll_ChildCount
 // Gets the array item
 Long ll_ObjectItem = lnv_JsonParser.GetChildItem(ll_ArrayItem, ll_Index)

Statements, Events, and Functions

Page 623

 // Array item is JsonObjectItem!
 if lnv_JsonParser.GetItemType(ll_ObjectItem) = JsonObjectItem! then
 ll_Id = lnv_JsonParser.GetItemNumber(ll_ObjectItem, "id")
 ls_Name = lnv_JsonParser.GetItemString(ll_ObjectItem, "name")
 ldt_Birthday = lnv_JsonParser.GetItemDateTime(ll_ObjectItem, "birthday")
 end if
 ...
next

Example 3

This example gets the total number of child items according to the parent item path and then
gets the value of every array item in a loop:

String ls_Json, ls_Name, ls_RootPath, ls_ArrayPath, ls_ChildPath
Long ll_ChildCount, ll_Index, ll_Id
Datetime ldt_Birthday
JsonParser lnv_JsonParser

lnv_JsonParser = Create JsonParser

ls_Json = '[{"id":1, "name":"evan1", "birthday":2340323884}, {"id":2,
 "name":"evan2", "birthday":5340324801}]'

// Loads a JSON string
lnv_JsonParser.LoadString(ls_Json)
ls_RootPath = "/"
ll_ChildCount = lnv_JsonParser.GetChildCount(ls_RootPath)

// Gets the array item in a loop
for ll_Index = 1 to ll_ChildCount
 // Gets the array item
 ls_ArrayPath = ls_RootPath + String(ll_Index)
 // Array item is JsonObjectItem!
 if lnv_JsonParser.GetItemType(ls_ArrayPath) = JsonObjectItem! then
 ls_ChildPath = ls_ArrayPath + "/" + "id"
 ll_Id = lnv_JsonParser.GetItemNumber(ls_ChildPath)
 ls_ChildPath = ls_ArrayPath + "/" + "name"
 ls_Name = lnv_JsonParser.GetItemString(ls_ChildPath)
 ls_ChildPath = ls_ArrayPath + "/" + "birthday"
 ldt_Birthday = lnv_JsonParser.GetItemDateTime(ls_ChildPath)
 end if
 //...
next

See also

GetChildItem

GetChildKey

2.4.219 GetChildItem

Description

Gets the handle of the child item in a JSON parser object.

Applies to

JSONParser objects

Syntax

objectname.GetChildItem (ParentItemHandle, Index)

Statements, Events, and Functions

Page 624

objectname.GetChildItem (ParentItemPath, Index)

Table 2.613:

Argument Description

objectname The name of the JSONParser object whose item handle you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem or
JsonArrayItem type.

ParentItemPath A string whose value is the path of the parent item of JsonObjectItem or
JsonArrayItem type. If a key name contains "/", use the escape character
"~~/" to replace "/".

Index A long whose value is the index of the child item.

Return value

Long.

Returns the handle of the child item if it succeeds and -1 if an error occurs. If any argument's
value is null, the method returns null.

Examples

This example gets the child item of department_array according to the parent item handle and
the child item index:

JsonParser lnv_JsonParser
lnv_JsonParser = create JsonParser
String ls_Json, ls_name, ls_deptname
Long ll_id, ll_number
Long ll_RootObject, ll_department_array, ll_number_item, ll_object_item
Boolean lb_active

ls_Json = '{"id":1001, "name":"evan", "active":true, "department_array":[999999,
 {"name":"Website"}, {"name":"PowerBuilder"}, {"name":"IT"}]}'

// Loads a JSON string
lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()

// Gets the root item
ll_id = lnv_JsonParser.GetItemNumber(ll_RootObject, "id")
ls_name = lnv_JsonParser.GetItemString(ll_RootObject, "name")
lb_active = lnv_JsonParser.GetItemBoolean(ll_RootObject, "active")

// Get the child item of department_array
ll_department_array = lnv_JsonParser.GetItemArray(ll_RootObject,
 "department_array")
ll_number_item = lnv_JsonParser.GetChildItem(ll_department_array, 1)
ll_number = lnv_JsonParser.GetItemNumber(ll_number_item)
ll_object_item = lnv_JsonParser.GetChildItem(ll_department_array, 2)
ls_deptname = lnv_JsonParser.GetItemString(ll_object_item, "name")
…

This example gets the child item of department_array according to the parent item path and
the child item index:

JsonParser lnv_JsonParser

Statements, Events, and Functions

Page 625

lnv_JsonParser = create JsonParser
String ls_Json, ls_name, ls_deptname, ls_RootPath, ls_ChildPath
Long ll_id, ll_number
Long ll_number_item, ll_object_item
Boolean lb_active

ls_Json = '{"id":1001, "name":"evan", "active":true, "department_array":[999999,
 {"name":"Website"}, {"name":"PowerBuilder"}, {"name":"IT"}]}'

// Loads a JSON string
lnv_JsonParser.LoadString(ls_Json)
ls_RootPath = "/"

// Gets the root item
ll_id = lnv_JsonParser.GetItemNumber(ls_RootPath + "id")
ls_name = lnv_JsonParser.GetItemString("/name")
lb_active = lnv_JsonParser.GetItemBoolean("/active")

// Get the child item of department_array
ls_ChildPath = ls_RootPath + "department_array"
ll_number_item = lnv_JsonParser.GetChildItem(ls_ChildPath, 1)
ll_number = lnv_JsonParser.GetItemNumber(ll_number_item)
ll_object_item = lnv_JsonParser.GetChildItem("/department_array", 2)
ls_deptname = lnv_JsonParser.GetItemString(ll_object_item, "name")

See also

GetChildCount

GetChildKey

2.4.220 GetChildItemByIndex

Description

Gets the child item in a parent (Category, Panel, or Group) according to its index in the
RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetChildItemByIndex (Long Handle, Long Index, ref PowerObject Item)

Table 2.614:

Argument Description

controlname The name of the RibbonBar control.

Handle The handle of the parent item whose child item you want to obtain. The
parent item can be Category, Panel, or Group.

Index The index of the child item you want to obtain.

Item An item variable in which you want to store the child item identified by
the index.

Return value

Integer.

Statements, Events, and Functions

Page 626

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

The parent object can be Category, Panel, or Group.

The child item for Category is Panel; the child item for Panel can be Group, LargeButton,
SmallButton, CheckBox, and ComboBox; the child item for Group can be SmallButton,
CheckBox, and ComboBox.

Examples

This example gets a copy of the "MySmallButton" small button from the "MyPanel" panel
and stores it in the lr_SmallButton variable.

Long ll_CateGoryHandle, ll_PanelHandle, ll_SmallButtonHandle
Integer li_return, li_return2
RibbonPanelItem lr_Panel
RibbonSmallButtonItem lr_SmallButton
PowerObject lpo_Object

ll_CateGoryHandle = rbb_1.InsertCategoryFirst ("MyCategory")
ll_PanelHandle = rbb_1.InsertPanelFirst (ll_CateGoryHandle, "MyPanel",
 "TabsSmall!")
ll_SmallButtonHandle = rbb_1.InsertSmallButtonFirst (ll_PanelHandle,
 "MySmallButton", "EmployeeSmall!", "ue_ButtonClicked")

li_return = rbb_1.GetChildItemByIndex (ll_CateGoryHandle, 1, lr_Panel)
If li_Return = 1 Then
 li_return2 = rbb_1.GetChildItemByIndex (lr_Panel.ItemHandle, 1, lpo_Object)
 If li_return2 = 1 And lpo_Object.ClassName() = "ribbonsmallbuttonitem" Then
 lr_SmallButton = lpo_Object
 End If
End If

See also

GetItemByTag

GetItemParent

GetChildItemCount

2.4.221 GetChildItemCount

Description

Determines the total number of child items in a parent (Category, Panel, or Group) of the
RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetChildItemCount (Long Handle)

Table 2.615:

Argument Description

controlname The name of the RibbonBar control.

Statements, Events, and Functions

Page 627

Argument Description

Handle The handle of the parent object whose child items you want to count. The
parent object can be Category, Panel, or Group.

Return value

Integer.

Returns the total number of child items in the parent. If the parent contains no items, returns
0. If an error occurs, returns -1. If any argument's value is null, returns null.

Usage

The parent object can be Category, Panel, or Group.

The child item for Category is Panel; the child item for Panel can be Group, LargeButton,
SmallButton, CheckBox, and ComboBox; the child item for Group can be SmallButton,
CheckBox, and ComboBox.

Examples

The following code example counts the panels in the "TestCategory" category and returns 2.

Long ll_Return, ll_Handle_Category, ll_Handle_panel

ll_Handle_Category = rbb_1.InsertCategoryFirst ("TestCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "TestPanel1",
 "EmployeeSmall!")
ll_Handle_Panel = rbb_1.InsertPanelLast (ll_Handle_Category, "TestPanel2",
 "EmployeeSmall!")
ll_Return = rbb_1.GetChildItemCount (ll_Handle_Category)

See also

GetChildItemByIndex

GetItemByTag

GetItemParent

2.4.222 GetChildKey

Description

Gets the key name of the child item in a JSON parser object.

Applies to

JSONParser objects

Syntax

objectname.GetChildKey (ParentItemHandle, Index)

objectname.GetChildKey (ParentItemPath, Index)

Table 2.616:

Argument Description

objectname The name of the JSONParser object whose key name you want to obtain.

Statements, Events, and Functions

Page 628

Argument Description

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

ParentItemPath A string whose value is the path of the parent item of JsonObjectItem
type. If a key name contains "/", use the escape character "~~/" to replace
"/".

Index A long whose value is the index of the child item.

Return value

String.

Returns the key name of the child item if it succeeds and empty string ("") if an error occurs.
If any argument's value is null, the method returns null.

Examples

This example gets the key of the child item according to the parent item handle and the child
item index:

JsonParser lnv_JsonParser
Long ll_RootObject, ll_id
String ls_Json, ls_key, ls_name
boolean lb_active
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "active":true}'

// Loads a JSON string
lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()

// Gets the key of the child item
ls_key = lnv_JsonParser.GetChildKey(ll_RootObject, 1)
ll_id = lnv_JsonParser.GetItemNumber(ll_RootObject, ls_key)
ls_key = lnv_JsonParser.GetChildKey(ll_RootObject, 2)
ls_name = lnv_JsonParser.GetItemString(ll_RootObject, ls_key)
ls_key = lnv_JsonParser.GetChildKey(ll_RootObject, 3)
lb_active = lnv_JsonParser.GetItemBoolean(ll_RootObject, ls_key)

This example gets the key of the child item according to the parent item path and the child
item index:

JsonParser lnv_JsonParser
Long ll_id
String ls_Json, ls_key, ls_name, ls_RootPath, ls_ChildPath
boolean lb_active
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "active":true}'

// Loads a JSON string
lnv_JsonParser.LoadString(ls_Json)
ls_RootPath = "/"

// Gets the key of the child item
ls_key = lnv_JsonParser.GetChildKey(ls_RootPath, 1)
ls_ChildPath = ls_RootPath + ls_Key
ll_id = lnv_JsonParser.GetItemNumber(ls_ChildPath)
ls_key = lnv_JsonParser.GetChildKey(ls_RootPath, 2)

Statements, Events, and Functions

Page 629

ls_name = lnv_JsonParser.GetItemString(ls_RootPath + ls_key)
ls_ChildPath = "/active"
lb_active = lnv_JsonParser.GetItemBoolean(ls_ChildPath)

See also

GetChildCount

GetChildItem

2.4.223 GetChildrenList

Description

Provides a list of the children of a routine included in a trace tree model.

Applies to

TraceTreeObject, TraceTreeRoutine, and TraceTreeGarbageCollect objects

Syntax

instancename.GetChildrenList (list)

Table 2.617:

Argument Description

instancename Instance name of the TraceTreeObject, TraceTreeRoutine, or
TraceTreeGarbageCollect object.

list An unbounded array variable of datatype TraceTreeNode in which
GetChildrenList stores a TraceTreeNode object for each child of a
routine. This argument is passed by reference.

Return value

ErrorReturn. Returns the following values:

• Success! -- The function succeeded

• ModelNotExistsError! -- The model does not exist

Usage

You use the GetChildrenList function to extract a list of the children of a routine (the
classes and routines it calls) included in a trace tree model. Each child listed is defined as a
TraceTreeNode object and provides the type of activity represented by that child.

You must have previously created the trace tree model from a trace file using the BuildModel
function.

When the GetChildrenList function is called for TraceTreeGarbageCollect objects, each child
listed usually represents the destruction of a garbage collected object.

Examples

This example checks the activity type of a node included in the trace tree model. If the
activity type is an occurrence of a routine, it determines the name of the class that contains
the routine and provides a list of the classes and routines called by that routine:

Statements, Events, and Functions

Page 630

TraceTree ltct_node
TraceTreeNode ltctn_list
...
CHOOSE CASE node.ActivityType
 CASE ActRoutine!
 TraceTreeRoutine ltctrt_rout
 ltctrt_rout = ltct_node

 result += "Enter " + ltctrt_rout.ClassName &
 + "." + ltctrt_rout.name + " " &
 + String(ltctrt_rout.ObjectID) + " " &
 + String(ltctrt_rout.EnterTimerValue) &
 + "~r~n" ltctrt_rout.GetChildrenList(ltctn_list)
...

See also

BuildModel

2.4.224 GetColumn

Description

Retrieves column information for a DataWindow, child DataWindow, or ListView control.

For syntax for a DataWindow or a child DataWindow, see the GetColumn method for
DataWindows in Section 9.53, “GetColumn” in DataWindow Reference.

Applies to

ListView controls

Syntax

listviewname.GetColumn (index, label, alignment, width)

Table 2.618:

Argument Description

listviewname The name of the ListView control from which you want to find the
properties for a column.

index An integer whose value is the index of the column for which you want to
find properties.

label A string identifying the label of the column for which you want to find
properties. This argument is passed by reference.

alignment A value of the enumerated datatype Alignment specifying the alignment
of the column for which you want to find properties. Values are:

• Center!

• Justify!

• Left!

• Right!

This argument is passed by reference.

Statements, Events, and Functions

Page 631

Argument Description

width An integer whose value is the width of the column for which you want to
find properties. This argument is passed by reference.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Use label, alignment, and width to retrieve the properties for a specified column.

Examples

This example uses the instance variable li_col to pass the column number to GetColumn and
retrieve the properties for the column. The script uses SetColumn to change the column's
alignment:

string ls_label,ls_align
int li_width
alignment la_align

IF lv_list.View <> ListViewReport! THEN
 lv_list.View = ListViewReport!
END IF

IF li_col = 0 THEN
 MessageBox("Error!","Click on a Column bar.", &
 StopSign!)
ELSE
 lv_list.GetColumn(li_col, ls_label, la_align, &
 li_width)
 lv_list.SetColumn(li_col, ls_label, Right!, &
 li_width)
END IF

See also

SetColumn

2.4.225 GetComboBox

Description

Gets the combo box according to the handle in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetComboBox (Long ItemHandle, ref RibbonComboBoxItem Item)

Table 2.619:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle for the combo box you want to obtain.

Statements, Events, and Functions

Page 632

Argument Description

Item A RibbonComboBoxItem variable in which you want to store the combo
box identified by the item handle.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get an item according to the handle by using the GetItem function.

Examples

The following code example inserts a combo box to the "MyPanel" panel and then gets a
copy of the combo box according to its handle and stores it in the lr_ComboBox variable.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_ComboBox
RibbonComboBoxItem lr_ComboBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_ComboBox = rbb_1.InsertComboBoxFirst (ll_Handle_Panel,
 "Ue_ComboBoxSelectionChanged")
li_Return = rbb_1.GetComboBox (ll_Handle_ComboBox, lr_ComboBox)

See also

InsertComboBox

InsertComboBoxFirst

InsertComboBoxLast

DeleteComboBox

SetComboBox

GetChildItemByIndex

2.4.226 GetCommandDDE

Description

Obtains the command sent by the client application when your application is a DDE server.

Syntax

GetCommandDDE (string)

Table 2.620:

Argument Description

string A string variable in which GetCommandDDE will store the command

Return value

Statements, Events, and Functions

Page 633

Integer.

Returns 1 if it succeeds and -1 if an error occurs (such as the function was called in the wrong
context). If string is null, GetCommandDDE returns null.

Usage

When a DDE client application sends a command to your application, the action triggers a
RemoteExec event in the active window. In that event's script, you call GetCommandDDE to
find out what command has been sent. You decide how your application will respond to the
command.

To enable DDE server mode, use the function StartServerDDE, in which you decide how
your application will be known to other applications.

Examples

This excerpt from a script for the RemoteExec event checks to see if the action requested
by the DDE client is Open Next Sheet. If it is, the DDE server opens another instance of the
sheet DataSheet. If the requested action is Shut Down, the DDE server shuts itself down.
Otherwise, it lets the DDE client know the requested action was invalid.

The variables ii_sheetnum and i_DataSheet[] are instance variables for the window that
responds to the DDE event:

integer ii_sheetnum
DataSheet i_DataSheet[]

This script that follows uses the local variable ls_Action to store the command sent by the
client application:

string ls_Action

GetCommandDDE(ls_Action)
IF ls_Action = "Open Next Sheet" THEN
 ii_sheetnum = ii_sheetnum + 1
 OpenSheet(i_DataSheet[ii_sheetnum], w_frame_emp)
ELSEIF ls_Action = "Shut Down" THEN
 HALT CLOSE
ELSE
 RespondRemote(FALSE)
END IF

See also

GetCommandDDEOrigin

StartServerDDE

StopServerDDE

2.4.227 GetCommandDDEOrigin

Description

When called by the DDE server application, obtains the application name parameter used by
the DDE client sending the command.

Syntax

GetCommandDDEOrigin (applstring)

Statements, Events, and Functions

Page 634

Table 2.621:

Argument Description

applstring A string variable in which GetCommandDDEOrigin will store the name
of the server application

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs (such as the function was called in the wrong
context). If applstring is null, GetCommandDDEOrigin returns null.

Usage

The server application calling this function can use the application name (its own DDEname)
to determine if it wants to respond to this command. Otherwise, the function provides no
additional information about the client.

Examples

This script uses the local variable ls_name to store the name the client application used to
identify the server application:

string ls_name
GetCommandDDEOrigin(ls_name)

See also

GetCommandDDE

StartServerDDE

StopServerDDE

2.4.228 GetCommandString

Description

Returns the command string sent by dbmlsync to the synchronization server.

Applies to

MLSync controls

Syntax

syncObject.GetCommandString ()

Table 2.622:

Argument Description

syncObject The name of the MLSync object that starts a synchronization for
which you want to get the actual dbmlsync command submitted to the
synchronization server.

Return value

String.

Statements, Events, and Functions

Page 635

Returns the command string that is set for submission to the synchronization server.
Returns -1 if required properties are missing. (Datasource, Publication, and MLUser, and
MLServerVersion are required properties.) When this occurs, a descriptive error is written to
the ErrorText property of the MLSync object.

Usage

To minimize confusion to an end user, you might want to hide certain command line
arguments in a customized synchronization options window for your MobiLink application.
In this case you can call the GetCommandString function to return the command line
generated by the options window, then add on values for the options that you hide from the
user.

Examples

For MLSync objects, you can allow a user to edit the command line arguments for a
synchronization call as follows:

long rc
string cmd
cmd = myMLSync.GetCommandString()
// Edit cmd however you wish
...
rc = myMLSync.Synchronize(cmd)

See also

GetSyncRegistryProperties

SetParm

SetSyncRegistryProperties

Synchronize

2.4.229 GetCompanyName

Description

Returns the company name for the current execution context.

Applies to

ContextInformation objects

Syntax

servicereference.GetCompanyName (name)

Table 2.623:

Argument Description

servicereference Reference to the ContextInformation service instance.

name String into which the function places the company name. This argument
is passed by reference.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Statements, Events, and Functions

Page 636

Usage

Call this function to determine the company name (such as Appeon).

Examples

This example calls the GetCompanyName function:

String ls_company
Integer li_return
ContextInformation ci
ci = create ContextInformation
//or GetContextService("ContextInformation", ci)
li_return = ci.GetCompanyName(ls_company)
IF li_return = 1 THEN
 sle_co_name.text = ls_company
END IF

See also

GetContextService

GetFixesVersion

GetHostObject

GetMajorVersion

GetMinorVersion

GetName

GetShortName

GetVersionName

2.4.230 GetContextKeywords

Description

Retrieves one or more values associated with a specified keyword.

Applies to

ContextKeyword objects

Syntax

servicereference.GetContextKeywords (name, values)

Table 2.624:

Argument Description

servicereference Reference to the ContextKeyword service instance.

name String specifying the keyword for which the function returns
corresponding values.

values Unbounded String array into which the function places the values that
correspond to name. This argument is passed by reference.

Return value

Integer.

Statements, Events, and Functions

Page 637

Returns the number of elements in values if the function succeeds and -1 if an error occurs.

Usage

Call this function to access environment variables.

Examples

This example calls the GetContextKeywords function:

String ls_keyword
Integer li_count, li_return
ContextKeyword lcx_key

li_return = this.GetContextService &
 ("ContextKeyword", lcx_key)
ls_keyword = sle_name.Text
lcx_key.GetContextKeywords &
 (ls_keyword, is_values)
FOR li_count = 1 to UpperBound(is_values)
 lb_parms.AddItem(is_values[li_count])
NEXT

See also

GetContextService

2.4.231 GetContextService

Description

Returns a reference to a context-specific instance of the specified service.

Applies to

Any object

Syntax

GetContextService (servicename, servicereference)

Table 2.625:

Argument Description

servicename String specifying the service object. Valid values are:

• ContextInformation -- Context information service

• ContextKeyword -- Context keyword service

• ErrorLogging -- Error logging service for PowerBuilder components
running in a transaction server such as COM+

• Internet -- Internet service

• TransactionServer -- Transaction server service for PowerBuilder
components running in a transaction server such as COM+

servicereference PowerObject into which the function places a reference to the service
object specified by servicename. This argument is passed by reference.

Statements, Events, and Functions

Page 638

Return value

Integer.

Returns 1 if the function succeeds and a negative integer if an error occurs. The return value
-1 indicates an unspecified error.

Usage

Call this function to establish a reference to a service object, allowing you to access methods
and properties in the service object. You must call this function before calling service object
functions.

In Windows applications, you can use ContextKeyword or Keyword as the servicename
argument when you get an instance of the ContextKeyword service.

Using a CREATE statement

You can instantiate these objects with a PowerScript CREATE statement. However,
this always creates an object for the default context (native PowerBuilder execution
environment), regardless of where the application is running.

Examples

This example calls the GetContextService function and displays the class of the service in a
single line edit box:

Integer li_return
ContextKeyword lcx_key

li_return = this.GetContextService &
 ("Keyword", lcx_key)
sle_classname.Text = ClassName(lcx_key)
...

See also

BeginTransaction (obsolete)

GetCompanyName

GetContextKeywords

GetHostObject

GetMajorVersion

GetMinorVersion

GetName

GetShortName

GetURL

GetVersionName

HyperLinkToURL

Init (obsolete)

PostURL

Statements, Events, and Functions

Page 639

2.4.232 GetCredentialAttribute (obsolete)

Description

Called by EAServer to allow the user to supply user credentials dynamically. This function is
used by PowerBuilder clients connecting to EAServer.

Obsolete function

GetCredentialAttribute is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

SSLCallBack objects

Syntax

sslcallback.GetCredentialAttribute (thesessioninfo, attr, attrvalues)

Table 2.626:

Argument Description

sslcallback An instance of a customized SSLCallBack object.

thesessioninfo A CORBAObject that contains information about the SSL session. This
information can optionally be displayed to the user to provide details
about the session.

attr A long indicating whether the user needs to specify the path name of an
INI file or a profile file. Values are:

• 1 -- CRED_ATTR_ENTRUST_INIFILE

• 2 -- CRED_ATTR_ENTRUST_USERPROFILE

attrvalues An array of string values that contains the available attribute values.

Return value

String.

Returns the selected attribute value.

Usage

A PowerBuilder application does not usually call the GetCredentialAttribute function
directly. GetCredentialAttribute is called by EAServer if the useEntrustID property has been
set and the EAServer client has not specified the path name of an Entrust INI file or profile.

To override the behavior of any of the functions of the SSLCallBack object, create a standard
class user object that descends from SSLCallBack and customize this object as necessary.
To let EAServer know which object to use when a callback is required, specify the name of
the object in the callbackImpl SSL property. You can set this property value by calling the
SetGlobalProperty function.

If you do not provide an implementation of GetCredentialAttribute, EAServer receives the
CORBA::NO_IMPLEMENT exception and the default implementation of this callback is

Statements, Events, and Functions

Page 640

used. The default implementation always returns the first value in the list of values supplied.
If there are no values supplied, it raises CtsSecurity::NoValueException. Any exceptions that
may be raised by the function should be added to its prototype.

If your implementation of the callback returns an empty string, the default implementation
described above is used and the first value in the list is returned. If that value is acceptable to
the server, the connection proceeds. If the value is not acceptable, the connection is refused.

To obtain a useful return value, provide the user with available attribute values from the
attrvalues array passed to the function and ask the user to select one of them. You can
also supply additional information, such as the server certificate, obtained from the passed
thesessioninfo object.

You can enable the user to cancel the attempt to connect by throwing an exception
in this callback function. All exceptions thrown in SSLCallback functions return a
CTSSecurity::UserAbortedException to the server. You need to catch the exception by
wrapping the ConnectToServer function in a try-catch block.

Examples

This example checks whether the server requires the location of an INI file or an Entrust user
profile and displays an appropriate message. If the attrvalues array provides a list of choices,
it displays the choices in a message box and prompts the user to enter a selection in a text
box:

int idx, numAttrs
String sText, sLocation
numAttrs = upperbound(attrValues)
w_response w_ssl_response

IF attr = 1 THEN
 MessageBox("Entrust INI file required", &
 "Please specify the location of the INI file")
ELSEIF attr = 2 THEN
 MessageBox("Entrust profile required", &
 "Please specify the location of the profile")
END IF

IF numAttrs <> 0 THEN
 sText = "Locations available: "
 FOR idx = 1 to numAttrs
 sText += "~nattrValues[" + string(idx) + "]: " &
 + attrvalues[idx]
 NEXT
 OpenWithParm(w_ssl_response, SText)
 ls_rc = Message.StringParm IF ls_rc = "cancel" then
 userabortedexception uae
 uae = create userabortedexception
 uae.setmessage("User cancelled connection")
 throw uae
 END IF
END IF
RETURN ls_rc

See also

ConnectToServer (obsolete)

GetCertificateLabel (obsolete)

GetPin (obsolete)

Statements, Events, and Functions

Page 641

TrustVerify (obsolete)

2.4.233 GetCurrentDirectory

Description

Gets the current directory for your target application. If the application is deployed as a
native C/S application, the current directory is the installation directory of the application
executable; if the application is deployed with PowerClient, the current directory is the
installation directory of the application (by default %APPDATA%\PBApps\Applications
\ServerIP_AppName).

Syntax

GetCurrentDirectory ()

Return value

String. Returns the full path name for the current directory.

Examples

This example puts the current directory name in a SingleLineEdit control:

sle_1.text = GetCurrentDirectory()

See also

ChangeDirectory

CreateDirectory

DirectoryExists

RemoveDirectory

2.4.234 GetData

Obtains data from a control.

Table 2.627:

To obtain Use

The value of a data point in a series in a graph Syntax 1

The unformatted data from an EditMask control Syntax 2

Data from an OLE server Syntax 3

2.4.234.1 Syntax 1: For data points in graphs

Description

Gets the value of a data point in a series in a graph.

Applies to

Graph controls in windows and user objects, and in DataWindow controls

Syntax

Statements, Events, and Functions

Page 642

controlname.GetData ({ graphcontrol, } seriesnumber, datapoint {, datatype })

Table 2.628:

Argument Description

controlname The name of the graph from which you want data, or the name of the
DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph from which you
want the data when controlname is a DataWindow.

seriesnumber The number identifying the series from which you want data.

datapoint The number of the data point for which you want the value.

datatype

(scatter graph
only)

(Optional) A value of the grDataType enumerated datatype specifying
whether you want the x or y value of the data point in a scatter graph.
Values are:

• xValue! -- The x value of the data point

• yValue! -- (Default) The y value of the data point

Return value

Double.

Returns the value of the data in datapoint if it succeeds and 0 if an error occurs. If any
argument's value is null, GetData returns null.

Usage

You can use GetData only for graphs whose values axis is numeric. For graphs with other
types of values axes, use the GetDataValue function instead.

Examples

These statements obtain the data value of data point 3 in the series named Costs in the graph
gr_computers in the DataWindow control dw_equipment:

integer SeriesNbr
double data_value
// Get the number of the series.
SeriesNbr = &
 dw_equipment.FindSeries("gr_computers", "Costs")
data_value = dw_equipment.GetData(&
 "gr_computers" , SeriesNbr, 3)

These statements obtain the data value of the data point under the mouse pointer in the graph
gr_prod_data and store it in data_value:

integer SeriesNbr, ItemNbr
double data_value
grObjectType MouseHit

MouseHit = &
 gr_prod_data.ObjectAtPointer(SeriesNbr, ItemNbr)
IF MouseHit = TypeSeries! THEN
 data_value = &

Statements, Events, and Functions

Page 643

 gr_prod_data.GetData(SeriesNbr, ItemNbr)
END IF

These statements obtain the x value of the data point in the scatter graph gr_sales_yr and
store it in data_value:

integer SeriesNbr, ItemNbr
double data_value
gr_product_data.ObjectAtPointer(SeriesNbr, ItemNbr)
data_value = &
 gr_sales_yr.GetData(SeriesNbr, ItemNbr, xValue!)

See also

DeleteData

FindSeries

GetDataValue

InsertData

ObjectAtPointer

2.4.234.2 Syntax 2: For EditMask controls

Description

Gets the unformatted text from an EditMask control.

Applies to

EditMask controls

Syntax

editmaskname.GetData (datavariable)

Table 2.629:

Argument Description

editmaskname The name of the EditMask control containing the data.

datavariable A variable to which GetData will assign the unformatted data in the
EditMask control. The datatype of datavariable must match the datatype
of the EditMask control, which you select in the Window painter.
Available datatypes are date, DateTime, decimal, double, string, and
time.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, GetData
returns null.

Usage

You can find out the datatype of an EditMask control by looking at its MaskDataType
property, which holds a value of the MaskDataType enumerated datatype.

Statements, Events, and Functions

Page 644

Examples

This example gets data of datatype date from the EditMask control em_date. Formatting
characters for the date are ignored. The String function converts the date to a string so it can
be assigned to the SingleLineEdit sle_date:

date d
em_date.GetData(d)
sle_date.Text = String(d, "mm-dd-yy")

This example gets string data from the EditMask control em_string and assigns the result to
sle_string. Characters in the edit mask are ignored:

string s
em_string.GetData(s)
sle_string.Text = s

2.4.234.3 Syntax 3: For data in an OLE server

Description

Gets data from the OLE server associated with an OLE control using Uniform Data Transfer.

Applies to

OLE controls and OLE custom controls

Syntax

olename.GetData (clipboardformat, data)

Table 2.630:

Argument Description

olename The name of the OLE or custom control containing the object you want
to populate with data

clipboardformat The format for the data. You can specify a standard format with a
value of the ClipboardFormat enumerated datatype. You can specify a
nonstandard format as a string.

Values for clipboardformat are:

ClipFormatBitmap!

ClipFormatDIB!

ClipFormatDIF!

ClipFormatEnhMetafile!

ClipFormatHdrop!

ClipFormatLocale!

ClipFormatMetafilePict!

ClipFormatOEMText!

ClipFormatPalette!

ClipFormatPenData!

ClipFormatRIFF!

Statements, Events, and Functions

Page 645

Argument Description
ClipFormatSYLK!

ClipFormatText!

ClipFormatTIFF!

ClipFormatUnicodeText!

ClipFormatWave!

If clipboardformat is an empty string or a null value, GetData uses the
format ClipFormatText!

data A string or blob variable that will contain the data from the OLE server.
If the data you want to get is not appropriate for a string, you must use a
blob variable.

Return value

Integer.

Returns 0 if it succeeds and -1 if an error occurs.

Usage

GetData will return an error if you specify a clipboard format that the OLE server does not
support. To find out what formats it supports, see the documentation for the OLE server.

GetData operates via Uniform Data Transfer, a mechanism defined by Microsoft for
exchanging data with container applications. PowerBuilder enables data transfer via a global
handle. The OLE server must also support data transfer via a global handle. If it does not, you
cannot transfer data to or from that server.

Examples

After the user has activated a Microsoft Word document and edited its contents, this example
gets the contents from the OLE control ole_word6 and stores the contents in the string
ls_oledata. The contents of the string are then displayed in the MultiLineEdit mle_text:

string ls_oledata
integer li_rtn

li_rtn = ole_word6.GetData(&
 ClipFormatText!, ls_oledata)
mle_text.Text = ls_oledata

One OLE control displays a Microsoft Word document containing a table of data. This
example gets the data in the report and assigns it to a graph in a second OLE control.
Microsoft Graph in the second control interprets the first row in the table as headings, and
subsequent rows as categories or series, depending on the settings on the Data menu:

string ls_data
integer li_rtn

li_rtn = ole_word.GetData(ClipFormatText!, ls_data)
IF li_rtn <> 1 THEN RETURN

li_rtn = ole_graph.SetData(ClipFormatText!, ls_data)

See also

Statements, Events, and Functions

Page 646

SetData

2.4.235 GetDataDDE

Description

Obtains data sent from another DDE application and stores it in the specified string
variable. PowerBuilder can use GetDataDDE when acting as a DDE client or a DDE server
application.

Syntax

GetDataDDE (string)

Table 2.631:

Argument Description

string A string variable in which GetDataDDE will put the data received from a
remote DDE application

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs (such as the function was called in the wrong
context). If string is null, GetDataDDE returns null.

Usage

GetDataDDE is usually called in the window-level script for a RemoteSend event when your
application is a DDE server or HotLinkAlarm event when your application is a DDE client.

Examples

Assuming that your PowerBuilder DDE client application has established a hot link with row
7, column 15 of an Excel spreadsheet, and that the value in that row and column address has
changed from red to green (which triggers the HotLinkAlarm event in your application), this
script for the HotLinkAlarm event calls GetDataDDE to store the new value in the variable
Str20:

// In the script for a HotLinkAlarm event
string Str20
GetDataDDE(Str20)

See also

GetDataDDEOrigin

OpenChannel

StartServerDDE

StopServerDDE

2.4.236 GetDataDDEOrigin

Description

Determines the origin of data from a hot-linked DDE server application or a DDE client
application, and if successful, stores the application's DDE identifiers in the specified strings.

Statements, Events, and Functions

Page 647

PowerBuilder can use GetDataDDEOrigin when it is acting as a DDE client or as a DDE
server application.

Syntax

GetDataDDEOrigin (applstring, topicstring, itemstring)

Table 2.632:

Argument Description

applstring A string variable in which GetDataDDEOrigin will store the name of the
server application

topicstring A string variable in which GetDataDDEOrigin will store the topic (for
example, in Microsoft Excel, the topic could be REGION.XLS)

itemstring A string variable in which GetDataDDEOrigin will store the item
identification (for example, in Microsoft Excel, the item could be R1C2)

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs (such as the function was called in the wrong
context). If any argument's value is null, GetDataDDEOrigin returns null.

Usage

Call GetDataDDEOrigin in the window-level script for a RemoteSend event or a
HotLinkAlarm event.

When your application is a DDE server, call GetDataDDEOrigin in the script for the
RemoteSend event. Use it to determine the topic and item requested by the client. The
application name is the application specified by the client (the server's own DDEname).

When your application is a DDE client, call GetDataDDEOrigin in the script for the
HotLinkAlarm event. Use it to identify the source of the data when hot links may exist for
more than one topic within the server application or for more than one application.

Examples

This example illustrates how to call GetDataDDEOrigin:

string WhichAppl, WhatTopic, WhatLoc
GetDataDDEOrigin(WhichAppl, WhatTopic, WhatLoc)

See also

GetDataDDE

OpenChannel

StartServerDDE

StopServerDDE

2.4.237 GetDataLabelling

Description

Statements, Events, and Functions

Page 648

Determines whether the data at a given data point is labeled in a DirectX 3D graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetDataLabelling ({graphcontrol,} series, datapoint, value)

Table 2.633:

Argument Description

controlname The name of the graph from which you want data, or the name of the
DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control.

seriesnumber The number that identifies the series for which you want the data label
setting.

datapoint The data point for which you want to obtain a label.

value A boolean passed by reference that indicates whether the data point has a
label.

Return value

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
GetDataLabelling returns null.

Usage

GetDataLabelling determines whether a data label is set for data points from DirectX 3D
Area, Bar, Col, or Line graphs. You cannot use this method with DirectX 3D Pie graphs.

Examples

In a DataWindow Clicked event, these statements obtain the number of the series and data
point clicked by the user in gr_1 and determine whether the label is set for that data point.

integer SeriesNbr, ItemNbr
boolean refB
grObjectType clickedtype

clickedtype = this.ObjectAtPointer("gr_1", &
 SeriesNbr, ItemNbr)

this.GetDataLabelling("gr_1", SeriesNbr, &
 ItemNbr, refB)

These statements obtain the number of the series and data point clicked by the user in a graph
object and determine whether the label is set for that data point.

integer SeriesNbr, ItemNbr
boolean refB
grObjectType clickedtype

clickedtype = this.ObjectAtPointer(SeriesNbr, ItemNbr)

Statements, Events, and Functions

Page 649

this.GetDataLabelling(SeriesNbr, ItemNbr, refB)

See also

GetSeriesLabelling

SetDataLabelling

SetSeriesLabelling

2.4.238 GetDataPieExplode

Description

Reports the percentage of the pie graph's radius that a pie slice is exploded. An exploded slice
is moved away from the center of the pie in order to draw attention to the data.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetDataPieExplode ({ graphcontrol, } series, datapoint, percentage)

Table 2.634:

Argument Description

controlname The name of the graph for which you want the percentage a pie slice is
exploded, or the name of the DataWindow control containing the graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the percentage a pie slice is
exploded

series The number that identifies the series

datapoint The number of the exploded data point (that is, the pie slice)

percentage An integer variable in which you want to store the percentage of the
graph's radius that the pie slice is exploded

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
GetDataPieExplode returns null.

Examples

This example reports the percentage that a pie slice is exploded when the user clicks on that
slice. The code checks whether the graph is a pie graph using the property Graphite. It then
finds out whether the user clicked on a pie slice by checking the series and data point values
set by ObjectAtPointer. The script is for the DoubleClicked event of a graph object:

integer series, datapoint
grObjectType clickedtype
integer percentage

Statements, Events, and Functions

Page 650

percentage = 50
IF (This.GraphType <> PieGraph! and &
 This.GraphType <> Pie3D!) THEN RETURN
clickedtype = This.ObjectAtPointer(series, &
 datapoint)

IF (series > 0 and datapoint > 0) THEN
 This.GetDataPieExplode(series, datapoint, &
 percentage)
 MessageBox("Explosion Percentage", &
 "Data point " + This.CategoryName(datapoint) &
 + " in series " + This.SeriesName(series) &
 + " is exploded " + String(percentage) + "%")
END IF

See also

SetDataPieExplode

2.4.239 GetDataStyle

Finds out the appearance of a data point in a graph. Each data point in a series can have
individual appearance settings. There are different syntaxes, depending on what settings you
want to check.

Table 2.635:

To get the Use

Data point's colors Syntax 1

Line style and width used by the data point Syntax 2

Fill pattern or symbol for the data point Syntax 3

GetDataStyle provides information about a single data point. The series to which the data
point belongs has its own style settings. In general, the style values for the data point are the
same as its series' settings. Use SetDataStyle to change the style values for individual data
points. Use GetSeriesStyle and SetSeriesStyle to get and set style information for the series.

The graph stores style information for properties that do not apply to the current graph type.
For example, you can find out the fill pattern for a data point or a series in a 2-dimensional
line graph, but that fill pattern will not be visible.

For the enumerated datatype values that GetDataStyle stores in linestyle and enumvariable,
see SetDataStyle.

2.4.239.1 Syntax 1: For the colors of a data point

Description

Obtains the colors associated with a data point in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetDataStyle ({ graphcontrol, } seriesnumber, datapointnumber,
 colortype, colorvariable)

Statements, Events, and Functions

Page 651

Table 2.636:

Argument Description

controlname The name of the graph for which you want the color of a data point, or
the name of the DataWindow control containing the graph.

graphcontrol

(Data Window
control only)

(Optional) When controlname is a DataWindow control, the name of the
graph for which you want the color of a data point.

seriesnumber The number of the series in which you want the color of a data point.

datapointnumber The number of the data point for which you want the color.

colortype A value of the grColorType enumerated datatype specifying the aspect of
the data point for which you want the color. Values are:

• Background! -- The background color

• Foreground! -- Text (fill color)

• LineColor! -- The color of the line

• Shade! -- The shaded area of three-dimensional graphics

colorvariable A long variable in which you want to store the color.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. Stores a color value in colorvariable. If any
argument's value is null, GetDataStyle returns null.

Examples

This example gets the text (foreground) color used for data point 6 in the series named Salary
in the graph gr_emp_data. It stores the color value in the variable color_nbr:

long color_nbr
integer SeriesNbr

// Get the number of the series
SeriesNbr = gr_emp_data.FindSeries("Salary")

// Get the color
gr_emp_data.GetDataStyle(SeriesNbr, 6, &
 Foreground!, color_nbr)

This example gets the background color used for data point 6 in the series entered in the
SingleLineEdit sle_series in the DataWindow graph gr_emp_data. It stores the color value in
the variable color_nbr:

long color_nbr
integer SeriesNbr

// Get the number of the series
SeriesNbr = FindSeries("gr_emp_data", sle_series.Text)

// Get the color

Statements, Events, and Functions

Page 652

dw_emp_data.GetDataStyle("gr_emp_data", &
 SeriesNbr, 6, Background!, color_nbr)

See also

FindSeries

GetSeriesStyle

SetDataStyle

SetSeriesStyle

2.4.239.2 Syntax 2: For the line style and width used by a data point

Description

Obtains the line style and width for a data point in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetDataStyle ({ graphcontrol, } seriesnumber, datapointnumber,
 linestyle, linewidth)

Table 2.637:

Argument Description

controlname The name of the graph for which you want the line style and width of a
data point, or the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph (in the
DataWindow control) for which you want the line style and width of a
data point.

seriesnumber The number of the series in which you want the line style and width of a
data point.

datapointnumber The number of the data point for which you want the line style and width.

linestyle A variable of type LineStyle in which you want to store the line style.

linewidth An integer variable in which you want to store the width of the line. The
width is measured in pixels.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. For the specified series and data point,
stores its line style in linestyle and the line's width in linewidth. If any argument's value is
null, GetDataStyle returns null.

Usage

For the enumerated datatype values that GetDataStyle will store in linestyle, see
SetDataStyle.

Examples

Statements, Events, and Functions

Page 653

This example gets the line style and width of data point 10 in the series named Costs in the
graph gr_product_data. It stores the information in the variables line_style and line_width:

integer SeriesNbr, line_width
LineStyle line_style

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.GetDataStyle(SeriesNbr, 10, &
 line_style, line_width)

This example gets the line style and width for data point 6 in the series entered in the
SingleLineEdit sle_series in the graph gr_depts in the DataWindow control dw_employees.
The information is stored in the variables line_style and line_width:

integer SeriesNbr, line_width
LineStyle line_style

// Get the number of the series
SeriesNbr = dw_employees.FindSeries(&
 " gr_depts " , sle_series.Text)

// Get the line style and width
dw_employees.GetDataStyle("gr_depts", SeriesNbr, &
 6, line_style, line_width)

See also

FindSeries

GetSeriesStyle

SetDataStyle

SetSeriesStyle

2.4.239.3 Syntax 3: For the fill pattern or symbol of a data point

Description

Obtains the fill pattern or symbol of a data point in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetDataStyle ({ graphcontrol, } seriesnumber, datapointnumber,
 enumvariable)

Table 2.638:

Argument Description

controlname The name of the graph for which you want the fill pattern or symbol type
of a data point, or the name of the DataWindow control containing the
graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph (in the DataWindow
control) for which you want the fill pattern or symbol type of a data
point.

Statements, Events, and Functions

Page 654

Argument Description

seriesnumber The number of the series in which you want the fill pattern or symbol
type of a data point.

datapointnumber The number of the data point for which you want the fill pattern or
symbol type.

enumvariable The variable in which you want to store the data style. You can specify a
FillPattern or grSymbolType variable. The data style information stored
will depend on the variable type.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. Stores, according to the type of
enumvariable, a value of that enumerated datatype representing the fill pattern or symbol
used for the specified data point. If any argument's value is null, GetDataStyle returns null.

Usage

For the enumerated datatype values that GetDataStyle will store in enumvariable, see
SetDataStyle.

Examples

This example gets the pattern used to fill data point 10 in the series named Costs in the graph
gr_product_data. The information is stored in the variable data_pattern:

integer SeriesNbr
FillPattern data_pattern

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.GetDataStyle(SeriesNbr, 10, &
 data_pattern)

This example gets the pattern used to fill data point 6 in the series entered in the
SingleLineEdit sle_series in the graph gr_depts in the DataWindow control dw_employees.
The information is assigned to the variable data_pattern:

integer SeriesNbr
FillPattern data_pattern

// Get the number of the series
SeriesNbr = dw_employees.FindSeries("gr_depts", &
 sle_series.Text)

// Get the pattern
dw_employees.GetDataStyle("gr_depts", SeriesNbr, &
 6, data_pattern)

These statements store in the variable symbol_type the symbol of data point 10 in the series
named Costs in the graph gr_product_data:

integer SeriesNbr
grSymbolType symbol_type

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")

Statements, Events, and Functions

Page 655

gr_product_data.GetDataStyle(SeriesNbr, 10, &
 symbol_type)

These statements store the symbol for a data point in the variable symbol_type. The data
point is the sixth point in the series named in the SingleLineEdit sle_series in the graph
gr_depts in the DataWindow control dw_employees:

integer SeriesNbr
grSymbolType symbol_type

// Get the number of the series
SeriesNbr = dw_employees.FindSeries("gr_depts", &
 sle_series.Text)

// Get the symbol
dw_employees.GetDataStyle("gr_depts", SeriesNbr, &
 6, symbol_type)

See also

FindSeries

GetSeriesStyle

SetDataStyle

SetSeriesStyle

2.4.240 GetDataTransparency

Description

Obtains the transparency percentage of a data point in a DirectX 3D graph (those with 3D
rendering).

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetDataTransparency ({ graphcontrol, } seriesnumber, datapoint,
 transparency)

Table 2.639:

Argument Description

controlname The name of the graph from which you want data, or the name of the
DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control from which you want the data.

seriesnumber The number that identifies the series from which you want data.

datapoint The number of the data point for which you want the transparency value.

transparency Integer value for percent transparency. A value of 0 means that the
data point is opaque and a value of 100 means that it is completely
transparent.

Statements, Events, and Functions

Page 656

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
GetDataTransparency returns null.

Usage

GetDataTransparency retrieves data from any DirectX 3D graph (those with 3D rendering).

Examples

These statements obtain the transparency percentage of data point 3 in the series named Costs
in the graph gr_computers in the DataWindow control dw_equipment:

integer SeriesNbr, rtn, transp_value

// Get the number of the series.
SeriesNbr = dw_equipment.FindSeries(&
 "gr_computers", "Costs")
rtn = dw_equipment.GetDataTransparency(&
 "gr_computers" , SeriesNbr, 3, transp_value)

These statements obtain the transparency percentage of data point 2 in the series Costs in the
graph gr_computers:

integer SeriesNbr, rtn, trans_value

SeriesNbr = gr_computers.FindSeries("Costs")
rtn = gr_computers.GetDataTransparency(SeriesNbr, &
 2, transp_value)

See also

FindSeries

GetSeriesTransparency

SetSeriesTransparency

SetDataTransparency

2.4.241 GetDataValue

Description

Obtains the value of a data point in a series in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetDataValue ({ graphcontrol, } seriesnumber, datapoint, datavariable
 {, xory })

Table 2.640:

Argument Description

controlname The name of the graph from which you want data, or the name of the
DataWindow control containing the graph.

Statements, Events, and Functions

Page 657

Argument Description

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control from which you want the data.

seriesnumber The number that identifies the series from which you want data.

datapoint The number of the data point for which you want the value.

datavariable The name of a variable that will hold the data value. The variable's
datatype can be date, DateTime, double, string, or time. The variable
must have the same datatype as the values axis of the graph.

xory

(scatter graph
only)

(Optional) A value of the grDataType enumerated datatype specifying
whether you want the x or y value of the data point in a scatter graph.
Values are:

• xValue! -- The x value of the data point

• yValue! -- (Default) The y value of the data point

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
GetDataValue returns null.

Usage

GetDataValue retrieves data from any graph. The data is stored in datavariable, whose
datatype must match the datatype of the graph's values axis. If the values axis is numeric, you
can also use the GetData function.

Examples

These statements obtain the data value of data point 3 in the series named Costs in the graph
gr_computers in the DataWindow control dw_equipment:

integer SeriesNbr, rtn
double data_value

// Get the number of the series.
SeriesNbr = dw_equipment.FindSeries(&
 "gr_computers", "Costs")
rtn = dw_equipment.GetDataValue(&
 "gr_computers" , SeriesNbr, 3, data_value)

These statements obtain the data value of the data point under the mouse pointer in the
graph gr_prod_data and store it in data_value. If the user does not click on a data point, then
ItemNbr is set to 0. The categories of the graph are time values:

integer SeriesNbr, ItemNbr, rtn
time data_value
grObjectType MouseHit

MouseHit = &
 gr_prod_data.ObjectAtPointer(SeriesNbr, ItemNbr)
IF ItemNbr > 0 THEN

Statements, Events, and Functions

Page 658

 rtn = gr_prod_data.GetDataValue(&
 SeriesNbr, ItemNbr, data_value)
END IF

These statements obtain the x value of the data point in the scatter graph gr_sales_yr and
store it in data_value. If the user does not click on a data point, then ItemNbr is set to 0. The
datatype of the category axis is Date:

integer SeriesNbr, ItemNbr, rtn
date data_value

gr_product_data.ObjectAtPointer(SeriesNbr, ItemNbr)
IF ItemNbr > 0 THEN
 rtn = gr_sales_yr.GetDataValue(&
 SeriesNbr, ItemNbr, data_value, xValue!)
END IF

See also

DeleteData

FindSeries

InsertData

ObjectAtPointer

2.4.242 GetDateLimits

Description

Retrieves the maximum and minimum date limits specified for the calendar.

Applies to

MonthCalendar control

Syntax

controlname.GetDateLimits (min, max)

Table 2.641:

Argument Description

controlname The name of the MonthCalendar control for which you want to determine
the date limits

min A date value returned by reference that represents the minimum date that
can be referenced or displayed in the calendar

max A date value returned by reference that represents the maximum date that
can be referenced or displayed in the calendar

Return value

Integer.

Returns 0 when both limits are retrieved successfully and one of the following negative
values otherwise:

-1 -- No limits were set

Statements, Events, and Functions

Page 659

-2 -- Unknown failure

Usage

Use the SetDateLimits function to set minimum and maximum dates. If no date limits have
been set, GetDateLimits returns -1 and sets min and max to January 1, 1900.

Examples

This example displays a message box that shows the minimum and maximum dates set for a
control:

integer li_return
Date mindate, maxdate
string str1, str2

li_return = mc_1.GetDateLimits(mindate, maxdate)
If li_return = -1 then
 str1 = "No minimum and maximum dates are set"
elseif li_return = -2 then
 str1 = "Unknown failure"
else
 str1 = "Minimum date is " + string(mindate)
 str2 = "Maximum date is " + string(maxdate)
end if

MessageBox("Date Limits", str1 + "~r~n" + str2)

See also

SetDateLimits

2.4.243 GetDbmlsyncPath

Description

Retrieves the full path and file name of the dbmlsync.exe that is installed on the workstation.

Applies to

MLSync and MLSynchronization controls

Syntax

SyncObject.GetDbmlsyncPath ()

Table 2.642:

Argument Description

syncObject The name of the synchronization object

Return value

String.

Returns the value of full path and file name of the synchronization executable. Returns -1
if.dbmlsync.exe is not found.

Usage

This property uses the value of the synchronization object's MLServerVersion property to
decide which version of dbmlsync to return.

Statements, Events, and Functions

Page 660

Examples

This function enables the use of Help buttons for the Additional Options and
Extended Options fields as displayed on the default ML Server tab page of the
w_appname_sync_options dialog box that is generated by the MobiLink synchronization
wizard. The Clicked event for these Help buttons has the following script:

string sCmd
sCmd = i_uosync.GetDbmlsyncPath()
if len(sCmd) > 0 then
 sCmd += " ? "
 // sCmd += ' -l' for help with extended options
 run(sCmd, Normal!)
end if

2.4.244 GetDisplayRange

Description

Retrieves the first and last date of the currently displayed date range and returns the number
of months than span the display.

Applies to

MonthCalendar control

Syntax

controlname.GetDisplayRange (start, end {, d })

Table 2.643:

Argument Description

controlname The name of the MonthCalendar control for which you want the range of
dates

start A date specifying the first date in the displayed range returned by
reference

end A date specifying the last date in the displayed range returned by
reference

d (optional) A value of the MonthCalDisplayState enumerated variable. Values are:

EntirelyDisplayed! -- Gets the range of dates for which all days in each
month are displayed

PartlyDisplayed! -- Gets the range of dates for which any days in each
month are displayed (default)

Return value

Integer.

Returns the number of months in the display range if it succeeds and -1 if it fails.

Usage

The GetDisplayRange function retrieves the beginning and end dates of the range of dates
currently displayed in the calendar.

Statements, Events, and Functions

Page 661

If you do not supply the optional d argument (or specify PartlyDisplayed!), GetDisplayRange
returns the number of months for which any of the days in the month display. If the calendar
displays one month, the return value is 3, because the last few days of the previous month and
the first few days of the next month are included.

If you supply EntirelyDisplayed! as the d argument, GetDisplayRange returns the number of
months for which all of the days in the month display. It ignores the leading and trailing days.

For example, if the calendar display shows the 12 months from November 2004 to October
2005 and you do not supply the d argument, GetDisplayRange returns 14 and the start and
end arguments are set to October 25, 2004 and November 6, 2005.

If you supply EntirelyDisplayed! as the d argument, GetDisplayRange returns 12 and the start
and end arguments are set to November 1, 2004 and October 31, 2005.

Examples

This example displays a message box that shows the number of months in the display range
and its start and end dates. Because the third argument is set to PartlyDisplayed!, the range
returned will be greater than the number of full months displayed. If only one month displays
and it neither begins on the first day of the week nor ends on the last day of the week,
li_return will be 3:

integer li_return
Date startdate, enddate
string str1, string str2

li_return = mc_1.GetDisplayRange(startdate, enddate, &
 PartlyDisplayed!)
str1 = "Range is " + string(li_return) + " months"
str2 = "Start date is " + string(startdate) + "~r~n"
str2 += "End date is " + string(enddate)

MessageBox(str1, str2)

This example finds out how many complete months are shown in the current display and sets
the scroll rate to that number:

integer li_return
Date startdate, enddate

li_return = mc_1.GetDisplayRange(startdate, enddate, &
 EntirelyDisplayed!)
mc_1.ScrollRate = li_return

See also

GetSelectedRange

2.4.245 GetDotNetCoreVersion

Description

Gets the version number of the .NET Core runtime that is currently used to load DLL.

Applies to

DotNetAssembly objects

Syntax

Statements, Events, and Functions

Page 662

objectname.GetDotNetCoreVersion()

Table 2.644:

Argument Description

objectname The name of the DotNetAssembly object.

Return value

String.

Returns the version number of .NET Core runtime; or returns an empty string if .NET
Framework is used.

Examples

The following example returns the latest .NET Core version that is installed on the machine.

long ll_return
string ls_version
DotNetAssembly lcs_ass

lcs_ass = create DotNetAssembly
//Uses the latest .NET core version to load DLL
ll_return = lcs_ass.LoadWithDotNetCore ("Appeon.Simple.DLL")
if ll_return < 0 then
 MessageBox ("Load dll failed", lcs_ass.errortext)
 return
end if
//Returns the latest .NET core version
ls_version = lcs_ass.GetDotNetCoreVersion()

See also

CreateInstance

LoadWithDotNetCore

LoadWithDotNetFramework

2.4.246 GetDynamicDate

Description

Obtains data of type Date from the DynamicDescriptionArea after you have executed a
dynamic SQL statement.

Restriction

You can use this function only after executing Format 4 dynamic SQL statements.

Syntax

DynamicDescriptionArea.GetDynamicDate (index)

Table 2.645:

Argument Description

DynamicDescriptionAreaThe name of the DynamicDescriptionArea, usually SQLDA.

Statements, Events, and Functions

Page 663

Argument Description

index An integer identifying the output parameter descriptor from which you
want to get the data. Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.

Return value

Date.

Returns the Date data in the output parameter descriptor identified by index in
DynamicDescriptionArea. Returns 1900-01-01 if an error occurs. If any argument's value is
null, GetDynamicDate returns null.

Usage

After you fetch data using Format 4 dynamic SQL statements, the DynamicDescriptionArea,
usually SQLDA, contains information about the data retrieved. The SQLDA property
NumOutputs specifies the number of data descriptors returned. The property array
OutParmType contains values of the ParmType enumerated datatype specifying the datatype
of each value returned.

Use GetDynamicDate when the value of OutParmType is TypeDate! for the value in the
array that you want to retrieve.

Examples

These statements set Today to the Date data in the second output parameter descriptor:

Date Today
Today = GetDynamicDate(SQLDA, 2)

If you have executed Format 4 dynamic SQL statements, data is stored in the
DynamicDescriptionArea. This example finds out the datatype of the stored data and uses a
CHOOSE CASE statement to assign it to local variables.

If the SELECT statement is:

SELECT emp_start_date FROM employee;

then the code at CASE Typedate! will be executed.

For each case, other processing could assign the value to a DataWindow so that the value
would not be overwritten when another value has the same ParmType:

Date Datevar
Time Timevar
DateTime Datetimevar
Double Doublevar
String Stringvar

FOR n = 1 to SQLDA.NumOutputs
 CHOOSE CASE SQLDA.OutParmType[n]
 CASE TypeString!
 Stringvar = SQLDA.GetDynamicString(n)
 ... // Other processing
 CASE TypeDecimal!, TypeDouble!, &
 TypeInteger!, TypeLong!, &
 TypeReal!, TypeBoolean!
 Doublevar = SQLDA.GetDynamicNumber(n)
 ... // Other processing

Statements, Events, and Functions

Page 664

 CASE TypeDate!
 Datevar = SQLDA.GetDynamicDate(n)
 ... // Other processing
 CASE TypeDateTime!
 Datetimevar = SQLDA.GetDynamicDateTime(n)
 ... // Other processing
 CASE TypeTime!
 Timevar = SQLDA.GetDynamicTime(n)
 ... // Other processing
 CASE ELSE
 MessageBox("Dynamic SQL", &
 "datatype unknown.")
 END CHOOSE
NEXT

See also

GetDynamicDateTime

GetDynamicNumber

GetDynamicString

GetDynamicTime

SetDynamicParm

Using dynamic SQL

2.4.247 GetDynamicDateTime

Description

Obtains data of type DateTime from the DynamicDescriptionArea after you have executed a
dynamic SQL statement.

Restriction

You can use this function only after executing Format 4 dynamic SQL statements.

Syntax

DynamicDescriptionArea.GetDynamicDateTime (index)

Table 2.646:

Argument Description

DynamicDescriptionAreaThe name of the DynamicDescriptionArea, usually SQLDA.

index An integer identifying the output parameter descriptor from which you
want to get the data. Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.

Return value

DateTime.

Returns the DateTime data in the output parameter descriptor identified by index in
DynamicDescriptionArea. Returns 1900-01-01 00:00:00.000000 if an error occurs. If any
argument's value is null, GetDynamicDateTime returns null.

Usage

Statements, Events, and Functions

Page 665

Use GetDynamicDateTime when the value of OutParmType is TypeDateTime! for the value
that you want to retrieve from the array.

To test for the error value, you must use the DateTime function to construct the value to
which you want to compare the returned value. PowerBuilder does not support DateTime
literals.

Examples

These statements set SystemDateTime to the DateTime data in the second output parameter
descriptor:

DateTime SystemDateTime
SystemDateTime = SQLDA.GetDynamicDateTime(2)
IF SystemDateTime = &
 DateTime(1900-01-01, 00:00:00) THEN
 ... // Error handling
END IF

For an example of retrieving data from the DynamicDescriptionArea, see GetDynamicDate.

See also

GetDynamicDate

GetDynamicNumber

GetDynamicString

GetDynamicTime

SetDynamicParm

Using dynamic SQL

2.4.248 GetDynamicDecimal

Description

Obtains numeric data from the DynamicDescriptionArea after you have executed a dynamic
SQL statement.

Restriction

You can use this function only after executing Format 4 dynamic SQL statements.

Syntax

DynamicDescriptionArea.GetDynamicDecimal (index)

Table 2.647:

Argument Description

DynamicDescriptionAreaThe name of the DynamicDescriptionArea, usually SQLDA.

index An integer identifying the output parameter descriptor from which you
want to get the data. Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.

Return value

Statements, Events, and Functions

Page 666

Decimal.

Returns the numeric data in the output parameter descriptor identified by index in
DynamicDescriptionArea. Returns 0 if an error occurs. If any argument's value is null,
GetDynamicDecimal returns null.

Usage

Use GetDynamicDecimal when the value of OutParmType is TypeDecimal! or
TypeLongLong! for the value that you want to retrieve from the array.

Examples

These statements set DeptId to the numeric data in the second output parameter descriptor:

Integer DeptId
DeptId = SQLDA.GetDynamicDecimal(2)

For an example of retrieving data from the DynamicDescriptionArea, see GetDynamicDate.

See also

GetDynamicDate

GetDynamicNumber

GetDynamicString

GetDynamicTime

SetDynamicParm

Using dynamic SQL

2.4.249 GetDynamicNumber

Description

Obtains numeric data from the DynamicDescriptionArea after you have executed a dynamic
SQL statement.

Restriction

You can use this function only after executing Format 4 dynamic SQL statements.

Syntax

DynamicDescriptionArea.GetDynamicNumber (index)

Table 2.648:

Argument Description

DynamicDescriptionAreaThe name of the DynamicDescriptionArea, usually SQLDA.

index An integer identifying the output parameter descriptor from which you
want to get the data. Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.

Return value

Double.

Statements, Events, and Functions

Page 667

Returns the numeric data in the output parameter descriptor identified by index in
DynamicDescriptionArea. Returns 0 if an error occurs. If any argument's value is null,
GetDynamicNumber returns null.

Usage

Use GetDynamicNumber when the value of OutParmType is TypeByte!, TypeInteger!,
TypeDouble!, TypeLong!, TypeReal!, or TypeBoolean! for the value that you want to
retrieve from the array.

For OutParmType values of TypeDecimal! or TypeLongLong!, use GetDynamicDecimal
instead.

Examples

These statements set DeptId to the numeric data in the second output parameter descriptor:

Integer DeptId
DeptId = SQLDA.GetDynamicNumber(2)

For an example of retrieving data from the DynamicDescriptionArea, see GetDynamicDate.

See also

GetDynamicDate

GetDynamicDateTime

GetDynamicDecimal

GetDynamicString

GetDynamicTime

SetDynamicParm

Using dynamic SQL

2.4.250 GetDynamicString

Description

Obtains data of type String from the DynamicDescriptionArea after you have executed a
dynamic SQL statement.

Restriction

You can use this function only after executing Format 4 dynamic SQL statements.

Syntax

DynamicDescriptionArea.GetDynamicString (index)

Table 2.649:

Argument Description

DynamicDescriptionAreaThe name of the DynamicDescriptionArea, usually SQLDA.

index An integer identifying the output parameter descriptor from which you
want to get the data. Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.

Statements, Events, and Functions

Page 668

Return value

String. Returns the string data in the output parameter descriptor identified by index in
DynamicDescriptionArea. Returns the empty string ("") if an error occurs. If any argument's
value is null, GetDynamicString returns null.

Usage

Use GetDynamicString when the value of OutParmType is TypeString! for the value that you
want to retrieve from the array.

Examples

These statements set LName to the String data in the second output descriptor:

String LName
LName = SQLDA.GetDynamicString(2)

For an example of retrieving data from the DynamicDescriptionArea, see GetDynamicDate.

See also

GetDynamicDate

GetDynamicDateTime

GetDynamicNumber

GetDynamicTime

SetDynamicParm

Using dynamic SQL

2.4.251 GetDynamicTime

Description

Obtains data of type Time from the DynamicDescriptionArea after you have executed a
dynamic SQL statement.

Restriction

You can use this function only after executing Format 4 dynamic SQL statements.

Syntax

DynamicDescriptionArea.GetDynamicTime (index)

Table 2.650:

Argument Description

DynamicDescriptionAreaThe name of the DynamicDescriptionArea, usually SQLDA.

index An integer identifying the output parameter descriptor from which you
want to get the data. Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.

Return value

Time.

Statements, Events, and Functions

Page 669

Returns the Time data in the output parameter descriptor identified by index in
DynamicDescriptionArea. Returns 00:00:00.000000 if an error occurs. If any argument's
value is null, GetDynamicTime returns null.

Usage

Use GetDynamicTime when the value of OutParmType is TypeTime! for the value that you
want to retrieve from the array.

Examples

These statements set Start to the Time data in the first output parameter descriptor:

Time Start
Start = SQLDA.GetDynamicTime(1)

For an example of retrieving data from the DynamicDescriptionArea, see GetDynamicDate.

See also

GetDynamicDate

GetDynamicDateTime

GetDynamicNumber

GetDynamicString

SetDynamicParm

Using dynamic SQL

2.4.252 GetEnvironment

Description

Gets information about the operating system, processor, and screen display of the system.

Syntax

GetEnvironment (environmentinfo)

Table 2.651:

Argument Description

environmentinfo The name of the Environment object that will hold the information about
the environment

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If environmentinfo is null, GetEnvironment
returns null.

Usage

In cross-platform development projects, you can call GetEnvironment in scripts and take
actions based on the operating system. You can also find out the processor (Intel 386 or 486,
68000, and so on). The information also includes version numbers of the operating system
and PowerBuilder.

Statements, Events, and Functions

Page 670

You can call GetEnvironment to find out the number of colors supported by the system and
the size of the screen. You can use the size information in a window's Open script to reset its
X and Y properties.

Examples

This script runs another PowerBuilder application and uses the OSType property of the
Environment object to determine how to specify the path:

string path
environment env
integer rtn

rtn = GetEnvironment(env)
IF rtn <> 1 THEN RETURN

CHOOSE CASE env.OSType
CASE aix!
 path = "/export/home/pb_apps/analyze.exe"
CASE Windows!, WindowsNT!
 path = "C:\PB_apps\analyze.exe"
CASE ELSE
 RETURN
END CHOOSE
Run(path)

This example displays a message box that shows the major, minor, and fixes versions and the
build number of PowerBuilder:

string ls_version
environment env
integer rtn

rtn = GetEnvironment(env)

IF rtn <> 1 THEN RETURN
ls_version = "Version: "+ string(env.pbmajorrevision)
ls_version += "." + string(env.pbminorrevision)
ls_version += "." + string(env.pbfixesrevision)
ls_version += " Build: " + string(env.pbbuildnumber)

MessageBox("PowerBuilder Version", ls_version)

2.4.253 GetExpiresIn

Description

Gets the lifetime of the access token returned by the authorization server.

Applies to

TokenResponse objects

Syntax

objectname.GetExpiresIn ()

Table 2.652:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
lifetime of the access token.

Statements, Events, and Functions

Page 671

Return value

Long. Values are:

>0 -- Expiration time of the access token in seconds;

0 -- Never expires.

Examples

The following example shows the use of the GetExpiresIn function to get the lifetime of the
access token:

long ll_expiresin
TokenResponse lnv_TokenResponse

ll_expiresin = lnv_TokenResponse.getexpiresin()

See also

GetAccessToken

GetBody

GetHeader

GetHeaders

GetRefreshToken

GetStatusCode

GetStatusText

GetTokenError

GetTokenType

2.4.254 GetFileOpenName

Description

Displays the system's Open File dialog box and allows the user to select a file or enter a file
name.

Syntax

GetFileOpenName (title, pathname, filename {, extension {, filter { , initdir { ,
 aFlag } } } })
GetFileOpenName (title, pathname, filename[] {, extension {, filter { , initdir
 { , aFlag } } } })

Table 2.653:

Argument Description

title A string whose value is the title of the dialog box.

pathname A string variable in which you want to store the returned path. If the user
selects a single file, the pathname variable contains the path name and
file name.

filename,
filename[]

A string variable in which the returned file name is stored or an array
of string variables in which multiple selected file names are stored.

Statements, Events, and Functions

Page 672

Argument Description
Specifying an array of string variables enables multiple selection in the
dialog box.

extension
(optional)

A string whose value is a 1- to 3-character default file extension. The
default is no extension.

filter (optional) A string whose value is a text description of the files to include in the list
box and the file mask that you want to use to select the displayed files
(for example, *.* or *.exe). The format for filter is:

description,*. ext

To specify multiple filter patterns for a single display string, use a
semicolon to separate the patterns, for example:

"Graphic Files (*.bmp;*.gif;*.jpg;*.jpeg),
.bmp;.gif;*.jpg;*.jpeg"

The default is:

"All Files (*.*),*.*"

initdir (optional) A string whose value is the initial directory name. The default is the
current directory.

aFlag (optional) An unsigned long whose value determines which options are enabled in
the dialog box. The value of each option's flag is calculated as 2 to the
power of (index -1), where index is the integer associated with the option.
The value of the aggregate flag passed to GetFileOpenName is the sum of
the individual option flags. See the table in the Usage section for a list of
options, the index associated with each option, and the option's meaning.

Return value

Integer.

Returns 1 if it succeeds, 0 if the user clicks the Cancel button or Windows cancels the
display, and -1 if an error occurs. If any argument's value is null, GetFileOpenName returns
null.

Usage

If you specify a DOS-style file extension and the user enters a file name with no extension,
PowerBuilder appends the default extension to the file name. If you specify a file mask to act
as a filter, PowerBuilder displays only files that match the mask.

If you specify a string for the filename argument, the user can select only one file. The
pathname argument contains the path name and the file name, for example C:\temp\test.txt.

If you specify a string array for the filename argument, the user can select more than one file.
If the user selects multiple files, the pathname argument contains the path only, for example
C:\temp. If the user selects a single file, its name is appended to the pathname argument, for
example C:\temp\test.txt.

You use the filter argument to limit the types of files displayed in the list box and to let the
user know what those limits are. For example, to display the description Text Files (*.TXT)
and only files with the extension .TXT, specify the following for filter:

Statements, Events, and Functions

Page 673

"Text Files (*.TXT),*.TXT"

To specify more than one file extension in filter, enter multiple descriptions and extension
combinations and separate them with commas. For example:

"PIF files, *.PIF, Batch files, *.BAT"

The dialog boxes presented by GetFileOpenName and GetFileSaveName are system dialog
boxes. They provide standard system behavior, including control over the current directory.
When users change the drive, directory, or folder in the dialog box, they change the current
directory or folder. The newly selected directory or folder becomes the default for file
operations until they exit the application, unless the optional initdir argument is passed.

The aFlag argument is used to pass one or more options that determine the appearance of the
dialog box. For each option, the value of the flag is 2^(index -1), where index is an integer
associated with each option as shown in the following table. You can pass multiple options
by passing an aggregate flag, calculated by adding the values of the individual flags.

If you do not pass an aFlag, the Explorer-style open file dialog box is used. If you do pass
a flag, the old-style dialog box is used by default. Some options do not apply when the
Explorer-style dialog box is used. For those that do apply, add the option value for using the
Explorer-style dialog box (2) to the value of the option if you want to display an Explorer-
style dialog box.

For example, passing the flag 32768 (2^15) to the GetFileSaveName function opens the old-
style dialog box with the Read Only check box selected by default. Passing the flag 32770
opens the Explorer-style dialog box with the Read Only check box selected by default.

Table 2.654: Option values for GetFileOpenName and GetFileSaveName

Index Constant name Description

1 OFN_CREATEPROMPTIf the specified file does not exist, prompt for permission to
create the file. If the user chooses to create the file, the dialog
box closes; otherwise the dialog box remains open.

2 OFN_EXPLORERUse an Explorer-style dialog box.

3 OFN_EXTENSIONDIFFERENTThe file extension entered differed from the extensions specified
in extension.

4 OFN_FILEMUSTEXISTOnly the names of existing files can be entered.

5 OFN_HIDEREADONLYHide the Read Only check box.

6 OFN_LONGNAMESUse long file names. Ignored for Explorer-style dialog boxes.

7 OFN_NOCHANGEDIRRestore the current directory to its original value if the user
changed the directory while searching for files. This option has
no effect for GetFileOpenName on Windows NT.

8 OFN_NODEREFERENCELINKSReturn the path and file name of the selected shortcut (.lnk file);
otherwise the path and file name pointed to by the shortcut are
returned.

9 OFN_NOLONGNAMESUse short file names (8.3 format). Ignored for Explorer-style
dialog boxes.

10 OFN_NONETWORKBUTTONHide the Network button. Ignored for Explorer-style dialog
boxes.

Statements, Events, and Functions

Page 674

Index Constant name Description

11 OFN_NOREADONLYRETURNThe file returned is not read only and is not in a write-protected
directory.

12 OFN_NOTESTFILECREATEDo not create the file before the dialog box is closed. This option
should be specified if the application saves the file on a network
share where files can be created but not modified. No check is
made for write protection, a full disk, an open drive door, or
network protection.

A file cannot be reopened once it is closed.

13 OFN_NOVALIDATEInvalid characters are allowed in file names.

14 OFN_OVERWRITEPROMPTUsed in Save As dialog boxes. Generates a message box if the
selected file already exists.

15 OFN_PATHMUSTEXISTOnly valid paths and file names can be entered.

16 OFN_READONLYSelect the Read Only check box when the Save dialog box is
created.

Opening a file

Use the FileOpen function to open a selected file.

Examples

The following example displays a Select File dialog box that allows multiple selection. The
file types are TXT, DOC, and all files, and the initial directory is C:\Program Files\Appeon.
The option flag 18 specifies that the Explorer-style dialog box is used (2^1 = 2), and the Read
Only check box is hidden (2^4 = 16). The selected filenames are displayed in a MultiLineEdit
control.

If the user selects a single file, the docpath variable contains both the path and the file name.
The example contains an IF clause to allow for this.

string docpath, docname[]
integer i, li_cnt, li_rtn, li_filenum

li_rtn = GetFileOpenName("Select File", &
 docpath, docname[], "DOC", &
 + "Text Files (*.TXT),*.TXT," &
 + "Doc Files (*.DOC),*.DOC," &
 + "All Files (*.*), *.*", &
 "C:\Program Files\Appeon", 18)

mle_selected.text = ""
IF li_rtn < 1 THEN return
li_cnt = Upperbound(docname)

// if only one file is picked, docpath contains the
// path and file name
if li_cnt = 1 then
 mle_selected.text = string(docpath)
else

// if multiple files are picked, docpath contains the
// path only - concatenate docpath and docname

Statements, Events, and Functions

Page 675

 for i=1 to li_cnt
 mle_selected.text += string(docpath) &
 + "\" +(string(docname[i]))+"~r~n"
 next
end if

In the following example, the dialog box has the title Open and displays text files, batch files,
and INI files in the Files of Type drop-down list. The initial directory is d:\temp. The option
flag 512 specifies that the old-style dialog box is used and the Network button is hidden (2^9
= 512).

// instance variables
// string is_filename, is_fullname
int li_fileid

if GetFileOpenName ("Open", is_fullname, is_filename, &
 "txt", "Text Files (*.txt),*.txt,INI Files " &
 + "(*.ini), *.ini,Batch Files (*.bat),*.bat", &
 "d:\temp", 512) < 1 then return

li_fileid = FileOpen (is_fullname, StreamMode!)
FileRead (li_fileid, mle_notepad.text)
FileClose (li_fileid)

See also

DirList

DirSelect

GetFileSaveName

GetFolder

2.4.255 GetFileSaveName

Description

Displays the system's Save File dialog box with the specified file name displayed in the File
name box. The user can enter a file name or select a file from the grayed list.

Syntax

GetFileSaveName (title, pathname, filename {, extension {, filter { , initdir { ,
 aFlag } } } })

GetFileSaveName (title, pathname, filename [] {, extension {, filter { , initdir
 { , aFlag } } } })

Table 2.655:

Argument Description

title A string whose value is the title of the dialog box.

pathname A string variable whose value is the default path name and which stores
the returned path. If the user selects a single file, the pathname variable
contains the path name and file name. The default file name is displayed
in the File name box; the user can specify another name.

filename,
filename[]

A string variable in which the returned file name is stored or an array
of string variables in which multiple selected file names are stored.

Statements, Events, and Functions

Page 676

Argument Description
Specifying an array of string variables enables multiple selection in the
dialog box.

extension
(optional)

A string whose value is a 1- to 3-character default file extension. The
default is no extension.

filter (optional) A string whose value is the description of the displayed files and the file
extension that you want use to select the displayed files (the filter). The
format for filter is: description,*. ext

The default is: "All Files (*.*),*.*"

initdir (optional) A string whose value is the initial directory name. The default is the
current directory.

aFlag (optional) An unsigned long whose value determines which options are enabled
in the dialog box. The value of each option's flag is calculated as 2 to
the power of (index -1), where index is the integer associated with the
option. The value of the aggregate flag passed to GetFileOpenName is
the sum of the individual option flags. See the table in the Usage section
for GetFileOpenName for a list of options, the index associated with each
option, and the option's meaning.

Return value

Integer.

Returns 1 if it succeeds, 0 if the user clicks the Cancel button or Windows cancels the
display, and -1 if an error occurs. If any argument's value is null, GetFileSaveName returns
null.

Usage

If you specify a DOS-style extension and the user enters a file name with no extension,
PowerBuilder appends the default extension to the file name. If you specify a file mask to act
as a filter, PowerBuilder displays only files that match the mask.

If you specify a string for the filename argument, the user can select only one file. The
pathname argument contains the path name and the file name, for example C:\temp\test.txt.

If you specify a string array for the filename argument, the user can select more than one file.
If the user selects multiple files, the pathname argument contains the path only, for example
C:\temp. If the user selects a single file, its name is appended to the pathname argument,
for example C:\temp\test.txt. For an example that shows the use of a string array, see the
GetFileOpenName function.

For usage notes on the filter, initdir, and aFlag arguments, see the GetFileOpenName
function.

Examples

These statements display the Select File dialog box so that the user can select a single file.
The default file extension is .DOC, the filter is all files, and the initial directory is C:\My
Documents. The aFlag option 32770 specifies that an Explorer-style dialog box is used
with the Read Only check box selected when the dialog box is created. If a file is selected
successfully, its path displays in a SingleLineEdit control:

Statements, Events, and Functions

Page 677

string ls_path, ls_file
int li_rc

ls_path = sle_1.Text
li_rc = GetFileSaveName ("Select File", &
 ls_path, ls_file, "DOC", &
 "All Files (*.*),*.*" , "C:\My Documents", &
 32770)

IF li_rc = 1 Then
 sle_1.Text = ls_path
End If

See also

DirList

DirSelect

GetFileOpenName

GetFolder

2.4.256 GetFilesCount

Description

Gets the number of files contained in the archive.

Applies to

ExtractorObject objects

Syntax

objectname.GetFilesCount (string source)

Table 2.656:

Argument Description

objectname The name of the ExtractorObject object.

source The full path of the compressed package.

Packages compressed by the LINUX commands are unsupported.

Return value

Long. If any argument's value is null, the method returns null.

Note: the folder will also be calculated as a file. For example, if a folder contains 3 files, the
total number of files is 4 when decompressing.

The return values are:

• >= 0 -- the number of files in the compressed package.

• -1 -- A general error occurred.

• -3 -- The operation is not supported for the source file format.

• -5 -- A task thread is currently running.

Statements, Events, and Functions

Page 678

• -6 -- You must enter a password.

• -7 -- The password is incorrect.

• -9 -- Failed to read the compressed file.

• -10 -- Unrecognized format or the encrypted file name option is used for the compressed
document.

• -12 -- The compressed file does not exist.

Examples

ExtractorObject lnv_extractor
string ls_source, ls_password
long ll_filescount

lnv_extractor = create ExtractorObject
ls_source = "E:\test.rar"

//Suppose the package requires a password
lnv_extractor.Password = ls_password
ll_filescount = lnv_extractor.GetFilesCount (ls_source)

See also

Cancel

Extract

GetFilesList

2.4.257 GetFilesList

Description

Gets the list of files (and folders) in the compressed package.

Applies to

ExtractorObject objects

Syntax

objectname.GetFilesList (string source, ref string list[])

Table 2.657:

Argument Description

objectname The name of the ExtractorObject object.

source The full path of the compressed package.

Packages compressed by the LINUX commands are unsupported.

list[] The list of files (and folders) in the compressed package.

Return value

Integer. If any argument's value is null, the method returns null.

The return values are:

Statements, Events, and Functions

Page 679

• 1 -- Success.

• -1 -- A general error occurred.

• -3 -- The operation is not supported for the source file format.

• -5 -- A task thread is currently running.

• -6 -- You must enter a password.

• -7 -- The password is incorrect.

• -9 -- Failed to read the compressed file.

• -10 -- Unrecognized format or the encrypted file name option is used for the compressed
document.

• -12 -- The compressed file does not exist.

Examples

ExtractorObject lnv_extractor
string ls_source, ls_password, ls_fileslist[]
long ll_return

lnv_extractor = create ExtractorObject
ls_source = "E:\test.rar"

//Suppose the package requires a password
lnv_extractor.Password = ls_password
ll_return = lnv_extractor.GetFilesList (ls_source, ls_fileslist[])

See also

Cancel

Extract

GetFilesCount

2.4.258 GetFirstSheet

Description

Obtains the top sheet in the MDI frame, which may or may not be active.

Applies to

MDI frame windows

Syntax

mdiframewindow.GetFirstSheet ()

Table 2.658:

Argument Description

mdiframewindow The MDI frame window for which you want the top sheet

Statements, Events, and Functions

Page 680

Return value

Window. Returns the first (top) sheet in the MDI frame. If no sheet is open in the frame,
GetFirstSheet returns an invalid value. If mdiframewindow is null, GetFirstSheet returns null.

Usage

To cycle through the open sheets in a frame, use GetFirstSheet and GetNextSheet. Do not use
these functions in combination with GetActiveSheet.

Did GetFirstSheet return a valid window?

Use the IsValid function to find out if the return value is valid. If it is not, then no
sheet is open.

Examples

This script for a menu selection returns the top sheet in the MDI frame:

window wSheet
string wName
wSheet = ParentWindow.GetFirstSheet()
IF IsValid(wSheet) THEN
 // There is an open sheet
 wName = wsheet.ClassName()
 MessageBox("First Sheet is", wName)
END IF

See also

GetNextSheet

IsValid

2.4.259 GetFixesVersion

Description

Returns the fix level for the current PowerBuilder execution context. For example, at
maintenance level 10.2.1, the fix version is 1.

Applies to

ContextInformation objects

Syntax

servicereference.GetFixesVersion (fixversion)

Table 2.659:

Argument Description

servicereference Reference to the ContextInformation service instance.

fixversion Integer into which the function places the fix version. This argument is
passed by reference.

Return value

Integer.

Statements, Events, and Functions

Page 681

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function to determine the current fix version.

Examples

This example calls the GetFixesVersion function:

String ls_name
Constant String ls_currver = "8.0.3"
Integer li_majver, li_minver, li_fixver
ContextInformation ci

this.GetContextService ("ContextInformation", ci)
ci.GetMajorVersion(li_majver)
ci.GetMinorVersion(li_minver)
ci.GetFixesVersion(li_fixver)
IF li_majver <> 8 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
ELSEIF li_minver <> 0 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
ELSEIF li_fixver <> 3 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
END IF

See also

GetCompanyName

GetHostObject

GetMajorVersion

GetMinorVersion

GetName

GetShortName

GetVersionName

2.4.260 GetFocus

Description

Determines the control that currently has focus.

Syntax

GetFocus ()

Return value

GraphicObject. Returns the control that currently has focus. Returns an invalid control
reference if an error occurs.

Use the IsValid function to determine whether GetFocus has returned a valid control.

Examples

Statements, Events, and Functions

Page 682

These statements set which_control equal to the datatype of the control that currently has
focus, and then set text_value to the text property of the control:

GraphicObject which_control
SingleLineEdit sle_which
CommandButton cb_which
string text_value

which_control = GetFocus()

CHOOSE CASE TypeOf(which_control)

CASE CommandButton!
 cb_which = which_control
 text_value = cb_which.Text

CASE SingleLineEdit!
 sle_which = which_control
 text_value = sle_which.Text

CASE ELSE
 text_value = ""
END CHOOSE

See also

IsValid

SetFocus

2.4.261 GetFolder

Description

Displays a folder selection dialog box.

Syntax

GetFolder (title, directory)

Table 2.660:

Argument Description

title String for a title that displays above a list box containing a tree view for
folder selection.

directory String for the directory name passed by reference to the folder selection
dialog box. The directory name is selected, and its subfolders, if any, are
displayed in a dialog box tree view.

Return value

Integer.

Returns 1 if the function succeeds, 0 if the user selects cancel (or the dialog box is closed), -1
if an error occurs.

Usage

The directory selected by the user is returned in the same variable that is passed to the folder
selection dialog box.

Statements, Events, and Functions

Page 683

Examples

This example displays the folder contents of the Appeon directory in a folder selection dialog
box. The string passed in the title argument displays above the tree view:

string ls_path = "d:\program files\appeon"
integer li_result
li_result = GetFolder("my targets", ls_path)
sle_1.text=ls_path
// puts the user-selected path in a SingleLineEdit box.

See also

DirectoryExists

DirList

DirSelect

GetCurrentDirectory

GetFileOpenName

GetFileSaveName

2.4.262 GetGroup

Description

Gets the group according to the handle in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetGroup (Long ItemHandle, ref RibbonGroupItem Item)

Table 2.661:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the group you want to get.

Item A RibbonGroupItem variable in which you want to store the group
identified by the item handle.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get an item according to the handle by using the GetItem function.

Examples

The following code example inserts a group to the "MyPanel" panel and then gets a copy of
the group according to its handle and stores it in the lr_Group variable.

Statements, Events, and Functions

Page 684

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Group
RibbonGroupItem lr_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_Group = rbb_1.InsertGroupFirst (ll_Handle_Panel)
li_Return = rbb_1.GetGroup (ll_Handle_Group, lr_Group)

See also

InsertGroup

InsertGroupFirst

InsertGroupLast

DeleteGroup

SetGroup

GetChildItemByIndex

2.4.263 GetGlobalProperty (obsolete)

Description

Returns the value of an SSL global property. This function is used by PowerBuilder clients
connecting to EAServer.

Obsolete function

GetGlobalProperty is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

SSLServiceProvider object

Syntax

sslserviceprovider.GetGlobalProperty (property, values)

Table 2.662:

Argument Description

sslserviceprovider Reference to the SSLServiceProvider service instance.

property The name of the SSL property for which you want to return values.

For a complete list of supported SSL properties, see your EAServer
documentation for the Connection object.

values An array of string values for the specified SSL property.

Return value

Long.

Returns one of the following values:

Statements, Events, and Functions

Page 685

0 -- Success

-1 -- Unknown property

-3 -- Property has no value

-10 -- An EAServer or SSL failure has occurred

-11 -- Bad argument list

Usage

The GetGlobalProperty function allows PowerBuilder clients that connect to EAServer
through SSL to access global SSL properties.

Any properties set using the SSLServiceProvider interface are global to all connections
made by the client to all EAServer servers. You can override any of the global settings at the
connection level by specifying them as options to the Connection object.

Only clients can get and set SSL properties. Server components do not have permission to
use the SSLServiceProvider service.

Examples

The following example shows the use of the GetGlobalProperty function to get the value of
the sessLingerTime property:

SSLServiceProvider ssl
string ls_values[]
long rc
...
this.GetContextService("SSLServiceProvider", ssl)
rc = ssl.GetGlobalProperty("sessLingerTime", ls_values)
...

See also

SetGlobalProperty (obsolete)

2.4.264 GetHeader

2.4.264.1 Syntax 1: for TokenRequest objects

Description

Gets the request header by name.

Applies to

TokenRequest objects

Syntax

objectname.GetHeader (string headerName)

Table 2.663:

Argument Description

objectname A reference to the TokenRequest object in which you want to get the
request header.

headerName A string specifying the header name.

Statements, Events, and Functions

Page 686

Return value

String.

Returns the value related to the header name. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetHeader function to get the value of the
content-type header:

string ls_header
TokenRequest lnv_TokenRequest

ls_header = lnv_TokenRequest.getheader("content-type")

See also

AppendParam

ClearHeaders

GetHeaders

SetHeader

SetHeaders

2.4.264.2 Syntax 2: for TokenResponse objects

Description

Gets the response header by name.

Applies to

TokenResponse objects

Syntax

objectname.GetHeader (string headerName)

Table 2.664:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
response header.

headerName A string specifying the header name.

Return value

String.

Returns the value related to the header name. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetHeader function to get the value of the
content-type header:

Statements, Events, and Functions

Page 687

string ls_header
TokenResponse lnv_TokenResponse

ls_header = lnv_TokenResponse.getheader("content-type")

See also

GetAccessToken

GetBody

GetExpiresIn

GetHeaders

GetRefreshToken

GetStatusCode

GetStatusText

GetTokenError

GetTokenType

2.4.264.3 Syntax 3: for OAuthRequest objects

Description

Gets the request header by name.

Applies to

OAuthRequest objects

Syntax

objectname.GetHeader (string headerName)

Table 2.665:

Argument Description

objectname A reference to the OAuthRequest object in which you want to get the
request header.

headerName A string specifying the header name.

Return value

String.

Returns the value related to the header name. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetHeader function to get the value of the
content-type header:

string ls_header
OAuthRequest lnv_OAuthRequest

ls_header = lnv_OAuthRequest.getheader("content-type")

Statements, Events, and Functions

Page 688

See also

ClearHeaders

GetBody

GetHeaders

SetAccessToken

SetBody

SetHeader

SetHeaders

2.4.264.4 Syntax 4: for ResourceResponse objects

Description

Gets the response header by name.

Applies to

ResourceResponse objects

Syntax

objectname.GetHeader (string headerName)

Table 2.666:

Argument Description

objectname A reference to the ResourceResponse object in which you want to get the
response header.

headerName A string specifying the header name.

Return value

String.

Returns the value related to the header name. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetHeader function to get the value of the
content-type header:

string ls_header
ResourceResponse lnv_ResourceResponse

ls_header = lnv_ResourceResponse.getheader("content-type")

See also

GetBody

GetHeaders

GetStatusCode

GetStatusText

Statements, Events, and Functions

Page 689

2.4.265 GetHeaders

2.4.265.1 Syntax 1: for TokenRequest objects

Description

Gets the header of all requests.

Applies to

TokenRequest objects

Syntax

objectname.GetHeaders ()

Table 2.667:

Argument Description

objectname A reference to the TokenRequest object in which you want to get the
request header.

Return value

String.

Returns the header information of all requests. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetHeaders function to get the value of all
headers:

string ls_headers
TokenRequest lnv_TokenRequest

ls_headers = lnv_TokenRequest.getheaders()

See also

AppendParam

ClearHeaders

GetHeader

SetHeader

SetHeaders

2.4.265.2 Syntax 2: for TokenResponse objects

Description

Gets the header of all responses.

Applies to

TokenResponse objects

Syntax

Statements, Events, and Functions

Page 690

objectname.GetHeaders ()

Table 2.668:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
response header.

Return value

String.

Returns the header information of all responses.

Examples

The following example shows the use of the GetHeaders function to get the value of all
headers:

string ls_headers
TokenResponse lnv_TokenResponse

ls_headers = lnv_TokenResponse.getheaders()

See also

GetAccessToken

GetBody

GetExpiresIn

GetHeader

GetRefreshToken

GetStatusCode

GetStatusText

GetTokenError

GetTokenType

2.4.265.3 Syntax 3: for OAuthRequest objects

Description

Gets the header of all requests.

Applies to

OAuthRequest objects

Syntax

objectname.GetHeaders ()

Table 2.669:

Argument Description

objectname A reference to the OAuthRequest object in which you want to get the
request header.

Statements, Events, and Functions

Page 691

Return value

String.

Returns the header information of all requests. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetHeaders function to get the value of all
headers:

string ls_headers
OAuthRequest lnv_OAuthRequest

ls_headers = lnv_OAuthRequest.getheaders()

See also

ClearHeaders

GetBody

GetHeader

SetAccessToken

SetBody

SetHeader

SetHeaders

2.4.265.4 Syntax 4: for ResourceResponse objects

Description

Gets the header of all responses.

Applies to

ResourceResponse objects

Syntax

objectname.GetHeaders ()

Table 2.670:

Argument Description

objectname A reference to the ResourceResponse object in which you want to get the
response header.

Return value

String.

Returns the header information of all responses.

Examples

The following example shows the use of the GetHeaders function to get the value of all
headers:

Statements, Events, and Functions

Page 692

string ls_headers
ResourceResponse lnv_ResourceResponse

ls_headers = lnv_ResourceResponse.getheaders()

See also

GetBody

GetHeader

GetStatusCode

GetStatusText

2.4.266 GetHostObject

Description

Provides a reference to the context's host object.

Host object support

Currently, host object support is implemented only in the window ActiveX when
running under Internet Explorer. In this situation GetHostObject returns a reference to
the IWebBrowserApp ActiveX automation server object.

Applies to

ContextInformation objects

Syntax

servicereference.GetHostObject (hostobject)

Table 2.671:

Argument Description

servicereference Reference to the Context Information service instance

hostobject PowerObject into which the function places a reference to the ActiveX
automation server object

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function to obtain a reference to the context object model. If running the window
ActiveX under Internet Explorer 3.0 or greater and hostobject is an uninstantiated OleObject
variable, the function returns a reference to an ActiveX automation server object, which you
can use to control the hosting browser. If host object support is not available, the function
returns -1 and hostobject is null.

Examples

Statements, Events, and Functions

Page 693

This example calls the GetHostObject function. Ici_info is an instance variable of type
ContextInformation, which has been populated using the GetContextService function; ole1 is
an instance variable of type OLEObject:

Integer li_return

li_return = ici_info.GetHostObject(ole1)
IF li_return = 1 THEN
 sle_1.Text = "GetHostObject succeeded"
ELSE
 sle_1.Text = "GetHostObject failed"
 cb_goback.Enabled = FALSE
 cb_navigate.Enabled = FALSE
END IF

See also

GetCompanyName

GetName

GetShortName

GetVersionName

2.4.267 GetInstalledRuntimes

Description

Gets the version number of PowerBuilder Runtime that is installed on the current computer.

Syntax

GetInstalledRuntimes ()

Return value

String.

Returns the version number as a string, or returns null if no PowerBuilder Runtime has been
installed. If multiple version numbers are returned, they will be separated by a comma (",").

Examples

This example gets the runtime version on the current machine:

string ls_version
ls_version = getinstalledruntimes()

2.4.268 GetItem

Retrieves data associated with a specified item in ListView, TreeView, RibbonMenu, or
RibbonBar controls.

Table 2.672:

To retrieve data associated with a specified Use

ListView control item Syntax 1

ListView control item and column Syntax 2

TreeView item Syntax 3

Statements, Events, and Functions

Page 694

To retrieve data associated with a specified Use

RibbonMenu control Syntax 4

RibbonBar control Syntax 5

2.4.268.1 Syntax 1: For ListView controls

Description

Retrieves a ListViewItem object from a ListView control so you can examine its properties.

Applies to

ListView controls

Syntax

listviewname.GetItem (index {, column}, item)

Table 2.673:

Argument Description

listviewname The name of the ListView control for which you want to retrieve the
ListView item

index The index number of the item you want to retrieve

column The index number of the column for which you want item information

item The ListViewItem variable in which you want to store the ListViewItem
object

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. Stores a ListViewItem object in a
ListViewItem variable.

Usage

You can retrieve properties for any ListView item with this syntax. If you do not specify
a column, GetItem retrieves properties for the first column of an item. Only report views
display multiple columns.

To retrieve labels only, use syntax 2. You can use GetColumn to obtain column properties
that are not specific to a ListView item.

To change pictures and other property values associated with a ListView item, use GetItem,
change the property values, and use SetItem to apply the changes back to the ListView.

Examples

This example uses GetItem to move the second item in the lv_list ListView control to the
fifth item. It retrieves item 2, inserts it into the ListView control as item 5, and then deletes
the original item:

listviewitem l_lvi

lv_list.GetItem(2, l_lvi)
lv_list.InsertItem(5, l_lvi)

Statements, Events, and Functions

Page 695

lv_list.DeleteItem(2)

See also

GetColumn

SetItem

2.4.268.2 Syntax 2: For ListView controls

Description

Retrieves the value displayed for a ListView item in a specified column.

Applies to

ListView controls

Syntax

listviewname.GetItem (index, column, label)

Table 2.674:

Argument Description

listviewname The name of the ListView control from which you want to retrieve a
displayed value.

index The index number of the item for which you want to retrieve a displayed
value.

column The index number of the column for which you want to retrieve a value.
If the ListView is not a multicolumn report view, all the items are
considered to be in column 1.

label A string variable in which you store the displayed value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. Stores the displayed value of the ListView
column in a string variable.

Usage

To retrieve property values for a ListView item, use Syntax 1.

Examples

This example gets the displayed values from column 1 and column 3 of the first row of the
lv_list ListView and displays them in the sle_info SingleLineEdit control.

string ls_artist, ls_comp

lv_list.GetItem(1, 1 , ls_comp)
lv_list.GetItem(1, 3 , ls_artist)
sle_info.text = ls_artist +" wrote " + ls_comp + "."

See also

SetItem

Statements, Events, and Functions

Page 696

2.4.268.3 Syntax 3: For TreeView controls

Description

Retrieves the data associated with the specified item.

Applies to

TreeView controls

Syntax

treeviewname.GetItem (itemhandle, item)

Table 2.675:

Argument Description

treeviewname The name of the TreeView control in which you want to get data for a
specified item

itemhandle The handle for the item for which you want to retrieve information

item A TreeViewItem variable in which you want to store the item identified
by the item handle

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Use GetItem to retrieve the state information associated with a specific item in a TreeView
(such as label, handle, or picture index). After you have retrieved the information, you can
use it in your application. To change a property of an item, call GetItem to assign the item to
a TreeViewItem variable, change its properties, and call SetItem to copy the changes back to
the TreeView.

Examples

This code for the Clicked event gets the clicked item and changes it overlay picture. The
SetItem function copies the change back to the TreeView:

treeviewitem tvi
This.SetItem(handle, tvi)
tvi.OverlayPictureIndex = 1
This.SetItem(handle, tvi)

This example tracks items in the SelectionChanged event. If there is no prior selection, the
value of l_tviold is zero:

treeviewitem l_tvinew, l_tviold

// Get the treeview item that was the old selection
tv_list.GetItem(oldhandle, l_tviold)

// Get the treeview item that is currently selected
tv_list.GetItem(newhandle, l_tvinew)

// Print the labels for the two items in the
// SingleLineEdit

Statements, Events, and Functions

Page 697

sle_get.Text = "Selection changed from " &
 + String(l_tviold.Label) + " to " &
 + String(l_tvinew.Label)

See also

InsertItem

2.4.268.4 Syntax 4: For RibbonMenu controls

Description

Gets an item of the ribbon menu.

Applies to

RibbonMenu controls

Syntax

controlname.GetItem ({ Long ParentIndex, } Long Index, ref RibbonMenuItem Item)

Table 2.676:

Argument Description

controlname The name of the RibbonMenu control in which you want to get data for a
specified item

ParentIndex The index of the menu item (RibbonMenuItem) whose submenu you
want to get.

If not specified, the menu item will be obtained; if specified to a valid
value, the submenu of the menu item (whose index is ParentIndex) will
be obtained; if specified to an invalid value, an error would occur and this
operation would return -1.

Index The index of the menu item or submenu item you want to obtain. If index
is invalid, an error would occur and this operation would return -1.

Item A RibbonMenuItem variable in which you want to store the menu item
identified by the index.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

A RibbonMenu control can only contain menu items in no more than two levels.

Examples

This example inserts a "MenuItem1" menu item and a "SubMenuItem1" submenu item under
"MenuItem1"; and then gets copies of the "MenuItem1" menu item and the "SubMenuItem1"
submenu items.

Integer li_Return
Long ll_Index, ll_Index2
RibbonMenu lr_Menu

Statements, Events, and Functions

Page 698

RibbonMenuItem lr_MenuItem1, lr_SubMenuItem1

ll_Index = lr_Menu.InsertItemLast ("MenuItem1", "AddSmall!", "Ue_MenuItem1Clicked")
ll_Index2 = lr_Menu.InsertItemLast (ll_Index, "SubMenuItem1", "AddSmall!",
 "Ue_MenuItem11Clicked")

li_Return = lr_Menu.GetItem (ll_Index, lr_MenuItem1)
li_Return = lr_Menu.GetItem (ll_Index, ll_Index2, lr_SubMenuItem1)

See also

AddSeparatorItem

DeleteItem

GetItemCount

InsertItem

InsertItemFirst

InsertItemLast

SetItem

2.4.268.5 Syntax 5: For RibbonBar controls

Description

Gets an item according to its handle in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetItem (Long ItemHandle, ref PowerObject Item)

Table 2.677:

Argument Description

controlname The name of the RibbonBar control from which you want to get the item.

ItemHandle The handle of the item you want to obtain.

Item An item variable in which you want to store the item identified by the
item handle.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get an item according to its tag value by using the GetItemByTag function.

The GetItem and GetItemByTag functions can be used to get items including
ApplicationButton, TabButton, Category, Panel, Group, LargeButton, SmallButton,
CheckBox, and ComboBox; but cannot get RibbonMenuItem, RibbonApplicationMenu, and
RibbonMenu. To get RibbonMenuItem, you can use the GetItem Syntax 4, GetMasterItem,

Statements, Events, and Functions

Page 699

and GetRecentItem functions. To get RibbonApplicationMenu and RibbonMenu, you can use
the GetMenu and GetMenuByButtonHandle functions.

You can also use the following functions to get the individual control: GetApplicationButton,
GetCategory, GetCheckBox, GetComboBox, GetGroup, GetLargeButton, GetPanel,
GetSmallButton, and GetTabButton.

Examples

This example gets the large button or the small button that is being clicked according to the
handle and then sets its tag value.

//Event ue_buttonclicked (long itemhandle)
PowerObject lpo_Object
RibbonSmallButtonItem lr_SmallButton
RibbonLargeButtonItem lr_LargeButton
Integer li_Return, li_Return2

li_Return = rbb_1.GetItem(Itemhandle, lpo_Object)
If li_Return = 1 Then
 Choose Case lpo_Object.ClassName()
 Case "ribbonsmallbuttonitem"
 lr_SmallButton = lpo_Object
 lr_SmallButton.Tag = "SmallButton Clicked"
 li_Return2 = rbb_1.SetItem(lr_SmallButton)
 Case "ribbonlargebuttonitem"
 lr_LargeButton = lpo_Object
 lr_LargeButton.Tag = "LargeButton Clicked"
 li_Return2 = rbb_1.SetItem(lr_LargeButton)
 End Choose
End If

2.4.269 GetItemArray

2.4.269.1 Syntax 1

Description

Gets the value of the item whose type is array.

Applies to

JSONParser objects

Syntax

objectname.GetItemArray (ParentItemHandle, Key)

Table 2.678:

Argument Description

objectname The name of the JSONParser object whose array item you want to obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonArrayItem type.

Return value

Long.

Statements, Events, and Functions

Page 700

Returns the value of the child item of an array if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700].

Example 1

The following code handles a regular JSON string.

JsonParser lnv_JsonParser
String ls_Json, ls_name
Long ll_number_item, ll_number, ll_object_item
Long ll_RootObject, ll_department_array
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "department_array":[999999,
 {"name":"Website"}, {"name":"PowerBuilder"}, {"name":"IT"}] }'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()

ll_department_array = lnv_JsonParser.GetItemArray(ll_RootObject,
 "department_array")

ll_number_item = lnv_JsonParser.GetChildItem(ll_department_array, 1)
ll_number = lnv_JsonParser.GetItemNumber(ll_number_item)
ll_object_item = lnv_JsonParser.GetChildItem(ll_department_array, 2)
ls_name = lnv_JsonParser.GetItemString(ll_object_item, "name")

Example 2

The following code handles an irregular JSON string which contains a null value.

long ll_loop,i
long ll_row
long ll_root,ll_object,ll_item //receiving the handle of JSON item
string ls_json,ls_error
string ls_return
string ls_key
jsonparser lnv_jsonparser

lnv_jsonparser = create jsonparser
ls_json = "[{~"ID~":101,~"FirstName~":~"Li~"},{~"ID~":102,~"FirstName~":null}]" //
 JSON data contains a null value
//Loads the JSON data
ls_error= lnv_jsonparser.loadstring(ls_json)
if len(trim(ls_error)) > 0 then
 messagebox("Failed","load json failed:"+ls_error)
 return
end if
//Obtains the handle of root item
ll_root = lnv_jsonparser.getrootitem()
//Obtains the data of each row
for ll_loop = 1 to lnv_jsonparser.getchildcount(ll_root)
 //Obtains the handle of each row
 ll_object = lnv_jsonparser.getchilditem(ll_root,ll_loop)
 //Inserts a row into datawindow
 ll_row = dw_1.insertrow(0)
 //Parses the item value one by one in a row in a loop
 for i = 1 to lnv_jsonparser.getchildcount(ll_object)

Statements, Events, and Functions

Page 701

 //Obtains the handle and key of each item
 ll_item = lnv_jsonparser.getchilditem(ll_object,i)
 ls_key = lnv_jsonparser.getchildkey(ll_object,i)
 //Checks the data type of each item
 choose case lnv_jsonparser.getitemtype(ll_item)
 case jsonarrayitem!,jsonobjectitem!
 messagebox("Error","Not standard datatype") //
Item value cannot be inserted to datawindow
 case jsonnumberitem!
 //Obtains number data

 dw_1.setitem(ll_row,i,lnv_jsonparser.getitemnumber(ll_item))
 //
dw_1.setitem(ll_row,ls_key,lnv_jsonparser.getitemnumber(ll_object,ls_key)) or set
 data by column name
 case jsonstringitem!
 //Obtains string data

 dw_1.setitem(ll_row,i,lnv_jsonparser.getitemstring(ll_item))
 case jsonbooleanitem!
 //Obtains boolean data. boolean converted to
 string and inserted to datawindow

 dw_1.setitem(ll_row,i,string(lnv_jsonparser.getitemboolean(ll_item)))
 case jsonnullitem!
 //null value. Not inserted to datawindow.

 end choose
 next //Finish parsing one row
next//Start parsing next row

See also

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.269.2 Syntax 2

Description

Gets the value of the item whose type is array.

Applies to

Statements, Events, and Functions

Page 702

JSONParser objects

Syntax

objectname.GetItemArray (ItemPath)

Table 2.679:

Argument Description

objectname The name of the JSONParser object whose array item you want to obtain.

ItemPath A string whose value is the path of the item of JsonArrayItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

Long.

Returns the value of the child item of an array if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700].

Example

The following code gets an array according to its item path.

JsonParser lnv_JsonParser
String ls_Json, ls_name, ls_Path
Long ll_number_item, ll_number, ll_object_item
Long ll_department_array
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "department_array":[999999,
 {"name":"Website"}, {"name":"PowerBuilder"}, {"name":"IT"}] }'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/department_array"

ll_department_array = lnv_JsonParser.GetItemArray(ls_Path)

ll_number_item = lnv_JsonParser.GetChildItem(ll_department_array, 1)
ll_number = lnv_JsonParser.GetItemNumber(ll_number_item)
ll_object_item = lnv_JsonParser.GetChildItem(ll_department_array, 2)
ls_name = lnv_JsonParser.GetItemString(ll_object_item, "name")

See also

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

Statements, Events, and Functions

Page 703

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.270 GetItemArrayJSONString

2.4.270.1 Syntax 1

Description

Gets the string value of the item whose type is array.

Applies to

JSONParser objects

Syntax

objectname.GetItemArrayJSONString (ParentItemHandle, Key)

Table 2.680:

Argument Description

objectname The name of the JSONParser object whose array item you want to obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonArrayItem type.

Return value

String.

Returns the string value of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, the method returns null. If an error occurs, the method throws the exception.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700].

Example

The following code gets the JSON string of an array according to the key name:

JsonParser lnv_JsonParser
String ls_Json, ls_Array
Long ll_RootObject

Statements, Events, and Functions

Page 704

lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "department_array":[999999,
 {"name":"Website"}, {"name":"PowerBuilder"}, {"name":"IT"}] }'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ls_Array = lnv_JsonParser.GetItemArrayJSONString(ll_RootObject, "department_array")

See also

GetItemArray

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.270.2 Syntax 2

Description

Gets the string value of the item whose type is array.

Applies to

JSONParser objects

Syntax

objectname.GetItemArrayJSONString (ItemPath)

Table 2.681:

Argument Description

objectname The name of the JSONParser object whose array item you want to obtain.

ItemPath A string whose value is the path of the item of JsonArrayItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

String.

Statements, Events, and Functions

Page 705

Returns the string value of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, the method returns null. If an error occurs, the method throws the exception.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700].

Example

The following code gets the JSON string of an array according to its item path:

JsonParser lnv_JsonParser
String ls_Json, ls_Array, ls_Path
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "department_array":[999999,
 {"name":"Website"}, {"name":"PowerBuilder"}, {"name":"IT"}] }'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/department_array"
ls_Array = lnv_JsonParser.GetItemArrayJSONString(ls_Path)

See also

GetItemArray

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.270.3 Syntax 3

Description

Gets the string value of the item whose type is array.

Applies to

JSONParser objects

Syntax

objectname.GetItemArrayJSONString (ItemHandle)

Statements, Events, and Functions

Page 706

Table 2.682:

Argument Description

objectname The name of the JSONParser object whose array item you want to obtain.

ItemHandle A long value specifying the item handle which is JsonObjectItem type.

Return value

String.

Returns the string value of the item if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, the method throws the exception.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700].

Example

The following code gets the JSON string of an array according to its item handle:

JsonParser lnv_JsonParser
String ls_Json, ls_Array
Long ll_RootObject, ll_ChildArray, ll_Handle
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true,"array":[12,34,[56,78]]}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ll_ChildArray = lnv_JsonParser.GetItemArray(ll_RootObject,"array")
ll_Handle = lnv_JsonParser.GetChildItem(ll_ChildArray, 3)
ls_Array = lnv_JsonParser.GetItemArrayJSONString(ll_Handle)

See also

GetItemArray

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

Statements, Events, and Functions

Page 707

2.4.271 GetItemAtPointer

Description

Gets the handle or the index of the item under the cursor.

Applies to

ListView controls, TreeView controls

Syntax

controlname.GetItemAtPointer ()

Table 2.683:

Argument Description

controlname The name of the control whose handle or index you want to obtain.

Return value

Long.

Returns the index (ListView) or handle (TreeView) of the item under the cursor. Returns -1
for failure.

Usage

System events that select an item in a ListView or TreeView control, such as the Clicked
event, already have an argument that passes the index for the ListView or the handle for the
TreeView. The GetItemAtPointer function allows you to retrieve the index or handle in user
events (or system events without an index or handle argument) for a ListView or TreeView
control.

Examples

This example places the handle of a TreeView item in a SingleLineEdit box:

integer li_index

li_index= tv_1.GetItematPointer ()
sle_1.text = string (li_index)

See also

FindItem

SelectItem

2.4.272 GetItemBlob

2.4.272.1 Syntax 1

Description

Gets the value of the item whose type is blob.

Applies to

JSONParser objects

Syntax

Statements, Events, and Functions

Page 708

objectname.GetItemBlob (ItemHandle)

Table 2.684:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemHandle A long whose value is the item handle of JsonStringItem type.

Return value

Blob.

Returns the blob value of the item if it succeeds; if any argument's value is null, returns null;
if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the third item:

JsonParser lnv_JsonParser
String ls_Json
Blob lblb_image
Long ll_RootObject, ll_item
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name": "evan", "Blob":"dABoAGkAcwAgAGkAcwAgAGIAbABvAGIA"}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ll_item = lnv_JsonParser.GetChildItem(ll_RootObject, 3)
lblb_image = lnv_JsonParser.GetItemBlob(ll_item)

See also

GetItemArray

GetItemArrayJSONString

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

Statements, Events, and Functions

Page 709

GetNumberType

2.4.272.2 Syntax 2

Description

Gets the value of the item whose type is blob.

Applies to

JSONParser objects

Syntax

objectname.GetItemBlob (ParentItemHandle, Key)

Table 2.685:

Argument Description

objectname The name of the JSONParser object whose child item value you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonStringItem type.

Return value

Blob.

Returns the blob value of the child item if it succeeds; if any argument's value is null, returns
null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the "image" item:

JsonParser lnv_JsonParser
String ls_Json
Blob lblb_image
Long ll_RootObject, ll_item
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name": "evan", "image": "=F923LDF%$2KS0238D8G……BASE64"}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
lblb_image = lnv_JsonParser.GetItemBlob(ll_item, "image")

See also

GetItemArray

GetItemArrayJSONString

GetItemBoolean

Statements, Events, and Functions

Page 710

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.272.3 Syntax 3

Description

Gets the value of the item whose type is blob.

Applies to

JSONParser objects

Syntax

objectname.GetItemBlob (ItemPath)

Table 2.686:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemPath A string whose value is the path of the item of JsonStringItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

Blob.

Returns the blob value of the item if it succeeds; if any argument's value is null, returns null;
if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the third item according to its item path:

JsonParser lnv_JsonParser
String ls_Json, ls_Path

Statements, Events, and Functions

Page 711

Blob lblb_image
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "Blob":"dABoAGkAcwAgAGkAcwAgAGIAbABvAGIA"}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/Blob"
lblb_image = lnv_JsonParser.GetItemBlob(ls_Path)

See also

GetItemArray

GetItemArrayJSONString

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.273 GetItemBoolean

2.4.273.1 Syntax 1

Description

Gets the value of the item whose type is boolean.

Applies to

JSONParser objects

Syntax

objectname.GetItemBoolean (ItemHandle)

Table 2.687:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemHandle A long whose value is the item handle of JsonBooleanItem type.

Return value

Boolean.

Statements, Events, and Functions

Page 712

Returns the boolean value of the item if it succeeds; if any argument's value is null, returns
null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the third child item according to the item handle:

JsonParser lnv_JsonParser
String ls_Json
Long ll_RootObject, ll_item
Boolean lb_active
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ll_item = lnv_JsonParser.GetChildItem(ll_RootObject, 3)
lb_active = lnv_JsonParser.GetItemBoolean(ll_item)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.273.2 Syntax 2

Description

Gets the value of the item whose type is boolean.

Applies to

JSONParser objects

Syntax

Statements, Events, and Functions

Page 713

objectname.GetItemBoolean (ParentItemHandle, Key)

Table 2.688:

Argument Description

objectname The name of the JSONParser object whose child item value you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonBooleanItem
type.

Return value

Boolean.

Returns the boolean value of the child item if it succeeds; if any argument's value is null,
returns null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the "active" item according to the parent item handle and the
key name:

JsonParser lnv_JsonParser
String ls_Json
Long ll_RootObject
Boolean lb_active
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
lb_active = lnv_JsonParser.GetItemBoolean(ll_RootObject, "active")

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

Statements, Events, and Functions

Page 714

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.273.3 Syntax 3

Description

Gets the value of the item whose type is boolean.

Applies to

JSONParser objects

Syntax

objectname.GetItemBoolean (ItemPath)

Table 2.689:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemPath A string whose value is the path of the item of JsonBooleanItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

Boolean.

Returns the boolean value of the item if it succeeds; if any argument's value is null, returns
null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the third child item according to the item path:

JsonParser lnv_JsonParser
String ls_Json, ls_Path
Boolean lb_active
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/active"
lb_active = lnv_JsonParser.GetItemBoolean(ls_Path)

See also

Statements, Events, and Functions

Page 715

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.274 GetItemByTag

Description

Gets an item according to its tag in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetItemByTag (String Tag, ref PowerObject Item)

Table 2.690:

Argument Description

controlname The name of the RibbonBar control.

Tag The tag value of the item you want to obtain.

Item A PowerObject variable in which you want to store the item identified by
the tag.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get an item according to its handle by using the GetItem function.

The GetItemByTag and GetItem functions can be used to get items including
ApplicationButton, TabButton, Category, Panel, Group, LargeButton, SmallButton,
CheckBox, and ComboBox; but cannot get RibbonMenuItem, RibbonApplicationMenu, and

Statements, Events, and Functions

Page 716

RibbonMenu. To get RibbonMenuItem, you can use the GetItem Syntax 4, GetMasterItem,
and GetRecentItem functions. To get RibbonApplicationMenu and RibbonMenu, you can use
the GetMenu and GetMenuByButtonHandle functions.

The GetItemByTag function finds the first item that matches with the tag. It searches in
the following order of priority: RibbonApplicationButtonItem > RibbonTabButtonItem >
RibbonCategoryItem > RibbonPanelItem > RibbonGroupItem > RibbonLargeButtonItem >
RibbonSmallButtonItem > RibbonCheckBoxItem > RibbonComboBoxItem. The controls
at high level has priority over those at low level. RibbonBar is at the first-level (the highest
level); ApplicationButton, Category, and TabButton are at the second-level; Panel is at the
third-level, what is contained in the Panel is at the fourth-level, and what is contained in the
Group is at the fifth-level (the lowest level).

Example 1

This example gets the application button by the tag value:

Integer li_Return
RibbonApplicationButtonItem lr_AppButton, lr_AppButton2

lr_AppButton.Text = "MyApp"
lr_AppButton.Tag = "MyAppTag"
li_Return = rbb_1.SetApplicationButton (lr_AppButton)

li_Return = rbb_1.GetItemByTag ("MyAppTag", lr_AppButton2)

Example 2

This example inserts a large button and a small button with the same tag value "AddTag",
and then searches the item by the tag value "AddTag". The large button will be returned
because the large button is searched before the small button according to the search priority.

Integer li_Return
RibbonLargeButtonItem lr_LargeButton, lr_LargeButton2
RibbonSmallButtonItem lr_SmallButton, lr_SmallButton2
PowerObject lpo_Object
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton,
 ll_Handle_SmallButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")

lr_LargeButton.Text = "AddBig"
lr_LargeButton.PictureName = "AddBig!"
lr_LargeButton.Tag = "AddTag"
ll_Handle_LargeButton = rbb_1.InsertLargeButtonFirst (ll_Handle_Panel,
 lr_LargeButton)

lr_SmallButton.Text = "AddSmall"
lr_SmallButton.PictureName = "AddSmall!"
lr_SmallButton.Tag = "AddTag"
ll_Handle_SmallButton = rbb_1.InsertSmallButtonLast (ll_Handle_Panel,
 lr_SmallButton)

li_Return = rbb_1.GetItemByTag ("AddTag", lpo_Object)
If li_Return <> 1 Then Return

Choose Case Lower(lpo_Object.ClassName())
 Case "ribbonlargebuttonitem"
 lr_LargeButton2 = lpo_Object

Statements, Events, and Functions

Page 717

 MessageBox("",lr_LargeButton2.Text+"~r~n"+lr_LargeButton2.PictureName)
 Case "ribbonsmallbuttonitem"
 lr_SmallButton2 = lpo_Object
 MessageBox("",lr_SmallButton2.Text+"~r~n"+lr_SmallButton2.PictureName)
End Choose

See also

GetChildItemByIndex

GetChildItemCount

GetItemParent

2.4.275 GetItemByPath

Description

Gets the handle of the item.

Applies to

JSONParser objects and JSONGenerator objects

Syntax

objectname.GetItemByPath (ItemPath)

Table 2.691:

Argument Description

objectname The name of the JSONParser or JSONGenerator object whose item you
want to obtain.

ItemPath A string specifying the path of the item. If there is a multi-dimensional
array, use the number to indicate the order of the array elements. If a key
name contains "/", use the escape character "~~/" to replace "/".

Return value

Long.

Returns the item handle if it succeeds and -1 if an error occurs. If any argument's value is
null, returns null.

Example 1

This example gets the item handle from a JSONParser object according to the item path from
a one-dimensional array:

JsonParser lnv_JsonParser
String ls_Json, ls_Name, ls_Path
DateTime ldt_DateTime
Long ll_item
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "data_object":{"datetime":7234930293, "date":
 "2017-09-21", "time": "12:00:00","age":[55,22,33]}}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/name"
ll_item = lnv_JsonParser.GetItemByPath(ls_Path)

Statements, Events, and Functions

Page 718

ls_Name = lnv_JsonParser.GetItemString(ll_item)
ls_Path = "/data_object/datetime"
ll_item = lnv_JsonParser.GetItemByPath(ls_Path)
ldt_DateTime = lnv_JsonParser.GetItemDateTime(ll_item)

Example 2

This example gets the item handle from a JSONParser object according to the item path from
a two-dimensional array. The number indicates the order of the array.

JsonParser lnv_JsonParser
String ls_Json, ls_Name, ls_Path
DateTime ldt_DateTime
Long ll_item
lnv_JsonParser = Create JsonParser

ls_Json = '[{"id":1001, "name":"evan", "data_object":{"datetime":7234930293,
 "date": "2017-09-21", "time": "12:00:00","age":[66,22,33]}},' + &
 '{"id":1002, "name":"evan2", "data_object":{"datetime":1734930293, "date":
 "2017-09-11", "time": "11:00:00","age":[55,23,33]}}]'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/1/name"
ll_item = lnv_JsonParser.GetItemByPath(ls_Path)
ls_Name = lnv_JsonParser.GetItemString(ll_item)
ls_Path = "/2/data_object/datetime"
ll_item = lnv_JsonParser.GetItemByPath(ls_Path)
ldt_DateTime = lnv_JsonParser.GetItemDateTime(ll_item)

Example 3

This example determines the item handle in a JSONGenerator object according to the item
path and then adds three child items:

Long ll_ChildObject
String ls_RootPath,ls_ChildPath
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject ()

// Adds an object child item
ls_RootPath = "/"
lnv_JsonGenerator.AddItemObject(ls_RootPath, "object")
ls_ChildPath = "/object"
ll_ChildObject = lnv_JsonGenerator.GetItemByPath(ls_ChildPath)

lnv_JsonGenerator.AddItemNumber(ll_ChildObject, "year", 2017)
lnv_JsonGenerator.AddItemDate(ll_ChildObject, "date", 2017-09-21)
lnv_JsonGenerator.AddItemTime(ll_ChildObject, "time", 12:00:00)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemDate

GetItemDateTime

Statements, Events, and Functions

Page 719

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

GetPathByItem (JSONGenerator)

2.4.276 GetItemCount

Description

Determines the total number of items in a ribbon menu.

Applies to

RibbonMenu controls

Syntax

controlname.GetItemCount ({ Long ParentIndex })

Table 2.692:

Argument Description

controlname The name of the RibbonMenu control

ParentIndex The index of the menu item (RibbonMenuItem) whose submenu items
you want to count.

If not specified, the menu item will be counted; if specified to a valid
value, the submenu items of the menu item (whose index is ParentIndex)
will be counted; if specified to an invalid value, an error would occur and
this operation would return -1.

Return value

Long.

Returns the total number of menu items in the menu. If the menu contains no items, returns 0.
If an error occurs, returns -1. If any argument's value is null, returns null.

Usage

A RibbonMenu control can contain menu items in no more than two levels.

Examples

This example counts the menu item (which returns 1) and its submenu items (which returns
2).

Long ll_Index, ll_Index2, ll_Count
RibbonMenu lr_Menu

Statements, Events, and Functions

Page 720

ll_Index = lr_Menu.InsertItemLast ("MenuItem1", "AddSmall!", "Ue_MenuItem1Clicked")
ll_Index2 = lr_Menu.InsertItemLast (ll_Index, "SubMenuItem1", "AddSmall!",
 "Ue_MenuItem11Clicked")
ll_Index2 = lr_Menu.InsertItemLast (ll_Index, "SubMenuItem2", "AddSmall!",
 "Ue_MenuItem12Clicked")
ll_Count = lr_Menu.GetItemCount (ll_Index)
ll_Count = lr_Menu.GetItemCount ()

See also

AddSeparatorItem

DeleteItem

GetItem

InsertItem

InsertItemFirst

InsertItemLast

SetItem

2.4.277 GetItemDate

2.4.277.1 Syntax 1

Description

Gets the value of the item whose type is date.

Applies to

JSONParser objects

Syntax

objectname.GetItemDate (ItemHandle)

Table 2.693:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemHandle A long whose value is the item handle of JsonStringItem type.

Return value

Date.

Returns the date value of the item if it succeeds; if any argument's value is null, returns null;
if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the second item according to the item handle:

Statements, Events, and Functions

Page 721

JsonParser lnv_JsonParser
String ls_Json
Date ldate_date
Long ll_RootObject, ll_item
lnv_JsonParser = Create JsonParser

ls_Json = '{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ll_item = lnv_JsonParser.GetChildItem(ll_RootObject, 2)
ldate_date = lnv_JsonParser.GetItemDate(ll_item)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.277.2 Syntax 2

Description

Gets the value of the item whose type is date.

Applies to

JSONParser objects

Syntax

objectname.GetItemDate (ParentItemHandle, Key)

Table 2.694:

Argument Description

objectname The name of the JSONParser object whose child item value you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonStringItem type.

Statements, Events, and Functions

Page 722

Return value

Date.

Returns the date value of the child item if it succeeds; if any argument's value is null, returns
null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the "date" item according to the parent item handle and the
key name:

JsonParser lnv_JsonParser
String ls_Json
Date ldate_date
Long ll_RootObject
lnv_JsonParser = Create JsonParser

ls_Json = '{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ldate_date = lnv_JsonParser.GetItemDate(ll_RootObject, "date")

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.277.3 Syntax 3

Description

Gets the value of the item whose type is date.

Applies to

Statements, Events, and Functions

Page 723

JSONParser objects

Syntax

objectname.GetItemDate (ItemPath)

Table 2.695:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemPath A string whose value is the path of the item of JsonStringItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

Date.

Returns the date value of the item if it succeeds; if any argument's value is null, returns null;
if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the second item according to the item path:

JsonParser lnv_JsonParser
String ls_Json, ls_Path
Date ldate_date
lnv_JsonParser = Create JsonParser

ls_Json = '{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/date"
ldate_date = lnv_JsonParser.GetItemDate(ls_Path)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

Statements, Events, and Functions

Page 724

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.278 GetItemDateTime

2.4.278.1 Syntax 1

Description

Gets the value of the item whose type is datetime.

Applies to

JSONParser objects

Syntax

objectname.GetItemDateTime (ItemHandle)

Table 2.696:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemHandle A long whose value is the handle of the item of JsonStringItem or
JsonNumberItem type.

Return value

DateTime.

Returns the datetime value of the item if it succeeds; if any argument's value is null, returns
null; if an error occurs, the SystemError event will be triggered.

If the item value is a number (UTC timestamp), the returned datetime value will be the local
datetime converted by using the local timezone. If the item value is a string, the returned
datetime value will be the datetime without timezone conversion.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the first item:

JsonParser lnv_JsonParser
String ls_Json
DateTime ldt_datetime
Long ll_RootObject, ll_item
lnv_JsonParser = Create JsonParser

ls_Json = '{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}'

lnv_JsonParser.LoadString(ls_Json)

Statements, Events, and Functions

Page 725

ll_RootObject = lnv_JsonParser.GetRootItem()
ll_item = lnv_JsonParser.GetChildItem(ll_RootObject, 1)
ldt_datetime = lnv_JsonParser.GetItemDateTime(ll_item)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.278.2 Syntax 2

Description

Gets the value of the item whose type is datetime.

Applies to

JSONParser objects

Syntax

objectname.GetItemDateTime (ParentItemHandle, Key)

Table 2.697:

Argument Description

objectname The name of the JSONParser object whose child item value you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonStringItem and
JsonNumberItem type. For the JsonStringItem type, formats such as
"yyyy-mm-dd hh:mm:ss" are supported.

Return value

DateTime.

Returns the datetime value of the child item if it succeeds; if any argument's value is null,
returns null; if an error occurs, the SystemError event will be triggered.

Statements, Events, and Functions

Page 726

If the item value is a number (UTC timestamp), the returned datetime value will be the local
datetime converted by using the local timezone. If the item value is a string, the returned
datetime value will be the datetime without timezone conversion.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the "datetime" item:

JsonParser lnv_JsonParser
String ls_Json
DateTime ldt_datetime
Long ll_RootObject
lnv_JsonParser = Create JsonParser

ls_Json = '{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ldt_datetime = lnv_JsonParser.GetItemDateTime(ll_RootObject, "datetime")

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.278.3 Syntax 3

Description

Gets the value of the item whose type is datetime.

Applies to

JSONParser objects

Syntax

Statements, Events, and Functions

Page 727

objectname.GetItemDateTime (ItemPath)

Table 2.698:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemPath A string whose value is the path of the item of JsonStringItem or
JsonNumberItem type. If there is a multi-dimensional array, use the
number to indicate the order of the array. If a key name contains "/", use
the escape character "~~/" to replace "/".

Return value

DateTime.

Returns the datetime value of the item if it succeeds; if any argument's value is null, returns
null; if an error occurs, the SystemError event will be triggered.

If the item value is a number (UTC timestamp), the returned datetime value will be the local
datetime converted by using the local timezone. If the item value is a string, the returned
datetime value will be the datetime without timezone conversion.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the first item according to its item path:

JsonParser lnv_JsonParser
String ls_Json, ls_Path
DateTime ldt_datetime
lnv_JsonParser = Create JsonParser

ls_Json = '{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/datetime"
ldt_datetime = lnv_JsonParser.GetItemDateTime(ls_Path)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemNumber

GetItemObject

GetItemObjectJSONString

Statements, Events, and Functions

Page 728

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.279 GetItemNumber

2.4.279.1 Syntax 1

Description

Gets the value of the item whose type is number.

Applies to

JSONParser objects

Syntax

objectname.GetItemNumber (ItemHandle)

Table 2.699:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemHandle A long whose value is the item handle of JsonNumberItem type.

Return value

Double.

Returns the double value of the item if it succeeds; if any argument's value is null, returns
null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the first child item according to the item handle:

JsonParser lnv_JsonParser
String ls_Json
Long ll_RootObject, ll_item, ll_id
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ll_item = lnv_JsonParser.GetChildItem(ll_RootObject, 1)
ll_id = lnv_JsonParser.GetItemNumber(ll_item)

See also

GetItemArray

Statements, Events, and Functions

Page 729

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.279.2 Syntax 2

Description

Gets the value of the item whose type is number.

Applies to

JSONParser objects

Syntax

objectname.GetItemNumber (ParentItemHandle, Key)

Table 2.700:

Argument Description

objectname The name of the JSONParser object whose child item value you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonNumberItem
type.

Return value

Double.

Returns the double value of the child item if it succeeds; if any argument's value is null,
returns null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

Statements, Events, and Functions

Page 730

This example gets the value of the "id" child item according to the parent item handle and the
key name:

JsonParser lnv_JsonParser
String ls_Json
Long ll_RootObject, ll_id
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ll_id = lnv_JsonParser.GetItemNumber(ll_RootObject, "id")

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.279.3 Syntax 3

Description

Gets the value of the item whose type is number.

Applies to

JSONParser objects

Syntax

objectname.GetItemNumber (ItemPath)

Table 2.701:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemPath A string whose value is the path of the item of JsonNumberItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Statements, Events, and Functions

Page 731

Return value

Double.

Returns the double value of the item if it succeeds; if any argument's value is null, returns
null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the first child item according to the item path:

JsonParser lnv_JsonParser
String ls_Json, ls_Path
Long ll_id
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/id"
ll_id = lnv_JsonParser.GetItemNumber(ls_Path)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.280 GetItemObject

2.4.280.1 Syntax 1

Description

Gets the handle value of the child item whose type is object.

Statements, Events, and Functions

Page 732

Applies to

JSONParser objects

Syntax

objectname.GetItemObject (ParentItemHandle, Key)

Table 2.702:

Argument Description

objectname The name of the JSONParser object whose child object item you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonObjectItem type.

Return value

Long.

Returns the handle value of the child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the "date_object" item:

JsonParser lnv_JsonParser
String ls_Json
DateTime ldt_datetime
Date ldate_date
Time lt_time
Long ll_RootObject, ll_date_object
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "date_object":{"datetime":7234930293, "date":
 "2017-09-21", "time": "12:00:00"}}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()

ll_date_object = lnv_JsonParser.GetItemObject(ll_RootObject, "date_object")

ldt_datetime = lnv_JsonParser.GetItemDateTime(ll_date_object , "datetime")
ldate_date = lnv_JsonParser.GetItemDate(ll_date_object , "date")
lt_time = lnv_JsonParser.GetItemTime(ll_date_object , "time")

See also

GetItemArray

GetItemArrayJSONString

Statements, Events, and Functions

Page 733

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.280.2 Syntax 2

Description

Gets the handle value of the child item whose type is object.

Applies to

JSONParser objects

Syntax

objectname.GetItemObject (ItemPath)

Table 2.703:

Argument Description

objectname The name of the JSONParser object whose child object item you want to
obtain.

ItemPath A string whose value is the path of the item of JsonObjectItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

Long.

Returns the handle value of the child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

Statements, Events, and Functions

Page 734

This example gets the "date_object" object according to its item path and then gets the values
of the "date_object" object according to the key name:

JsonParser lnv_JsonParser
String ls_Json, ls_Path
DateTime ldt_datetime
Date ldate_date
Time lt_time
Long ll_date_object
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "date_object":{"datetime":7234930293,
 "date":"2017-09-21", "time":"12:00:00"}}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/date_object"
ll_date_object = lnv_JsonParser.GetItemObject(ls_Path)

ldt_datetime = lnv_JsonParser.GetItemDateTime(ll_date_object, "datetime")
ldate_date = lnv_JsonParser.GetItemDate(ll_date_object, "date")
lt_time = lnv_JsonParser.GetItemTime(ll_date_object, "time")

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.281 GetItemObjectJSONString

2.4.281.1 Syntax 1

Description

Gets the string value of the object item.

Applies to

JSONParser objects

Syntax

objectname.GetItemObjectJSONString (ParentItemHandle, Key)

Statements, Events, and Functions

Page 735

Table 2.704:

Argument Description

objectname The name of the JSONParser object whose child object item you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonObjectItem type.

Return value

String.

Returns the string value of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, the method returns null. If an error occurs, the method throws the exception.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the string value of the "date_object" object according to the key name:

JsonParser lnv_JsonParser
String ls_Json, ls_Object
Long ll_RootObject
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "date_object":{"datetime":7234930293,
 "date":"2017-09-21", "time":"12:00:00"}}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ls_Object = lnv_JsonParser.GetItemObjectJSONString(ll_RootObject, "date_object")

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemString

GetItemTime

GetItemType

Statements, Events, and Functions

Page 736

GetNumberType

2.4.281.2 Syntax 2

Description

Gets the string value of the object item.

Applies to

JSONParser objects

Syntax

objectname.GetItemObjectJSONString (ItemPath)

Table 2.705:

Argument Description

objectname The name of the JSONParser object whose child object item you want to
obtain.

ItemPath A string whose value is the path of the item of JsonObjectItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

String.

Returns the string value of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, the method returns null. If an error occurs, the method throws the exception.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the string value of the "date_object" object according to its item path:

JsonParser lnv_JsonParser
String ls_Json, ls_Object, ls_Path
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "date_object":{"datetime":7234930293,
 "date":"2017-09-21", "time":"12:00:00"}}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/date_object"
ls_Object = lnv_JsonParser.GetItemObjectJSONString(ls_Path)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

Statements, Events, and Functions

Page 737

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.281.3 Syntax 3

Description

Gets the string value of the object item.

Applies to

JSONParser objects

Syntax

objectname.GetItemObjectJSONString (ItemHandle)

Table 2.706:

Argument Description

objectname The name of the JSONParser object whose child object item you want to
obtain.

ItemHandle A long specifying the item handle which is JsonObjectItem type.

Return value

String.

Returns the string value of the item if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, the method throws the exception.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the string value of the "datetime" object according to its item handle:

JsonParser lnv_JsonParser
String ls_Json, ls_Object
Long ll_RootObject, ll_ChildArray, ll_Handle
lnv_JsonParser = Create JsonParser

Statements, Events, and Functions

Page 738

ls_Json = '{"id":1001, "name":"evan", "date_array":[{"datetime":7234930293, "date":
 "2017-09-21", "time": "12:00:00"}]}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ll_ChildArray = lnv_JsonParser.GetItemArray(ll_RootObject,"date_array")
ll_Handle = lnv_JsonParser.GetChildItem(ll_ChildArray,1)
ls_Object = lnv_JsonParser.GetItemObjectJSONString(ll_Handle)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.282 GetItemParent

Description

Gets the parent item (Category, Panel, and Group) in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetItemParent (Long ItemHandle, ref PowerObject Item)

Table 2.707:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the child item whose parent item you want to obtain.

Item A PowerObject variable in which you want to store the parent item.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

Statements, Events, and Functions

Page 739

The parent object can be Category, Panel, or Group.

The child item for Category is Panel; the child item for Panel can be Group, LargeButton,
SmallButton, CheckBox, and ComboBox; the child item for Group can be SmallButton,
CheckBox, and ComboBox.

Example 1

This example gets the category and stores it in lr_Category variable of type
RibbonCategoryItem.

Integer li_Return
Long ll_Handle_Category, ll_Handle_panel
RibbonCategoryItem lr_Category

ll_Handle_Category = rbb_1.InsertCategoryFirst ("TestCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "TestPanel",
 "EmployeeSmall!")
li_Return = rbb_1.GetItemParent (ll_Handle_Panel, lr_Category)

Example 2

This example gets the category and stores it in lpo_Object variable of type PowerObject.

Integer li_Return
Long ll_Handle_Category, ll_Handle_panel
PowerObject lpo_Object

ll_Handle_Category = rbb_1.InsertCategoryFirst ("TestCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "TestPanel",
 "EmployeeSmall!")
li_Return = rbb_1.GetItemParent (ll_Handle_Panel, lpo_Object)

See also

GetChildItemByIndex

GetChildItemCount

GetItemByTag

2.4.283 GetItemString

2.4.283.1 Syntax 1

Description

Gets the value of the item whose type is string.

Applies to

JSONParser objects

Syntax

objectname.GetItemString (ItemHandle)

Table 2.708:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemHandle A long whose value is the item handle of JsonStringItem type.

Statements, Events, and Functions

Page 740

Return value

String.

Returns the string value of the item if it succeeds; if any argument's value is null, returns null;
if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the second child item according to the item handle:

JsonParser lnv_JsonParser
String ls_Json, ls_name
Long ll_RootObject, ll_item
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ll_item = lnv_JsonParser.GetChildItem(ll_RootObject, 2)
ls_name = lnv_JsonParser.GetItemString(ll_item)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemTime

GetItemType

GetNumberType

2.4.283.2 Syntax 2

Description

Gets the value of the item whose type is string.

Applies to

JSONParser objects

Statements, Events, and Functions

Page 741

Syntax

objectname.GetItemString (ParentItemHandle, Key)

Table 2.709:

Argument Description

objectname The name of the JSONParser object whose child item value you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonStringItem type.

Return value

String.

Returns the string value of the child item if it succeeds; if any argument's value is null,
returns null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the "name" child item according to the parent item handle and
the key name:

JsonParser lnv_JsonParser
String ls_Json, ls_name
Long ll_RootObject
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ls_name = lnv_JsonParser.GetItemString(ll_RootObject, "name")

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

Statements, Events, and Functions

Page 742

GetItemObjectJSONString

GetItemTime

GetItemType

GetNumberType

2.4.283.3 Syntax 3

Description

Gets the value of the item whose type is string.

Applies to

JSONParser objects

Syntax

objectname.GetItemString (ItemPath)

Table 2.710:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemPath A string whose value is the path of the item of JsonStringItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

String.

Returns the string value of the item if it succeeds; if any argument's value is null, returns null;
if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the second child item according to the item path:

JsonParser lnv_JsonParser
String ls_Json, ls_name, ls_Path
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/name"
ls_name = lnv_JsonParser.GetItemString(ls_Path)

See also

GetItemArray

Statements, Events, and Functions

Page 743

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemTime

GetItemType

GetNumberType

2.4.284 GetItemTime

2.4.284.1 Syntax 1

Description

Gets the value of the item whose type is time.

Applies to

JSONParser objects

Syntax

objectname.GetItemTime (ItemHandle)

Table 2.711:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemHandle A long whose value is the item handle of JsonStringItem type.

Return value

Time.

Returns the time value of the item if it succeeds; if any argument's value is null, returns null;
if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the third item:

Statements, Events, and Functions

Page 744

JsonParser lnv_JsonParser
String ls_Json
Time lt_time
Long ll_RootObject, ll_item
lnv_JsonParser = Create JsonParser

ls_Json = '{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
ll_item = lnv_JsonParser.GetChildItem(ll_RootObject, 3)
lt_time = lnv_JsonParser.GetItemTime(ll_item)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemType

GetNumberType

2.4.284.2 Syntax 2

Description

Gets the value of the item whose type is time.

Applies to

JSONParser objects

Syntax

objectname.GetItemTime (ParentItemHandle, Key)

Table 2.712:

Argument Description

objectname The name of the JSONParser object whose child item value you want to
obtain.

ParentItemHandle A long whose value is the handle of the parent item of JsonObjectItem
type.

Key A string whose value is the key of the child item of JsonStringItem type.

Statements, Events, and Functions

Page 745

Return value

Time.

Returns the time value of the child item if it succeeds; if any argument's value is null, returns
null; if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the "time" item:

JsonParser lnv_JsonParser
String ls_Json
Time lt_time
Long ll_RootObject
lnv_JsonParser = Create JsonParser

ls_Json = '{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}'

lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()
lt_time = lnv_JsonParser.GetItemTime(ll_RootObject, "time")

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemType

GetNumberType

2.4.284.3 Syntax 3

Description

Gets the value of the item whose type is time.

Applies to

Statements, Events, and Functions

Page 746

JSONParser objects

Syntax

objectname.GetItemTime (ItemPath)

Table 2.713:

Argument Description

objectname The name of the JSONParser object whose item value you want to obtain.

ItemPath A string whose value is the path of the item of JsonStringItem type. If
there is a multi-dimensional array, use the number to indicate the order
of the array elements. If a key name contains "/", use the escape character
"~~/" to replace "/".

Return value

Time.

Returns the time value of the item if it succeeds; if any argument's value is null, returns null;
if an error occurs, the SystemError event will be triggered.

Usage

If the item value is null, this function will throw an error, therefore, it is recommended
that before executing this function, call GetItemType to check if the item value is null. See
example 2 [700] in GetItemArray.

Examples

This example gets the value of the third item according to the item path:

JsonParser lnv_JsonParser
String ls_Json, ls_Path
Time lt_time
lnv_JsonParser = Create JsonParser

ls_Json = '{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}'

lnv_JsonParser.LoadString(ls_Json)
ls_Path = "/time"
lt_time = lnv_JsonParser.GetItemTime(ls_Path)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

Statements, Events, and Functions

Page 747

GetItemObjectJSONString

GetItemString

GetItemType

GetNumberType

2.4.285 GetItemType

Description

Gets the type of the item.

Applies to

JSONParser and JSONPackage

Syntax for JSONParser

objectname.GetItemType (ItemHandle)

objectname.GetItemType (ParentItemHandle, Key)

objectname.GetItemType (ItemPath)

Syntax for JSONPackage

objectname.GetItemType (Key)

Table 2.714:

Argument Description

objectname The name of the JSONParser or JSONPackage object whose item type
you want to obtain.

ItemHandle A long whose value is the item handle.

ParentItemHandle A long specifying the parent item handle which is JsonObjectItem type.

ItemPath A string specifying the item path. If there is a multi-dimensional array,
use the number to indicate the order of the array elements. If a key name
contains "/", use the escape character "~~/" to replace "/".

Key A string specifying the key of the child item.

Return value

JsonItemType.

Returns the JsonItemType enumerated value if it succeeds and null value if an error occurs. If
any argument's value is null, the method returns null.

The JsonItemType enumerated values are:

• JsonStringItem! -- Type of the JSON node whose key value pair is a string, such as
"name":"evan".

• JsonNumberItem! -- Type of the JSON node whose key value pair is a number, such as
"id":1001.

Statements, Events, and Functions

Page 748

• JsonBooleanItem! -- Type of the JSON node whose key value pair is a boolean, such as
"active":true.

• JsonNullItem! -- Type of the JSON node whose key value pair is null, such as "remark":
null.

• JsonObjectItem! -- Type of the JSON node whose key value pair is an object, such as
"date_object":{"datetime":7234930293, "date": "2017-09-21", "time": "12:00:00"}.

• JsonArrayItem! -- Type of the JSON node whose key value pair is an array, such
as "department_array":[999999, {"name":"Website"}, {"name":"PowerBuilder"},
{"name":"IT"}].

Example 1

This example gets the key value and type of the child items according to the item handle in a
loop:

JsonParser lnv_JsonParser
String ls_Json, ls_key, ls_value
Long ll_RootObject, ll_item, ll_ChildCount, ll_index
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

// Loads a JSON string
lnv_JsonParser.LoadString(ls_Json)
ll_RootObject = lnv_JsonParser.GetRootItem()

// Gets the key value and type of the child items
ll_ChildCount = lnv_JsonParser.GetChildCount(ll_RootObject)
for ll_index = 1 to ll_ChildCount
 ls_key = lnv_JsonParser.GetChildKey(ll_RootObject, ll_index)
 ll_item = lnv_JsonParser.GetChildItem(ll_RootObject, ll_index)
 choose case lnv_JsonParser.GetItemType(ll_item)
 case JsonStringItem!
 ls_value = lnv_JsonParser.GetItemString(ll_RootObject, ls_key)
 case JsonNumberItem!
 ls_value = string(lnv_JsonParser.GetItemNumber(ll_RootObject, ls_key))
 case JsonBooleanItem!
 ls_value = string(lnv_JsonParser.GetItemBoolean(ll_RootObject, ls_key))
 case JsonNullItem!
 ls_value = 'Null'
 end choose
 MessageBox("Info", String(ll_index) + ': key = ' + ls_key + ', value = ' +
 ls_value)
next

Example 2

This example gets the key value and type of the child items according to the parent item
handle in a recursive traversal:

String ls_Json
Long ll_RootItem
JsonParser lnv_JsonParser
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"evan", "active":true, "department_array":[999999,
 {"name":"Website"}, {"name":"PowerBuilder"}, {"name":"IT"}]}'

Statements, Events, and Functions

Page 749

// Loads a string
lnv_JsonParser.LoadString(ls_Json)

// Obtains root item (type is JsonObjectItem! or JsonArrayItem!)
Long ll_RootItem = lnv_JsonParser.GetRootItem()

// Gets each item recursively (this is a recursive function)
of_ParseJson(lnv_JsonParser, ll_RootItem)

// *****************Traverse each item recursively*****************************
public function integer of_parsejson (jsonparser anv_jsonparser, long alp_handle);

long ll_Index, ll_ChildCount
long ll_Child
string ls_Null, ls_value
double ldb_value
boolean lb_value

JsonItemType ljit_JsonItemType

// Obtains item type
ljit_JsonItemType = anv_JsonParser.GetItemType(alp_Handle)

// Gets item recursively or gets value according to the type
if ljit_JsonItemType = JsonObjectItem! or ljit_JsonItemType = JsonArrayItem! then
 // Gets item recursively
 ll_ChildCount = anv_JsonParser.GetChildCount(alp_Handle)
 for ll_Index = 1 to ll_ChildCount
 ll_Child = anv_JsonParser.GetChildItem(alp_Handle, ll_Index)
 of_ParseJson(anv_JsonParser, ll_Child)
 next
else // Gets value
 choose case ljit_JsonItemType
 case JsonStringItem!
 ls_value = anv_JsonParser.GetItemString(alp_Handle)
 case JsonNumberItem!
 ldb_value = anv_JsonParser.GetItemNumber(alp_Handle)
 case JsonBooleanItem!
 lb_value = anv_JsonParser.GetItemBoolean(alp_Handle)
 case JsonNullItem!
 SetNull(ls_Null)
 end choose
end if

return 1
end function

Example 3

This example gets the key value and data type of the child items according to the item path:

JsonParser lnv_JsonParser
String ls_Json, ls_key, ls_value, ls_RootPath, ls_ChildPath
Long ll_ChildCount, ll_index
lnv_JsonParser = Create JsonParser

ls_Json = '{"id":1001, "name":"svan", "active":true}'

// Loads a JSON string
lnv_JsonParser.LoadString(ls_Json)
ls_RootPath = "/"

// Gets the key value and type of the child items
ll_ChildCount = lnv_JsonParser.GetChildCount(ls_RootPath)

Statements, Events, and Functions

Page 750

for ll_index = 1 to ll_ChildCount
 ls_key = lnv_JsonParser.GetChildKey(ls_RootPath, ll_index)
 ls_ChildPath = ls_RootPath + ls_Key
 choose case lnv_JsonParser.GetItemType(ls_ChildPath)
 case JsonStringItem!
 ls_value = lnv_JsonParser.GetItemString(ls_ChildPath)
 case JsonNumberItem!
 ls_value = string(lnv_JsonParser.GetItemNumber(ls_ChildPath))
 case JsonBooleanItem!
 ls_value = string(lnv_JsonParser.GetItemBoolean(ls_ChildPath))
 case JsonNullItem!
 ls_value = 'Null'
 end choose
 MessageBox("Info", String(ll_index) + ': key = ' + ls_key + ', value = ' +
 ls_value)
next

Example 4

This example gets the data type of the child items according to the specified index and then
gets the key value according to the type:

// JsonItemType GetItemType (string Key)
String ls_KeyValue
String ls_KeyName
JsonPackage ljpk_Dept
ljpk_Dept = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_Dept.loadstring('{"dept_id":100, "dept_name":"R & D8",
 "Status":true, "array":[{"dept_name":"R & D8"}, {"dept_name":"Sales"},
 {"dept_name":"Finance"}]}')

ls_KeyName = ljpk_Dept.GetKey(4) //The index of the key in the JSON string

Choose Case ljpk_Dept.GetItemType(ls_KeyName)
 Case JsonStringItem!
 ls_KeyValue = ljpk_Dept.getvalueString(ls_KeyName)
 Case JsonNumberItem!
 ls_KeyValue = String (ljpk_Dept.getvalueNumber(ls_KeyName))
 Case JsonBooleanItem!
 ls_KeyValue = String (ljpk_Dept.GetValueBoolean(ls_KeyName))
 Case JsonNullItem!
 SetNull(ls_KeyValue)
 Case JsonObjectItem!,JsonArrayItem!
 ls_KeyValue = ljpk_Dept.GetValue(ls_KeyName)
 Case Else
 // Prints message for unknown item type
End Choose
// Prints key value index 4 output: [{"dept_name":"R & D8"},{"dept_name":"Sales"},
{"dept_name":"Finance"}]

Example 5

This example loads a JSON string to a JSONParser object and gets and processes the value
according to the type.

Integer i
Long ll_RootHandle
Long ll_Objectc
double ldb_Value
Boolean lb_Value
Long ll_Object
String ls_Return

Statements, Events, and Functions

Page 751

String ls_Value
String ls_Key
JSONItemType ljit_Information

JsonParser ljp_Dept
ljp_Dept = Create JsonParser

// Loads the JSON string to the JSONParser object
ls_Return = ljp_Dept.LoadString ('{"Name":"Ann.Mo", "Boolean":false,
 "address":{"city":"shezhen"}, "dept":[{"dept_id":100, "dept_name":"R & D8",
 "dept_head_id":105}, {"dept_id":200, "dept_name":"Sales", "dept_head_id":129}]}')
If Trim(ls_Return)<>"" Then
 // Prints error message
 Return
End If

ll_RootHandle = ljp_Dept.GetRootItem()

For i = 1 To ljp_Dept.GetChildCount(ll_RootHandle)
 ls_Key = ljp_Dept.GetChildKey(ll_RootHandle, i)
 // Gets and processes the value according to the type
 Choose Case ljp_Dept.GetItemType(ll_RootHandle, ls_Key)
 Case JsonStringItem!
 ls_Value = ljp_Dept.GetItemString(ll_RootHandle, ls_Key)
 Case JsonNumberItem!
 ldb_Value = ljp_Dept.GetItemNumber(ll_RootHandle, ls_Key)
 Case JsonBooleanItem!
 lb_Value = ljp_Dept.GetItemBoolean(ll_RootHandle, ls_Key)
 Case JsonNullItem!
 ls_Value = "Null"
 Case JsonObjectItem!
 ll_Object = ljp_Dept.GetItemObject(ll_RootHandle,
 ljp_Dept.GetChildKey(ll_RootHandle, i))
 Case JsonArrayItem!
 ll_Object = ljp_Dept.GetItemArray(ll_RootHandle, ljp_Dept.GetChildKey(
 ll_RootHandle, i))
 Case Else
 // Prints error message
 End Choose
Next

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

Statements, Events, and Functions

Page 752

GetNumberType

2.4.286 GetJsonBlob

Description

Gets the JSON blob data. The returned blob data is encoded with EncodingUTF16LE! by
default.

Applies to

JSONGenerator and JSONPackage

Syntax

objectname.GetJsonBlob ({Encoding e})

Table 2.715:

Argument Description

objectname The name of the JSONGenerator or JSONPackage object whose data you
want to obtain.

e (optional) Character encoding of the resulting blob.

Values are: EncodingANSI!, EncodingUTF8!, EncodingUTF16LE!
(default), and EncodingUTF16BE!.

Return value

Blob.

Returns the JSON blob data if it succeeds and empty string ("") if an error occurs. If any
argument's value is null, the method returns null.

Examples

This example gets the JSON blob data.

blob lblb_Json
Long ll_RootObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Create an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject()

// Add a value child item
lnv_JsonGenerator.AddItemString(ll_RootObject, "string", "string")
lnv_JsonGenerator.AddItemNumber(ll_RootObject, "long", 100)
lnv_JsonGenerator.AddItemDateTime(ll_RootObject, "datetime", datetime("2017-09-21
 12:00:00"))

// Gets the JSON data
lblb_Json = lnv_JsonGenerator.GetJsonBlob()

This example packages the data of DataWindow, DataStore and DataWindowChild object
and assigns the value to a blob.

blob lblb_json
datastore lds_employee

Statements, Events, and Functions

Page 753

datawindowchild ldwc_active
JsonPackage lnv_package
lnv_package = create JsonPackage

...//Initialize data for lds_employee, ldwc_active

// package the data
lnv_package.SetValue("d_department", dw_department, false)
lnv_package.SetValue("d_employee", lds_employee)
lnv_package.SetValue("dddw_active", ldwc_active, false)

lblb_json = lnv_package.GetJsonBlob()

See also

GetJsonString

2.4.287 GetJsonString

Description

Gets the JSON string data.

Applies to

JSONGenerator and JSONPackage

Syntax

objectname.GetJsonString ()

Table 2.716:

Argument Description

objectname The name of the JSONGenerator or JSONPackage object whose data you
want to obtain.

Return value

String.

Returns the JSON string data if it succeeds and empty string ("") if an error occurs.

Example 1

This example gets the JSON string data: The result is {"object":
{"year":2017,"date":"2017-09-21","time":"12:00:00"},"array":[101,102,103]}.

Long ll_RootObject, ll_ChildObject, ll_ChildArray
JsonGenerator lnv_JsonGenerator
string ls_Json
lnv_JsonGenerator = create JsonGenerator

// Create an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject ()

// Add an Object child item
ll_ChildObject = lnv_JsonGenerator.AddItemObject(ll_RootObject, "object")
lnv_JsonGenerator.AddItemNumber(ll_ChildObject, "year", 2017)
lnv_JsonGenerator.AddItemDate(ll_ChildObject, "date", 2017-09-21)
lnv_JsonGenerator.AddItemTime(ll_ChildObject, "time", 12:00:00)

Statements, Events, and Functions

Page 754

// Add an array child item
ll_ChildArray = lnv_JsonGenerator.AddItemArray(ll_RootObject, "array")
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 101)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 102)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 103)

// Gets the JSON string
ls_Json = lnv_JsonGenerator.GetJsonString()

Example 2

This example gets the JSON string data: The result is
[{"year":2017,"date":"2017-09-21","time":"12:00:00"},[101,102,103]].

Long ll_RootArray, ll_ChildObject, ll_ChildArray
JsonGenerator lnv_JsonGenerator
string ls_Json
lnv_JsonGenerator = create JsonGenerator

// Create an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

// Add an Object child item
ll_ChildObject = lnv_JsonGenerator.AddItemObject(ll_RootArray)
lnv_JsonGenerator.AddItemNumber(ll_ChildObject, "year", 2017)
lnv_JsonGenerator.AddItemDate(ll_ChildObject, "date", 2017-09-21)
lnv_JsonGenerator.AddItemTime(ll_ChildObject, "time", 12:00:00)

// Add an array child item
ll_ChildArray = lnv_JsonGenerator.AddItemArray(ll_RootArray)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 101)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 102)
lnv_JsonGenerator.AddItemNumber(ll_ChildArray, 103)

// Gets the JSON string
ls_Json = lnv_JsonGenerator.GetJsonString()

Example 3

This example packages the data of DataWindow, DataStore and DataWindowChild object
and assigns the value to a string.

string ls_json
datastore lds_employee
datawindowchild ldwc_active
JsonPackage lnv_package
lnv_package = create JsonPackage

...//Initialize data for lds_employee, ldwc_active

// Package the data
lnv_package.SetValue("d_department", dw_department, false)
lnv_package.SetValue("d_employee", lds_employee)
lnv_package.SetValue("dddw_active", ldwc_active, false)
ls_json = lnv_package.GetJsonString()

See also

GetJsonBlob

2.4.288 GetJWTToken

Description

Statements, Events, and Functions

Page 755

Gets the JWT token using the POST method.

Applies to

RESTClient objects

Syntax

objectname.GetJWTToken (string urlName, string data, ref string token)

Table 2.717:

Argument Description

objectname The name of the RESTClient object from which you want to get the JWT
token.

urlName A string value specifying the URL.

data A string value specifying the data to send.

If the user sets the encoding charset in the Content-Type request header,
this function will encode the data with the specified charset; if charset is
not specified, this function will encode the data in UTF-8 by default.

token The server response which contains the access token.

If RESTClient failed to send request or server provides no response, the
response value is an empty string. If the response value is compressed
as gzip, it will be automatically decompressed. Only gzip compression
format is supported at this moment. If the server specified the Content-
Type response header, and in which the encoding charset is specified, this
function will encode the data with the specified charset; if charset is not
specified, this function will encode the data in UTF-8 by default.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

-5 -- Failed to get token.

-7 -- Failed to decompress data

-14 -- Code conversion failed

-15 -- Unsupported character set

Example 1

The following code example gets the data that requires JWT token authentication.

String ls_P028_JWTToken
Integer li_P028_GetJWTTokenReturn

Statements, Events, and Functions

Page 756

RestClient lrc_P028
lrc_P028 = Create RestClient

lrc_P028.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip") //Sets the request header
//Gets the JWT token. The second parameter provides the value according to the
 token server request.
li_P028_GetJWTTokenReturn=lrc_P028.GetJWTToken("https://demo.appeon.com/pb/jwt/
HSExample/api/values/GetToken", '{"Username":"user1","Password":"password1"}',
 ls_P028_JWTToken)

If li_P028_GetJWTTokenReturn = 1 Then
 //Sets the JWT token
 lrc_P028.SetJwtToken(ls_P028_JWTToken)
 //Retrieves data for dw_Data
 lrc_P028.retrieve(dw_Data, "https://demo.appeon.com/pb/jwt/HSExample/api/
department/retrieve")
Else
 //Prints the GetJWTToken error message if any
End If

Example 2

The following code example gets the data that requires JWT token authentication.

String ls_P028_JWTToken
Integer li_P028_GetJWTTokenReturn
JsonPackage ljpk_JWTINF
ljpk_JWTINF =Create JsonPackage
RestClient lrc_P028
lrc_P028 = Create RestClient

lrc_P028.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip") //Sets the request header
//Gets the JWT token. The second parameter provides the value according to the
 token server request.
li_P028_GetJWTTokenReturn=lrc_P028.GetJWTToken("https://demo.appeon.com/pb/jwt/
HSExample/api/values/Authenticate", '{"Username":"user1","Password":"password1"}',
 ls_P028_JWTToken)
If li_P028_GetJWTTokenReturn = 1 Then
 //If the token server returns the token as well as other information, gets the
 token first and then provides it to RestClient
 //in this example, the token server returns a JSON string which contains token,
 therefore, gets the token via the following scripts
 ljpk_JWTINF.Loadstring(ls_P028_JWTToken)
 If ljpk_JWTINF.ContainsKey("token") Then
 ls_P028_JWTToken = ljpk_JWTINF.GetValueString("token")
 End If
 //Sets the JWT token
 lrc_P028.SetJwtToken(ls_P028_JWTToken)
 //Retrieves data for dw_Data
 lrc_P028.retrieve(dw_Data, "https://demo.appeon.com/pb/jwt/HSExample/api/
department/retrieve")
Else
 //Prints the GetJWTToken error message if any
End If

See also

SetJWTToken

2.4.289 GetKey

Description

Statements, Events, and Functions

Page 757

Gets the key name.

Applies to

JSONPackage

Syntax

objectname.GetKey (Index)

Table 2.718:

Argument Description

objectname The name of the JSONPackage object whose key you want to obtain.

Index A long value specifying the index of the key.

Return value

String.

Returns the key name if it succeeds and empty string ("") if an error occurs. If any argument's
value is null, the method returns null.

Example

This example gets the number of keys first and then gets the name of each key.

long ll_index, ll_KeyCount
string ls_KeyName
datastore lds_employee
datawindowchild ldwc_active

JsonPackage lnv_package
lnv_package = create JsonPackage

...//Initialize data for lds_employee, ldwc_active

// package the data
lnv_package.SetValue("d_department", dw_department, false)
lnv_package.SetValue("d_employee", lds_employee)
lnv_package.SetValue("dddw_active", ldwc_active, false)
ll_KeyCount = lnv_package.KeyCount()

for ll_index = 1 to ll_KeyCount
 ls_KeyName = lnv_package.GetKey(ll_index)
 …
next

See also

KeyCount

2.4.290 GetLargeButton

Description

Gets the large button according to the handle in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

Statements, Events, and Functions

Page 758

controlname.GetLargeButton (Long ItemHandle, ref RibbonLargeButtonItem Item)

Table 2.719:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the large button you want to obtain.

Item A RibbonLargeButtonItem variable in which you want to store the large
button identified by the item handle.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get an item according to the handle by using the GetItem function.

Examples

This example gets a copy of the "Add" large button according to its handle and stores it in
lr_LargeButton variable.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton
RibbonLargeButtonItem lr_LargeButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_LargeButton = rbb_1.InsertLargeButtonFirst (ll_Handle_Panel, "Add",
 "AddBig!", "Ue_LargeButtonClicked")
li_Return = rbb_1.GetLargeButton (ll_Handle_LargeButton, lr_LargeButton)

See also

InsertLargeButton

InsertLargeButtonFirst

InsertLargeButtonLast

DeleteLargeButton

SetLargeButton

GetChildItemByIndex

2.4.291 GetLastReturn

Description

Returns the return value from the last InvokePBFunction or TriggerPBEvent function.

Applies to

Window ActiveX controls

Syntax

Statements, Events, and Functions

Page 759

activexcontrol.GetLastReturn ()

Table 2.720:

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window ActiveX control.
When used in HTML, the ActiveX control is the NAME attribute of the
object element. When used in other environments, this references the
control that contains the PowerBuilder window ActiveX.

Return value

Any.

Returns the last return value.

Usage

Call this function after calling InvokePBFunction or TriggerPBEvent to access the
return value. JavaScript scripts must use this function to access return values from
InvokePBFunction and TriggerPBEvent. VBScript scripts can either use this function or
access the return value using an argument in InvokePBFunction or TriggerPBEvent.

Examples

This JavaScript example calls the GetLastReturn function:

...
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
if (rc != 1) {
 alert("Error. Empty string.");
 }
...

This VBScript example calls the GetLastReturn function:

...
 retcd = PBRX1.TriggerPBEvent(theEvent, &
 numargs, args)
 rc = PBRX1.GetLastReturn()
 IF rc <> 1 THEN
 msgbox "Error. Empty string."
 END IF
...

See also

GetArgElement

InvokePBFunction

SetArgElement

TriggerPBEvent

2.4.292 GetLibraryList

Description

Gets the files in the library search path of the application.

Statements, Events, and Functions

Page 760

Syntax

GetLibraryList ()

Return value

String.

Returns the current library list with complete paths. Multiple libraries are separated by
commas.

Usage

You should call GetLibraryList and append any libraries you want to add to the list before
updating the search path using the SetLibraryList function.

Examples

This example obtains the list of libraries, adds a library to the list, then resets the list:

string ls_list, ls_newlist

ls_list = getlibrarylist ()
ls_newlist = ls_list + ",c:\my_library.pbl"
setlibrarylist (ls_newlist)

See also

AddToLibraryList

SetLibraryList

2.4.293 GetMajorVersion

Description

Returns the major version for the current PowerBuilder execution context. For example, at
maintenance level 11.5.1 the major version is 11.

Applies to

ContextInformation objects

Syntax

servicereference.GetMajorVersion (majorversion)

Table 2.721:

Argument Description

servicereference Reference to the ContextInformation service instance.

majorversion Integer into which the function places the major version. This argument is
passed by reference.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Statements, Events, and Functions

Page 761

Call this function to determine the current major version.

Examples

This example calls the GetMajorVersion function:

String ls_name
Constant String ls_currver = "8.0.3"
Integer li_majver, li_minver, li_fixver
ContextInformation ci

this.GetContextService ("ContextInformation", ci)

GetMajorVersion(li_majver)
ci.GetMinorVersion(li_minver)
ci.GetFixesVersion(li_fixver)
IF li_majver <> 8 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
ELSEIF li_minver <> 0 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
ELSEIF li_fixver <> 3 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
END IF

See also

GetCompanyName

GetFixesVersion

GetHostObject

GetMinorVersion

GetName

GetShortName

GetVersionName

2.4.294 GetMasterItem

Description

Gets the master menu item of the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.GetMasterItem ({ Long ParentIndex, } Long Index, ref RibbonMenuItem
 Item)

Table 2.722:

Argument Description

controlname The name of the RibbonApplicationMenu control from which you want
to get the master menu item

Statements, Events, and Functions

Page 762

Argument Description

ParentIndex
(optional)

The index of the master menu item (RibbonMenuItem) whose submenu
you want to get.

If not specified, the master menu item will be obtained; if specified to a
valid value, the submenu item under the master menu item (whose index
is ParentIndex) will be obtained; if specified to an invalid value, an error
would occur and this operation would return -1.

Index The index of the master menu item or submenu item you want to obtain.
If index is invalid, an error would occur and this operation would return
-1.

Item A RibbonMenuItem variable in which you want to store the master menu
item identified by the index.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

The master menu can have no more than two levels.

Examples

This example inserts an "Account" master menu item and an "Account Settings" submenu
item under "Account" and then gets copies of the "Account" menu and the "Account
Settings" submenu.

Integer li_Return
Long ll_Index, ll_Index2
RibbonApplicationMenu lr_AppMenu
RibbonMenuItem lr_MenuItem1, lr_MenuItem2

ll_Index = lr_AppMenu.InsertMasterItemLast ("Account", "AccountBig!",
 "Ue_AccountMenuItemClicked")
ll_Index2 = lr_AppMenu.InsertMasterItemLast (ll_Index, "Account Settings",
 "AccountSettingsBig!", "Ue_AccountSettingsClicked")
li_Return = lr_AppMenu.GetMasterItem (ll_Index, lr_MenuItem1)
li_Return = lr_AppMenu.GetMasterItem (ll_Index, ll_Index2, lr_MenuItem2)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

Statements, Events, and Functions

Page 763

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.295 GetMasterItemCount

Description

Determines the total number of the master menu items in the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.GetMasterItemCount ({ Long ParentIndex })

Table 2.723:

Argument Description

controlname The name of the RibbonApplicationMenu control

ParentIndex
(optional)

The index of the master menu item (RibbonMenuItem) whose submenu
items you want to count.

If not specified, the master menu items will be counted; if specified to a
valid value, the submenu items under the master menu item (whose index
is ParentIndex) will be counted; if specified to an invalid value, an error
would occur and this operation would return -1.

Return value

Long.

Returns the total number of menu items in the master menu. If the master menu contains no
items, returns 0. If an error occurs, returns -1. If any argument's value is null, returns null.

Usage

The master menu can have no more than two levels.

Examples

This example inserts an "Account" master menu and then inserts two submenu items
"Account Settings" and "Sign Out" under "Account", and then counts the number of the
submenu items (which returns 2) and the master menu item (which returns 1).

Statements, Events, and Functions

Page 764

Long ll_Index, ll_Index2, ll_Count
RibbonApplicationMenu lr_AppMenu

ll_Index = lr_AppMenu.InsertMasterItemLast ("Account", "AccountBig!",
 "Ue_AccountMenuItemClicked")
ll_Index2 = lr_AppMenu.InsertMasterItemLast (ll_Index, "Account Settings",
 "AccountSettingsBig!", "Ue_AccountSettingsBigClicked")
ll_Index2 = lr_AppMenu.InsertMasterItemLast (ll_Index, "Sign Out", "SignOutBig!",
 "Ue_SignOutClicked")
ll_Count = lr_AppMenu.GetMasterItemCount (ll_Index)
ll_Count = lr_AppMenu.GetMasterItemCount()

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.296 GetMenu

Description

Gets the menu that is associated with the ribbon button.

Applies to

RibbonApplicationButtonItem, RibbonTabButtonItem, RibbonLargeButtonItem,
RibbonSmallButtonItem controls

Syntax

For RibbonApplicationButtonItem:

controlname.GetMenu (ref RibbonApplicationMenu ApplicationMenu)

For RibbonTabButtonItem, RibbonLargeButtonItem, and RibbonSmallButtonItem:

Statements, Events, and Functions

Page 765

controlname.GetMenu (ref RibbonMenu Menu)

Table 2.724:

Argument Description

controlname The name of the RibbonApplicationButtonItem, RibbonTabButtonItem,
RibbonLargeButtonItem, or RibbonSmallButtonItem control.

ApplicationMenu A RibbonApplicationMenu variable in which you want to store the menu.

Menu A RibbonMenu variable in which you want to store the menu.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Example 1

This example associates an application menu (which includes an "Account" master menu
item and a "RecentMenu1" recent menu item) to the "MyApp" application button; and then
gets and stores a copy of the application menu.

Integer li_Return
RibbonApplicationButtonItem lr_AppButton
RibbonApplicationMenu lr_AppMenu, lr_AppMenu2

lr_AppMenu.InsertMasterItemFirst ("Account", "AccountBig!",
 "ue_AccountMenuClicked")
lr_AppMenu.InsertRecentItemFirst ("RecentMenu1", "ue_RecentMenuClicked")
lr_AppButton.Text = "MyApp"
li_Return = lr_AppButton.SetMenu (lr_AppMenu)
If li_Return = 1 Then
 li_Return = rbb_1.SetApplicationButton (lr_AppButton)
 li_Return = lr_AppButton.GetMenu (lr_AppMenu2)
End If

Example 2

This example associates a ribbon menu (which includes an "Add" menu item) to the tab
button; and then gets a copy of the ribbon menu.

Integer li_Return, li_Return2
RibbonTabButtonItem lr_TabButton
RibbonMenu lr_Menu, lr_Menu2

lr_Menu.InsertItemFirst ("Add", "AddSmall!", "Ue_AddMenuClicked")
li_Return = lr_TabButton.SetMenu (lr_Menu)
If li_Return = 1 Then
 li_Return2 = lr_TabButton.GetMenu (lr_Menu2)
End If

See also

SetMenu

GetMenuByButtonHandle

2.4.297 GetMenuByButtonHandle

Description

Statements, Events, and Functions

Page 766

Gets the menu associated with the ribbon button according to the button handle.

Applies to

RibbonBar controls

Syntax

controlname.GetMenuByButtonHandle (Long ItemHandle, ref RibbonApplicationMenu
 ApplicationMenu)

controlname.GetMenuByButtonHandle (Long ItemHandle, ref RibbonMenu Menu)

Table 2.725:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the button whose menu you want to get.

ApplicationMenu A RibbonApplicationMenu variable in which you want to store the menu.

Menu A RibbonMenu variable in which you want to store the menu.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Example 1

This example inserts a "MyLargeButton" large button which is associated with a menu and
then gets a copy of the menu according to the button handle.

Integer li_Return
Long ll_Handle_Category, ll_Handle_panel, ll_Handle_Button
RibbonLargeButtonItem lr_LargeButton
RibbonMenu lr_Menu, lr_Menu2

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "EmployeeSmall!")
lr_LargeButton.Text = "MyLargeButton"
lr_LargeButton.PictureName = "EmployeeBig!"
lr_Menu.InsertItemFirst ("MyMenuItem", "EmployeeSmall!", "ue_MenuItemClicked")
lr_LargeButton.SetMenu (lr_Menu)
ll_Handle_Button = rbb_1.InsertLargeButtonFirst (ll_Handle_Panel, lr_LargeButton)

li_Return = rbb_1.GetMenuByButtonHandle (ll_Handle_Button, lr_Menu2)

Example 2

This example inserts the "MyApp" application button which is associated with a menu
(including an "Account" master item and a "RecentMenu1" recent item) and then gets a copy
of the menu according to the button handle.

Integer li_Return
RibbonApplicationButtonItem lr_AppButton,lr_AppButton2
RibbonApplicationMenu lr_AppMenu, lr_AppMenu2

li_Return =
 lr_AppMenu.InsertMasterItemFirst("Account","AccountBig!","Ue_MasterMenuClicked")
li_Return = lr_AppMenu.InsertRecentItemFirst("RecentMenu1","Ue_RecentMenuClicked")

Statements, Events, and Functions

Page 767

li_Return = lr_AppButton.SetMenu(lr_AppMenu)
lr_AppButton.Text = "MyApp"
li_Return = rbb_1.SetApplicationButton(lr_AppButton)

li_Return = rbb_1.GetApplicationButton(lr_AppButton2)
li_Return = rbb_1.GetMenuByButtonHandle(lr_AppButton2.ItemHandle, lr_AppMenu2)

See also

SetMenu

GetMenu

2.4.298 GetMessage

Description

Returns the error message from objects of type Throwable.

Syntax

throwableobject.GetMessage ()

Table 2.726:

Argument Description

throwableobject Object of type Throwable from which you want to retrieve an error
message

Return value

String.

The error text for system error objects, such as RuntimeError, is preset.

Usage

You can set the error message for an object of type Throwable using the SetMessage
function.

Examples

This example catches a system error message and displays that error in a message box.
Catching the system error prevents the application from terminating when the arccosine
argument, entered by the application user, is not in the required range:

Double ld_num
ld_num = Double (sle_1.text)
TRY
sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)
 MessageBox("Runtime Error", er.GetMessage())
END TRY

This example catches and displays a user error message from the Clicked event of a button
that calls the user-defined function, wf_acos. The user-defined function catches a runtime
error -- preventing the application from terminating -- and then sets the message for a user
object, uo_exception, that inherits from the Exception object type:

TRY
 wf_acos()

Statements, Events, and Functions

Page 768

CATCH (uo_exception u_ex)
 messageBox("Out of Range", u_ex.GetMessage())
END TRY

Code for the wf_acos function is shown in the SetMessage function.

See also

SetMessage

2.4.299 GetMinorVersion

Description

Returns the minor version for the current PowerBuilder execution context. For example, at
maintenance level 11.5.1 the minor version is 5.

Applies to

ContextInformation objects

Syntax

servicereference.GetMinorVersion (minorversion)

Table 2.727:

Argument Description

servicereference Reference to the ContextInformation service instance.

minorversion Integer into which the function places the minor version. This argument
is passed by reference.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function to determine the current minor version.

Examples

This example calls the GetMinorVersion function:

String ls_name
Constant String ls_currver = "8.0.3"
Integer li_majver, li_minver, li_fixver
ContextInformation ci

this.GetContextService("ContextInformation", ci)

ci.GetMajorVersion(li_majver)
ci.GetMinorVersion(li_minver)
ci.GetFixesVersion(li_fixver)
IF li_majver <> 8 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
ELSEIF li_minver <> 0 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)

Statements, Events, and Functions

Page 769

ELSEIF li_fixver <> 3 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
END IF

See also

GetCompanyName

GetFixesVersion

GetHostObject

GetMajorVersion

GetName

GetShortName

GetVersionName

2.4.300 GetName

Description

Gets the name for the current execution context.

Applies to

ContextInformation objects

Syntax

servicereference.GetName (name)

Table 2.728:

Argument Description

servicereference Reference to the ContextInformation service instance.

name String into which the function places the name. This argument is passed
by reference.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function to determine the current execution environment.

The window plug-in and window ActiveX contexts are obsolete in the current version of
PowerBuilder. For PowerBuilder 2017 and later applications, the only value passed for the
name argument is "PowerBuilder Runtime".

Examples

This example calls the GetName function. ci is an instance variable of type
ContextInformation:

String ls_name

Statements, Events, and Functions

Page 770

this.GetContextService("ContextInformation", ci)
ci.GetName(ls_name)
IF ls_name <> "PowerBuilder Runtime" THEN
 cb_close.visible = FALSE
END IF

See also

GetCompanyName

GetContextService

GetFixesVersion

GetHostObject

GetMajorVersion

GetMinorVersion

GetShortName

GetVersionName

2.4.301 GetNativePointer

Description

Gets a pointer to the OLE object associated with the OLE control. The pointer lets you call
OLE functions in an external DLL for the object.

Applies to

OLE controls and OLE custom controls

Syntax

olename.GetNativePointer (pointer)

Table 2.729:

Argument Description

olename The name of the OLE control containing the object for which you want
the native pointer.

pointer A UnsignedLong variable in which you want to store the pointer. If
GetNativePointer cannot get a valid pointer, pointer is set to 0.

Return value

Integer.

Returns 0 if it succeeds and -1 if an error occurs.

Usage

Pointer is a pointer to OLE's IUnknown interface. You can use it with the OLE
QueryInterface function to get other interface pointers.

When you call GetNativePointer, PowerBuilder calls OLE's AddRef function, which locks
the pointer. You must release the pointer in your DLL function or in a PowerBuilder script
with the ReleaseNativePointer function.

Statements, Events, and Functions

Page 771

Only for external DLL calls

This function is only useful for external DLL calls. It is not related to the
SetAutomationPointer function.

Examples

This example gets a pointer for the OLECustomControl ocx_spell for making external
function calls for OLE automation:

UnsignedLong lul_oleptr
integer li_rtn

li_rtn = ocx_spell.GetNativePointer(lul_oleptr)
IF li_rtn = 0 THEN
 ... // Call external functions for automation
 ocx_spell.ReleaseNativePointer(lul_oleptr)
END IF

See also

GetAutomationNativePointer

ReleaseAutomationNativePointer

ReleaseNativePointer

2.4.302 GetNextSheet

Description

Obtains the sheet that is behind the specified sheet in the MDI frame.

Applies to

MDI frame windows

Syntax

mdiframewindow.GetNextSheet (sheet)

Table 2.730:

Argument Description

mdiframewindow The MDI frame window in which you want the next sheet

sheet The sheet for which you want the sheet that is behind it

Return value

Window. Returns the sheet that is behind sheet in the MDI frame. If there is no sheet behind
sheet, GetNextSheet returns an invalid value. If any argument's value is null, GetNextSheet
returns null.

Usage

To cycle through the open sheets in a frame, use GetFirstSheet to get the front sheet and
GetNextSheet one or more times to get the rest of the sheets. Test each return value with
IsValid to see if you have reached the last sheet. Do not use GetFirstSheet and GetNextSheet
in combination with GetActiveSheet.

Statements, Events, and Functions

Page 772

Did GetNextSheet return a valid window?

Use the IsValid function to find out if GetNextSheet returned a valid window. If there
is no sheet behind the one you specified, the return value is not valid.

Examples

The following script for a menu selection loops through the open sheets in front-to-back order
and displays the names of the open sheets in the ListBox lb_sheets:

boolean bValid
window wSheet

lb_sheets.Reset()
wSheet = ParentWindow.GetFirstSheet()
IF IsValid(wSheet) THEN
 lb_sheets.AddItem(wSheet.Title)
 DO
 wSheet = ParentWindow.GetNextSheet(wSheet)
 bValid = IsValid (wSheet)
 IF bValid THEN lb_sheets.AddItem(wSheet.Title)
 LOOP WHILE bValid
END IF

See also

GetFirstSheet

IsValid

2.4.303 GetNumberType

Description

Gets the type of the number item.

Applies to

JSONParser objects

Syntax

objectname.GetNumberType (ItemHandle)

objectname.GetNumberType (ParentItemHandle, Key)

objectname.GetNumberType (ItemPath)

Table 2.731:

Argument Description

objectname The name of the JSONParser object whose item type you want to obtain.

ItemHandle A long specifying the item handle which is JsonNumberItem type.

ParentItemHandle A long specifying the parent item handle which is JsonObjectItem type.

Key A string specifying the key of the child item which is JsonNumberItem
type.

ItemPath A string specifying the item path which is JsonNumberItem type. If there
is a multi-dimensional array, use the number to indicate the order of the

Statements, Events, and Functions

Page 773

Argument Description
array elements. If a key name contains "/", use the escape character "~~/"
to replace "/".

Return value

JsonNumberType.

Returns the JsonNumberType enumerated value if it succeeds and null value if an error
occurs. If any argument's value is null, the method returns null.

The JsonNumberType enumerated values are:

• JsonNumber! -- Type of the JSON valid number.

• JsonNaN! -- Type of the JSON invalid number.

• JsonPositiveInfinity! -- Type of the JSON positive infinity.

• JsonNegativeInfinity! -- Type of the JSON negative infinity.

Example 1

This example determines the type of number values according to the item handle:

Long ll_ItemCount, ll_I, ll_RootItem, ll_Child
String ls_Json, ls_Return, ls_Key, ls_Value
Dec ldc_Value
JsonItemType ljs_type, ljs_Root
JsonNumberType ljsn_type
Jsonparser ljs_par

ljs_par = Create JsonParser

ls_Json = '{"value1":123.45,"value2":Infinity,"value3":-
Infinity,"value4":NaN,"value5":null}'
ls_Return = ljs_par.LoadString(ls_Json)
If Len(ls_Return) > 0 Then Return
ll_RootItem = ljs_par.GetRootItem()
ll_ItemCount = ljs_Par.GetChildCount(ll_RootItem)
ljs_Root = ljs_par.GetItemType(ll_RootItem)
For ll_I = 1 To ll_ItemCount
 ll_child = ljs_par.getchilditem(ll_RootItem, ll_i)
 ls_Key = ljs_par.GetChildKey(ll_RootItem, ll_i)
 ljs_type = ljs_par.GetItemType(ll_child)
 Choose Case ljs_type
 Case Jsonnumberitem!
 ldc_Value = ljs_par.GetItemNumber(ll_child)
 If IsNull (ldc_value) Then
 ljsn_type = ljs_par.GetNumberType(ll_child)
 Choose Case ljsn_type
 Case JsonNaN!
 ls_value = "Nan"
 Case JsonPositiveInfinity!
 ls_value = "Infinity"
 Case JsonNegativeInfinity!
 ls_value = "-Infinity"
 Case JsonNumber!
 ls_value = "null"
 Case Else

Statements, Events, and Functions

Page 774

 End Choose
 Else
 ls_value = String(ldc_value)
 End If
 Case Jsonnullitem!
 ls_value = "null"
 End Choose
 ls_Return += ls_Key + "=" + ls_Value + "~r~n"
Next
If IsValid (ljs_par) Then Destroy (ljs_par)

Example 2

This example determines the type of number values according to the parent item and key
name:

Long ll_ItemCount, ll_I, ll_RootItem
String ls_Json, ls_Return, ls_Key, ls_Value
Dec ldc_Value
JsonItemType ljs_type, ljs_Root
JsonNumberType ljsn_type
Jsonparser ljs_par

ljs_par = Create JsonParser

ls_Json = '{"value1":123.45,"value2":Infinity,"value3":-
Infinity,"value4":NaN,"value5":null}'
ls_Return = ljs_par.LoadString(ls_Json)
If Len(ls_Return) > 0 Then Return
ll_RootItem = ljs_par.GetRootItem()
ll_ItemCount = ljs_Par.GetChildCount(ll_RootItem)
ljs_Root = ljs_par.GetItemType(ll_RootItem)
For ll_I = 1 To ll_ItemCount
 ls_Key = ljs_par.GetChildKey(ll_RootItem, ll_i)
 ljs_type = ljs_par.GetItemType(ll_RootItem, ls_Key)
 Choose Case ljs_type
 Case Jsonnumberitem!
 ldc_Value = ljs_par.GetItemNumber(ll_RootItem, ls_Key)
 If IsNull (ldc_value) Then
 ljsn_type = ljs_par.GetNumberType(ll_RootItem, ls_Key)
 Choose Case ljsn_type
 Case JsonNaN!
 ls_value = "Nan"
 Case JsonPositiveInfinity!
 ls_value = "Infinity"
 Case JsonNegativeInfinity!
 ls_value = "-Infinity"
 Case JsonNumber!
 ls_value = "null"
 Case Else
 End Choose
 Else
 ls_value = String(ldc_value)
 End If
 Case Jsonnullitem!
 ls_value = "null"
 End Choose
 ls_Return += ls_Key + "=" + ls_Value + "~r~n"
Next
If IsValid (ljs_par) Then Destroy (ljs_par)

Example 3

This example determines the type of number values according to the item path:

Statements, Events, and Functions

Page 775

Long ll_ItemCount, ll_I
String ls_Json, ls_Return, ls_RootPath, ls_ChildPath, ls_Key, ls_Value
Dec ldc_Value
JsonItemType ljs_type, ljs_Root
JsonNumberType ljsn_type
Jsonparser ljs_par

ljs_par = Create JsonParser

ls_Json = '{"value1":123.45,"value2":Infinity,"value3":-
Infinity,"value4":NaN,"value5":null}'
ls_Return = ljs_par.LoadString(ls_Json)
If Len(ls_Return) > 0 Then Return
ls_RootPath = "/"
ll_ItemCount = ljs_Par.GetChildCount(ls_RootPath)
ljs_Root = ljs_par.GetItemType(ls_RootPath)
For ll_I = 1 To ll_ItemCount
 ls_Key = ljs_par.GetChildKey(ls_RootPath, ll_i)
 If ljs_Root = jsonobjectitem! Then
 ls_ChildPath = ls_RootPath + String(ls_Key)
 Else
 ls_ChildPath = ls_RootPath + String(ll_I)
 End If
 ljs_type = ljs_par.GetItemType(ls_ChildPath)
 Choose Case ljs_type
 Case Jsonnumberitem!
 ldc_Value = ljs_par.GetItemNumber(ls_ChildPath)
 If IsNull (ldc_value) Then
 ljsn_type = ljs_par.GetNumberType(ls_ChildPath)
 Choose Case ljsn_type
 Case JsonNaN!
 ls_value = "Nan"
 Case JsonPositiveInfinity!
 ls_value = "Infinity"
 Case JsonNegativeInfinity!
 ls_value = "-Infinity"
 Case JsonNumber!
 ls_value = "null"
 Case Else
 End Choose
 Else
 ls_value = String(ldc_value)
 End If
 Case Jsonnullitem!
 ls_value = "null"
 End Choose
 ls_Return += ls_Key + "=" + ls_Value + "~r~n"
Next
If IsValid (ljs_par) Then Destroy (ljs_par)

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

Statements, Events, and Functions

Page 776

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

2.4.304 GetOAuthToken

Description

Gets the OAuth 2.0 access token.

Applies to

RESTClient objects

Syntax

objectname.GetOAuthToken (TokenRequest tokenRequest, ref string token)

Table 2.732:

Argument Description

objectname The name of the RESTClient object from which you want to get the
OAuth 2.0 access token.

tokenRequest The OAuth2.0 Access Token Request object.

token The access token returned from the server.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

-5 -- Failed to get token

-11 -- The parameter is invalid

-12 -- Invalid grant

-13 -- Invalid SCOPE

Example

The following example adds a new data records and submits it to the server.

String ls_P020_Responsebody,ls_Token,ls_PostData
Long ll_InsertRow

Statements, Events, and Functions

Page 777

Integer li__P020_SendReturn
Integer li_P020_GetTokenReturn
RestClient lrc_P020
lrc_P020 = Create RestClient

//Sets the token parameters
TokenRequest ltreq_Appeon
ltreq_Appeon.tokenlocation = "https://demo.appeon.com/pb/identityserver/connect/
token"
ltreq_Appeon.method = "post"
ltreq_Appeon.GrantType = "password"
ltreq_Appeon.ClientId = "P0VRQ-ddHn/WWd6lcCNJbaO9ny-JCNHirDJkHNgZ0-M="
ltreq_Appeon.ClientSecret = "K7gNU3sdo-OL0wNhqoVWhr3g6s1xYv72ol/pe/Unols="
ltreq_Appeon.UserName = "TestUser"
ltreq_Appeon.PassWord = "TestPassword"

//Gets token via RESTClient
li_P020_GetTokenReturn = lrc_P020.GetOauthtoken(ltreq_Appeon, ls_Token)
If li_P020_GetTokenReturn = 1 Then
 lrc_P020.SetRequestHeaders("Content-Type:application/
json;charset=UTF-8~r~nAccept-Encoding:gzip")
 lrc_P020.SetOauthToken(ls_Token) //Sets authentication
 //Adds a new data row
 ll_InsertRow = dw_Data.InsertRow(0)
 //Sets the data value
 dw_Data.SetItem(ll_InsertRow,1,0)
 dw_Data.SetItem(ll_InsertRow,2,"TestCreate"+String(rand(50)))
 //Once https://demo.appeon.com/PB/webapi_client/api/department/create Web service
 detects that
 //the passed-in department id is smaller than 1, it will automatically finds the
 largest ID
 //value and assigns value to it
 ls_PostData=dw_Data.Exportrowasjson(ll_InsertRow)//Exports the new data row from
 dw_Data to JSON string
 li__P020_SendReturn = lrc_P020.SendPostRequest("https://demo.appeon.com/PB/
webapi_client/api/department/create", ls_PostData, ls_P020_Responsebody)
If li__P020_SendReturn <> 1 Or lrc_P020.GetResponseStatusCode() <> 201 Then
 //Checks if any error information
End If
//Finds out if the new data row exists via https://demo.appeon.com/PB/
webapi_client/api/department/retrieve
lrc_P020.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
Else
//Gets the token failure error
End If
If IsValid(lrc_P020) Then Destroy lrc_P020

See also

SetOAuthToken

2.4.305 GetObjectRevisionFromRegistry

Description

Assigns synchronization property values saved in the Windows registry to a synchronization
object.

Applies to

MLSynchronization, MLSync controls

Syntax

Statements, Events, and Functions

Page 778

SyncObject.GetObjectRevisionFromRegistry ()

Table 2.733:

Argument Description

syncObject The name of the synchronization object

Return value

Integer.

Returns the value of ObjectRevision. Returns -1 if the registry key is not found or if the
SyncRegistryKey property of the synchronization object is not set.

Usage

The registry key is located under the HKEY_CURRENT_USER\SyncRegistryKey
\DBSyncType where SyncRegistryKey is the value of the synchronization object's
SyncRegistryKey property and DBSyncType is MobiLink.

See also

GetSyncRegistryProperties

SetSyncRegistryProperties

2.4.306 GetOrigin

Description

Finds the X and Y coordinates of the upper-left corner of the ListView item.

Applies to

ListView controls

Syntax

listviewname.GetOrigin (x , y)

Table 2.734:

Argument Description

listviewname The ListView control for which you want to find the coordinates of the
upper-left corner

x An integer variable in which you want to store the X coordinate for the
ListView control

y An integer variable in which you want to store the Y coordinate for the
ListView control

Return value

Integer.

Returns 1 if it succeeds and -1 if it fails.

Usage

Use GetOrigin to find the position of a dragged object relative to the upper left corner of a
ListView control.

Statements, Events, and Functions

Page 779

Examples

This example moves a static text clock to the upper-left coordinates of the selected ListView
item:

integer li_index
listviewitem l_lvi

li_index = lv_list.SelectedIndex()
lv_list.GetItem(li_index, l_lvi)

lv_list.GetOrigin(l_lvi.ItemX, l_lvi.ItemY)

sle_info.Text = "X is "+ String(l_lvi.ItemX) &
 + " and Y is " + String(l_lvi.ItemY)

st_clock.Move(l_lvi.itemx , l_lvi.ItemY)

MessageBox("Clock Location", "X is " &
 + String(st_clock.X) &
 + ", and Y is " &
 + String(st_clock.Y)+".")

2.4.307 GetPanel

Description

Gets the panel according to the handle in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetPanel (Long ItemHandle, ref RibbonPanelItem Item)

Table 2.735:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the panel you want to obtain.

Item A RibbonPanelItem variable in which you want to store the panel
identified by the item handle.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get an item according to the handle by using the GetItem function.

Examples

This example inserts a "MyPanel" panel and then gets a copy of the panel.

Integer li_Return
Long ll_Handle_Category,ll_Handle_Panel

Statements, Events, and Functions

Page 780

RibbonPanelItem lr_Panel

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
li_Return = rbb_1.GetPanel (ll_Handle_Panel, lr_Panel)

See also

InsertPanel

InsertPanelFirst

InsertPanelLast

DeletePanel

SetPanel

GetChildItemByIndex

2.4.308 GetParagraphSetting

Description

Gets the size of the indentation, left margin, or right margin of the paragraph containing the
insertion point in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtecontrol.GetParagraphSetting (whichsetting)

Table 2.736:

Argument Description

rtecontrol The name of the control for which you want paragraph information.

whichsetting A value of the ParagraphSetting enumerated datatype specifying the
setting for which you want the value. Values are:

• Indent! -- Returns the indentation of the paragraph

• LeftMargin! -- Returns the left margin of the paragraph

• RightMargin! -- Returns the right margin of the paragraph

Return value

Long.

Returns the size of the specified setting in thousandths of an inch. GetParagraphSetting
returns -1 if an error occurs. If which setting is null, it returns null.

Examples

This example gets the indentation setting for the current paragraph:

long ll_indent

Statements, Events, and Functions

Page 781

ll_indent = rte_1.GetParagraphSetting(Indent!))

See also

GetAlignment

GetSpacing

GetTextColor

GetTextStyle

SetParagraphSetting

2.4.309 GetParent

Description

Obtains the parent of the specified object.

Applies to

Any object

Syntax

objectname.GetParent ()

Table 2.737:

Argument Description

objectname A control in a window or user object or an item on a menu for which you
want the parent object

Return value

PowerObject. Returns a reference to the parent of objectname.

Examples

In event scripts for a user object that will be used as a tab page, you can use code like the
following to make references to the parent Tab control generic:

// a_tab is generic;
// it does not know about specific pages
tab a_tab

// a_tab_page is generic;
// it does not know about specific controls
userobject a_tab_page

// Get values for the Tab control and the tab page
a_tab = this.GetParent()
// Somewhat redundant, for illustration only
a_tab_page = this

// Set properties for the tab page
a_tab_page.PowerTipText = "Important property page"
// Set properties for the Tab control
a_tab.PowerTips = TRUE

// Run Tab control functions
a_tab.SelectTab(a_tab_page)

Statements, Events, and Functions

Page 782

You cannot refer to controls on the user object because a_tab_page does not know about
them. You cannot refer to specific pages in the Tab control because a_tab does not know
about them either.

In event scripts for controls on the tab page user object, you can use two levels of GetParent
to refer to the user object and the Tab control containing the user object as a tab page:

// For a control, add one more level of GetParent()
// and you can make the same settings as above
tab a_tab
userobject a_tab_page

a_tab_page = this.GetParent()
a_tab = a_tab_page.GetParent()

a_tab_page.PowerTipText = "Important property page"
a_tab.PowerTips = TRUE

a_tab.SelectTab(a_tab_page)

See also

ParentWindow

Pronouns

2.4.310 GetPathByItem

Description

Gets the path of the item.

Applies to

JSONGenerator objects

Syntax

objectname.GetPathByItem (ItemHandle)

Table 2.738:

Argument Description

objectname The name of the JSONGenerator object whose path you want to obtain.

ItemHandle A long specifying the handle of the item.

Return value

String.

Returns the item path if it succeeds. If any argument's value is null, the method returns null.
If an error occurs, the method returns the exception.

Examples

This example determines the item path according to the item handle and then adds three child
items:

Long ll_Object
String ls_RootPath,ls_ObjectPath
JsonGenerator lnv_JsonGenerator

Statements, Events, and Functions

Page 783

lnv_JsonGenerator = Create JsonGenerator

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject ()

// Adds an object child item
ls_RootPath = "/"
ll_Object = lnv_JsonGenerator.AddItemObject(ls_RootPath, "object")
ls_ObjectPath = lnv_JsonGenerator.GetPathByItem(ll_Object)

lnv_JsonGenerator.AddItemNumber(ls_ObjectPath, "year", 2017)
lnv_JsonGenerator.AddItemDate(ls_ObjectPath, "date", 2017-09-21)
lnv_JsonGenerator.AddItemTime(ls_ObjectPath, "time", 12:00:00)

See also

GetItemByPath

2.4.311 GetPin (obsolete)

Description

Called by EAServer to obtain a PIN for use with an SSL connection. This function is used by
PowerBuilder clients connecting to EAServer.

Obsolete function

GetPin is obsolete, because EAServer is no longer supported since PowerBuilder
2017.

Applies to

SSLCallBack objects

Syntax

sslcallback.GetPin (thesessioninfo, timedout)

Table 2.739:

Argument Description

sslcallback An instance of a customized SSLCallBack object.

thesessioninfo A CORBAObject that contains information about the SSL session. This
information can optionally be displayed to the user to provide details
about the session.

timedout A boolean value that indicates the reason for the callback. A value of
true indicates that the PIN timed out and must be obtained again. A value
of false indicates that the PIN was not specified at the time of the SSL
connection.

Return value

String.

Returns the PIN specified by the user.

Usage

Statements, Events, and Functions

Page 784

A PowerBuilder application does not usually call the GetPin function directly. GetPin is
called by EAServer when an EAServer client has not specified a PIN for logging in to a
PKCS 11 token for an SSL connection.

To override the behavior of any of the functions of the SSLCallBack object, create a standard
class user object that descends from SSLCallBack and customize this object as necessary.
To let EAServer know which object to use when a callback is required, specify the name of
the object in the callbackImpl SSL property. You can set this property value by calling the
SetGlobalProperty function.

If you do not provide an implementation of GetPin, EAServer receives the
CORBA::NO_IMPLEMENT exception and an empty string is returned. To obtain a
useful return value, code the function to request the user to provide a PIN. You can supply
information to the user such as the token name from the passed thesessioninfo object.

If an incorrect PIN or an empty string is returned, EAServer invokes the TrustVerify
callback.

You can enable the user to cancel the attempt to connect by throwing an exception
in this callback function. All exceptions thrown in SSLCallback functions return a
CTSSecurity::UserAbortedException to the server. You need to catch the exception by
wrapping the ConnectToServer function in a try-catch block.

Examples

This example prompts the user to enter a PIN for a new SSL session or when a session has
timed out. In practice you would want to replace the user's entry in the text box with asterisks
and allow the user more than one attempt to enter a correct PIN:

//instance variables
//string is_tokenName
//SSLServiceProvider issp_jag

CTSSecurity_sslSessionInfo mySessionInfo
is_tokenName = mySessionInfo.getProperty("tokenName")
w_response w_pin

IF timedout THEN
 MessageBox("The SSL session has expired", &
 "Please reenter the PIN for access to the " + &
 ls_tokenName + " certificate database.")
ELSE
 MessageBox("The SSL session requires a PIN", &
 "Please enter the PIN for access to the " + &
 ls_tokenName + " certificate database.")
END IF

string s_PIN
userabortedexception ue_cancelled

// open prompt for PIN
Open(w_pin)
// get value entered
s_PIN = Message.StringParm

// set property if we're not to abort
if s_PIN <> ABORT_VALUE then
 issp_jag.setglobalproperty("pin", s_PIN)

// otherwise, abort..

Statements, Events, and Functions

Page 785

else
 ue_cancelled = CREATE userabortedexception
 ue_cancelled.text = "User cancelled request when " &
 + "asked for PIN."
 throw ue_cancelled
end if
return s_PIN

See also

ConnectToServer (obsolete)

GetCertificateLabel (obsolete)

GetCredentialAttribute (obsolete)

TrustVerify (obsolete)

2.4.312 GetRecentItem

Description

Gets the recent menu item of the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.GetRecentItem (Long Index, ref RibbonMenuItem Item)

Table 2.740:

Argument Description

controlname The name of the RibbonApplicationMenu control from which you want
to get the recent menu item.

Index The index of the recent menu item which you want to obtain. If index is
invalid, an error would occur and this operation would return -1.

Item A RibbonMenuItem variable in which you want to store the recent menu
item identified by the index.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

The recent menu can have only one level and can contain no more than 9 items.

Examples

This example inserts a recent menu item "RecentItem1" and then gets a copy of the recent
menu.

Integer li_Return
Long ll_Index
RibbonApplicationMenu lr_AppMenu

Statements, Events, and Functions

Page 786

RibbonMenuItem lr_MenuItem

ll_Index = lr_AppMenu.InsertRecentItemFirst ("RecentItem1",
 "Ue_RecentItem1Clicked")
li_Return = lr_AppMenu.GetRecentItem (ll_Index, lr_MenuItem)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.313 GetRecentItemCount

Description

Determines the total number of the recent menu items in the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.GetRecentItemCount ()

Table 2.741:

Argument Description

controlname The name of the RibbonApplicationMenu control

Return value

Long.

Statements, Events, and Functions

Page 787

Returns the total number of menu items in the recent menu. If the recent menu contains no
items, returns 0. If an error occurs, returns -1.

Usage

The recent menu can have only one level and can contain no more than 9 items.

Examples

This example inserts three recent menu items and then counts the total number of recent
menu items (which returns 3).

Long ll_Return, ll_Count
RibbonApplicationMenu lr_AppMenu

ll_Return = lr_AppMenu.InsertRecentItem(1,"RecentMenu2","Ue_RecentItem2Clicked")
ll_Return =
 lr_AppMenu.InsertRecentItemFirst("RecentMenu1","Ue_RecentItem1Clicked")
ll_Return = lr_AppMenu.InsertRecentItemLast("RecentMenu3","Ue_RecentItem3Clicked")
ll_Count = lr_AppMenu.GetRecentItemCount()

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.314 GetRecentTitle

Description

Gets the title of the recent menu list in the application menu. The title is displayed on top of
the recent menu list.

Applies to

Statements, Events, and Functions

Page 788

RibbonApplicationMenu controls

Syntax

controlname.GetRecentTitle (ref String Title)

Table 2.742:

Argument Description

controlname The name of the RibbonApplicationMenu control from which you want
to get the title of the recent menu list.

Title Title of the recent menu list. It is displayed on top of the recent menu list.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Examples

This example sets the title of the recent menu list to "Recently Opened Windows" and then
gets and stores the title in the ls_Title variable.

Long li_Return
String ls_Title
RibbonApplicationMenu lr_AppMenu

li_Return = lr_AppMenu.SetRecentTitle("Recently Opened Windows")
li_Return = lr_AppMenu.GetRecentTitle(ls_Title)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

Statements, Events, and Functions

Page 789

SetRecentTitle

2.4.315 GetRecordSet

Description

Returns the current ADO Recordset object.

Applies to

ADOResultSet objects

Syntax

adoresultset.GetRecordSet (adorecordsetobject)

Table 2.743:

Argument Description

adoresultset An ADOResultSet object that contains an ADO Recordset.

adorecordsetobjectAn OLEObject object into which the function places the current ADO
Recordset. This argument is passed by reference.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Use the GetRecordSet function to return an ADO Recordset as an OLEObject object that can
be used in PowerBuilder as a native ADO Recordset. The ADOResultSet object that contains
the ADO Recordset must first have been populated using the SetRecordSet or SetResultSet
function.

Examples

This example generates a result set in a ResultSet object from an existing DataStore object.
The ResultSet object is used to populate a new ADOResultSet object. The GetRecordSet
function on the ADOResultSet object is used to return an ADO Recordset as an OLEObject
that can be used with ADO Recordset methods.

resultset lrs_resultset
ADOresultset lrs_ADOresultset
OLEObject loo_ADOrecordset
// Generate a result set from an existing DataStore
ds_source.GenerateResultSet(lrs_resultset)

// Create a new ADOResultSet object and populate it
// from the generated result set
lrs_ADOresultset = CREATE ADOResultSet
lrs_ADOresultset.SetResultSet(lrs_resultset)

// Pass the data in the ADOResultSet object
// to an OLEObject you can use as an ADO Recordset
loo_ADOrecordset = CREATE OLEObject
lrs_ADOresultset.GetRecordSet(loo_ADOrecordset)
// Call native ADO Recordset methods on the OLEObject
loo_ADOrecordset.MoveFirst()

Statements, Events, and Functions

Page 790

See also

GenerateResultSet method for DataWindows in Section 9.42, “GenerateResultSet” in
DataWindow Reference.

SetRecordSet

SetResultSet

2.4.316 GetRefreshToken

Description

Gets the refresh token returned by the authorization server.

Applies to

TokenResponse objects

Syntax

objectname.GetRefreshToken ()

Table 2.744:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
refresh token.

Return value

String.

Returns the refresh token if it exists.

Examples

The following example shows the use of the GetRefreshToken function to get the refresh
token:

string ls_refreshtoken
TokenResponse lnv_TokenResponse

ls_refreshtoken = lnv_TokenResponse.getrefreshtoken()

See also

GetAccessToken

GetBody

GetExpiresIn

GetHeader

GetHeaders

GetStatusCode

GetStatusText

GetTokenError

GetTokenType

Statements, Events, and Functions

Page 791

2.4.317 GetRemote

Asks a DDE server application to provide data and stores that data in the specified variable.
There are two ways of calling GetRemote, depending on the type of DDE connection you
have established.

Table 2.745:

To Use

Make a single request of a DDE server application (called a cold link) Syntax 1

Request data from a DDE server application after you have opened a
channel (called a warm link)

Syntax 2

2.4.317.1 Syntax 1: For single DDE requests

Description

Asks a DDE server application to provide data and stores that data in the specified variable
without requiring an open channel. This syntax is appropriate when you will make only one
or two requests of the server.

Syntax

GetRemote (location, target, applname, topicname {, bAnsi})

Table 2.746:

Argument Description

location A string whose value is the location of the data you want returned from
the DDE server application. The format of location depends on the
particular DDE server application that will receive the message.

target A string variable into which the returned data will be placed.

applname A string whose value is the DDE name of the DDE server application.
If another PowerBuilder application is the DDE server, this is the
application name specified in its StartServerDDE function call.

topicname A string identifying the data or the instance of the application you want
to use with the command (for example, in Microsoft Excel, the topic
name could be system or the name of an open spreadsheet). If another
PowerBuilder application is the DDE server, this is the topic specified in
its StartServerDDE function call.

bAnsi

(optional)

A boolean identifying whether the string to get from the DDE server is in
ANSI format. If bAnsi is NULL, false, or empty, PowerBuilder will first
try to get the DDE data as a UNICODE formatted string. If bAnsi is true,
PowerBuilder will try to get the DDE data as an ANSI formatted string.

Return value

Integer.

Returns 1 if it succeeds and a negative integer if an error occurs. Values are:

-1 -- Link was not started

Statements, Events, and Functions

Page 792

-2 -- Request denied

If any argument's value is null, GetRemote returns null.

Usage

When using DDE, your PowerBuilder application must have an open window, which will be
the client window. For this syntax, the active window is the DDE client window.

For more information about DDE channels and warm and cold links, see the two syntaxes of
the ExecRemote function.

Examples

These statements ask Microsoft Excel to get the data in row 1 column 2 of a worksheet called
PROFIT.XLS and put it in a PowerBuilder string called ls_ProfData. The single GetRemote
call establishes a cold link, gets the data, and ends the link:

string ls_ProfData
GetRemote("R1C2", ls_ProfData, &
 "Excel", "PROFIT.XLS")

See also

ExecRemote

SetRemote

2.4.317.2 Syntax 2: For DDE requests via an open channel

Description

Asks a DDE server application to provide data and stores that data in the specified variable
when you have already established a warm link by opening a channel to the server. A warm
link, with an open channel, is more efficient when you intend to make several DDE requests.

Syntax

GetRemote (location, target, handle {, windowhandle} {, bAnsi})

Table 2.747:

Argument Description

location A string whose value is the location of the data you want returned. The
format of the location depends on the DDE application that will receive
the request.

target A PowerBuilder string variable into which the returned data will be
placed.

handle A long that identifies the channel to the DDE server application. The
OpenChannel function returns handle when you call it to open a DDE
channel.

windowhandle
(optional)

The handle to the window that is acting as the DDE client. Specify this
parameter to control which window the data is returned to when you have
more than one open window.

bAnsi

(optional)

A boolean identifying whether the string to get from the DDE server is in
ANSI format. If bAnsi is NULL, false, or empty, PowerBuilder will first

Statements, Events, and Functions

Page 793

Argument Description
try to get the DDE data as a UNICODE formatted string. If bAnsi is true,
PowerBuilder will try to get the DDE data as an ANSI formatted string.

Return value

Integer.

Returns 1 if it succeeds and a negative integer if an error occurs. Values are:

-1 -- Link was not started

-2 -- Request denied

-9 -- Handle is null

Usage

When using DDE, your PowerBuilder application must have an open window, which will be
the client window. For this syntax, you can specify the client window with the windowhandle
argument.

Before using this syntax, call OpenChannel to establish a DDE channel.

For more information about DDE channels and warm and cold links, see the ExecRemote
function.

Examples

These statements ask the channel identified by handle (a Microsoft Excel worksheet) to
get the data in row 1 column 2 and save it in a PowerBuilder string called ls_ProfData.
GetRemote utilizes the warm link established by the OpenChannel function:

String ls_ProfData
long handle

handle = OpenChannel("Excel", "REGION.XLS")
...
GetRemote("R1C2", ls_ProfData, handle)
...
CloseChannel(handle)

The following example is similar to the previous one. However, it specifically associates the
DDE channel with the window w_rpt:

String ls_ProfData
long handle

handle = OpenChannel("Excel", "REGION.XLS", &
 Handle(w_rpt))
...
GetRemote("R1C2", ls_ProfData, &
 handle, Handle(w_rpt))
...
CloseChannel(handle, Handle(w_rpt))

See also

CloseChannel

ExecRemote

OpenChannel

Statements, Events, and Functions

Page 794

SetRemote

2.4.318 GetRequestHeader

Description

Gets the request header by name.

Applies to

HTTPClient and RestClient objects

Syntax

objectname.GetRequestHeader (headerName)

Table 2.748:

Argument Description

objectname The name of the HTTPClient or RestClient object in which you want to
get the request header by name

headerName A string value specifying the header name

Return value

String.

Returns a string value related to the specified header. If the argument's value is null, the
method returns null.

Examples

This example gets the request header by name:

HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient

lnv_HttpClient.GetRequestHeader("Accept")
lnv_HttpClient.GetRequestHeader("Accept-Encoding")
lnv_HttpClient.GetRequestHeader("Accept-Language")
lnv_HttpClient.GetRequestHeader("Connection")
lnv_HttpClient.GetRequestHeader("User-Agent")
lnv_HttpClient.GetRequestHeader("Cache-Control")

See also

ClearRequestHeaders

GetRequestHeaders

SetRequestHeader

SetRequestHeaders

2.4.319 GetRequestHeaders

Description

Gets all of the request headers' information.

Applies to

HTTPClient and RestClient objects

Statements, Events, and Functions

Page 795

Syntax

objectname.GetRequestHeaders ()

Table 2.749:

Argument Description

objectname The name of the HTTPClient or RestClient object in which you want to
get all of the request headers

Return value

String.

Returns information of all of the request headers.

Examples

String ls_AllHeaders
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient
ls_AllHeaders = lnv_HttpClient.GetRequestHeaders()

See also

ClearRequestHeaders

GetRequestHeader

SetRequestHeader

SetRequestHeaders

2.4.320 GetResponseBody

Description

Gets the response body into a string or blob value.

It is not recommended to use this method to process large data (20 MB or 100,000 data rows
can be considered as large data based on our tests).

Applies to

HTTPClient objects

Syntax

objectname.GetResponseBody (string data)

objectname.GetResponseBody (blob data)

objectname.GetResponseBody (string data, encodingType)

Table 2.750:

Argument Description

objectname The name of the HTTPClient object for which you want to get the
response body.

data A string or blob variable into which the function returns the data.

For the string data, if the encoding charset is specified in the Content-
Type response header, this function will encode the data with the

Statements, Events, and Functions

Page 796

Argument Description
specified charset; if charset is not specified, this function determines the
encoding type based on the BOM header, and then converts the data into
UNICODE.

encodingType A value specifying the encoding type of the string data to be
received: EncodingANSI!, EncodingUTF8!, EncodingUTF16LE!, or
EncodingUTF16BE!.

If this argument is set, the encoding charset in the Content-Type response
header will be ignored.

Return value

Integer.

Returns 1 if it succeeds and a negative value if an error occurs. If any argument's value is
null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Code conversion failed

Example

This example gets the response body and converts to a blob value:

Integer li_rc, li_StatusCode
String ls_ContentType, ls_body, ls_string
Blob lblb_blob
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient

// Send request using GET method
li_rc = lnv_HttpClient.SendRequest("GET", "https://demo.appeon.com/PB/
webapi_client/employee/102")

// Obtain the response message
if li_rc = 1 then
 // Obtain the response status
 li_StatusCode = lnv_HttpClient.GetResponseStatusCode()
 if li_StatusCode = 200 then
 // Obtain the header
 ls_ContentType = lnv_HttpClient.GetResponseHeader("Content-Type") // Obtain the
 specifid header

 // Obtain the response data
 lnv_HttpClient.GetResponseBody(ls_body) // No encoding is specified, because
 encoding of the response data is unknown
 //lnv_HttpClient.GetResponseBody(ls_string, EncodingUTF8!) // Encoding of the
 response data is known to be EncodingUTF8!.
 //lnv_HttpClient.GetResponseBody(lblb_blob) // Obtain the response data and
 convert to a blob
 ...
 end if
end if

See also

GetResponseHeader

Statements, Events, and Functions

Page 797

GetResponseHeaders

GetResponseStatusCode

GetResponseStatusText

2.4.321 GetResponseHeader

Description

Gets the response header by name.

Applies to

HTTPClient and RestClient objects

Syntax

objectname.GetResponseHeader (headerName)

Table 2.751:

Argument Description

objectname The name of the HTTPClient or RestClient object in which you want to
get the response headers

headerName A string whose value is the header name

Return value

String.

Returns the value related to the specified header. If any argument's value is null, the method
returns null.

Examples

This example obtains the information of the "Content-Type" header:

String ls_ContentType
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient
ls_ContentType = lnv_HttpClient.GetResponseHeader("Content-Type")

See also

GetResponseBody

GetResponseHeaders

GetResponseStatusCode

GetResponseStatusText

2.4.322 GetResponseHeaders

Description

Gets all of the response headers' information.

Applies to

HTTPClient and RestClient objects

Statements, Events, and Functions

Page 798

Syntax

objectname.GetResponseHeaders ()

Table 2.752:

Argument Description

objectname The name of the HTTPClient or RestClient object for which you want to
get all of the response headers

Return value

String.

Returns the information of all of the response headers.

Examples

This example gets information of all headers:

String ls_AllHeaders
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient
ls_AllHeaders = lnv_HttpClient.GetResponseHeaders()

See also

GetResponseBody

GetResponseHeader

GetResponseStatusCode

GetResponseStatusText

2.4.323 GetResponseStatusCode

Description

Gets the response status code.

Applies to

HTTPClient and RestClient objects

Syntax

objectname.GetResponseStatusCode ()

Table 2.753:

Argument Description

objectname The name of the HTTPClient or RestClient object for which you want to
get the response status code

Return value

Long.

Returns the response status code.

Examples

This example gets the response status:

Statements, Events, and Functions

Page 799

Integer li_rc
Long ll_StatusCode
String ls_ContentType
Blob lblb_blob
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient

// Send request using GET method
li_rc = lnv_HttpClient.SendRequest("GET", "https://demo.appeon.com/PB/
webapi_client/employee/102")

// Obtain the response message
if li_rc = 1 then
 // Obtain the response status
 ll_StatusCode = lnv_HttpClient.GetResponseStatusCode()
 if ll_StatusCode = 200 then
 // Obtain headers
 ls_ContentType = lnv_HttpClient.GetResponseHeader("Content-Type") // Obtain the
 specified header
 // Obtain the response data
 lnv_HttpClient.GetResponseBody(lblb_blob)
 ...
 end if
end if

See also

GetResponseBody

GetResponseHeader

GetResponseHeaders

GetResponseStatusText

2.4.324 GetResponseStatusText

Description

Gets the response status description.

Applies to

HTTPClient and RestClient objects

Syntax

objectname.GetResponseStatusText ()

Table 2.754:

Argument Description

objectname The name of the HTTPClient or RestClient object for which you want to
get the response status description

Return value

String.

Returns the response status description.

Examples

This example gets the response status description:

Statements, Events, and Functions

Page 800

Integer li_rc, li_StatusCode
String ls_StatusText
Blob lblb_blob
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient

// Send request using GET method
li_rc = lnv_HttpClient.SendRequest("GET", " https://demo.appeon.com/PB/
webapi_client/employee/102")

// Obtain the response message
if li_rc = 1 then
 // Obtain the response status
 li_StatusCode = lnv_HttpClient.GetResponseStatusCode()
 ls_StatusText = lnv_HttpClient.GetResponseStatusText()
 // Obtain the response data
 lnv_HttpClient.GetResponseBody(lblb_blob)
 …
end if

See also

GetResponseBody

GetResponseHeader

GetResponseHeaders

GetResponseStatusCode

2.4.325 GetRootItem

Description

Gets the handle of the root item.

Applies to

JSONParser objects

Syntax

objectname.GetRootItem ()

Table 2.755:

Argument Description

objectname The name of the JSONParser object whose root item you want to obtain.

Return value

Long.

Returns the handle of the root item if it succeeds and null value if an error occurs. If any
argument's value is null, the method returns null.

Examples

String ls_Error, ls_Json
JsonParser lnv_JsonParser
Long ll_RootObject
lnv_JsonParser = Create JsonParser

Statements, Events, and Functions

Page 801

ls_Json = '{"id":1, "name":"evan1", "birthday":2340323884}'
ls_Error = lnv_JsonParser.LoadString(ls_Json)
if Len(ls_Error) > 0 then
 MessageBox("Error", ls_Error)
else
 ll_RootObject = lnv_JsonParser.GetRootItem()
end if

See also

GetItemArray

GetItemArrayJSONString

GetItemBlob

GetItemBoolean

GetItemByPath

GetItemDate

GetItemDateTime

GetItemNumber

GetItemObject

GetItemObjectJSONString

GetItemString

GetItemTime

GetItemType

GetNumberType

2.4.326 GetSelectedDate

Description

Retrieves the selected date.

Applies to

MonthCalendar control

Syntax

controlname.GetSelectedDate (d)

Table 2.756:

Argument Description

controlname The name of the MonthCalendar control for which you want to get the
selected date

d A date value returned by reference that indicates the date selected

Return value

Integer.

Returns 0 for success and one of the following negative values otherwise:

Statements, Events, and Functions

Page 802

-1 -- A range of dates is selected

-2 -- Unknown failure

Usage

If a range of dates is selected, GetSelectedDate returns -1 and retrieves the earliest selected
date.

Examples

This example retrieves the selected date into seldate:

integer li_return
Date seldate

li_return = mc_1.GetSelectedDate(seldate)

See also

GetSelectedRange

SetSelectedDate

SetSelectedRange

2.4.327 GetSelectedRange

Description

Retrieves the range of selected dates.

Applies to

MonthCalendar control

Syntax

controlname.GetSelectedRange (start, end)

Table 2.757:

Argument Description

controlname The name of the MonthCalendar control for which you want to determine
the range of selected dates

start A date value returned by reference that indicates the earliest date selected
when a range of dates has been selected

end A date value returned by reference that indicates the latest date selected
when a range of dates has been selected

Return value

Integer.

Returns 0 for success, -1 if only one date is selected, and -2 for an unknown failure.

Usage

If only one date is selected, GetSelectedRange returns -1 and the selected date is retrieved in
the start and end parameters.

Examples

Statements, Events, and Functions

Page 803

This code in the DateChanged event prompts the user to enter a second date after the first
date in a range is entered, and then asks the user to confirm the range selected:

date startdate, enddate
integer li_return

li_return = mc_1.GetSelectedRange(startdate, enddate)
if li_return = -1 then MessageBox("Selected Dates", &
 "Please select a return date")
elseif li_return = 0 then MessageBox("Selected Dates", "You have selected "&
 + string(startdate) + " - " string(enddate) &
 + "~r~nClick OK to confirm")
else MessageBox("Selected Dates", &
 "An error has occurred. Please reselect your " &
 + "travel dates")
end if

See also

GetDisplayRange

GetSelectedDate

SetSelectedDate

SetSelectedRange

2.4.328 GetSeriesLabelling

Description

Determines whether the data for a given series is labeled in a DirectX 3D graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetSeriesLabelling ({graphcontrol,} series, value)

Table 2.758:

Argument Description

controlname The name of the graph from which you want data, or the name of the
DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

{Optional} A string whose value is the name of the graph in the
DataWindow control.

series The string that names the series for which you want the series label
setting.

value A boolean passed by reference that indicates whether the series has a
label.

Return value

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
GetSeriesLabelling returns null.

Statements, Events, and Functions

Page 804

Usage

GetSeriesLabelling retrieves the data from DirectX 3D Area, Bar, Col, or Line graphs. You
cannot use this method with DirectX 3D Pie graphs.

Examples

These statements obtain the number of the series and datapoint for the graph gr_1 in the
DataWindow control dw_employee and then set the series label.

integer SeriesNbr, ItemNbr
boolean refB
string ls_SeriesName
grObjectType clickedtype

// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &
 SeriesNbr, ItemNbr)

//Get the name of series
ls_SeriesName = dw_employee.SeriesName("gr_1", &
 SeriesNbr)

// Set Series label
dw_employee.GetSeriesLabelling("gr_1", &
 ls_SeriesName, refB)

These statements obtain the number of the series and datapoint for the graph gr_1 and then
set the series label.

integer SeriesNbr, ItemNbr
boolean refB
string ls_SeriesName
grObjectType clickedtype

clickedtype = gr_1.ObjectAtPointer(SeriesNbr, &
 ItemNbr)

ls_SeriesName = gr_1.SeriesName(SeriesNbr)

gr_1.GetSeriesLabelling(ls_SeriesName, refB)

See also

GetDataLabelling

SetDataLabelling

SetSeriesLabelling

2.4.329 GetSeriesStyle

Finds out the appearance of a series in a graph. The appearance settings for individual data
points can override the series settings, so the values obtained from GetSeriesStyle may not
reflect the current state of the graph. There are several syntaxes, depending on what settings
you want.

Table 2.759:

To Use

Get the series' colors Syntax 1

Statements, Events, and Functions

Page 805

To Use

Get the line style and width used by the series Syntax 2

Get the fill pattern or symbol for the series Syntax 3

Find out if the series is an overlay (a series shown as a line on top of
another graph type)

Syntax 4

GetSeriesStyle provides information about a series. The data points in the series can have
their own style settings. Use SetSeriesStyle to change the style values for a series. Use
GetDataStyle to get style information for a data point and SetDataStyle to override series
settings and set style information for individual data points.

The graph stores style information for properties that do not apply to the current graph type.
For example, you can find out the fill pattern for a data point or a series in a two-dimensional
line graph, but that fill pattern will not be visible.

2.4.329.1 Syntax 1: For the colors of a series

Description

Obtains the colors associated with a series in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetSeriesStyle ({ graphcontrol, } seriesname, colortype,
 colorvariable)

Table 2.760:

Argument Description

controlname The name of the graph in which you want to obtain the color of a series,
or the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the color of a series.

seriesname A string whose value is the name of the series for which you want the
color.

colortype A value of the grColorType enumerated datatype specifying the aspect of
the series for which you want the color:

• Foreground! -- Text color

• Background! -- Background color

• LineColor! -- Line color

• Shade! -- Shade (for graphs that are 3-dimensional or have solid data
markers)

Statements, Events, and Functions

Page 806

Argument Description

colorvariable A long variable in which you want to store the color's RGB value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. Stores in colorvariable the RGB value of the
specified series and item. If any argument's value is null, GetSeriesStyle returns null.

Examples

These statements store in the variable color_nbr the text (foreground) color used for a series
in the graph gr_emp_data. The series name is the text in the SingleLineEdit sle_series:

long color_nbr
gr_emp_data.GetSeriesStyle(sle_series.Text, &
 Foreground!, color_nbr)

These statements store in the variable color_nbr the background color used for the series PCs
in the graph gr_computers in the DataWindow control dw_equipment:

long color_nbr
// Get the color.
dw_equipment.GetSeriesStyle("gr_computers", &
 "PCs", Background!, color_nbr)

These statements store the color for the series under the mouse pointer in the graph
gr_product_data in line_color:

string SeriesName
integer SeriesNbr, Data_Point
long line_color
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
 SeriesName = &
 gr_product_data.SeriesName(SeriesNbr)

 gr_product_data.GetSeriesStyle(SeriesName, &
 LineColor!, line_color)
END IF

See also

AddSeries

GetDataStyle

FindSeries

SetDataStyle

SetSeriesStyle

2.4.329.2 Syntax 2: For the line style and width used by a series

Description

Obtains the line style and width for a series in a graph.

Statements, Events, and Functions

Page 807

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetSeriesStyle ({ graphcontrol, } seriesname, linestyle, linewidth)

Table 2.761:

Argument Description

controlname The name of the graph for which you want the line style and width for a
series in a graph, or the name of the DataWindow control containing the
graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the line style information.

seriesname A string whose value is the name of the series for which you want the
line style information.

linestyle A variable of type LineStyle in which you want to store the line style of
seriesname.

linewidth An integer variable in which you want to store the line width for
seriesname. The width is measured in pixels.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. Stores in linestyle a value of the LineStyle
enumerated datatype and in linewidth the width of the line used for the specified series. If any
argument's value is null, GetSeriesStyle returns null.

Examples

These statements store in the variables line_style and line_width the line style and width for
the series under the mouse pointer in the graph gr_product_data:

string SeriesName
integer SeriesNbr, Data_Point, line_width
LineStyle line_style
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
 SeriesName = &
 gr_product_data.SeriesName(SeriesNbr)

 gr_product_data.GetSeriesStyle(SeriesName, &
 line_style, line_width)
END IF

See also

AddSeries

GetDataStyle

Statements, Events, and Functions

Page 808

FindSeries

SetDataStyle

SetSeriesStyle

2.4.329.3 Syntax 3: For the fill pattern or symbol of a series

Description

Obtains the fill pattern or symbol of a series in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetSeriesStyle ({ graphcontrol, } seriesname, enumvariable)

Table 2.762:

Argument Description

controlname The name of the graph for which you want the style information for a
series in a graph, or the name of the DataWindow control containing the
graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the style information.

seriesname A string whose value is the name of the series for which you want the
style information.

enumvariable The variable in which you want to store the style information. You can
specify a FillPattern or grSymbolType variable. The style information
that GetSeriesStyle stores depends on the variable type.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. Stores in enumvariable a value of the
appropriate enumerated datatype for the fill pattern or symbol used for the specified series. If
any argument's value is null, GetSeriesStyle returns null.

Usage

See SetSeriesStyle for a list of the enumerated datatype values that GetSeriesStyle stores in
enumvariable.

Examples

These statements store in the variable data_pattern the fill pattern for the series under the
mouse pointer in the graph gr_product_data:

string SeriesName
integer SeriesNbr, Data_Point
FillPattern data_pattern
grObjectType MouseHit

Statements, Events, and Functions

Page 809

MouseHit = ObjectAtPointer(SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
 SeriesName = &
 gr_product_data.SeriesName(SeriesNbr)

 gr_product_data.GetSeriesStyle(SeriesName, &
 data_pattern)
END IF

This example stores in the variable data_pattern the fill pattern for the series under the pointer
in the graph gr_depts in the DataWindow control dw_employees. It then sets the fill pattern
for the series Total Salary in the graph gr_dept_data to that pattern:

string SeriesName
integer SeriesNbr, Data_Point
FillPattern data_pattern
grObjectType MouseHit

MouseHit = &
 ObjectAtPointer("gr_depts" , SeriesNbr, &
 Data_Point)

IF MouseHit = TypeSeries! THEN
 SeriesName = &
 dw_employees.SeriesName("gr_depts" , SeriesNbr)

 dw_employees.GetSeriesStyle("gr_depts" , &
 SeriesName, data_pattern)

 gr_dept_data.SetSeriesStyle("Total Salary", &
 data_pattern)
END IF

In these examples, you can change the datatype of data_pattern (the variable specified as the
last argument) to find out the symbol type.

See also

AddSeries

GetDataStyle

FindSeries

SetDataStyle

SetSeriesStyle

2.4.329.4 Syntax 4: For determining whether a series is an overlay

Description

Reports whether a series in a graph is an overlay -- whether it is shown as a line on top of
another graph type.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetSeriesStyle ({ graphcontrol, } seriesname,overlayindicator)

Statements, Events, and Functions

Page 810

Table 2.763:

Argument Description

controlname The name of the graph for which you want the overlay status of a series
in a graph, or the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the overlay status.

seriesname A string whose value is the name of the series for which you want the
overlay status.

overlayindicator A boolean variable in which you want to store a value indicating whether
the series is an overlay. GetSeriesStyle sets overlayindicator to true if the
series is an overlay and false if it is not.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. Stores in overlayindicator true if
the specified series is an overlay and false if it is not. If any argument's value is null,
GetSeriesStyle returns null.

Examples

These statements find out whether a series in the graph gr_emp_data is an overlay. The series
name is the text in the SingleLineEdit sle_series:

boolean is_overlay
gr_emp_data.GetSeriesStyle(sle_series.Text, &
 is_overlay)

2.4.330 GetSeriesTransparency

Description

Obtains the transparency percentage of a series in a DirectX 3D graph (those with 3D
rendering).

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.GetSeriesTransparency ({ graphcontrol, } series, transparency)

Table 2.764:

Argument Description

controlname The name of the graph from which you want series transparency data, or
the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control from which you want the series data.

Statements, Events, and Functions

Page 811

Argument Description

series The string that identifies the series from which you want the transparency
value.

transparency Integer value for percent transparency. A value of 0 means that the series
is opaque and a value of 100 means that it is completely transparent.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
GetSeriesTransparency returns null.

Usage

GetSeriesTransparency retrieves data from any DirectX 3D graph (those with 3D rendering).

Examples

These statements obtain the transparency value of the series named Costs in the graph
gr_computers in the DataWindow control dw_equipment:

string SeriesName
integer rtn, ser_transp_value

// Get the number of the series.
SeriesNbr = dw_equipment.FindSeries(&
 "gr_computers", "Costs")
rtn = dw_equipment.GetSeriesTransparency(&
 "gr_computers" , SeriesNbr, ser_transp_value)

These statements obtain the transparency value of the series named Income in the graph gr_1.

string SeriesName
integer rtn, ser_transp_value

SeriesNbr = gr_1.FindSeries("Income")
rtn = gr_1.GetSeriesTransparency(SeriesName, &
 ser_transp_value)

See also

FindSeries

GetDataTransparency

SetDataTransparency

SetSeriesTransparency

2.4.331 GetShortName

Description

Gets the short name for the current PowerBuilder execution context.

Applies to

ContextInformation objects

Syntax

Statements, Events, and Functions

Page 812

servicereference.GetShortName (shortname)

Table 2.765:

Argument Description

servicereference Reference to the ContextInformation service instance.

shortname String into which the function places the short name. This argument is
passed by reference.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function to determine the current execution environment. The window plug-in
and window ActiveX contexts are obsolete in the current version of PowerBuilder. For
PowerBuilder 2017 and later applications, the only value passed for the shortname argument
is "PBRun".

Examples

This example calls the GetShortName function. ci is an instance variable of type
ContextInformation:

String ls_name

this.GetContextService("ContextInformation", ci)
ci.GetShortName(ls_name)
IF ls_name <> "PBRun" THEN
 cb_close.visible = FALSE
END IF

See also

GetCompanyName

GetContextService

GetFixesVersion

GetHostObject

GetMajorVersion

GetMinorVersion

GetName

GetVersionName

2.4.332 GetSmallButton

Description

Gets the small button according to the handle in the RibbonBar control.

Applies to

Statements, Events, and Functions

Page 813

RibbonBar controls

Syntax

controlname.GetSmallButton (Long ItemHandle, ref RibbonSmallButtonItem Item)

Table 2.766:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the small button you want to obtain.

Item A RibbonSmallButtonItem variable in which you want to store the small
button identified by the item handle.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get an item according to the handle by using the GetItem function.

Examples

This example inserts an "Add" small button and then gets a copy of the small button
according to its handle.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_SmallButton
RibbonSmallButtonItem lr_SmallButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst(ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_SmallButton = rbb_1.InsertSmallButtonFirst (ll_Handle_Panel, "Add",
 "AddSmall!", "Ue_SmallButtonClicked")
li_Return = rbb_1.GetSmallButton (ll_Handle_SmallButton, lr_SmallButton)

See also

InsertSmallButton

InsertSmallButtonFirst

InsertSmallButtonLast

DeleteSmallButton

SetSmallButton

GetChildItemByIndex

2.4.333 GetSource

Description

Gets the HTML source code for the current page's main frame.

Applies to

Statements, Events, and Functions

Page 814

WebBrowser controls

Syntax

controlname.GetSource ()

Table 2.767:

Argument Description

controlname The name of the WebBrowser control.

Return value

String.

Examples

String ls_wbsource
ls_wbsource = wb_1.getsource()

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GoBack

GoForward

Navigate

PrintAsPDF

PauseDownload

RegisterEvent

ResumeDownload

Refresh

StopNavigation

UnregisterEvent

Zoom

2.4.334 GetSpacing

Description

Obtains the line spacing of the paragraph containing the insertion point in a RichTextEdit
control.

Applies to

RichTextEdit controls

Syntax

rtename.GetSpacing ()

Statements, Events, and Functions

Page 815

Table 2.768:

Argument Description

rtename The name of the RichTextEdit control in which you want to find out the
line spacing of the paragraph containing the insertion point

Return value

Spacing. A value of the Spacing enumerated datatype indicating the line spacing of the
paragraph containing the insertion point.

Usage

When the user selects several paragraphs, the insertion point is at the beginning or end of the
selection, depending on how the user made the selection. The value reported depends on the
location of the insertion point.

Examples

This example stores a value of the enumerated datatype spacing in the variable l_spacing.
The value is the spacing for the paragraph with the insertion point:

spacing l_spacing
l_spacing = rte_1.GetSpacing()

See also

GetTextStyle

SetSpacing

SetTextStyle

2.4.335 GetStatusCode

2.4.335.1 Syntax 1: for TokenResponse objects

Description

Gets the response status code.

Applies to

TokenResponse objects

Syntax

objectname.GetStatusCode ()

Table 2.769:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
response status code.

Return value

Long.

Returns the response status code.

Statements, Events, and Functions

Page 816

Examples

The following example shows the use of the GetStatusCode function to get the response
status code:

long ll_statuscode
TokenResponse lnv_TokenResponse

ll_statuscode = lnv_TokenResponse.getstatuscode()

See also

GetAccessToken

GetBody

GetExpiresIn

GetHeader

GetHeaders

GetRefreshToken

GetStatusText

GetTokenError

GetTokenType

2.4.335.2 Syntax 2: for ResourceResponse objects

Description

Gets the response status code.

Applies to

ResourceResponse objects

Syntax

objectname.GetStatusCode ()

Table 2.770:

Argument Description

objectname A reference to the ResourceResponse object in which you want to get the
response status code.

Return value

Long.

Returns the response status code.

Examples

The following example shows the use of the GetStatusCode function to get the response
status code:

long ll_statuscode
ResourceResponse lnv_ResourceResponse

ll_statuscode = lnv_ResourceResponse.getstatuscode()

Statements, Events, and Functions

Page 817

See also

GetBody

GetHeader

GetHeaders

GetStatusText

2.4.336 GetStatusText

2.4.336.1 Syntax 1: for TokenResponse objects

Description

Gets the response status description.

Applies to

TokenResponse objects

Syntax

objectname.GetStatusText ()

Table 2.771:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
response status description.

Return value

String.

Returns the response status description.

Examples

The following example shows the use of the GetStatusText function to get the response status
text:

string ls_statustext
TokenResponse lnv_TokenResponse

ls_statustext = lnv_TokenResponse.getstatustext()

See also

GetAccessToken

GetBody

GetExpiresIn

GetHeader

GetHeaders

GetRefreshToken

GetStatusCode

Statements, Events, and Functions

Page 818

GetTokenError

GetTokenType

2.4.336.2 Syntax 2: for ResourceResponse objects

Description

Gets the response status description.

Applies to

ResourceResponse objects

Syntax

objectname.GetStatusText ()

Table 2.772:

Argument Description

objectname A reference to the ResourceResponse object in which you want to get the
response status description.

Return value

String.

Returns the response status description.

Examples

The following example shows the use of the GetStatusText function to get the response status
text:

string ls_statustext
ResourceResponse lnv_ResourceResponse

ls_statustext = lnv_ResourceResponse.getstatustext()

See also

GetBody

GetHeader

GetHeaders

GetStatusCode

2.4.337 GetStatus (obsolete)

Description

Returns the status of the EAServer transaction associated with the calling thread.

Obsolete function

GetStatus is obsolete, because EAServer is no longer supported since PowerBuilder
2017.

Applies to

Statements, Events, and Functions

Page 819

CORBACurrent objects

Syntax

CORBACurrent.GetStatus ()

Table 2.773:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance

Return value

Integer.

Returns -1 if an error occurs and one of the following positive integers if it succeeds:

1 -- Status active

2 -- Status marked rollback

3 -- Status prepared

4 -- Status committed

5 -- Status rolled back

6 -- Status unknown

7 -- Status no transaction

8 -- Status preparing

9 -- Status committing

10 -- Status rolling back

Usage

The GetStatus function can be used to determine the current status of a transaction by the
client or component that initiated the transaction using the BeginTransaction function.
EAServer must be using the two-phase commit transaction coordinator (OTS/XA).

GetStatus returns 1 when the transaction has started and no prepares have been issued.

When GetStatus returns 4 or 5, heuristics may exist; otherwise, the transaction would have
been completed and destroyed and the value 7 returned.

A return value of 6 indicates that the transaction is in a transient condition and a subsequent
call will eventually return another status.

If GetStatus returns 8, 9, or 10, the transaction has begun but not yet completed the process of
preparing, committing, or rolling back, probably because responses from participants in the
transaction are pending.

Examples

This example shows the use of GetStatus to obtain the state of the current transaction:

// Instance variable:
// CORBACurrent corbcurr
integer li_rc, li_status

li_rc = this.GetContextService("CORBACurrent", &

Statements, Events, and Functions

Page 820

 corbcurr)
IF li_rc <> 1 THEN
 // handle the error
END IF
li_rc = corbcurr.Init("iiop://jagserver:2000")
IF li_rc <> 1 THEN
 // handle the error
ELSE
 li_status = corbcurr.GetStatus()
 CHOOSE CASE li_status
 CASE 1
 // take appropriate action for each value
 ...
 END CHOOSE
END IF

See also

BeginTransaction (obsolete)

CommitDocking

GetContextService

GetTransactionName (obsolete)

Init (obsolete)

ResumeTransaction (obsolete)

RollbackOnly (obsolete)

RollbackTransaction (obsolete)

SetTimeout (obsolete)

SuspendTransaction (obsolete)

2.4.338 GetSyncRegistryProperties

Description

Returns an integer to determine whether to use synchronization properties saved in the
registry.

Applies to

MLSynchronization, MLSync controls

Syntax

syncObject.GetSyncRegistryProperties ()

Table 2.774:

Argument Description

syncObject The name of the synchronization object.

Return value

Integer.

Returns 1 for success and -1 for failure. Failure occurs if SyncRegistryKey property is not set
or if the key does not exist in the Windows registry.

Statements, Events, and Functions

Page 821

Usage

The GetSyncRegistryProperties function sets synchronization object properties from values
stored in the registry. The properties it can set include: AdditionalOpts, DownloadOnly,
ExtendedOpts, Host, LogFileName, LogOpts, MLServerVersion, MLUser, ObjectRevision,
Port, Publication, UploadOnly, UseLogFile, and UseWindow.

It cannot set secured properties such as AuthenticateParms, DBPass, and EncryptionKey that
are never saved to the Windows registry.

Examples

The MLSync object generated by the MobiLink wizard for SQL Anywhere uses the
following code in its Constructor event:

long rc
long RegistryRevision
RegistryRevision =this.GetObjectRevisionFromRegistry()
IF RegistryRevision < this.ObjectRevision THEN
 rc = this.SetSyncRegistryProperties()
ELSE
 rc = this.GetSyncRegistryProperties()
END IF

This code gets the values of authentication properties stored in the Windows registry only
if the build number stored in the registry is higher than the build number of the running
application.

See also

GetCommandString

GetObjectRevisionFromRegistry

SetParm

SetSyncRegistryProperties

2.4.339 GetTabButton

Description

Gets the tab button according to the handle in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetTabButton (Long ItemHandle, ref RibbonTabButtonItem Item)

Table 2.775:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the tab button you want to obtain.

Item A RibbonTabButtonItem variable in which you want to store the tab
button identified by the item handle.

Statements, Events, and Functions

Page 822

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get the tab button according to its index using the GetTabButtonByIndex
function.

You can also get an item according to the handle by using the GetItem function.

Examples

This example inserts a "MyTabButton" tab button and then gets a copy of the tab button
according to its handle.

Integer li_Return
Long ll_Handle
RibbonTabButtonItem lr_TabButton

ll_Handle = rbb_1.InsertTabButtonFirst ("MyTabButton", "ArrowUpSmall!",
 "Ue_TabButtonClicked")
li_Return = rbb_1.GetTabButton (ll_Handle, lr_TabButton)

See also

InsertTabButton

InsertTabButtonFirst

InsertTabButtonLast

DeleteTabButton

SetTabButton

GetTabButtonByIndex

GetTabButtonCount

2.4.340 GetTabButtonByIndex

Description

Gets the tab button according to the index in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.GetTabButtonByIndex (Long Index, ref RibbonTabButtonItem Item)

Table 2.776:

Argument Description

controlname The name of the RibbonBar control.

Index The index of the tab button you want to obtain.

Item A RibbonTabButtonItem variable in which you want to store the tab
button identified by the index.

Statements, Events, and Functions

Page 823

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also get the tab button according to its handle using the GetTabButton function.

Example 1

This example inserts a "MyTabButton" tab button and then gets a copy of the tab button
whose index number is 1.

Integer li_Return
Long ll_Handle
RibbonTabButtonItem lr_TabButton

ll_Handle = rbb_1.InsertTabButtonFirst ("MyTabButton", "ArrowUpSmall!",
 "Ue_TabButtonClicked")
li_Return = rbb_1.GetTabButtonByIndex (1, lr_TabButton)

Example 2

This example searches all tab buttons for the tab button whose tag value is "up".

String ls_path
Long ll_TabCount, ll_I
integer li_return
RibbonTabButtonItem lr_Tab
ls_path = "Saved Pictures\down.png"
ll_TabCount = Rbb_1.GetTabbuttoncount()
For ll_I = 1 To ll_TabCount
 If rbb_1.Gettabbuttonbyindex(ll_I, lr_Tab) = 1 Then
 If lr_Tab.tag = "up" Then
 lr_Tab.picturename = ls_path
 li_return = rbb_1.SetTabButton(lr_Tab.itemhandle, lr_Tab)
 End If
 End If
Next

See also

InsertTabButton

InsertTabButtonFirst

InsertTabButtonLast

DeleteTabButton

SetTabButton

GetTabButton

GetTabButtonCount

2.4.341 GetTabButtonCount

Description

Determines the total number of tab buttons in the RibbonBar control.

Applies to

Statements, Events, and Functions

Page 824

RibbonBar controls

Syntax

controlname.GetTabButtonCount ()

Table 2.777:

Argument Description

controlname The name of the RibbonBar control.

Return value

Long.

Returns the total number of tab buttons in RibbonBar. If RibbonBar contains no tab buttons,
returns 0. If an error occurs, returns -1.

Examples

Long ll_Return
ll_Return = rbb_1.GetTabButtonCount()

See also

InsertTabButton

InsertTabButtonFirst

InsertTabButtonLast

DeleteTabButton

SetTabButton

GetTabButton

GetTabButtonByIndex

2.4.342 GetText

Description

Returns the Value property as a text string with the specified Format or CustomFormat
applied.

Applies to

DatePicker controls

Syntax

controlname.GetText ()

Table 2.778:

Argument Description

controlname The name of the control for which you want to get the text

Return value

Statements, Events, and Functions

Page 825

String.

Usage

Returns the date and time stored in the Value property as a text string formatted according to
the Format property, or if Format is set to dtfCustom!, according to the format specified in
the CustomFormat property.

Examples

This example retrieves the date and time stored in the Value property of dp_1 to the string
ls_text:

string ls_text
ls_text = dp_1.GetText()

See also

GetValue

SetValue

2.4.343 GetTextColor

Description

Obtains the color of selected text in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.GetTextColor ()

Table 2.779:

Argument Description

rtename The name of the RichTextEdit control in which you want to find out the
color of selected text

Return value

Long.

Returns the long value that specifies the color of the currently selected text. If text of
different colors is selected, GetTextColor returns the color of the first selected character.
GetTextColor returns -1 if an error occurs.

Examples

This example stores a long representing the color of the selected text in rte_1:

long ll_color
ll_color = rte_1.GetTextColor()

See also

GetTextStyle

SetTextColor

Statements, Events, and Functions

Page 826

SetTextStyle

2.4.344 GetTextStyle

Description

Finds out whether selected text has text styles (such as bold or italic) assigned to it.

Applies to

RichTextEdit controls

Syntax

rtename.GetTextStyle (textstyle)

Table 2.780:

Argument Description

rtename The name of the RichTextEdit control in which you want to find the
formatting of selected text.

textstyle A value of the enumerated datatype TextStyle specifying the text style
you want to check for. Values are:

Bold!

Italic!

Strikeout!

Subscript!

Superscript!

Underlined!

Return value

Boolean. Returns true if the selected text is formatted with the specified text style and false if
it is not. If textstyle is null, GetTextStyle returns null.

Usage

Text can be formatted with more than one text style. To test for different styles, call
GetTextStyle more than once.

Examples

A previously defined structure is an instance variable istr_text for the current window.
The structure contains the boolean fields: b_isBold, b_isItalic, and b_isUnderlined. This
example checks whether the selected text has these styles and stores true or false values in the
structure for each style:

istr_text.b_isBold = rte_fancy.GetTextStyle(Bold!)
istr_text.b_isItalic = rte_fancy.GetTextStyle(Italic!)
istr_text.b_isUnderlined = &
 rte_fancy.GetTextStyle(Underlined!)

See also

GetTextColor

Statements, Events, and Functions

Page 827

SetSpacing

SetTextColor

SetTextStyle

2.4.345 GetTheme

Description

Gets the theme that is currently applied to the application UI.

Syntax

GetTheme ({boolean fullpath})

Table 2.781:

Argument Description

fullpath
(optional)

A boolean whose value indicates whether to get the path of the theme
file.

Return value

A string whose value is the theme name (or theme path and name) that is currently applied to
the application. If any argument's value is null, the method returns null.

An empty string will be returned if one of the following happens:

• if no theme is applied ("Do Not Use Themes" is selected in the Themes tab of the
Application Properties dialog), or

• if a theme is applied and the Windows classic style option is selected in the project painter
when building the application, or

• if a theme is applied and the application's executable file cannot find the "theme" folder at
runtime.

Examples

This example gets the theme name that is currently applied to the application:

String ls_themename
ls_themename = GetTheme()

See also

ApplyTheme

Specifying a theme for the application UI in Users Guide

2.4.346 GetToday

Description

Returns the value that the calendar uses as today's date.

Applies to

Statements, Events, and Functions

Page 828

DatePicker, MonthCalendar controls

Syntax

controlname.GetToday ()

Table 2.782:

Argument Description

controlname The name of the control for which you want to get today's date

Return value

Date.

Usage

By default, the current system date is set as the Today date. You can use the SetToday
function to specify a different date.

Examples

This example retrieves the Today date in a DatePicker control into currentdate:

Date currentdate
currentdate = dp_1.GetToday()

See also

SetToday

2.4.347 GetTokenError

Description

Gets the error information returned by the authorization server if the request privilege grant
failed.

Applies to

TokenResponse objects

Syntax

objectname.GetTokenError (string type, string description, string uri, string
 state)

Table 2.783:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
error information.

type A string specifying the error type.

description A string specifying the error description.

uri A string specifying the error URI.

state A string specifying the error state.

Return value

Statements, Events, and Functions

Page 829

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the GetTokenError function to get the error
information:

int li_return
string ls_type, ls_description, ls_uri, ls_state
TokenResponse lnv_tokenResponse

li_return = lnv_tokenResponse.gettokenerror(ls_type, ls_description, ls_uri,
 ls_state)

See also

GetAccessToken

GetBody

GetExpiresIn

GetHeader

GetHeaders

GetRefreshToken

GetStatusCode

GetStatusText

GetTokenType

2.4.348 GetTokenType

Description

Gets the access token type returned by the authorization server.

Applies to

TokenResponse objects

Syntax

objectname.GetTokenType ()

Table 2.784:

Argument Description

objectname A reference to the TokenResponse object in which you want to get the
access token type.

Return value

String.

Returns the access token type if it succeeds and empty string ("") if an error occurs.

Statements, Events, and Functions

Page 830

Examples

The following example shows the use of the GetTokenType function to get the token type:

string ls_tokentype
TokenResponse lnv_TokenResponse

ls_tokentype = lnv_TokenResponse.gettokentype()

See also

GetAccessToken

GetBody

GetExpiresIn

GetHeader

GetHeaders

GetRefreshToken

GetStatusCode

GetStatusText

GetTokenError

2.4.349 GetToolbar

Description

Gets the current values for alignment, visibility, and title of the specified toolbar.

Applies to

MDI frame and sheet windows

Syntax

window.GetToolbar (toolbarindex, visible {, alignment {, floatingtitle } })

Table 2.785:

Argument Description

window The MDI frame or sheet to which the toolbar belongs

toolbarindex An integer whose value is the index of the toolbar for which you want the
current settings

visible A boolean variable in which you want to store a value indicating whether
the toolbar is visible

alignment
(optional)

A variable of the ToolbarAlignment enumerated datatype in which you
want to store the current alignment of the toolbar

floatingtitle
(optional)

A string variable in which you want to store the toolbar title that is
displayed when the alignment is Floating!

Return value

Integer.

Statements, Events, and Functions

Page 831

Returns 1 if it succeeds. GetToolbar returns -1 if there is no toolbar for the index you specify
or if an error occurs. If any argument's value is null, returns null.

Usage

To find out the position of the docked or floating toolbar, call GetToolbarPos.

Examples

This example finds out whether toolbar 1 is visible. It also gets the alignment and title of
toolbar 1. The values are stored in the variables lb_visible, lta_align, and ls_title:

integer li_rtn
boolean lb_visible
toolbaralignment lta_align

li_rtn = w_frame.GetToolbar(1, lb_visible, &
 lta_align, ls_title)

This example displays the settings for the toolbar index the user specifies in sle_index. The
IF and CHOOSE CASE statements convert the values to strings so they can be displayed in
mle_toolbar:

integer li_index, li_rtn
boolean lb_visible
toolbaralignment lta_align
string ls_visible, ls_align, ls_title

li_index = Integer(sle_index.Text)
li_rtn = w_frame.GetToolbar(li_index, &
 lb_visible, lta_align, ls_title)

IF li_rtn = -1 THEN
 MessageBox("Toolbars", "Can't get" &
 + " toolbar settings.")
 RETURN -1
END IF

IF lb_visible = TRUE THEN
 ls_visible = "TRUE"
ELSE
 ls_visible = "FALSE"
END IF

CHOOSE CASE lta_align
 CASE AlignAtTop!
 ls_align = "top"
 CASE AlignAtLeft!
 ls_align = "left"
 CASE AlignAtRight!
 ls_align = "right"
 CASE AlignAtBottom!
 ls_align = "bottom"
 CASE Floating!
 ls_align = "floating"
END CHOOSE

mle_1.Text = ls_visible + "~r~n" &
 + ls_align + "~r~n" &
 + ls_title

See also

GetToolbarPos

Statements, Events, and Functions

Page 832

SetToolbar

SetToolbarPos

2.4.350 GetToolbarPos

Gets position information for the specified toolbar.

Table 2.786:

To get Use

Docking position of a docked toolbar Syntax 1

Coordinates and size of a floating toolbar Syntax 2

2.4.350.1 Syntax 1: For docked toolbars

Description

Gets the position of a docked toolbar.

Applies to

MDI frame and sheet windows

Syntax

window.GetToolbarPos (toolbarindex, dockrow, offset)

Table 2.787:

Argument Description

window The MDI frame or sheet to which the toolbar belongs.

toolbarindex An integer whose value is the index of the toolbar for which you want the
current settings.

dockrow An integer variable in which you want to store the number of the docking
row for the specified toolbar. Docking rows are numbered from left to
right or top to bottom.

offset An integer variable in which you want to store the offset of the toolbar
from the beginning of the docking row. For toolbars at the top or bottom,
offset is measured from the left edge. For toolbars at the left or right,
offset is measured from the top.

Return value

Integer.

Returns 1 if it succeeds. GetToolbarPos returns -1 if there is no toolbar for the index you
specify or if an error occurs. If any argument's value is null, GetToolbarPos returns null.

Usage

To find out whether the docked toolbar is at the top, bottom, left, or right edge of the
window, call GetToolbar.

Syntax 1 for GetToolbarPos gets the most recent docked position, even if the toolbar is
currently floating.

Statements, Events, and Functions

Page 833

Examples

In this example, the user has specified a toolbar index in sle_2. The example gets the toolbar
position information and displays it in a MultiLineEdit mle_1:

integer li_index, li_rtn
integer li_dockrow, li_offset

li_index = Integer(sle_2.Text)
li_rtn = w_frame.GetToolbarPos(li_index, &
 li_dockrow, li_offset)

// Report the position settings
IF li_rtn = 1 THEN
 mle_1.Text = String(li_dockrow) + "~r~n" &
 + String(li_offset)
ELSE
 mle_1.Text = "Can't get toolbar position"
END IF

See also

GetToolbar

SetToolbar

SetToolbarPos

2.4.350.2 Syntax 2: For floating toolbars

Description

Gets the position and size of a floating toolbar.

Applies to

MDI frame and sheet windows

Syntax

window.GetToolbarPos (toolbarindex, x, y, width, height)

Table 2.788:

Argument Description

window The MDI frame or sheet to which the toolbar belongs.

toolbarindex An integer whose value is the index of the toolbar for which you want the
current settings.

x An integer variable in which you want to store the x coordinate of the
floating toolbar. If the toolbar is docked, x is set to the most recent value.

y An integer variable in which you want to store the y coordinate of the
floating toolbar. If the toolbar is docked, y is set to the most recent value.

width An integer variable in which you want to store the width of the floating
toolbar. If the toolbar is docked, width is set to the most recent value.

height An integer variable in which you want to store the height of the floating
toolbar. If the toolbar is docked, height is set to the most recent value.

Return value

Statements, Events, and Functions

Page 834

Integer.

Returns 1 if it succeeds. GetToolbarPos returns -1 if there is no toolbar for the index you
specify or if an error occurs. If any argument's value is null, returns null.

Usage

To find out whether the toolbar is floating, call GetToolbar.

Syntax 2 for GetToolbarPos gets the most recent floating position, even if the toolbar is
currently docked.

Examples

This example gets the x and y coordinates and the width and height of

toolbar 1:

int ix, iy, iw, ih, li_rtn

li_rtn = w_frame.GetToolbarPos(1, ix, iy, iw, ih)
IF li_rtn = -1 THEN
 mle_1.Text = "Can't get toolbar position"
ELSE
 mle_1.Text = String(ix) + "~r~n" &
 + String(iy) + "~r~n" &
 + String(iw) + "~r~n" &
 + String(ih)
END IF

See also

GetToolbar

SetToolbar

SetToolbarPos

2.4.351 GetTransactionName (obsolete)

Description

Returns a string describing the EAServer transaction associated with the calling thread.

Obsolete function

GetTransactionName is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

CORBACurrent objects

Syntax

CORBACurrent.GetTransactionName ()

Table 2.789:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance

Statements, Events, and Functions

Page 835

Return value

String.

Returns a printable string describing the transaction if a transaction exists and an empty string
otherwise.

Usage

The GetTransactionName function returns a string identifying the transaction associated with
the calling thread. This string is typically used for debugging.

GetTransactionName can be called by a client or a component that is marked as OTS style.
EAServer must be using the two-phase commit transaction coordinator (OTS/XA).

Examples

This example shows the use of GetTransactionName to return information about a transaction
to a client:

// Instance variables:
// CORBACurrent corbcurr
string ls_transacname

// Get an instance of the CORBACurrent object
// and initialize it
...
ls_transacname = corbcurr.GetTransactionName()
 MessageBox("Transaction Name", ls_transacname)

See also

BeginTransaction (obsolete)

CommitDocking

GetContextService

GetStatus (obsolete)

Init (obsolete)

ResumeTransaction (obsolete)

RollbackOnly (obsolete)

RollbackTransaction (obsolete)

SetTimeout (obsolete)

SuspendTransaction (obsolete)

2.4.352 GetURL

Description

Returns HTML for the specified URL.

Applies to

Inet objects (Obsolete)

Syntax

servicereference.GetURL (urlname, data)

Statements, Events, and Functions

Page 836

Table 2.790:

Argument Description

servicereference Reference to the Internet service instance

urlname String specifying the URL whose source data is returned in data

data InternetResult descendant containing an overridden InternetData function
that handles the HTML source for urlname

Return value

Integer.

Returns values as follows:

1 -- Success

-1 -- General error

-2 -- Invalid URL

-4 -- Cannot connect to the Internet

Usage

Call this function to access HTML source for a URL.

Data references a standard class user object that descends from InternetResult and that has an
overridden InternetData function. This overridden function then performs the processing you
want with the returned HTML. Because the Internet returns data asynchronously, data must
reference a variable that remains in scope after the function executes (such as a window-level
instance variable).

For more information on the InternetResult standard class user object and the InternetData
function, use the PowerBuilder Browser.

Timeout value for retrieving HTML source

The GetURL function relies on wininet.dll to obtain the HTML source and returns
-1 when the retrieval time exceeds the DLL timeout value. When you install Internet
Explorer 7 or later, the default timeout value for this DLL is 30 seconds. Although it
is possible to change the timeout value by configuring a DWORD ReceiveTimeOut
registry key under HKEY_CURRENT_USER\ SOFTWARE\Microsoft\Windows
\CurrentVersion\Internet Settings, this is not recommended, since it can also affect the
behavior of the Internet Explorer browser.

Examples

This example calls the GetURL function. Iinet_base is an instance variable of type inet:

iir_msgbox = CREATE n_ir_msgbox
iinet_base.GetURL(sle_url.text, iir_msgbox)

See also

HyperLinkToURL

InternetData

Statements, Events, and Functions

Page 837

PostURL

2.4.353 GetValue

Gets the value from a control.

Table 2.791:

To obtain Use

The date and time in the Value property of the DatePicker control. Syntax 1

The value of the key of the JSONPackage object Syntax 2

2.4.353.1 Syntax 1: for DatePicker control

Description

Returns the date and time in the Value property of the control.

Applies to

DatePicker control

Syntax

controlname.GetValue (d, t)
controlname.GetValue (dt)

Table 2.792:

Argument Description

controlname The name of the control for which you want to get the date and time

d The date value in the Value property returned by reference

t The time value in the Value property returned by reference

dt The DateTime value in the Value property returned by reference

Return value

Integer.

Returns 1 for success and one of the following negative values for failure:

-1 -- Invalid date and/or time values

-2 -- Other error

Usage

The GetValue function can return the date and time parts of the Value property in separate
date and time variables or a single DateTime variable.

Examples

In this example, the GetValue function is called twice, once to return separate date and time
values and once to return a DateTime value. The values returned are written to a multiline
edit control:

date d

Statements, Events, and Functions

Page 838

time t
datetime dt
integer li_ret1, li_ret2

li_ret1 = dp_1.GetValue(d, t)
li_ret2 = dp_1.GetValue(dt)

mle_1.text += string(d) + " ~r~n"
mle_1.text += string(t) + " ~r~n"
mle_1.text += string(dt) + " ~r~n"

See also

GetText

SetValue

2.4.353.2 Syntax 2: for JSONPackage object

Description

Gets the value of the key. The key item must be a string, object, or array.

If more than one key with the same name exists, then get the value of the first key. Notice
that the IgnoreCase property (true by default) determines whether the key name will be
matched in a case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.GetValue (Key)

Table 2.793:

Argument Description

objectname The name of the JSONPackage object

Key A string specifying the key. If more than one key with the same name
already exists, the value of the first key will be obtained.

Return value

String. Returns the key value if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

This example gets data from the server and then imports the data to the DataWindow,
DataStore and DataWindowChild controls:

int li_rc
string ls_JsonPackage, ls_DepartmentJson, ls_EmployeeJson, ls_DeptJson
datastore lds_employee
datawindowchild ldwc_dept
HttpClient lnv_HttpClient
JsonPackage lnv_package

lds_employee = create datastore
lds_employee.dataobject = "d_employee"

Statements, Events, and Functions

Page 839

dw_employee.getchild("dept_id", ldwc_dept)

lnv_HttpClient = create HttpClient
lnv_package = create JsonPackage

// Request JSON data package from the server
li_rc = lnv_HttpClient.SendRequest("GET", "https://demo.appeon.com/PB/
webapi_client/getjsonpackage/employee/102")

// Get the data
if li_rc = 1 and lnv_HttpClient.GetResponseStatusCode() = 200 then
 lnv_HttpClient.GetResponseBody(ls_JsonPackage)

 // Extract the JSON data package
 lnv_package.LoadString(ls_JsonPackage)
 ls_DepartmentJson = lnv_package.GetValue("d_department")
 ls_EmployeeJson = lnv_package.GetValue("d_employee")
 ls_DeptJson = lnv_package.GetValue("dddw_dept")

 // Import data to DataWindow, DataStore and DataWindowChild
 dw_department.ImportJson(ls_DepartmentJson)
 lds_employee.ImportJson(ls_EmployeeJson)
 ldwc_dept.ImportJson(ls_DeptJson)
end if

See also

SetValue

2.4.354 GetValueBlob

Description

Gets the blob value of the key.

If more than one key with the same name exists, then get the value of the first key. Notice
that the IgnoreCase property (true by default) determines whether the key name will be
matched in a case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.GetValueBlob (Key)

Table 2.794:

Argument Description

objectname The name of the JSONPackage object

Key A string specifying the key of the item of JsonStringItem type. If more
than one key with the same name already exists, the value of the first key
will be obtained.

Return value

Blob. Returns the key value if it succeeds. If any argument's value is null, the method returns
null. If an error occurs, throw the exception.

Statements, Events, and Functions

Page 840

Examples

This example obtains the picture path (a blob value) from the JSON string.

// Blob GetValueBlob (string Key)
String ls_PicturePath
JsonPackage ljpk_User
ljpk_User = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_User.loadstring ('{"id":100, "name":"Henry.Ken", "birthday":"1998-01-01",
 "picturepath":"QTpcV29ya0RvY3VtZW50XFVwZ3JhZGVc5Zu+54mHXGF1dG9ydW4uQk1Q" }')
// Gets the key value: A:\WorkDocument\Upgrade\images\autorun.BMP
ls_PicturePath = String(ljpk_User.GetValueBlob("picturepath"),EncodingUTF8!)

See also

SetValueBlob

GetValueBoolean

GetValueDate

GetValueDateTime

GetValueNumber

GetValueString

GetValueTime

GetValueToDataWindow

2.4.355 GetValueBoolean

Description

Gets the boolean value of the key.

If more than one key with the same name exists, then get the value of the first key. Notice
that the IgnoreCase property (true by default) determines whether the key name will be
matched in a case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.GetValueBoolean (Key)

Table 2.795:

Argument Description

objectname The name of the JSONPackage object

Key A string specifying the key of the item of JsonBooleanItem type. If more
than one key with the same name already exists, the value of the first key
will be obtained.

Return value

Statements, Events, and Functions

Page 841

Boolean. Returns the key value if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

This example gets the boolean value of the Status key from the JSON string.

// Boolean GetValueBoolean (string Key)
Boolean lbl_Status
JsonPackage ljpk_Dept
ljpk_Dept = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_Dept.loadstring('{"dept_id":100, "dept_name":"R & D8", "Status":true}')
// Checks if the type of the key value is boolean
If ljpk_Dept.GetItemType("Status") = JsonBooleanItem! Then
 lbl_Status = ljpk_Dept.GetValueBoolean("Status") // Gets the key value
 If Not(lbl_Status) Then // If the return value is not true
 // Prints the error message
 End If
End If

See also

SetValueBoolean

GetValueBlob

GetValueDate

GetValueDateTime

GetValueNumber

GetValueString

GetValueTime

GetValueToDataWindow

2.4.356 GetValueDate

Description

Gets the date value of the key.

If more than one key with the same name exists, then get the value of the first key. Notice
that the IgnoreCase property (true by default) determines whether the key name will be
matched in a case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.GetValueDate (Key)

Table 2.796:

Argument Description

objectname The name of the JSONPackage object

Statements, Events, and Functions

Page 842

Argument Description

Key A string specifying the key of the item of JsonStringItem type. If more
than one key with the same name already exists, the value of the first key
will be obtained.

Return value

Date. Returns the key value if it succeeds. If any argument's value is null, the method returns
null. If an error occurs, throw the exception.

Examples

This example obtains the value of the birthday key from the JSON string, and converts the
value from a string to a date.

The developer is recommended to check if the type of the key value is date before executing
GetValueDate. If it is not a valid date-type value or it is a datetime-type value, the program
will throw an exception.

// Date GetValueDate (string Key)
Date ld_Birthday
JsonPackage ljpk_User
ljpk_User = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_User.loadstring('{"id":100,"name":"Henry.Ken","birthday":"1998-12-01
 ","CreateDate":1543900359 }')
// Gets the value of the birthday key
ld_Birthday = ljpk_User.GetValueDate("birthday")

See also

SetValueDate

GetValueBlob

GetValueBoolean

GetValueDateTime

GetValueNumber

GetValueString

GetValueTime

GetValueToDataWindow

2.4.357 GetValueDateTime

Description

Gets the datetime value of the key.

If more than one key with the same name exists, then get the value of the first key. Notice
that the IgnoreCase property (true by default) determines whether the key name will be
matched in a case-sensitive manner.

Applies to

JSONPackage

Statements, Events, and Functions

Page 843

Syntax

objectname.GetValueDateTime (Key)

Table 2.797:

Argument Description

objectname The name of the JSONPackage object

Key A string specifying the key of the item of JsonStringItem or
JsonNumberItem type. For the JsonStringItem type, formats such as
"yyyy-mm-dd hh:mm:ss" are supported. If the item value is a number
(UTC timestamp), the returned datetime value will be the local datetime
converted using the local timezone. If the item value is a string, the
returned datetime value will not be converted using a timezone.

If more than one key with the same name already exists, the value of the
first key will be obtained.

Return value

DateTime. Returns the key value if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

This example obtains the datetime value of the birthday key from the JSON string.

GetValueDateTime can also get the long-type value or the string-type value. The developer is
recommended to check if the type of a string-type value is datetime, otherwise, the program
may throw an exception.

// DateTime GetValueDateTime (string Key)
DateTime ldt_CreateDate,ldt_Birthday
JsonPackage ljpk_User
ljpk_User = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_User.loadstring('{"id":100,"name":"Henry.Ken","birthday":"1998-12-01
 08:02:30","CreateDate":1543900359 }')
// GetValueDateTime can also get a long value such as CreateDate
ldt_CreateDate = ljpk_User.GetValueDateTime("CreateDate")
ldt_Birthday = ljpk_User.GetValueDateTime("birthday")

See also

SetValueDateTime

GetValueBlob

GetValueBoolean

GetValueDate

GetValueNumber

GetValueString

GetValueTime

GetValueToDataWindow

Statements, Events, and Functions

Page 844

2.4.358 GetValueNumber

Description

Gets the number value of the key.

If more than one key with the same name exists, then get the value of the first key. Notice
that the IgnoreCase property (true by default) determines whether the key name will be
matched in a case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.GetValueNumber (Key)

Table 2.798:

Argument Description

objectname The name of the JSONPackage object

Key A string specifying the key of the item of JsonNumberItem type. If more
than one key with the same name already exists, the value of the first key
will be obtained.

Return value

Number. Returns the key value if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

This example gets the value of the dept_id key in the JSON string.

// Double GetValueNumber (string Key)
Double ldb_DeptID
JsonPackage ljp_Dept
ljp_Dept = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljp_Dept.loadstring('{"dept_id":100,"dept_name":"R & D8","dept_head_id":105}')
// Gets the key value: ldb_DeptID = 100
ldb_DeptID = ljp_Dept.GetValueNumber("dept_id")

See also

SetValueNumber

GetValueBlob

GetValueBoolean

GetValueDate

GetValueDateTime

GetValueString

GetValueTime

GetValueToDataWindow

Statements, Events, and Functions

Page 845

2.4.359 GetValueString

Description

Gets the string value of the key.

If more than one key with the same name exists, then get the value of the first key. Notice
that the IgnoreCase property (true by default) determines whether the key name will be
matched in a case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.GetValueString (Key)

Table 2.799:

Argument Description

objectname The name of the JSONPackage object

Key A string specifying the key of the item of JsonStringItem type. If more
than one key with the same name already exists, the value of the first key
will be obtained.

Return value

String. Returns the key value if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

This example obtains the string value ("R & D8") of the dept_name key from the JSON
string.

// String GetValueString (string Key)
String ls_DeptName
JsonPackage ljp_Dept
ljp_Dept = Create JsonPackage

// Loads the JSON string to the JSONPackage object.
ljp_Dept.loadstring('{"dept_id":100,"dept_name":"R & D8","dept_head_id":105}')
// Gets the key value: ls_DeptName = R & D8
ls_DeptName = ljp_Dept.GetValueString ("dept_name")

See also

SetValueString

GetValueBlob

GetValueBoolean

GetValueDate

GetValueDateTime

GetValueNumber

GetValueTime

Statements, Events, and Functions

Page 846

GetValueToDataWindow

2.4.360 GetValueTime

Description

Gets the time value of the key.

If more than one key with the same name exists, then get the value of the first key. Notice
that the IgnoreCase property (true by default) determines whether the key name will be
matched in a case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.GetValueTime (Key)

Table 2.800:

Argument Description

objectname The name of the JSONPackage object

Key A string specifying the key of the item of JsonStringItem type. If more
than one key with the same name already exists, the value of the first key
will be obtained.

Return value

Time. Returns the key value if it succeeds. If any argument's value is null, the method returns
null. If an error occurs, throw the exception.

Examples

This example obtains the time value of the starttime key from the JSON string.

// Time GetValueTime (string Key)
Time lt_Start
JsonPackage ljpk_User
ljpk_User = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_User.loadstring('{"id":100,"name":"Henry.Ken","starttime":"08:02:30","endtime":1543900359 }')
// Gets the value of the starttime key: lt_Start = 08:02:30
lt_Start = ljpk_User.GetValueTime("starttime")

See also

SetValueTime

GetValueBlob

GetValueBoolean

GetValueDate

GetValueDateTime

GetValueNumber

GetValueString

Statements, Events, and Functions

Page 847

GetValueToDataWindow

2.4.361 GetValueToDataWindow

Description

Gets the value of the key and inserts it into a DataWindow control, DataStore object, or
DataWindowChild object.

If more than one key with the same name exists, then get the value of the first key. Notice
that the IgnoreCase property (true by default) determines whether the key name will be
matched in a case-sensitive manner.

This function will fail to import data properly, if the DataWindow is in query mode.

Applies to

JSONPackage

Syntax

objectname.GetValueToDataWindow (string key, dwcontrol DWControl {, boolean
 resetflag} {, string error} {, DWBuffer dwbuffer {, long startrow {, long
 endrow } } })

Table 2.801:

Argument Description

objectname The name of the JSONPackage object

Key A string specifying the key of the item of JsonStringItem type. The key
value is the JSON-formatted data which is in the format described in
Section 4.7.1, “Supported JSON formats” in Application Techniques.
If it is DataWindow JSON, GetValueToDataWindow will ignore the
mapping-method element of the JSON data.

dwcontrol A reference to a DataWindow control, DataStore, or DataWindowChild.

resetflag
(optional)

A boolean value specifying whether dwcontrol should automatically reset
the update flag. The default is TRUE.

error (optional) A variable into which the returned warning or error message will be
placed.

When there are a large amount of error messages, the error information
will only display the total number of errors, and the detailed message of
the first 10 errors.

The import warning caused by data type mismatch will not affect the
return value of ImportJsonByKey; although the data of the mismatched
columns will not be imported, the rest columns (even only one column)
that are matched will be imported successfully; and that row will be
regarded as a successful import and counted into the return value.

The import error caused by DW presentation style mismatch, invalid
arguments, startrow value greater than the number of rows,etc. will
be regarded as a failure, and represented by a negative return value of
GetValueToDataWindow, instead of being placed into this variable. See
the Return Value section for more.

Statements, Events, and Functions

Page 848

Argument Description
Most of the messages placed into this variable are warnings (such as data
type mismatch) rather than errors. Developers can adjust the JSON data
according to the message or simply ignore the message if the problematic
column is not critical and the corresponding DataWindow column can be
left blank.

dwbuffer
(optional)

A value of the dwBuffer enumerated datatype identifying the
DataWindow buffer from which you want to import the data. For a list of
valid values, see Section 6.9, “DWBuffer” in DataWindow Reference.

For plain JSON: If not specified, imports the JSON data to the Primary!
buffer. If specified, imports the JSON data to the specified buffer.

For DataWindow JSON: If not specified, imports data of all of the
buffers from the JSON string to the corresponding buffers and, if any,
imports the data for DataWindowChild. If specified, imports data of the
specified buffer from the JSON string to the corresponding buffer.

startrow
(optional)

The number of the first detail object in the JSON Array that you want to
import. The default is 1. If it is 0 or negative, 1 is used.

endrow
(optional)

The number of the last detail object in the JSON Array that you want
to import. The default is the rest of the objects. If it is 0 or negative, it
indicates the rest of rows.

Return value

Long. Returns the number of rows that were imported if it succeeds and one of the following
negative integers if an error occurs. The return value will count the rows imported into the
primary, filter, and delete buffers, but not the rows imported into DataWindowChild.

0 -- When all of the data in the JSON string is null, or the JSON string only contains data for
DataWindowChild, or no JSON key matches with the DataWindow column.

-1 -- General error.

-2 -- No row is supplied or the startrow value supplied is greater than the number of rows in
the JSON data.

-3 -- Invalid argument.

-4 -- Invalid JSON.

-5 -- JSON format error.

-6 -- Unsupported DataWindow presentation style for import.

-7 -- Error resolving DataWindow nesting.

The method returns null if any of the following:

• any argument's value is null

• the DataWindow object (dataobject) is invalid

Usage

Statements, Events, and Functions

Page 849

There is no forced conversion between strings and numbers. For example, the number 123
in JSON string will not be imported into the DataWindow column of char(10) type. For such
case, a data type mismatch warning will be recorded in the error argument.

A boolean value (true or false) will be converted to 0 or 1 when imported from the JSON
string to the DataWindow; however, 0 or 1 will not be converted to a boolean value (true or
false) when exported from the DataWindow to the JSON string.

If the string length in JSON is larger than the string length in DataWindow, the string
will be truncated when imported into the DataWindow. For example, JSON string
[{"name":"TestForTrancate"}] is imported as "Test" when the data type of DataWindow
column "name" is char(4).

When the number value is imported from the JSON string to the DataWindow column of
number data type (with uncertain precision), the value will have uncertain decimals, for
example, 6.78 becomes 6.78000020980835 after imported from the JSON string to the
DataWindow.

Example 1

This example obtains the key value from the JSON string and sets the value to DataWindow.

// long GetValueToDataWindow (string key, dwcontrol DWControl)
Integer li_Return
JsonPackage ljpk_Dept
ljpk_Dept = Create JsonPackage

// The DataWindow column name and type must match with that in the JSON string
dw_Dept.DataObject = "d_example_dept"

// Loads the DataWindow JSON string to the JsonPackage object
ljpk_Dept.LoadString('{"name":"Powerbuilder", "dept":
{"identity":"70c86603-983b-4bd9-adbc-259436e43cbd", "version":1,
 "platform":"PowerBuilder", "mapping-method":0, "dataobject":
{"name":"d_example_dept", "meta-columns":[{"name":"dept_id", "index":0,
 "datatype":"long", "nullable":1}, {"name":"dept_name", "index":1,
 "datatype":"string", "nullable":1}, {"name":"dept_head_id", "index":2,
 "datatype":"long", "nullable":1}], "primary-rows":[{"row-status":0, "columns":
{"dept_id":[100], "dept_name":["R & D8"], "dept_head_id":[105]}}, {"row-status":0,
 "columns":{"dept_id":[200], "dept_name":["Sales"], "dept_head_id":[129]}}, {"row-
status":0, "columns":{"dept_id":[300], "dept_name":["Finance"], "dept_head_id":
[102]}}, {"row-status":0, "columns":{"dept_id":[400], "dept_name":["Marketing"],
 "dept_head_id":[1576]}}, {"row-status":0, "columns":{"dept_id":[500], "dept_name":
["Shipping"], "dept_head_id":[703]}}, {"row-status":0, "columns":{"dept_id":[999],
 "dept_name":["test4"], "dept_head_id":[null]}}]}}}')
// Loads the data from the JSON string to DataWindow
li_Return = ljpk_Dept.GetValueToDatawindow ("dept", dw_Dept)
If li_Return <= 0 Then
 // Prints the error message
End If

// Loads the plain JSON string to the JsonPackage object
ljpk_Dept.LoadString('{"dept2":[{"dept_id":100, "dept_name":"R & D8",
 "dept_head_id":105}, {"dept_id":200, "dept_name":"Sales", "dept_head_id":129},
 {"dept_id":300, "dept_name":"Finance", "dept_head_id":102}, {"dept_id":400,
 "dept_name":"Marketing", "dept_head_id":1576}, {"dept_id":500,
 "dept_name":"Shipping", "dept_head_id":703}]}')
// Loads the data from the JSON string to DataWindow
li_Return = ljpk_Dept.GetValueToDatawindow ("dept2", dw_Dept)
If li_Return <= 0 Then
 // Prints the error message
End If

Statements, Events, and Functions

Page 850

Example 2

This example obtains the data in rows 2 through 4 from the JSON string and sets the data to
DataWindow.

// long GetValueToDataWindow (string key, dwcontrol DWControl, boolean resetflag,
 DWBuffer dwbuffer, long startrow, long endrow)
Integer li_Return
JsonPackage ljpk_Dept
ljpk_Dept = Create JsonPackage

// The DataWindow column name and type must match with that in the JSON string
dw_Dept.DataObject = "d_example_dept"

ljpk_Dept.LoadString('{"dept":[{"dept_id":100, "dept_name":"R & D8",
 "dept_head_id":105}, {"dept_id":200, "dept_name":"Sales", "dept_head_id":129},
 {"dept_id":300, "dept_name":"Finance", "dept_head_id":102}, {"dept_id":400,
 "dept_name":"Marketing", "dept_head_id":1576}, {"dept_id":500,
 "dept_name":"Shipping", "dept_head_id":703}]}')
// Loads the data from the JSON string to DataWindow: startrow:2, endrow:4.
// GetValueToDataWindow returns 3, indicating 3 rows have been imported.
li_Return = ljpk_Dept.GetValueToDataWindow("dept", dw_Dept, False, Filter!, 2, 4)

dw_Dept.SetFilter("") // Displays the data imported to the Filter buffer
dw_Dept.Filter()

Example 3

This example obtains the key value from the JSON string and imports the value to the
specified DataWindow buffer.

// long GetValueToDataWindow (string key, dwcontrol DWControl, string error,
 DWBuffer dwbuffer)
Integer li_Return
String ls_Error
JsonPackage ljpk_Dept
ljpk_Dept = Create JsonPackage

// The DataWindow column name and type must match with that in the JSON string
dw_Dept.DataObject = "d_example_dept"

ljpk_Dept.LoadString('{"dept1":
[{"dept_id":500,"dept_name":"Shipping","dept_head_id":703}],"dept2":
[{"dept_id":"100","dept_name":"R & D8","dept_head_id":"test"}]}') // 105
// Loads the data of dept1 from the JSON string to DataWindow
li_Return = ljpk_Dept.GetValueToDataWindow("dept1", dw_Dept, ls_Error, Primary!)
// Prints ls_error. It is an empty string.

// Loads the data of dept2 from the JSON string.
// The value type in the JSON string does not match with that in the DataWindow.
 Error is saved to ls_Error.
li_Return = ljpk_Dept.GetValueToDataWindow("dept2", dw_Dept, ls_Error, Primary!)
// Prints ls_Error.
// Total errors: 2
// Row 1, node "dept_id" in the JSON object has a different data type from column 1
 in the Primary buffer.
// Row 1, node "dept_head_id" in the JSON object has a different data type from
 column 3 in the Primary buffer.

See also

SetValueByDataWindow

GetValueBlob

Statements, Events, and Functions

Page 851

GetValueBoolean

GetValueDate

GetValueDateTime

GetValueNumber

GetValueString

GetValueTime

2.4.362 GetVersionName

Description

Gets complete version information for the current PowerBuilder execution context. A
complete version includes a major version, a minor version, and a fix level (such as 8.0.3).

Applies to

ContextInformation objects

Syntax

servicereference.GetVersionName (name)

Table 2.802:

Argument Description

servicereference Reference to the ContextInformation service instance.

name String into which the function places the version name. This argument is
passed by reference.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function to determine the maintenance level of the current context.

Examples

This example calls the GetVersionName function. ci is an instance variable of type
ContextInformation:

String ls_name
String ls_version
Constant String ls_currver = "8.0.3"

GetContextService("ContextInformation", ci)
ci.GetVersionName(ls_version)
IF ls_version <> ls_currver THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
END IF

See also

Statements, Events, and Functions

Page 852

GetCompanyName

GetFixesVersion

GetHostObject

GetMajorVersion

GetMinorVersion

GetName

GetShortName

2.4.363 GoBack

Description

Goes back from the current page to the last page.

This function is effective only when the canGoBack parameter of the
NavigationStateChanged event is TRUE.

Applies to

WebBrowser controls

Syntax

controlname.GoBack ()

Table 2.803:

Argument Description

controlname The name of the WebBrowser control.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Examples

Integer li_rtn
li_rtn = wb_1.goback()

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoForward

Navigate

PrintAsPDF

PauseDownload

Statements, Events, and Functions

Page 853

RegisterEvent

ResumeDownload

Refresh

StopNavigation

UnregisterEvent

Zoom

2.4.364 GoForward

Description

Jumps from the current page to the next page.

This function is effective only when the canGoForward parameter of the
NavigationStateChanged event is TRUE.

Applies to

WebBrowser controls

Syntax

controlname.GoForward ()

Table 2.804:

Argument Description

controlname The name of the WebBrowser control.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Examples

Integer li_rtn
li_rtn = wb_1.GoForward()

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

Navigate

PrintAsPDF

PauseDownload

RegisterEvent

Statements, Events, and Functions

Page 854

ResumeDownload

Refresh

StopNavigation

UnregisterEvent

Zoom

2.4.365 Handle

Description

Obtains the Windows handle of a PowerBuilder object. You can get the handle of the
application, a window, or a control, but not a drawing object.

Syntax

Handle (objectname {, previous })

Table 2.805:

Argument Description

objectname The name of the PowerBuilder object for which you want the handle.
Objectname can be any PowerBuilder object, including an application or
control, but cannot be a drawing object.

previous
(optional)

(Obsolete argument) A boolean indicating whether you want the handle
of the previous instance of an application. You can use this argument
with the Application object only.

In current versions of Windows, Handle always returns 0 when this
argument is set to true.

Return value

Long. Returns the handle of objectname. If objectname is an application and previous is true,
Handle always returns 0.

If objectname cannot be referenced at runtime, Handle returns 0 (for example, if objectname
is a window and is not open).

Usage

Use Handle when you need an object handle as an argument to Windows Software
Development Kit (SDK) functions or the PowerBuilder Send function.

Use IsValid instead of the Handle function to determine whether a window is open.

When you ask for the handle of the application, Handle returns 0 when you are using the
PowerBuilder Run command. As far as Windows is concerned, your application does not
have a handle when it is run from PowerBuilder. When you build and run an executable
version of your application, the Handle function returns a valid handle for the application.

If you ask for the handle of a previous instance of an application by setting the previous
flag to true, Handle always returns 0 in current versions of Windows. Use the Windows
FindWindow function to determine whether an instance of the application's main window is
already open.

Statements, Events, and Functions

Page 855

Examples

This statement returns the handle to the window w_child:

Handle(w_child)

These statements use an external function called FlashWindow to change the title bar of a
window to inactive and then return it to active. The external function declaration is:

function boolean flashwindow(uint hnd, boolean inst) & library "user.exe"

The code that flashes the window's title bar is:

integer nLoop // Loop counter
long hWnd // Handle to control

// Get the handle to a PowerBuilder window.
hWnd = Handle(Parent)
// Make the title bar flash 300 times.
FOR nLoop = 1 to 300
 FlashWindow (hWnd, true)
NEXT
// Return the window to its original state.
FlashWindow (hWnd, FALSE)

For applications, the Handle function does not return a useful value when the previous flag
is true. You can use the FindWindow Windows function to determine whether a Windows
application is already running. FindWindow returns the handle of a window with a given
title.

Declare FindWindow and SetForegroundWindow as global external functions:

PUBLIC FUNCTION unsignedlong FindWindow (long &
 classname, string windowname) LIBRARY "user32.dll" &
 ALIAS FOR FindWindowW
PUBLIC FUNCTION int SetForegroundWindow (unsignedlong &
 hwnd) LIBRARY "user32.dll" ALIAS FOR &
 SetForegroundWindowW

Then add code like the following to your application's Open event:

unsignedlong hwnd

hwnd = FindWindow(0, "Main Window")
if hwnd = 0 then
 // no previous instance, so open the main window
 open(w_main)
else
 // open the previous instance window and halt
 SetForegroundWindow(hwnd)
 HALT CLOSE
end if

See also

Send

2.4.366 HexDecode

Description

Decodes a string value using Hex decoder.

Statements, Events, and Functions

Page 856

Applies to

CoderObject object

Syntax

coder.HexDecode (variable)

Table 2.806:

Argument Description

coder The name of the CoderObject object.

variable A string whose value is the data you want to decode with Hex decoder.

Return value

Blob. Returns the result of the decoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement decodes the data that is encoded using Hex.

Blob lblb_data
String ls_HexStr

CoderObject lnv_CoderObject
lnv_CoderObject = Create CoderObject

// ls_HexStr = lnv_CoderObject.HexEncode(Blob("Test Hex", EncodingANSI!))
ls_HexStr = "5465737420486578"

lblb_data = lnv_CoderObject.HexDecode(ls_HexStr)
messagebox("HexDecode", string(lblb_data, EncodingANSI!))

See also

HexEncode

Base32Decode

Base32Encode

Base64Decode

Base64Encode

Base64UrlDecode

Base64UrlEncode

UrlEncode

UrlDecode

2.4.367 HexEncode

Description

Encodes a blob value using Hex encoder.

Applies to

Statements, Events, and Functions

Page 857

CoderObject object

Syntax

coder.HexEncode (variable)

Table 2.807:

Argument Description

coder The name of the CoderObject object.

variable A blob whose value is the data you want to encode with Hex encoder.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

Return value

String. Returns the result of the encoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement encodes the data using Hex and returns the encoded data.

Blob lblb_data
String ls_HexStr

lblb_data = Blob("Test Hex", EncodingANSI!)

CoderObject lnv_CoderObject
lnv_CoderObject = Create CoderObject

ls_HexStr = lnv_CoderObject.HexEncode(lblb_data)

See also

HexDecode

Base32Decode

Base32Encode

Base64Decode

Base64Encode

Base64UrlDecode

Base64UrlEncode

UrlEncode

UrlDecode

2.4.368 Hide

Description

Makes an object or control invisible. Users cannot interact with an invisible object. It does
not respond to any events, so the object is also, in effect, disabled.

Statements, Events, and Functions

Page 858

Applies to

Any object

Syntax

objectname.Hide ()

Table 2.808:

Argument Description

objectname The name of the object or control you want to make invisible

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If objectname is null, Hide returns null.

Usage

If the object you want to hide is already invisible, then Hide has no effect.

You cannot use Hide to hide a drop-down or cascading menu or any menu that has an MDI
frame window as its parent window. Nor can you hide a window that has been opened as an
MDI sheet.

You can use the Disable function to disable menu items, which displays them in the disabled
color and makes them inactive.

To disable an object so that it does not respond to events, but is still visible, set its Enabled
property.

You can set an object's Visible property instead of calling Hide:

objectname.Visible = false

This statement:

lb_Options.Visible = FALSE

is equivalent to:

lb_Options.Hide()

Examples

This statement hides the ListBox lb_options:

lb_options.Hide()

In the script for a menu item, this statement hides the CommandButton cb_delete on the
active sheet in the MDI frame w_mdi. The active sheets are of type w_sheet:

w_sheet w_active
w_active = w_mdi.GetActiveSheet()
IF IsValid(w_active) THEN w_active.cb_delete.Hide()

See also

Show

Statements, Events, and Functions

Page 859

2.4.369 HMAC

Description

Calculates the HMAC value of a blob.

Applies to

CrypterObject object

Syntax

crypter.HMAC (algorithm, variable, key)

Table 2.809:

Argument Description

crypter The name of the CrypterObject object.

algorithm A value of the HMACAlgorithm enumerated type that specifies the type
of HMAC algorithm.

Values are:

• HMACMD5! – HMAC-MD5

• HMACSHA1! – HMAC-SHA1

• HMACSHA224! – HMAC-SHA224

• HMACSHA256! – HMAC-SHA256

• HMACSHA384! – HMAC-SHA384

• HMACSHA512! – HMAC-SHA512

variable A blob whose value is the data you want to process with HMAC.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

key A blob specifying the secret key.

Return value

Blob. Returns the result of the HMAC if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement encrypts the data using HMACMD5.

Blob lblb_data
Blob lblb_key
Blob lblb_hmac
String ls_data

lblb_data = Blob("Test HMAC", EncodingANSI!)
lblb_key = Blob("Test HMAC Key", EncodingANSI!)

Statements, Events, and Functions

Page 860

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

// Encrypt with HMAC
lblb_hmac= lnv_CrypterObject.HMAC(HMACMD5!, lblb_data, lblb_key)

Coderobject lnv_code
Lnv_code = create coderobject
//Encode the HMAC blob data to be hex data and output as a string
Ls_data = lnv_code.hexencode(lblb_hmac)

See also

SymmetricEncrypt

SymmetricDecrypt

SymmetricGenerateKey

AsymmetricEncrypt

AsymmetricDecrypt

AsymmetricSign

AsymmetricVerifySign

AsymmetricGenerateKey

MD5

SHA

2.4.370 Hour

Description

Obtains the hour in a time value. The hour is based on a 24-hour clock.

Syntax

Hour (time)

Table 2.810:

Argument Description

time The time from which you want to obtain the hour

Return value

Integer.

Returns an integer (00 to 23) whose value is the hour portion of time. If time is null, Hour
returns null.

Examples

This statement returns the current hour:

Hour(Now())

This statement returns 19:

Hour(19:01:31)

Statements, Events, and Functions

Page 861

See also

Minute

Now

Second

Hour method for DataWindows in Section 2.4.48, “Hour” in DataWindow Reference.

2.4.371 HyperLinkToURL

Description

Opens the default Web browser, displaying the specified URL.

Applies to

Inet objects (Obsolete)

Syntax

servicereference.HyperlinkToURL (url)

Table 2.811:

Argument Description

servicereference Reference to the Internet service instance

url String specifying the URL to open in the default Web browser

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function to display a URL from a PowerBuilder application.

Examples

This example calls the HyperlinkToURL function. Iinet_base is an instance variable of type
inet:

GetContextService("Internet", iinet_base)
iinet_base.HyperlinkToURL(sle_url.text)

See also

GetURL

PostURL

2.4.372 Idle

Description

Sets a timer so that PowerBuilder triggers an Application Idle event when there has been no
user activity for a specified number of seconds.

Syntax

Statements, Events, and Functions

Page 862

Idle (n)

Table 2.812:

Argument Description

n The number of seconds of user inactivity allowed before PowerBuilder
triggers an Application Idle event. A value of 0 terminates Idle detection.

Return value

Integer.

Returns 1 if it starts the timer, and -1 if it cannot start the timer or n is 0 and the timer has not
been started. Note that when the timer has been started and you change n, Idle does not start
a new timer; it resets the current timer interval to the new number of seconds. If n is null, Idle
returns null. The return value is usually not used.

Usage

Use Idle to shut off or restart an application when there is no user activity. This is often done
for security reasons.

Idle starts a timer after each user activity (such as a keystroke or a mouse click), and after n
seconds of inactivity it triggers an Idle event. The Idle event script for an application typically
closes some windows, logs off the database, and exits the application or calls the Restart
function.

The timer is reset when any of the following activities occur:

• A mouse movement or mouse click in any window of the application

• Any keyboard activity when a window of the PowerBuilder application is current

• A mouse click or any mouse movement over the icon when a PowerBuilder application is
minimized

• Any keyboard activity when the PowerBuilder application is minimized and is current (its
name is highlighted)

• Any retrieval on a visible DataWindow that causes the edit control to be painted

Tip

To capture movement, write script in the MouseMove or Key events of the window
or sheet. (Keyboard activity does not trigger MouseMove events.) Disable the
DataWindow control and tab ordering during iterative retrieves so the Idle timer is not
reset.

Examples

This statement sends an Idle event after five minutes of inactivity:

Idle(300)

This statement turns off idle detection:

Idle(0)

Statements, Events, and Functions

Page 863

This example shows how to use the Idle event to stop the application and restart it after two
minutes of inactivity. This is often used for computers that provide information in a public
place.

Include this statement in the script for the application's Open event:

Idle(120) // Sends an Idle event after 2 minutes.

Include these statements in the script for the application's Idle event to terminate the
application and then restart it:

// Statements to set the database to the desired
// state
...
Restart() // Restarts the application

See also

Restart

Timer

2.4.373 ImpersonateClient

Description

Allows a COM object running on COM+ to take on the security attributes of the client for the
duration of a call.

Applies to

TransactionServer objects

Syntax

transactionserver.ImpersonateClient ()

Table 2.813:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

ImpersonateClient allows a COM object to run in the client's security context for the duration
of a call. Running in the client's security context gives the server process access to the same
resources as the client. This can either restrict or expand the server's access to resources.
For example, if the client does not have update rights to a database but the server does,
impersonating the client before accessing the database prevents the client from updating the
database.

After completing the processing that requires the client's security context, call RevertToSelf
to revert to the server's security context.

Examples

Statements, Events, and Functions

Page 864

This example creates an instance of the transaction server context object and impersonates
the client to perform some processing:

TransactionServer txninfo_test
integer li_rc
li_rc = GetContextService("TransactionServer", &
 txninfo_test)
// Handle error if necessary

// Impersonate the client
txninfo_test.ImpersonateClient()
// Perform processing with client security context
...
// Revert to server's security context
txninfo_test.RevertToSelf()

See also

IsCallerInRole

IsImpersonating

IsSecurityEnabled

RevertToSelf

2.4.374 ImportClipboard

Description

Inserts data into a DataWindow control, DataStore object, or graph control from tab-
separated, comma-separated, or XML data on the clipboard.

For DataWindow and DataStore syntax, see the ImportClipboard method for DataWindows
in Section 9.95, “ImportClipboard” in DataWindow Reference.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects, because their data comes directly from the DataWindow.

Syntax

graphname.ImportClipboard ({ importtype} {, startrow {, endrow {,
 startcolumn } } })

Table 2.814:

Argument Description

importtype

(optional)

An enumerated value of the SaveAsType DataWindow constant. Valid
type arguments for ImportClipboard are:

Text!

CSV!

XML!

If you want to generate an XML trace file, the XML! argument is
required.

graphname The name of the graph control to which you want to copy data from the
clipboard.

Statements, Events, and Functions

Page 865

Argument Description

startrow

(optional)

The number of the first detail row in the clipboard that you want to copy.
The default is 1.

For default XML import, if startrow is supplied, the first N (startrow -1)
elements are skipped, where N is the DataWindow row size.

For template XML import, if startrow is supplied, the first (startrow -1)
occurrences of the repetitive row mapping defined in the template are
skipped.

endrow

(optional)

The number of the last detail row in the clipboard that you want to copy.
The default is the rest of the rows.

For default XML import, if endrow is supplied, import stops when N *
endrow elements have been imported, where N is the DataWindow row
size.

For template XML import, if endrow is supplied, import stops after
endrow occurrences of the repetitive row mapping defined in the template
have been imported.

startcolumn
(optional)

The number of the first column in the clipboard that you want to copy.
The default is 1.

For default XML import, if startcolumn is supplied, import skips the first
(startcolumn - 1) elements in each row.

This argument has no effect on template XML import.

Return value

Returns the number of rows that were imported if it succeeds and one of the following
negative integers if an error occurs:

-1 -- No rows or startrow value supplied is greater than the number of rows in the string

-2 -- Input data does not match number of columns or required column type

-3 -- Invalid argument

-4 -- Invalid input

-11 -- XML Parsing Error; XML parser libraries not found, or XML not well formed

-12 -- XML Template does not exist or does not match the DataWindow

If any argument's value is null, ImportClipboard returns null. If the optional importtype
argument is specified and is not a valid type, ImportClipboard returns -3.

Usage

The clipboard data must be formatted in tab-separated or comma-separated columns or in
XML. The datatypes and order of the DataWindow object's columns must match the data on
the clipboard.

For graphs, ImportClipboard uses only three columns and ignores other columns. Each row
of data must contain three pieces of information. The information depends on the type of
graph:

Statements, Events, and Functions

Page 866

• For all graph types except scatter, the first column to be imported is the series name, the
second column contains the category, and the third column contains the data.

• For scatter graphs, the first column to be imported is the series name, the second column is
the data's x value, and the third column is the y value.

If a series or category already exists in the graph, the data is assigned to it. Otherwise, the
series and categories are added to the graph.

You can add data to more than one series by specifying different series names in the first
column.

Examples

If the clipboard contains the data shown below and the graph does not have any data yet, then
the next statement produces a graph with two series and three categories. The clipboard data
is:

Sales 94Jan3000
Sales 94Mar2200
Sales 94May2500
Sales 95Jan4000
Sales 95Mar3200
Sales 95May3500

This statement copies all the data in the clipboard, as shown above, to gr_employee:

gr_employee.ImportClipboard()

This statement copies the data from the clipboard starting with row 2 column 3 and copying
to row 30 column 5 to the graph gr_employee:

gr_employee.ImportClipboard(2, 30, 3)

See also

ImportFile

ImportString

2.4.375 ImportFile

2.4.375.1 Syntax 1: for Graph controls

Description

Inserts data into a DataWindow control, DataStore object, or graph control from data in a file.
The data can be tab-separated text, comma-separated text, XML, or dBase format 2 or 3. The
format of the file depends on whether the target is a DataWindow (or DataStore) or a graph
and on the type of graph.

For DataWindow and DataStore syntax, see the ImportFile method for DataWindows in
Section 9.96, “ImportFile” in DataWindow Reference.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects, because their data comes directly from the DataWindow.

Syntax

Statements, Events, and Functions

Page 867

graphname.ImportFile ({ importtype}, filename {, startrow {, endrow {,
 startcolumn } } })

Table 2.815:

Argument Description

graphname The name of the graph control to which you want to copy data from the
specified file.

importtype

(optional)

An enumerated value of the SaveAsType DataWindow constant. If this
argument is specified, the importtype argument can be specified without
an extension. Valid type arguments for ImportFile are:

Text!

CSV!

XML!

DBase2!

DBase3!

filename A string whose value is the name of the file from which you want to
copy data. The file must be an ASCII, tab-separated file (TXT), comma-
separated file (CSV), Extensible), or dBase format 2 or 3 file (DBF).
Specify the file's full name. If the optional importtype is not specified, the
name must end in the appropriate extension.

If filename is an empty string or if it is null, ImportFile displays the
File Open dialog box and allows the user to select a file. The remaining
arguments are ignored.

startrow
(optional)

The number of the first detail row in the file that you want to copy. The
default is 1.

For default XML import, if startrow is supplied, the first N (startrow -1)
elements are skipped, where N is the DataWindow row size.

For template XML import, if startrow is supplied, the first (startrow -1)
occurrences of the repetitive row mapping defined in the template are
skipped.

endrow

(optional)

The number of the last detail row in the file that you want to copy. The
default is the rest of the rows.

For default XML import, if endrow is supplied, import stops when N *
endrow elements have been imported, where N is the DataWindow row
size.

For template XML import, if endrow is supplied, import stops after
endrow occurrences of the repetitive row mapping defined in the template
have been imported.

startcolumn
(optional)

The number of the first column in the file that you want to copy. The
default is 1.

For default XML import, if startcolumn is supplied, import skips the first
(startcolumn - 1) elements in each row.

Statements, Events, and Functions

Page 868

Argument Description
This argument has no effect on template XML import.

Return value

Long. Returns the number of rows that were imported if it succeeds and one of the following
negative integers if an error occurs:

-1 -- No rows or startrow value supplied is greater than the number of rows in the file

-2 -- Empty file or input data does not match number of columns or required column type

-3 -- Invalid argument

-4 -- Invalid input

-5 -- Could not open the file

-6 -- Could not close the file

-7 -- Error reading the text

-8 -- Unsupported file name suffix (must be *.txt, *.csv, *.dbf or *.xml)

-10 -- Unsupported dBase file format (not version 2 or 3)

-11 -- XML Parsing Error; XML parser libraries not found or XML not well formed

-12 -- XML Template does not exist or does not match the DataWindow

-15 -- File size exceeds limit

If any argument's value is null, ImportFile returns null. If the optional importtype argument is
specified and is not a valid type, ImportFile returns -3.

Usage

The format of the file can be indicated by specifying the optional importtype parameter, or by
including the appropriate file extension.

For graph controls, ImportFile only uses three columns and ignores other columns. Each row
of data must contain three pieces of information. The information depends on the type of
graph:

• For all graph types except scatter, the first column to be imported is the series name, the
second column contains the category, and the third column contains the data.

• For scatter graphs, the first column to be imported is the series name, the second column is
the data's x value, and the third column is the y value.

You can add data to more than one series by specifying different series names in the first
column. To let users select the file to import, specify a null string for filename. PowerBuilder
displays the Select Import File dialog box.

Double quotes

The location and number of double quote marks in a field in a tab delimited file affect how
they are handled when the file is imported. If a string is enclosed in one pair of double quotes,
the quotes are discarded. If it is enclosed in three pairs of double quotes, one pair is retained

Statements, Events, and Functions

Page 869

when the string is imported. If the string is enclosed in two pairs of double quotes, the first
pair is considered to enclose a null string, and the rest of the string is discarded.

When there is a double quote at the beginning of a string, any characters after the second
double quote are discarded. If there is no second double quote, the tab character delimiting
the fields is not recognized as a field separator and all characters up to the next occurrence
of a double quote, including a carriage return, are considered to be part of the string. A
validation error is generated if the combined strings exceed the length of the first string.

Double quotes after the first character in the string are rendered literally. Here are some
examples of how tab-delimited strings are imported into a two-column DataWindow:

Table 2.816:

Text in file Result

"Joe" TAB
"Donaldson"

Joe Donaldson

Bernice TAB
"""Ramakrishnan"""

Bernice "Ramakrishnan"

""Mary"" TAB ""Li"" Empty cells

"Mich"ael TAB
"""Lopes"""

Mich "Lopes"

"Amy TAB Doherty" Amy<TAB>Doherty in first cell, second cell empty

3""" TAB 4" 3""" 4"

Specifying a null string for file name

If you specify a null string for filename, the remaining arguments are ignored. All the
rows and columns in the file are imported.

Examples

This statement copies all the data in the file D:\EMPLOYEE.TXT to gr_employee starting at
the first row:

gr_employee.ImportFile("D:\EMPLOYEE.TXT")

This statement copies the data from the file D:\EMPLOYEE.TXT starting with row 2 column
3 and ending with row 30 column 5 to the graph gr_employee:

gr_employee.ImportFile("D:\EMPLOYEE.TXT", 2, 30, 3)

The following statements are equivalent. Both import the contents of the XML file named
myxmldata:

gr_control.ImportFile(myxmldata.xml)
gr_control.ImportFile(XML!, myxmldata)

This example causes PowerBuilder to display the Specify Import File dialog box:

string null_str
SetNull(null_str)
dw_main.ImportFile(null_str)

See also

Statements, Events, and Functions

Page 870

ImportClipboard

ImportString

2.4.375.2 Syntax 2: for JSONGenerator objects

Description

Imports a JsonObjectItem item from a JSON file.

Applies to

JSONGenerator objects

Syntax

objectname.ImportFile (long ParentItemHandle, string FileName)

objectname.ImportFile (long ParentItemHandle, string Key, string FileName)

objectname.ImportFile (string ParentItemPath, string FileName)

objectname.ImportFile (string ParentItemPath, string Key, string FileName)

objectname.ImportFile (string FileName)

Table 2.817:

Argument Description

objectname The name of the JSONGenerator object in which you want to import a
JSON file

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

FileName A string whose value is the name of a JSON file

Return value

Long. Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This code example loads the string from the JSON file into the array item of the
JSONGenerator object:

Long ll_RootArray
String ls_FileName, ls_Json
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

//example.json contains {"id":1001, "name":"evan", "active":true}
ls_FileName = "example.json"
lnv_JsonGenerator.ImportFile(ll_RootArray, ls_FileName)

Statements, Events, and Functions

Page 871

//Result is [{"id":1001,"name":"evan","active":true}]
ls_Json = lnv_JsonGenerator.GetJsonString()

Example 2

This code example loads the string from the JSON file into the object item of the
JSONGenerator object:

Long ll_RootObject
String ls_FileName, ls_Json
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

//Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject()

//example.json contains {"id":1001, "name":"evan", "active":true}
ls_FileName = "example.json"
lnv_JsonGenerator.ImportFile(ll_RootObject, "Import", ls_FileName)

//Result is {"Import":{"id":1001,"name":"evan","active":true}}
ls_Json = lnv_JsonGenerator.GetJsonString()

Example 3

This code example loads the string from the JSON file into the array item of the
JSONGenerator object:

String ls_Path
String ls_FileName, ls_Json
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

//Create an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

// example.json contains {"id":1001, "name":"evan", "active":true}
ls_FileName = "example.json"
lnv_JsonGenerator.ImportFile(ls_Path, ls_FileName)

//Result is [{"id":1001,"name":"evan","active":true}]
ls_Json = lnv_JsonGenerator.GetJsonString()

Example 4

This code example loads the string from the JSON file into the object item of the
JSONGenerator object:

String ls_Path
String ls_FileName, ls_Json
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

//Creates an object root item
lnv_JsonGenerator.CreateJsonObject()
ls_Path = "/"

//example.json contains {"id":1001, "name":"evan", "active":true}
ls_FileName = "example.json"
lnv_JsonGenerator.ImportFile(ls_Path, "Import", ls_FileName)

//Result is {"Import":{"id":1001,"name":"evan","active":true}}

Statements, Events, and Functions

Page 872

ls_Json = lnv_JsonGenerator.GetJsonString()

Example 5

This code example imports the string from the JSON file as the root item of the
JSONGenerator object:

String ls_FileName, ls_Json
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

//num.json contains {"value":123.45,"value1":Infinity,"value2":-
Infinity,"value3":NaN,"value4":null}
ls_FileName = "num.json"
lnv_JsonGenerator.ImportFile(ls_FileName)

//Result is {"value":123.45,"value1":Infinity,"value2":-
Infinity,"value3":NaN,"value4":null}
ls_Json = lnv_JsonGenerator.GetJsonString()

See also

ImportString

2.4.376 ImportString

2.4.376.1 Syntax 1: for Graph controls

Description

Inserts data into a DataWindow control, DataStore object, or graph control from tab-
separated, comma-separated, or XML data in a string. The way data is arranged in the string
in tab-delimited columns depends on whether the target is a DataWindow (or DataStore) or a
graph, and on the type of graph.

For DataWindow and DataStore syntax, see the ImportString method for DataWindows in
Section 9.100, “ImportString” in DataWindow Reference.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects, because their data comes directly from the DataWindow.

Syntax

graphname.ImportString ({ importtype}, string {, startrow {, endrow {,
 startcolumn } } })

Table 2.818:

Argument Description

graphname The name of the graph control to which you want to copy data from the
specified string.

importtype
(optional)

A value of the SaveAsType enumerated datatype specifying the format of
the imported string. Valid type arguments are:

Text!

CSV!

Statements, Events, and Functions

Page 873

Argument Description
XML!

If you want to generate an XML trace file, the XML! argument is
required.

string A string from which you want to copy the data. The string should contain
tab-separated or comma-separated columns or XML with one row per
line (see Usage).

startrow
(optional)

The number of the first detail row in the string that you want to copy. The
default is 1.

For default XML import, if startrow is supplied, the first N (startrow -1)
elements are skipped, where N is the DataWindow row size.

For template XML import, if startrow is supplied, the first (startrow -1)
occurrences of the repetitive row mapping defined in the template are
skipped.

endrow
(optional)

The number of the last detail row in the string that you want to copy. The
default is the rest of the rows.

For default XML import, if endrow is supplied, import stops when N *
endrow elements have been imported, where N is the DataWindow row
size.

For template XML import, if endrow is supplied, import stops after
endrow occurrences of the repetitive row mapping defined in the template
have been imported.

startcolumn
(optional)

The number of the first column in the string that you want to copy. The
default is 1.

For default XML import, if startcolumn is supplied, import skips the first
(startcolumn - 1) elements in each row.

This argument has no effect on template XML import.

Return value

Returns the number of data points that were imported if it succeeds and one of the following
negative integers if an error occurs:

-1 -- No rows or startrow value supplied is greater than the number of rows in the string

-2 -- Empty string or input data does not match number of columns or required column type

-3 -- Invalid argument

-4 -- Invalid input

-11 -- XML Parsing Error; XML parser libraries not found or XML not well formed

-12 -- XML Template does not exist or does not match the DataWindow

If any argument's value is null, ImportString returns null. If the optional importtype argument
is specified and is not a valid type, ImportString returns -3.

Usage

Statements, Events, and Functions

Page 874

For graph controls, ImportString only uses three columns on each line and ignores other
columns. The three columns must contain information that depends on the type of graph:

• For all graph types except scatter, the first column to be imported is the series name, the
second column contains the category, and the third column contains the data.

• For scatter graphs, the first column to be imported is the series name, the second column is
the data's x value, and the third column is the y value.

You can add data to more than one series by specifying different series names in the first
column.

Examples

These statements copy the data from the string ls_Text starting with row 2 column 3 and
ending with row 30 column 5 to the graph gr_employee:

string ls_Text
ls_Text = . . .
gr_employee.ImportString(ls_Text, 2, 30, 3)

The following script stores data for two series in the string ls_gr and imports the data into the
graph gr_custbalance. The categories in the data are A, B, and C:

string ls_gr

ls_gr = "series1~tA~t12~r~n"
ls_gr = ls_gr + "series1~tB~t13~r~n"
ls_gr = ls_gr + "series1~tC~t14~r~n"
ls_gr = ls_gr + "series2~tA~t15~r~n"
ls_gr = ls_gr + "series2~tB~t14~r~n"
ls_gr = ls_gr + "series2~tC~t12.5~r~n"

gr_custbalance.ImportString(ls_gr, 1)

See also

ImportClipboard

ImportFile

2.4.376.2 Syntax 2: for JSONGenerator objects

Description

Imports a JsonObjectItem item from a JSON string.

Applies to

JSONGenerator objects

Syntax

objectname.ImportString (long ParentItemHandle, string Value)

objectname.ImportString (long ParentItemHandle, string Key, string Value)

objectname.ImportString (string ParentItemPath, string Value)

objectname.ImportString (string ParentItemPath, string Key, string Value)

objectname.ImportString (string Value)

Statements, Events, and Functions

Page 875

Table 2.819:

Argument Description

objectname The name of the JSONGenerator object in which you want to import a
JSON file

ParentItemHandle A long whose value is the handle of the parent item of JsonArrayItem or
JsonObjectItem type

ParentItemPath A string whose value is the path of the parent item of JsonArrayItem or
JsonObjectItem type

Key A string whose value is the key of the child item

Value A string whose value is the value of a JsonObjectItem item

Return value

Long. Returns the handle of the new child item if it succeeds and -1 if an error occurs. If any
argument's value is null, the method returns null.

Example 1

This code example imports a JSON string to the array item of the JSONGenerator object:

Long ll_RootArray
String ls_Json
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

ls_Json = '{"id":1001, "name":"evan", "active":true}'

// Creates an array root item
ll_RootArray = lnv_JsonGenerator.CreateJsonArray()

lnv_JsonGenerator.ImportString(ll_RootArray, ls_Json)
lnv_JsonGenerator.ImportString(ll_RootArray, "[11,22,33]")
//Result is [{"id":1001,"name":"evan","active":true},[11,22,33]]

Example 2

This code example imports a JSON string to the object item of the JSONGenerator object:

Long ll_RootObject
String ls_Json
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

ls_Json = '{"id":1001, "name":"evan", "active":true}'

// Creates an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject()

lnv_JsonGenerator.ImportString(ll_RootObject, "Import1", ls_Json)
lnv_JsonGenerator.ImportString(ll_RootObject, "Import2", "[11,22,33]")
//Result is {"Import1":{"id":1001,"name":"evan","active":true},"Import2":
[11,22,33]}

Example 3

This code example imports a JSON string to the array item of the JSONGenerator object:

String ls_Json, ls_Path
JsonGenerator lnv_JsonGenerator

Statements, Events, and Functions

Page 876

lnv_JsonGenerator = Create JsonGenerator

ls_Json = '{"id":1001, "name":"evan", "active":true}'

// Creates an array root item
lnv_JsonGenerator.CreateJsonArray()
ls_Path = "/"

lnv_JsonGenerator.ImportString(ls_Path, ls_Json)
lnv_JsonGenerator.ImportString(ls_Path, "[11,22,33]")
//Result is [{"id":1001,"name":"evan","active":true},[11,22,33]]

Example 4

This code example imports a JSON string to the object item of the JSONGenerator object:

String ls_Json, ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

ls_Json = '{"id":1001, "name":"evan", "active":true}'

// Creates an object root item
lnv_JsonGenerator.CreateJsonObject()
ls_Path = "/"

lnv_JsonGenerator.ImportString(ls_Path, "Import1", ls_Json)
lnv_JsonGenerator.ImportString(ls_Path, "Import2", "[11,22,33]")
//Result is {"Import1":{"id":1001,"name":"evan","active":true},"Import2":
[11,22,33]}

Example 5

This code example imports a JSON string as the root item of the JSONGenerator object:

String ls_Json, ls_Path
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

ls_Json = '{"value":123.45,"value1":Infinity,"value2":-
Infinity,"value3":NaN,"value4":null}'

lnv_JsonGenerator.ImportString(ls_Json)
ls_Path = "/"
lnv_JsonGenerator.ImportString(ls_Path, "Import2", "[11,22,33]")
//Result is {"value":123.45,"value1":Infinity,"value2":-
Infinity,"value3":NaN,"value4":null,"Import2":[11,22,33]}

See also

ImportFile

2.4.377 ImportJSON

Description

Loads the RibbonBar content from a JSON string. ECMA-404 JSON standard is supported.

Applies to

RibbonBar controls

Syntax

controlname.ImportJSON (Data)

Statements, Events, and Functions

Page 877

Table 2.820:

Argument Description

controlname The name of the RibbonBar control.

Data A JSON string that contains the RibbonBar content.

Return value

Integer.

1 - Successful.

-1 - An internal error occurs.

-2 - The library fails to load.

-5 - Any of the following: 1) JSON syntax error; 2) JSON encode error; 3) JSON data is null.

If any argument's value is null, returns null.

Examples

This example loads a JSON string to create the ribbon bar:

Integer li_return
string ls_Json

ls_Json = '{"BuiltinTheme":0,"Font":"FaceName:Tahoma;TextSize:8","RibbonItems":
{"Category":[{"Text":"Category","Panel":
[{"Text":"Panel","PictureName":"TabsSmall!","RibbonItem":[{"SmallButton":
{"Text":"SmallButton","PictureName":"EmployeeSmall!","Clicked":"ue_ButtonClicked"}}]}]}],"TabButton":
[{"Text":"TabButton","PictureName":"ArrowUpSmall!","Clicked":"ue_TabButtonClicked"}]}}'
li_return = rbb_1.ImportJSON(ls_Json)

See also

ExportJSON

ExportXML

ExportToJSONFile

ExportToXMLFile

ImportJSON

ImportXML

ImportFromXMLFile

ImportFromJSONFile

2.4.378 ImportXML

Description

Loads the RibbonBar content from an XML string. XML version 1.0 is supported.

Applies to

RibbonBar controls

Syntax

controlname.ImportXML (Data)

Statements, Events, and Functions

Page 878

Table 2.821:

Argument Description

controlname The name of the RibbonBar control.

Data An XML string that contains the RibbonBar content.

Return value

Integer.

1 - Successful.

-1 - An internal error occurs.

-2 - The library fails to load.

-5 - Any of the following: 1) XML syntax error; 2) XML encode error; 3) XML data is null.

If any argument's value is null, returns null.

Examples

This example loads an XML string to create the ribbon bar:

Integer li_return
string ls_xml

ls_xml = '<?xml version="1.0" encoding="utf-8" standalone="yes"?>&
 <RibbonBar Font="FaceName:Tahoma; TextSize:8" BuiltinTheme="0">&
 <RibbonItems>&
 <Categories>&
 <Category Text="MyCategory" Enabled="true" Visible="true">&
 <Panel Text="MyPanel" Enabled="true" Visible="true"
 PictureName="TabsSmall!">&
 <SmallButton Text="MySmallButton" Clicked="ue_ButtonClicked"
 PictureName="EmployeeSmall!"/>&
 </Panel>&
 </Category>&
 </Categories>&
 </RibbonItems>&
 </RibbonBar>'

li_return = rbb_1.ImportXML(ls_xml)

See also

ExportJSON

ExportXML

ExportToJSONFile

ExportToXMLFile

ImportJSON

ImportFromXMLFile

ImportFromJSONFile

2.4.379 ImportFromJSONFile

Description

Statements, Events, and Functions

Page 879

Loads the RibbonBar content from a JSON file. ECMA-404 JSON standard is supported.

Applies to

RibbonBar controls

Syntax

controlname.ImportFromJSONFile (FileName)

Table 2.822:

Argument Description

controlname The name of the RibbonBar control.

FileName A string whose value is the full name of the JSON file that contains the
RibbonBar content.

Return value

Integer.

1 - Successful.

-1 - An internal error occurs.

-2 - The library fails to load.

-3 - The specified file does not exist.

-4 - The specified file extension is wrong.

-5 - Any of the following: 1) JSON syntax error; 2) JSON encode error; 3) JSON data is null.

If any argument's value is null, returns null.

Examples

This example loads a JSON file to create the ribbon bar:

Integer li_return
li_return = rbb_1.ImportFromJSONFile ("Export1.json")

See also

ExportJSON

ExportXML

ExportToJSONFile

ExportToXMLFile

ImportJSON

ImportXML

ImportFromXMLFile

2.4.380 ImportFromXMLFile

Description

Loads the RibbonBar content from an XML file. XML version 1.0 is supported.

Statements, Events, and Functions

Page 880

Applies to

RibbonBar controls

Syntax

controlname.ImportFromXMLFile (FileName)

Table 2.823:

Argument Description

controlname The name of the RibbonBar control.

FileName A string whose value is the full name of the XML file that contains the
RibbonBar content.

Return value

Integer.

1 - Successful.

-1 - An internal error occurs.

-2 - The library fails to load.

-3 - The specified file does not exist.

-4 - The specified file extension is wrong.

-5 - Any of the following: 1) XML syntax error; 2) XML encode error; 3) XML data is null.

If any argument's value is null, returns null.

Examples

This example loads an XML file to create a ribbon bar:

Integer li_return
li_return = rbb_1.ImportFromXMLFile ("Export2.xml")

See also

ExportJSON

ExportXML

ExportToJSONFile

ExportToXMLFile

ImportJSON

ImportXML

ImportFromJSONFile

2.4.381 IncomingCallList

Description

Provides a list of the callers of a routine included in a performance analysis model.

Applies to

ProfileRoutine object

Statements, Events, and Functions

Page 881

Syntax

iinstancename.IncomingCallList (list, aggregrateduplicateroutinecalls)

Table 2.824:

Argument Description

instancename Instance name of the ProfileRoutine object.

list An unbounded array variable of datatype ProfileCall in which
IncomingCallList stores a ProfileCall object for each caller of the routine.
This argument is passed by reference.

aggregateduplicateroutinecallsA boolean indicating whether duplicate routine calls will result in the
creation of a single or of multiple ProfileCall objects.

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• ModelNotExistsError! -- The model does not exist

Usage

Use this function to extract a list of the callers of a routine included in a performance analysis
model. Each caller is defined as a ProfileCall object and provides the called routine and the
calling routine, the number of times the call was made, and the elapsed time. The callers are
listed in no particular order.

You must have previously created the performance analysis model from a trace file using the
BuildModel function.

The aggregateduplicateroutinecalls argument indicates whether duplicate routine calls
will result in the creation of a single or of multiple ProfileCall objects. This argument
has no effect unless line tracing is enabled and a calling routine calls the current routine
from more than one line. If aggregateduplicateroutinecalls is true, a new ProfileCall
object is created that aggregates all calls from the calling routine to the current routine. If
aggregateduplicateroutinecalls is false, multiple ProfileCall objects are returned, one for each
line from which the calling routine called the called routine.

Examples

This example gets a list of the routines included in a performance analysis model and then
gets a list of the routines that called each routine:

Long ll_cnt
ProfileCall lproc_call[]

lpro_model.BuildModel()
lpro_model.RoutineList(i_routinelist)

FOR ll_cnt = 1 TO UpperBound(iprort_list)
 iprort_list[ll_cnt].IncomingCallList(lproc_call, &
 TRUE)
 ...
NEXT

Statements, Events, and Functions

Page 882

See also

BuildModel

OutgoingCallList

2.4.382 Init (obsolete)

Description

Initializes an instance of the CORBACurrent service object for client- or component-
managed transactions.

Obsolete function

Init is obsolete, because EAServer is no longer supported since PowerBuilder 2017.

Applies to

CORBACurrent objects

Syntax

CORBACurrent.Init ({ connection | URL})

Table 2.825:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance.

connection The name of the Connection object for which a connection has already
been established to a valid EAServer host. Either connection or URL is
required if the Init function is called by a client.

URL String. The name of a URL that identifies a valid EAServer host. Either
connection or URL is required if the Init function is called by a client.

Return value

Integer.

Returns 0 if it succeeds and one of the following values if the service object could not be
initialized:

-1 -- Unknown error

-2 -- Service object not running in EAServer (no argument) or Connection object not
connected to EAServer (argument is Connection object)

-3 -- ORB initialization error

-4 -- Error on a call to the ORB.resolve_initial_references("TransactionCurrent") method

-5 -- Error on a call to the narrow method

Usage

The Init function can be called from a PowerBuilder component running in EAServer whose
transaction property is marked as OTS style, or by a PowerBuilder client. The Init function
must be called to initialize the CORBACurrent object before any other functions are called.
EAServer must be using the two-phase commit transaction coordinator (OTS/XA) and a

Statements, Events, and Functions

Page 883

reference to the CORBACurrent object must first be obtained using the GetContextService
function.

When Init is called from a PowerBuilder component running in EAServer, no arguments are
required. If the calling component is not marked as OTS style, the CORBACurrent object is
not initialized.

When Init is called from a PowerBuilder client and the client is responsible for the
transaction, the CORBACurrent object must be initialized by calling Init with either a
Connection object or a URL string as the argument. In the case of a Connection object, the
client must already be connected to a valid EAServer host using that Connection object.
Using a Connection object is preferred because the code is more portable.

Examples

This example shows the use of Init in a PowerBuilder EAServer component to initialize an
instance of the CORBACurrent object:

// Instance variables:
// CORBACurrent corbcurr
int li_rc

li_rc = this.GetContextService("CORBACurrent", corbcurr)
IF li_rc <> 1 THEN
 // handle the errorELSE
 li_rc = corbcurr.init()
 IF li_rc <> 0 THEN
 // handle the error
 END IF
END IF

In this example, Init is called by a PowerBuilder client application that has already connected
to EAServer using the myconn Connection object and has created a reference called corbcurr
to the CORBACurrent object:

li_rc = corbcurr.init(myconn)
IF li_rc <> 0 THEN
 // handle the errorEND IF

In this example, the PowerBuilder client application calls the Init function using a valid URL:

li_rc = corbcurr.init("iiop://localhost:2000")
IF li_rc <> 0 THEN
 // handle the errorEND IF

See also

BeginTransaction (obsolete)

CommitDocking

GetContextService

GetStatus (obsolete)

GetTransactionName (obsolete)

ResumeTransaction (obsolete)

RollbackOnly (obsolete)

RollbackTransaction (obsolete)

Statements, Events, and Functions

Page 884

SetTimeout (obsolete)

SuspendTransaction (obsolete)

2.4.383 InputFieldChangeData

Description

Modifies the data value of input fields in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.InputFieldChangeData (inputfieldname, inputfieldvalue)

Table 2.826:

Argument Description

rtename The name of the RichTextEdit control in which you want to change the
data in the specified input fields.

inputfieldname A string whose value is the name of input fields whose value you want to
change. There can be more than one input field with a given name.

inputfieldvalue A string whose value is the data to be assigned to the specified input
fields.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
InputFieldChangeData returns null.

Usage

All the input fields that have the same name contain the same data. When you call
InputFieldChangeData, you affect all the fields of the specified name.

Examples

This script is part of the SelectionChanged event for the ListBox lb_instruments. When the
user clicks on an item in the ListBox, the selected instrument name is assigned to the input
field called instrument in the RichTextEdit rte_1:

integer rtn
rtn = rte_1.InputFieldChangeData &
 ("instrument", lb_instruments.SelectedItem())

st_status.Text = String(rtn)

If the text in rte_1 looks like this:

Dear {title} {lastname}:

We're happy you have rented a {instrument} for your child. Please perform regular
maintenance for the {instrument} as instructed by your child's teacher. You can buy
{instrument} supplies and instruction books at your local music stores.

Statements, Events, and Functions

Page 885

Then after the user picks trumpet in the ListBox, the script inserts trumpet for every
occurrence of the {instrument} field. The other fields are not affected:

Dear {title} {lastname}:

We're happy you have rented a trumpet for your child. Please perform regular maintenance
for the trumpet as instructed by your child's teacher. You can buy trumpet supplies and
instruction books at your local music stores.

See also

InputFieldCurrentName

InputFieldDeleteCurrent

InputFieldGetData

InputFieldInsert

InputFieldLocate

DataSource

2.4.384 InputFieldCurrentName

Description

Gets the name of the input field when the insertion point is in an input field in a RichTextEdit
control.

Applies to

RichTextEdit controls

Syntax

rtename.InputFieldCurrentName ()

Table 2.827:

Argument Description

rtename The name of the RichTextEdit control in which you want to get the input
field's name

Return value

String. Returns the name of the input field. If the insertion point is not in an input field or if
an error occurs, it returns the empty string ("").

Examples

This example gets the name of the input field containing the insertion point:

string ls_inputname
ls_inputname = rte_1.InputFieldCurrentName()

See also

InputFieldChangeData

InputFieldDeleteCurrent

Statements, Events, and Functions

Page 886

InputFieldGetData

InputFieldInsert

InputFieldLocate

DataSource

2.4.385 InputFieldDeleteCurrent

Description

Deletes the input field that is selected in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.InputFieldDeleteCurrent ()

Table 2.828:

Argument Description

rtename The name of the RichTextEdit control in which you want to delete the
input field that is selected

Return value

Integer.

Returns 1 if it succeeds and -1 if there is no input field at the insertion point, the input field is
activated for editing, or an error occurs.

Usage

All the input fields that have the same name contain the same data but they can be deleted
independently. If one of a group of input fields with the same name is deleted, the others are
not affected. If all the input fields of the same name are deleted, the RichTextEdit control
remembers the data from those input fields. It will use that data to initialize a new input field
that has the same name as the deleted fields.

The input field must be the only selection. If other text is selected too,
InputFieldDeleteCurrent fails. When an input field is the current and only selection, the
highlight flashes.

InputFieldDeleteCurrent deletes only the current field. Other fields with the same name
within the document are not affected. If the RichTextEdit control uses the DataSource
function to share data with a DataWindow, the current field is deleted from all instances of
the document.

Examples

This example deletes the input field containing the insertion point:

integer li_rtn
li_rtn = rte_1.InputFieldDeleteCurrent()

See also

Statements, Events, and Functions

Page 887

InputFieldChangeData

InputFieldGetData

InputFieldCurrentName

InputFieldInsert

InputFieldLocate

DataSource

2.4.386 InputFieldGetData

Description

Get the data in the specified input field in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.InputFieldGetData (inputfieldname)

Table 2.829:

Argument Description

rtename The name of the RichTextEdit control in which you want to get data from
the selected input field

inputfieldname A string whose value is the name of input field from which you want to
get the data

Return value

String.

The data in the input field. InputFieldGetData returns the empty string ("") if the field does
not exist or an error occurs.

Examples

This example gets the data in the input field empname:

string ls_name
ls_name = rte_1.InputFieldGetData(empname)

See also

InputFieldChangeData

InputFieldCurrentName

InputFieldDeleteCurrent

InputFieldInsert

InputFieldLocate

DataSource

Statements, Events, and Functions

Page 888

2.4.387 InputFieldInsert

Description

Inserts a named input field at the insertion point in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.InputFieldInsert (inputfieldname)

Table 2.830:

Argument Description

rtename The name of the RichTextEdit control in which you want to insert an
input field

inputfieldname A string whose value is the name of input field to be inserted. The name
does not have to be unique

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If inputfieldname is null, InputFieldInsert
returns null.

Usage

There can be several input fields with the same name. Fields of a given name all have the
same data value. When you call InputFieldChangeData for a named input field, all fields with
that name are changed.

Examples

If there is a selection, InputFieldInsert replaces the selection with the field.

rte_1.selecttext(1,2,1,5)
rte_1.inputfieldinsert("lastname")

See also

InputFieldChangeData

InputFieldCurrentName

InputFieldDeleteCurrent

InputFieldGetData

InputFieldLocate

DataSource

2.4.388 InputFieldLocate

Description

Locates an input field in a RichTextEdit control and moves the insertion point there.

Applies to

Statements, Events, and Functions

Page 889

RichTextEdit controls

Syntax

rtename.InputFieldLocate (location {, inputfieldname })

Table 2.831:

Argument Description

rtename The name of the RichTextEdit control in which you want to locate an
input field.

location A value of the Location enumerated datatype that specifies the
occurrence of the input field you want to locate. Values are:

• First! -- The first occurrence in the document of inputfieldname, or if
no name is specified, the first input field in the document

• Last! -- The last occurrence in the document of inputfieldname, or if no
name is specified, the last input field in the document

• Next! -- The occurrence of inputfieldname that is after the insertion
point, or if no name is specified, the next input field of any name after
the insertion point

• Prior! -- The occurrence of inputfieldname before the insertion point,
or if no name is specified, the next input field of any name before the
insertion point

inputfieldname A string whose value is the name of the input field you want to locate. If
there are multiple occurrences of inputfieldname in the control, location
specifies the one to be located.

Return value

String.

Returns the name of the input field it located if it succeeds. InputFieldLocate returns an
empty string if no matching input field is found or if an error occurs. If any argument is null,
InputFieldLocate returns null.

Usage

There can be several input fields with the same name. Fields of a given name all have the
same data value.

Examples

This example locates the next input field after the insertion point. If found, ls_name is set to
the name of the input field:

string ls_name
ls_name = rte_1.InputFieldLocate(Next!)

This example locates the last input field in the document:

string ls_name
ls_name = rte_1.InputFieldLocate(Last!)

Statements, Events, and Functions

Page 890

This example locates the last occurrence in the document of the input field named address. If
found, ls_name is set to the value "address":

string ls_name
ls_name = rte_1.InputFieldLocate(Last!, "address")

See also

InputFieldChangeData

InputFieldCurrentName

InputFieldDeleteCurrent

InputFieldGetData

InputFieldInsert

DataSource

2.4.389 InsertCategory

2.4.389.1 Syntax 1: for Graph controls

Description

Inserts a category on the category axis of a graph at the specified position. Existing categories
are renumbered to keep the category numbering sequential.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects, because their data comes directly from the DataWindow.

Syntax

controlname.InsertCategory (categoryvalue, categorynumber)

Table 2.832:

Argument Description

controlname The name of the graph into which you want to insert a category.

categoryvalue A value that is the category you want to insert. The category must
be unique within the graph. The value you specify must be the same
datatype as the datatype of the category axis.

categorynumber The number of the category before which you want to insert the new
category. To add the category at the end, specify 0. If the axis is
sorted, the category will be integrated into the existing order, ignoring
categorynumber.

Return value

Integer.

Returns the number of the category if it succeeds and -1 if an error occurs. If the category
already exists, it returns the number of the existing category. If any argument's value is null,
InsertCategory returns null.

Usage

Statements, Events, and Functions

Page 891

Categories are discrete. Even on a date or time axis, each category is separate with no
timeline-style connection between categories. Only scatter graphs, which do not have discrete
categories, have a continuous category axis.

When the axis datatype is string, category names are unique if they have different
capitalization. Also, you can specify the empty string ("") as the category name. However,
because category names must be unique, there can be only one category with that name.

When you use InsertCategory to create a new category, there will be holes in each of the
series for that category. Use AddData or InsertData to create data points for the new category.

Equivalent syntax

If you want to add a category to the end of a series, you can use AddCategory instead, which
requires fewer arguments.

This statement:

gr_data.InsertCategory("Qty", 0)

is equivalent to:

gr_data.AddCategory("Qty")

Examples

These statements insert a category called Macs before the category named PCs in the graph
gr_product_data:

integer CategoryNbr

// Get the number of the category.
CategoryNbr = FindCategory("PCs")
gr_product_data.InsertCategory("Macs", CategoryNbr)

In a graph reporting mail volume in the afternoon, these statements add three categories to a
time axis. If the axis is sorted, the order in which you add the categories does not matter:

catnum = gr_mail.InsertCategory(13:00, 0)
catnum = gr_mail.InsertCategory(12:00, 0)
catnum = gr_mail.InsertCategory(13:00, 0)

See also

AddData

AddCategory

FindCategory

FindSeries

InsertData

InsertSeries

2.4.389.2 Syntax 2: for RibbonBar controls

Description

Inserts a category in the RibbonBar control.

Applies to

Statements, Events, and Functions

Page 892

RibbonBar controls

Syntax

controlname.InsertCategory (Long ItemHandleAfter, String Text)

controlname.InsertCategory (Long ItemHandleAfter, RibbonCategoryItem Item)

Table 2.833:

Argument Description

controlname The name of the RibbonBar control.

ItemHandleAfter The handle of the category on the same level after which you want to
insert the category.

Text The title of the category to be inserted.

Item A category item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Example 1

This example inserts the "MyCategory2" category after the "MyCategory1" category.

Long ll_Handle, ll_Handle2

ll_Handle = rbb_1.InsertCategoryFirst ("MyCategory1")
ll_Handle2 = rbb_1.InsertCategory (ll_Handle, "MyCategory2")

Example 2

This example also inserts the "MyCategory2" category after the "MyCategory1" category.
It first defines a category item with various properties (including Text, Tag etc.) and then
inserts it after the "MyCategory1" category.

Long ll_Handle,ll_Handle2
RibbonCategoryItem lr_Category

ll_Handle = rbb_1.InsertCategoryFirst ("MyCategory1")
lr_Category.Text = "MyCategory2"
lr_Category.Tag = "MyCategory2"
ll_Handle2 = rbb_1.InsertCategory (ll_Handle, lr_Category)

See also

InsertCategoryFirst

InsertCategoryLast

DeleteCategory

SetCategory

GetCategory

GetCategoryByIndex

GetCategoryCount

Statements, Events, and Functions

Page 893

SetActiveCategory

GetActiveCategory

2.4.390 InsertCategoryFirst

Description

Inserts a category as the first item in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertCategoryFirst (String Text)

controlname.InsertCategoryFirst (RibbonCategoryItem Item)

Table 2.834:

Argument Description

controlname The name of the RibbonBar control.

Text The title of the category to be inserted.

Item A category item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Example 1

This example inserts the "MyCategory1" category as the first category in the ribbon bar.

Long ll_Handle

ll_Handle = rbb_1.InsertCategoryFirst ("MyCategory1")

Example 2

This example also inserts the "MyCategory1" category as the first category in the ribbon bar.
It first defines a category item with various properties (including Text, Tag etc.) and then
inserts it as the first category in the ribbon bar.

Long ll_Handle
RibbonCategoryItem lr_Category

lr_Category.Text = "MyCategory1"
lr_Category.Tag = "MyCategory1"
ll_Handle = rbb_1.InsertCategoryFirst (lr_Category)

See also

InsertCategory

InsertCategoryLast

DeleteCategory

Statements, Events, and Functions

Page 894

SetCategory

GetCategory

GetCategoryByIndex

GetCategoryCount

SetActiveCategory

GetActiveCategory

2.4.391 InsertCategoryLast

Description

Inserts a category as the last item in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertCategoryLast (String Text)

controlname.InsertCategoryLast (RibbonCategoryItem Item)

Table 2.835:

Argument Description

controlname The name of the RibbonBar control.

Text The title of the category to be inserted.

Item A category item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Example 1

This example inserts the "MyCategory3" category as the last category in the ribbon bar.

Long ll_Handle

ll_Handle = rbb_1.InsertCategoryLast ("MyCategory3")

Example 2

This example also inserts the "MyCategory3" category as the last category in the ribbon bar.
It first defines a category item with various properties (including Text, Tag etc.) and then
inserts it as the last category in the ribbon bar.

Long ll_Handle
RibbonCategoryItem lr_Category

lr_Category.Text = "MyCategory3"
lr_Category.Tag = "MyCategory3"
ll_Handle = rbb_1.InsertCategoryLast (lr_Category)

Statements, Events, and Functions

Page 895

See also

InsertCategory

InsertCategoryFirst

DeleteCategory

SetCategory

GetCategory

GetCategoryByIndex

GetCategoryCount

SetActiveCategory

GetActiveCategory

2.4.392 InsertCheckBox

Description

Inserts a check box in the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertCheckBox (Long ParentHandle, Long ItemHandleAfter, String Text,
 String Clicked)

controlname.InsertCheckBox (Long ParentHandle, Long ItemHandleAfter,
 RibbonCheckBoxItem Item)

Table 2.836:

Argument Description

controlname The name of the RibbonBar control.

ParentHandle The handle of the panel or group in which you want to insert a check box.

ItemHandleAfter The handle of the item (check box, combo box, large button, small
button, or group) on the same level after which you want to insert the
check box.

Text The text that displays in the check box.

Clicked The name of the Clicked user event to be bound with the check box. The
Clicked user event for the check box must have a long parameter for
receiving the handle of the check box. For details, see Clicked.

Item A check box item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Statements, Events, and Functions

Page 896

Usage

The user events to be bound with the check box must be defined correctly according to the
requirements of RibbonCheckBoxItem. For details, see Clicked and Selected.

Example 1

This example inserts the "Print Using XSLFOP" check box after the "Distill Custom
PostScript" check box and binds both check boxes with the "Ue_CheckBoxClicked" user
event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_CheckBox, ll_Handle_CheckBox2

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_CheckBox = rbb_1.InsertCheckBoxFirst (ll_Handle_Panel, "Distill Custom
 PostScript", "Ue_CheckBoxClicked")
ll_Handle_CheckBox2 = rbb_1.InsertCheckBox (ll_Handle_Panel, ll_Handle_CheckBox,
 "Print Using XSLFOP", "Ue_CheckBoxClicked")

//Ue_CheckBoxClicked user event must have a long parameter for receiving the handle
//of CheckBox where the mouse is clicking.
//event type long ue_checkboxclicked(long itemhandle);
//RibbonCheckBoxItem lr_CheckBox
//rbb_1.GetCheckBox(ItemHandle,lr_CheckBox)
////...
//
//Return 1
//end event

Example 2

This example inserts the "Print Using XSLFOP" check box after the "Distill
Custom PostScript" check box and binds it with the "Ue_CheckBoxClicked" and
"Ue_CheckBoxSelected" user events. It first defines a check box item with various
properties (including Text, Clicked, Selected etc.) and then inserts it after the "Distill Custom
PostScript" check box.

Long ll_Handle_Category,ll_Handle_Panel,ll_Handle_CheckBox,ll_Handle_CheckBox2
RibbonCheckBoxItem lr_CheckBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_CheckBox = rbb_1.InsertCheckBoxFirst (ll_Handle_Panel, "Distill Custom
 PostScript", "Ue_CheckBoxClicked")
lr_CheckBox.Text = "Print Using XSLFOP"
lr_CheckBox.Clicked = "Ue_CheckBoxClicked"
lr_CheckBox.Selected = "Ue_CheckBoxSelected"
ll_Handle_CheckBox2 = rbb_1.InsertCheckBox (ll_Handle_Panel, ll_Handle_CheckBox,
 lr_CheckBox)

//Ue_CheckBoxSelected user event must have a long parameter for receiving the
 handle
//of CheckBox where the mouse is hovering over.
//event type long ue_checkboxselected(long itemhandle);
//RibbonCheckBoxItem lr_CheckBox
//rbb_1.GetCheckBox(ItemHandle,lr_CheckBox)
////...
//
//Return 1
//end event

Statements, Events, and Functions

Page 897

See also

InsertCheckBoxFirst

InsertCheckBoxLast

DeleteCheckBox

SetCheckBox

GetCheckBox

GetChildItemByIndex

2.4.393 InsertCheckBoxFirst

Description

Inserts a check box as the first item in the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertCheckBoxFirst (Long ParentHandle, String Text, String Clicked)

controlname.InsertCheckBoxFirst (Long ParentHandle, RibbonCheckBoxItem Item)

Table 2.837:

Argument Description

controlname The name of the RibbonBar control.

ParentHandle The handle of the panel or group into which you want to insert a check
box.

Text The text that displays in the check box.

Clicked The name of the Clicked user event to be bound with the check box. The
Clicked user event for the check box must have a long parameter for
receiving the handle of the check box. For details, see Clicked.

Item A check box item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the check box must be defined correctly according to the
requirements of RibbonCheckBoxItem. For details, see Clicked and Selected.

Example 1

This example inserts the "MyCheckBox1" check box as the first item in a panel and binds it
with the "Ue_CheckBoxClicked" user event, and then inserts "MyCheckBox2" check box as
the first item in a group and binds it with the same "Ue_CheckBoxClicked" user event.

Statements, Events, and Functions

Page 898

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_CheckBox, ll_Handle_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_CheckBox = rbb_1.InsertCheckBoxFirst (ll_Handle_Panel, "MyCheckBox1",
 "Ue_CheckBoxClicked")
//Group
ll_Handle_Group = rbb_1.InsertGroupLast (ll_Handle_Panel)
ll_Handle_CheckBox = rbb_1.InsertCheckBoxFirst (ll_Handle_Group, "MyCheckBox2",
 "Ue_CheckBoxClicked")

Example 2

This example inserts the "MyCheckBox1" check box as the first item in a panel and binds it
with the "Ue_CheckBoxClicked" and "Ue_CheckBoxSelected" user events. It first defines
a check box item with various properties (including Text, Clicked, Selected etc.) and then
inserts it as the first item in a panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_CheckBox
RibbonCheckBoxItem lr_CheckBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
lr_CheckBox.Text = "MyCheckBox1"
lr_CheckBox.Clicked = "Ue_CheckBoxClicked"
lr_CheckBox.Selected = "Ue_CheckBoxSelected"
ll_Handle_CheckBox = rbb_1.InsertCheckBoxFirst (ll_Handle_Panel, lr_CheckBox)

See also

InsertCheckBox

InsertCheckBoxLast

DeleteCheckBox

SetCheckBox

GetCheckBox

GetChildItemByIndex

2.4.394 InsertCheckBoxLast

Description

Inserts a check box as the last item in the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertCheckBoxLast (Long ParentHandle, String Text, String Clicked)

controlname.InsertCheckBoxLast (Long ParentHandle, RibbonCheckBoxItem Item)

Table 2.838:

Argument Description

controlname The name of the RibbonBar control.

Statements, Events, and Functions

Page 899

Argument Description

ParentHandle The handle of the panel or group into which you want to insert a check
box.

Text The text that displays in the check box.

Clicked The name of the Clicked user event to be bound with the check box. The
Clicked user event for the check box must have a long parameter for
receiving the handle of the check box. For details, see Clicked.

Item A check box item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the check box must be defined correctly according to the
requirements of RibbonCheckBoxItem. For details, see Clicked and Selected.

Example 1

This example inserts the "MyCheckBox3" check box as the last item in a panel and binds it
with the "Ue_CheckBoxClicked" user event, and then inserts the "MyCheckBox4" check box
as the last item in a group and binds it with the same "Ue_CheckBoxClicked" user event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_CheckBox, ll_Handle_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_CheckBox = rbb_1.InsertCheckBoxLast (ll_Handle_Panel, "MyCheckBox3",
 "Ue_CheckBoxClicked")
//Group
ll_Handle_Group = rbb_1.InsertGroupLast (ll_Handle_Panel)
ll_Handle_CheckBox = rbb_1.InsertCheckBoxLast (ll_Handle_Group, "MyCheckBox4",
 "Ue_CheckBoxClicked")

Example 2

This example inserts the "MyCheckBox3" check box as the last item in a panel and binds it
with the "Ue_CheckBoxClicked" and "Ue_CheckBoxSelected" user events. It first defines
a check box item with various properties (including Text, Clicked, Selected etc.) and then
inserts it as the first item in a panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_CheckBox
RibbonCheckBoxItem lr_CheckBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
lr_CheckBox.Text = "MyCheckBox3"
lr_CheckBox.Clicked = "Ue_CheckBoxClicked"
lr_CheckBox.Selected = "Ue_CheckBoxSelected"
ll_Handle_CheckBox = rbb_1.InsertCheckBoxLast (ll_Handle_Panel, lr_CheckBox)

See also

Statements, Events, and Functions

Page 900

InsertCheckBox

InsertCheckBoxFirst

DeleteCheckBox

SetCheckBox

GetCheckBox

GetChildItemByIndex

2.4.395 InsertClass

Description

Inserts a new object of the specified OLE class in an OLE control.

Syntax

ole2control.InsertClass (classname)

Table 2.839:

Argument Description

ole2control The name of the OLE control in which you want to create a new object

classname A string whose value is the name of the class of the object you want to
create

Return value

Integer. Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Invalid class name

-9 -- Other error

If any argument's value is null, InsertClass returns null.

Usage

Classnames are stored in the Registration database. Examples of classnames include:

Excel.Sheet

Excel.Chart

Word.Document

Examples

This example inserts an empty Excel spreadsheet into the OLE control, ole_1:

integer result
result = ole_1.InsertClass("excel.sheet")

See also

InsertFile

InsertObject

LinkTo

Statements, Events, and Functions

Page 901

2.4.396 InsertColumn

Description

Inserts a column with the specified label, alignment, and width at the specified location.

Applies to

ListView controls

Syntax

listviewname.InsertColumn (index, label, alignment, width)

Table 2.840:

Argument Description

listviewname The name of the ListView control to which you want to insert a column.

index An integer whose value is the number of the column before which you
are inserting a new column.

label A string whose value is the name of the column you are inserting.

alignment A value of the enumerated datatype Alignment specifying the alignment
of the column you are inserting. Values are:

Center!

Justify!

Left!

Right!

width An integer whose value is the width of the column you are inserting, in
PowerBuilder units.

Return value

Integer. Returns the column index value if it succeeds and -1 if an error occurs.

Usage

You can insert a column anywhere in the control. If the index you specify is greater than the
current number of columns, the column is inserted after the last column.

Examples

This example inserts a column named Location, makes it right-aligned, and sets the column
width to 300:

lv_list.InsertColumn(2 , "Location" , Right! , 300)

See also

AddColumn

DeleteColumn

2.4.397 InsertComboBox

Description

Statements, Events, and Functions

Page 902

Inserts a combo box in the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertComboBox (Long ParentHandle, Long ItemHandleAfter, String
 SelectionChanged)

controlname.InsertComboBox (Long ParentHandle, Long ItemHandleAfter,
 RibbonComboBoxItem Item)

Table 2.841:

Argument Description

controlname The name of the RibbonBar control.

ParentHandle The handle of the panel or group into which you want to insert a combo
box.

ItemHandleAfter The handle of the item (check box, combo box, large button, small
button, or group) on the same level after which you want to insert the
combo box.

SelectionChanged The name of the SelectionChanged user event to be bound with the
combo box. The SelectionChanged user event for the combo box must
have two long parameters for receiving the handle and index number of
the combo box. For details, see SelectionChanged.

Item A combo box item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the combo box must be defined correctly according
to the requirements of RibbonComboBoxItem. For details, see Modified, Selected, and
SelectionChanged.

Example 1

This example inserts a combo box after another combo box in a panel. Both combo boxes are
bound with the "Ue_ComboBoxSelectionChanged" user event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_ComboBox, ll_Handle_ComboBox2

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_ComboBox = rbb_1.InsertComboBoxFirst (ll_Handle_Panel,
 "Ue_ComboBoxSelectionChanged")
ll_Handle_ComboBox2 = rbb_1.InsertComboBox (ll_Handle_Panel, ll_Handle_ComboBox,
 "Ue_ComboBoxSelectionChanged")

Statements, Events, and Functions

Page 903

//Ue_ComboBoxSelectionChanged user event must have two long parameters for
 receiving the handle and
//index number of the selected ComboBox.
//event type long ue_comboboxselectionchanged(long itemhandle, long index);
//Integer li_Return
//String ls_Text
//
//RibbonComboBoxItem lr_ComboBox
//li_Return = rbb_1.GetComboBox(ItemHandle,lr_ComboBox)
//If li_Return = 1 Then
// ls_Text = lr_ComboBox.Text(Index)
//End If
//
//Return 1
//end event

Example 2

This example inserts the "MyComboBox2" combo box after another combo box in a panel
and binds it with "Ue_ComboBoxSelectionChanged", "Ue_ComboBoxSelected" and
"Ue_ComboBoxModified" user events. It first defines a combo box item with various
properties (including Label, PictureName, SelectionChanged, Selected, Modified etc.) and
then inserts it after another combo box.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_ComboBox, ll_Handle_ComboBox2
RibbonComboBoxItem lr_ComboBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_ComboBox = rbb_1.InsertComboBoxFirst (ll_Handle_Panel,
 "Ue_ComboBoxSelectionChanged")
lr_ComboBox.Label = "MyComboBox2"
lr_ComboBox.PictureName = "HelpSmall!"
lr_ComboBox.SelectionChanged = "Ue_ComboBoxSelectionChanged"
lr_ComboBox.Selected = "Ue_ComboBoxSelected"
lr_ComboBox.Modified = "Ue_ComboBoxModified"
ll_Handle_ComboBox2 = rbb_1.InsertComboBox (ll_Handle_Panel, ll_Handle_ComboBox,
 lr_ComboBox)

//Ue_ComboBoxModified user event must have a long parameter for receiving the
 handle
//of ComboBox that is changed.
//event type long ue_comboboxmodified(long itemhandle);
//RibbonComboBoxItem lr_ComboBox
//rbb_1.GetComboBox(ItemHandle,lr_ComboBox)
////...
//
//return 1
//end event

//Ue_ComboBoxSelected user event must have a long parameter for receiving the
 handle
//of ComboBox where the mouse is hovering over.
//event type long ue_comboboxselected(long itemhandle);
//RibbonComboBoxItem lr_ComboBox
//rbb_1.GetComboBox(ItemHandle,lr_ComboBox)
////...
//
//return 1
//end event

See also

Statements, Events, and Functions

Page 904

InsertComboBoxFirst

InsertComboBoxLast

DeleteComboBox

SetComboBox

GetComboBox

GetChildItemByIndex

2.4.398 InsertComboBoxFirst

Description

Inserts a combo box as the first item in the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertComboBoxFirst (Long ParentHandle, String SelectionChanged)

controlname.InsertComboBoxFirst (Long ParentHandle, RibbonComboBoxItem Item)

Table 2.842:

Argument Description

controlname The name of the RibbonBar control.

ParentHandle The handle of the panel or group in which you want to insert a combo
box.

SelectionChanged The name of the SelectionChanged user event to be bound with the
combo box. The SelectionChanged user event for the combo box must
have two long parameters for receiving the handle and index number of
the combo box. For details, see SelectionChanged.

Item A combo box item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the combo box must be defined correctly according
to the requirements of RibbonComboBoxItem. For details, see Modified, Selected, and
SelectionChanged.

Example 1

This example inserts a combo box as the first item in a panel and binds it with the
"Ue_ComboBoxSelectionChanged" user event, and then inserts another combo box as the
first item in a group and binds it with the same "Ue_ComboBoxSelectionChanged" user
event.

Statements, Events, and Functions

Page 905

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_ComboBox, ll_Handle_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_ComboBox = rbb_1.InsertComboBoxFirst (ll_Handle_Panel,
 "Ue_ComboBoxSelectionChanged")

//Group
ll_Handle_Group = rbb_1.InsertGroupLast (ll_Handle_Panel)
ll_Handle_ComboBox = rbb_1.InsertComboBoxFirst (ll_Handle_Group,
 "Ue_ComboBoxSelectionChanged")

Example 2

This example inserts the "MyComboBox" combo box as the first item in a panel and
binds it with the "Ue_ComboBoxSelectionChanged", "Ue_ComboBoxSelected", and
"Ue_ComboBoxModified" user events. It first defines a combo box item with various
properties (including Label, PictureName, SelectionChanged, Selected, Modified etc.) and
then inserts it as the first item in a panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_ComboBox
RibbonComboBoxItem lr_ComboBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
lr_ComboBox.Label = "MyComboBox"
lr_ComboBox.PictureName = "HelpSmall!"
lr_ComboBox.SelectionChanged = "Ue_ComboBoxSelectionChanged"
lr_ComboBox.Selected = "Ue_ComboBoxSelected"
lr_ComboBox.Modified = "Ue_ComboBoxModified"
ll_Handle_ComboBox = rbb_1.InsertComboBoxFirst (ll_Handle_Panel, lr_ComboBox)

See also

InsertComboBox

InsertComboBoxLast

DeleteComboBox

SetComboBox

GetComboBox

GetChildItemByIndex

2.4.399 InsertComboBoxLast

Description

Inserts a combo box as the last item in the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertComboBoxLast (Long ParentHandle, String SelectionChanged)

controlname.InsertComboBoxLast (Long ParentHandle, RibbonComboBoxItem Item)

Statements, Events, and Functions

Page 906

Table 2.843:

Argument Description

controlname The name of the RibbonBar control.

ParentHandle The handle of the panel or group into which you want to insert a combo
box.

SelectionChanged The name of the SelectionChanged user event to be bound with the
combo box. The SelectionChanged user event for the combo box must
have two long parameters for receiving the handle and index number of
the combo box. For details, see SelectionChanged.

Item A combo box item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the combo box must be defined correctly according
to the requirements of RibbonComboBoxItem. For details, see Modified, Selected, and
SelectionChanged.

Example 1

This example inserts a combo box as the last item in a panel and binds it with the
"Ue_ComboBoxSelectionChanged" user event, and then inserts another combo box as the
last item in a group and binds it with the same "Ue_ComboBoxSelectionChanged" user
event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_ComboBox, ll_Handle_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_ComboBox = rbb_1.InsertComboBoxLast (ll_Handle_Panel,
 "Ue_ComboBoxSelectionChanged")
//Group
ll_Handle_Group = rbb_1.InsertGroupLast (ll_Handle_Panel)
ll_Handle_ComboBox = rbb_1.InsertComboBoxLast (ll_Handle_Group,
 "Ue_ComboBoxSelectionChanged")

Example 2

This example inserts the "MyComboBox" combo box as the last item in a panel and
binds it with the "Ue_ComboBoxSelectionChanged", "Ue_ComboBoxSelected", and
"Ue_ComboBoxModified" user events. It first defines a combo box item with various
properties (including Label, PictureName, SelectionChanged, Selected, Modified etc.) and
then inserts it as the last item.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_ComboBox
RibbonComboBoxItem lr_ComboBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")

Statements, Events, and Functions

Page 907

lr_ComboBox.Label = "MyComboBox"
lr_ComboBox.PictureName = "HelpSmall!"
lr_ComboBox.SelectionChanged = "Ue_ComboBoxSelectionChanged"
lr_ComboBox.Selected = "Ue_ComboBoxSelected"
lr_ComboBox.Modified = "Ue_ComboBoxModified"
ll_Handle_ComboBox = rbb_1.InsertComboBoxLast (ll_Handle_Panel, lr_ComboBox)

See also

InsertComboBox

InsertComboBoxFirst

DeleteComboBox

SetComboBox

GetComboBox

GetChildItemByIndex

2.4.400 InsertData

Description

Inserts a data point in a series of a graph. You can specify the category for the data point or
its position in the series. Does not apply to scatter graphs.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects, because their data comes directly from the DataWindow.

Syntax

controlname.InsertData (seriesnumber, datapoint, datavalue {, categoryvalue })

Table 2.844:

Argument Description

controlname The name of the graph in which you want to insert data into a series.

seriesnumber The number that identifies the series in which you want to insert data.

datapoint The number of the data point before which you want to insert the data.

datavalue The value of the data point you want to insert.

categoryvalue
(optional)

The category for this data value on the category axis. The datatype of
categoryvalue should match the datatype of the category axis. In most
cases, you should include categoryvalue. Otherwise, an uncategorized
value will be added to the series.

Return value

Integer. Returns the number of the data value if it succeeds and -1 if an error occurs. If any
argument's value is null, InsertData returns null.

Usage

When you specify datapoint without specifying categoryvalue, InsertData inserts the data
point in the category at that position, shifting existing data points to the following categories.
The shift may cause there to be uncategorized data points at the end of the axis.

Statements, Events, and Functions

Page 908

When you specify categoryvalue, InsertData ignores the position in datapoint and puts the
data point in the specified category, replacing any data value that is already there. If the
category does not exist, InsertData creates the category at the end of the axis.

To modify the value of a data point at a specified position, use ModifyData.

Scatter graphs

To add data to a scatter graph, use Syntax 2 of AddData.

Equivalent syntax

If you want to add a data point to the end of a series or to an existing category in a series, you
can use AddData instead, which requires fewer arguments.

InsertData and ModifyData behave differently when you specify datapoint to indicate a
position for inserting or modifying data. However, they behave the same as AddData when
you specify a position of 0 and a category. All three modify the value of a data point when
the category already exists. All three insert a category with a data value at the end of the axis
when the category does not exist.

When you specify a position as well as a category, and that category already exists,
InsertData ignores the position and modifies the data of the specified category, but
ModifyData changes the category label at that position.

This statement:

gr_data.InsertData(1, 0, 44, "Qty")

is equivalent to:

gr_data.ModifyData(1, 0, 44, "Qty")

and is also equivalent to:

gr_data.AddData(1, 44, "Qty")

When you specify a position, the following statements are not equivalent:

• InsertData ignores the position and modifies the data value of the Qty category:

gr_data.InsertData(1, 4, 44, "Qty")

• ModifyData changes the category label and the data value at position 4:

gr_data.ModifyData(1, 4, 44, "Qty")

Examples

Assuming the category label Jan does not already exist, these statements insert a data value
in the series named Costs before the data point for Mar and assign the data point the category
label Jan in the graph gr_product_data:

integer SeriesNbr, CategoryNbr

// Get the numbers of the series and category.
SeriesNbr = gr_product_data.FindSeries("Costs")
CategoryNbr = gr_product_data.FindCategory("Mar")
gr_product_data.InsertData(SeriesNbr, &

Statements, Events, and Functions

Page 909

 CategoryNbr, 1250, "Jan")

These statements insert the data value 1250 after the data value for Apr in the series named
Revenues in the graph gr_product_data. The data is inserted in the category after Apr, and the
rest of the data, if any, moves over a category:

integer SeriesNbr, CategoryNbr

// Get the number of the series and category.
CategoryNbr = gr_product_data.FindCategory("Apr")
SeriesNbr = gr_product_data.FindSeries("Revenues")

gr_product_data.InsertData(SeriesNbr, &
 CategoryNbr + 1, 1250)

See also

AddData

FindCategory

FindSeries

GetData

2.4.401 InsertDocument

Description

Inserts a rich text format or plain text file into a RichTextEdit control, DataWindow control,
or DataStore object. The new content is added in one of two ways:

• The new content can be inserted at the insertion point.

• The new content can replace all existing content.

Applies to

RichTextEdit controls, DataWindow controls, and DataStore objects

Syntax

rtename.InsertDocument (filename, clearflag { , filetype })

Table 2.845:

Argument Description

rtename The name of the RichTextEdit control, DataWindow control, or
DataStore object in which you want to display the file. The DataWindow
object in the DataWindow control (or DataStore) must be a RichTextEdit
DataWindow.

filename A string whose value is the name of the file you want to display in the
RichTextEdit control. Filename can include the file's path.

clearflag A boolean value specifying whether the new file will replace the current
contents of the control. Values are:

• true -- Replace the current contents with the file

Statements, Events, and Functions

Page 910

Argument Description
• false -- Insert the file into the existing contents at the insertion point

filetype

(optional)

A value of the FileType enumerated datatype specifying the type of file
being opened. Values are:

• FileTypeRichText! -- (Default) The file being opened is in rich text
format (RTF)

• FileTypeText! -- The file being opened is plain ASCII text (TXT)

• FileTypeHTML! -- The file being opened is in HTML format (HTM or
HTML)

• FileTypeDoc! -- The file being opened is in Microsoft Word format
(DOC)

If filetype is not specified, PowerBuilder uses the filename extension to
decide whether to read the file as rich text or plain text. If the extension
is not one of the supported file type extensions, PowerBuilder attempts to
read the file as rich text. To insert files with extensions such as INI, LOG,
or SQL, you must specify FileTypeText!.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
InsertDocument returns null.

Usage

You cannot insert a document into a rich text control when the control's DisplayOnly
property is set to true. If you try to do this, PowerBuilder displays a runtime error message.

When the control supports headers and footers (the HeaderFooter property is set to true),
inserting a document can replace, but not add to, existing header and footer text. You must
set clearflag to true to replace the existing header and footer text with header and footer text
from the inserted document.

Not all RTF formatting is supported. PowerBuilder supports version 1.2 of the RTF standard,
except for the following:

• No support for formatted tables

• No drawing objects

Any unsupported formatting is ignored.

Examples

This example inserts a document into rte_1 and reports the return value in a StaticText
control:

integer rtn
rtn = rte_1.InsertDocument("c:\pb\test.rtf", &
 TRUE, FileTypeRichText!)

Statements, Events, and Functions

Page 911

st_status.Text = String(rtn)

See also

InputFieldInsert

InsertPicture

DataSource

2.4.402 InsertFile

Description

Inserts an object into an OLE control. A copy of the specified file is embedded in the OLE
object.

Syntax

olecontrol.InsertFile (filename)

Table 2.846:

Argument Description

olecontrol The name of the OLE control.

filename A string whose value is the name of the file whose contents you want to
be the data in the embedded OLE object. Filename should include the
file's path.

Return value

Integer. Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- File not found

-9 -- Other error

If any argument's value is null, InsertFile returns null.

Usage

The contents of the specified file is embedded in the OLE object. There is no further link
between the object in PowerBuilder and the file.

Examples

This example creates a new OLE object in the control ole_1. It is an Excel object and
contains data from the spreadsheet EXPENSE.XLS:

integer result
result = ole_1.InsertFile("c:\xls\expense.xls")

See also

InsertClass

InsertObject

LinkTo

Paste

Statements, Events, and Functions

Page 912

2.4.403 InsertGroup

Description

Inserts a group in the panel of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertGroup (Long PanelHandle, Long ItemHandleAfter)

controlname.InsertGroup (Long PanelHandle, Long ItemHandleAfter, RibbonGroupItem
 Item)

Table 2.847:

Argument Description

controlname The name of the RibbonBar control.

PanelHandle The handle of the panel into which you want to insert a group.

ItemHandleAfter The handle of the item (check box, combo box, large button, small
button, group) on the same level after which you want to insert the group.

Item A group item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Example 1

This example inserts a group after another in the "MyPanel" panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Group, ll_Handle_Group2

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_Group = rbb_1.InsertGroupFirst (ll_Handle_Panel)
ll_Handle_Group2 = rbb_1.InsertGroup (ll_Handle_Panel, ll_Handle_Group)

Example 2

This example defines a group item, specifies its NewLine property, and then inserts it after
another group in the "MyPanel" panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Group, ll_Handle_Group2
RibbonGroupItem lr_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_Group = rbb_1.InsertGroupFirst (ll_Handle_Panel)
lr_Group.newline = True
ll_Handle_Group2 = rbb_1.InsertGroup (ll_Handle_Panel, ll_Handle_Group, lr_Group)

See also

Statements, Events, and Functions

Page 913

InsertGroupFirst

InsertGroupLast

DeleteGroup

SetGroup

GetGroup

GetChildItemByIndex

2.4.404 InsertGroupFirst

Description

Inserts a group as the first item in the panel.

Applies to

RibbonBar controls

Syntax

controlname.InsertGroupFirst (Long PanelHandle)

controlname.InsertGroupFirst (Long PanelHandle, RibbonGroupItem Item)

Table 2.848:

Argument Description

controlname The name of the RibbonBar control.

PanelHandle The handle of the panel into which you want to insert a group.

Item A group item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Example 1

This example inserts a group as the first item in the "MyPanel" panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_Group = rbb_1.InsertGroupFirst (ll_Handle_Panel)

Example 2

This example also inserts a group as the first item in the "MyPanel" panel. It defines a group
item lr_Group and then inserts it as the first item in the "MyPanel" panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Group
RibbonGroupItem lr_Group

Statements, Events, and Functions

Page 914

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_Group = rbb_1.InsertGroupFirst (ll_Handle_Panel, lr_Group)

See also

InsertGroup

InsertGroupLast

DeleteGroup

SetGroup

GetGroup

GetChildItemByIndex

2.4.405 InsertGroupLast

Description

Inserts a group as the last item in the panel.

Applies to

RibbonBar controls

Syntax

controlname.InsertGroupLast (Long PanelHandle)

controlname.InsertGroupLast (Long PanelHandle, RibbonGroupItem Item)

Table 2.849:

Argument Description

controlname The name of the RibbonBar control.

PanelHandle The handle of the panel into which you want to insert a group.

Item A group item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Example 1

This example inserts a group as the last item in the "MyPanel" panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_Group = rbb_1.InsertGroupLast (ll_Handle_Panel)

Example 2

Statements, Events, and Functions

Page 915

This example also inserts a group as the last item in the "MyPanel" panel. It defines a group
item lr_Group and then inserts it as the last item in the "MyPanel" panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Group
RibbonGroupItem lr_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_Group = rbb_1.InsertGroupLast (ll_Handle_Panel, lr_Group)

See also

InsertGroup

InsertGroupFirst

DeleteGroup

SetGroup

GetGroup

GetChildItemByIndex

2.4.406 InsertItem

Inserts an item into a ListBox, RibbonComboBoxItem, ListView, TreeView, or RibbonMenu
control.

Table 2.850:

To insert an item into a Use

ListBox or DropDownListBox control Syntax 1

PictureListBox, DropDownPictureListBox, or RibbonComboBoxItem
control

Syntax 2

ListView control when only the label and picture index need to be
specified

Syntax 3

ListView control when more than the label and picture index need to be
specified

Syntax 4

TreeView control when only the label and picture index need to be
specified

Syntax 5

TreeView control when more than the label and picture index need to be
specified

Syntax 6

RibbonMenu control Syntax 7

2.4.406.1 Syntax 1: For ListBox and DropDownListBox controls

Description

Inserts an item into the list of values in a list box.

Applies to

ListBox and DropDownListBox controls

Statements, Events, and Functions

Page 916

Syntax

listboxname.InsertItem (item, index)

Table 2.851:

Argument Description

listboxname The name of the ListBox or DropDownListBox into which you want to
insert an item

item A string whose value is the text of the item you want to insert

index The number of the item in the list before which you want to insert the
item

Return value

Integer. Returns the final position of the item. Returns -1 if an error occurs. If any argument's
value is null, InsertItem returns null.

Usage

InsertItem inserts the new item before the item identified by index. If the items in
listboxname are sorted (its Sorted property is true), PowerBuilder resorts the items after the
new item is inserted. The return value reflects the new item's final position in the list.

AddItem and InsertItem do not update the Items property array. You can use FindItem to find
items added at runtime.

Examples

This statement inserts the item Run Application before the fifth item in lb_actions:

lb_actions.InsertItem("Run Application", 5)

If the Sorted property is false, the statement above returns 5 (the previous item 5 becomes
item 6). If the Sorted property is true, the list is sorted after the item is inserted and the
function returns the index of the final position of the item.

If the ListBox lb_Cities has the following items in its list and its Sorted property is set to true,
then the following example inserts Denver at the top, sorts the list, and sets li_pos to 4. If the
ListBox's Sorted property is false, then the statement inserts Denver at the top of the list and
sets li_pos to 1. The list is:

Albany
Boston
Chicago
New York

The example code is:

string ls_City = "Denver"
integer li_pos
li_pos = lb_Cities.InsertItem(ls_City, 1)

See also

AddItem

DeleteItem

Statements, Events, and Functions

Page 917

FindItem

Reset

TotalItems

2.4.406.2 Syntax 2: For PictureListBox, DropDownPictureListBox, RibbonComboBoxItem
controls

Description

Inserts an item into the list of values in a picture list box.

Applies to

PictureListBox, DropDownPictureListBox, and RibbonComboBoxItem controls

Syntax

listboxname.InsertItem (item {, pictureindex }, index)

Table 2.852:

Argument Description

listboxname The name of the PictureListBox or DropDownPictureListBox or
RibbonComboBoxItem into which you want to insert an item

item A string whose value is the text of the item you want to insert

pictureindex
(optional)

An integer specifying the index of the picture you want to associate with
the newly added item

index The number of the item in the list before which you want to insert the
item

Return value

Integer. Returns the final position of the item. Returns -1 if an error occurs. If any argument's
value is null, InsertItem returns null.

Usage

If you do not specify a picture index, the newly added item will not have a picture.

If you specify a picture index that does not exist, that number is still stored with the picture.
If you add pictures to the picture array so that the index becomes valid, the item will then
show the corresponding picture.

For additional notes about items in ListBoxes and examples of how the Sorted property
affects the item order, see Syntax 1.

Examples

This statement inserts the item Run Application before the fifth item in plb_actions. The item
has no picture assigned to it:

plb_actions.InsertItem("Run Application", 5)

This statement inserts the item Run Application before the fifth item in plb_actions and
assigns it picture index 4:

plb_actions.InsertItem("Run Application", 4, 5)

Statements, Events, and Functions

Page 918

These statements insert three items to the ribbon combo box:

Integer li_Return
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.SetBoxPictureList("PaperSizeA0Small!,PaperSizeA1Small!")
li_Return = lr_ComboBox.InsertItem("Item2",1,1)
li_Return = lr_ComboBox.InsertItem("Item3",2,2)
li_Return = lr_ComboBox.InsertItem("Item1",1)

See also

AddItem

DeleteItem

FindItem

Reset

TotalItems

2.4.406.3 Syntax 3: For ListView controls

Description

Inserts an item into a ListView control.

Applies to

ListView controls

Syntax

listviewname.InsertItem (index, label, pictureindex)

Table 2.853:

Argument Description

listviewname The name of the ListView control to which you are adding an item

index An integer whose value is the index number of the item before which you
are inserting a new item

label A string whose value is the name of the item you are adding

pictureindex An integer whose value is the index number of the picture of the item you
are adding

Return value

Integer. Returns index if it succeeds and -1 if an error occurs.

Usage

If you need to set more than the label and picture index, use Syntax 4.

Examples

This example inserts an item in the ListView in position 11:

lv_list.InsertItem(11 , "Presentation" , 1)

See also

Statements, Events, and Functions

Page 919

AddItem

2.4.406.4 Syntax 4: For ListView controls

Description

Inserts an item into a ListView control.

Applies to

ListView controls

Syntax

listviewname.InsertItem (index, item)

Table 2.854:

Argument Description

listviewname The name of the ListView control into which you are inserting an item

index An integer whose value is the index number of the item you are adding

item A system structure of datatype ListViewItem in which InsertItem stores
the item you are inserting

Return value

Integer. Returns index if it succeeds and -1 if an error occurs.

Usage

The index you specify is the position of the item you are adding to a ListView.

If you need to insert just the label and picture index into the ListView control, use Syntax 3.

Examples

This example moves a ListView item from the second position into the fifth position. It uses
GetItem to retrieve the state information from item 2, inserts it into the ListView control as
item 5, and then deletes the original item:

listviewitem l_lvi
lv_list.GetItem(2 , l_lvi)
lv_list.InsertItem(5 , l_lvi)
lv_list.DeleteItem(2)

See also

AddItem

2.4.406.5 Syntax 5: For TreeView controls

Description

Inserts an item at a specific level and order in a TreeView control.

Applies to

TreeView controls

Syntax

Statements, Events, and Functions

Page 920

treeviewname.InsertItem (handleparent, handleafter, label, pictureindex)

Table 2.855:

Argument Description

treeviewname The name of the TreeView control in which you want to insert an item.

handleparent The handle of the item one level above the item you want to insert. To
insert an item at the first level, specify 0.

handleafter The handle of the item on the same level that you will insert the item
immediately after.

label The label of the item you are inserting.

pictureindex The Index of the index of the picture you are adding to the image list.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs.

Usage

Use this syntax to set just the label and picture index. Use the next syntax if you need to set
additional properties for the item.

If the TreeView's SortType property is set to a value other than Unsorted!, the inserted item is
sorted with its siblings.

If you are inserting the first child of an item, use InsertItemLast or InsertItemFirst instead.
Those functions do not require a handleafter value.

Examples

This example inserts a TreeView item that is on the same level as the current TreeView item.
It uses FindItem to get the current item and its parent, then inserts the new item beneath the
parent item:

long ll_tvi, ll_tvparent
ll_tvi = tv_list.FindItem(currenttreeitem! , 0)
ll_tvparent = tv_list.FindItem(parenttreeitem!,ll_tvi)
tv_list.InsertItem(ll_tvparent,ll_tvi,"Hindemith", 2)

See also

GetItem

2.4.406.6 Syntax 6: For TreeView controls

Description

Inserts an item at a specific level and order in a TreeView control.

Applies to

TreeView controls

Syntax

treeviewname.InsertItem (handleparent, handleafter, item)

Statements, Events, and Functions

Page 921

Table 2.856:

Argument Description

treeviewname The name of the TreeView control into which you want to insert an item.

handleparent The handle of the item one level above the item you want to insert. To
insert an item at the first level, specify 0.

handleafter The handle of the item on the same level that you will insert the item
immediately after.

item A TreeViewItem structure for the item you are inserting.

Return value

Long.

Returns the handle of the item inserted if it succeeds and -1 if an error occurs.

Usage

Use the previous syntax to set just the label and picture index. Use this syntax if you need to
set additional properties for the item.

If the TreeView's SortType property is set to a value other than Unsorted!, the inserted item is
sorted with its siblings.

If you are inserting the first child of an item, use InsertItemLast or InsertItemFirst instead.
Those functions do not require a handleafter value.

Examples

This example inserts a TreeView item that is on the same level as the current TreeView item.
It uses FindItem to get the current item and its parent, then inserts the new item beneath the
parent item:

long ll_tvi, ll_tvparent
treeviewitem l_tvi
ll_tvi = tv_list.FindItem(currenttreeitem! , 0)
ll_tvparent = tv_list.FindItem(parenttreeitem!,ll_tvi)
tv_list.GetItem(ll_tvi , l_tvi)
tv_list.InsertItem(ll_tvparent,ll_tvi, l_tvi)

See also

GetItem

2.4.406.7 Syntax 7: For RibbonMenu controls

Description

Inserts a menu item at the specified position in a ribbon menu.

Applies to

RibbonMenu controls

Syntax

controlname.InsertItem ({Long ParentIndex, } Long Index, String Text, String
 PictureName, String Clicked)

controlname.InsertItem ({Long ParentIndex, } Long Index, RibbonMenuItem Item)

Statements, Events, and Functions

Page 922

Table 2.857:

Argument Description

controlname The name of the RibbonMenu control into which you want to insert a
menu item.

ParentIndex The index of the menu item (RibbonMenuItem) into which you want to
insert a submenu item.

It cannot be an index of a separator (that is RibbonMenuItem with
ItemType 1). If not specified, a menu item will be inserted at the
specified position; if specified to a valid value, a submenu item will be
inserted at the specified position under the menu item (whose index is
ParentIndex); if specified to an invalid value, an error would occur and
this operation would return -1.

Index The index number of the menu item or submenu item before which you
are inserting a new menu item. If index is invalid, an error would occur
and this operation would return -1.

Text The text that displays in the menu item or submenu item.

PictureName The name of the file that contains the picture. The image is displayed in
16*16 pixels.

Clicked The name of the Clicked user event to be bound with the menu item. The
Clicked user event for the menu item must be defined with the required
parameters and types. For details, see Clicked.

Item A RibbonMenuItem item you want to insert. Only RibbonMenuItem
with "Normal(0)" or "Separator(1)" ItemType is supported. If
RibbonMenuItem is with other ItemType such as "Recent(2)", an error
would occur and this operation would return -1.

Return value

Long.

Returns the position of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

Only menu items with the "Normal" or "Separator" type (that is RibbonMenuItem with
ItemType 0 or 1) can be added to the RibbonMenu control.

A RibbonMenu control can contain menu items in no more than two levels.

The user events to be bound with the menu item must be defined correctly according to the
requirements of RibbonMenuItem. For details, see Clicked and Selected.

Example 1

This example inserts a "MenuItem1" menu item and then inserts two submenu items
"SubMenuItem1" and "SubMenuItem2" under "MenuItem1".

Long ll_Return, ll_Index
RibbonMenu lr_Menu

ll_Index = lr_Menu.InsertItem (1, "MenuItem1", "AddSmall!", "Ue_MenuItem1Clicked")

Statements, Events, and Functions

Page 923

ll_Return = lr_Menu.InsertItem (ll_Index, 1, "SubMenuItem1", "AddSmall!",
 "Ue_SubMenuItem1Clicked")
ll_Return = lr_Menu.InsertItem (ll_Index, 2, "SubMenuItem2", "AddSmall!",
 "Ue_SubMenuItem2Clicked")

Example 2

This example also inserts a "MenuItem1" menu item and then inserts two submenu
items "SubMenuItem1" and "SubMenuItem2" under "MenuItem1". It first defines three
RibbonMenu items (lr_MenuItem1, lr_SubMenuItem1, lr_SubMenuItem2) with various
properties (including binding with "Ue_MenuItem1Clicked" and "Ue_MenuItem1Selected"
user events), and then inserts lr_MenuItem1 as the menu item, and lr_SubMenuItem1 and
lr_SubMenuItem2 as the submenu items.

Long ll_Return, ll_Index
RibbonMenu lr_Menu
RibbonMenuItem lr_MenuItem1, lr_SubMenuItem1, lr_SubMenuItem2

lr_MenuItem1.Text = "MenuItem1"
lr_MenuItem1.PictureName = "AddSmall!"
lr_MenuItem1.Clicked = "Ue_MenuItem1Clicked"
lr_MenuItem1.Selected = "Ue_MenuItem1Selected"
lr_SubMenuItem1.Text = "SubMenuItem1"
lr_SubMenuItem2.Text = "SubMenuItem2"

ll_Index = lr_Menu.InsertItem (1, lr_MenuItem1)
ll_Return = lr_Menu.InsertItem (ll_Index, 1, lr_SubMenuItem1)
ll_Return = lr_Menu.InsertItem (ll_Index, 2, lr_SubMenuItem2)

See also

AddSeparatorItem

DeleteItem

GetItem

GetItemCount

InsertItemFirst

InsertItemLast

SetItem

2.4.407 InsertItemFirst

Inserts an item as the first child of a parent item.

Table 2.858:

To insert an item as the first child of its parent Use

When you only need to specify the item label and picture index Syntax 1

When you need to specify more than the item label and picture index Syntax 2

RibbonMenu control Syntax 3

2.4.407.1 Syntax 1: For TreeView controls

Description

Statements, Events, and Functions

Page 924

Inserts an item as the first child of its parent.

Applies to

TreeView controls

Syntax

treeviewname.InsertItemFirst (handleparent, label, pictureindex)

Table 2.859:

Argument Description

treeviewname The TreeView control in which you want to specify an item as the first
child of its parent.

handleparent The handle of the item that will be the inserted item's parent. To insert the
item at the first level, specify 0.

label The label of the item you want to specify as the first child of its parent.

pictureindex The picture index for the item you want to specify as the first child of its
parent.

Return value

Long.

Returns the handle of the item inserted if it succeeds and -1 if an error occurs.

Examples

This example populates the first level of a TreeView using InsertItemFirst:

long ll_lev1, ll_lev2 ,ll_lev3 ,ll_lev4
int index
tv_list.PictureHeight = 32
tv_list.PictureWidth = 32
ll_lev1 = tv_list.InsertItemFirst(0,"Composers",1)
ll_lev2 = tv_list.InsertItemLast(ll_lev1, &
 "Beethoven",2)
ll_lev3 = tv_list.InsertItemLast(ll_lev2, &
 "Symphonies", 3)
FOR index = 1 to 9
 ll_lev4 = tv_list.InsertItemSort(ll_lev3, &
 "Symphony # " + String(index) , 4)
NEXT
tv_list.ExpandItem(ll_lev3)
tv_list.ExpandItem(ll_lev4)

See also

InsertItem

InsertItemLast

InsertItemSort

2.4.407.2 Syntax 2: For TreeView controls

Description

Inserts an item as the first child of an item.

Statements, Events, and Functions

Page 925

Applies to

TreeView controls

Syntax

treeviewname.InsertItemFirst (handleparent, item)

Table 2.860:

Argument Description

treeviewname The TreeView control in which you want to specify an item as the first
child of its parent.

handleparent The handle of the item that will be the inserted item's parent. To insert the
item at the first level, specify 0.

item A TreeViewItem structure for the item you are inserting.

Return value

Long.

Returns the handle of the item inserted if it succeeds and -1 if an error occurs.

Usage

If SortType is anything except Unsorted!, items are sorted after they are added and the
TreeView is always in a sorted state. Therefore, calling InsertItemFirst, InsertItemLast, and
InsertItemSort produces the same result.

Examples

This example inserts the current item as the first item beneath the root item in a TreeView
control:

long ll_handle, ll_roothandle
treeviewitem l_tvi
ll_handle = tv_list.FindItem(CurrentTreeItem!, 0)
ll_roothandle = tv_list.FindItem(RootTreeItem!, 0)
tv_list.GetItem(ll_handle , l_tvi)

tv_list.InsertItemFirst(ll_roothandle, l_tvi)

See also

InsertItem

InsertItemLast

InsertItemSort

2.4.407.3 Syntax 3: For RibbonMenu controls

Description

Inserts a menu item as the first item in a ribbon menu.

Applies to

RibbonMenu controls

Syntax

Statements, Events, and Functions

Page 926

controlname.InsertItemFirst ({ Long ParentIndex, } String Text, String
 PictureName, String Clicked)

controlname.InsertItemFirst ({ Long ParentIndex, } RibbonMenuItem Item)

Table 2.861:

Argument Description

controlname The RibbonMenu control into which you want to insert a menu item as
the first item.

ParentIndex The index of the menu item (RibbonMenuItem) into which you want to
insert a submenu item.

It cannot be an index of a separator (that is RibbonMenuItem with
ItemType 1). If not specified, a menu item will be inserted as the first
item; if specified to a valid value, a submenu item will be inserted as the
first item under the menu item (whose index is ParentIndex); if specified
to an invalid value, an error would occur and this operation would return
-1.

Text The text that displays in the menu item or submenu item.

PictureName The name of the file that contains the picture. The image will be
displayed in 16*16 pixels.

Clicked The name of the Clicked user event to be bound with the menu item. The
Clicked user event for the menu item must be defined with the required
parameters and types. For details, see Clicked.

Item A RibbonMenuItem item you want to insert. Only RibbonMenuItem
with "Normal(0)" or "Separator(1)" ItemType is supported. If
RibbonMenuItem is with other ItemType such as "Recent(2)", an error
would occur and this operation would return -1.

Return value

Long.

Returns the position of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

Only menu items with the "Normal" or "Separator" type (that is RibbonMenuItem with
ItemType 0 or 1) can be added to the RibbonMenu control.

A RibbonMenu control can contain menu items in no more than two levels.

The user events to be bound with the menu item must be defined correctly according to the
requirements of RibbonMenuItem. For details, see Clicked and Selected.

Example 1

This example inserts a "MenuItem1" menu item as the first item and then inserts two
submenu items under "MenuItem1" in the following display order: "SubMenuItem1",
"SubMenuItem2".

Long ll_Return,ll_Index
RibbonMenu lr_Menu

Statements, Events, and Functions

Page 927

ll_Index = lr_Menu.InsertItemFirst("MenuItem1","AddSmall!","Ue_MenuItem1Clicked")
ll_Return =
 lr_Menu.InsertItemFirst(ll_Index,"SubMenuItem2","AddSmall!","Ue_MenuItem12Clicked")
ll_Return =
 lr_Menu.InsertItemFirst(ll_Index,"SubMenuItem1","AddSmall!","Ue_MenuItem11Clicked")

Example 2

This example also inserts a "MenuItem1" menu item as the first item and then
inserts two submenu items under "MenuItem1" in the following display order:
"SubMenuItem1", "SubMenuItem2". It first defines three RibbonMenu items (lr_MenuItem1,
lr_SubMenuItem1, lr_SubMenuItem2) with various properties (including binding with
the "Ue_MenuItem1Clicked" and "Ue_MenuItem1Selected" user events), and then inserts
lr_MenuItem1 as the first menu item "MenuItem1", and inserts the other two as the
submenu items under "MenuItem1" in the following display order: "SubMenuItem1",
"SubMenuItem2".

Long ll_Return,ll_Index
RibbonMenu lr_Menu
RibbonMenuItem lr_MenuItem1,lr_SubMenuItem1,lr_SubMenuItem2

lr_MenuItem1.Text = "MenuItem1"
lr_MenuItem1.PictureName = "AddSmall!"
lr_MenuItem1.Clicked = "Ue_MenuItem1Clicked"
lr_MenuItem1.Selected = "Ue_MenuItem1Selected"
lr_SubMenuItem1.Text = "SubMenuItem1"
lr_SubMenuItem2.Text = "SubMenuItem2"

ll_Index = lr_Menu.InsertItemFirst(lr_MenuItem1)
ll_Return = lr_Menu.InsertItemFirst(ll_Index,lr_SubMenuItem2)
ll_Return = lr_Menu.InsertItemFirst(ll_Index,lr_SubMenuItem1)

See also

AddSeparatorItem

DeleteItem

GetItem

GetItemCount

InsertItem

InsertItemLast

SetItem

2.4.408 InsertItemLast

Inserts an item as the last child of a parent item.

Table 2.862:

To insert an item as the last child of its parent Use

When you only need to specify the item label and picture index Syntax 1

When you need to specify more than item label and picture index Syntax 2

RibbonMenu control Syntax 3

Statements, Events, and Functions

Page 928

2.4.408.1 Syntax 1: For TreeView controls

Description

Inserts an item as the last child of its parent.

Applies to

TreeView controls

Syntax

treeviewname.InsertItemLast (handleparent, label, pictureindex)

Table 2.863:

Argument Description

treeviewname The TreeView control in which you want to specify an item as the last
child of its parent.

handleparent The handle of the item that will be the inserted item's parent. To insert the
item at the first level, specify 0.

label The label of the item you want to specify as the last child of its parent.

pictureindex The picture index for the item you want to specify as the last child of its
parent.

Return value

Long.

Returns the handle of the item inserted if it succeeds and -1 if an error occurs.

Usage

If more than the item label and Index need to be specified, use syntax 2.

If SortType is anything except Unsorted!, items are sorted after they are added and the
TreeView is always in a sorted state. Therefore, calling InsertItemFirst, InsertItemLast, and
InsertItemSort produces the same result.

Examples

This example populates the first three levels of a TreeView using InsertItemLast:

long ll_lev1, ll_lev2, ll_lev3, ll_lev4
int index

tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

ll_lev1 = tv_list.InsertItemLast(0,"Composers",1)
ll_lev2 = tv_list.InsertItemLast(ll_lev1, &
 "Beethoven",2)
ll_lev3 = tv_list.InsertItemLast(ll_lev2, &
 "Symphonies",3)
FOR index = 1 to 9
 ll_lev4 = tv_list.InsertItemSort(ll_lev3, &
 "Symphony # " String(index), 4)
NEXT

tv_list.ExpandItem(ll_lev3)

Statements, Events, and Functions

Page 929

tv_list.ExpandItem(ll_lev4)

See also

InsertItem

InsertItemFirst

InsertItemSort

2.4.408.2 Syntax 2: For TreeView controls

Description

Inserts an item as the last child of its parent.

Applies to

TreeView controls

Syntax

treeviewname.InsertItemLast (handleparent, item)

Table 2.864:

Argument Description

treeviewname The TreeView control in which you want to specify an item as the last
child of its parent.

handleparent The handle of the item that will be the inserted item's parent. To insert the
item at the first level, specify 0.

item A TreeViewItem structure for the item you are inserting.

Return value

Long.

Returns the handle of the item inserted if it succeeds and -1 if an error occurs.

Usage

If SortType is anything except Unsorted!, items are sorted after they are added and the
TreeView is always in a sorted state. Therefore, calling InsertItemFirst, InsertItemLast, and
InsertItemSort produces the same result.

Examples

This example inserts the current item as the last item beneath the root item in a TreeView
control:

long ll_handle, ll_roothandle
treeviewitem l_tvi

ll_handle = tv_list.FindItem(CurrentTreeItem!, 0)
ll_roothandle = tv_list.FindItem(RootTreeItem!, 0)
tv_list.GetItem(ll_handle , l_tvi)

tv_list.InsertItemLast(ll_roothandle, l_tvi)

See also

Statements, Events, and Functions

Page 930

InsertItem

InsertItemFirst

InsertItemSort

2.4.408.3 Syntax 3: For RibbonMenu controls

Description

Inserts a menu item as the last item in a ribbon menu.

Applies to

RibbonMenu controls

Syntax

controlname.InsertItemLast ({ Long ParentIndex, } String Text, String PictureName,
 String Clicked)

controlname.InsertItemLast ({ Long ParentIndex, } RibbonMenuItem Item)

Table 2.865:

Argument Description

controlname The RibbonMenu control into which you want to insert a menu item as
the last item.

ParentIndex The index of the menu item (RibbonMenuItem) into which you want to
insert a submenu item.

It cannot be an index of a separator (that is RibbonMenuItem with
ItemType 1). If not specified, a menu item will be inserted as the last
item; if specified to a valid value, a submenu item will be inserted as the
last item under the menu item (whose index is ParentIndex); if specified
to an invalid value, an error would occur and this operation would return
-1.

Text The text that displays in the menu item or submenu item.

PictureName The name of the file that contains the picture. The image will be
displayed in 16*16 pixels.

Clicked The name of the Clicked user event to be bound with the menu item. The
Clicked user event for the menu item must be defined with the required
parameters and types. For details, see Clicked.

Item A RibbonMenuItem item you want to insert. Only RibbonMenuItem
with "Normal(0)" or "Separator(1)" ItemType is supported. If
RibbonMenuItem is with other ItemType such as "Recent(2)", an error
would occur and this operation would return -1.

Return value

Long.

Returns the position of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Statements, Events, and Functions

Page 931

Usage

Only menu items with the "Normal" or "Separator" type (that is RibbonMenuItem with
ItemType 0 or 1) can be added to the RibbonMenu control.

A RibbonMenu control can contain menu items in no more than two levels.

The user events to be bound with the menu item must be defined correctly according to the
requirements of RibbonMenuItem. For details, see Clicked and Selected.

Example 1

This example inserts a "MenuItem1" menu item as the last item and then inserts two
submenu items under "MenuItem1" in the following display order: "SubMenuItem1",
"SubMenuItem2".

Long ll_Return,ll_Index
RibbonMenu lr_Menu

ll_Index = lr_Menu.InsertItemLast ("MenuItem1", "AddSmall!", "Ue_MenuItem1Clicked")
ll_Return = lr_Menu.InsertItemLast (ll_Index, "SubMenuItem1", "AddSmall!",
 "Ue_MenuItem11Clicked")
ll_Return = lr_Menu.InsertItemLast (ll_Index, "SubMenuItem2", "AddSmall!",
 "Ue_MenuItem12Clicked")

Example 2

This example also inserts a "MenuItem1" menu item as the last item and then
inserts two submenu items under "MenuItem1" in the following display order:
"SubMenuItem1", "SubMenuItem2". It first defines three RibbonMenu items (lr_MenuItem1,
lr_SubMenuItem1, lr_SubMenuItem2) with various properties (including binding with
the "Ue_MenuItem1Clicked" and "Ue_MenuItem1Selected" user events), and then
inserts lr_MenuItem1 as the last menu item "MenuItem1", and inserts the other two as
the submenu items under "MenuItem1" in the following display order: "SubMenuItem1",
"SubMenuItem2".

Long ll_Return, ll_Index
RibbonMenu lr_Menu
RibbonMenuItem lr_MenuItem1, lr_SubMenuItem1, lr_SubMenuItem2

lr_MenuItem1.Text = "MenuItem1"
lr_MenuItem1.PictureName = "AddSmall!"
lr_MenuItem1.Clicked = "Ue_MenuItem1Clicked"
lr_MenuItem1.Selected = "Ue_MenuItem1Selected"
lr_SubMenuItem1.Text = "SubMenuItem1"
lr_SubMenuItem2.Text = "SubMenuItem2"

ll_Index = lr_Menu.InsertItemLast (lr_MenuItem1)
ll_Return = lr_Menu.InsertItemLast (ll_Index, lr_SubMenuItem1)
ll_Return = lr_Menu.InsertItemLast (ll_Index, lr_SubMenuItem2)

See also

AddSeparatorItem

DeleteItem

GetItem

GetItemCount

InsertItem

Statements, Events, and Functions

Page 932

InsertItemFirst

SetItem

2.4.409 InsertItemSort

Inserts a child item in sorted order under the parent item.

Table 2.866:

To insert an item in sorted order Use

When you only need to specify the item label and picture index Syntax 1

When you need to specify more than the item label and picture index Syntax 2

2.4.409.1 Syntax 1: For TreeView controls

Description

Inserts an item in sorted order, if possible.

Applies to

TreeView controls

Syntax

treeviewname.InsertItemSort (handleparent, label, pictureindex)

Table 2.867:

Argument Description

treeviewname The TreeView control in which you want to insert and sort an item as a
child of its parent, according to its label.

handleparent The handle of the item that will be the inserted item's parent. To insert the
item at the first level, specify 0.

label The label by which you want to sort the item as a child of its parent.

pictureindex The picture index for the item you want to sort as a child of its parent,
according to its label.

Return value

Long.

Returns the handle of the item inserted if it succeeds and -1 if an error occurs.

Usage

If SortType is anything except Unsorted!, the TreeView is always in a sorted state and you do
not need to use InsertItemSort -- you can use any insert function.

If SortType is Unsorted!, InsertItemSort attempts to insert the item at the correct place in
alphabetic ascending order. If the list is out of order, it does its best to find the correct place,
but results may be unpredictable.

Examples

This example populates the fourth level of a TreeView control:

Statements, Events, and Functions

Page 933

long ll_lev1, ll_lev2, ll_lev3, ll_lev4
int index

tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

ll_lev1 = tv_list.InsertItemLast(0,"Composers",1)
ll_lev2 = tv_list.InsertItemLast(ll_lev1,&
 "Beethoven",2)
ll_lev3 = tv_list.InsertItemLast(ll_lev2,&
 "Symphonies",3)
FOR index = 1 to 9
 ll_lev4 = tv_list.InsertItemSort(ll_lev3, &
 "Symphony # " + String(index), 4)
NEXT

tv_list.ExpandItem(ll_lev3)
tv_list.ExpandItem(ll_lev4)

See also

InsertItem

InsertItemLast

InsertItemFirst

2.4.409.2 Syntax 2: For TreeView controls

Description

Inserts an item in sorted order, if possible.

Applies to

TreeView controls

Syntax

treeviewname.InsertItemSort (handleparent, item)

Table 2.868:

Argument Description

treeviewname The TreeView control in which you want to sort an item as a child of its
parent, according to its label.

handleparent The handle of the item that will be the inserted item's parent. To insert the
item at the first level, specify 0.

item A TreeViewItem structure for the item you are inserting.

Return value

Long.

Returns the handle of the item inserted if it succeeds and -1 if an error occurs.

Usage

If SortType is anything except Unsorted!, the TreeView is always in a sorted state and you do
not need to use InsertItemSort -- you can use any insert function.

Statements, Events, and Functions

Page 934

If SortType is Unsorted!, InsertItemSort attempts to insert the item at the correct place in
alphabetic ascending order. If the list is out of order, it does its best to find the correct place,
but results may be unpredictable.

Examples

This example inserts the current item beneath the root item in a TreeView control and sorts it
according to its label:

long ll_handle, ll_roothandle
treeviewitem l_tvi

ll_handle = tv_list.FindItem(CurrentTreeItem!, 0)
ll_roothandle = tv_list.FindItem(RootTreeItem!, 0)
tv_list.GetItem(ll_handle , l_tvi)

tv_list.InsertItemSort(ll_roothandle, l_tvi)

See also

InsertItem

InsertItemLast

InsertItemFirst

2.4.410 InsertLargeButton

Description

Inserts a large button in the panel of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertLargeButton (Long PanelHandle, Long ItemHandleAfter, String
 Text, String PictureName, String Clicked)

controlname.InsertLargeButton (Long PanelHandle, Long ItemHandleAfter,
 RibbonLargeButtonItem Item)

Table 2.869:

Argument Description

controlname The name of the RibbonBar control.

PanelHandle The handle of the panel into which you want to insert a large button.

ItemHandleAfter The handle of the item (check box, combo box, large button, small
button, group) on the same level after which you want to insert the large
button.

Text The text that displays in the large button.

PictureName The name of the file that contains the picture. It will be displayed as
32*32.

Clicked The name of the Clicked user event to be bound with the large button.
The Clicked user event for the large button must have a long parameter
for receiving the handle of the large button. For details, see Clicked.

Statements, Events, and Functions

Page 935

Argument Description

Item A large button item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the large button must be defined correctly according to the
requirements of RibbonLargeButtonItem. For details, see Clicked and Selected.

Example 1

This example inserts a "Delete" large button after the "Add" large button in the "MyPanel"
panel. Both buttons are bound with the "Ue_LargeButtonClicked" user event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton,
 ll_Handle_LargeButton2

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_LargeButton = rbb_1.InsertLargeButtonFirst (ll_Handle_Panel, "Add",
 "AddBig!", "Ue_LargeButtonClicked")
ll_Handle_LargeButton2 = rbb_1.InsertLargeButton (ll_Handle_Panel,
 ll_Handle_LargeButton, "Delete", "DeleteBig!", "Ue_LargeButtonClicked")

//Ue_LargeButtonClicked user event must have a long parameter for receiving the
 handle
//of LargeButton where the mouse is clicking.
//event type long ue_largebuttonclicked(long itemhandle);
//RibbonLargeButtonItem lr_LargeButton
//rbb_1.GetLargeButton(ItemHandle,lr_LargeButton)
////...
//Return 1
//end event

Example 2

This example inserts a "Delete" large button after the "Add" large button in the "MyPanel"
panel. It first defines a large button item with various properties (including Text,
PictureName, Clicked, SSelected etc.) and then inserts it after the "Add' large button. The
"Add" button is bound with the "Ue_LargeButtonClicked" user event, and the "Delete"
button is bound with the "Ue_LargeButtonClicked" and "Ue_LargeButtonSelected" user
events.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton,
 ll_Handle_LargeButton2
RibbonLargeButtonItem lr_LargeButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_LargeButton = rbb_1.InsertLargeButtonFirst (ll_Handle_Panel, "Add",
 "AddBig!", "Ue_LargeButtonClicked")
lr_LargeButton.Text = "Delete"
lr_LargeButton.PictureName = "DeleteBig!"

Statements, Events, and Functions

Page 936

lr_LargeButton.Clicked = "Ue_LargeButtonClicked"
lr_LargeButton.Selected = "Ue_LargeButtonSelected"
ll_Handle_LargeButton2 = rbb_1.InsertLargeButton (ll_Handle_Panel,
 ll_Handle_LargeButton, lr_LargeButton)

//Ue_LargeButtonSelected user event must have a long parameter for receiving the
 handle
//of LargeButton where the mouse is hovering over.
//event type long ue_largebuttonselected(long itemhandle);
//RibbonLargeButtonItem lr_LargeButton
//rbb_1.GetLargeButton(ItemHandle,lr_LargeButton)
////...
//
//Return 1
//end event

See also

InsertLargeButtonFirst

InsertLargeButtonLast

DeleteLargeButton

SetLargeButton

GetLargeButton

GetChildItemByIndex

2.4.411 InsertLargeButtonFirst

Description

Inserts a large button as the first item in the panel of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertLargeButtonFirst (Long PanelHandle, String Text, String
 PictureName, String Clicked)

controlname.InsertLargeButtonFirst (Long PanelHandle, RibbonLargeButtonItem Item)

Table 2.870:

Argument Description

controlname The name of the RibbonBar control.

PanelHandle The handle of the panel into which you want to insert a large button.

Text The text that displays in the large button.

PictureName The name of the file that contains the picture. It will be displayed as
32*32.

Clicked The name of the Clicked user event to be bound with the large button.
The Clicked user event for the large button must have a long parameter
for receiving the handle of the large button. For details, see Clicked.

Item A large button item to be inserted.

Statements, Events, and Functions

Page 937

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the large button must be defined correctly according to the
requirements of RibbonLargeButtonItem. For details, see Clicked and Selected.

Example 1

This example inserts the "Add" large button as the first item in the panel and binds it with the
"Ue_LargeButtonClicked" user event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_LargeButton = rbb_1.InsertLargeButtonFirst (ll_Handle_Panel, "Add",
 "AddBig!", "Ue_LargeButtonClicked")

Example 2

This example defines a large button item with various properties (including binding with the
"Ue_LargeButtonClicked" and "Ue_LargeButtonSelected" user events) and then inserts it as
the first item in the panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton
RibbonLargeButtonItem lr_LargeButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
lr_LargeButton.Text = "Add"
lr_LargeButton.PictureName = "AddBig!"
lr_LargeButton.Clicked = "Ue_LargeButtonClicked"
lr_LargeButton.Selected = "Ue_LargeButtonSelected"
ll_Handle_LargeButton = rbb_1.InsertLargeButtonFirst (ll_Handle_Panel,
 lr_LargeButton)

See also

InsertLargeButton

InsertLargeButtonFirst

InsertLargeButtonLast

DeleteLargeButton

SetLargeButton

GetLargeButton

GetChildItemByIndex

2.4.412 InsertLargeButtonLast

Description

Statements, Events, and Functions

Page 938

Inserts a large button as the last item in the panel of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertLargeButtonLast (Long PanelHandle, String Text, String
 PictureName, String Clicked)

controlname.InsertLargeButtonLast (Long PanelHandle, RibbonLargeButtonItem Item)

Table 2.871:

Argument Description

controlname The name of the RibbonBar control.

PanelHandle The handle of the panel into which you want to insert a large button.

Text The text that displays in the large button.

PictureName The name of the file that contains the picture. It will be displayed as
32*32.

Clicked The name of the Clicked user event to be bound with the large button.
The Clicked user event for the large button must have a long parameter
for receiving the handle of the large button. For details, see Clicked.

Item A large button item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the large button must be defined correctly according to the
requirements of RibbonLargeButtonItem. For details, see Clicked and Selected.

Example 1

This example inserts the "Add" large button as the last item in the panel and binds it with
"Ue_LargeButtonClicked" user event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_LargeButton = rbb_1.InsertLargeButtonLast (ll_Handle_Panel, "Add",
 "AddBig!", "Ue_LargeButtonClicked")

Example 2

This example defines a large button item with various properties (including binding with the
"Ue_LargeButtonClicked" and "Ue_LargeButtonSelected" user events) and then inserts it as
the last item in the panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton
RibbonLargeButtonItem lr_LargeButton

Statements, Events, and Functions

Page 939

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
lr_LargeButton.Text = "Add"
lr_LargeButton.PictureName = "AddBig!"
lr_LargeButton.Clicked = "Ue_LargeButtonClicked"
lr_LargeButton.Selected = "Ue_LargeButtonSelected"
ll_Handle_LargeButton = rbb_1.InsertLargeButtonLast (ll_Handle_Panel,
 lr_LargeButton)

See also

InsertLargeButton

InsertLargeButtonFirst

InsertLargeButtonLast

DeleteLargeButton

SetLargeButton

GetLargeButton

GetChildItemByIndex

2.4.413 InsertMasterItem

Description

Inserts a master menu item at the specified position in the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.InsertMasterItem ({ Long ParentIndex, } Long Index, String Text,
 String PictureName, String Clicked)

controlname.InsertMasterItem ({ Long ParentIndex, } Long Index, RibbonMenuItem
 Item)

Table 2.872:

Argument Description

controlname The name of the RibbonApplicationMenu control.

ParentIndex The index of the master menu item (RibbonMenuItem) into which you
want to insert a submenu item.

It cannot be an index of a separator (that is RibbonMenuItem with
ItemType 1). If not specified, a master menu item will be inserted at the
specified position; if specified to a valid value, a submenu item will be
inserted at the specified position under the master menu item (whose
index is ParentIndex); if specified to an invalid value, an error would
occur and this operation would return -1.

Index The index number of the master menu item or submenu item before
which you are inserting a master menu item. If index is invalid, an error
would occur and this operation would return -1.

Statements, Events, and Functions

Page 940

Argument Description

Text The text that displays in the master menu item or submenu item.

PictureName The name of the file that contains the picture. The image is displayed in
32*32 pixels.

Clicked The name of the Clicked user event to be bound with the master menu
item. The Clicked user event for the master menu item (RibbonMenuItem
with "Normal(0)" type) must have three long parameters for receiving
the handle of the application button and the index numbers of the master
menu item and submenu item. For details, see Clicked.

Item A RibbonMenuItem item you want to insert. Only RibbonMenuItem
with "Normal(0)" or "Separator(1)" ItemType is supported. If
RibbonMenuItem is with other ItemType such as "Recent(2)", an error
would occur and this operation would return -1.

Return value

Long.

Returns the position of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

Only the menu item with the "Normal" or "Separator" type (that is RibbonMenuItem with
ItemType 0 or 1) can be added as a master menu item.

The master menu can have no more than two levels.

The user events to be bound with the master menu item must be defined correctly according
to the requirements of RibbonMenuItem. For details, see Clicked and Selected.

Example 1

This example inserts a master menu item "Account" and a submenu item "Account Settings"
under "Account" and binds the master menu item with the "Ue_AccountMasterItemClicked"
user event and the submenu item with the "Ue_AccountSettingsClicked" user event.

Long ll_Return, ll_Index
RibbonApplicationMenu lr_AppMenu

ll_Index = lr_AppMenu.InsertMasterItem (1,"Account", "AccountBig!",
 "Ue_AccountMasterItemClicked")
ll_Return = lr_AppMenu.InsertMasterItem (ll_Index, 1, "Account Settings",
 "AccountSettingsBig!", "Ue_AccountSettingsClicked")

Example 2

This example defines three RibbonMenuItem items (lr_MenuItem1, lr_SubMenuItem1,
lr_MenuSeparator1) with various properties (lr_MenuSeparator1 is set to item type 1,
which means it will be displayed as a separator line; lr_MenuItem1 is set to bind with the
"Ue_AccountMasterItemClicked" user event), and then inserts lr_MenuItem1 as a master
menu item, lr_SubMenuItem1 as a submenu item, and lr_MenuSeparator1 as a separator line
displayed below both the new submenu item and the new master menu item.

Long ll_Return, ll_Index

Statements, Events, and Functions

Page 941

RibbonApplicationMenu lr_AppMenu
RibbonMenuItem lr_MenuItem1, lr_SubMenuItem1, lr_MenuSeparator1

lr_MenuItem1.Text = "Account"
lr_MenuItem1.PictureName = "AccountBig!"
lr_MenuItem1.Clicked = "Ue_AccountMasterItemClicked"
lr_SubMenuItem1.Text = "Account Settings"
lr_MenuSeparator1.ItemType = 1
ll_Index = lr_AppMenu.InsertMasterItem (1, lr_MenuItem1)
ll_Return = lr_AppMenu.InsertMasterItem (ll_Index, 1, lr_SubMenuItem1)
ll_Return = lr_AppMenu.InsertMasterItem (ll_Index, 2, lr_MenuSeparator1)
ll_Index = lr_AppMenu.InsertMasterItem (2, lr_MenuSeparator1)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.414 InsertMasterItemFirst

Description

Inserts a master menu item as the first item in the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.InsertMasterItemFirst ({ Long ParentIndex, } String Text, String
 PictureName, String Clicked)

controlname.InsertMasterItemFirst ({ Long ParentIndex, } RibbonMenuItem Item)

Statements, Events, and Functions

Page 942

Table 2.873:

Argument Description

controlname The RibbonApplicationMenu control in which you want to insert a
master menu item as the first item.

ParentIndex The index of the master menu item (RibbonMenuItem) into which you
want to insert a submenu item.

It cannot be an index of a separator (that is RibbonMenuItem with
ItemType 1). If not specified, a master menu item will be inserted as the
first item; if specified to a valid value, a submenu item will be inserted as
the first item under the master menu item (whose index is ParentIndex);
if specified to an invalid value, an error would occur and this operation
would return -1.

Text The text that displays in the master menu item or submenu item.

PictureName The name of the file that contains the picture. The image will be
displayed in 32*32 pixels.

Clicked The name of the Clicked user event to be bound with the master menu
item. The Clicked user event for the master menu item (RibbonMenuItem
with "Normal(0)" type) must have three long parameters for receiving
the handle of the application button and the index numbers of the master
menu item and submenu item. For details, see Clicked.

Item A RibbonMenuItem item you want to insert. Only RibbonMenuItem
with "Normal(0)" or "Separator(1)" ItemType is supported. If
RibbonMenuItem is with other ItemType such as "Recent(2)", an error
would occur and this operation would return -1.

Return value

Long.

Returns the position of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

Only the menu item with the "Normal" or "Separator" type (that is RibbonMenuItem with
ItemType 0 or 1) can be added as a master menu item.

The master menu can have no more than two levels.

The user events to be bound with the master menu item must be defined correctly according
to the requirements of RibbonMenuItem. For details, see Clicked and Selected.

Example 1

This example inserts a master menu item "Account" as the first item and a submenu item
"Account Settings" as the first item under "Account" and binds the master menu item
with the "Ue_AccountMasterItemClicked" user event and the submenu item with the
"Ue_AccountSettingsClicked" user event.

Long ll_Return, ll_Index
RibbonApplicationMenu lr_AppMenu

Statements, Events, and Functions

Page 943

ll_Index = lr_AppMenu.InsertMasterItemFirst ("Account", "AccountBig!",
 "Ue_AccountMasterItemClicked")
ll_Return = lr_AppMenu.InsertMasterItemFirst (ll_Index, "Account Settings",
 "AccountSettingsBig!", "Ue_AccountSettingsClicked")

Example 2

This example defines three RibbonMenuItem items (lr_MenuItem1, lr_SubMenuItem1,
lr_MenuSeparator1) with various properties (lr_MenuSeparator1 is set to item type 1,
which means it will be displayed as a separator line; lr_MenuItem1 is set to bind with the
"Ue_AccountMasterItemClicked" user event; lr_SubMenuItem1 is set to bind with the
"Ue_SignOutMenuItemClicked" user event), and then inserts lr_MenuItem1 as a master
menu item as the first item, lr_SubMenuItem1 as a submenu item as the first item, and
lr_MenuSeparator1 as a separator line displayed above the new submenu item.

Long ll_Return, ll_Index
RibbonApplicationMenu lr_AppMenu
RibbonMenuItem lr_MenuItem1, lr_SubMenuItem1, lr_MenuSeparator1

lr_MenuItem1.Text = "Account"
lr_MenuItem1.PictureName = "AccountBig!"
lr_MenuItem1.Clicked = "Ue_AccountMasterItemClicked"
lr_SubMenuItem1.Text = "Sign Out"
lr_SubMenuItem1.PictureName = "SignOutBig!"
lr_SubMenuItem1.Clicked = "Ue_SignOutMenuItemClicked"
lr_MenuSeparator1.ItemType = 1
ll_Index = lr_AppMenu.InsertMasterItemFirst (lr_MenuItem1)
ll_Return = lr_AppMenu.InsertMasterItemFirst (ll_Index, lr_SubMenuItem1)
ll_Return = lr_AppMenu.InsertMasterItemFirst (ll_Index, lr_MenuSeparator1)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

Statements, Events, and Functions

Page 944

SetRecentTitle

2.4.415 InsertMasterItemLast

Description

Inserts a master menu item as the last item in the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.InsertMasterItemLast ({ Long ParentIndex, } String Text, String
 PictureName, String Clicked)

controlname.InsertMasterItemLast ({ Long ParentIndex, } RibbonMenuItem Item)

Table 2.874:

Argument Description

controlname The RibbonApplicationMenu control in which you want to insert a
master menu item as the last item.

ParentIndex The index of the master menu item (RibbonMenuItem) into which you
want to insert a submenu item.

It cannot be an index of a separator (that is RibbonMenuItem with
ItemType 1). If not specified, a master menu item will be inserted as the
last item; if specified to a valid value, a submenu item will be inserted as
the last item under the master menu item (whose index is ParentIndex);
if specified to an invalid value, an error would occur and this operation
would return -1.

Text The text that displays in the master menu item or submenu item.

PictureName The name of the file that contains the picture. The image will be
displayed in 32*32 pixels.

Clicked The name of the Clicked user event to be bound with the master menu
item. The Clicked user event for the master menu item (RibbonMenuItem
with "Normal(0)" type) must have three long parameters for receiving
the handle of the application button and the index numbers of the master
menu item and submenu item. For details, see Clicked.

Item A RibbonMenuItem item you want to insert. Only RibbonMenuItem
with "Normal(0)" or "Separator(1)" ItemType is supported. If
RibbonMenuItem is with other ItemType such as "Recent(2)", an error
would occur and this operation would return -1.

Return value

Long.

Returns the position of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

Statements, Events, and Functions

Page 945

Only the menu item with the "Normal" or "Separator" type (that is RibbonMenuItem with
ItemType 0 or 1) can be added as a master menu item.

The master menu can have no more than two levels.

The user events to be bound with the master menu item must be defined correctly according
to the requirements of RibbonMenuItem. For details, see Clicked and Selected.

Example 1

This example inserts a master menu item "Account" as the last item and a submenu item
"Account Settings" as the last item under "Account" and binds the master menu item
with the "Ue_AccountMasterItemClicked" user event and the submenu item with the
"Ue_AccountSettingsClicked" user event.

Long ll_Return,ll_Index
RibbonApplicationMenu lr_AppMenu

ll_Index = lr_AppMenu.InsertMasterItemLast ("Account", "AccountBig!",
 "Ue_AccountMasterItemClicked")
ll_Return = lr_AppMenu.InsertMasterItemLast (ll_Index, "Account Settings",
 "AccountSettingsBig!", "Ue_AccountSettingsClicked")

Example 2

This example defines three RibbonMenuItem items (lr_MenuItem1, lr_SubMenuItem1,
lr_MenuSeparator1), specifies various properties of them (lr_MenuSeparator1 is set to item
type 1, which means it will be displayed as a separator line; lr_MenuItem1 is set to bind
with the "Ue_AccountMasterItemClicked" user event), and then inserts lr_MenuItem1 as a
master menu item as the last item, lr_SubMenuItem1 as a submenu item as the last item, and
lr_MenuSeparator1 as a separator line displayed below the new submenu item.

Long ll_Return, ll_Index
RibbonApplicationMenu lr_AppMenu
RibbonMenuItem lr_MenuItem1, lr_SubMenuItem1, lr_MenuSeparator1

lr_MenuItem1.Text = "Account"
lr_MenuItem1.PictureName = "AccountBig!"
lr_MenuItem1.Clicked = "Ue_AccountMasterItemClicked"
lr_SubMenuItem1.Text = "Account Settings"
lr_MenuSeparator1.ItemType = 1

ll_Index = lr_AppMenu.InsertMasterItemLast (lr_MenuItem1)
ll_Return = lr_AppMenu.InsertMasterItemLast (ll_Index, lr_SubMenuItem1)
ll_Return = lr_AppMenu.InsertMasterItemLast (ll_Index, lr_MenuSeparator1)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

Statements, Events, and Functions

Page 946

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.416 InsertObject

Description

Displays the standard Insert Object dialog box, allowing the user to choose a new or existing
OLE object, and inserts the selected object in the OLE control.

Syntax

olecontrol.InsertObject ()

Table 2.875:

Argument Description

olecontrol The name of the OLE control in which you want to insert an object

Return value

Integer. Returns 0 if it succeeds and one of the following values if an error occurs:

1 -- User canceled out of dialog box

-9 -- Error

If any argument's value is null, InsertObject returns null.

Examples

This example displays the standard Insert Object dialog box so that the user can select an
OLE object. InsertObject inserts the selected object in the ole_1 control:

integer result
result = ole_1.InsertObject()

See also

InsertClass

InsertFile

LinkTo

2.4.417 InsertPanel

Description

Statements, Events, and Functions

Page 947

Inserts a panel in the category of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertPanel (Long CategoryHandle, Long ItemHandleAfter, String Text,
 String PictureName)

controlname.InsertPanel (Long CategoryHandle, Long ItemHandleAfter,
 RibbonPanelItem Item)

Table 2.876:

Argument Description

controlname The name of the RibbonBar control.

CategoryHandle The handle of the category into which you want to insert a panel.

ItemHandleAfter The handle of the panel on the same level after which you want to insert
the panel.

Text The title of the panel to be inserted.

PictureName The name of the file that contains the picture. It will be displayed as
16*16. The picture will be shown when the panel is collapsed (a panel
is collapsed automatically when the window width becomes too small to
display the panel). See Section 4.4.1, “Introduction to RibbonBar items”
in Users Guide for more.

Item A panel item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Example 1

This example inserts the "MyPanel2" panel after "MyPanel1" in the "MyCategory" category.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Panel2

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel1",
 "AddSmall!")
ll_Handle_Panel2 = rbb_1.InsertPanel (ll_Handle_Category, ll_Handle_Panel,
 "MyPanel2", "BOMSmall!")

Example 2

This example also inserts the "MyPanel2" panel after "MyPanel1" in the "MyCategory"
category. It first defines a panel item with various properties (including Text, PictureName
etc.) and then inserts it after "MyPanel1" in the "MyCategory" category.

Long ll_Handle_Category,ll_Handle_Panel,ll_Handle_Panel2
RibbonPanelItem lr_Panel

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")

Statements, Events, and Functions

Page 948

ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel1",
 "AddSmall!")
lr_Panel.Text = "MyPanel2"
lr_Panel.PictureName = "BOMSmall!"
ll_Handle_Panel2 = rbb_1.InsertPanel (ll_Handle_Category, ll_Handle_Panel,
 lr_Panel)

See also

InsertPanelFirst

InsertPanelLast

DeletePanel

SetPanel

GetPanel

GetChildItemByIndex

2.4.418 InsertPanelFirst

Description

Inserts a panel as the first item in the category of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertPanelFirst (Long CategoryHandle, String Text, String
 PictureName)

controlname.InsertPanelFirst (Long CategoryHandle, RibbonPanelItem Item)

Table 2.877:

Argument Description

controlname The name of the RibbonBar control.

CategoryHandle The handle of the category into which you want to insert a panel.

Text The title of the panel to be inserted.

PictureName The name of the file that contains the picture. It will be displayed as
16*16. The picture will be shown when the panel is collapsed (a panel
is collapsed automatically when the window width becomes too small to
display the panel). See Section 4.4.1, “Introduction to RibbonBar items”
in Users Guide for more.

Item A panel item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Example 1

Statements, Events, and Functions

Page 949

This example inserts the "MyPanel" panel as the first item in the "MyCategory" category.

Long ll_Handle_Category, ll_Handle_Panel

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")

Example 2

This example also inserts the "MyPanel" panel as the first item in the "MyCategory"
category. It first defines a panel item with various properties (including Text, PictureName
etc.) and then inserts it as the first item in the "MyCategory" category.

Long ll_Handle_Category, ll_Handle_Panel
RibbonPanelItem lr_Panel

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
lr_Panel.Text = "MyPanel1"
lr_Panel.PictureName = "BOMSmall!"
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, lr_Panel)

See also

InsertPanel

InsertPanelLast

DeletePanel

SetPanel

GetPanel

GetChildItemByIndex

2.4.419 InsertPanelLast

Description

Inserts a panel as the last item in the category of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertPanelLast (Long CategoryHandle, String Text, String PictureName)

controlname.InsertPanelLast (Long CategoryHandle, RibbonPanelItem Item)

Table 2.878:

Argument Description

controlname The name of the RibbonBar control.

CategoryHandle The handle of the category into which you want to insert a panel.

Text The title of the panel to be inserted.

PictureName The name of the file that contains the picture. It will be displayed as
16*16. The picture will be shown when the panel is collapsed (a panel
is collapsed automatically when the window width becomes too small to

Statements, Events, and Functions

Page 950

Argument Description
display the panel). See Section 4.4.1, “Introduction to RibbonBar items”
in Users Guide for more.

Item A panel item to be inserted.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Example 1

This example inserts the "MyPanel" panel as the last item in the "MyCategory" category.

Long ll_Handle_Category,ll_Handle_Panel

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelLast (ll_Handle_Category, "MyPanel",
 "AddSmall!")

Example 2

This example also inserts the "MyPanel" panel as the last item in the "MyCategory" category.
It first defines a panel item with various properties (including Text, PictureName etc.) and
then inserts it as the last item in the "MyCategory" category.

Long ll_Handle_Category, ll_Handle_Panel
RibbonPanelItem lr_Panel

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
lr_Panel.Text = "MyPane3"
lr_Panel.PictureName = "BOMSmall!"
ll_Handle_Panel = rbb_1.InsertPanelLast (ll_Handle_Category, lr_Panel)

See also

InsertPanel

InsertPanelFirst

DeletePanel

SetPanel

GetPanel

GetChildItemByIndex

2.4.420 InsertPicture

Description

Inserts an image at the insertion point in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

Statements, Events, and Functions

Page 951

rtename.InsertPicture (filename{, format })

Table 2.879:

Argument Description

rtename The name of the RichTextEdit control in which you want to insert an
image

filename A string whose value is the name of the file that contains the image

format An integer whose value determines the format in which the image is
saved in the RTF file. Values are:

• 1 -- BMP

• 2 -- WMF (default)

• 3 -- PNG

• 4 -- JPG

Return value

Integer. Returns 1 if it succeeds. Returns -2 if the compression format of a .tif file is not
supported and -1 if a different error occurs. If filename is null, InsertPicture returns null.

Usage

If there is a selection, InsertPicture inserts the image at the beginning of the selection. The
following file types are supported: .bmp, .wmf, .jpeg, .png, and .gif. The .tif file type is also
supported if it uses the LZW compression format.

Examples

This example inserts a PNG file at the insertion point in the RichTextEdit control rte_1. The
PNG file will be saved in the RTF file in WMF format:

integer li_rtn
li_rtn = rte_1.InsertPicture("c:\windows\earth.png")

This example inserts a JPG file at the insertion point in the RichTextEdit control rte_1. The
JPG file will be saved in the RTF file in JPG format:

integer li_rtn
li_rtn = rte_1.InsertPicture("c:\windows\earth.jpg", 4)

See also

InputFieldInsert

InsertDocument

2.4.421 InsertRecentItem

Description

Inserts a recent menu item at the specified position in the application menu.

Applies to

Statements, Events, and Functions

Page 952

RibbonApplicationMenu controls

Syntax

controlname.InsertRecentItem (Long Index, String Text, String Clicked)

Table 2.880:

Argument Description

controlname The name of the RibbonApplicationMenu control into which you want to
insert a recent menu item.

Index The index number of the recent menu item before which you are inserting
a recent menu item. If index is invalid, an error would occur and this
operation would return -1.

Text The text that displays in the recent menu item.

Clicked The name of the Clicked user event to be bound with the recent menu
item. The Clicked user event for the recent menu item (RibbonMenuItem
with "Recent(2)" type) must have two long parameters for receiving the
handle of the application button and the index number of the recent menu
item. For details, see Clicked.

Return value

Long.

Returns the position of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

Only the menu item with the "Recent" type (that is RibbonMenuItem with ItemType 2) can
be added as a recent menu item.

The recent menu can have only one level; and can contain no more than 9 items.

The user events to be bound with the recent menu item must be defined correctly according to
the requirements of RibbonMenuItem. For details, see Clicked and Selected.

Examples

This example inserts a recent menu item "RecentItem1" and binds it with the
"Ue_RecentItem1Clicked" user event.

Long ll_Return
RibbonApplicationMenu lr_AppMenu

ll_Return = lr_AppMenu.InsertRecentItem (1, "RecentItem1",
 "Ue_RecentItem1Clicked")

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

Statements, Events, and Functions

Page 953

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.422 InsertRecentItemFirst

Description

Inserts a recent menu item as the first item in the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.InsertRecentItemFirst (String Text, String Clicked)

Table 2.881:

Argument Description

controlname The RibbonApplicationMenu control in which you want to insert a recent
menu item as the first item.

Text The text that displays in the recent menu item.

Clicked The name of the Clicked user event to be bound with the recent menu
item. The Clicked user event for the recent menu item (RibbonMenuItem
with "Recent(2)" type) must have two long parameters for receiving the
handle of the application button and the index number of the recent menu
item. For details, see Clicked.

Return value

Long.

Returns the position of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

Statements, Events, and Functions

Page 954

Only the menu item with the "Recent" type (that is RibbonMenuItem with ItemType 2) can
be added as a recent menu item.

The recent menu can have only one level; and can contain no more than 9 items.

The user events to be bound with the recent menu item must be defined correctly according to
the requirements of RibbonMenuItem. For details, see Clicked and Selected.

Examples

This example inserts a recent menu item "RecentItem1" as the first item and binds it with the
"Ue_RecentItem1Clicked" user event.

Long ll_Return
RibbonApplicationMenu lr_AppMenu

ll_Return = lr_AppMenu.InsertRecentItemFirst ("RecentItem1",
 "Ue_RecentItem1Clicked")

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemLast

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.423 InsertRecentItemLast

Description

Inserts a recent menu item as the last item in the application menu.

Applies to

RibbonApplicationMenu controls

Syntax

Statements, Events, and Functions

Page 955

controlname.InsertRecentItemLast (String Text, String Clicked)

Table 2.882:

Argument Description

controlname The RibbonApplicationMenu control in which you want to insert a recent
menu item as the last item.

Text The text that displays in the recent menu item.

Clicked The name of the Clicked user event to be bound with the recent menu
item. The Clicked user event for the recent menu item (RibbonMenuItem
with "Recent(2)" type) must have two long parameters for receiving the
handle of the application button and the index number of the recent menu
item. For details, see Clicked.

Return value

Long.

Returns the position of the item if it succeeds and -1 if an error occurs. If any argument's
value is null, returns null.

Usage

Only the menu item with the "Recent" type (that is RibbonMenuItem with ItemType 2) can
be added as a recent menu item.

The recent menu can have only one level; and can contain no more than 9 items.

The user events to be bound with the recent menu item must be defined correctly according to
the requirements of RibbonMenuItem. For details, see Clicked and Selected.

Examples

This example inserts a recent menu item "RecentItem1" as the last item and binds it with the
"Ue_RecentItem1Clicked" user event.

Long ll_Return
RibbonApplicationMenu lr_AppMenu

ll_Return = lr_AppMenu.InsertRecentItemLast ("RecentItem1",
 "Ue_RecentItem1Clicked")

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

Statements, Events, and Functions

Page 956

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

SetMasterItem

SetRecentItem

SetRecentTitle

2.4.424 InsertSeries

Description

Inserts a series in a graph at the specified position. Existing series in the graph are
renumbered to keep the numbering sequential.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects, because their data comes directly from the DataWindow.

Syntax

controlname.InsertSeries (seriesname, seriesnumber)

Table 2.883:

Argument Description

controlname The name of the graph in which you want to insert a series.

seriesname A string containing the name of the series you want to insert. The series
name must be unique within the graph.

seriesnumber The number of the series before which you want to insert the new series.
To add the new series at the end, specify 0.

Return value

Integer. Returns the number of the series if it succeeds and -1 if an error occurs. If the series
named in seriesname exists already, it returns the number of the existing series. If any
argument's value is null, InsertSeries returns null.

Usage

Series names are unique if they have different capitalization.

Equivalent syntax

If you want to add a series to the end of the list, you can use AddSeries instead, which
requires fewer arguments.

This statement:

gr_data.InsertSeries("Costs", 0)

Statements, Events, and Functions

Page 957

is equivalent to:

gr_data.AddSeries("Costs")

Examples

These statements insert a series before the series named Income in the graph
gr_product_data:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = FindSeries("Income")
gr_product_data.InsertSeries("Costs", SeriesNbr)

See also

AddData

AddSeries

FindCategory

FindSeries

InsertCategory

InsertData

2.4.425 InsertSmallButton

Description

Inserts a small button in the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertSmallButton (Long ParentHandle, Long ItemHandleAfter, String
 Text, String PictureName, String Clicked)

controlname.InsertSmallButton (Long ParentHandle, Long ItemHandleAfter,
 RibbonSmallButtonItem Item)

Table 2.884:

Argument Description

controlname The name of the RibbonBar control.

ParentHandle The handle of the panel or group into which you want to insert a small
button.

ItemHandleAfter The handle of the item (check box, combo box, large button, small
button, group) on the same level after which you want to insert the small
button.

Text The text that displays in the small button.

PictureName The name of the file that contains the picture. It will be displayed as
16*16.

Statements, Events, and Functions

Page 958

Argument Description

Clicked The name of the Clicked user event to be bound with the small button.
The Clicked user event for the small button must have a long parameter
for receiving the handle of the small button. For details, see Clicked.

Item A small button item you want to insert.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the small button must be defined correctly according to the
requirements of RibbonSmallButtonItem. For details, see Clicked and Selected.

Example 1

This example inserts a "Delete" small button after the "Add" small button in the "MyPanel"
panel. Both buttons are bound with the "Ue_SmallButtonClicked" user event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_SmallButton,
 ll_Handle_SmallButton2

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_SmallButton = rbb_1.InsertSmallButtonFirst (ll_Handle_Panel, "Add",
 "AddSmall!", "Ue_SmallButtonClicked")
ll_Handle_SmallButton2 = rbb_1.InsertSmallButton (ll_Handle_Panel,
 ll_Handle_SmallButton, "Delete", "DeleteSmall!", "Ue_SmallButtonClicked")

//Ue_SmallButtonClicked user event must have a long parameter for receiving the
 handle
//of SmallButton where the mouse is clicking. Refer to the Clicked property of
 RibbonSmallButtonItem.
//event type long ue_smallbuttonclicked(long itemhandle);
//RibbonSmallButtonItem lr_SmallButton
//rbb_1.GetSmallButton(ItemHandle,lr_SmallButton)
////...
//
//Return 1
//end event

Example 2

This example inserts a "Delete" small button after the "Add" small button in the
"MyPanel" panel and binds the "Delete" button with the "Ue_SmallButtonClicked" and
"Ue_SmallButtonSelected" user events. It first defines a small button item with various
properties (including Text, PictureName, Clicked, Selected etc.) and then inserts it after the
"Add' small button.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_SmallButton,
 ll_Handle_SmallButton2
RibbonSmallButtonItem lr_SmallButton

ll_Handle_Category = rbb_1.InsertCategoryFirst("MyCategory")

Statements, Events, and Functions

Page 959

ll_Handle_Panel = rbb_1.InsertPanelFirst(ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_SmallButton = rbb_1.InsertSmallButtonFirst (ll_Handle_Panel, "Add",
 "AddSmall!", "Ue_SmallButtonClicked")
lr_SmallButton.Text = "Delete"
lr_SmallButton.PictureName = "DeleteSmall!"
lr_SmallButton.Clicked = "Ue_SmallButtonClicked"
lr_SmallButton.Selected = "Ue_SmallButtonSelected"
ll_Handle_SmallButton2 = rbb_1.InsertSmallButton (ll_Handle_Panel,
 ll_Handle_SmallButton, lr_SmallButton)

//Ue_SmallButtonSelected user event must have a long parameter for receiving the
 handle
//of SmallButton where the mouse is hovering over. Refer to the Selected property
 of RibbonSmallButtonItem.
//event type long ue_smallbuttonselected(long itemhandle);
//RibbonSmallButtonItem lr_SmallButton
//rbb_1.GetSmallButton(ItemHandle,lr_SmallButton)
////...
//
//Return 1
//end event

See also

InsertSmallButtonFirst

InsertSmallButtonLast

DeleteSmallButton

SetSmallButton

GetSmallButton

GetChildItemByIndex

2.4.426 InsertSmallButtonFirst

Description

Inserts a small button as the first item in the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertSmallButtonFirst (Long ParentHandle, String Text, String
 PictureName, String Clicked)

controlname.InsertSmallButtonFirst (Long ParentHandle, RibbonSmallButtonItem
 Item)

Table 2.885:

Argument Description

controlname The name of the RibbonBar control.

ParentHandle The handle of the panel or group into which you want to insert the small
button.

Statements, Events, and Functions

Page 960

Argument Description

Text The text that displays in the small button.

PictureName The name of the file that contains the picture. It will be displayed as
16*16.

Clicked The name of the Clicked user event to be bound with the small button.
The Clicked user event for the small button must have a long parameter
for receiving the handle of the small button. For details, see Clicked.

Item A small button item you want to insert.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the small button must be defined correctly according to the
requirements of RibbonSmallButtonItem. For details, see Clicked and Selected.

Example 1

This example inserts the "Add" small button as the first item in a panel and then inserts
the "Add2" small button as the first item in a group. Both buttons are bound with the
"Ue_SmallButtonClicked" user event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_SmallButton, ll_Handle_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_SmallButton = rbb_1.InsertSmallButtonFirst (ll_Handle_Panel, "Add",
 "AddSmall!", "Ue_SmallButtonClicked")
//Group
ll_Handle_Group = rbb_1.InsertGroupLast (ll_Handle_Panel)
ll_Handle_SmallButton = rbb_1.InsertSmallButtonFirst (ll_Handle_Group, "Add2",
 "AddSmall!", "Ue_SmallButtonClicked")

Example 2

This example inserts the "Add" small button as the first item in a panel and binds it with
"Ue_SmallButtonClicked" and "Ue_SmallButtonSelected" user events. It first defines a small
button item with various properties (including Text, PictureName, Clicked, Selected etc.) and
then inserts it as the first item in a panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_SmallButton
RibbonSmallButtonItem lr_SmallButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
lr_SmallButton.Text = "Add"
lr_SmallButton.PictureName = "AddSmall!"
lr_SmallButton.Clicked = "Ue_SmallButtonClicked"
lr_SmallButton.Selected = "Ue_SmallButtonSelected"
ll_Handle_SmallButton = rbb_1.InsertSmallButtonFirst (ll_Handle_Panel,
 lr_SmallButton)

Statements, Events, and Functions

Page 961

See also

InsertSmallButton

InsertSmallButtonLast

DeleteSmallButton

SetSmallButton

GetSmallButton

GetChildItemByIndex

2.4.427 InsertSmallButtonLast

Description

Inserts a small button as the last item in the panel or group of the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertSmallButtonLast (Long ParentHandle, String Text, String
 PictureName, String Clicked)

controlname.InsertSmallButtonLast (Long ParentHandle, RibbonSmallButtonItem Item)

Table 2.886:

Argument Description

controlname The name of the RibbonBar control.

ParentHandle The handle of the panel or group into which you want to insert the small
button.

Text The text that displays in the small button.

PictureName The name of the file that contains the picture. It will be displayed as
16*16.

Clicked The name of the Clicked user event to be bound with the small button.
The Clicked user event for the small button must have a long parameter
for receiving the handle of the small button. For details, see Clicked.

Item A small button item you want to insert.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the small button must be defined correctly according to the
requirements of RibbonSmallButtonItem. For details, see Clicked and Selected.

Statements, Events, and Functions

Page 962

Example 1

This example inserts the "Add" small button as the last item in a panel and then inserts
the "Add2" small button as the last item in a group. Both buttons are bound with the
"Ue_SmallButtonClicked" user event.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_SmallButton, ll_Handle_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_SmallButton = rbb_1.InsertSmallButtonLast (ll_Handle_Panel, "Add",
 "AddSmall!", "Ue_SmallButtonClicked")
//Group
ll_Handle_Group = rbb_1.InsertGroupLast (ll_Handle_Panel)
ll_Handle_SmallButton = rbb_1.InsertSmallButtonLast (ll_Handle_Group, "Add2",
 "AddSmall!", "Ue_SmallButtonClicked")

Example 2

This example inserts the "Add" small button as the last item in a panel and binds it with the
"Ue_SmallButtonClicked" and "Ue_SmallButtonSelected" user events. It first defines a small
button item with various properties (including Text, PictureName, Clicked, Selected etc.) and
then inserts it as the last item in a panel.

Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_SmallButton
RibbonSmallButtonItem lr_SmallButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
lr_SmallButton.Text = "Add"
lr_SmallButton.PictureName = "AddSmall!"
lr_SmallButton.Clicked = "Ue_SmallButtonClicked"
lr_SmallButton.Selected = "Ue_SmallButtonSelected"
ll_Handle_SmallButton = rbb_1.InsertSmallButtonLast (ll_Handle_Panel,
 lr_SmallButton)

See also

InsertSmallButton

InsertSmallButtonFirst

DeleteSmallButton

SetSmallButton

GetSmallButton

GetChildItemByIndex

2.4.428 InsertTabButton

Description

Inserts a tab button in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

Statements, Events, and Functions

Page 963

controlname.InsertTabButton (Long ItemHandleAfter, String Text, String
 PictureName, String Clicked)

controlname.InsertTabButton (Long ItemHandleAfter, RibbonTabButtonItem Item)

Table 2.887:

Argument Description

controlname The name of the RibbonBar control.

ItemHandleAfter The handle of the tab button after which you want to insert a tab button.

Text The text that displays in the tab button.

PictureName The name of the file that contains the picture. It will be displayed in
16*16 pixels.

Clicked The name of the Clicked user event to be bound with the tab button. The
Clicked user event for the tab button must have a long parameter for
receiving the handle of the tab button. For details, see Clicked.

Item A tab button item you want to insert.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the tab button must be defined correctly according to the
requirements of RibbonTabButtonItem. For details, see Clicked and Selected.

Example 1

This example inserts a "TabButton2" tab button after the "TabButton1" tab button and binds
both buttons with the "Ue_TabButtonClicked" user event.

Long ll_Handle, ll_Handle2

ll_Handle = rbb_1.InsertTabButtonFirst ("TabButton1", "ArrowUpSmall!",
 "Ue_TabButtonClicked")
ll_Handle2 = rbb_1.InsertTabButton (ll_Handle, "TabButton2", "ArrowUpSmall!",
 "Ue_TabButtonClicked")

//Ue_TabButtonClicked user event must have a long parameter for receiving the
 handle of TabButton
//where the mouse is clicking. Refer to the Clicked property of
 RibbonTabButtonItem.
//event type long ue_tabbuttonclicked(long itemhandle);
//RibbonTabButtonItem lr_TabButton
//rbb_1.GetTabButton(ItemHandle,lr_TabButton)
//...
//Return 1
//end event

Example 2

This example inserts a "TabButton2" tab button after the "TabButton1" tab button. It defines
a tab button item with various properties (including Text, Clicked, Selected etc.) and then

Statements, Events, and Functions

Page 964

inserts it after the "TabButton1" tab button. The "TabButton1" tab button is bound with
the "Ue_TabButtonClicked" user event. The "TabButton2" tab button is bound with the
"Ue_TabButtonClicked" and "Ue_TabButtonSelected" user events.

Long ll_Handle,ll_Handle2
RibbonTabButtonItem lr_TabButton

ll_Handle =
 rbb_1.InsertTabButtonFirst("TabButton1","ArrowUpSmall!","Ue_TabButtonClicked")
lr_TabButton.Text = "TabButton2"
lr_TabButton.Clicked = "Ue_TabButtonClicked"
lr_TabButton.Selected = "Ue_TabButtonSelected"
ll_Handle2 = rbb_1.InsertTabButton(ll_Handle,lr_TabButton)

//Ue_TabButtonSelected user event must have a long parameter for receiving the
 handle of TabButton
//where the mouse is hovering over. Refer to the Selected property of
 RibbonTabButtonItem.
//event type long ue_tabbuttonselected(long itemhandle);
//RibbonTabButtonItem lr_TabButton
//rbb_1.GetTabButton(ItemHandle,lr_TabButton)
//...
//Return 1
//end event

See also

InsertTabButtonFirst

InsertTabButtonLast

DeleteTabButton

SetTabButton

GetTabButton

GetTabButtonByIndex

GetTabButtonCount

2.4.429 InsertTabButtonFirst

Description

Inserts a tab button as the first item in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertTabButtonFirst (String Text, String PictureName, String
 Clicked)

controlname.InsertTabButtonFirst (RibbonTabButtonItem Item)

Table 2.888:

Argument Description

controlname The name of the RibbonBar control.

Statements, Events, and Functions

Page 965

Argument Description

Text The text that displays in the tab button.

PictureName The name of the file that contains the picture. It will be displayed as
16*16.

Clicked The name of the Clicked user event to be bound with the tab button. The
Clicked user event for the tab button must have a long parameter for
receiving the handle of the tab button. For details, see Clicked.

Item A tab button item you want to insert.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the tab button must be defined correctly according to the
requirements of RibbonTabButtonItem. For details, see Clicked and Selected.

Example 1

This example inserts the "TabButton1" as the first tab button in the ribbon bar, and binds it
with the "Ue_TabButtonClicked" user event.

Long ll_Handle
ll_Handle = rbb_1.InsertTabButtonFirst ("TabButton1", "ArrowUpSmall!",
 "Ue_TabButtonClicked")

Example 2

This example inserts the "TabButton1" as the first tab button in the ribbon bar, and binds it
with the "Ue_TabButtonClicked" and "Ue_TabButtonSelected" user events. It first defines a
tab button item with various properties (including Text, PictureName, Clicked, Selected etc.)
and then inserts it as the first tab button in the ribbon bar.

Long ll_Handle
RibbonTabButtonItem lr_TabButton

lr_TabButton.Text = "TabButton1"
lr_TabButton.PictureName = "ArrowUpSmall!"
lr_TabButton.Clicked = "Ue_TabButtonClicked"
lr_TabButton.Selected = "Ue_TabButtonSelected"
ll_Handle = rbb_1.InsertTabButtonFirst (lr_TabButton)

See also

InsertTabButton

InsertTabButtonLast

DeleteTabButton

SetTabButton

GetTabButton

GetTabButtonByIndex

Statements, Events, and Functions

Page 966

GetTabButtonCount

2.4.430 InsertTabButtonLast

Description

Inserts a tab button as the last item in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.InsertTabButtonLast (String Text, String PictureName, String Clicked)

controlname.InsertTabButtonLast (RibbonTabButtonItem Item)

Table 2.889:

Argument Description

controlname The name of the RibbonBar control.

Text The text that displays in the tab button.

PictureName The name of the file that contains the picture. It will be displayed as
16*16.

Clicked The name of the Clicked user event to be bound with the tab button. The
Clicked user event for the tab button must have a long parameter for
receiving the handle of the tab button. For details, see Clicked.

Item A tab button item you want to insert.

Return value

Long.

Returns the handle of the inserted item if it succeeds and -1 if an error occurs. If any
argument's value is null, returns null.

Usage

The user events to be bound with the tab button must be defined correctly according to the
requirements of RibbonTabButtonItem. For details, see Clicked and Selected.

Example 1

This example inserts the "TabButton3" as the last tab button in the ribbon bar, and binds it
with the "Ue_TabButtonClicked" user event.

Long ll_Handle
ll_Handle = rbb_1.InsertTabButtonLast ("TabButton3", "ArrowUpSmall!",
 "Ue_TabButtonClicked")

Example 2

This example inserts the "TabButton3" as the last tab button in the ribbon bar, and binds it
with the "Ue_TabButtonClicked" and "Ue_TabButtonSelected" user events. It first defines a
tab button item with various properties (including Text, PictureName, Clicked, Selected etc.)
and then inserts it as the last tab button in the ribbon bar.

Statements, Events, and Functions

Page 967

Long ll_Handle
RibbonTabButtonItem lr_TabButton

lr_TabButton.Text = "TabButton3"
lr_TabButton.PictureName = "ArrowUpSmall!"
lr_TabButton.Clicked = "Ue_TabButtonClicked"
lr_TabButton.Selected = "Ue_TabButtonSelected"
ll_Handle = rbb_1.InsertTabButtonLast(lr_TabButton)

See also

InsertTabButton

InsertTabButtonFirst

DeleteTabButton

SetTabButton

GetTabButton

GetTabButtonByIndex

GetTabButtonCount

2.4.431 Int

Description

Determines the largest whole number less than or equal to a number.

Syntax

Int (n)

Table 2.890:

Argument Description

n The number for which you want the largest whole number that is less
than or equal to it

Return value

Integer.

Returns the largest whole number less than or equal to n. If n is too small or too large to be
represented as an integer, Int returns 0. If n is null, Int returns null.

Usage

When the result for Int would be smaller than -32768 or larger than 32767, Int returns 0
because the result cannot be represented as an integer.

Examples

These statements return 3.0:

Int(3.2)
Int(3.8)

The following statements return -4.0:

Statements, Events, and Functions

Page 968

Int(-3.2)
Int(-3.8)

These statements remove the decimal portion of the variable and store the resulting integer in
li_nbr:

integer li_nbr
li_nbr = Int(3.2) // li_nbr = 3

See also

Ceiling

Round

Truncate

Int method for DataWindows in Section 2.4.50, “Int” in DataWindow Reference.

2.4.432 Integer

Description

Converts the value of a string to an integer or obtains an integer value that is stored in a blob.

Syntax

Integer (stringorblob)

Table 2.891:

Argument Description

stringorblob A string whose value you want returned as an integer or a blob in which
the first value is the integer value. The rest of the contents of the blob is
ignored. Stringorblob can also be an Any variable containing a string or
blob.

Return value

Integer.

Returns the value of stringorblob as an integer if it succeeds and 0 if stringorblob is not a
valid number or is an incompatible datatype. If stringorblob is null, Integer returns null.

Usage

To distinguish between a string whose value is the number 0 and a string whose value is not a
number, use the IsNumber function before calling the Integer function.

Examples

This statement returns the string 24 as an integer:

Integer("24")

This statement returns the contents of the SingleLineEdit sle_Age as an integer:

Integer(sle_Age.Text)

This statement returns 0:

Statements, Events, and Functions

Page 969

Integer("3ABC") // 3ABC is not a number.

This example checks whether the text of sle_data is a number before converting, which is
necessary if the user might legitimately enter 0:

integer li_new_data
IF IsNumber(sle_data.Text) THEN
 li_new_data = Integer(sle_data.Text)
ELSE
 SetNull(li_new_data)
END IF

After assigning blob data from the database to lb_blob, this example obtains the integer value
stored at position 20 in the blob:

integer i
i = Integer(BlobMid(lb_blob, 20, 2))

See also

Double

Dec

IsNumber

Long

Real

Integer method for DataWindows in Section 2.4.51, “Integer” in DataWindow Reference.

2.4.433 InternetData

Description

Processes the HTML data returned by a GetURL or PostURL function. The Context object
calls this function; you do not call this function explicitly. Instead, you override this function
in a customized descendant of the InternetResult standard class user object.

Applies to

InternetResult objects

Syntax

servicereference.InternetData (data)

Table 2.892:

Argument Description

servicereference Reference to the Internet service instance

data Blob containing the complete data requested by a GetURL or PostURL
function

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Statements, Events, and Functions

Page 970

Usage

Override this function in a user object that is a descendant of InternetResult. The overridden
function must contain one argument of type blob, which is passed by value. It should return
an integer, processing data as appropriate for the situation.

Do not call this function explicitly

Do not code calls to this function. The GetURL and PostURL functions include
an argument that references an instantiated InternetResult descendant. When these
functions complete, the Context object calls the InternetData function, returning
HTML in data.

Examples

This example shows code you might use in an overridden InternetData function to display
data from a GetURL function:

MessageBox("HTML from GetURL", &
 String(data, EncodingANSI!))
RETURN 1

The blob contains the actual data and is not Unicode encoded, therefore you must use the
EncodingANSI! argument of the String function.

See also

GetURL

PostURL

2.4.434 IntHigh

Description

Returns the high word of a long value.

Syntax

IntHigh (long)

Table 2.893:

Argument Description

long A long value

Return value

Integer.

Returns the high word of long if it succeeds and -1 if an error occurs. If long is null, IntHigh
returns null.

Usage

One use for IntHigh is for decoding values returned by external C functions and Windows
messages.

Examples

Statements, Events, and Functions

Page 971

These statements decode a long value LValue into its low and high integers:

integer nLow, nHigh
long LValue = 274489
nLow = IntLow (LValue) //The Low Integer is 12345.
nHigh = IntHigh(LValue) //The High Integer is 4.

See also

IntLow

2.4.435 IntLow

Description

Returns the low word of a long value.

Syntax

IntLow (long)

Table 2.894:

Argument Description

long A long value

Return value

Integer. Returns the low word of long if it succeeds and -1 if an error occurs. If long is null,
IntLow returns null.

Usage

One use for IntLow is for decoding values returned by external C functions and Windows
messages.

Examples

These statements decode a long value LValue into its low and high integers:

integer nLow, nHigh
long LValue = 12345
nLow = IntLow(LValue) //The Low Integer is 12345.
nHigh = IntHigh(LValue) //The High Integer is 0.

See also

IntHigh

2.4.436 InvokePBFunction

Description

Invokes the specified user-defined window function in the child window contained in a
PowerBuilder window ActiveX control.

Applies to

Window ActiveX controls

Syntax

Statements, Events, and Functions

Page 972

activexcontrol.InvokePBFunction (name {, numarguments {, arguments } })

Table 2.895:

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder Window ActiveX control.
When used in HTML, this is the NAME attribute of the object element.
When used in other environments, this references the control that
contains the PowerBuilder window ActiveX.

name String specifying the name of the user-defined window function. This
argument is passed by reference.

numarguments
(optional)

Integer specifying the number of elements in the arguments array. The
default is zero.

arguments
(optional)

Variant array containing function arguments. In PowerBuilder, Variant
maps to the Any datatype. This argument is passed by reference.

If you specify this argument, you must also specify numarguments. If
you do not specify this argument and the function contains arguments,
populate the argument list by calling the SetArgElement function once
for each argument.

JavaScript cannot use this argument.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function to invoke a user-defined window function in the child window contained in
a PowerBuilder window ActiveX control.

To check the PowerBuilder function's return value, call the GetLastReturn function.

JavaScript cannot use the arguments argument.

Examples

This JavaScript example calls the InvokePBFunction function:

function invokeFunc(f) {
 var retcd;
 var rc;
 var numargs;
 var theFunc;
 var theArg;
 retcd = 0;
 numargs = 1;
 theArg = f.textToPB.value;
 PBRX1.SetArgElement(1, theArg);
 theFunc = "of_args";
 retcd = PBRX1.InvokePBFunction(theFunc, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
 IF (rc != 1) {
 alert("Error. Empty string.");
 }

Statements, Events, and Functions

Page 973

 PBRX1.ResetArgElements();
}

This VBScript example calls the InvokePBFunction function:

Sub invokeFunction_OnClick()
 Dim retcd
 Dim myForm
 Dim args(1)
 Dim rc
 Dim numargs
 Dim theFunc
 Dim rcfromfunc
 retcd = 0
 numargs = 1
 rc = 0
 theFunc = "of_args"
 Set myForm = Document.buttonForm
 args(0) = buttonForm.textToPB.value
 retcd = PBRX1.InvokePBFunction(theFunc, &
 numargs, args)
 rc = PBRX1.GetLastReturn()
 IF rc <> 1 THEN
 msgbox "Error. Empty string."
 END IF
 PBRX1.ResetArgElements()
END sub

See also

GetLastReturn

SetArgElement

TriggerPBEvent

2.4.437 _Is_A (obsolete)

Description

Checks to see whether a CORBA object is an instance of a class that implements a particular
interface.

This function is used by PowerBuilder clients connecting to EAServer.

Obsolete function

_Is_A is obsolete, because EAServer is no longer supported since PowerBuilder 2017.

Applies to

CORBAObject objects

Syntax

corbaobject._Is_A (classname)

Table 2.896:

Argument Description

corbaobject An object of type CORBAObject that you want to test

Statements, Events, and Functions

Page 974

Argument Description

classname The interface that will be used for the test

Return value

Boolean.

Returns true if the class of the object implements the specified interface and false if it does
not.

Usage

Before making a call to _Narrow, you can call _Is_A to verify that a CORBA object is an
instance of a class that implements the interface to which you want to narrow the object.

Examples

The following example checks to see that a CORBA object reference is an instance of a class
that implements n_Bank_Account:

CORBAObject my_corbaobj
n_Bank_Account my_account
...
...
if (my_corbaobj._is_a("n_Bank_Account")) then
 my_corbaobj._narrow(my_account,"n_Bank_Account")
end if
my_account.withdraw(100.0)

See also

_Narrow (obsolete)

2.4.438 IsAlive

Description

Determines whether a server object is still running.

Applies to

OLEObject objects, OLETxnObject objects

Syntax

oleobject.IsAlive ()

Table 2.897:

Argument Description

oleobject The name of an OLEObject or OLETxnObject variable that is connected
to an automation server or COM object

Return value

Boolean.

Returns true if the server object appears to be running and false if it is dead.

Usage

Statements, Events, and Functions

Page 975

Use the IsAlive function to determine whether a server process has died. This function does
not replace the error-handling capability provided by the ExternalException and Error events.
It provides a way to check the viability of the server at intervals or before specific operations
to avoid runtime errors.

If IsAlive returns true, the server may only appear to be running, because the true state of the
server may be masked. This is more likely to occur when the server is running on a different
computer, because DCOM may be using cached information to determine the state of the
server. A false return value always indicates that the server is dead.

Examples

This example creates an OLEObject variable and calls ConnectToNewObject to create and
connect to a new instance of a PowerBuilder COM object. After performing some processing,
it checks whether the server is still running before performing additional processing:

OLETxnObject EmpObj
Integer li_rc

EmpObj = CREATE OLEObject
li_rc = EmpObj.ConnectToNewObject("PB70COM.employee")
// Perform some work with the COM object
...
IF EmpObj.IsAlive()THEN
// Continue processing
END IF

2.4.439 IsAllArabic

Description

Tests whether a particular string is composed entirely of Arabic characters.

Syntax

IsAllArabic (string)

Table 2.898:

Argument Description

string A string whose value you want to test to find out if it is composed
entirely of Arabic characters

Return value

Boolean.

Returns true if string is composed entirely of Arabic characters and false if it is not. The
presence of numbers, spaces, and punctuation marks will also result in a return value of false.

Usage

If you are not running a version of Windows that supports right-to-left languages, IsAllArabic
is set to false.

Examples

Under a version of Windows that supports right-to-left languages, this statement returns true
if the SingleLineEdit sle_name is composed entirely of Arabic characters:

Statements, Events, and Functions

Page 976

IsAllArabic(sle_name.Text)

See also

IsAnyArabic

IsArabic

IsArabicAndNumbers

Reverse

2.4.440 IsAllHebrew

Description

Tests whether a particular string is composed entirely of Hebrew characters.

Syntax

IsAllHebrew (string)

Table 2.899:

Argument Description

string A string whose value you want to test to find out if it is composed
entirely of Hebrew characters

Return value

Boolean.

Returns true if string is composed entirely of Hebrew characters and false if it is not. The
presence of numbers, spaces, and punctuation marks will also result in a return value of false.

Usage

If you are not running a version of Windows that supports right-to-left languages,
IsAllHebrew is set to false.

Examples

Under a version of Windows that supports right-to-left languages, this statement returns true
if the SingleLineEdit sle_name is composed entirely of Hebrew characters:

IsAllHebrew(sle_name.Text)

See also

IsAnyHebrew

IsHebrew

IsHebrewAndNumbers

Reverse

2.4.441 IsAnyArabic

Description

Statements, Events, and Functions

Page 977

Tests whether a particular string contains at least one Arabic character.

Syntax

IsAnyArabic (string)

Table 2.900:

Argument Description

string A string whose value you want to test to find out if it contains at least one
Arabic character

Return value

Boolean.

Returns true if string contains at least one Arabic character and false if it does not.

Usage

If you are not running a version of Windows that supports right-to-left languages,
IsAnyArabic is set to false.

Examples

Under a version of Windows that supports right-to-left languages, this statement returns true
if the SingleLineEdit sle_name contains at least one Arabic character:

IsAnyArabic(sle_name.Text)

See also

IsAllArabic

IsArabic

IsArabicAndNumbers

Reverse

2.4.442 IsAnyHebrew

Description

Tests whether a particular string contains at least one Hebrew character.

Syntax

IsAnyHebrew (string)

Table 2.901:

Argument Description

string A string whose value you want to test to find out if it contains at least one
Hebrew character

Return value

Boolean.

Statements, Events, and Functions

Page 978

Returns true if string contains at least one Hebrew character and false if it does not.

Usage

If you are not running a version of Windows that supports right-to-left languages,
IsAnyHebrew is set to false.

Examples

Under a version of Windows that supports right-to-left languages, this statement returns true
if the SingleLineEdit sle_name contains at least one Hebrew character:

IsAnyHebrew(sle_name.Text)

See also

IsAllHebrew

IsHebrew

IsHebrewAndNumbers

Reverse

2.4.443 IsArabic

Description

Tests whether a particular character is an Arabic character. For a string, IsArabic tests only
the first character on the left.

Syntax

IsArabic (character)

Table 2.902:

Argument Description

character A character or string whose value you want to test to find out if it is an
Arabic character.

Return value

Boolean.

Returns true if character is an Arabic character and false if it is not.

Usage

If you are not running a version of Windows that supports right-to-left languages, IsArabic is
set to false.

Examples

Under a version of Windows that supports right-to-left languages, this statement returns true
if the SingleLineEdit sle_name begins with an Arabic character:

IsArabic(sle_name.Text)

See also

Statements, Events, and Functions

Page 979

IsAllArabic

IsAnyArabic

IsArabicAndNumbers

Reverse

2.4.444 IsArabicAndNumbers

Description

Tests whether a particular string is composed entirely of Arabic characters or numbers.

Syntax

IsArabicAndNumbers (string)

Table 2.903:

Argument Description

string A string whose value you want to test to find out if it is composed
entirely of Arabic characters or numbers

Return value

Boolean.

Returns true if string is composed entirely of Arabic characters or numbers and false if it is
not.

Usage

If you are not running a version of Windows that supports right-to-left languages,
IsArabicAndNumbers is set to false.

Examples

Under a version of Windows that supports right-to-left languages, this statement returns true
if the SingleLineEdit sle_name is composed entirely of Arabic characters and numbers:

IsArabicAndNumbers(sle_name.Text)

See also

IsAllArabic

IsAnyArabic

IsArabic

Reverse

2.4.445 IsCallerInRole

Description

Indicates whether the direct caller of a COM object running on COM+ is in a specified role
(either individually or as part of a group).

Statements, Events, and Functions

Page 980

Applies to

TransactionServer objects

Syntax

transactionserver.IsCallerInRole (role)

Table 2.904:

Argument Description

transactionserver Reference to the TransactionServer service instance

role A string expression containing the name of a role

Return value

Boolean.

Returns true if the direct caller is in the specified role and false if it is not.

Usage

In COM+, a role is a name that represents the set of access permissions for a specific user or
group of users. For example, a component that provides access to a sales database might have
different roles for managers and salespersons.

In your code, you use IsCallerInRole to determine whether the caller of the current method is
associated with a specific role before you execute code that performs a task restricted to users
in that role.

IsCallerInRole only determines whether the direct caller of the current method is in the
specified role. The direct caller may be either a client process or a server process.

Package must run in a dedicated server process

To support role-checking, the COM+ package must be activated as a Server package,
not a Library package. Server packages run in a dedicated server process. Library
packages run in the creator's process and are used primarily for debugging.

IsCallerInRole only returns a meaningful value when security checking is enabled. Security
checking can be enabled in the COM/COM+ Project wizard or the Project painter

Examples

The following example shows a call to a function (f_checkrole) that takes the name of a role
as an argument and returns an integer. In this example only managers can place orders with a
value over $20,000:

integer rc
long ordervalue
IF ordervalue > 20,000 THEN
 rc = f_checkrole("Manager")
 IF rc <> 1
 // handle negative values and exit
 ELSE
 // continue processing
 END IF
END IF

Statements, Events, and Functions

Page 981

The f_checkrole function checks whether a component is running on COM+ and if security
checking is enabled. Then it checks whether the direct caller is in the role passed in as an
argument. If any of the checks fail, the function returns a negative value:

TransactionServer ts
integer li_rc
string str_role

li_rc = GetContextService("TransactionServer", ts)
// handle error if necessary

// Find out if running on COM+
IF ts.which() <> 2 THEN RETURN -1

// Find out if security is enabled
IF NOT ts.IsSecurityEnabled() THEN RETURN -2

// Find out if the caller is in the role
IF NOT ts.IsCallerInRole(str_role) THEN
 RETURN -3
ELSE
 RETURN 1
END IF

See also

ImpersonateClient

IsImpersonating

IsSecurityEnabled

RevertToSelf

2.4.446 IsDate

Description

Tests whether a string value is a valid date.

Syntax

IsDate (datevalue)

Table 2.905:

Argument Description

datevalue A string whose value you want to test to determine whether it is a valid
date

Return value

Boolean.

Returns true if datevalue is a valid date and false if it is not. If datevalue is null, IsDate
returns null.

Usage

You can use IsDate to test whether a user-entered date is valid before you convert it to a date
datatype. To convert a value into a date value, use the Date function. The year value must be
in the range 01 to 9999.

Statements, Events, and Functions

Page 982

Examples

This statement returns true:

IsDate("Jan 1, 05")

This statement returns false:

IsDate("Jan 32, 2005")

If the SingleLineEdit sle_Date_Of_Hire contains 7/1/99, these statements store 1999-07-01 in
HireDate:

Date HireDate
IF IsDate(sle_Date_Of_Hire.text) THEN
 HireDate = Date(sle_Date_Of_Hire.text)
END IF

See also

IsDate method for DataWindows in Section 2.4.52, “IsDate” in DataWindow Reference.

2.4.447 IsHebrew

Description

Tests whether a particular character is a Hebrew character. For a string, IsHebrew tests only
the first character on the left.

Syntax

IsHebrew (character)

Table 2.906:

Argument Description

character A character or string whose value you want to test to find out if it is a
Hebrew character

Return value

Boolean.

Returns true if character is a Hebrew character and false if it is not.

Usage

If you are not running a version of Windows that supports right-to-left languages, IsHebrew
is set to false.

Examples

Under a version of Windows that supports right-to-left languages, this statement returns true
if the SingleLineEdit sle_name begins with a Hebrew character:

IsHebrew(sle_name.Text)

See also

IsAllHebrew

Statements, Events, and Functions

Page 983

IsAnyHebrew

IsHebrewAndNumbers

Reverse

2.4.448 IsHebrewAndNumbers

Description

Tests whether a particular string is composed entirely of Hebrew characters and numbers.

Syntax

IsHebrewAndNumbers (string)

Table 2.907:

Argument Description

string A string whose value you want to test to find out if it is composed
entirely of Hebrew characters and numbers

Return value

Boolean.

Returns true if string is composed entirely of Hebrew characters and numbers and false if it is
not.

Usage

If you are not running a version of Windows that supports right-to-left languages,
IsHebrewAndNumbers is set to false.

Examples

Under a version of Windows that supports right-to-left languages, this statement returns true
if the SingleLineEdit sle_name is composed entirely of Hebrew characters and numbers:

IsHebrewAndNumbers(sle_name.Text)

See also

IsAllHebrew

IsAnyHebrew

IsHebrew

Reverse

2.4.449 IsImpersonating

Description

Queries whether a COM object running on COM+ is impersonating the client.

Applies to

TransactionServer objects

Syntax

Statements, Events, and Functions

Page 984

transactionserver.IsImpersonating ()

Table 2.908:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Boolean.

Returns true if the component is impersonating the client and false if it is not.

Usage

COM objects running on COM+ can use the ImpersonateClient function to run in the client's
security context so that the server process has access to the same resources as the client. Use
IsImpersonating to determine whether the ImpersonateClient function has been called without
a matching call to RevertToSelf.

Examples

The following example creates an instance of the TransactionServer service and checks
whether the COM object is currently running on the client's security context. If it is not, it
impersonates the client, performs some processing using the client's security context, then
reverts to the object's security context:

TransactionServer txninfo_test
integer li_rc

li_rc = GetContextService("TransactionServer", &
 txninfo_test)
IF NOT txninfo_test.IsImpersonating() THEN
 txninfo_test.ImpersonateClient()
END IF
// continue processing as client
txninfo_test.RevertToSelf()

See also

ImpersonateClient

IsCallerInRole

IsSecurityEnabled

RevertToSelf

2.4.450 IsInTransaction (obsolete)

Description

Indicates whether a component is executing in a transaction.

Obsolete function

IsInTransaction is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

Statements, Events, and Functions

Page 985

TransactionServer objects

Syntax

transactionserver.IsInTransaction ()

Table 2.909:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Boolean.

Returns true if the component is executing as part of a transaction and false if it is not.

Usage

Component methods can call IsInTransaction to determine whether they are executing within
a transaction.

Methods in components that are declared to be transactional always execute as part of a
transaction.

Methods in components that have a transaction type of Supports Transaction may or may not
be running in the context of an EAServer transaction, depending on whether the component
is instantiated directly by a base client or by another component. In components that have this
transaction type, you can use IsInTransaction to determine whether the component is running
in a transaction.

The IsInTransaction function corresponds to the isInTransaction transaction primitive in
EAServer.

Examples

The following example shows the use of the IsInTransaction function:

TransactionServer ts
Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", &
 ts)
IF ts.IsInTransaction = TRUE THEN
 // execute logic based on the transaction context
END IF

See also

EnableCommit

IsTransactionAborted (obsolete)

Lookup (obsolete)

SetAbort

SetComplete

Which

Statements, Events, and Functions

Page 986

2.4.451 IsMinimized

Description

Gets whether the RibbonBar control is minimized or not.

Applies to

RibbonBar controls

Syntax

controlname.IsMinimized ()

Return value

Boolean.

Returns TRUE if it is minimized and FALSE if it is not minimized.

Usage

When the RibbonBar control is minimized, only the application button title, the category title,
and the tab header will be displayed.

Examples

Boolean lb_IsMini
lb_IsMini = rbb_1.IsMinimized()

See also

SetMinimized

2.4.452 IsNull

Description

Reports whether the value of a variable or expression is null.

Syntax

IsNull (any)

Table 2.910:

Argument Description

any A variable or expression that you want to test to determine whether its
value is null

Return value

Boolean.

Returns true if any is null and false if it is not.

Usage

Use IsNull to test whether a user-entered value or a value retrieved from the database is null.

If one or more columns in a DataWindow are required columns, that is, they must contain
data, you do not want to update the database if the columns have null values. You can use

Statements, Events, and Functions

Page 987

FindRequired to find rows in which those columns have null values, instead of using IsNull
to evaluate each row and column.

Setting a variable to null

To set a variable to null, use the SetNull function. In standard PowerBuilder applications, if a
variable is not set to null explicitly by calling the SetNull function, calling the IsNull function
against the variable returns false.

If the variable is of a reference type (a type derived from the PowerObject base class), IsNull
returns true if the variable has not been initialized by assigning an instantiated object to it. In
the following example, IsNull returns false in a standard PowerBuilder application:

dataStore ds
boolean b

b = IsNull(ds)
MessageBox("IsNull", string(b))

If the variable is explicitly set to null, IsNull returns true in standard PowerBuilder
applications:

SetNull(ds)
b = IsNull(ds)
MessageBox("IsNull", string(b))

Examples

These statements set lb_test to true:

integer a, b
boolean lb_test

SetNull(b)
lb_test = IsNull(a + b)

See also

IsValid

SetNull

IsNull method for DataWindows in Section 2.4.54, “IsNull” in DataWindow Reference.

2.4.453 IsNumber

Description

Reports whether the value of a string is a number.

Syntax

IsNumber (string)

Table 2.911:

Argument Description

string A string whose value you want to test to determine whether it is a valid
PowerScript number

Return value

Statements, Events, and Functions

Page 988

Boolean.

Returns true if string is a valid PowerScript number and false if it is not. If string is null,
IsNumber returns null.

Usage

Use IsNumber to check that text in an edit control can be converted to a number.

To convert a string to a specific numeric datatype, use the Double, Dec, Integer, Long, or
Real function.

Examples

This statement returns true:

IsNumber("32.65")

This statement returns false:

IsNumber("A16")

If the SingleLineEdit sle_Age contains 32, these statements store 32 in li_YearsOld:

integer li_YearsOld
IF IsNumber(sle_Age.Text) THEN
 li_YearsOld = Integer(sle_Age.Text)
END IF

See also

Double

Dec

Integer

Long

Real

IsNumber method for DataWindows in Section 2.4.55, “IsNumber” in DataWindow
Reference.

2.4.454 IsPBApp

Description

Reports whether the current application is a native C/S application compiled using Pcode or
machine code.

Syntax

IsPBApp ()

Return value

Boolean.

Returns true if the current application is a native C/S application compiled using Pcode or
machine code and false if it is not.

Examples

Statements, Events, and Functions

Page 989

This example executes the scripts only when the application is deployed as a native C/S
application:

Boolean lb_IsPBApp
lb_IsPBApp = IsPBApp ()
IF lb_IsPBApp THEN
 ...
END IF

See also

IsPowerClientApp

2.4.455 IsPowerClientApp

Description

Reports whether the current application is deployed using PowerClient.

Syntax

IsPowerClientApp ()

Return value

Boolean.

Returns true if the current application is deployed with PowerClient and false if it is not.

Examples

This example executes the scripts only when the application is deployed with PowerClient:

Boolean lb_IsPowerClientApp
lb_IsPowerClientApp = IsPowerClientApp ()
IF lb_IsPowerClientApp THEN
 ...
END IF

See also

IsPBApp

2.4.456 IsPreview

Description

Reports whether a RichTextEdit control is in preview mode.

Applies to

RichTextEdit controls

Syntax

rtename.IsPreview ()

Table 2.912:

Argument Description

rtename The name of the RichTextEdit control for which you want to know
whether it is in preview mode

Statements, Events, and Functions

Page 990

Return value

Boolean.

Returns true if rtename is in preview mode and false if it is in data entry mode.

Examples

This example switches the RichTextEdit control rte_1 to preview mode if it is not already in
preview mode and then prints it:

IF NOT rte_1.IsPreview() THEN
 rte_1.Preview(TRUE)
 rte_1.Print(1, "1-4", FALSE, TRUE)
END IF

See also

Preview

2.4.457 IsSecurityEnabled

Description

Indicates whether or not security checking is enabled for a COM object running on COM+.

Applies to

TransactionServer objects

Syntax

transactionserver.IsSecurityEnabled ()

Table 2.913:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Boolean.

Returns true if security checking is enabled and false if it is not.

Usage

Use IsSecurityEnabled to determine whether security checking is enabled for the current
COM object.

If the COM object is running in the creator's process, IsSecurityEnabled always returns false.

Examples

The following example determines whether security checking is enabled and, if it is, checks
whether the direct caller is in the Manager role before completing the call:

TransactionServer ts
integer li_rc
string str_role = "Admin"

li_rc = GetContextService("TransactionServer", &

Statements, Events, and Functions

Page 991

 ts)
// Find out if security is enabled.
IF ts.IsSecurityEnabled() THEN
 // Find out if the caller is in the role.
 IF NOT ts.IsCallerInRole(str_role) THEN
 // do not complete call
 ELSE
 // execute call normally
 END IF
ELSE
 // security is not enabled
 // do not complete call
END IF

See also

ImpersonateClient

IsCallerInRole

IsImpersonating

RevertToSelf

2.4.458 IsTime

Description

Reports whether the value of a string is a valid time value.

Syntax

IsTime (timevalue)

Table 2.914:

Argument Description

timevalue A string whose value you want to test to determine whether it is a valid
time

Return value

Boolean.

Returns true if timevalue is a valid time and false if it is not. If timevalue is null, IsTime
returns null.

Usage

Use IsTime to test to whether a value a user enters in an edit control is a valid time.

To convert a string to an time value, use the Time function.

Examples

This statement returns true:

IsTime("8:00:00 am")

This statement returns false:

IsTime("25:00")

Statements, Events, and Functions

Page 992

If the SingleLineEdit sle_EndTime contains 4:15 these statements store 04:15:00 in
lt_QuitTime:

Time lt_QuitTime
IF IsTime sle_EndTime.Text) THEN
 lt_QuitTime = Time(sle_EndTime.Text)
END IF

See also

Time

IsTime method for DataWindows in Section 2.4.59, “IsTime” in DataWindow Reference.

2.4.459 IsTransactionAborted (obsolete)

Description

Determines whether the current transaction, in which an EAServer component participates,
has been aborted.

Obsolete function

IsTransactionAborted is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

TransactionServer objects

Syntax

transactionserver.IsTransactionAborted ()

Table 2.915:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Boolean.

Returns true if the current transaction has been aborted and false if it has not.

Usage

The IsTransactionAborted function allows a component to verify that the current transaction
is still viable before performing updates to the database.The IsTransactionAborted function
corresponds to the isRollbackOnly transaction primitive in EAServer.

Examples

The following example checks to see whether the transaction has been aborted. If it has not, it
updates the database and calls EnableCommit. If it has been aborted, it calls DisableCommit.

// Instance variables:
ids_datastore, ts

Statements, Events, and Functions

Page 993

Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", ts)
IF li_rc <> 1 THEN
 // handle the error
END IF
...
IF ts.IsTransactionAborted() = FALSE THEN
 ll_rv = ids_datastore.Update()
 IF ll_rv = 1 THEN
 ts.EnableCommit()
 ELSE
 ts.DisableCommit()
 END IF
END IF

See also

EnableCommit

IsInTransaction (obsolete)

Lookup (obsolete)

SetAbort

SetComplete

Which

2.4.460 IsValid

Description

Determines whether an object variable is instantiated -- whether its value is a valid object
handle.

Syntax

IsValid (objectvariable)

Table 2.916:

Argument Description

objectvariable An object variable or a variable of type Any -- typically a reference to an
object that you are testing for validity

Return value

Boolean.

Returns true if objectvariable is an instantiated object. Returns false if objectvariable is not
an object, or if it is an object that is not instantiated. If objectvariable is null, IsValid returns
null.

Usage

Use IsValid instead of the Handle function to determine whether a window is open.

Examples

Statements, Events, and Functions

Page 994

This statement determines whether the window w_emp is open and if it is not, opens it:

IF IsValid(w_emp) = FALSE THEN Open(w_emp)

This example returns -1 because the IsValid function returns false. Although the
objectvariable argument is a valid string, it is not an instantiated object. The IsValid method
would return true only if la_value was an instantiated object:

any la_value

la_value = "I'm a string"
IF NOT IsValid(la_value) THEN return -1

See also

Handle

2.4.461 KeyCount

Description

Gets the total number of keys.

Applies to

JSONPackage

Syntax

objectname.KeyCount ()

Table 2.917:

Argument Description

objectname The name of the JSONPackage object.

Return value

Long.

Returns the number of keys if it succeeds and -1 if an error occurs.

Examples

This example sets the value for keys and then gets the number of keys:

long ll_KeyCount
datastore lds_employee
datawindowchild ldwc_active

JsonPackage lnv_package
lnv_package = create JsonPackage

...//Initialize data for lds_employee, ldwc_active

// package the data
lnv_package.SetValue("d_department", dw_department, false)
lnv_package.SetValue("d_employee", lds_employee)
lnv_package.SetValue("dddw_active", ldwc_active, false)

// ll_KeyCount will return 3

Statements, Events, and Functions

Page 995

ll_KeyCount = lnv_package.KeyCount()

2.4.462 KeyDown

Description

Determines whether the user pressed the specified key on the computer keyboard.

Syntax

KeyDown (keycode)

Table 2.918:

Argument Description

keycode A value of the KeyCode enumerated datatype that identifies a key on the
computer keyboard or an integer whose value is the ASCII code for a
key. Not all ASCII values are recognized; see Usage. See also the table of
KeyCode values in Usage.

Return value

Boolean.

Returns true if keycode was pressed and false if it was not. If keycode is null, KeyDown
returns null.

Usage

KeyDown does not report what character the user typed -- it reports whether the user was
pressing the specified key when the event whose script is calling KeyDown was triggered.

The DataWindow columns with RichText edit style does not support the KeyDown event.

Events

You can call KeyDown in a window's Key event or a keypress event for a control to
determine whether the user pressed a particular key. The Key event occurs whenever the user
presses a key as long as the insertion point is not in a line edit. The Key event is triggered
repeatedly if the user holds down a repeating key. For controls, you can define a user event
for pbm_keydown or pbm_dwnkey (DataWindows), and call KeyDown in its script.

You can also call KeyDown in a mouse event, such as Clicked, to determine whether the user
also pressed a modifier key, such as Ctrl.

KeyCodes and ASCII values

KeyDown does not distinguish between uppercase and lowercase letters or other characters
and their shifted counterparts. For example, KeyA! refers to the A key -- the user may have
typed "A" or "a." Key9! refers to both "9" and "(". Instead, you can test whether a modifier
key is also pressed.

KeyDown does not test whether Caps Lock or other toggle keys are in a toggled-on state,
only whether the user is pressing it.

KeyDown only detects ASCII values 65-90 (KeyA! - KeyZ!) and 48-57 (Key0! - Key9!).
These ASCII values detect whether the key was pressed, whether or not the user also pressed
Shift or Caps Lock. KeyDown does not detect other ASCII values (such as 97-122 for
lowercase letters).

Statements, Events, and Functions

Page 996

The following table categorizes KeyCode values by type of key and provides explanations of
names that might not be obvious.

Table 2.919: KeyCode values for keyboard keys

Type of key KeyCode values and descriptions

Mouse buttons KeyLeftButton! -- Left mouse button

KeyMiddleButton! -- Middle mouse button

KeyRightButton! -- Right mouse button

Letters KeyA! - KeyZ! -- A - Z, uppercase or lowercase

Other symbols KeyQuote! -- ' and "

KeyEqual! -- = and +

KeyComma! -- , and <

KeyDash! -- - and _

KeyPeriod! -- . and >

KeySlash! -- / and ?

KeyBackQuote! -- ` and ~

KeyLeftBracket! -- [and {

KeyBackSlash! -- \ and |

KeyRightBracket! --] and }

KeySemiColon! -- ; and:

Non-printing
characters

KeyBack! -- Backspace

KeyTab!

KeyEnter!

KeySpaceBar!

Function keys KeyF1! - KeyF12! -- Function keys F1 to F12

Control keys KeyShift!

KeyControl!

KeyAlt!

KeyPause!

KeyCapsLock!

KeyEscape!

KeyPrintScreen!

KeyInsert!

KeyDelete!

Navigation keys KeyPageUp!

KeyPageDown!

Statements, Events, and Functions

Page 997

Type of key KeyCode values and descriptions
KeyEnd!

KeyHome!

KeyLeftArrow!

KeyUpArrow!

KeyRightArrow!

KeyDownArrow!

Numeric and
symbol keys

Key0! -- 0 and)

Key1! -- 1 and !

Key2! -- 2 and @

Key3! -- 3 and #

Key4! -- 4 and $

Key5! -- 5 and %

Key6! -- 6 and ^

Key7! -- 7 and &

Key8! -- 8 and *

Key9! -- 9 and (

Keypad numbers KeyNumpad0! - KeyNumpad9! 0 - 9 on numeric keypad

Keypad symbols KeyMultiply! -- * on numeric keypad

KeyAdd! -- + on numeric keypad

KeySubtract! -- - on numeric keypad

KeyDecimal! -- . on numeric keypad

KeyDivide! -- / on numeric keypad

KeyNumLock!

KeyScrollLock!

Examples

The following code checks whether the user pressed the F1 key or the Ctrl key and executes
some statements appropriate to the key pressed:

IF KeyDown(KeyF1!) THEN
. . . // Statements for the F1 key
ELSEIF KeyDown(KeyControl!) THEN
. . . // Statements for the CTRL key
END IF

This statement tests whether the user pressed Tab, Enter, or any of the scrolling keys:

IF (KeyDown(KeyTab!) OR KeyDown(KeyEnter!) OR &
 KeyDown(KeyDownArrow!) OR KeyDown(KeyUpArrow!) &
 OR KeyDown(KeyPageDown!) OR KeyDown(KeyPageUp!))&
 THEN ...

Statements, Events, and Functions

Page 998

This statement tests whether the user pressed the A key (ASCII value 65):

IF KeyDown(65) THEN ...

This statement tests whether the user pressed the Shift key and the A key:

IF KeyDown(65) AND KeyDown(KeyShift!) THEN ...

This statement in a Clicked event checks whether the Shift is also pressed:

IF KeyDown(KeyShift!) THEN ...

2.4.463 LastPos

Description

Finds the last position of a target string in a source string.

Syntax

LastPos (string1, string2 {, searchlength })

Table 2.920:

Argument Description

string1 The string in which you want to find string2.

string2 The string you want to find in string1.

searchlength
(optional)

A long that limits the search to the leftmost searchlength characters of the
source string string1. The default is the entire string.

Return value

Long.

Returns a long whose value is the starting position of the last occurrence of string2 in
string1 within the characters specified in searchlength. If string2 is not found in string1 or if
searchlength is 0, LastPos returns 0. If any argument's value is null, LastPos returns null.

Usage

The LastPos function is case sensitive. The entire target string must be found in the source
string.

Examples

This statement returns 6, because the position of the last occurrence of RU is position 6:

LastPos("BABE RUTH", "RU")

This statement returns 3:

LastPos("BABE RUTH", "B")

This statement returns 0, because the case does not match:

LastPos("BABE RUTH", "be")

This statement searches the leftmost 4 characters and returns 0, because the only occurrence
of RU is after position 4. The search length must be at least 7 (to include the complete string
RU) before the statement returns 6 for the starting position of the last occurrence of RU:

Statements, Events, and Functions

Page 999

LastPos("BABE RUTH", "RU", 4)

These statements change the text in the SingleLineEdit sle_group. The last instance of the
text NY is changed to North East:

long place_nbr
place_nbr = LastPos(sle_group.Text, "NY")
sle_group.SelectText(place_nbr, 2)
sle_group.ReplaceText("North East")

These statements separate the return value of GetBandAtPointer into the band name and row
number. The LastPos function finds the position of the (last) tab in the string and the Left and
Mid functions extract the information to the left and right of the tab:

string s, ls_left, ls_right
integer li_tab

s = dw_groups.GetBandAtPointer()
li_tab = LastPos(s, "~t")

ls_left = Left(s, li_tab - 1)
ls_right = Mid(s, li_tab + 1)

These statements tokenize a source string backwards:

// Tokenize the source string backwards
// Results in "pbsyc.dll powerbuilder
// shared appeon programs c:

string sSource = &
 'c:\program files\Appeon\Common\PowerBuilder\Runtime 19.2.0.2382\pbsyc.dll'
string sFind = '\'
string sToken
long llStart, llEnd

llEnd = Len(sSource) + 1

DO llStart = LastPos(sSource, sFind, llEnd)
 sToken = Mid(sSource, (llStart + 1), &
 (llEnd - llStart))
 mle_comment.text += sToken + ' '
 llEnd = llStart - 1
LOOP WHILE llStart > 1

See also

Pos

2.4.464 Left

Description

Obtains a specified number of characters from the beginning of a string.

Syntax

Left (string, n)

Table 2.921:

Argument Description

string The string you want to search

Statements, Events, and Functions

Page 1000

Argument Description

n A long specifying the number of characters you want to return

Return value

String.

Returns the leftmost n characters in string if it succeeds and the empty string ("") if an error
occurs. If any argument's value is null, Left returns null. If n is greater than or equal to the
length of the string, Left returns the entire string. It does not add spaces to make the return
value's length equal to n.

Examples

This statement returns BABE:

Left("BABE RUTH", 4)

This statement returns BABE RUTH:

Left("BABE RUTH", 40)

These statements store the first 40 characters of the text in the SingleLineEdit sle_address in
emp_address:

string emp_address
emp_address = Left(sle_address.Text, 40)

For sample code that uses Left to parse two tab-separated values, see the Pos function.

See also

Mid

Pos

Right

Left method for DataWindows in Section 2.4.63, “Left” in DataWindow Reference.

2.4.465 LeftA

Description

Temporarily converts a string from Unicode to DBCS based on the current locale, then
returns the specified number of bytes from the string.

Syntax

LeftA (string, n)

Table 2.922:

Argument Description

string The string you want to search from left to right

n A long specifying the number of bytes of the characters in the return
string

Return value

Statements, Events, and Functions

Page 1001

String.

Returns the characters for the leftmost n bytes in the source string if it succeeds and the
empty string ("") if an error occurs. If any argument's value is null, LeftA returns null. If n is
greater than or equal to the length of the string, LeftA returns the entire string. It does not add
spaces to make the return value's length equal to n.

Usage

LeftA replaces the functionality that Left had in DBCS environments in PowerBuilder 9.

In SBCS environments, Left, LeftW, and LeftA return the same results.

2.4.466 LeftW (obsolete)

Description

Obtains a specified number of characters from the beginning of a string.

This function is obsolete. It has the same behavior as Left in all environments.

Syntax

LeftW (string, n)

2.4.467 LeftTrim

Description

Removes spaces from the beginning of a string.

Syntax

LeftTrim (string {, removeallspaces })

Table 2.923:

Argument Description

string The string you want returned with leading spaces deleted

removeallspaces A boolean indicating that all types of spaces should be deleted

Return value

String.

Returns a copy of string with leading spaces deleted if it succeeds and the empty string ("") if
an error occurs. If string is null, LeftTrim returns null.

Usage

If you do not include the optional removeallspaces argument or its value is false, only the
space character (U+0020) is removed from the string.

If the removeallspaces argument is set to true, all types of space characters are removed.

This is a list of white spaces:

CHARACTER TABULATION (U+0009)

LINE FEED (U+000A)

LINE TABULATION (U+000B)

Statements, Events, and Functions

Page 1002

FORM FEED (U+000C)

CARRIAGE RETURN (U+000D)

SPACE (U+0020)

NO-BREAK SPACE (U+00A0)

EN QUAD (U+2000)

EM QUAD (U+2001)

EN SPACE (U+2002)

EM SPACE (U+2003)

THREE-PER-EM SPACE (U+2004)

FOUR-PER-EM SPACE (U+2005)

SIX-PER-EM SPACE (U+2006)

FIGURE SPACE (U+2007)

PUNCTUATION SPACE (U+2008)

THIN SPACE (U+2009)

HAIR SPACE (U+200A)

ZERO WIDTH SPACE (U+200B)

IDEOGRAPHIC SPACE (U+3000)

ZERO WIDTH NO-BREAK SPACE (U+FEFF)

Examples

This statement returns RUTH when the leading spaces are all space characters:

LeftTrim(" RUTH")

This statement returns RUTH when the leading spaces include other types of space characters
such as tab characters:

LeftTrim(" RUTH", true)

These statements delete leading spaces from the text in the MultiLineEdit mle_name and
store the result in emp_name:

string emp_name
emp_name = LeftTrim(mle_name.Text)

See also

RightTrim

Trim

LeftTrim method for DataWindows in Section 2.4.65, “LeftTrim” in DataWindow Reference.

2.4.468 LeftTrimW (obsolete)

Description

Removes spaces from the beginning of a string.

Statements, Events, and Functions

Page 1003

This function is obsolete. It has the same behavior as LeftTrim in all environments.

Syntax

LeftTrimW (string)

2.4.469 Len

Description

Reports the length of a string or a blob.

Syntax

Len (stringorblob)

Table 2.924:

Argument Description

stringorblob The string or blob for which you want the length in number of characters
or in number of bytes

Return value

Long.

Returns a long whose value is the length of stringorblob if it succeeds and -1 if an error
occurs. If stringorblob is null, Len returns null.

Usage

Len counts the number of characters in a string. The null that terminates a string is not
included in the count.

If you specify a size when you declare a blob, that is the size reported by Len. If you do not
specify a size for the blob, Len initially reports the blob's length as 0. PowerBuilder assigns a
size to the blob the first time you assign data to the blob. Len reports the length of the blob as
the number characters it can contain.

Examples

This statement returns 0:

Len("")

These statements store in the variable s_address_len the length of the text in the
SingleLineEdit sle_address:

long s_address_len
s_address_len = Len(sle_address.Text)

The following scenarios illustrate how the declaration of blobs affects their length, as
reported by Len.

In the first example, an instance variable called ib_blob is declared but not initialized with a
size. If you call Len before data is assigned to ib_blob, Len returns 0. After data is assigned,
Len returns the blob's new length.

The declaration of the instance variable is:

blob ib_blob

Statements, Events, and Functions

Page 1004

The sample code is:

long ll_len
ll_len = Len(ib_blob) // ll_len set to 0
ib_blob = Blob("Test String")
ll_len = Len(ib_blob) // ll_len set to 22

In the second example, ib_blob is initialized to the size 100 when it is declared. When you
call Len for ib_blob, it always returns 100. This example uses BlobEdit, instead of Blob, to
assign data to the blob because its size is already established. The declaration of the instance
variable is:

blob{100} ib_blob

The sample code is:

long ll_len
ll_len = Len(ib_blob) // ll_len set to 100
BlobEdit(ib_blob, 1, "Test String")
ll_len = Len(ib_blob) // ll_len set to 100

See also

Len method for DataWindows in Section 2.4.66, “Len” in DataWindow Reference.

2.4.470 LenA

Description

When the argument is a string, temporarily converts the string from Unicode to DBCS based
on the current locale, then calculates its length in bytes. When the argument is a blob, no
conversion takes place.

Syntax

LenA (stringorblob)

Table 2.925:

Argument Description

stringorblob The string or blob for which you want the length in number of bytes

Return value

Long.

Returns a long whose value is the length of stringorblob if it succeeds and -1 if an error
occurs. If stringorblob is null, Len returns null.

Usage

LenA replaces the functionality that Len had in DBCS environments in PowerBuilder 9.

In SBCS environments, Len, LenW, and LenA return the same results.

If you specify a size when you declare a blob, that is the size reported by LenA. If you do not
specify a size for the blob, LenA initially reports the blob's length as 0. PowerBuilder assigns
a size to the blob the first time you assign data to the blob. LenA reports the length of the
blob as the number of single-byte characters it can contain. Len and LenW report the size of
the blob as the number of double-byte characters it can contain.

Statements, Events, and Functions

Page 1005

2.4.471 LenW (obsolete)

Description

Reports the length of a string or a blob.

This function is obsolete. It has the same behavior as Len in all environments.

Syntax

LenW (stringorblob)

2.4.472 Length

Description

Reports the length in bytes of an open OLE stream.

Len function

To get the length of a string or blob, use the Len function.

Applies to

OLEStream objects

Syntax

olestream.Length (sizevar)

Table 2.926:

Argument Description

olestream The name of an OLE stream variable that has been opened

sizevar A long variable in which Length will store the size of olestream

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Stream is not open

-9 -- Other error

If any argument's value is null, Length returns null.

Examples

This example opens an OLE object in the file MYSTUFF.OLE and assigns it to the
OLEStorage object stg_stuff. Then it opens the stream called info in stg_stuff and assigns it
to the stream object olestr_info. Finally, it finds out the stream's length and stores the value in
the variable info_len.

The example does not check the function's return values for success, but you should be sure
to check the return values in your code:

boolean lb_memexists
OLEStorage stg_stuff
OLEStream olestr_info

Statements, Events, and Functions

Page 1006

long info_len

stg_stuff = CREATE oleStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

olestr_info.Open(stg_stuff, "info", &
 stgRead!, stgExclusive!)
olestr_info.Length(info_len)

See also

Open

Read

Seek

Write

2.4.473 LibraryCreate

Description

Creates an empty PowerBuilder library with optional comments.

Syntax

LibraryCreate (libraryname {, comments })

Table 2.927:

Argument Description

libraryname A string whose value is the name of the PowerBuilder library you want to
create. If you want to create the library somewhere other than the current
directory, enter the full path name.

comments
(optional)

A string whose value is the comments you want to associate with the
library.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
LibraryCreate returns null.

Usage

LibraryCreate creates a PowerBuilder library file (PBL) in the current directory, unless
you specify a directory path as part of libraryname. If you do not specify an extension,
LibraryCreate adds the extension .PBL.

Examples

This statement in Windows NT creates a library named dwTemp in the PB directory on drive
C and associates a comment with the library:

LibraryCreate("c:\pb\dwTemp.pbl", &
 "Temporary library for dynamic DataWindows")

See also

Statements, Events, and Functions

Page 1007

LibraryDelete

LibraryDirectory

LibraryExport

LibraryImport

2.4.474 LibraryDelete

Description

Deletes a library file or, if you specify a DataWindow object, deletes the DataWindow object
from the library.

Syntax

LibraryDelete (libraryname {, objectname, objecttype })

Table 2.928:

Argument Description

libraryname A string whose value is the name of the PowerBuilder library you want
to delete or from which you want to delete a DataWindow object. If you
do not specify a full path, LibraryDelete uses the system's standard file
search order to find the file.

objectname
(optional)

A string whose value is the name of the DataWindow object you want to
delete from libraryname.

objecttype
(optional)

A value of the LibImportType enumerated datatype identifying the
type of object you want to delete. The only supported object type is
ImportDataWindow!.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
LibraryDelete returns null.

Usage

You can delete DataWindow objects from a library in a script with the LibraryDelete
function. To delete other types of objects, use the Library painter.

Examples

This statement deletes a library called dwTemp in the current directory and on the current
application library path:

LibraryDelete("dwTemp.pbl")

See also

LibraryCreate

LibraryDirectory

LibraryExport

LibraryImport

Statements, Events, and Functions

Page 1008

2.4.475 LibraryDirectory

Description

Obtains a list of the objects in a PowerBuilder library. The information provided is the object
name, the date and time it was last modified, and any comments for the object. You can get a
list of all objects or just objects of a specified type.

Syntax

LibraryDirectory (libraryname, objecttype)

Table 2.929:

Argument Description

libraryname A string whose value is the name of the PowerBuilder library for which
you want the contents. If you do not specify a full path, LibraryDirectory
uses the operating system's standard file search order to find the file.

objecttype A value of the LibDirType enumerated datatype identifying the type of
objects you want listed:

• DirAll! -- All objects

• DirApplication! -- Application objects

• DirDataWindow! -- DataWindow objects

• DirFunction! -- Function objects

• DirMenu! -- Menu objects

• DirPipeline! -- Pipeline objects

• DirProject! -- Project objects

• DirQuery! -- Query objects

• DirStructure! -- Structure objects

• DirUserObject! -- User objects

• DirWindow! -- Window objects

Return value

String.

LibraryDirectory returns a tab-separated list with one object per line. The format of the list is:

name ~t date/time modified ~t comments ~n

Returns the empty string ("") if an error occurs. If any argument's value is null,
LibraryDirectory returns null.

Usage

Statements, Events, and Functions

Page 1009

If you call LibraryDirectory with a PBD file as the first argument, no comments are displayed
because they are not included in PBD files.

You can display the result of LibraryDirectory in a DataWindow control by passing the
returned string to the ImportString function for that DataWindow. The DataWindow should
contain three string columns. The columns must be wide enough to fit the data in the input
string. If not, PowerBuilder reports validation errors.

To return the object's type, use LibraryDirectoryEx.

For an example of parsing tab-delimited data, see the Pos function.

Examples

This code imports the string returned by LibraryDirectory to the DataWindow dw_list and
then redraws the dw_list. The DataWindow was defined with an external source and three
string columns:

String ls_entries

ls_entries = LibraryDirectory(&
 "c:\pb\dwTemp.pbl", DirUserObject!)
dw_list.SetRedraw(FALSE)
dw_list.Reset()
dw_list.ImportString(ls_Entries)
dw_list.SetRedraw(TRUE)

See also

ImportString

LibraryCreate

LibraryDelete

LibraryDirectoryEx

LibraryExport

LibraryImport

2.4.476 LibraryDirectoryEx

Description

Obtains a list of the objects in a PowerBuilder library. The information provided is the object
name, the date and time it was last modified, any comments for the object, and the object's
type. You can get a list of all objects or just objects of a specified type.

Syntax

LibraryDirectoryEx (libraryname, objecttype)

Table 2.930:

Argument Description

libraryname A string whose value is the name of the PowerBuilder library for which
you want the contents. If you do not specify a full path, LibraryDirectory
uses the operating system's standard file search order to find the file.

objecttype A value of the LibDirType enumerated datatype identifying the type of
objects you want listed:

Statements, Events, and Functions

Page 1010

Argument Description
• DirAll! -- All objects

• DirApplication! -- Application objects

• DirDataWindow! -- DataWindow objects

• DirFunction! -- Function objects

• DirMenu! -- Menu objects

• DirPipeline! -- Pipeline objects

• DirProject! -- Project objects

• DirQuery! -- Query objects

• DirStructure! -- Structure objects

• DirUserObject! -- User objects

• DirWindow! -- Window objects

Return value

String.

LibraryDirectoryEx returns a tab-separated list with one object per line. The format of the list
is:

name ~t date/time modified ~t comments ~t type~n

Returns the empty string ("") if an error occurs. If any argument's value is null,
LibraryDirectoryEx returns null.

Usage

If you call LibraryDirectoryEx with a PBD file as the first argument, no comments are
displayed because they are not included in PBD files.

You can display the result of LibraryDirectoryEx in a DataWindow control by passing the
returned string to the ImportString function for that DataWindow. The DataWindow should
contain four string columns. The columns must be wide enough to fit the data in the input
string. If not, PowerBuilder reports validation errors.

If you do not need to return the object's type, you can use LibraryDirectory.

For an example of parsing tab-delimited data, see the Pos or LastPos function.

Examples

This code imports the string returned by LibraryDirectoryEx to the DataWindow dw_list and
then redraws the dw_list. The DataWindow was defined with an external source and four
string columns:

String ls_entries

Statements, Events, and Functions

Page 1011

ls_entries = LibraryDirectoryEx(&
 "c:\pb\dwTemp.pbl", DirUserObject!)
dw_list.SetRedraw(FALSE)
dw_list.Reset()
dw_list.ImportString(ls_Entries)
dw_list.SetRedraw(TRUE)

See also

ImportString

LibraryCreate

LibraryDelete

LibraryDirectory

LibraryExport

LibraryImport

2.4.477 LibraryExport

Description

Exports an object from a library. The object is exported as syntax.

Syntax

LibraryExport (libraryname, objectname, objecttype)

Table 2.931:

Argument Description

libraryname A string whose value is the name of the PowerBuilder library from
which you want to export an object. If you do not specify a full path,
LibraryExport uses the system's standard file search order to find the file.

objectname A string whose value is the name of the object you want to export

objecttype A value of the LibExportType enumerated datatype identifying the type
of objects you want to export:

• ExportApplication! -- Application object

• ExportDataWindow! -- DataWindow object

• ExportFunction! -- Function object

• ExportMenu! -- Menu object

• ExportPipeline! -- Pipeline objects

• ExportProject! -- Project objects

• ExportQuery! -- Query objects

• ExportStructure! -- Structure object

• ExportUserObject! -- User objects

Statements, Events, and Functions

Page 1012

Argument Description
• ExportWindow! -- Window object

Return value

String.

Returns the syntax of the object if it succeeds. The syntax is the same as the syntax returned
when you export an object in the Library painter except that LibraryExport does not include
an export header. Returns the empty string ("") if an error occurs. If any argument's value is
null, LibraryExport returns null.

Examples

These statements export the DataWindow object dw_emp from the library called dwTemp to
a string named ls_dwsyn and then use it to create a DataWindow:

String ls_dwsyn, ls_errors
ls_dwsyn = LibraryExport("c:\pb\dwTemp.pbl", &
 "d_emp", ExportDataWindow!)
dw_1.Create(ls_dwsyn, ls_errors)

See also

Create method for DataWindows in Section 9.13, “Create” in DataWindow Reference.

LibraryCreate

LibraryDelete

LibraryDirectory

LibraryImport

2.4.478 LibraryImport

Description

Imports a DataWindow object into a library. LibraryImport uses the syntax of the
DataWindow object, which is specified in text format, to recreate the object in the library.

Syntax

LibraryImport (libraryname, objectname, objecttype, syntax, errors {,
 comments })

Table 2.932:

Argument Description

libraryname A string specifying the name of the PowerBuilder library into which you
want to import the entry. If you do not specify a full path, LibraryImport
uses the system's standard file search order to find the file.

objectname A string specifying the name of the DataWindow object you want to
import.

objecttype A value of the LibImportType enumerated datatype identifying the
type of object you want to import. The only supported object type is
ImportDataWindow!.

Statements, Events, and Functions

Page 1013

Argument Description

syntax A string specifying the syntax of the DataWindow object you want to
import.

errors A string variable that you want to fill with any error messages that occur.

comments
(optional)

A string specifying the comments you want to associate with the entry.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
LibraryImport returns null.

Usage

When you import a DataWindow, any errors that occur are stored in the string variable you
specify for the error argument.

When your application creates a DataWindow dynamically at runtime, you can use
LibraryImport to save that DataWindow object in a library.

Examples

These statements import the DataWindow object d_emp into the library called dwTemp
and store any errors in ErrorBuffer. Note that the syntax is obtained by using the Describe
function:

string dwsyntax, ErrorBuffer
integer rtncode

dwsyntax = dw_1.Describe("DataWindow.Syntax")
rtncode = LibraryImport("c:\pb\dwTemp.pbl", &
 "d_emp", ImportDataWindow!, &
 dwsyntax, ErrorBuffer)

These statements import the DataWindow object d_emp into the library called dwTemp, store
any errors in ErrorBuffer, and associate the comment Employee DataWindow 1 with the
entry:

string dwsyntax, ErrorBuffer
integer rtncode

dwsyntax = dw_1.Describe("DataWindow.Syntax")
rtncode = LibraryImport("c:\pb\dwTemp.pbl", &
 "d_emp", ImportDataWindow!, &
 dwsyntax, ErrorBuffer, &
 "Employee DataWindow 1")

See also

Describe method for DataWindows in Section 9.23, “Describe” in DataWindow Reference.

LibraryCreate

LibraryDelete

LibraryDirectory

Statements, Events, and Functions

Page 1014

LibraryImport

2.4.479 LineCount

Description

Determines the number of lines in an edit control that allows multiple lines.

Applies to

RichTextEdit, MultiLineEdit, EditMask, and DataWindow controls

Syntax

editname.LineCount ()

Table 2.933:

Argument Description

editname The name of the DataWindow control, EditMask, MultiLineEdit, or
RichTextEdit for which you want the number of lines

Return value

Long.

Returns the number of lines in editname if it succeeds and -1 if an error occurs. If editname is
null, LineCount returns null.

Usage

LineCount counts each visible line, whether it was the result of wrapping or carriage returns.

When you call LineCount for a DataWindow, it reports the number of lines in the edit control
over the current row and column. A user can enter multiple lines in a DataWindow column
only if it has a text datatype and its box is large enough to display those lines. The size of the
column's box determines the number of lines allowed in the column. When the user is typing,
lines do not wrap automatically; the user must press enter to type additional lines.

In a MultiLineEdit control, lines wrap when the user's typing fills the control horizontally,
unless either the HScrollBar or AutoHScroll property is true. If horizontal scrolling is enabled
with these properties, the user must press enter to type additional lines.

A RichTextEdit control always contains an end-of-file mark even if there is no text in the
control. Therefore, its line count is always at least 1. Other edit controls, when empty, have a
line count of 0.

Examples

If the MultiLineEdit mle_Instructions has 9 lines, this example sets li_Count to 9:

integer li_Count
li_Count = mle_Instructions.LineCount()

These statements display a MessageBox if fewer than two lines have been entered in the
MultiLineEdit mle_Address:

integer li_Lines
li_Lines = mle_Address.LineCount()

Statements, Events, and Functions

Page 1015

IF li_Lines < 2 THEN
 MessageBox("Warning", "2 lines are required.")
END IF

2.4.480 LineLength

Description

Determines the length of the line containing the insertion point in an edit control.

Applies to

RichTextEdit, MultiLineEdit, and EditMask controls

Syntax

editname.LineLength ()

Table 2.934:

Argument Description

editname The name of the RichTextEdit, MultiLineEdit, or EditMask in which you
want to determine the length of the line containing the insertion point

Return value

Long.

Returns the length of the line containing the insertion point in editname. Returns -1 if an error
occurs. If editname is null, LineLength returns null.

Usage

If the control contains a selection instead of a single insertion point, LineLength counts the
line at the beginning of the selection.

PowerBuilder remembers where the insertion point is in each editable control. When the user
moves the focus to another control, you can still find out the length of the line most recently
edited by calling the LineLength function for that control.

Insertion point in editable controls

Because PowerBuilder remembers the position of the insertion point, users can
resume editing at the insertion point if they make the control active by tabbing to it.
When users make a control active by clicking on it, they move the insertion point as
well.

For an EditMask control, LineLength reports the length of the mask, regardless of the number
of characters the user has entered.

Examples

If the insertion point is positioned anywhere in line 5 of mle_Contact and line 5 contains the
text Select All, il_linelength is set to 10 (the length of line 5):

integer li_linelength
li_linelength = mle_Contact.LineLength()

See also

Statements, Events, and Functions

Page 1016

Position

SelectedLine

SelectedStart

TextLine

2.4.481 LineList

Description

Provides a list of the lines in a routine included in a performance analysis model.

Applies to

ProfileRoutine object

Syntax

iinstancename.LineList (list)

Table 2.935:

Argument Description

instancename Instance name of the ProfileRoutine object.

list An unbounded array variable of datatype ProfileLine in which LineList
stores a ProfileLine object for each line in the routine. This argument is
passed by reference.

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• ModelNotExistsError! -- The model does not exist

Usage

Use this function to extract a list of the lines in a routine included in the performance analysis
model. You must have previously created the performance analysis model from a trace file
using the BuildModel function. Each line is defined as a ProfileLine object and provides the
number of times the line was hit, any calls made from the line, and the time spent on the line
and in any called functions. The lines are listed in numeric order.

Lines are not returned for database statements and objects. If line information was not logged
in the trace file, lines are not returned.

Examples

This example gets a list of the routines included in a performance analysis model and then
gets a list of the lines in each routine:

Long ll_cnt
ProfileLine lproln_line[]

lpro_model.BuildModel()

Statements, Events, and Functions

Page 1017

lpro_model.RoutineList(iprort_list)

FOR ll_cnt = 1 TO UpperBound(iprort_list)
 iprort_list[ll_cnt].LineList(lproln_line)
 ...
NEXT

See also

BuildModel

2.4.482 LinkTo

Description

Establishes a link between an OLE control and a file or an item within the file.

Syntax

olecontrol.LinkTo (filename {, sourceitem })

Table 2.936:

Argument Description

olecontrol The name of the OLE control in which you want to insert a linked object.

filename A string whose value is the file name containing the data that you want
to insert in olecontrol, with a link connecting the object in PowerBuilder
to the original data. If you do not specify sourceitem, a link is established
with the whole file.

sourceitem
(optional)

A string that names an item within file name to which you want to
link. The way you specify sourceitem is determined by the OLE server
application.

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- File not found

-2 -- Item not found

-9 -- Other error

If any argument's value is null, LinkTo returns null.

Examples

This example creates an object in the OLE control, ole_1. The object is linked to the file C:
\XLS\EXPENSE.XLS:

integer result
result = ole_1.LinkTo("c:\xls\expense.xls")

This example links to a section of rows and columns in the same spreadsheet as in the
previous example:

integer result

Statements, Events, and Functions

Page 1018

result = ole_1.LinkTo("c:\xls\expense.xls", &
 "R1C1:R5C5")

See also

InsertFile

InsertObject

PasteLink

PasteSpecial

2.4.483 LoadDockingState

Description

Loads two arrays of equal size: type names of persisted sheets and the corresponding IDs.

Applies to

Window objects

Syntax

LoadDockingState (regkey, windowtypes, sheetnames)

Table 2.937:

Argument Description

regkey The registry key where the information was stored using the
LoadDockingState function.

windowtypes A string array of window types for all the child windows that were
persisted.

sheetnames A string array of the unique IDs for the persisted child windows
corresponding to the types in the sheetnames array.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
LoadDockingState returns null.

Usage

To retrieve the MDI states that were saved using the SaveDockingState function,
uses LoadDockingState to get the window information from the registry. Next, use
OpenSheetFromDockingState or OpenSheetWithParmFromDockingState to open each of
the persisted sheets. Finally, use CommitDocking to do the final arrangement and make the
sheets visible.

2.4.484 LoadFile

Description

Loads a JSON file to the JSONParser or JSONPackage objects.

Statements, Events, and Functions

Page 1019

Applies to

JSONParser and JSONPackage

Required JSON format

• For JSONParser object: The file content that can be loaded by the JSONParser object must
be JSON-formatted.

• For JSONPackage object: The file content that can be loaded by the JSONPackage object
must be an object which contains a set of key/value pairs where key is the name of a
JSONObjectItem-type object (corresponding to the data being added into the package, such
as "d_department" and "d_employee_syntax") and the value for the key can be a string,
object, or array in the following formats: plain JSON, or DataWindow JSON.

Here is the structure of this JSON format:

{ "KEY1":VALUE1, "KEY2":VALUE2, "KEY3":VALUE3… }

Here is an example of this JSON format:

{
"d_department": {"department_id":1, "name":"developer"},
"d_employee": [{"empoyee_id":1, "name":"my name1"}, {"empoyee_id":2, "name":"my
 name2"}],
"d_employee_syntax": "release 17;\r\n datawindow(units=0 timer_interval=0
 color=1073741824..."
}

Syntax

objectname.LoadFile (FileName)

Table 2.938:

Argument Description

objectname The name of the JSONParser or JSONPackage object to which the JSON
file will be loaded.

FileName A string whose value is the file full name. Only the JSON or TXT file
type is supported.

If the function is called by JSONParser, the file content must be JSON
formatted.

If the function is called by JSONPackage, the file content must be JSON
data of JsonObjectItem type.

Return value

String.

Returns the empty string ("") if it succeeds and the error message if an error occurs. If any
argument's value is null, the method returns null.

Examples

This example loads a JSON file into the JSONParser object:

String ls_Error

Statements, Events, and Functions

Page 1020

JsonParser lnv_JsonParser
lnv_JsonParser = Create JsonParser

ls_Error = lnv_JsonParser.LoadFile("c:\employee.json")
if Len(ls_Error) > 0 then
 MessageBox("Error", ls_Error)
end if

This example loads data from the employees.txt file and then loads the "d_employee" data
into the DataWindow:

string ls_EmployeeJson, ls_Error
JsonPackage lnv_package

lnv_package = create JsonPackage

ls_Error = lnv_package.LoadFile ("d:\temp\employees.txt")
if Len(ls_Error) = 0 then
 ls_EmployeeJson = lnv_package.GetValue("d_employee")
 dw_1.ImportJson(ls_EmployeeJson)
else
 Messagebox("Error", ls_Error)
end if

See also

LoadString

2.4.485 LoadString

Description

Loads a JSON string to the JSONParser or JSONPackage objects.

Applies to

JSONParser and JSONPackage

Required JSON format

• For JSONParser object: The string that can be loaded by the JSONParser object must be
JSON-formatted.

• For JSONPackage object: The file content that can be loaded by the JSONPackage object
must be an object which contains a set of key/value pairs where key is the name of a
JSONObjectItem-type object (corresponding to the data being added into the package, such
as "d_department" and "d_employee_syntax") and the value for the key can be a string,
object, or array in the following formats: plain JSON, or DataWindow JSON.

Here is the structure of this JSON format:

{ "KEY1":VALUE1, "KEY2":VALUE2, "KEY3":VALUE3… }

Here is an example of this JSON format:

{
"d_department": {"department_id":1, "name":"developer"},
"d_employee": [{"empoyee_id":1, "name":"my name1"}, {"empoyee_id":2, "name":"my
 name2"}],
"d_employee_syntax": "release 17;\r\n datawindow(units=0 timer_interval=0
 color=1073741824..."

Statements, Events, and Functions

Page 1021

}

Syntax

objectname.LoadString (JsonData)

Table 2.939:

Argument Description

objectname The name of the JSONParser or JSONPackage object to which the JSON
string will be loaded.

JsonData (For JSONParser object) A JSON-formatted string.

(For JSONPackage object) The JSON data of JsonObjectItem type.

Return value

String.

Returns the empty string ("") if it succeeds and the error message if an error occurs. If any
argument's value is null, the method returns null.

Examples

This example loads a JSON string into the JSONParser object:

String ls_Error
JsonParser lnv_JsonParser
lnv_JsonParser = Create JsonParser

String ls_Json = '{"id":1, "name":"evan1", "birthday":2340323884}'
ls_Error = lnv_JsonParser.LoadString(ls_Json)
if Len(ls_Error) > 0 then
 MessageBox("Error", ls_Error)
end if

This example gets the data from the server and then loads the "d_employee" data to the
DataWindow:

int li_rc
string ls_JsonPackage, ls_Error, ls_EmployeeJson
HttpClient lnv_HttpClient
JsonPackage lnv_package

lnv_HttpClient = create HttpClient
lnv_package = create JsonPackage

// Request the JSON data package from server
li_rc = lnv_HttpClient.SendRequest("GET", "https://demo.appeon.com/PB/
webapi_client/getjsonpackage/employee/102")

// Get the data
if li_rc = 1 and lnv_HttpClient.GetResponseStatusCode() = 200 then
 lnv_HttpClient.GetResponseBody(ls_JsonPackage)
 // Extract the JSON data package
 ls_Error = lnv_package.LoadString(ls_JsonPackage)
 if Len(ls_Error) = 0 then
 ls_EmployeeJson = lnv_package.GetValue("d_employee")
 dw_1.ImportJson(ls_EmployeeJson)
 else
 Messagebox("Error", ls_Error)

Statements, Events, and Functions

Page 1022

 end if
end if

See also

LoadFile

2.4.486 LoadInk

Description

Loads ink from a file or blob into an InkPicture control.

Applies to

InkPicture controls

Syntax

inkpicname.LoadInk (t | b)

Table 2.940:

Argument Description

inkpicname The name of the InkPicture control into which you want to load ink.

t A string containing the name and location of a file that contains the ink
you want to load into the control.

b The name of a blob passed by reference that contains the ink you want to
load into the control.

Return value

Integer.

Returns 1 for success and -1 for failure.

Usage

Use the LoadInk function to load ink that has been saved to a file or a blob into the control.

Examples

The following example loads ink from a file. Since the user will select a single file, the
second argument to GetFileOpenName contains the file's path and its name, so the third
argument can be ignored:

string ls_inkpath, ls_inkname
GetFileOpenName("Select Ink File", ls_inkpath, &
 ls_inkname)
ip_1.LoadInk(ls_inkpath)

The following example loads ink from a blob:

string ls_inkpath, ls_inkname
integer li_filenum
blob lblb_ink

GetFileOpenName("Select Ink File", ls_inkpath, &
 ls_inkname)

Statements, Events, and Functions

Page 1023

li_filenum = FileOpen(ls_inkpath, StreamMode!)
If li_filenum <> 1 Then FileRead(li_filenum, lblb_ink)
 FileClose(li_filenum)
 ip_1.LoadInk(lblb_ink)
End If

See also

LoadPicture

ResetInk

ResetPicture

SaveInk

Save

2.4.487 LoadPicture

Description

Loads a picture from a file or blob into an InkPicture control.

Applies to

InkPicture controls

Syntax

inkpicname.LoadPicture (t | b)

Table 2.941:

Argument Description

inkpicname The name of the InkPicture control into which you want to load a picture.

t A string containing the name and location of a file that contains the
picture you want to load into the control.

b The name of a blob passed by reference that contains the picture you
want to load into the control.

Return value

Integer.

Returns 1 for success and -1 for failure.

Usage

Use the LoadPicture function to load an image into an InkPicture control.

Examples

The following example loads an image from a file. Since the user will select a single file,
the second argument to GetFileOpenName contains the file's path and its name, so the third
argument can be ignored:

string ls_path, ls_name
GetFileOpenName("Select Image", ls_path, ls_name)
ip_1.LoadPicture(ls_path)

Statements, Events, and Functions

Page 1024

The following example loads an image from a blob:

string ls_path, ls_name
integer li_filenum
blob lblb_ink

GetFileOpenName("Select Ink File", ls_path, ls_name)
li_filenum = FileOpen(ls_path, StreamMode!)
If li_filenum <> 1 Then FileRead(li_filenum, lblb_ink)
 FileClose(li_filenum)
 ip_1.LoadInk(lblb_ink)
End If

See also

LoadInk

ResetInk

ResetPicture

SaveInk

Save

2.4.488 LoadWithDotNetCore

Description

Loads a .NET Core assembly.

Applies to

DotNetAssembly objects

Syntax

objectname.LoadWithDotNetCore (readonly string assemblypath {, string
 dotnetcoreversion })

Table 2.942:

Argument Description

objectname The name of the DotNetAssembly object.

assemblypath The name and location of the .NET assembly (*.dll).

The location can be an absolute path or a relative path. When a relative
path is executed in the development environment, it is relative to
the location of the PBT file; when a relative path is executed in the
production environment, it is relative to the installation location of the
application's executable file.

dotnetcoreversion
(optional)

The highest .NET Core version to be supported. 2.1 and later versions
are supported. For example, if the value is 3, it supports 3.x, the latest
release for version 3 which is currently installed on the machine. If the
value is not specified, it supports the latest version currently installed on
the machine.

Return value

Statements, Events, and Functions

Page 1025

Integer.

Returns values as follows. If any argument's value is null, the method returns null.

1 -- Success.

-1 -- Unknown error.

-2 -- Could not find the assembly.

-3 -- It's not a valid assembly.

-4 -- The assembly requires a dependent assembly.

-19 -- Cannot find the .NET Core runtime.

-20 -- Failed to load the .NET Core virtual machine.

Examples

The following example loads a DLL with .NET Core 2.1.6:

Long ll_return
String ls_dll
DotNetAssembly lcs_ass

//Specifies a DLL in the relative path
ls_dll = "Appeon.Simple.dll"

//Instantiates the DotNetAssembly object
lcs_ass = create DotNetAssembly

//Loads the DLL with .NET Core 2.1.6
ll_return = lcs_ass.LoadWithDotNetCore(ls_dll,"2.1.6")

//Loads the DLL with the most curret .NET Core version on this machine
//ll_return = lcs_ass.LoadWithDotNetCore(ls_dll)

//Checks the result
If ll_return < 0 then
 Messagebox("Load "+ls_dll+" Failed", lcs_ass.ErrorText)
 Return ll_return
End if

See also

CreateInstance

GetDotNetCoreVersion

LoadWithDotNetFramework

2.4.489 LoadWithDotNetFramework

Description

Loads a .NET framework assembly.

Applies to

DotNetAssembly objects

Syntax

objectname.LoadWithDotNetFramework (readonly string assemblypath {, boolean
 customappdomain })

Statements, Events, and Functions

Page 1026

Table 2.943:

Argument Description

objectname The name of the DotNetAssembly object.

assemblypath The name and location of the .NET assembly (*.dll).

The location can be an absolute path or a relative path. When a relative
path is executed in the development environment, it is relative to
the location of the PBT file; when a relative path is executed in the
production environment, it is relative to the installation location of the
application's executable file.

customappdomain
(optional)

Boolean whether to create a new appdomain to load the assembly. A new
appdomain will automatically disconnect from the DLL to release the
DLL when the application exits; otherwise, the DLL will be occupied
until the PowerBuilder IDE exits.

True -- to create a new appdomain to load the assembly.

False -- (default) to use the default appdomain to load the assembly. It is
recommended to set to False at runtime (when the application executable
runs).

For the custom appdomain parameter, you can learn more at https://
docs.microsoft.com/en-us/dotnet/api/system.appdomain?Redirected
from=MSDN&view=netframework-4.8.

Return value

Integer.

Returns values as follows. If any argument's value is null, the method returns null.

1 -- Success.

-1 -- Unknown error.

-2 -- Could not find the assembly.

-3 -- It's not a valid assembly.

-4 -- The assembly requires a dependent assembly.

Usage

The .NET DLL file supported by PowerBuilder must be either a .NET Framework class
library or a .NET Standard class library.

The DLL file will require the corresponding version of .NET Framework installed, especially
if the DLL file is a .NET Standard class library. Please check the Microsoft website or the
following table for the compatible versions between .NET Standard and .NET Framework.

Table 2.944:

.NET
Standard

1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0

.NET
Framework

4.5 4.5 4.5.1 4.6 4.6.1 4.7.2 4.7.2 4.7.2

https://docs.microsoft.com/en-us/dotnet/api/system.appdomain?Redirected%20from=MSDN&view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.appdomain?Redirected%20from=MSDN&view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.appdomain?Redirected%20from=MSDN&view=netframework-4.8

Statements, Events, and Functions

Page 1027

If the DLL makes reference to another project, DLL, or Nuget package, please copy them
into the same location.

When the DLL failed to load and triggered an exception, the exception message will be
stored in the ErrorText property.

If you are prompted with missing dependent DLLs, even after you have provided the required
DLLs in the required location, you can exit PowerBuilder IDE to release DLL and then
try again, or you can set customappdomain to true (to automatically release DLL when
application exits).

When customappdomain is true, and if the following errors occur with the usage of
oleobject(sqlca.getadoconnection()), you can set customappdomain to false to avoid the error.

Figure 2.1:

Examples

The following example loads a DLL in the relative path:

Long ll_return
String ls_dll
DotNetAssembly lcs_ass

//Specifies a DLL in the relative path
Ls_dll = "Appeon.Simple.dll"

//Instantiates the DotNetAssembly object
Lcs_ass = create DotNetAssembly

//Loads the DLL
Ll_return = lcs_ass.LoadWithDotNetFramework(ls_dll)

//Checks the result
If ll_return < 0 then
 Messagebox("Load "+ls_dll+" Failed", lcs_ass.ErrorText)
 Return ll_return
End if

See also

CreateInstance

GetDotNetCoreVersion

LoadWithDotNetCore

2.4.490 Log

Returns the natural logarithm of a number. For an ErrorLogging object, this function can be
used to write a string to the log file maintained by the object's container.

Statements, Events, and Functions

Page 1028

Table 2.945:

To Use

Determine the natural logarithm of a number Syntax 1

Write a string to a log file Syntax 2

2.4.490.1 Syntax 1: For all objects

Description

Determines the natural logarithm of a number.

Syntax

Log (n)

Table 2.946:

Argument Description

n The number for which you want the natural logarithm (base e). The value
of n must be greater than 0.

Return value

Double.

Returns the natural logarithm of n. An execution error occurs if n is negative or zero. If n is
null, Log returns null.

Inverse of Log

The inverse of the Log function is the Exp function.

Examples

This statement returns 2.302585092:

Log(10)

This statement returns -.693147. . .:

Log(0.5)

Both these statements result in an error at runtime:

Log(0)
Log(-2)

After the following statements execute, the value of a is 200:

double a, b = Log(200)
a = Exp(b)// a = 200

See also

Exp

LogTen

Statements, Events, and Functions

Page 1029

Log method for DataWindows in Section 2.4.68, “Log” in DataWindow Reference.

2.4.490.2 Syntax 2: For ErrorLogging objects

Description

Writes a string to the log file maintained by the object's container.

Applies to

ErrorLogging objects

Syntax

errorlogobj.Log (message)

Table 2.947:

Argument Description

errorlogobj Reference to the ErrorLogging service instance

message The text string you want to write to the log

Return value

None.

Usage

The ErrorLogging object provides the ability to write messages to the log file used by the
object's container.

Before you call the Log function, create an instance of the ErrorLogging service by calling
the GetContextService function.

Examples

The following example shows how to write a string to the log for COM+:

ErrorLogging el
this.GetContextService("ErrorLogging", el)
el.log("Write this string to log")

See also

GetContextService

2.4.491 LogTen

Description

Determines the base 10 logarithm of a number.

Syntax

LogTen (n)

Table 2.948:

Argument Description

n The number for which you want the base 10 logarithm. The value of n
must not be negative.

Statements, Events, and Functions

Page 1030

Usage

Double.

Returns the base 10 logarithm of n. An execution error occurs if n is negative. If n is null,
LogTen returns null.

Inverse of LogTen

The expression 10^n is the inverse of LogTen(n). To obtain the value of n in the equation r =
LogTen(n), use n = 10^r.

Examples

This statement returns 1:

LogTen(10)

The following statements both return 0:

LogTen(1)

LogTen(0)

This statement results in an execution error:

LogTen(- 2)

After the following statements execute, the value of a is 200:

double a, b = LogTen(200)
a = 10^b// a = 200

See also

Exp

LogTen

LogTen method for DataWindows in Section 2.4.69, “LogTen” in DataWindow Reference.

2.4.492 Long

Converts data into data of type long. There are two syntaxes.

Table 2.949:

To Use

Combine two unsigned integers into a long value Syntax 1

Convert a string whose value is a number into a long or to obtain a long
value stored in a blob

Syntax 2

2.4.492.1 Syntax 1: For combining integers

Description

Combines two unsigned integers into a long value.

Syntax

Long (lowword, highword)

Statements, Events, and Functions

Page 1031

Table 2.950:

Argument Description

lowword An UnsignedInteger to be the low word in the long

highword An UnsignedInteger to be the high word in the long

Return value

Long.

Returns the long if it succeeds and -1 if an error occurs. If any argument's value is null, Long
returns null.

Usage

Use Long for passing values to external C functions or specifying a value for the LongParm
property of PowerBuilder's Message object.

Examples

These statements convert the UnsignedIntegers nLow and nHigh into a long value:

UnsignedInt nLow // Low integer 16 bits
UnsignedInt nHigh // High integer 16 bits
long LValue // Long value 32 bits

nLow = 12345
nHigh = 0
LValue = Long(nLow, nHigh)
MessageBox("Long Value", Lvalue)

2.4.492.2 Syntax 2: For converting strings and blobs

Description

Converts a string whose value is a number into a long or obtains a long value stored in a blob.

Syntax

Long (stringorblob)

Table 2.951:

Argument Description

stringorblob The string you want returned as a long or a blob in which the first
value is the long value. The rest of the contents of the blob is ignored.
Stringorblob can also be an Any variable containing a string or blob.

Return value

Long.

Returns the value of stringorblob as a long if it succeeds and 0 if stringorblob is not a valid
PowerScript number or if it is an incompatible datatype. If stringorblob is null, Long returns
null.

Usage

To distinguish between a string whose value is the number 0 and a string whose value is not a
number, use the IsNumber function before calling the Long function.

Statements, Events, and Functions

Page 1032

Examples

This statement returns 2167899876 as a long:

Long("2167899876")

After assigning blob data from the database to lb_blob, the following example obtains the
long value stored at position 20 in the blob:

long lb_num
lb_num = Long(BlobMid(lb_blob, 20, 4))

For an example of assigning and extracting values from a blob, see Real.

See also

Dec

Double

Integer

LongLong

Real

Long method for DataWindows in Section 2.4.70, “Long” in DataWindow Reference.

2.4.493 LongLong

Converts data into data of type longlong. There are two syntaxes.

Table 2.952:

To Use

Combine two unsigned long values into a longlong value Syntax 1

Convert a string whose value is a number into a longlong or obtain a
longlong value stored in a blob

Syntax 2

2.4.493.1 Syntax 1: For combining longs

Description

Combines two unsigned longs into a longlong value.

Syntax

LongLong (lowword, highword)

Table 2.953:

Argument Description

lowword An UnsignedLong to be the low word in the longlong

highword An UnsignedLong to be the high word in the longlong

Return value

LongLong.

Statements, Events, and Functions

Page 1033

Returns the longlong if it succeeds and -1 if an error occurs. If any argument's value is null,
LongLong returns null.

Usage

Use LongLong for passing values to external C++ and Java functions.

Examples

These statements convert the UnsignedLongs lLow and lHigh into a long value:

UnsignedLong lLow //Low long 32 bits
UnsignedLong lHigh //High long 32 bits
longlong LLValue //LongLong value 64 bits

lLow = 1234567890
lHigh = 9876543210
LLValue = LongLong(lLow, lHigh)
MessageBox("LongLong Value", LLValue)

2.4.493.2 Syntax 2: For converting strings and blobs

Description

Converts a string whose value is a number into a longlong or obtains a longlong value stored
in a blob.

Syntax

LongLong (stringorblob)

Table 2.954:

Argument Description

stringorblob The string you want returned as a longlong or a blob in which the
first value is the longlong value. The rest of the contents of the blob is
ignored. Stringorblob can also be an Any variable containing a string or
blob.

Return value

LongLong.

Returns the value of stringorblob as a longlong if it succeeds and 0 if stringorblob is not a
valid PowerScript number or if it is an incompatible datatype. If stringorblob is null, Long
returns null.

Usage

To distinguish between a string whose value is the number 0 and a string whose value is not a
number, use the IsNumber function before calling the LongLong function.

Examples

This statement returns 216789987654321 as a longlong:

LongLong("216789987654321")

After assigning blob data from the database to lb_blob, the following example obtains the
longlong value stored at position 20 in the blob:

Statements, Events, and Functions

Page 1034

longlong llb_num
llb_num = LongLong(BlobMid(lb_blob, 20, 4))

For an example of assigning and extracting values from a blob, see Real.

See also

Dec

Double

Integer

Real

2.4.494 Lookup (obsolete)

Allows a PowerBuilder client or component to obtain a factory or home interface in order
to create an instance of an EAServer component. This function is used by PowerBuilder
clients connecting to components running in EAServer, and by PowerBuilder components
connecting to other components running on the same server.

Obsolete function

Lookup is obsolete, because EAServer is no longer supported since PowerBuilder
2017.

Table 2.955:

To Use

Obtain the factory interface of a CORBA-compliant component running
in EAServer

Syntax 1

Obtain the home interface of an EJB component running in EAServer Syntax 2

2.4.494.1 Syntax 1: For CORBA-compliant EAServer components

Description

Allows a PowerBuilder client or component to obtain the factory interface of an EAServer
component in order to create an instance of the component.

Applies to

Connection objects, TransactionServer objects

Syntax

objname.Lookup (objectvariable , componentname)

Table 2.956:

Argument Description

objname The name of the Connection object used to establish the connection or of
an instance of the TransactionServer context object.

objectvariable A global, instance, or local variable of the factory interface type.

Statements, Events, and Functions

Page 1035

Argument Description

componentname A string whose value is the name of the component instance to be
created. You can optionally prepend a package name followed by a slash
to the component name (for example, "mypackage/mycomponent").

Return value

Long.

Returns 0 if it succeeds and a negative number if an error occurs.

Usage

The Lookup function can be used as an alternative to the CreateInstance function. It obtains a
reference to a factory interface that you can use to create an instance of a component running
in EAServer.

Use the Connection object's Lookup function to enable a PowerBuilder client to access a
component running in EAServer. You can supply a server name or a list of server names in
the location property of the Connection object.

Use the TransactionServer object's Lookup function to enable a PowerBuilder component
running in EAServer to access another component running on the same server.

To use the Lookup function, you need to create an EAServer proxy library for the
SessionManager package to obtain a proxy for the factory interface. Include this proxy library
in your library list.

Examples

The following example uses Lookup to instantiate the factory interface for the
n_Bank_Account component, then it uses the factory's create method to create an instance of
the component:

// Instance variable:
// Connection myconnect
Factory my_Factory
CORBAObject mycorbaobj
n_Bank_Account my_account
long ll_result

ll_result = &
 myconnect.lookup(my_Factory,"Bank/n_Bank_Account")
mycorbaobj = my_Factory.create()
mycorbaobj._narrow(my_account, "Bank/n_Bank_Account")
my_account.withdraw(100.0)

See also

CreateInstance

2.4.494.2 Syntax 2: For instances of an EJB component

Description

Allows a PowerBuilder client or component to obtain the home interface of an EJB
component in EAServer in order to create an instance of the component.

Applies to

Statements, Events, and Functions

Page 1036

Connection objects, TransactionServer objects

Syntax

objname.Lookup (objectvariable , componentname {, homeid})

Table 2.957:

Argument Description

objname The name of the Connection object used to establish the connection or of
an instance of the TransactionServer context object.

objectvariable A global, instance, or local variable of the type of the home interface to
be created.

componentname A string whose value is the name of the EJB component to be created.
You can optionally prepend a package name followed by a slash to the
component name (for example, "mypackage/mycomponent").

homeid A string whose value is the name of the home interface to be created.
This argument is optional

Return value

Long.

Returns 0 if it succeeds and a negative number if an error occurs.

Usage

EJBConnection

You can also use the Lookup method of the EJBConnection PowerBuilder extension
object to create an instance of an EJB component running on any J2EE compliant
application server. For more information, see Lookup.

The Lookup function creates an instance of the home interface of an EJB component so that
you can use it to create an instance of the EJB. Use the Connection object's Lookup function
to enable a PowerBuilder client to access a component running in EAServer. You can supply
a server name or a list of server names in the location property of the Connection object. Use
the TransactionServer object's Lookup function to enable a PowerBuilder component running
in EAServer to access an EJB component running on the same server.

The Lookup function uses the standard CORBA naming service to resolve componentname
to a CORBA object that is then narrowed to the home interface name of the component. If
you do not specify the third argument to the Lookup function, PowerBuilder expects the
home interface name to have the format PackageName/CompNameHome. However, most
EJB components use a standard Java package directory structure and the home interface
name has a format such as com/domain/project/CompNameHome.

You can ensure that a PowerBuilder client or component can locate the component's
home interface by supplying the third argument to the Lookup function to specify
the home interface name. A component's home interface name is defined in the
com.sybase.jaguar.component.home.ids property in the EAServer repository. The home.ids
property has a format like this:

https://docs.appeon.com/pb2019r2/extension_reference/ch02s01.html#XREF_41995_Lookup

Statements, Events, and Functions

Page 1037

IDL:com/domain/project/CompNameHome:1.0

The third argument should be the value of the component's home.ids string without the
leading IDL: and trailing :1.0. For example:

ts.lookup(MyCartHome, "shopping/cart", &
 "com/sybase/shopping/CartHome")

Alternatively, you can use the fully-qualified Java class name of the home interface specified
in dot notation. For example:

ts.lookup(MyCartHome, "shopping/cart", &
 "com.sybase.shopping.CartHome")

Lookup is case sensitive

Lookup in EAServer is case sensitive. Make sure that the case in the string you
specify in the argument to the lookup function matches the case in the ejb.home
property.

Examples

The following example uses Lookup with the Connection object to locate the home interface
of the Multiply session EJB in the Java package abc.xyz.math:

// Instance variable:
// Connection myconnect
Multiply myMultiply
MultiplyHome myMultiplyHome
long ll_result, ll_product

ll_result = &
 myconnect.lookup(myMultiplyHome,"Math/Multiply", &
 "abc.xyz.math.MultiplyHome)
IF ll_result <> = 0 THEN
 MessageBox("Lookup failed", myconnect.errtext)
ELSE
 try
 myMultiply = myMultiplyHome.create()
 catch (ctscomponents_createexception ce)
 MessageBox("Create exception", ce.getmessage())
 // handle exception
 end try
 ll_product = myMultiply.multiply(1234, 4567)
END IF

Entity beans have a findByPrimaryKey method that you can use to find an EJB saved in the
previous session. This example uses that method to find a shopping cart saved for Dirk Dent:

// Instance variable:
// Connection myconnect
Cart myCart
CartHome myCartHome
long ll_result

ll_result = &
 myconnect.lookup(myCartHome,"Shopping/Cart", &
 "com.mybiz.shopping.CartHome")
IF ll_result <> = 0 THEN
 MessageBox("Lookup failed", myconnect.errtext)
ELSE
 TRY

Statements, Events, and Functions

Page 1038

 myCart = myCartHome.findByPrimaryKey("DirkDent")
 myCart.addItem(101)
 CATCH (ctscomponents_finderexception fe)
 MessageBox("Finder exception", &
 fe.getmessage())
 END TRY
END IF

Nonvisual objects deployed from PowerBuilder to EAServer can use an instance of the
TransactionServer context object to locate the home interface of an EJB component in the
same server:

CalcHome MyCalcHome
Calc MyCalc
TransactionServer ts
ErrorLogging errlog
long ll_result

this.GetContextService("TransactionServer", ts)
this.GetContextService("ErrorLogging", errlog)
ll_result = ts.lookup(MyCalcHome, "Utilities/Calc", &
 "com.biz.access.utilities.CalcHome")
IF ll_result <> 0 THEN
 errlog.log("Lookup failed: " + string(ll_result))
ELSE
 TRY MyCalc = MyCalcHome.create()
 MyCalc.square(12)
 CATCH (ctscomponents_createexception ce)
 errlog.log("Create exception: " + ce.getmessage())
 END TRY
END IF

See also

ConnectToServer (obsolete)

2.4.495 Lower

Description

Converts all the characters in a string to lowercase.

Syntax

Lower (string)

Table 2.958:

Argument Description

string The string you want to convert to lowercase letters

Return value

String.

Returns string with uppercase letters changed to lowercase if it succeeds and the empty string
("") if an error occurs. If string is null, Lower returns null.

Examples

This statement returns babe ruth:

Statements, Events, and Functions

Page 1039

Lower("Babe Ruth")

See also

Upper

Lower method for DataWindows in Section 2.4.72, “Lower” in DataWindow Reference.

2.4.496 LowerBound

Description

Obtains the lower bound of a dimension of an array.

Syntax

LowerBound (array {, n })

Table 2.959:

Argument Description

array The name of the array for which you want the lower bound of a
dimension

n (optional) The number of the dimension for which you want the lower bound. The
default is 1

Return value

Long.

Returns the lower bound of dimension n of array and -1 if n is greater than the number of
dimensions of the array. If any argument's value is null, LowerBound returns null.

Usage

For variable-size arrays, memory is allocated for the array when you assign values to it.
Before you assign values, the lower bound is 1 and the upper bound is 0.

Examples

The following statements illustrate the values LowerBound reports for fixed-size arrays and
for variable-size arrays before and after memory has been allocated:

integer a[5], b[2,5]
LowerBound(a) // Returns 1
LowerBound(a, 1) // Returns 1
LowerBound(a, 2) // Returns -1, a has only 1 dim
LowerBound(b, 2) // Returns 1

integer c[]
LowerBound(c) // Returns 1
c[50] = 900
LowerBound(c) // Returns 1

integer d[-10 to 50]
LowerBound(d) // Returns - 10

See also

UpperBound

Statements, Events, and Functions

Page 1040

2.4.497 mailAddress

Description

Updates the mailRecipient array for a mail message.

Applies to

mailSession object

Syntax

mailsession.mailAddress ({ mailmessage })

Table 2.960:

Argument Description

mailsession A mailSession object identifying the session in which you want to
address the message.

mailmessage
(optional)

A mailMessage structure containing information about the message. If
you omit mailmessage, mailAddress displays an Address dialog box.

Return value

mailReturnCode. Returns one of the following values:

mailReturnSuccess!

mailReturnFailure!

mailReturnInsufficientMemory!

mailReturnUserAbort!

If any argument's value is null, mailAddress returns null.

Usage

The mailRecipient array contains information about recipients of a mail message or the
originator of a message. The originator is not used when you send a message.

If there is an error in the mailRecipient array, mailAddress displays the Address dialog box
so the user can fix the address. If you pass a mailMessage structure that is a validly addressed
message (such as a message that the user received) nothing happens because the addresses are
correct.

If you do not specify a mailMessage, the mail system displays an Address dialog box that
allows users to look for addresses and maintain their personal address list. The user cannot
select addresses for addressing a message.

Before calling mail functions, you must declare and create a mailSession object and call
mailLogon to establish a mail session.

Examples

These statements create a mail session, send mail with an attached TXT file, and then log off
the mail system and destroy the mail session object:

mailSession mSes
mailReturnCode mRet
mailMessage mMsg

Statements, Events, and Functions

Page 1041

mailFileDescription mAttach
// Create a mail session
mSes = CREATE mailSession
// Log on to the session
mRet = mSes.mailLogon(mailNewSession!)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail", 'Logon failed.')
 RETURN
END IF
 mMsg.AttachmentFile[1] = mAttach
 mRet = mSes.mailAddress(mMsg)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail", 'Addressing failed.')
 RETURN
END IF
// Send the mail
mRet = mSes.mailSend(mMsg)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail", 'Sending mail failed.')
 RETURN
END IF
mSes.mailLogoff()
DESTROY mSes

See also

mailLogoff

mailLogon

mailResolveRecipient

mailSend

2.4.498 mailDeleteMessage

Description

Deletes a mail message from the user's electronic mail inbox.

Applies to

mailSession object

Syntax

mailsession.mailDeleteMessage (messageid)

Table 2.961:

Argument Description

mailsession A mailSession object identifying the session in which you want to delete
the message

messageid A string whose value is the ID of the mail message to be deleted

Return value

mailReturnCode. Returns one of the following values:

mailReturnSuccess!

mailReturnFailure!

Statements, Events, and Functions

Page 1042

mailReturnInsufficientMemory!

mailReturnInvalidMessage!

mailReturnUserAbort!

If any argument's value is null, mailDeleteMessage returns null.

Usage

To get a list of message IDs in the user's inbox, call the mailGetMessages function. Before
calling mail functions, you must declare and create a mailSession object and call mailLogon
to establish a mail session.

Examples

Assume the DataWindow dw_inbox contains a list of mail items (sender, subject, postmark,
and message ID), and that the mail session mSes has been created and a successful logon has
occurred. This script for the clicked event for dw_inbox deletes the selected message from
the mail system:

string sID
integer nRow
mailReturnCode mRet

nRow = GetClickedRow()
IF nRow > 0 THEN
 sID = GetItemString(nRow, "messageID")
 mRet = mSes.mailDeleteMessage(sID)
END IF

See also

mailGetMessages

mailLogon

2.4.499 mailGetMessages

Description

Populates the messageID array of a mailSession object with the message IDs in the user's
inbox.

Applies to

mailSession object

Syntax

mailsession.mailGetMessages ({ messagetype, } { unreadonly })

Table 2.962:

Argument Description

mailsession A mailSession object identifying the session in which you want to get the
messages.

messagetype
(optional)

A string whose value is a message type. The default message type is
IPM or an empty string (""), which identifies interpersonal messages.
The other standard type is IPC, which identifies hidden, interprocess

Statements, Events, and Functions

Page 1043

Argument Description
messages. Your mail administrator may have established other user-
defined message types.

unreadonly
(optional)

A boolean value indicating you want only the IDs of unread messages.
Values are:

• TRUE -- Get IDs for unread messages only

• FALSE -- Get IDs for all messages

Return value

mailReturnCode. Returns one of the following values:

mailReturnSuccess!

mailReturnFailure!

mailReturnInsufficientMemory!

mailReturnNoMessages!

mailReturnUserAbort!

If any argument's value is null, mailGetMessages returns null.

Usage

MailGetMessages only retrieves message IDs, which it stores in the mailSession object's
MessageID array. A message ID serves as an argument for other mail functions. With
mailReadMessage, for example, it identifies the message you want to read.

Before calling mail functions, you must declare and create a mailSession object and call
mailLogon to establish a mail session.

Examples

This example populates a DataWindow with the messages in the user's inbox. The
DataWindow is defined with an external data source and has three columns: msgid, msgdate,
and msgsubject. MailGetMessages fills the MessageID array in the mailSession object and
mailReadMessage gets the information for each ID.

The example assumes that the application has already created the mailSession object mSes
and logged on:

mailMessage msg
long n, c_row

mSes.mailGetMessages()
FOR n = 1 to UpperBound(mSes.MessageID[])
 mSes.mailReadMessage(mSes.MessageID[n], &
 msg, mailEnvelopeOnly!, FALSE)
 c_row = dw_1.InsertRow(0)
 dw_1.SetItem(c_row, "msgid", mSes.MessageID[n])
 dw_1.SetItem(c_row, "msgdate", msg.DateReceived)
 // Truncate subject to fit defined column size
 dw_1.SetItem(c_row, "msgsubject", &
 Left(msg.Subject, 50))
NEXT

Statements, Events, and Functions

Page 1044

See also

mailDeleteMessage

mailReadMessage

2.4.500 mailHandle

Description

Obtains the handle of a mailSession object.

Applies to

mailSession object

Syntax

mailsession.mailHandle ()

Table 2.963:

Argument Description

mailsession A mailSession object identifying the session for which you want the
handle

Return value

UnsignedLong.

Returns the internal handle of the mail session object. If mailsession is null, mailHandle
displays an error message.

Usage

After you have logged on, your mailSession has a valid handle. You can use that handle
to call external mail functions. MAPI has additional functions that PowerBuilder does not
implement directly.

Before calling mail functions, you must declare and create a mailSession object and call
mailLogon to establish a mail session.

Examples

This statement returns the handle of the current mail session:

current_session. mailHandle()

2.4.501 mailLogoff

Description

Ends the mail session, breaking the connection between the PowerBuilder application and
mail. If the mail application was already running when PowerBuilder began the mail session,
it is left in the same state.

Applies to

mailSession object

Syntax

Statements, Events, and Functions

Page 1045

mailsession.mailLogoff ()

Table 2.964:

Argument Description

mailsession A mailSession object identifying the session from which you want to log
off

Return value

mailReturnCode. Returns one of the following values:

mailReturnSuccess!

mailReturnFailure!

mailReturnInsufficientMemory!

Usage

To release the memory used by the mailSession object, use the DESTROY keyword after
ending the mail session.

Before calling mail functions, you must declare and create a mailSession object and call
mailLogon to establish a mail session.

Examples

This statement terminates the current mail session:

current_session. mailLogoff()
DESTROY current_session

See also

mailLogon

2.4.502 mailLogon

Description

Establishes a mail session for the PowerBuilder application. The PowerBuilder application
can start a new session or join an existing session.

Applies to

mailSession object

Syntax

mailsession.mailLogon ({ profile, password } {, logonoption })

Table 2.965:

Argument Description

mailsession A mailSession object identifying the session you want to logon to.

profile (optional) A string whose value is the user's mail system profile or user ID.

password
(optional)

A string whose value is the user's mail system password.

Statements, Events, and Functions

Page 1046

Argument Description

logonoption
(optional)

A value of the mailLogonOption enumerated datatype specifying the
logon options:

• mailNewSession! -- Starts a new mail session, whether or not the mail
application is already running

• mailDownLoad! -- Forces the mail application to download any new
messages from the server to the user's inbox. Starts a new mail session
only if the mail application is not running

• mailNewSessionWithDownLoad! -- Starts a new mail session and
forces new messages to be downloaded from the server to the user's
inbox

The default is to use an existing session if possible and not to force new
messages to be downloaded.

Return value

mailReturnCode. Returns one of the following values:

mailReturnSuccess!

mailReturnLoginFailure!

mailReturnInsufficientMemory!

mailReturnTooManySessions!

mailReturnUserAbort!

If any argument's value is null, mailLogon returns null.

Usage

If you do not direct mailLogon to start a new session and the mail application is already
running on the user's computer, then the PowerBuilder mail session attaches to the existing
session. A profile and password are not necessary.

When mailLogon establishes a new session, then the mail system's dialog box prompts for the
profile and password if the script does not supply them.

The download option forces the mail server to download the latest messages to the user's
inbox. This ensures that the inbox is up to date; it does not make the messages available to
PowerBuilder. To access messages, use mailGetMessages and mailReadMessage.

Before calling mailLogon, you must declare and create a mailSession object.

Examples

In this example, the mailSession object new_session is an instance variable of the window.
The window's Open event script allocates memory for the mailSession object and logs on.
During the logon process, the mail application displays a dialog box prompting for the profile
and password:

new_session = CREATE mailSession
new_session.mailLogon(mailNewSession!)

Statements, Events, and Functions

Page 1047

This example establishes a new mail session and makes the user's inbox up to date. The user
will not be prompted for an ID and password because user information is provided. Here the
mailSession object is a local variable:

mailSession new_session
new_session = CREATE mailSession
new_session.mailLogon("jpl", "hotstuff", &
 mailNewSessionWithDownLoad!)

See also

mailLogoff

2.4.503 mailReadMessage

Description

Opens a mail message whose ID is stored in the mail session's message array. You can
choose to read the entire message or the envelope (sender, date received, and so on) only. If a
message has attachments, they are stored in a temporary file. You can also choose to have the
message text written to in a temporary file.

Applies to

mailSession object

Syntax

mailsession.mailReadMessage (messageid, mailmessage, readoption, mark)

Table 2.966:

Argument Description

mailsession A mailSession object identifying the session in which you want to read a
message.

messageid A string whose value is the ID of the mail message you want to read.

mailmessage A mailMessage structure in which mailReadMessage stores the message
information.

readoption A value of the mailReadOption enumerated datatype:

• mailEntireMessage! -- Obtain header, text, and attachments

• mailEnvelopeOnly! -- Obtain header information only

• mailBodyAsFile! -- Obtain header, text, and attachments, and treat the
message text as the first attachment, storing it in a temporary file

mailBodyAsFile! is not supported for Extended MAPI. It works as
mailEntireMessage! when used in PowerScript code.

• mailSuppressAttachments! -- Obtain header and text, but no
attachments

mark A boolean indicating whether you want to mark the message as read in
the user's inbox. Values are:

Statements, Events, and Functions

Page 1048

Argument Description
• TRUE -- Mark the message as read

• FALSE -- Do not mark the message as read

Return value

MailReturnCode. Returns one of the following values:

mailReturnSuccess!

mailReturnFailure!

mailReturnInsufficientMemory!

If any argument's value is null, mailReadMessage returns null.

Usage

To obtain the message IDs for the messages in the user's inbox, call mailGetMessages.

Before calling mail functions, you must declare and create a mailSession object and call
mailLogon to establish a mail session.

Reading attachments

If a message has an attachment and you do not suppress attachments, information
about it is stored in the AttachmentFile property of the mailMessage object. The
AttachmentFile property is a mailFileDescription object. Its PathName property has
the location of the temporary file that mailReadMessage created for the attachment.
By default, the temporary file is in the directory specified by the TEMP environment
variable.

Be sure to delete this temporary file when you no longer need it.

Examples

In this example, mail is displayed in a window with a DataWindow dw_inbox that lists mail
messages and a MultiLineEdit mle_note that displays the message text. Assuming that the
application has created the mailSession object mSes and successfully logged on, and that
dw_inbox contains a list of mail items (sender, subject, postmark, and message ID); this
script for the Clicked event for dw_inbox displays the text of the selected message in the
MultiLineEdit mle_note:

integer nRow, nRet
string sMessageID
string sRet, sName

// Find out what Mail Item was selected
nRow = GetClickedRow()
IF nRow > 0 THEN
 // Get the message ID from the row
 sMessageID = GetItemString(nRow, 'MessageID')

 // Reread the message to obtain entire contents
 // because previously we read only the envelope
 mRet = mSes.mailReadMessage(sMessageID, mMsg &
 mailEntireMessage!, TRUE)

Statements, Events, and Functions

Page 1049

 // Display the text
 mle_note.Text = mMsg.NoteText
END IF

See mailGetMessages for an example that creates a list of mail messages in a DataWindow
control, the type of setup that this example expects. See also the mail examples in the Code
Examples sample application supplied with PowerBuilder.

See also

mailGetMessages

mailLogon

mailSend

2.4.504 mailRecipientDetails

Description

Displays a dialog box with the specified recipient's address information.

Applies to

mailSession object

Syntax

mailsession.mailRecipientDetails (mailrecipient {, allowupdates })

Table 2.967:

Argument Description

mailsession A mailSession identifying the session in which you want to display the
detail information for a recipient.

mailrecipient A mailRecipient structure containing valid address information.
Mailrecipient must contain a recipient identifier returned by mailAddress,
mailResolveRecipient, or mailReadMessage.

allowupdates
(optional)

A boolean indicating whether updates to the recipient's name will be
allowed. If the user does not have update privileges for the mail system,
then allowupdates is ignored. The default is false.

allowupdates is always true for Extended MAPI.

Return value

mailReturnCode. Returns one of the following values:

mailReturnSuccess!

mailReturnFailure!

mailReturnInsufficientMemory!

mailReturnUnknownRecipient!

mailReturnUserAbort!

If any argument's value is null, mailRecipientDetails returns null.

Usage

Statements, Events, and Functions

Page 1050

The effect of setting allowupdates to true depends on the mail system and the user's
privileges.

Before calling mail functions, you must declare and create a mailSession object and call
mailLogon to establish a mail session.

Examples

This example gets the message IDs from the user's inbox and reads the first message. It then
calls mailRecipientDetails to display address information for the first recipient. Recipient
is an array of structures and a property of mailMessage. Each array element is one of the
message's recipients. The example does not check how many values there are in the message
ID or recipient arrays and it assumes that the application has already created a mailSession
object and logged on:

mailMessage msg
integer n
long c_row

mSes.mailGetMessages()
mSes.mailReadMessage(mSes.MessageID[1], &
 msg, mailEnvelopeOnly!, FALSE)
mSes.mailRecipientDetails(msg.Recipient[1])

See also

mailResolveRecipient

mailSend

2.4.505 mailResolveRecipient

Description

Obtains a valid e-mail address based on a partial or full user name and optionally updates
information in the system's address list if the user has privileges to do so.

Applies to

mailSession object

Syntax

mailsession.mailResolveRecipient (recipient {, allowupdates })

Table 2.968:

Argument Description

mailsession A mailSession object identifying the session in which you want to resolve
the recipient.

recipient A mailRecipient structure or a string variable whose value is a recipient's
name. The recipient's name is a property of the mailRecipient structure.
MailResolveRecipient sets the value of the string to the recipient's full
name or the structure to the resolved address information.

allowupdates
(optional)

A boolean indicating whether updates to the recipient's name will be
allowed. If the user does not have update privileges for the mail system,
then allowupdates is ignored. The default is false.

Statements, Events, and Functions

Page 1051

Argument Description
allowupdates is always false for Extended MAPI.

Return value

mailReturnCode. Returns one of the following values:

mailReturnSuccess!

mailReturnFailure!

mailReturnInsufficientMemory!

mailReturnUserAbort!

If any argument's value is null, mailResolveRecipient returns null.

Usage

Use mailResolveRecipient to verify that a name is a valid address in the mail system. The
function reports mailReturnFailure! if the name is not found.

If you supply a mailRecipient structure, mailResolveRecipient fills the structure with
valid address information when it resolves the address. If you supply a name as a string,
mailResolveRecipient replaces the string's value with the full user name as recognized by the
mail system. An address specified as a string is adequate for users in the local mail system.
If you are sending mail through gateways to other systems, you should obtain full address
details in a mailRecipient structure.

If more than one address on the mail system matches the partial address information you
supply to mailResolveRecipient, the mail system may display a dialog box allowing the user
to choose the desired name.

If you supply a mailRecipient structure that already has address information,
mailResolveRecipient corrects the information if it differs from the mail system. If you set
allowupdates to true and the information differs from the mail system, mailResolveRecipient
corrects the mail system's information if the user has rights to do so. Be careful that the
address information you have is correct when you allow updating.

Before calling mail functions, you must declare and create a mailSession object and call
mailLogon to establish a mail session.

Examples

This example checks whether there is a user J Smith is on the mail system. If there is a user
whose name matches, such as Jane Smith or Jerry Smith, the variable mname is set to the full
name. If both names are on the system, the mail system displays a dialog box from which the
user chooses a name. Mname is set to the user's choice. The application has already created
the mailSession object mSes and logged on:

mailReturnCode mRet
string mname
mname = "Smith, J"
mRet = mSes.mailResolveRecipient(mname)
IF mRet = mailReturnSuccess! THEN
 MessageBox("Address", mname + " found.")
ELSEIF mRet = mailReturnFailure! THEN
 MessageBox("Address", "J Smith not found.")
ELSE

Statements, Events, and Functions

Page 1052

 MessageBox("Address", "Request not evaluated.")
END IF

In this example, sle_to contains the full or partial name of a mail recipient. This example
assigns the name to a mailRecipient object and calls mailResolveRecipient to find the name
and get address details. If the name is found, mailRecipientDetails displays the information
and the full name is assigned to sle_to. The application has already created the mailSession
object mSes and logged on:

mailReturnCode mRet
mailRecipient mRecip

mRecip.Name = sle_to.Text
mRet = mSes.mailResolveRecipient(mRecip)
IF mRet <> mailReturnSuccess! THEN
 MessageBox ("Address", &
 sle_to.Text + "not found.")
ELSE
 mRet = mSes.mailRecipientDetails(mRecipient)
 sle_to.Text = mRecipient.Name
END IF

See also

mailAddress

mailLogoff

mailLogon

mailRecipientDetails

mailSend

2.4.506 mailSaveMessage

Description

Creates a new message in the user's inbox or replaces an existing message.

Applies to

mailSession object

Syntax

mailsession.mailSaveMessage (messageid, mailmessage)

Table 2.969:

Argument Description

mailsession A mailSession object identifying the session in which you want to save
the mail message.

messageid A string whose value is the message ID of the message being replaced. If
you are saving a new message, specify an empty string ("").

mailmessage A mailMessage structure containing the message being saved.

Return value

mailReturnCode. Returns one of the following values:

Statements, Events, and Functions

Page 1053

mailReturnSuccess!

mailReturnFailure!

mailReturnInsufficientMemory!

mailReturnInvalidMessage!

mailReturnUserAbort!

mailReturnDiskFull!

If any argument's value is null, mailSaveMessage returns null.

Usage

Before saving a message, you must address the message even if you are replacing an existing
message. The message can be addressed to someone else for sending later.

Before calling mail functions, you must declare and create a mailSession object and call
mailLogon to establish a mail session.

Examples

This example creates a new message in the inbox of the current user, which will be sent later
to Jerry Smith. The application has already created the mailSession object mSes and logged
on:

mailRecipient recip
mailMessage msg
mailReturnCode mRet

recip.Name = "Smith, Jerry"
mRet = mSes.mailResolveRecipient(recip)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Save New Message", &
 "Invalid address.")
 RETURN
 END IF

msg.NoteText = mle_note.Text
msg.Subject = sle_subject.Text
msg.Recipient[1] = recip

mRet = mSes.mailSaveMessage("", msg)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Save New Message", &
 "Failed somehow.")
END IF

This example replaces the last message in the user Jane Smith's inbox. It gets the message ID
from the MessageID array in the mailSession object mSes. It changes the message subject, re-
addresses the message to the user, and saves the message. The application has already created
the mailSession object mSes and logged on:

mailRecipient recip
mailMessage msg
mailReturnCode mRet
string s_ID

mRet = mSes.mailGetMessages()
IF mRet <> mailReturnSuccess! THEN
 MessageBox("No Messages", "Inbox empty.")

Statements, Events, and Functions

Page 1054

 RETURN
END IF
s_ID = mSes.MessageID[UpperBound(mSes.MessageID)]
mRet = mSes.mailReadMessage(s, msg, &
 mailEntireMessage!, FALSE)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Message", "Can't read message.")
 RETURN
END IF

msg.Subject = msg.Subject + " Test"
recip.Name = "Smith, Jane"
mRet = mSes.mailResolveRecipient(recip)
msg.Recipient[1] = recip
mRet = mSes.mailSaveMessage(s_ID, msg)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Save Old Message", "Failed somehow.")
END IF

See also the mail examples in the samples that are supplied with PowerBuilder.

See also

mailReadMessage

mailResolveRecipient

2.4.507 mailSend

Description

Sends a mail message. If no message information is supplied, the mail system provides a
dialog box for entering it before sending the message.

Applies to

mailSession object

Syntax

mailsession.mailSend ({ mailmessage })

Table 2.970:

Argument Description

mailsession A mailSession object identifying the session in which you want to send
the mail message

mailmessage
(optional)

A mailMessage structure

Return value

mailReturnCode. Returns one of the following values:

mailReturnSuccess!

mailReturnFailure!

mailReturnInsufficientMemory!

mailReturnLoginFailure!

Statements, Events, and Functions

Page 1055

mailReturnUserAbort!

mailReturnDiskFull!

mailReturnTooManySessions!

mailReturnTooManyFiles!

mailReturnTooManyRecipients!

mailReturnUnknownRecipient!

mailReturnAttachmentNotFound!

If any argument's value is null, mailSend returns null.

Usage

Before calling mail functions, you must declare and create a mailSession object and call
mailLogon to establish a mail session.

For mailSend, mailOriginator! is not a valid value for the Recipient property of the
mailMessage object. The valid values are mailto!, mailcc!, and mailbcc!. To specify that the
sender receive a copy of the message, use mailcc!.

Examples

These statements create a mail session, send a message, and then log off the mail system and
destroy the mail session object:

mailSession mSes
mailReturnCode mRet
mailMessage mMsg

// Create a mail session
mSes = create mailSession

// Log on to the session
mRet = mSes.mailLogon(mailNewSession!)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail", 'Logon failed.')
 RETURN
END IF

// Populate the mailMessage structure
mMsg.Subject = mle_subject.Text
mMsg.NoteText = 'Luncheon at 12:15'
mMsg.Recipient[1].name = 'Smith, John'
mMsg.Recipient[2].name = 'Shaw, Sue'

// Send the mail
mRet = mSes.mailSend(mMsg)

IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail Send", 'Mail not sent')
 RETURN
END IF

mSes.mailLogoff()
DESTROY mSes

See also the mail examples in the samples supplied with PowerBuilder.

See also

Statements, Events, and Functions

Page 1056

mailReadMessage

mailResolveRecipient

2.4.508 Match

Description

Determines whether a string's value contains a particular pattern of characters.

Syntax

Match (string, textpattern)

Table 2.971:

Argument Description

string The string in which you want to look for a pattern of characters

textpattern A string whose value is the text pattern

Return value

Boolean.

Returns true if string matches textpattern and false if it does not. Match also returns false
if either argument has not been assigned a value or the pattern is invalid. If any argument's
value is null, Match returns null.

Usage

Match enables you to evaluate whether a string contains a general pattern of characters. To
find out whether a string contains a specific substring, use the Pos function.

Textpattern is similar to a regular expression. It consists of metacharacters, which have
special meaning, and ordinary characters, which match themselves. You can specify that the
string begin or end with one or more characters from a set, or that it contain any characters
except those in a set.

A text pattern consists of metacharacters, which have special meaning in the match string,
and nonmetacharacters, which match the characters themselves.The following tables explain
the meaning and use of these metacharacters.

Table 2.972: Metacharacters used by Match function

MetacharacterMeaning Example

Caret (^) Matches the beginning of a string ^C matches C at the
beginning of a string.

Dollar sign
($)

Matches the end of a string s$ matches s at the
end of a string.

Period (.) Matches any character . . . matches
three consecutive
characters.

Backslash
(\)

Removes the following metacharacter's special
characteristics so that it matches itself

\$ matches $.

Statements, Events, and Functions

Page 1057

MetacharacterMeaning Example

Character
class (a
group of
characters
enclosed
in square
brackets
([]))

Matches any of the enclosed characters [AEIOU] matches A,
E, I, O, or U.

You can use hyphens
to abbreviate ranges
of characters in a
character class. For
example, [A-Za-z]
matches any letter.

Complemented
character
class (first
character
inside the
brackets is a
caret)

Matches any character not in the group following the
caret

[^0-9] matches any
character except
a digit, and [^A-
Za-z] matches any
character except a
letter.

The metacharacters asterisk (*), plus (+), and question mark (?) are unary operators that are
used to specify repetitions in a regular expression:

Table 2.973: Unary operators used as metacharacters by Match function

MetacharacterMeaning Example

* (asterisk) Indicates zero or more occurrences A* matches zero or
more As (no As, A,
AA, AAA, and so on)

+ (plus) Indicates one or more occurrences A+ matches one A or
more than one A (A,
AAA, and so on)

? (question
mark)

Indicates zero or one occurrence A? matches an empty
string ("") or A

Sample patterns

The following table shows various text patterns and sample text that matches each pattern:

Table 2.974: Text pattern examples for Match function

This pattern Matches

AB Any string that contains AB; for example, ABA, DEABC, graphAB_one

B* Any string that contains 0 or more Bs; for example, AC, B, BB, BBB,
ABBBC, and so on

AB*C Any string containing the pattern AC or ABC or ABBC, and so on (0 or
more Bs)

AB+C Any string containing the pattern ABC or ABBC or ABBBC, and so on
(1 or more Bs)

Statements, Events, and Functions

Page 1058

This pattern Matches

ABB*C Any string containing the pattern ABC or ABBC or ABBBC, and so on
(1 B plus 0 or more Bs)

^AB Any string starting with AB

AB?C Any string containing the pattern AC or ABC (0 or 1 B)

^[ABC] Any string starting with A, B, or C

[^ABC] A string containing any characters other than A, B, or C

^[^abc] A string that begins with any character except a, b, or c

^[^a-z]$ Any single-character string that is not a lowercase letter (^ and $ indicate
the beginning and end of the string)

[A-Z]+ Any string with one or more uppercase letters

^[0-9]+$ Any string consisting only of digits

^[0-9][0-9][0-9]$ Any string consisting of exactly three digits

^([0-9][0-9]
[0-9])$

Any consisting of exactly three digits enclosed in parentheses

Examples

This statement returns true if the text in sle_ID begins with one or more uppercase or
lowercase letters (^ at the beginning of the pattern means that the beginning of the string must
match the characters that follow):

Match(sle_ID.Text, "^[A-Za-z]")

This statement returns false if the text in sle_ID contains any digits (^ inside a bracket is a
complement operator):

Match(sle_ID.Text, "[^0-9]")

This statement returns true if the text in sle_ID contains one uppercase letter:

Match(sle_ID.Text, "[A-Z]")

This statement returns true if the text in sle_ID contains one or more uppercase letters (+
indicates one or more occurrences of the pattern):

Match(sle_ID.Text, "[A-Z]+")

This statement returns false if the text in sle_ID contains anything other than two digits
followed by a letter (^ and $ indicate the beginning and end of the string):

Match(sle_ID.Text, "^[0-9][0-9][A-Za-z]$")

See also

Pos

Match method for DataWindows in Section 2.4.73, “Match” in DataWindow Reference.

2.4.509 MatchW (obsolete)

Description

Statements, Events, and Functions

Page 1059

Determines whether a string's value contains a particular pattern of characters.

This function is obsolete. It has the same behavior as Match in all environments.

Syntax

MatchW (string, textpattern)

2.4.510 Max

Description

Determines the larger of two numbers.

Syntax

Max (x, y)

Table 2.975:

Argument Description

x The number to which you want to compare y

y The number to which you want to compare x

Return value

The datatype of x or y, whichever datatype is more precise. If any argument's value is null,
Max returns null.

Usage

If either of the values being compared is null, Max returns null.

Examples

This statement returns 7:

Max(4,7)

This statement returns -4:

Max(- 4, - 7)

This statement returns 8.2, a decimal value:

Max(8.2, 4)

See also

Min

Max method for DataWindows in Section 2.4.74, “Max” in DataWindow Reference.

2.4.511 MD5

Description

Calculates the MD5 value of a blob.

Applies to

CrypterObject object

Statements, Events, and Functions

Page 1060

Syntax

crypter.MD5 (variable)

Table 2.976:

Argument Description

crypter The name of the CrypterObject object

variable A blob whose value is the data you want to process with MD5.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

Return value

Blob. Returns the result of the MD5 if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

This statement encrypts the data with MD5.

Blob lblb_data
Blob lblb_md5
String ls_data

lblb_data = Blob("Test MD5", EncodingANSI!)

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

// Encrypt with MD5
lblb_md5 = lnv_CrypterObject.MD5(lblb_data)

Coderobject lnv_code
Lnv_code = create coderobject
//Encode the MD5 blob data to be hex data and output as a string
Ls_data = lnv_code.hexencode(lblb_md5)

See also

SymmetricEncrypt

SymmetricDecrypt

SymmetricGenerateKey

AsymmetricEncrypt

AsymmetricDecrypt

AsymmetricSign

AsymmetricVerifySign

AsymmetricGenerateKey

SHA

HMAC

Statements, Events, and Functions

Page 1061

2.4.512 MemberDelete

Description

Deletes a member from an OLE object in a storage. The member can be another OLE object
(a substorage) or a stream.

Applies to

OLEStorage objects

Syntax

olestorage.MemberDelete (membername)

Table 2.977:

Argument Description

olestorage The name of an object variable of type OLEStorage containing the
member (substorage or stream) you want to delete

membername A string specifying the name of the member you want to delete from the
storage

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The storage is not open

-2 -- Member not found

-3 -- Insufficient resources or too many files open

-4 -- Access denied

-5 -- Invalid storage state

-9 -- Other error

If any argument's value is null, MemberDelete returns null.

Examples

This example creates a storage object and opens an OLE object in a file. It checks whether
wordobj is a substorage within that object and, if so, deletes it and saves the object back to
the file:

boolean lb_memexists
integer result

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

stg_stuff.MemberExists("wordobj", lb_memexists)
IF lb_memexists THEN
 result = stg_stuff.MemberDelete("wordobj")
 IF result = 0 THEN stg_stuff.Save()
END IF

See also

Statements, Events, and Functions

Page 1062

MemberExists

MemberRename

Open

2.4.513 MemberExists

Description

Determines whether the named member is part of an OLE object in a storage. The member
can be another OLE object (a substorage) or a stream.

Applies to

OLEStorage objects

Syntax

olestorage.MemberExists (membername, exists)

Table 2.978:

Argument Description

olestorage The name of an object variable of type OLEStorage that you want to
check

membername A string whose value is the name of the member that you want to check

exists A boolean variable that will store whether or not the member exists

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The storage is not open

-9 -- Other error

If any argument's value is null, MemberExists returns null.

Examples

This example creates a storage object and opens an OLE object in a file. It checks whether
wordobj is a substorage within that object and, if so, deletes it and saves the object back to
the file:

boolean lb_memexists
integer result

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

stg_stuff.MemberExists("wordobj", lb_memexists)
IF lb_memexists THEN
 result = stg_stuff.MemberDelete("wordobj")
 IF result = 0 THEN stg_stuff.Save()
END IF

See also

Statements, Events, and Functions

Page 1063

MemberDelete

MemberRename

Open

2.4.514 MemberRename

Description

Renames a member in an OLE storage. The member can be another OLE object (a
substorage) or a stream.

Applies to

OLEStorage objects

Syntax

olestorage.MemberRename (membername, newname)

Table 2.979:

Argument Description

olestorage The name of an object variable of type OLEStorage containing the
member (substorage or stream) you want to rename

membername A string whose value is the name of the member you want to rename

newname A string whose value is the new name to be assigned to the member

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The storage is not open

-2 -- Member not found

-3 -- Insufficient resources or too many files open

-4 -- Access denied

-5 -- Invalid storage state

-6 -- Duplicate name

-9 -- Other error

If any argument's value is null, MemberRename returns null.

Examples

This example creates a storage object and opens an OLE object in a file. It checks whether
wordobj is a substorage within that object, and if so renames it to memo and saves the object
back to the file:

boolean lb_memexists
integer result

stg_stuff = CREATE OLEStorage

Statements, Events, and Functions

Page 1064

stg_stuff.Open("c:\ole2\mystuff.ole")

stg_stuff.MemberExists("wordobj", lb_memexists)
IF lb_memexists THEN
 result = &
 stg_stuff.MemberRename("wordobj", "memo")
 IF result = 0 THEN stg_stuff.Save()
END IF

See also

MemberDelete

MemberExists

Open

2.4.515 MessageBox

Description

Displays a system MessageBox with the title, text, icon, and buttons you specify.

Syntax

MessageBox (title, text {, icon {, button {, default } } })

Table 2.980:

Argument Description

title A string specifying the title of the message box, which appears in the
box's title bar.

text The text you want to display in the message box. The text can be a
numeric datatype (double or longlong), a string, or a boolean value.

icon

(optional)

A value of the Icon enumerated datatype indicating the icon you want to
display on the left side of the message box. Values are:

• Information! (Default)

• StopSign!

• Exclamation!

• Question!

• None!

button (optional) A value of the Button enumerated datatype indicating the set of
CommandButtons you want to display at the bottom of the message box.
The buttons are numbered in the order listed in the enumerated datatype.
Values are:

• OK! -- (Default) OK button

• OKCancel! -- OK and Cancel buttons

• YesNo! -- Yes and No buttons

Statements, Events, and Functions

Page 1065

Argument Description
• YesNoCancel! -- Yes, No, and Cancel buttons

• RetryCancel! -- Retry and Cancel buttons

• AbortRetryIgnore! -- Abort, Retry, and Ignore buttons

default (optional) The number of the button you want to be the default button. The default
is 1. If you specify a number larger than the number of buttons displayed,
MessageBox uses the default.

Return value

Integer.

Returns the number of the selected button (1, 2, or 3) if it succeeds and -1 if an error occurs.
If any argument's value is null, MessageBox returns null.

Usage

If the value of title or text is null, the MessageBox does not display. Unless you specify
otherwise, PowerBuilder continues executing the script when the user clicks the button or
presses enter, which is appropriate when the MessageBox has one button. If the box has
multiple buttons, you will need to include code in the script that checks the return value and
takes an appropriate action.

Before continuing with the current application, the user must respond to the MessageBox.
However, the user can switch to another application without responding to the MessageBox.

When you are running a version of Windows that supports right-to-left languages and want
to display Arabic or Hebrew text for the message and buttons, set the RightToLeft property
of the application object to true. The characters of the message will display from right to
left. However, the button text will continue to display in English unless you are running a
localized version of PowerBuilder.

When MessageBox does not work

Controls capture the mouse in order to perform certain operations. For instance,
CommandButtons capture the mouse during mouse clicks, Edit controls capture for
text selection, and scroll bars capture during scrolling. If a MessageBox is invoked
while the mouse is captured, unexpected results can occur.

Because MessageBox grabs focus, you should not use it when focus is changing, such
as in a LoseFocus event. Instead, you might display a message in the window's title or a
MultiLineEdit.

MessageBox also causes confusing behavior when called after PrintOpen. For details, see
PrintOpen.

Examples

This statement displays a MessageBox with the title Greeting, the text Hello User, the default
icon (Information!), and the default button (the OK button):

MessageBox("Greeting", "Hello User")

Statements, Events, and Functions

Page 1066

The following statements display a MessageBox titled Result and containing the result of
a function, the Exclamation icon, and the OK and Cancel buttons (the Cancel button is the
default):

integer Net
long Distance = 3.457

Net = MessageBox("Result", Abs(Distance), &
 Exclamation!, OKCancel!, 2)
IF Net = 1 THEN
 ... // Process OK.
ELSE
 ... // Process CANCEL.
END IF

2.4.516 Mid

Description

Obtains a specified number of characters from a specified position in a string.

Syntax

Mid (string, start {, length })

Table 2.981:

Argument Description

string The string from which you want characters returned.

start A long specifying the position of the first character you want returned.
(The position of the first character of the string is 1).

length (optional) A long whose value is the number of characters you want returned. If you
do not enter length or if length is greater than the number of characters to
the right of start, Mid returns the remaining characters in the string.

Return value

String.

Returns characters specified in length of string starting at character start. If start is greater
than the number of characters in string, the Mid function returns the empty string (""). If
length is greater than the number of characters remaining after the start character, Mid returns
the remaining characters. The return string is not filled with spaces to make it the specified
length. If any argument's value is null, Mid returns null.

Usage

To search a string for the position of the substring that you want to extract, use the Pos
function. Use the return value for the start argument of Mid. To extract a specified number of
characters from the beginning or end of a string, use the Left or the Right function.

Examples

This statement returns RUTH:

Mid("BABE RUTH", 5, 5)

This statement returns "":

Statements, Events, and Functions

Page 1067

Mid("BABE RUTH", 40, 5)

This statement returns BE RUTH:

Mid("BABE RUTH", 3)

These statements store the characters in the SingleLineEdit sle_address from the 40th
character to the end in ls_address_extra:

string ls_address_extra
ls_address_extra = Mid(sle_address.Text, 40)

The following user-defined function, called str_to_int_array, converts a string into an array of
integers. Each integer in the array will contain two characters (one characters as the high byte
(ASCII value * 256) and the second character as the low byte). The function arguments are
str, a string passed by value, and iarr, an integer array passed by reference. The length of the
array is initialized before the function is called. If the integer array is longer than the string,
the script stores spaces. If the string is longer, the script ignores the extra characters.

To call the function, use code like the following:

int rtn
iarr[20]=0 // Initialize the array, if necessary
rtn = str_to_int_array("This is a test.", iarr)

The str_to_int_array function is:

long stringlen, arraylen, i
string char1, char2

// Get the string and array lengths
arraylen = UpperBound(iarr)
stringlen = Len(str)

// Loop through the array
FOR i = 1 to arraylen
 IF (i*2 <= stringlen) THEN
 // Get two chars from str
 char1 = Mid(str, i*2, 1)
 char2 = Mid(str, i*2 - 1, 1)
 ELSEIF (i*2 - 1 <= stringlen) THEN
 // Get the last char
 char1 = " "
 char2 = Mid(str, i*2 - 1, 1)
 ELSE
 // Use spaces if beyond the end of str
 char1 = " "
 char2 = " "
 END IF
 iarr[i] = Asc(char1) * 256 + Asc(char2)
NEXT
RETURN 1

For sample code that converts the integer array back to a string, see Asc.

See also

AscA

Left

Pos

Right

Statements, Events, and Functions

Page 1068

UpperBound

Mid method for DataWindows in Section 2.4.76, “Mid” in DataWindow Reference.

2.4.517 MidA

Description

Temporarily converts a string to DBCS, then returns the specified number of bytes from the
string, starting from a specified position.

Syntax

MidA (string, start {, length})

Table 2.982:

Argument Description

string The string you want to search.

start A long specifying the position of the first byte you want returned. (The
position of the first byte of the string is 1.)

length (optional) A long whose value is the number of bytes you want returned. If you do
not enter length or if length is greater than the number of bytes to the
right of start, MidA returns the remaining bytes in the string.

Return value

String.

Returns characters specified by the number of bytes searched in a source string, beginning at
the byte specified in the start argument. If start is greater than the number of bytes in string,
the MidA function returns an empty string (""). If length is greater than the number of bytes
remaining after the start character, MidA returns the remaining bytes. The return string is
not filled with spaces to make it the specified length. If any argument's value is null, MidA
returns null.

Usage

MidA replaces the functionality that Mid had in DBCS environments in PowerBuilder 9.

2.4.518 MidW (obsolete)

Description

Obtains a specified number of characters from a specified position in a string.

This function is obsolete. It has the same behavior as Mid.

Syntax

MidW (string, start {, length })

2.4.519 Min

Description

Determines the smaller of two numbers.

Statements, Events, and Functions

Page 1069

Syntax

Min (x, y)

Table 2.983:

Argument Description

x The number to which you want to compare y

y The number to which you want to compare x

Return value

The datatype of x or y, whichever datatype is more precise. If any argument's value is null,
Min returns null.

Usage

If either of the values being compared is null, Min returns null.

Examples

This statement returns 4:

Min(4,7)

This statement returns -7:

Min(- 4, - 7)

This statement returns 3.0, a decimal value:

Min(9.2,3.0)

See also

Max

Min method for DataWindows in Section 2.4.78, “Min” in DataWindow Reference.

2.4.520 Minute

Description

Obtains the number of minutes in the minutes portion of a time value.

Syntax

Minute (time)

Table 2.984:

Argument Description

time The time value from which you want the minutes

Return value

Integer.

Returns the minutes portion of time (00 to 59). If time is null, Minute returns null.

Examples

Statements, Events, and Functions

Page 1070

This statement returns 1:

Minute(19:01:31)

See also

Hour

Second

Minute method for DataWindows in Section 2.4.79, “Minute” in DataWindow Reference.

2.4.521 Mod

Description

Obtains the remainder (modulus) of a division operation.

Syntax

Mod (x, y)

Table 2.985:

Argument Description

x The number you want to divide by y

y The number you want to divide into x

Return value

The datatype of x or y, whichever datatype is more precise. If any argument's value is null,
Mod returns null.

Examples

This statement returns 2:

Mod(20, 6)

This statement returns 1.5:

Mod(25.5, 4)

This statement returns 2.5:

Mod(25, 4.5)

See also

Mod method for DataWindows in Section 2.4.80, “Mod” in DataWindow Reference.

2.4.522 ModifyData

Changes the value of a data point in a series on a graph. There are two syntaxes depending on
the type of graph.

Table 2.986:

To modify a data point in Use

All graph types except scatter Syntax 1

Statements, Events, and Functions

Page 1071

To modify a data point in Use

Scatter graphs Syntax 2

2.4.522.1 Syntax 1: For all graph types except scatter

Description

Changes the value of a data point in a series on a graph. You can specify the data point to be
modified by position or by category.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects (their data comes directly from the DataWindow).

Syntax

controlname.ModifyData (seriesnumber, datapoint, datavalue {, categoryvalue })

Table 2.987:

Argument Description

controlname The name of the graph in which you want to modify data.

seriesnumber The number of the series in which you want to modify data.

datapoint The number of the data point for which you want to modify the data.

datavalue The new value of the data point. The datatype of datavalue is the same as
the datatype of the values axis of the graph.

categoryvalue
(optional)

The category for datavalue. The datatype of categoryvalue is the same as
the datatype of the category axis of the graph.

Usage

When you specify categoryvalue, ModifyData changes the category value at the specified
position, as well as the data value. If the name you specify already exists at another position,
the data at that position is modified instead and the position in datapoint is ignored (the same
behavior as InsertData).

When you specify a position of 0, ModifyData always behaves the same as InsertData. For a
comparison of AddData, InsertData, and ModifyData, see the Usage section in InsertData.

Examples

These statements change the data for Apr in the series named Costs in the graph
gr_product_data:

integer SeriesNbr, CategoryNbr
// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
CategoryNbr = gr_product_data.FindCategory("Apr")
gr_product_data.ModifyData(SeriesNbr, &
 CategoryNbr, 1250)

See also

AddData

FindCategory

Statements, Events, and Functions

Page 1072

FindSeries

InsertCategory

InsertData

2.4.522.2 Syntax 2: For scatter graphs

Description

Changes the value of a data point in a series on a graph. You specify the data point by
position and provide an x and y value.

Applies to

Graph controls in windows and user objects. Does not apply to graphs within DataWindow
objects (their data comes directly from the DataWindow).

Syntax

controlname.ModifyData (seriesnumber, datapoint, xvalue, yvalue)

Table 2.988:

Argument Description

controlname The name of the scatter graph in which you want to modify data in a
series

seriesnumber The number that identifies the series in which you want to modify data

datapoint The number of the data point for which you want to modify data

xvalue The new x value of the data you want to modify

yvalue The new y value of the data you want to modify

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, ModifyData
returns null.

Usage

For scatter graphs, there are no categories. You specify the position in the series whose data
you want to modify and provide the x and y values for the data.

Examples

These statements modify the data point 9 in the series named Test One in the scatter graph
gr_product_data:

integer SeriesNbr
SeriesNbr = gr_product.FindSeries("Test One")
gr_product_data.ModifyData(SeriesNbr, &
 9, 4.55, 86.38)

See also

AddData

FindSeries

Statements, Events, and Functions

Page 1073

2.4.523 Month

Description

Determines the month of a date value.

Syntax

Month (date)

Table 2.989:

Argument Description

date The date from which you want the month

Return value

Integer.

Returns an integer (1 to 12) whose value is the month portion of date. If date is null, Month
returns null.

Examples

This statement returns 1:

Month(2004-01-31)

These statements store in start_month the month entered in the SingleLineEdit sle_start_date:

integer start_month
start_month = Month(date(sle_start_date.Text))

See also

Day

Date

Year

Month method for DataWindows in Section 2.4.82, “Month” in DataWindow Reference.

2.4.524 Move

Description

Moves a control or object to another position relative to its parent window, or for some
window objects, relative to the screen.

Applies to

Any object or control

Syntax

objectname.Move (x, y)

Table 2.990:

Argument Description

objectname The name of the object or control you want to move to a new location

x The x coordinate of the new location in PowerBuilder units

Statements, Events, and Functions

Page 1074

Argument Description

y The y coordinate of the new location in PowerBuilder units

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs or if objectname is a maximized window. If
any argument's value is null, Move returns null.

Usage

The x and y coordinates you specify are the new coordinates of the upper-left corner of
the object or control. If the shape of the object or control is not rectangular (such as, a
RadioButton or Oval), x and y are the coordinates of the upper-left corner of the box
enclosing it. For a line control, x and y are the BeginX and BeginY properties.

When you move controls, drawing objects, and child windows, the coordinates you specify
are relative to the upper-left corner of the parent window. When you use Move to position
main, pop-up, and response windows, the coordinates you specify are relative to the upper-
left corner of the display screen.

Move does not move a maximized sheet or window. If the window is maximized, Move
returns -1.

You can specify coordinates outside the frame of the parent window or screen, which
effectively makes the object or control invisible.

To draw the image of a Picture control at a particular position, without actually moving the
control, use the Draw function.

The Move function changes the X and Y properties of the moved object.

Equivalent syntax

The syntax below directly sets the X and Y properties of an object or control. Although the
result is equivalent to using the Move function, it causes PowerBuilder to redraw objectname
twice, first at the new location of X and then at the new X and Y location:

objectname.X = x
objectname.Y = y

These statements cause PowerBuilder to redraw gb_box1 twice:

gb_box1.X = 150
gb_box1.Y = 200

This statement has the same result but redraws gb_box1 once:

gb_box1.Move(150,200)

Examples

This statement changes the X and Y properties of gb_box1 to 150 and 200, respectively, and
moves gb_box1 to the new location:

gb_box1.Move(150, 200)

This statement moves the picture p_Train2 next to the picture p_Train1:

Statements, Events, and Functions

Page 1075

P_Train2.Move(P_Train1.X + P_Train1.Width, &
 P_Train1.Y)

2.4.525 MoveTab

Description

Moves a tab page to another position in a Tab control, changing its index number.

Applies to

Tab controls

Syntax

tabcontrolname.MoveTab (source, destination)

Table 2.991:

Argument Description

tabcontrolname The name of the Tab control containing the tab you want to move.

source An integer whose value is the index of the tab you want to move.

destination An integer whose value is the index of the destination tab before which
source is moved. If destination is 0 or greater than the number of tabs,
source is moved to the end.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

MoveTab also reorders the tab pages in the Tab control's Control array (which is a property
that lists the tab pages within the Tab control) to match the new tab order.

Examples

This example moves the first tab to the end:

tab_1.MoveTab(1, 0)

This example move the fourth tab to the first position:

tab_1.MoveTab(4, 1)

This example move the fourth tab to the third position:

tab_1.MoveTab(4, 3)

See also

OpenTab

SelectTab

2.4.526 _Narrow (obsolete)

Description

Statements, Events, and Functions

Page 1076

Converts a CORBA object reference from a general supertype to a more specific subtype.

This function is used by PowerBuilder clients connecting to EAServer.

Obsolete function

_Narrow is obsolete, because EAServer is no longer supported since PowerBuilder
2017.

Applies to

CORBAObject objects

Syntax

corbaobject._Narrow (newremoteobject, classname)

Table 2.992:

Argument Description

corbaobject An object of type CORBAObject that you want to convert

newremoteobject A variable that will contain the converted object reference

classname The class name of the subtype to which you want to narrow the object
reference

Return value

Long.

Returns 0 if it succeeds and a negative number if an error occurs.

Usage

The _Narrow function allows you to narrow proxy objects in a CORBA-compatible client
that connects to EAServer. For additional examples, see the functions on the See also list.

Examples

The following example narrows a CORBA object reference to the n_Bank_Account
interface:

CORBAObject my_corbaobj
n_Bank_Account my_account
...
...
my_corbaobj._narrow(my_account,"Bank/n_Bank_Account")

my_account.withdraw(100.0)

In this example, the component is an EJB component that resides in a separate domain in
EAServer. In this case, the SimpleBean component's classes are in the ../classes/adomain/
asimplepackage subdirectory:

CORBAObject my_corbaobj
SimpleBean my_simplebean
SimpleBeanHome my_simplebeanhome
...
my_corbaobj._narrow(my_simplebeanhome,
 "adomain/asimplepackage/SimpleBeanHome")

Statements, Events, and Functions

Page 1077

See also

_Is_A (obsolete)

2.4.527 Navigate

Description

Browses the specified Web page.

Applies to

WebBrowser controls

Syntax

controlname.Navigate (string url)

Table 2.993:

Argument Description

controlname The name of the WebBrowser control.

url The address of the page to browse.

Return value

Integer.

• 1 -- Success.

• -1 -- General error.

• -2 -- Failed to get the browser instance.

• -5 -- Invalid URL.

Examples

This example navigates to the Appeon website:

Integer li_rtn
li_rtn = wb_1.Navigate("http://www.appeon.com")

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

GoForward

PrintAsPDF

PauseDownload

Statements, Events, and Functions

Page 1078

RegisterEvent

ResumeDownload

Refresh

StopNavigation

UnregisterEvent

Zoom

2.4.528 NextActivity

Description

Provides the next activity in a trace file.

Applies to

TraceFile objects

Syntax

instancename.NextActivity ()

Table 2.994:

Argument Description

instancename Instance name of the TraceFile object

Return value

TraceActivityNode

Usage

You use the NextActivity function to read the next activity in a trace file. The activity
is returned as a TraceActivityNode object. If there are no more activities or if the file is
not open, an invalid object is returned. You can then use the LastError property of the
TraceFile object to determine what kind of error occurred. To use this function, you must
have previously opened the trace file with the Open function. You use the NextActivity and
Open functions as well as the other properties and functions provided by the TraceFile object
to access the contents of a trace file directly. For example, you would use these functions
if you want to perform your own analysis of the tracing data instead of using the available
modeling objects.

Examples

This example opens a trace file and then uses a user-defined function called
of_dumpactivitynode to report the appropriate information for each activity depending on its
activity type:

String ls_filename, ls_line
TraceFile ltf_file
TraceActivityNode ltan_node
ls_filename = sle_filename.text
ltf_file = CREATE TraceFile
ltf_file.Open(ls_filename)
ls_line = "CollectionTime = " + &
 String(ltf_file.CollectionTime) + "~r~n" + &

Statements, Events, and Functions

Page 1079

 "Num Activities = " + &
 String(ltf_file.NumberOfActivities) + "~r~n
mle_output.text = ls_line
ltan_node = ltf_file.NextActivity()
DO WHILE IsValid(ltan_node)
 ls_line = of_dumpactivitynode(ltan_node)
 ltan_node = ltf_file.NextActivity()
 mle_output.text = ls_line
LOOP

See also

Open

Close

Reset

2.4.529 Now

Description

Obtains the current time based on the system time of the client machine.

Syntax

Now ()

Return value

Time.

Returns the current time based on the system time of the client machine.

Usage

Use Now to compare a time to the system time or to display the system time on the screen.
You can use the Timer function to trigger a Timer event which causes Now to refresh the
display.

Examples

This statement returns the current system time.

Now()

This example displays the current time in the StaticText st_time. It keeps the time up-to-date
by setting a timer that triggers a Timer event every 60 seconds. Code in the window's Open
event displays the initial time and starts the timer. Code in the Timer event displays the time
again.

The following code appears in the window's Open event script:

st_time.Text = String(Now(), "hh:mm")
Timer(60)

A single line in the Timer event script refreshes the time display:

st_time.Text = String(Now(), "hh:mm")

See also

Today

Statements, Events, and Functions

Page 1080

Now method for DataWindows in Section 2.4.83, “Now” in DataWindow Reference.

2.4.530 ObjectAtPointer

Description

Finds out where the user clicked in a graph. ObjectAtPointer reports the region of the graph
under the pointer and stores the associated series and data point numbers in the designated
variables.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.ObjectAtPointer ({ graphcontrol, } seriesnumber, datapoint)

Table 2.995:

Argument Description

controlname The name of the graph object for which you want the object under the
pointer, or the DataWindow control containing the graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the object under the pointer

seriesnumber An integer variable in which you want to store the number of the series
under the pointer

datapoint An integer variable in which you want to store the number of the data
point under the pointer

Return value

grObjectType. Returns a value of the grObjectType enumerated datatype if the user clicks
anywhere in the graph (including an empty area) and a null value if the user clicks outside the
graph.

Values of grObjectType and the parts of the graph associated with them are:

• TypeCategory! -- A label for a category

• TypeCategoryAxis! -- The category axis or between the category labels

• TypeCategoryLabel! -- The label of the category axis

• TypeData! -- A data point or other data marker

• TypeGraph! -- Any place within the graph control that is not another grObjectType

• TypeLegend! -- Within the legend box, but not on a series label

• TypeSeries! -- The line that connects the data points of a series when the graph's type is
line or on the series label in the legend box

• TypeSeriesAxis! -- The series axis of a 3D graph

Statements, Events, and Functions

Page 1081

• TypeSeriesLabel! -- The label of the series axis of a 3D graph

• TypeTitle! -- The title of the graph

• TypeValueAxis! -- The value axis, including on the value labels

• TypeValueLabel! -- The user clicked the label of the value axis

Usage

The ObjectAtPointer function allows you to find out how the user is interacting with the
graph. The function returns a value of the grObjectType enumerated datatype identifying the
part of the graph. When the user clicks in a series, data point, or category, ObjectAtPointer
stores the series and/or data point numbers in designated variables.

When the user clicks a data point (or other data mark, such as line or bar), or on the series
labels in the legend, ObjectAtPointer stores the series number in the designated variable.

When the user clicks on a data point or category tickmark label, ObjectAtPointer stores the
data point number in the designated variable.

When the user clicks in a series, but not on the actual data point, ObjectAtPointer stores 0 in
datapoint and when the user clicks in a category, ObjectAtPointer stores 0 in seriesnumber.
When the user clicks other parts of the graph, ObjectAtPointer stores 0 in both variables.

Call ObjectAtPointer first

ObjectAtPointer is most effective as the first function call in the script for the Clicked
event for the graph control. Make sure you enable the graph control (the default is
disabled). Otherwise, the Clicked event script is never run.

Examples

These statements store the series number and data point number at the pointer location in the
graph named gr_product in SeriesNbr and ItemNbr. If the object type is TypeSeries! they
obtain the series name, and if it is TypeData! they get the data value:

integer SeriesNbr, ItemNbr
double data_value
grObjectType object_type
string SeriesName

object_type = &
 gr_product.ObjectAtPointer(SeriesNbr, ItemNbr)
IF object_type = TypeSeries! THEN
 SeriesName = &
 gr_product.SeriesName(SeriesNbr)
ELSEIF object_type = TypeData! THEN
 data_value = &
 gr_product.GetData(SeriesNbr, ItemNbr)
END IF

These statements store the series number and data point number at the pointer location in
the graph named gr_computers in the DataWindow control dw_equipment in SeriesNbr and
ItemNbr:

integer SeriesNbr, ItemNbr
dw_equipment.ObjectAtPointer("gr_computers", &

Statements, Events, and Functions

Page 1082

 SeriesNbr, ItemNbr)

See also

AddData

AddSeries

2.4.531 OffsetPos

Description

Sets the offset for progress bar controls.

Applies to

Progress bar controls

Syntax

control.OffsetPos (increment)

Table 2.996:

Argument Description

control The name of the progress bar control

increment An integer that is added to the start position of the progress bar control

Return value

Integer.

Returns 1 if it succeeds and -1 if there is an error.

Examples

This statement offsets the start position of a horizontal progress bar by 10:

HProgressBar.OffsetPos (10)

See also

SelectionRange

SetRange

StepIt

2.4.532 Open

Opens a window, an OLE object, or a trace file.

For windows

Open displays a window and makes all its properties and controls available to scripts.

Table 2.997:

To Use

Open an instance of a particular window datatype Syntax 1

Allow the application to select the window's datatype when the script is
executed

Syntax 2

Statements, Events, and Functions

Page 1083

For OLE objects

Open loads an OLE object contained in a file or storage into an OLE control or storage object
variable. The source and the target are then connected for the purposes of saving work.

Table 2.998:

To open Use

An OLE object in a file and load it into an OLE control Syntax 3

An OLE object in a storage object in memory and load it into an OLE
control

Syntax 4

An OLE object in an OLE storage file and load it into a storage object in
memory

Syntax 5

An OLE object that is a member of an open OLE storage and load it into
a storage object in memory

Syntax 6

A stream in an OLE storage object in memory and load it into a stream
object

Syntax 7

For trace files

Open opens the specified trace file for reading.

Table 2.999:

To Use

Open a trace file Syntax 8

2.4.532.1 Syntax 1: For windows of a known datatype

Description

Opens a window object of a known datatype. Open displays the window and makes all its
properties and controls available to scripts.

Applies to

Window objects

Syntax

Open (windowvar {, parent })

Table 2.1000:

Argument Description

windowvar The name of the window you want to display. You can specify a window
object defined in the Window painter (which is a window datatype) or a
variable of the desired window datatype. Open places a reference to the
opened window in windowvar.

parent (child and
pop-up windows
only) (optional)

The window you want make the parent of the child or pop-up window
you are opening. If you open a child or pop-up window and omit parent,

Statements, Events, and Functions

Page 1084

Argument Description
PowerBuilder associates the window being opened with the currently
active window.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, Open returns
null.

Usage

You must open a window before you can access the properties of the window. If you access
the window's properties before you open it, an execution error will occur.

To reference an open window in scripts, use windowvar.

Calling Open twice

If you call Syntax 1 of the Open function twice for the same window, PowerBuilder
activates the window twice; it does not open two instances of the window.

To open an array of windows where each window has different datatype, use Syntax 2 of
Open.

Parent windows for the opened window

Generally, if you are opening a child or a pop-up window and specify parent, the window
identified by parent is the parent of the opened window (windowname or windowvar). When
a parent window is closed, all its child and pop-up windows are closed too.

Not all types of windows can be parent windows. Only a window whose borders are not
confined within another window can be a parent. A child window or a window opened as a
sheet cannot be a parent.

If you specify a confined window as a parent, PowerBuilder checks its parent, and that
window's parent, until it finds a window that it can use as a parent. Therefore if you open a
pop-up window and specify a sheet as its parent, PowerBuilder makes the MDI frame that
contains the sheet its parent.

If you do not specify a parent for a child or pop-up window, the active window becomes the
parent. Therefore, if one pop-up is active and you open another pop-up, the first pop-up is
the parent, not the main window. When the first pop-up is closed, PowerBuilder closes the
second pop-up too.

However, in an MDI application, the active sheet is not the active window and cannot be the
parent. In Windows, it is clear that the MDI frame, not the active sheet, is the active window
-- its title bar is the active color and it displays the menu.

Mouse behavior and response windows

Controls capture the mouse in order to perform certain operations. For instance,
CommandButtons capture during mouse clicks, edit controls capture for text
selection, and scroll bars capture during scrolling. If a response window is opened
while the mouse is captured, unexpected results can occur.

Statements, Events, and Functions

Page 1085

Because a response window grabs focus, you should not open it when focus is changing, such
as in a LoseFocus event.

Examples

This statement opens an instance of a window named w_employee:

Open(w_employee)

The following statements open an instance of a window of the type w_employee:

w_employee w_to_open
Open(w_to_open)

The following code opens an instance of a window of the type child named cw_data and
makes w_employee the parent:

child cw_data
Open(cw_data, w_employee)

The following code opens two windows of type w_emp:

w_emp w_e1, w_e2
Open(w_e1)
Open(w_e2)

See also

Close

OpenWithParm

Show

2.4.532.2 Syntax 2: For windows of unknown datatype

Description

Opens a window object when you do not know its datatype until the application is running.
Open displays the window and makes all its properties and controls available to scripts.

Applies to

Window objects

Syntax

Open (windowvar, windowtype {, parent })

Table 2.1001:

Argument Description

windowvar A window variable, usually of datatype window. Open places a reference
to the opened window in windowvar.

windowtype A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
windowvar.

parent (child and
pop-up windows
only) (optional)

The window you want to make the parent of the child or pop-up window
you are opening. If you open a child or pop-up window and omit parent,

Statements, Events, and Functions

Page 1086

Argument Description
PowerBuilder associates the window being opened with the currently
active window.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, Open returns
null.

Usage

You must open a window before you can access the properties of the window. If you access
the window's properties before you open it, an execution error will occur.

To reference an open window in scripts, use windowvar.

The window object specified in windowtype must be the same datatype as windowvar (the
datatype includes datatypes inherited from it). The datatype of windowvar is usually window,
from which all windows are inherited, but it can be any ancestor of windowtype. If it is not
the same type, an execution error will occur.

Use this syntax to open an array of windows when each window in the array will have a
different datatype. See the last example, in which the window datatypes are stored in one
array and are used for the windowtype argument when each window in another array is
opened.

Considerations when specifying a window type

When you use Syntax 2, PowerBuilder opens an instance of a window of the datatype
specified in windowtype and places a reference to this instance in the variable
windowvar.

If windowtype is a descendant window, you can only reference properties, events, functions,
or structures that are part of the definition of windowvar. For example, if a user event is
declared for windowtype, you cannot reference it.

The object specified in windowtype is not automatically included in your executable
application. To include it, you must save it in a PBD file (PowerBuilder dynamic library) that
you deliver with your application.

For information about the parent of an opened window, see Syntax 1.

Examples

This example opens a window of the type specified in the string s_w_name and stores the
reference to the window in the variable w_to_open. The SELECT statement retrieves data
specifying the window type from the database and stores it in s_w_name:

window w_to_open
string s_w_name

SELECT next_window INTO : s_w_name FROM routing_table
WHERE... ;

Open(w_to_open, s_w_name)

Statements, Events, and Functions

Page 1087

This example opens an array of ten windows of the type specified in the string is_w_emp1
and assigns a title to each window in the array. The string is_w_emp1 is an instance variable
whose value is a window type:

integer n
window win_array[10]

FOR n = 1 to 10
 Open(win_array[n], is_w_emp1)
 win_array[n].title = "Window " + string(n)
NEXT

The following statements open four windows. The type of each window is stored in the array
w_stock_type. The window reference from the Open function is assigned to elements in the
array w_stock_win:

window w_stock_win[]
string w_stock_type[4]

w_stock_type[1] = "w_stock_wine"
w_stock_type[2] = "w_stock_scotch"
w_stock_type[3] = "w_stock_beer"
w_stock_type[4] = "w_stock_soda"

FOR n = 1 to 4
 Open(w_stock_win[n], w_stock_type[n])
NEXT

See also

Close

OpenWithParm

Show

2.4.532.3 Syntax 3: For loading an OLE object from a file into a control

Description

Opens an OLE object in a file and loads it into an OLE control.

Applies to

OLE controls

Syntax

olecontrol.Open (OLEsourcefile)

Table 2.1002:

Argument Description

olecontrol The name of the OLE control into which you want to load an OLE object.

OLEsourcefile A string specifying the name of an OLE storage file containing
the object. The file must already exist and contain an OLE object.
OLEsourcefile can include a path for the file, as well as path information
inside the OLE storage.

Return value

Statements, Events, and Functions

Page 1088

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The file is not found or its data has an invalid format

-9 -- Other error

If any argument's value is null, Open returns null.

Examples

This example opens the object in the file MYSTUFF.OLE and loads it into in the control
ole_1:

integer result
result = ole_1.Open("c:\ole2\mystuff.ole")

See also

InsertFile

Save

SaveAs

2.4.532.4 Syntax 4: For opening an OLE object in memory into a control

Description

Opens an OLE object that is in a OLE storage object in memory and loads it into an OLE
control.

Applies to

OLE controls

Syntax

olecontrol.Open (sourcestorage, substoragename)

Table 2.1003:

Argument Description

olecontrol The name of the OLE control into which you want to load an OLE object

sourcestorage The name of an object variable of OLEStorage containing the object you
want to load into olecontrol

substoragename A string specifying the name of a substorage that contains the desired
object within storagename

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-2 -- The parent storage is not open

-9 -- Other error

If any argument's value is null, Open returns null.

Examples

Statements, Events, and Functions

Page 1089

This example opens the object in the substorage excel_obj within the storage variable
stg_stuff and loads it into the control ole_1. Olest_stuff is already open:

integer result
result = ole_1.Open(stg_stuff, "excel_obj")

This example opens a substorage in the storage variable stg_stuff and loads it into the control
ole_1. The substorage name is specified in the variable stuff_1. Olest_stuff is already open:

integer result
string stuff_1 = "excel_obj"
result = ole_1.Open(stg_stuff, stuff_1)

See also

InsertFile

Save

SaveAs

2.4.532.5 Syntax 5: For opening an OLE object in a file into an OLEStorage

Description

Opens an OLE object in an OLE storage file and loads it into a storage object in memory.

Applies to

OLE storage objects

Syntax

olestorage.Open (OLEsourcefile {, readmode {, sharemode } })

Table 2.1004:

Argument Description

olestorage The name of an object variable of type OLEStorage into which you want
to load the OLE object.

OLEsourcefile A string specifying the name of an OLE storage file containing
the object. The file must already exist and contain OLE objects.
OLEsourcefile can include the file's path, as well as path information
within the storage.

readmode
(optional)

A value of the enumerated datatype stgReadMode that specifies the type
of access you want for OLEsourcefile. Values are:

• stgReadWrite! -- (Default) Read/Write access. If the file does not exist,
Open creates it.

• stgRead! -- Read-only access. You cannot change OLEsourcefile.

• stgWrite! -- Write access. You can rewrite OLEsourcefile but not read
its current contents. If the file does not exist, Open creates it.

sharemode
(optional)

A value of the enumerated datatype stgShareMode that specifies how
other attempts, by your own or other applications, to open OLEsourcefile
will fare. Values are:

Statements, Events, and Functions

Page 1090

Argument Description
• stgExclusive! -- (Default) No other attempt to open OLEsourcefile will

succeed.

• stgDenyNone! -- Any other attempt to open OLEsourcefile will
succeed.

• stgDenyRead! -- Other attempts to open OLEsourcefile for reading
will fail.

• stgDenyWrite -- Other attempts to open OLEsourcefile for writing will
fail.

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The file is not an OLE storage file

-3 -- The file is not found

-9 -- Other error

If any argument's value is null, Open returns null.

Usage

An OLE storage file is structured like a directory. Each OLE object can contain other OLE
objects (substorages) and other data (streams). You can open the members of an OLE storage
belonging to a server application if you know the structure of the storage. However, the
PowerBuilder functions for manipulating storages are provided so that you can build your
own storage files for organizing the OLE objects used in your applications.

The whole file can be an OLE object and substorages within the file can also be OLE objects.
More frequently, the structure for a storage file you create is a root level that is not an
OLE object but contains independent OLE objects as substorages. Any level in the storage
hierarchy can contain OLE objects or be simply a repository for another level of substorages.

Opening nested objects

Because you can specify path information within an OLE storage with a backslash
as the separator, you can open a deeply nested object with a single call to Open.
However, there is no error checking for the path you specify and if the Open fails, you
wo not know why. It is strongly recommended that you open each object in the path
until you get to the one you want.

Examples

This example opens the object in the file MYSTUFF.OLE and loads it into the OLEStorage
variable stg_stuff:

integer result
OLEStorage stg_stuff

stg_stuff = CREATE OLEStorage

Statements, Events, and Functions

Page 1091

result = stg_stuff.Open("c:\ole2\mystuff.ole")

This example opens the same object for reading:

integer result
OLEStorage stg_stuff

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole", &
 stgRead!)

This example opens the object in the file MYSTUFF.OLE and loads it into the OLEStorage
variable stg_stuff, as in the previous example. Then it opens the substorage drawing_1 into a
second storage variable, using Syntax 6 of Open. This example does not include code to close
and destroy any of the objects that were opened.

integer result
OLEStorage stg_stuff, stg_drawing

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole")
IF result >= 0 THEN
 stg_drawing = CREATE OLEStorage
 result = opest_drawing.Open("drawing_1", &
 stgRead!, stgDenyNone!, stg_stuff)
END IF

This example opens the object in the file MYSTUFF.OLE and loads it into the OLEStorage
variable stg_stuff. Then it checks whether a stream called info exists in the OLE object, and if
so, opens it with read access using Syntax 7 of Open. This example does not include code to
close and destroy any of the objects that were opened.

integer result
boolean str_found
OLEStorage stg_stuff
OLEStream mystream

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole")
IF result < 0 THEN RETURN

result = stg_stuff.MemberExists("info", str_found)
IF result < 0 THEN RETURN

IF str_found THEN
 mystream = CREATE OLEStream
 result = mystream.Open(stg_stuff, "info", &
 stgRead!, stgDenyNone!)
 IF result < 0 THEN RETURN
END IF

See also

Close

Save

SaveAs

2.4.532.6 Syntax 6: For opening an OLE storage member into a storage

Description

Statements, Events, and Functions

Page 1092

Opens a member of an open OLE storage and loads it into another OLE storage object in
memory.

Applies to

OLE storage objects

Syntax

olestorage.Open (substoragename, readmode, sharemode, sourcestorage)

Table 2.1005:

Argument Description

olestorage The name of a object variable of type OLEStorage into which you want
to load the OLE object.

substoragename A string specifying the name of the storage member within sourcestorage
that you want to open. Note the reversed order of the sourcestorage and
substoragename arguments from Syntax 4.

readmode A value of the enumerated datatype stgReadMode that specifies the type
of access you want for substoragename. Values are:

• stgReadWrite! -- Read/write access. If the member does not exist,
Open creates it.

• stgRead! -- Read-only access. You cannot change substoragename.

• stgWrite! -- Write access. You can rewrite substoragename but not
read its current contents. If the member does not exist, Open creates it.

sharemode A value of the enumerated datatype stgShareMode that specifies
how other attempts, by your own or other applications, to open
substoragename will fare. Values are:

• stgExclusive! -- (Default) No other attempt to open substoragename
will succeed.

• stgDenyNone! -- Any other attempt to open substoragename will
succeed.

• stgDenyRead! -- Other attempts to open substoragename for reading
will fail.

• stgDenyWrite -- Other attempts to open substoragename for writing
will fail.

sourcestorage An open OLEStorage object containing substoragename.

Return value

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

Statements, Events, and Functions

Page 1093

-2 -- The parent storage is not open

-3 -- The member is not found (when opened for reading)

-9 -- Other error

If any argument's value is null, Open returns null.

Usage

An OLE storage file is structured like a directory. Each OLE object can contain other OLE
objects (substorages) and other data (streams). You can open the members of an OLE
storage belonging to a server application if you know the structure of the storage. However,
PowerBuilder's functions for manipulating storages are provided so that you can build your
own storage files for organizing the OLE objects used in your applications.

The whole file can be an OLE object and substorages within the file can also be OLE objects.
More frequently, the structure for a storage file you create is a root level that is not an
OLE object but contains independent OLE objects as substorages. Any level in the storage
hierarchy can contain OLE objects or be simply a repository for another level of substorages.

Opening nested objects

Because you can specify path information within an OLE storage with a backslash
as the separator, you can open a deeply nested object with a single call to Open.
However, there is no error checking for the path you specify and if the Open fails, you
will not know why. It is strongly recommended that you open each object in the path
until you get to the one you want.

Examples

This example opens the object in the file MYSTUFF.OLE and loads it into the OLEStorage
variable stg_stuff, as in the previous example. Then it opens the substorage drawing_1 into a
second storage variable. This example does not include code to close and destroy any of the
objects that were opened.

integer result
OLEStorage stg_stuff, stg_drawing

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole")
IF result >= 0 THEN
 stg_drawing = CREATE OLEStorage
 result = opest_drawing.Open("drawing_1", &
 stgRead!, stgDenyNone!, stg_stuff)
END IF

See also

Close

Save

SaveAs

2.4.532.7 Syntax 7: For opening OLE streams

Description

Opens a stream in an open OLE storage object and loads it into an OLE stream object.

Statements, Events, and Functions

Page 1094

Applies to

OLE stream objects

Syntax

olestream.Open (sourcestorage, streamname {, readmode {, sharemode } })

Table 2.1006:

Argument Description

olestream The name of a object variable of type OLEStream into which you want to
load the OLE object.

sourcestorage An OLE storage that contains the stream to be opened.

streamname A string specifying the name of the stream within sourcestorage that you
want to open.

readmode
(optional)

A value of the enumerated datatype stgReadMode that specifies the type
of access you want for streamname. Values are:

• stgReadWrite! -- Read/write access. If streamname does not exist,
Open creates it.

• stgRead! -- Read-only access. You cannot change streamname.

• stgWrite! -- Write access. You can rewrite streamname but not read its
current contents. If streamname does not exist, Open creates it.

sharemode
(optional)

A value of the enumerated datatype stgShareMode that specifies how
other attempts, by your own or other applications, to open streamname
will fare. Values are:

• stgExclusive! -- No other attempt to open streamname will succeed.

• stgDenyNone! -- Any other attempt to open streamname will succeed.

• stgDenyRead! -- Other attempts to open streamname for reading will
fail.

• stgDenyWrite -- Other attempts to open streamname for writing will
fail.

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Stream not found

-2 -- Stream already exists

-3 -- Stream is already open

-4 -- Storage not open

-5 -- Access denied

Statements, Events, and Functions

Page 1095

-6 -- Invalid name

-9 -- Other error

If any argument's value is null, Open returns null.

Examples

This example opens the object in the file MYSTUFF.OLE and loads it into the OLEStorage
variable stg_stuff. Then it checks whether a stream called info exists in the OLE object, and if
so, opens it with read access. This example does not include code to close and destroy any of
the objects that were opened.

integer result
boolean str_found
OLEStorage stg_stuff
OLEStream mystream

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole")
IF result < 0 THEN RETURN

result = stg_stuff.MemberExists("info", str_found)
IF result < 0 THEN RETURN

IF str_found THEN
 mystream = CREATE OLEStream
 result = mystream.Open(stg_stuff, "info", &
 stgRead!, stgDenyNone!)
 IF result < 0 THEN RETURN
END IF

See also

Close

2.4.532.8 Syntax 8: For opening trace files

Description

Opens the specified trace file for reading.

Applies to

TraceFile object

Syntax

instancename.Open (filename)

Table 2.1007:

Argument Description

instancename Instancename of the TraceFile object

filename A string identifying the name of the trace file you want to read

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

Statements, Events, and Functions

Page 1096

• FileAlreadyOpenError! -- The specified trace file has already been opened

• FileOpenError! -- The trace file can not be opened for reading

• FileInvalidFormatError! -- The file does not have the correct format

• EnterpriseOnlyFeature! -- (Obsolete) This function is supported only in the Enterprise
edition of PowerBuilder 12.6 and earlier versions.

• SourcePBLError! -- The source libraries cannot be found

Usage

You use this syntax to access the contents of a specified trace file created from a running
PowerBuilder application. You can then use the properties and functions provided by the
TraceFile object to perform your own analysis of tracing data instead of using the available
modeling objects.

Examples

This example opens a trace file:

TraceFile ltf_file
String ls_filename

ltf_file = CREATE TraceFile
ltf_file.Open(ls_filename)
...

See also

Close

Reset

NextActivity

2.4.533 OpenChannel

Description

Opens a channel to a DDE server application.

Syntax

OpenChannel (applname, topicname {, windowhandle })

Table 2.1008:

Argument Description

applname A string specifying the DDE name of the DDE server application.

topicname A string identifying the data or the instance of the application you want to
use (for example, in Microsoft Excel, the topic name could be System or
the name of an open spreadsheet).

windowhandle
(optional)

The handle of the window that you want to act as the DDE client. Specify
this parameter to control which window is acting as the DDE client when
you have more than one open window.

Statements, Events, and Functions

Page 1097

Return value

Long.

Returns the handle to the channel (a positive integer) if it succeeds. If an error occurs,
OpenChannel returns a negative integer. Values are:

-1 -- Open failed

-9 -- Handle is null

Usage

Use OpenChannel to open a channel to a DDE server application and leave it open so you can
efficiently execute more than one DDE request. This type of DDE conversation is called a
warm link. Because you open a channel, the operating system does not have to poll all open
applications every time you send or ask for data.

The following is an outline of a warm-link conversation:

• Open a DDE channel with OpenChannel and check that it returns a valid channel handle (a
positive value).

• Execute several DDE functions. You can use the following functions:

ExecRemote (command, handle, <windowhandle>)

GetRemote (location, target, handle, <windowhandle>)

SetRemote (location, value, handle, <windowhandle>)

• Close the DDE channel with CloseChannel.

If you only need to use a remote DDE function once, you can call ExecRemote, GetRemote,
or SetRemote without opening a channel. This is called a cold link. Without an open channel,
the operating system polls all running applications to find the specified server application
each time you call a DDE function.

Your PowerBuilder application can also be a DDE server.

For more information, see StartServerDDE.

About server applications

Each application decides how it supports DDE. You must check each potential server
application's documentation to find out its DDE name, what its valid topics are, and
how it expects locations to be specified.

Examples

These statements open a channel to the active spreadsheet REGION.XLS in Microsoft Excel
and set handle to the handle to the channel:

long handle
handle = OpenChannel("Excel", "REGION.XLS")

The following example opens a DDE channel to Excel and requests data from three
spreadsheet cells. In the PowerBuilder application, the data is stored in the string array
s_regiondata. The client window for the DDE conversation is w_ddewin:

Statements, Events, and Functions

Page 1098

long handle
string s_regiondata[3]
handle = OpenChannel("Excel", "REGION.XLS", &
 Handle(w_ddewin))
GetRemote("R1C2", s_regiondata[1], handle, &
 Handle(w_ddewin))
GetRemote("R1C3", s_regiondata[2], handle, &
 Handle(w_ddewin))
GetRemote("R1C4", s_regiondata[3], handle, &
 Handle(w_ddewin))
CloseChannel(handle, Handle(w_ddewin))

See also

CloseChannel

ExecRemote

GetRemote

SetRemote

2.4.534 OpenSheet

Description

Opens a sheet within an MDI (multiple document interface) frame window and creates a
menu item for selecting the sheet on the specified menu.

Applies to

Window objects

Syntax

OpenSheet (sheetrefvar {, windowtype }, mdiframe {, position {, arrangeopen } })

Table 2.1009:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheet places a reference to the open sheet in sheetrefvar.

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

mdiframe The name of an MDI frame window.

position
(optional)

The number of the menu item (in the menu associated with the sheet) to
which you want to append the names of the open sheets. Menu bar menu
items are numbered from the left, beginning with 1. The default value of
0 lists the open sheets under the next-to-last menu item.

arrangeopen
(optional)

A value of the ArrangeOpen enumerated datatype specifying how you
want the sheet arranged in the MDI frame in relation to other sheets when
it is opened:

• Cascaded! -- (Default) Cascade the sheet relative to other open sheets,
so that its title bar is below the previously opened sheet.

Statements, Events, and Functions

Page 1099

Argument Description
• Layered! -- Layer the sheet so that it fills the frame and covers

previously opened sheets.

• Original! -- Open the sheet in its original size and cascade it.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, OpenSheet
returns null. In some cases, such as if the windowtype argument is invalid, OpenSheet throws
a runtime error and does not return a value; therefore, it is recommended that you both test
the return value and wrap the function call in a try-catch block as shown in the first example
in the Examples section.

Usage

A sheet is a document window that is contained within an MDI frame window. MDI
applications allow several sheets to be open at the same time. The newly opened sheet
becomes the active sheet. If the opened sheet has an associated menu, that menu becomes the
menu at the top of the frame.

When you specify windowtype, the window object specified in windowtype must be the
same datatype as sheetrefvar (a datatype includes datatypes inherited from it). The datatype
of sheetrefvar is usually window, from which all windows are inherited, but it can be any
ancestor of windowtype. If it is not the same type, an execution error occurs.

PowerBuilder does not automatically copy objects that are dynamically referenced (through
string variables) into your executable. To include the window object specified in windowtype
in your application, list it in the resource (PBR) file that you use when you build the
executable. For more information about PBR files for an executable, see Section 7.3.5.2,
“Using PowerBuilder resource files” in Users Guide.

OpenSheet opens a sheet and appends its name to the item on the menu bar specified in
position. If position is 0 or greater than the number of items on the menu bar, PowerBuilder
appends the name of the sheet to the next-to-last menu item in the menu bar. In most MDI
applications, the next-to-last menu item on the menu bar is the Window menu, which
contains options for arranging sheets, as well as the list of open sheets.

PowerBuilder cannot append the sheets to a menu that does not have any other menu
selections. Make sure that the menu you specify or, if you leave out position, the next-to-last
menu, has at least one other item.

If more than nine sheets are open in the frame, the first nine are listed on the menu specified
by position and a final item More Windows is added.

Sheets in a frame cannot be made invisible. When you open a sheet, the value of the Visible
property is ignored. Changing the Visible property when the window is already open has no
effect.

Opening response windows

Do not use the OpenSheet function to open a response window.

Statements, Events, and Functions

Page 1100

Examples

This example opens the sheet child_1 in the MDI frame MDI_User in its original size. It
appends the name of the opened sheet to the second menu item in the menu bar, which is now
the menu associated with child_1, not the menu associated with the frame. OpenSheet might
return -1 or throw a runtime error if the call fails. To ensure that both of these possibilities are
trapped, this example checks the return value of the function and uses a try-catch statement to
catch a possible runtime error:

integer li_return
try
 li_return = Opensheet (child_1, MDI_User, 2, &
 Original!)
 if IsNull(li_return) then
 MessageBox ("Failure", "Null argument provided")
 elseif li_return= 1 then
 MessageBox ("Success", "Sheet opened.")
 else
 MessageBox ("Failure", "Sheet open failed.")
 end if
catch (runtimeerror rt)
 Messagebox("Failure","Sheet open failed. " &
 + rt.getmessage()) //Handle the error or not
end try

This example opens an instance of the window object child_1 as an MDI sheet and stores
a reference to the opened window in child. The name of the sheet is appended to the fourth
menu associated with child_1 and is layered:

window child
OpenSheet(child, "child_1", MDI_User, 4, Layered!)

See also

ArrangeSheets

GetActiveSheet

OpenSheetWithParm

2.4.535 OpenSheetAsDocument

Description

Opens a sheet as a document within an MDI frame window for dockable windows.

Applies to

Window objects

Syntax

OpenSheetAsDocument (sheetrefvar {, windowtype }, mdiframe, sheetname {,
 tabalign })

Table 2.1010:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheetAsDocument places a reference to the open sheet in
sheetrefvar.

Statements, Events, and Functions

Page 1101

Argument Description

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

mdiframe The name of an MDI frame window.

sheetname A unique string identifier for the sheet, which is used when layout is
persisted.

tabalign
(optional)

A boolean that, when used, creates a new tab group and indicates the
alignment of the sheets in the group. When true, the tabs in the group
align vertically. When false, the tabs align horizontally.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenSheetAsDocument returns null. In some cases, such as if the windowtype argument is
invalid, OpenSheetAsDocument throws a runtime error and does not return a value; therefore,
it is recommended that you both test the return value and wrap the function call in a try-catch
block.

Usage

Tabbed documents can be in more than one tab group. Users can create additional tab groups
by dragging one tab outside of the current group. If there is more than one tab group, use the
mdiframe argument to specify in which one to open a sheet. Instead of specifying the parent
window, specify an already open sheet in the tab group where you want to open your new
sheet.

2.4.536 OpenSheetDocked

Description

Opens a sheet docked in a specified position within an MDI frame window for dockable
windows.

Applies to

Window objects

Syntax

OpenSheetDocked (sheetrefvar {, windowtype }, mdiframe, position, sheetname)

Table 2.1011:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheetDocked places a reference to the open sheet in sheetrefvar.

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

mdiframe The name of an MDI frame window.

Statements, Events, and Functions

Page 1102

Argument Description

position An enumerated type that specifies where to dock the sheet:

• WindowDockLeft!

• WindowDockRight!

• WindowDockTop!

• WindowDockBottom!

sheetname A unique string identifier for the sheet, which is used when layout is
persisted.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenSheetDocked returns null. In some cases, such as if the windowtype argument is
invalid, OpenSheetDocked throws a runtime error and does not return a value; therefore, it
is recommended that you both test the return value and wrap the function call in a try-catch
block.

Usage

Open the sheet, docked in a specified position.

2.4.537 OpenSheetFromDockingState

Description

Opens one or more persisted sheets within an MDI frame window for dockable windows.

Applies to

Window objects

Syntax

OpenSheetFromDockingState (sheetrefvar {, windowtype }, mdiframe, sheetname)

Table 2.1012:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheetFromDockingState places a reference to the open sheet in
sheetrefvar.

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

mdiframe The name of an MDI frame window.

sheetname A unique string identifier for the sheet, which is used when layout is
persisted.

Statements, Events, and Functions

Page 1103

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenSheetFromDockingState returns null.

UsageOpen persisted sheets in their saved docking states.

2.4.538 OpenSheetInTabGroup

Description

Opens a sheet in a tab group within an MDI frame window for dockable windows.

Applies to

Window objects

Syntax

OpenSheetInTabGroup (sheetrefvar {, windowtype }, siblingname, sheetname)

Table 2.1013:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheetInTabGroup places a reference to the open sheet in
sheetrefvar.

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

siblingname The name of a sibling window in either a docked state or in a non-
document tab group. The sheet opens in that tab group.

sheetname A unique string identifier for the sheet, which is used when layout is
persisted.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenSheetInTabGroup returns null. In some cases, such as if the windowtype argument is
invalid, OpenSheetInTabGroup throws a runtime error and does not return a value; therefore,
it is recommended that you both test the return value and wrap the function call in a try-catch
block.

Usage

The first sheet opened in a main window cannot be opened using OpenSheetInTabGroup
or OpenSheetWithParmInTabGroup. To create a tab group, open the first sheet as a docked
sheet and then use that sheet as the siblingname argument.

2.4.539 OpenSheetWithParm

Description

Statements, Events, and Functions

Page 1104

Opens a sheet within an MDI (multiple document interface) frame window and
creates a menu item for selecting the sheet on the specified menu, as OpenSheet does.
OpenSheetWithParm also stores a parameter in the system's Message object so that it is
accessible to the opened sheet.

Applies to

Window objects

Syntax

OpenSheetWithParm (sheetrefvar, parameter {, windowtype }, mdiframe {, position {,
 arrangeopen } })

Table 2.1014:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheetWithParm places a reference to the open sheet in sheetrefvar.

parameter The parameter you want to store in the Message object when the sheet is
opened. Parameter must have one of these datatypes:

• String

• Numeric

• PowerObject

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

mdiframe The name of the MDI frame window in which you want to open this
sheet.

position
(optional)

The number of the menu item (in the menu associated with the sheet) to
which you want to append the names of the open sheets. Menu bar menu
items are numbered from the left, beginning with 1. The default is to list
the open sheets under the next-to-last menu item.

arrangeopen
(optional)

A value of the ArrangeOpen enumerated datatype specifying how you
want the sheets arranged in the MDI frame when they are opened:

• Cascaded! -- (Default) Cascade the sheet relative to other open sheets
so that its title bar is below the previously opened sheet.

• Layered! -- Layer the sheet so that it fills the frame and covers
previously opened sheets.

• Original! -- Open the sheet in its original size and cascade it.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenSheetWithParm returns null. In some cases, such as if the windowtype argument is

Statements, Events, and Functions

Page 1105

invalid, OpenSheetWithParm throws a runtime error and does not return a value; therefore, it
is recommended that you both test the return value and wrap the function call in a try-catch
block as shown in the first example in the Examples section.

Usage

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenSheetWithParm, scripts for the opened sheet would check
one of the following properties.

Table 2.1015:

Message object
property

Argument datatype

Message.DoubleParmNumeric

Message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

Message.StringParmString

In the opened window, it is a good idea to access the value passed in the Message object
immediately (because some other script may use the Message object for another purpose).

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you get a null object
reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

Opening response windows

Do not use the OpenSheetWithParm function to open a response window.

See the usage notes for OpenSheet, which also apply to OpenSheetWithParm.

Examples

This example opens the sheet w_child_1 in the MDI frame MDI_User in its original size
and stores MA in message.StringParm. It appends the names of the open sheet to the
second menu item in the menu bar of MDI_User (the menu associated with w_child_1).
OpenSheetWithParm might return -1 or throw a runtime error if the call fails. To ensure that
both of these possibilities are trapped, this example checks the return value of the function
and uses a try-catch statement to catch a possible runtime error:

integer li_return
try
 li_return = OpenSheetWithParm(w_child_1, "MA", &
 MDI_User, 2, Original!)
 if IsNull(li_return) then
 MessageBox ("Failure", "Null argument provided")
 elseif li_return= 1 then
 MessageBox ("Success", "Sheet opened.")
 else
 MessageBox ("Failure", "Sheet open failed.")

Statements, Events, and Functions

Page 1106

 end if

catch (runtimeerror rt)
 Messagebox("Failure", "Sheet open failed. " &
 + rt.getmessage()) //Handle the error
end try

The next example illustrates how to access parameters passed in the Message object. These
statements are in the scripts for two different windows. The script for the first window
declares child as a window and opens an instance of w_child_1 as an MDI sheet. The name
of the sheet is appended to the fourth menu item associated with w_child_1 and is layered.

The script also passes a reference to the SingleLineEdit control sle_state as a PowerObject
parameter of the Message object. The script for the Open event of w_child_1 uses the text in
the edit control to determine what type of calculations to perform. Note that this would fail
if sle_state no longer existed when the second script refers to it. As an alternative, you could
pass the text itself, which would be stored in the String parameter of Message.

The second script determines the text in the SingleLineEdit and performs processing based on
that text.

The script for the first window is:

window child
OpenSheetWithParm(child, sle_state, &
 "w_child_1", MDI_User, 4, Layered!)

The second script, for the Open event in w_child_1, is:

SingleLineEdit sle_state
sle_state = Message.PowerObjectParm
IF sle_state.Text = "overtime" THEN
... // overtime hours calculations
ELSEIF sle_state.Text = "vacation" THEN
... // vacation processing
ELSEIF sle_state.Text = "standard" THEN
... // standard hours calculations
END IF

See also

ArrangeSheets

OpenSheet

2.4.540 OpenSheetWithParmAsDocument

Description

Opens a sheet as a document within an MDI frame window for dockable windows.
OpenSheetWithParmAsDocument also stores a parameter in the system's Message object so
that it is accessible to the opened sheet.

Applies to

Window objects

Syntax

OpenSheetWithParmAsDocument (sheetrefvar, parameter {, windowtype }, mdiframe,
 sheetname {, tabalign })

Statements, Events, and Functions

Page 1107

Table 2.1016:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheetWithParmAsDocument places a reference to the open sheet in
sheetrefvar.

parameter The parameter you want to store in the Message object when the sheet is
opened. Parameter must have one of these datatypes:

• String

• Double

• PowerObject

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

mdiframe The name of an MDI frame window.

sheetname A unique string identifier for the sheet, which is used when layout is
persisted.

tabalign
(optional)

A boolean that, when used, creates a new tab group and indicates the
alignment of the sheets in the group. When true, the tabs in the group
align vertically. When false, the tabs align horizontally.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenSheetWithParmAsDocument returns null. In some cases, such as if the windowtype
argument is invalid, OpenSheetWithParmAsDocument throws a runtime error and does not
return a value; therefore, it is recommended that you both test the return value and wrap the
function call in a try-catch block.

Usage

Tabbed documents can be in more than one tab group. Users can create additional tab groups
by dragging one tab outside of the current group. If there is more than one tab group, use the
mdiframe argument to specify in which one to open a sheet. Instead of specifying the parent
window, specify an already open sheet in the tab group where you want to open your new
sheet.

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenSheetWithParmAsDocument, scripts for the opened sheet
would check one of the following properties.

Table 2.1017:

Message object
property

Argument datatype

Message.DoubleParmDouble

Statements, Events, and Functions

Page 1108

Message object
property

Argument datatype

Message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

Message.StringParmString

In the opened window, it is a good idea to access the value passed in the Message object
immediately (because some other script may use the Message object for another purpose).

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you get a null object
reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

2.4.541 OpenSheetWithParmDocked

Description

Opens a sheet docked in a specified position within an MDI frame window for dockable
windows. OpenSheetWithParmDocked also stores a parameter in the system's Message
object so that it is accessible to the opened sheet.

Applies to

Window objects

Syntax

OpenSheetWithParmDocked (sheetrefvar, parameter {, windowtype }, mdiframe,
 position, sheetname)

Table 2.1018:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheetWithParmDocked places a reference to the open sheet in
sheetrefvar.

parameter The parameter you want to store in the Message object when the sheet is
opened. Parameter must have one of these datatypes:

• String

• Double

• PowerObject

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

mdiframe The name of an MDI frame window.

Statements, Events, and Functions

Page 1109

Argument Description

position An enumerated type that specifies where to dock the sheet:

• WindowDockLeft!

• WindowDockRight!

• WindowDockTop!

• WindowDockBottom!

sheetname A unique string identifier for the sheet, which is used when layout is
persisted.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenSheetWithParmDocked returns null. In some cases, such as if the windowtype argument
is invalid, OpenSheetWithParmDocked throws a runtime error and does not return a value;
therefore, it is recommended that you both test the return value and wrap the function call in a
try-catch block.

Usage

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenSheetWithParmDocked, scripts for the opened sheet
would check one of the following properties.

Table 2.1019:

Message object
property

Argument datatype

Message.DoubleParmDouble

Message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

Message.StringParmString

In the opened window, it is a good idea to access the value passed in the Message object
immediately (because some other script may use the Message object for another purpose).

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you get a null object
reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

2.4.542 OpenSheetWithParmFromDockingState

Description

Statements, Events, and Functions

Page 1110

Opens one or more persisted sheets within an MDI frame window for dockable windows.
OpenSheetWithParmFromDockingState also stores a parameter in the system's Message
object so that it is accessible to the opened sheet.

Applies to

Window objects

Syntax

OpenSheetWithParmFromDockingState (sheetrefvar, parameter {, windowtype },
 mdiframe, sheetname)

Table 2.1020:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheetWithParmFromDockingState places a reference to the open
sheet in sheetrefvar.

parameter The parameter you want to store in the Message object when the sheet is
opened. Parameter must have one of these datatypes:

• String

• Double

• PowerObject

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

mdiframe The name of an MDI frame window.

sheetname A unique string identifier for the sheet, which is used when layout is
persisted.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenSheetWithParmFromDockingState returns null.

Usage

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenSheetWithParmFromDockingState, scripts for the opened
sheet would check one of the following properties.

Table 2.1021:

Message object
property

Argument datatype

Message.DoubleParmDouble

Message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

Message.StringParmString

Statements, Events, and Functions

Page 1111

In the opened window, it is a good idea to access the value passed in the Message object
immediately (because some other script may use the Message object for another purpose).

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you get a null object
reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

2.4.543 OpenSheetWithParmInTabGroup

Description

Opens a sheet in a tab group within an MDI frame window for dockable windows.
OpenSheetWithParmInTabGroup also stores a parameter in the system's Message object so
that it is accessible to the opened sheet.

Applies to

Window objects

Syntax

OpenSheetWithParmInTabGroup (sheetrefvar, parameter {, windowtype }, siblingname,
 sheetname)

Table 2.1022:

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame window.
OpenSheetInwithParmTabGroup places a reference to the open sheet in
sheetrefvar.

parameter The parameter you want to store in the Message object when the sheet is
opened. Parameter must have one of these datatypes:

• String

• Double

• PowerObject

windowtype
(optional)

A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
sheetrefvar.

siblingname The name of a sibling window in either a docked state or in a non-
document tab group. The sheet opens in that tab group.

sheetname A unique string identifier for the sheet, which is used when layout is
persisted.

Return value

Statements, Events, and Functions

Page 1112

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenSheetWithParmInTabGroup returns null. In some cases, such as if the windowtype
argument is invalid, OpenSheetWithParmInTabGroup throws a runtime error and does not
return a value; therefore, it is recommended that you both test the return value and wrap the
function call in a try-catch block.

Usage

The first sheet opened in a main window cannot be opened using OpenSheetInTabGroup
or OpenSheetWithParmInTabGroup. To create a tab group, open the first sheet as a docked
sheet and then use that sheet as the siblingname argument.

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenSheetWithParmInTabGroup, scripts for the opened sheet
would check one of the following properties.

Table 2.1023:

Message object
property

Argument datatype

Message.DoubleParmDouble

Message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

Message.StringParmString

In the opened window, it is a good idea to access the value passed in the Message object
immediately (because some other script may use the Message object for another purpose).

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you get a null object
reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

2.4.544 OpenTab

Opens a visual user object and makes it a tab page in the specified Tab control and makes all
its properties and controls available to scripts.

Table 2.1024:

To open Use

A user object as a tab page Syntax 1

A user object as a tab page, allowing the application to select the user
object's type at runtime

Syntax 2

2.4.544.1 Syntax 1: For user objects of a known datatype

Description

Statements, Events, and Functions

Page 1113

Opens a custom visual user object of a known datatype as a tab page in a Tab control.

Applies to

Tab controls

Syntax

tabcontrolname.OpenTab (userobjectvar, index)

Table 2.1025:

Argument Description

tabcontrolname The name of the Tab control in which you want to open the user object as
a tab page.

userobjectvar The name of the custom visual user object you want to open as a tab
page. You can specify a custom visual user object defined in the User
Object painter (which is a user object datatype) or a variable of the
desired user object datatype. OpenTab places a reference to the opened
custom visual user object in userobjectvar.

index The number of the tab before which you want to insert the new tab. If
index is 0 or greater than the number of tabs, the tab page is inserted at
the end.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, OpenTab
returns null.

Usage

Use Syntax 1 when you know what user object you want to open. Use Syntax 2 when the
application will determine what type of user object to open when the script runs.

The tab page for the user object does not become selected. Scripts for constructor events of
the controls on the user object do not run until the tab page is selected.

You must open a user object before you can access the properties of the user object. If you
access the user object's properties before you open it, an execution error will occur.

A user object that is part of a Tab control's definition (that is, it was added to the Tab control
in the Window painter) does not have to be opened in a script. PowerBuilder opens it when it
opens the window containing the Tab control.

OpenTab adds the newly opened user object to the Tab control's Control array, which is a
property that lists the tab pages within the Tab control.

Opening the same object twice

If you call Syntax 1 twice to open the same user object, PowerBuilder does open
the user object again as another tab page, in contrast to the behavior of Open and
OpenUserObject.

Statements, Events, and Functions

Page 1114

Behavior change

In previous releases, calling the OpenTab function to open a user object as a tab page
displayed the tab page even if the user object's Visible property was set to false. In
current releases, the user object's Visible property must be set to true for the tab page
to display.

Examples

This statement opens an instance of a user object named u_Employee as a tab page in the Tab
control tab_1:

tab_1.OpenTab(u_Employee, 0)

The following statements open an instance of a user object u_to_open as a tab page in the
Tab control tab_1. It becomes the first tab in the control:

u_employee u_to_open
tab_1.OpenTab(u_to_open, 1)

See also

OpenTabWithParm

2.4.544.2 Syntax 2: For user objects of unknown datatype

Description

Opens a visual user object as a tab page within a Tab control when the datatype of the user
object is not known until the script is executed.

Applies to

Tab controls

Syntax

tabcontrolname.OpenTab (userobjectvar, userobjecttype, index)

Table 2.1026:

Argument Description

tabcontrolname The name of the Tab control in which you want to open the user object as
a tab page.

userobjectvar A variable of datatype UserObject. OpenTab places a reference to the
opened user object in userobjectvar.

userobjecttype A string whose value is the name of the user object you want to open.
The datatype of userobjecttype must be a descendant of userobjectvar.

index The number of the tab before which you want to insert the new tab. If
index is 0 or greater than the number of tabs, the tab page is inserted at
the end

Return value

Integer.

Statements, Events, and Functions

Page 1115

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, OpenTab
returns null.

Usage

Use Syntax 1 when you know what user object you want to open. Use Syntax 2 when the
application will determine what type of user object to open when the script runs.

The tab page for the user object does not become selected. Scripts for Constructor events of
the controls on the user object do not run until the tab page is selected.

You must open a user object before you can access the properties of the user object. If you
access the user object's properties before you open it, an execution error will occur.

A user object that is part of a Tab control's definition (that is, it was added to the Tab control
in the Window painter) does not have to be opened in a script. PowerBuilder opens it when it
opens the window containing the Tab control.

OpenTab adds the newly opened user object to the Tab control's Control array, which is a
property that lists the tab pages within the Tab control.

Behavior change

In previous releases, calling the OpenTab function to open a user object as a tab page
displayed the tab page even if the user object's Visible property was set to false. In
current releases, the user object's Visible property must be set to true for the tab page
to display.

Considerations when specifying a user object type

When you use Syntax 2, PowerBuilder opens an instance of a user object of the
datatype specified in userobjecttype and places a reference to this instance in the
variable userobjectvar. To refer to the instance in scripts, use userobjectvar.

If userobjecttype is a descendant user object, you can only refer to properties, events,
functions, or structures that are part of the definition of userobjectvar. For example, if a user
event is declared for userobjecttype, you cannot reference it.

The object specified in userobjecttype is not automatically included in your executable
application. To include it, you must save it in a PBD file (PowerBuilder dynamic library) that
you deliver with your application.

Examples

The following example opens a user object as the last tab page in the Tab control tab_1. The
user object is of the type specified in the string s_u_name and stores the reference to the user
object in the variable u_to_open:

UserObject u_to_open
string s_u_name

s_u_name = sle_user.Text
tab_1.OpenTab(u_to_open, s_u_name, 0)

See also

OpenTabWithParm

Statements, Events, and Functions

Page 1116

2.4.545 OpenTabWithParm

Adds a visual user object to the specified window and makes all its properties and controls
available to scripts, as OpenTab does. OpenTabWithParm also stores a parameter in the
system's Message object so that it is accessible to the opened object.

Table 2.1027:

To open Use

A user object as a tab page Syntax 1

A user object as a tab page, allowing the application to select the user
object's type at runtime

Syntax 2

2.4.545.1 Syntax 1: For user objects of a known datatype

Description

Opens a custom visual user object of a known datatype as a tab page in a Tab control and
stores a parameter in the system's Message object.

Applies to

Tab controls

Syntax

tabcontrolname.OpenTabWithParm (userobjectvar, parameter, index)

Table 2.1028:

Argument Description

tabcontrolname The name of the Tab control in which you want to open the user object as
a tab page.

userobjectvar The name of the custom visual user object you want to open as a tab
page. You can specify a custom visual user object defined in the User
Object painter (which is a user object datatype) or a variable of the
desired user object datatype. OpenTabWithParm places a reference to the
opened custom visual user object in userobjectvar.

parameter The parameter you want to store in the Message object when the user
object is opened. Parameter must have one of these datatypes:

• String

• Numeric

• PowerObject

index The number of the tab before which you want to insert the new tab. If
index is 0 or greater than the number of tabs, the tab page is inserted at
the end.

Return value

Integer.

Statements, Events, and Functions

Page 1117

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenTabWithParm returns null.

Usage

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenTabWithParm, scripts for the opened user object would
check one of the following properties.

Table 2.1029:

Message object
property

Argument datatype

message.DoubleParmNumeric

message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

message.StringParmString

In the opened user object, it is a good idea to access the value passed in the Message object
immediately because some other script may use the Message object for another purpose.

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you get a null object
reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

See also the usage notes for OpenTab, all of which apply to OpenTabWithParm.

Examples

This statement opens an instance of a user object named u_Employee as a tab page in the
Tab control tab_empsettings. It also stores the string James Newton in Message.StringParm.
The Constructor event script for the user object uses the string parameter as the text of a
StaticText control st_empname in the object. The script that opens the tab page has the
following statement:

tab_empsettings.OpenTabWithParm(u_Employee, &
 "James Newton", 0)

The user object's Constructor event script has the following statement:

st_empname.Text = Message.StringParm

The following statements open an instance of a user object u_to_open as the first tab page
in the Tab control tab_empsettings and store a number in message.DoubleParm. The last
statement selects the tab page:

u_employee u_to_open
integer age = 50
tab_1.OpenTabWithParm(u_to_open, age, 1)
tab_1.SelectTab(u_to_open)

See also

Statements, Events, and Functions

Page 1118

OpenTab

2.4.545.2 Syntax 2: For user objects of unknown datatype

Description

Opens a visual user object as a tab page within a Tab control when the datatype of the user
object is not known until the script is executed. In addition, OpenTabWithParm stores a
parameter in the system's Message object so that it is accessible to the opened object.

Applies to

Tab controls

Syntax

tabcontrolname.OpenTabWithParm (userobjectvar, parameter, userobjecttype, index)

Table 2.1030:

Argument Description

tabcontrolname The name of the Tab control in which you want to open the user object as
a tab page.

userobjectvar A variable of datatype UserObject. OpenTabWithParm places a reference
to the opened user object in userobjectvar

parameter The parameter you want to store in the Message object when the user
object is opened. Parameter must have one of these datatypes:

• String

• Numeric

• PowerObject

userobjecttype A string whose value is the datatype of the user object you want to open.
The datatype of userobjecttype must be a descendant of userobjectvar.

index The number of the tab before which you want to insert the new tab. If
index is 0 or greater than the number of tabs, the tab page is inserted at
the end.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenTabWithParm returns null.

Usage

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenTabWithParm, scripts for the opened user object would
check one of the following properties.

Table 2.1031:

Message object
property

Argument datatype

message.DoubleParmNumeric

Statements, Events, and Functions

Page 1119

Message object
property

Argument datatype

message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

message.StringParmString

In the opened user object, it is a good idea to access the value passed in the Message object
immediately because some other script may use the Message object for another purpose.

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you will get a null object
reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

See also the usage notes for OpenTab, all of which apply to OpenTabWithParm.

Examples

The following statement opens an instance of a user object u_data of type u_benefit_plan
as the last tab page in the Tab control tab_1. The parameter "Benefits" is stored in
message.StringParm:

UserObject u_data
tab_1.OpenTabWithParm(u_data, &
 "Benefits", "u_benefit_plan", 0)

These statements open a user object of the type specified in the string s_u_name and store
the reference to the user object in the variable u_to_open. The script gets the value of
s_u_name, the type of user object to open, from the database. The parameter is the text of the
SingleLineEdit sle_loc, so it is stored in Message.StringParm. The user object becomes the
third tab page in the Tab control tab_1:

UserObject u_to_open
string s_u_name, e_location

e_location = sle_location.Text

SELECT next_userobj INTO : s_u_name
FROM routing_table
WHERE ... ;

tab_1.OpenTabWithParm(u_to_open, &
 e_location, s_u_name, 3)

The following statements open a user object of the type specified in the string s_u_name and
store the reference to the user object in the variable u_to_open. The parameter is numeric so
it is stored in message.DoubleParm. The user object becomes the first tab page in the Tab
control tab_1:

UserObject u_to_open
integer age = 60
string s_u_name

s_u_name = sle_user.Text

Statements, Events, and Functions

Page 1120

tab_1.OpenTabWithParm(u_to_open, age, &
 s_u_name, 1)

See also

OpenTab

2.4.546 OpenUserObject

Adds a user object to a window or visual user object and makes all its properties and controls
available to scripts.

Table 2.1032:

To Use

Open an instance of a specified visual user object Syntax 1

Open a visual user object, allowing the application to select the user
object's type at runtime

Syntax 2

2.4.546.1 Syntax 1: For user objects of a known datatype

Description

Opens a user object of a known datatype.

Applies to

Window objects and visual user objects

Syntax

objectname.OpenUserObject (targetobjectvar {, x, y })

Table 2.1033:

Argument Description

objectname The name of the window or user object in which to open the target user
object.

targetobjectvar The name of the user object you want to display. You can specify a user
object defined in the User Object painter (which is a user object datatype)
or a variable of the desired user object datatype. OpenUserObject places a
reference to the opened user object in targetobjectvar.

x (optional) The x coordinate in PowerBuilder units of the target object within the
first object's frame. The default is 0.

y (optional) The y coordinate in PowerBuilder units of the target object within the
first object's frame. The default is 0.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenUserObject returns null.

Usage

Use Syntax 1 when you know what user object you want to open. Use Syntax 2 when the
application will determine what type of user object to open when the script runs.

Statements, Events, and Functions

Page 1121

You must open a user object before you can access its properties. If you access the user
object's properties before you open it, an execution error occurs.

A user object that is part of a window definition (for example, if you added it in the Window
painter), you do not need to open it using a script: PowerBuilder opens the object when it
opens the window.

At runtime, OpenUserObject adds the newly opened user object to the first object's Control
array.

Target objects are not automatically closed at runtime when you open and then close
objectname. You need to explicitly call CloseUserObject to destroy a target user object,
usually when the objectname object closes. If you do not destroy the target object, it holds on
to its allocated memory, resulting in a memory leak.

PowerBuilder displays the user object when it next updates the display or at the end of the
script, whichever comes first. For example, if you open several user objects in a script, they
all display at once when the script is complete, unless some other statements cause a change
in the screen's appearance (for example, the MessageBox function displays a message or the
script changes a visual property of a control).

Calling OpenUserObject twice

If you call Syntax 1 twice to open the same user object, PowerBuilder activates the
user object twice; it does not open two instances of the user object.

Examples

This statement displays an instance of a user object named u_Employee in the upper left
corner of window w_emp (coordinates 0,0):

w_emp.OpenUserObject(u_Employee)

The following statements display an instance of a user object u_to_open at 200,100 in the
window w_empstatus:

u_employee u_to_open
w_empstatus.OpenUserObject(u_to_open, 200, 100)

The following statement displays an instance of a user object u_data at location 20,100 in
w_info:

w_info.OpenUserObject(u_data, 20, 100)

See also

OpenUserObjectWithParm

2.4.546.2 Syntax 2: For user objects of unknown datatype

Description

Opens a user object when the datatype of the user object is not known until the script is
executed.

Applies to

Window objects and visual user objects

Statements, Events, and Functions

Page 1122

Syntax

objectname.OpenUserObject (targetobjectvar, targetobjecttype {, x, y })

Table 2.1034:

Argument Description

objectname The name of the window or user object in which to open the target user
object.

targetobjectvar A variable of datatype DragObject. OpenUserObject places a reference to
the opened user object in targetobjectvar.

targetobjecttype A string whose value is the name of the user object you want to display.
The datatype of targetobjecttype must be a descendant of targetobjectvar.

x (optional) The x coordinate in PowerBuilder units of the user object within the first
object's frame. The default is 0.

y (optional) The y coordinate in PowerBuilder units of the user object within the first
object's frame. The default is 0.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenUserObject returns null.

Usage

Use Syntax 1 when you know what user object you want to open. Use Syntax 2 when the
application will determine what type of user object to open when the script runs.

You must open a user object before you can access its properties. If you access the user
object's properties before you open it, an execution error occurs.

A user object that is part of a window definition (for example, if you added it in the Window
painter), you do not need to open it using a script: PowerBuilder opens the object when it
opens the window.

At runtime, OpenUserObject adds the newly opened user object to the first object's Control
array.

Target objects are not automatically closed at runtime when you open and then close
objectname. You need to explicitly call CloseUserObject to destroy a target user object,
usually when the objectname object closes. If you do not destroy the target object, it holds on
to its allocated memory, resulting in a memory leak.

PowerBuilder displays the user object when it next updates the display or at the end of the
script, whichever comes first. For example, if you open several user objects in a script, they
will all display at once when the script is complete, unless some other statements cause a
change in the screen's appearance (for example, the MessageBox function displays a message
or the script changes a visual property of a control).

The userobjecttype argument

When you use Syntax 2, PowerBuilder opens an instance of a user object of the
datatype specified in userobjecttype and places a reference to this instance in the
variable userobjectvar. To refer to the instance in scripts, use userobjectvar.

Statements, Events, and Functions

Page 1123

If userobjecttype is a descendant user object, you can only refer to properties, events,
functions, or structures that are part of the definition of userobjectvar. For example, if a user
event is declared for userobjecttype, you cannot reference it.

The object specified in userobjecttype is not automatically included in your executable
application. To include it, you must save it in a PBD file (PowerBuilder dynamic library) that
you deliver with your application.

Examples

The following example displays a user object of the type specified in the string s_u_name and
stores the reference to the user object in the variable u_to_open. The user object is located at
100,200 in the window w_info:

DragObject u_to_open
string s_u_name

s_u_name = sle_user.Text
w_info.OpenUserObject(u_to_open, s_u_name, 100, 200)

See also

OpenUserObjectWithParm

2.4.547 OpenUserObjectWithParm

Adds a user object to a window or visual user object and makes all its properties and controls
available to scripts, as OpenUserObject does. OpenUserObjectWithParm also stores a
parameter in the system's Message object so that it is accessible to the opened object.

Table 2.1035:

To Use

Open an instance of a specified visual user object Syntax 1

Open a visual user object, allowing the application to select the user
object's type at runtime

Syntax 2

2.4.547.1 Syntax 1: For user objects of a known datatype

Description

Opens a user object of a known datatype and stores a parameter in the system's Message
object.

Applies to

Window objects and visual user objects

Syntax

objectname.OpenUserObjectWithParm (targetobjectvar, parameter {, x, y })

Table 2.1036:

Argument Description

objectname The name of the window or user object in which to open the target user
object.

Statements, Events, and Functions

Page 1124

Argument Description

targetobjectvar The name of the target object you want to display. You can specify a user
object defined in the User Object painter (which is a user object datatype)
or a variable of the desired user object datatype. OpenUserObject places a
reference to the opened target object in targetobjectvar.

parameter The parameter you want to store in the Message object when the target
object is opened. Parameter must have one of these datatypes:

• String

• Numeric

• PowerObject

x (optional) The x coordinate in PowerBuilder units of the target object within the
objectname object. The default is 0.

y (optional) The y coordinate in PowerBuilder units of the target object within the
objectname object. The default is 0.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenUserObjectWithParm returns null.

Usage

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenUserObjectWithParm, scripts for the opened user object
check one of the following properties:

Table 2.1037:

Message object
property

Argument datatype

message.DoubleParmNumeric

message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

message.StringParmString

In the target user object, consider accessing the value passed in the Message object
immediately, because some other script may use the Message object for another purpose.

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you get a null object
reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

See also the usage notes for OpenUserObject, all of which apply to
OpenUserObjectWithParm.

Statements, Events, and Functions

Page 1125

Examples

This statement displays an instance of a user object named u_Employee in the window
w_emp and stores the string James Newton in Message.StringParm. The Constructor
event script for the user object uses the string parameter as the text of a StaticText control
st_empname in the object. The script that opens the user object has the following statement:

w_emp.OpenUserObjectWithParm(u_Employee, "Jim Newton")

The target user object's Constructor event script has the following statement:

st_empname.Text = Message.StringParm

The following statements display an instance of a user object u_to_open in the window
w_emp and store a number in message.DoubleParm:

u_employee u_to_open
integer age = 50
w_emp.OpenUserObjectWithParm(u_to_open, age)

See also

CloseWithReturn

OpenUserObject

OpenWithParm

2.4.547.2 Syntax 2: For user objects of unknown datatype

Description

Opens a user object when the datatype of the user object is not known until the script is
executed. In addition, OpenUserObjectWithParm stores a parameter in the system's Message
object so that it is accessible to the opened object.

Applies to

Window objects and user objects

Syntax

objectname.OpenUserObjectWithParm (targetobjectvar, parameter, targetobjecttype {,
 x, y })

Table 2.1038:

Argument Description

objectname The name of the window or user object in which to open the target user
object.

targetobjectvar A variable of datatype DragObject. OpenUserObjectWithParm places a
reference to the opened target object in targetobjectvar.

parameter The parameter you want to store in the Message object when the target
object is opened. Parameter must have one of these datatypes:

• String

• Numeric

Statements, Events, and Functions

Page 1126

Argument Description
• PowerObject

targetobjecttype A string whose value is the datatype of the target object to open. The
datatype of targetobjecttype must be a descendant of targetobjectvar.

x (optional) The x coordinate in PowerBuilder units of the user object within the
objectname object's frame. The default is 0.

y (optional) The y coordinate in PowerBuilder units of the target object within the
objectname object's frame. The default is 0.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenUserObjectWithParm returns null.

Usage

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenUserObjectWithParm, scripts for the opened user object
check one of the following properties.

Table 2.1039:

Message object
property

Argument datatype

message.DoubleParmNumeric

message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

message.StringParmString

In the target user object, consider accessing the value passed in the Message object
immediately, because some other script may use the Message object for another purpose.

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you will get a null object
reference, which causes an error. For example, if you pass the name of a control on
an object that is being closed, that control will not exist when a script accesses the
parameter.

See also the usage notes for OpenUserObject, all of which apply to
OpenUserObjectWithParm.

Examples

The following statement displays an instance of a user object u_data of type u_benefit_plan
at location 20,100 in the container object w_hresource. The parameter "Benefits" is stored in
message.StringParm:

DragObject u_data
w_hresource.OpenUserObjectWithParm(u_data, &

Statements, Events, and Functions

Page 1127

 "Benefits", "u_benefit_plan", 20, 100)

These statements open a user object of the type specified in the string s_u_name and store the
reference to the object in the variable u_to_open. The script gets the value of s_u_name, the
type of user object to open, from the database. The parameter is the text of the SingleLineEdit
sle_loc, so it is stored in Message.StringParm. The target object is at the default coordinates
0,0 in the objectname object w_info:

DragObject u_to_open
string s_u_name, e_location

e_location = sle_location.Text

SELECT next_userobj INTO : s_u_name
FROM routing_table
WHERE ... ;

w_info.OpenUserObjectWithParm(u_to_open, &
 e_location, s_u_name)

The following statements display a user object of the type specified in the string s_u_name
and store the reference to the object in the variable u_to_open. The parameter is numeric,
so it is stored in message.DoubleParm. The target object is at the coordinates 100,200 in the
objectname object w_emp:

userobject u_to_open
integer age = 60
string s_u_name

s_u_name = sle_user.Text
w_emp.OpenUserObjectWithParm(u_to_open, age, &
 s_u_name, 100, 200)

See also

CloseWithReturn

OpenUserObject

OpenWithParm

2.4.548 OpenWithParm

Displays a window and makes all its properties and controls available to scripts, as Open
does. OpenWithParm also stores a parameter in the system's Message object so that it is
accessible to the opened window.

Table 2.1040:

To Use

Open an instance of a particular window datatype Syntax 1

Allow the application to select the window's datatype when the script is
executed

Syntax 2

2.4.548.1 Syntax 1: For windows of a known datatype

Description

Statements, Events, and Functions

Page 1128

Opens a window object of a known datatype. OpenWithParm displays the window and makes
all its properties and controls available to scripts. It also stores a parameter in the system's
Message object.

Applies to

Window objects

Syntax

OpenWithParm (windowvar, parameter {, parent })

Table 2.1041:

Argument Description

windowvar The name of the window you want to display. You can specify a window
object defined in the Window painter (which is a window datatype)
or a variable of the desired window datatype. OpenWithParm places a
reference to the open window in windowvar.

parameter The parameter you want to store in the Message object when the window
is opened. Parameter must have one of these datatypes:

• String

• Numeric

• PowerObject

parent (child and
pop-up windows
only) (optional)

The window you want make the parent of the child or pop-up window
you are opening. If you open a child or pop-up window and omit parent,
PowerBuilder associates the window being opened with the currently
active window.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenWithParm returns null.

Usage

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenWithParm, your scripts for the opened window would
check one of the following properties.

Table 2.1042:

Message object
property

Argument datatype

Message.DoubleParmNumeric

Message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

Message.StringParmString

In the opened window, it is a good idea to access the value passed in the Message object
immediately because some other script may use the Message object for another purpose.

Statements, Events, and Functions

Page 1129

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you will get a null object
reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

Passing several values as a structure

To pass several values, create a user-defined structure to hold the values and access
the PowerObjectParm property of the Message object in the opened window. The
structure is passed by value, not by reference, so you can access the information even
if the original structure has been destroyed.

See also the usage notes for Open, all of which apply to OpenWithParm.

Examples

This statement opens an instance of a window named w_employee and stores the string
parameter in Message.StringParm. The script for the window's Open event uses the string
parameter as the text of a StaticText control st_empname. The script that opens the window
has the following statement:

OpenWithParm(w_employee, "James Newton")

The window's Open event script has the following statement:

st_empname.Text = Message.StringParm

The following statements open an instance of a window of the type w_employee. Since the
parameter is a number it is stored in Message.DoubleParm:

w_employee w_to_open
integer age = 50
OpenWithParm(w_to_open, age)

The following statement opens an instance of a child window named cw_data and makes
w_employee the parent. The window w_employee must already be open. The parameter
benefit_plan is a string and is stored in Message.StringParm:

OpenWithParm(cw_data, "benefit_plan", w_employee)

See also

CloseWithReturn

Open

2.4.548.2 Syntax 2: For windows of unknown datatype

Description

Opens a window object when you do not know its datatype until the application is running.
OpenWithParm displays the window and makes all its properties and controls available to
scripts. It also stores a parameter in the system's Message object.

Applies to

Statements, Events, and Functions

Page 1130

Window objects

Syntax

OpenWithParm (windowvar, parameter, windowtype {, parent })

Table 2.1043:

Argument Description

windowvar A window variable, usually of datatype window. OpenWithParm places a
reference to the open window in windowvar.

parameter The parameter you want to store in the Message object when the window
is opened. Parameter must have one of these datatypes:

• String

• Numeric

• PowerObject

windowtype A string whose value is the datatype of the window you want to open.
The datatype of windowtype must be the same or a descendant of
windowvar.

parent (child and
pop-up windows
only)

The window you want to make the parent of the child or pop-up window
you are opening. If you open a child or pop-up window and omit parent,
PowerBuilder associates the window being opened with the currently
active window.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
OpenWithParm returns null.

Usage

The system Message object has three properties for storing data. Depending on the datatype
of the parameter specified for OpenWithParm, your scripts for the opened window would
check one of the following properties.

Table 2.1044:

Message object
property

Argument datatype

Message.DoubleParmNumeric

Message.PowerObjectParmPowerObject (PowerBuilder objects, including user-defined structures)

Message.StringParmString

In the opened window, it is a good idea to access the value passed in the Message object
immediately because some other script may use the Message object for another purpose.

Avoiding null object references

When you pass a PowerObject as a parameter, you are passing a reference to the
object. The object must exist when you refer to it later or you will get a null object

Statements, Events, and Functions

Page 1131

reference, which causes an error. For example, if you pass the name of a control on
a window that is being closed, that control will not exist when a script accesses the
parameter.

Passing several values as a structure

To pass several values, create a user-defined structure to hold the values and access
the PowerObjectParm property of the Message object in the opened window. The
structure is passed by value, not by reference, so you can access the information even
if the original structure has been destroyed.

See also the usage notes for Open, all of which apply to OpenWithParm.

Examples

These statements open a window of the type specified in the string s_w_name and store the
reference to the window in the variable w_to_open. The script gets the value of s_w_name,
the type of window to open, from the database. The parameter in e_location is text, so it is
stored in Message.StringParm:

window w_to_open
string s_w_name, e_location

e_location = sle_location.Text

SELECT next_window INTO :s_w_name
FROM routing_table
WHERE ... ;

OpenWithParm(w_to_open, e_location, s_w_name)

The following statements open a window of the type specified in the string c_w_name, store
the reference to the window in the variable wc_to_open, and make w_emp the parent window
of wc_to_open. The parameter is numeric, so it is stored in Message.DoubleParm:

window wc_to_open
string c_w_name
integer age = 60

c_w_name = "w_c_emp1"

OpenWithParm(wc_to_open, age, c_w_name, w_emp)

See also

CloseWithReturn

Open

2.4.549 OutgoingCallList

Description

Provides a list of the calls to other routines included in a performance analysis model.

Applies to

ProfileLine and ProfileRoutine objects

Syntax

Statements, Events, and Functions

Page 1132

instancename.OutgoingCallList (list, aggregate)

Table 2.1045:

Argument Description

instancename Instance name of the ProfileLine or ProfileRoutine object.

list An unbounded array variable of datatype ProfileCall in which
OutgoingCallList stores a ProfileCall object for each call to other routines
from within this routine. This argument is passed by reference.

aggregate
(ProfileRoutine
only)

A boolean indicating whether duplicate routine calls will result in the
creation of a single or of multiple ProfileCall objects.

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• ModelNotExistsError! -- The model does not exist

Usage

You use the OutgoingCallList function to extract a list of the calls from a line and/or routine
to other routines in a performance analysis model. You must have previously created the
performance analysis model from a trace file using the BuildModel function. Each caller
is defined as a ProfileCall object and provides the called routine and the calling routine,
the number of times the call was made, and the elapsed time. The routines are listed in no
particular order.

The aggregate argument indicates whether duplicate routine calls result in the creation of a
single or of multiple ProfileCall objects. This argument has no effect unless line tracing is
enabled and a calling routine calls the current routine from more than one line. If aggregate
is true, a new ProfileCall object is created that aggregates all calls from the calling routine
to the current routine. If aggregate is false, multiple ProfileCall objects are returned, one for
each line from which the calling routine called the called routine.

Examples

This example gets a list of the routines included in a performance analysis model and then
gets a list of the routines called by each routine:

Long ll_cnt
ProfileCall lproc_call[]

lpro_model.BuildModel()
lpro_model.RoutineList(iprort_list)

FOR ll_cnt = 1 TO UpperBound(iprort_list)
 iprort_list[ll_cnt].OutgoingCallList(lproc_call, &
 TRUE)
 ...
NEXT

See also

Statements, Events, and Functions

Page 1133

BuildModel

IncomingCallList

2.4.550 PageCount

Description

Returns the total number of pages in the document in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.PageCount ()

Table 2.1046:

Argument Description

rtename The name of the RichTextEdit control in which you want the page count

Return value

Integer. Returns the number of pages in the RichTextEdit control. Returns 1 if the control
contains no text and -1 if an error occurs.

Usage

The number of pages in the document is determined by the amount of text and the layout
specifications, such as page size, margins, font size, and so on.

When the RichTextEdit control shares data with a DataWindow, there is an instance of the
document for each row of the DataWindow. PageCount reports the page count of a single
instance. Multiply the value of the DataWindow's RowCount function by the page count to
get the total number of pages.

Examples

This example displays the number of pages in the document in the RichTextEdit rte_1 as the
text of the StaticText st_status:

st_status.Text = String(rte_1.PageCount())

See also

LineCount

LineLength

RowCount method for DataWindows in Section 2.4.110, “RowCount” in DataWindow
Reference.

2.4.551 PageCreated

Description

Reports whether a tab page has been created.

Statements, Events, and Functions

Page 1134

Applies to

User objects used as tab pages

Syntax

userobject.PageCreated ()

Table 2.1047:

Argument Description

userobject The name of the tab page whose existence you want to test

Return value

Boolean. Returns true if the user object is a tab page and has been created and false if the user
object is not a tab page or has not been created.

Usage

A window will open more quickly if the creation of graphical representations is delayed for
tab pages with many controls. However, scripts cannot refer to a control on a tab page until
the tab page's Constructor event has run and a graphical representation of the control has been
created. When the CreateOnDemand property of the Tab control is selected, scripts cannot
reference controls on tab pages that the user has not viewed. PageCreated allows you to test
whether a particular tab page has already been created.

Examples

This example tests whether tabpage_2 has been created and, if not, creates it:

IF tab_1.CreateOnDemand = True THEN
 IF tab_1.tabpage_2.PageCreated() = False THEN
 tab_1.tabpage_2.CreatePage()
 END IF
END IF

See also

CreatePage

2.4.552 ParentWindow

Description

Obtains the parent window of a window.

Applies to

Window objects

Syntax

windowname.ParentWindow ()

Table 2.1048:

Argument Description

windowname The name of a window for which you want to obtain the parent object

Statements, Events, and Functions

Page 1135

Return value

Window. Returns the parent of windowname. Returns a null object reference if an error
occurs or if windowname is null.

Usage

The ParentWindow function, along with the pronoun Parent, allows you to write more
general scripts by avoiding the coding of actual window names. Parent refers to the window
that contains the current object or control -- the local environment. ParentWindow returns the
parent window of a specified window.

Whether a window has a parent depends on its type and how it was opened. You can specify
the parent when you open the window. For windows that always have parents, PowerBuilder
chooses the parent if you do not specify it. Response windows and child windows always
have a parent window. The parent of a sheet in an MDI application is the MDI frame
window.

Pop-up windows have a parent window when they are opened from another window but
when used in an MDI application, the parent of the pop-up is the MDI frame. A pop-up
window opened from the application's Open event does not have a parent.

The ParentWindow property of the Menu object can be used like a pronoun in Menu scripts.
It identifies the window with which the menu is associated when your program is running.
For more information, see Section 4.6.6.3, “Referring to objects in your application” in Users
Guide.

Examples

These statements return the parent of child_1. The parent is a window of the datatype Win1:

Win1 w_parent
w_parent = child_1.ParentWindow()

The following script for a Cancel button in a pop-up window triggers an event for the
parent window of the button's parent window (the window that contains the button). Then
it closes the button's window. The parent window of that window will have a script for the
cancelrequested event:

Parent.ParentWindow().TriggerEvent("cancelrequested")
Close(Parent)

2.4.553 Paste

Description

Inserts (pastes) the contents of the clipboard into the specified control. For editable controls,
text on the clipboard is pasted at the insertion point. For OLE controls, the OLE object on the
clipboard replaces any object already in the control.

Applies to

EditMask, InkEdit, MultiLineEdit, SingleLineEdit, RichTextEdit, DropDownListBox,
DropDownPictureListBox, DataWindow, OLE controls

Syntax

controlname.Paste ()

Statements, Events, and Functions

Page 1136

Table 2.1049:

Argument Description

controlname The name of the DataWindow control, EditMask, InkEdit,
MultiLineEdit, SingleLineEdit, RichTextEdit, DropDownListBox,
DropDownPictureListBox, or OLE control into which you want to insert
the contents of the clipboard.

If controlname is a DataWindow, text is pasted into the edit control over
the current row and column. If controlname is a DropDownListBox or
DropDownPictureListBox, the AllowEdit property must be true

Return value

Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For edit controls, returns the number of characters that were pasted into controlname. If
nothing has been cut or copied (the clipboard is empty), the Paste function does not change
the contents of the edit control and returns 0. If the clipboard contains nontext data (for
example, a bitmap or OLE object) and the control cannot accept that data, Paste does not
change the contents and returns 0.

For OLE controls, returns 0 if it succeeds and one of the following negative values if an error
occurs:

-1 -- No data or clipboard content is not embeddable

-9 -- Other error

Usage

For editable controls, if text is selected in controlname, Paste replaces the text with the
contents of the clipboard. If the clipboard contains more lines than fit in the edit control, only
the number of lines that fit are pasted.

In a DataWindow control, the text is pasted into the edit control over the current row and
column. If the clipboard contains more text that is allowed for that column, the text is
truncated. If the clipboard text does not match the column's datatype, all the text is truncated,
so that any selected text is replaced with an empty string.

You can paste bitmaps, as well as text, into a RichTextEdit control.

To insert a specific string in controlname or to replace selected text with a specific string, use
the ReplaceText function.

When you use Paste to put an OLE object in an OLE control, the data is embedded in the
PowerBuilder application, not linked.

Examples

If the clipboard contains Proposal good for 90 days and no text is selected, this statement
pastes Proposal good for 90 days in mle_Comment1 at the insertion point and returns 25:

mle_Comment1.Paste()

If the clipboard contains the string Final Edition, mle_Comment2 contains This is a
Preliminary Draft, and the text in mle_Comment2 is selected, this statement deletes This is a
Preliminary Draft, replaces it with Final Edition, and returns 13:

Statements, Events, and Functions

Page 1137

mle_Comment2.Paste()

If the clipboard contains an OLE object, this statement makes it the contents of the control
ole_1 and returns 0:

ole_1.Paste()

See also

Copy

Cut

PasteLink

PasteSpecial

ReplaceText

2.4.554 PasteLink

Description

Pastes a link to the contents of the clipboard into the control. The server application for the
object on the clipboard must be running.

Applies to

OLE controls

Syntax

olecontrol.PasteLink ()

Table 2.1050:

Argument Description

olecontrol The name of the OLE control into which you want to paste the object on
the clipboard

Return value

Integer. Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- No data or the contents of the clipboard is not linkable

-9 -- Other error

If ole2control is null, PasteLink returns null.

Usage

When you copy data to the clipboard from an application that supports OLE (the server
application), you can paste the object into PowerBuilder's OLE control with a link to the
original data. Object information about the source of the data is only available if the server
application is running. You do not need to worry about running the server application if
you are working with an OLE object that PowerBuilder knows about, such as an object in a
PowerBuilder library or an object that is part of a control's definition in a window. For these
objects, PowerBuilder runs the server application in the background to enable the link.

Statements, Events, and Functions

Page 1138

PasteLink fails, however, if the user switches to a server application, copies the data, quits the
application, and then tries to paste and link the object in their PowerBuilder application.

Examples

If the clipboard contains an OLE object and the object's server application is running, then
the following example pastes the object in the control ole_1 and sets li_result to 0:

integer li_result
li_result = ole_1.PasteLink()

See also

LinkTo

Paste

PasteSpecial

2.4.555 PasteRTF

Description

Pastes rich text data from a string into a DataWindow control, DataStore object, or
RichTextEdit control.

Applies to

DataWindow controls, DataStore objects, and RichTextEdit controls

Syntax

rtename.PasteRTF (richtextstring {, band })

Table 2.1051:

Argument Description

rtename The name of the DataWindow control, DataStore object, or RichTextEdit
control into which you want to paste data in rich text format. The
DataWindow object in the DataWindow control or DataStore must be a
RichTextEdit DataWindow.

richtextstring A string whose value is data with rich text formatting.

band

(optional)

A value of the Band enumerated datatype specifying the band into which
the rich text data is pasted. Values are:

• Detail! -- The data is pasted into the detail band

• Header! -- The data is pasted into the header band

• Footer! -- The data is pasted into the footer band

The default is the band that contains the insertion point.

Return value

Long. Returns -1 if an error occurs. If richtextstring is null, PasteRTF returns null.

Usage

Statements, Events, and Functions

Page 1139

A DataWindow in the RichText presentation style has only three bands. There are no
summary or trailer bands and there are no group headers and footers.

Examples

This statement pastes rich text in the string ls_richtext into the header of the RichTextEdit
rte_message:

string ls_richtext
rte_message.PasteRTF(ls_richtext, Header!)

See also

CopyRTF

2.4.556 PasteSpecial

Description

Displays a standard OLE dialog allowing the user to choose whether to embed or link the
OLE object on the clipboard when pasting it in the specified control. Embedding is the
equivalent of calling the Paste function, and linking is the same as calling PasteLink.

Applies to

OLE controls

Syntax

olecontrol.PasteSpecial ()

Table 2.1052:

Argument Description

olecontrol The name of the OLE control into which you want to paste the object on
the clipboard

Return value

Integer. Returns 0 if it succeeds and one of the following values if an error occurs:

1 -- User canceled without selecting a paste option

-1 -- No data found

-9 -- Other error

If ole2control is null, PasteSpecial returns null.

Usage

For information about when an object on the clipboard is linkable, see PasteLink.

Examples

If the clipboard contains an OLE object and the object's server application is running, then
the following example lets the user choose to embed or link the object in the control ole_1:

integer li_result
li_result = ole_1.PasteSpecial()

See also

Statements, Events, and Functions

Page 1140

LinkTo

Paste

PasteLink

2.4.557 PauseDownload

Description

Suspends the download progress of the file.

Applies to

WebBrowser controls

Syntax

controlname.PauseDownload (integer ItemId)

Table 2.1053:

Argument Description

controlname The name of the WebBrowser control.

ItemId The ID used to identify the file. The minimum value is 1.

ItemId should be the return value of DownloadingStart or
DownloadingStateChanged event.

Return value

Integer.

• 1 -- Success.

• -2 -- Failed to get the browser instance.

• -6 -- The specified download task does not exist.

Examples

Integer li_rtn, li_itemid
li_rtn = wb_1.pausedownload(li_itemid)

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

GoForward

Navigate

Statements, Events, and Functions

Page 1141

PrintAsPDF

Refresh

RegisterEvent

ResumeDownload

StopNavigation

UnregisterEvent

Zoom

2.4.558 PBAddCookie (Obsolete)

Description

Adds a cookie to the Web service proxy object that will be sent to the server each time you
call a Web service method.

Syntax

proxyObj.PBAddCookie (acookie)

Table 2.1054:

Argument Description

proxyObj The proxy object that you deploy from a Web Service Proxy project

acookie An any containing information about the cookie you want to add

Return value

None.

Usage

If there is already a cookie with the same name and URI that you set in the acookie argument,
you will replace the existing cookie when you invoke a Web service method. For the types of
information you can include in the acookie argument, see the methods of the SoapPBCookie
class in SoapPBCookie.

The SoapPBCookie class is defined in the pbwsclient.pbx extension that you can import into
your application library. It is valid for .NET Web services engine only.

Examples

The following example adds a cookie named myCookie that is sent to the server after you
connect to a Web service from an objProxy proxy client:

SoapPBCookie acookie
acookie=create SoapPBCookie

acookie.SetUri("http://myServer/webservice/Svc1.wsdl")
acookie.SetName("myCookie")
acookie.SetValue("My Value")
objProxy.PBAddCookie(acookie)

See also

PBGetCookies

https://docs.appeon.com/pb2019r2/extension_reference/ch03s03.html

Statements, Events, and Functions

Page 1142

2.4.559 PBGetCookies (Obsolete)

Description

Gets the cookies associated with a .NET Web service that you invoke from a proxy object.

Syntax

proxyObj.PBGetCookies (URI)

Table 2.1055:

Argument Description

proxyObj The proxy object that you deploy from a Web Service Proxy project

URI The URI of the Web service that you invoke with the proxy object

Return value

SoapPBCookie[]

. An array of an instance of the SoapPBCookie class.

Usage

The SoapPBCookie class is defined in the pbwsclient.pbx extension that you can import into
your application library. You must first connect to the Web service with an instance of the
SoapConnection class that is also defined in this extension.

For more information about connecting to a Web service, see Section 7.2, “Building a Web
Services Client (Obsolete)” in Application Techniques. For cookie properties you can set or
return with the SoapPBCookie class, see SoapPBCookie.

Examples

The following example enters the names and values of the cookies associated with a Web
service in a MultiLineEdit control:

wsproxy_service proxy
soapPBCookie retu_cookies[]
//create instance of a SoapConnection object
//create instance of the Web service proxy
endpoint = "https://www.appeon.com/webservice/Svc.asmx"
retu_cookies = proxy.pbgetcookies(endpoint)
mle_1.text = string(upperbound(retu_cookies))&
 +" total cookies" + "~r~n"
for i= 1 to upperbound(retu_cookies)
 mle_1.text += "Cookie"+ string(i)&
 +"~r~n=====================~r~n"
 mle_1.text +="getName = " &
 + retu_cookies[i].getname() +"~r~n"
 mle_1.text +="getValue = " &
 + retu_cookies[i].getvalue()+"~r~n"
next

See also

PBAddCookie

2.4.560 PBGetMenuString

Description

https://docs.appeon.com/pb2019r2/extension_reference/ch03s03.html

Statements, Events, and Functions

Page 1143

Gets the name of the item at a given position in a menu.

Syntax

PBGetMenuString (hmenu, nPos, caption, nMaxLength)

Table 2.1056:

Argument Description

hmenu A long for the menu handle

nPos An integer for the position of the menu item, counting from 0 at the
leftmost or topmost position

caption A string passed by reference that captures the name (Text property) of the
menu item

nMaxLength An integer that sets the maximum length of the value passed in the
caption argument

Return value

Long. Returns 1if it succeeds and -1 if an error occurs. If any argument is null,
PBGetMenuString returns null.

Usage

Use PBGetMenuString to get the name of a menu item. This function is useful for some
automated testing programs that cannot get menu item names from the Text property for
menus that use the contemporary style.

Examples

This statement gets the first menu item of the submenu of the w_main window using the
GetMenu and GetSubMenu WIN32 API functions from the user.dll library:

string ls_menu
long hmenu
long submenu
int ll_ret

hmenu = GetMenu(handle(w_main))
submenu = GetSubMenu(hmenu,0)
ll_ret = PBGetMenuString(submenu,0,ls_menu,5)
messagebox ("Menu Test", "return value = & "+string(ll_ret)+ " menu caption is
 "+ls_menu)

This example assumes you have made the following Local External Functions declarations:

function long GetMenu (long hwnd) library "user32.dll"
function long GetSubMenu (long hparent,int pos) &
 library "user32.dll"

2.4.561 Pi

Description

Multiplies pi by a specified number.

Syntax

Pi (n)

Statements, Events, and Functions

Page 1144

Table 2.1057:

Argument Description

n The number you want to multiply by pi (3.14159265358979323...)

Return value

Double. Returns the result of multiplying n by pi if it succeeds and -1 if an error occurs. If n
is null, Pi returns null.

Usage

Use Pi to convert angles to and from radians.

Examples

This statement returns pi:

Pi(1)

Both these statements return the area of a circle with the radius id_Rad, an instance variable
of type double:

Pi(1) * id_Rad^2

Pi(id_Rad^2)

The following statements compute the cosine of a 45-degree angle:

real degree = 45.0, cosine
cosine = Cos(degree * (Pi(2)/360))

See also

Cos

Sin

Tan

Pi method for DataWindows in Section 2.4.92, “Pi” in DataWindow Reference.

2.4.562 PixelsToUnits

Description

Converts pixels to PowerBuilder units. Because pixels are not usually square, you also
specify whether you are converting the pixels' horizontal or vertical measurement.

Syntax

PixelsToUnits (pixels, type)

Table 2.1058:

Argument Description

pixels An integer or long whose value is the number of pixels you want to
convert to PowerBuilder units.

type A value of the ConvertType enumerated datatype value indicating how to
convert the value:

Statements, Events, and Functions

Page 1145

Argument Description
• XPixelsToUnits! -- Convert the pixels in the horizontal direction.

• YPixelsToUnits! -- Convert the pixels in the vertical direction.

Return value

Integer or long. Returns the converted value if it succeeds and -1 if an error occurs. If any
argument's value is null, PixelsToUnits returns null.

If the value of the first argument is an integer type, then the return value is an integer type; if
the value of the first argument is a long type, then the return value is a long type; if the value
of the first argument is a numeric value, then the return value is a long type by default.

Examples

These statements convert 35 horizontal pixels to PowerBuilder units and set the variable
Value equal to the converted value:

long Value
Value = PixelsToUnits(35, XPixelsToUnits!)

See also

UnitsToPixels

2.4.563 Play

Description

Starts playing an animation (an AVI clip).

Applies to

Animation controls

Syntax

animationname.Play (from, to, replay)

Table 2.1059:

Argument Description

animationname The name of the animation control displaying the AVI clip.

from A long value in the range 0 to 65,535 indicating the frame where playing
starts.The value 0 starts playing the clip at the first frame.

to A long value in the range -1 to 65,535 indicating the frame where playing
ends. The value -1 stops playing the clip at the last frame.

replay A long value in the range -1 to 65,535 indicating the number of times to
replay the clip. The value -1 continues playing the clip indefinitely.

Return value

Integer. Returns 1 for success and -1 for failure.

Usage

Statements, Events, and Functions

Page 1146

Start plays an opened AVI file in an animation control. If you specify a value for any
argument that is not in the specified range, Start does nothing and returns -1.

Examples

This example starts playing an AVI clip at the first frame, plays to the last frame, and
continues playing the clip indefinitely:

integer li_return
li_return = am_1.Play(0, -1, -1)

See also

Stop

2.4.564 PointerX

Description

Determines the distance of the pointer from the left edge of the specified object.

Applies to

Any object or control

Syntax

objectname.PointerX ()

Table 2.1060:

Argument Description

objectname The name of the control or window for which you want the pointer's
distance from the left edge. If you do not specify objectname, PointerX
reports the distance from the left edge of the current sheet or window.

Return value

Integer. Returns the pointer's distance from the left edge of objectname in PowerBuilder units
if it succeeds and -1 if an error occurs.

Examples

In a script for a control in a window, the following example stores the distance of the pointer
from the edge of the window in the variable li_dist. If the pointer is 5 units from the left edge
of the window, li_dist equals 5:

integer li_dist
li_dist = Parent.PointerX()

This statement in a control's RButtonDown script displays a pop-up menu m_Appl.M_Help
at the cursor position:

m_Appl.m_Help.PopMenu(Parent.PointerX(), &
 Parent.PointerY())

If the previous example was part of the window's RButtonDown script, instead of a control in
the window, the following statement displays the pop-up menu at the cursor position:

m_Appl.m_Help.PopMenu(This.PointerX(), &

Statements, Events, and Functions

Page 1147

 This.PointerY())

See also

PointerY

PopMenu

WorkSpaceHeight

WorkSpaceWidth

WorkSpaceX

WorkSpaceY

2.4.565 PointerY

Description

Determines the distance of the pointer from the top of the specified object.

Applies to

Any object or control

Syntax

objectname.PointerY ()

Table 2.1061:

Argument Description

objectname The name of the control or window for which you want the pointer's
distance from the top. If you do not specify objectname, PointerY reports
the distance from the top of the current sheet or window.

Return value

Integer. Returns the pointer's distance from the top of objectname in PowerBuilder units if it
succeeds and -1 if an error occurs. If objectname is null, PointerY returns null.

Examples

In a script for a control in a window, the following example stores the distance of the pointer
from the top of the window in the variable li_dist. If the pointer is 10 units from the top of the
window, li_dist equals 10:

integer li_Dist
li_Dist = Parent.PointerY()

This statement in a control's RButtonDown script displays a pop-up menu m_Appl.M_Help
at the cursor position:

m_Appl.M_Help.PopMenu(Parent.PointerX(), &
 Parent.PointerY())

See also

PointerX

PopMenu

Statements, Events, and Functions

Page 1148

WorkSpaceHeight

WorkSpaceWidth

WorkSpaceX

WorkSpaceY

2.4.566 PopMenu

Description

Displays a menu at the specified location.

Applies to

Menu objects

Syntax

menuname.PopMenu (xlocation, ylocation)

Table 2.1062:

Argument Description

menuname The fully qualified name of a menu on a menu bar you want to display at
the specified location

xlocation The distance in PowerBuilder units of the displayed menu from the left
edge of the window

ylocation The distance in PowerBuilder units of the displayed menu from the top of
the window

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PopMenu returns null.

Usage

If the menu object is not associated with the window so that it was opened when the
window was opened, you must use CREATE to allocated memory for the menu (see the last
example).

If the Visible property of the menu is false, you must make the menu visible before you can
display it as a pop-up menu.

The coordinates you specify for PopMenu are relative to the active window. In an MDI
application, the coordinates are relative to the frame window, which is the active window.
To display a menu at the cursor position, call PointerX and PointerY for the active window
(the frame window in an MDI application) to get the coordinates of the cursor. (See the
examples.)

Calling PopMenu in an object script

PopMenu must be called in an object script. It should not be called in a global
function.

Statements, Events, and Functions

Page 1149

Examples

These statements display the menu m_Emp.M_Procedures at location 100, 200 in the active
window. M_Emp is the menu associated with the window:

m_Emp.M_Procedures.PopMenu(100, 200)

This statement displays the menu m_Appl.M_File at the cursor position, where m_Appl is the
menu associated with the window.

m_Appl.M_file.PopMenu(PointerX(), PointerY())

These statements display a pop-up menu at the cursor position. Menu4 was created in the
Menu painter and includes a menu called m_language. Menu4 is not the menu for the active
window. NewMenu is an instance of Menu4 (datatype Menu4):

Menu4 NewMenu
NewMenu = CREATE Menu4
NewMenu.m_language.PopMenu(PointerX(), PointerY())

In an MDI application, the last line would include the MDI frame as the object for the pointer
functions:

NewMenu.m_language.PopMenu(&
 w_frame.PointerX(), w_frame.PointerY())

2.4.567 PopulateError

Description

Fills in the Error object without causing a SystemError event.

Syntax

PopulateError (number, text)

Table 2.1063:

Argument Description

number The integer to be stored in the number property of the Error object

text The string to be stored in text property of the Error object

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. The return value is usually not used.

Usage

If the values you want to populate the Error object with depend on the current value of
a variable in your script, you can use PopulateError to assign values to the number and
text fields in the Error object (the remaining fields of the Error object will be populated
automatically, including the line number of the error). Then you can call SignalError without
arguments to trigger a SystemError. You will need to include code in the SystemError
event script to recognize and handle the error you have created. If there is no script for the
SystemError event, the SignalError function does nothing.

Examples

Statements, Events, and Functions

Page 1150

The gf_DoSomething function takes a table name and a record and returns 0 for success and
a negative number for an error. The following statements set the number and text values in
the Error object according to a script variable, then trigger a SystemError event once the
processing is complete:

li_result = gf_DoSomething("Company", record_id)

IF (li_result < 0) THEN
 CHOOSE CASE li_result
 CASE -1
 PopulateError(1, "No company record exists &
 record id: " + record_id)
 CASE -2
 PopulateError(2, "That company record is &
 currently locked. Please try again later.")
 CASE -3
 PopulateError(3, "The company record could &
 not be updated.")
 CASE else
 PopulateError(999, "Update failed.")
 END CHOOSE
 SignalError()
END IF

See also

SignalError

2.4.568 Pos

Description

Finds one string within another string.

Syntax

Pos (string1, string2 {, start })

Table 2.1064:

Argument Description

string1 The string in which you want to find string2.

string2 The string you want to find in string1.

start (optional) A long indicating where the search will begin in string1. The default is 1.

Return value

Long. Returns a long whose value is the starting position of the first occurrence of string2 in
string1 after the position specified in start. If string2 is not found in string1 or if start is not
within string1, Pos returns 0. If any argument's value is null, Pos returns null.

Usage

The Pos function is case sensitive.

Examples

This statement returns 6:

Statements, Events, and Functions

Page 1151

Pos("BABE RUTH", "RU")

This statement returns 1:

Pos("BABE RUTH", "B")

This statement returns 0, because the case does not match:

Pos("BABE RUTH", "be")

This statement starts searching at position 4 and returns 0, because position 4 is after the
occurrence of BE:

Pos("BABE RUTH", "BE", 4)

These statements change the text NY in the SingleLineEdit sle_group to North East:

long place_nbr
place_nbr = Pos(sle_group.Text, "NY")
sle_group.SelectText(place_nbr, 2)
sle_group.ReplaceText("North East")

These statements separate the return value of GetBandAtPointer into the band name and row
number. The Pos function finds the position of the tab in the string and the Left and Mid
functions extract the information to the left and right of the tab:

string s, ls_left, ls_right
integer li_tab

s = dw_groups.GetBandAtPointer()
li_tab = Pos(s, "~t", 1)

ls_left = Left(s, li_tab - 1)
ls_right = Mid(s, li_tab + 1)

You could write similar code for a generic parsing function with three arguments. The string
s would be an argument passed by value and ls_left and ls_right would be strings passed by
reference.

Other functions that return a pair of tab-separated values for which you could use the parsing
function are GetObjectAtPointer and GetValue.

See also

GetValue method for DataWindows in Section 9.92, “GetValue” in DataWindow Reference.

GetObjectAtPointer method for DataWindows in Section 9.74, “GetObjectAtPointer” in
DataWindow Reference.

LastPos

Left

Mid

Right

Pos method for DataWindows in Section 2.4.93, “Pos” in DataWindow Reference.

2.4.569 PosA

Description

Statements, Events, and Functions

Page 1152

Temporarily converts a string from Unicode to DBCS based on the current locale, then finds
one string within another string.

Syntax

PosA (string1, string2 {, start})

Table 2.1065:

Argument Description

string1 The string in which you want to find string2.

string2 The string you want to find in string1.

start (optional) A long indicating the position in string1 where the search will begin.
The position is indicated by the number of bytes you specify for this
argument. The default is 1.

Return value

Long. Returns a long whose value is the starting position of the first occurrence of string2 in
string1 after the position in bytes specified by start. If string2 is not found in string1 or if start
is not within string1, PosA returns 0. If any argument's value is null, PosA returns null.

Usage

PosA replaces the functionality that Pos had in DBCS environments in PowerBuilder 9. In
SBCS environments, Pos, PosW, and PosA return the same results.

2.4.570 PosW (obsolete)

Description

Finds one string within another string.

This function is obsolete. It has the same behavior as Pos in all environments.

Syntax

PosW (string1, string2 {, start })

2.4.571 Position

Reports the position of the insertion point in an editable control.

Table 2.1066:

To report Use

The position of the insertion point in any editable control (except
RichTextEdit)

Syntax 1

The position of the insertion point or the start and end of selected
text in a RichTextEdit control or a DataWindow whose object has the
RichTextEdit presentation style

Syntax 2

2.4.571.1 Syntax 1: For editable controls, except RichTextEdit

Description

Statements, Events, and Functions

Page 1153

Determines the position of the insertion point in an edit control.

Applies to

DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit, or DropDownListBox,
DropDownPictureListBox controls

Syntax

editname.Position ()

Table 2.1067:

Argument Description

editname The name of the DataWindow control, EditMask, InkEdit, MultiLineEdit,
SingleLineEdit, or DropDownListBox, or DropDownPictureListBox
control in which you want to find the location of the insertion point

Return value

Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

Returns the location of the insertion point in editname if it succeeds and -1 if an error occurs.
If editname is null, Position returns null.

Usage

Position reports the position number of the character immediately following the insertion
point. For example, Position returns 1 if the cursor is at the beginning of editname. If text is
selected in editname, Position reports the number of the first character of the selected text.

In a DataWindow control, Position reports the insertion point's position in the edit control
over the current row and column.

Examples

If mle_EmpAddress contains Boston Street, the cursor is immediately after the n in Boston,
and no text is selected, this statement returns 7:

mle_EmpAddress.Position()

If mle_EmpAddress contains Boston Street and Street is selected, this statement returns 8
(the position of the S in Street):

mle_EmpAddress.Position()

See also

SelectedLine

SelectedStart

2.4.571.2 Syntax 2: For RichTextEdit controls

Description

Determines the line and column position of the insertion point or the start and end of selected
text in an RichTextEdit control.

Applies to

Statements, Events, and Functions

Page 1154

RichTextEdit and DataWindow controls

Syntax

rtename.Position (fromline, fromchar {, toline, tochar })

Table 2.1068:

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want to find the location of the insertion point or selected text. The
DataWindow object in the DataWindow control must be a RichTextEdit
DataWindow.

fromline A long variable in which you want to save the number of the line where
the insertion point or the start of the selection is.

fromchar A long variable in which you want to save the number in the line of the
first character in the selection or after the insertion point.

toline (optional) A long variable in which you want to save the number of the line where
the selection ends.

tochar (optional) A long variable in which you want to save the number in the line of the
character before which the selection ends.

Return value

Band enumerated datatype. Returns the band (Detail!, Header!, or Footer!) containing the
selection or insertion point.

Usage

Position reports the position of the insertion point if you omit the toline and tochar
arguments. If text is selected, the insertion point can be at the beginning or the end of the
selection. For example, if the user dragged down to select text, the insertion point is at the
end.

If there is a selection, a character argument can be set to 0 to indicate that the selection begins
or ends at the start of a line, with nothing else selected on that line. When the user drags up,
the selection can begin at the start of a line and fromchar is set to 0. When the user drags
down, the selection can end at the beginning of a line and tochar is set to 0.

Selection or insertion point

To find out whether there is a selection or just an insertion point, specify all four arguments.
If toline and tochar are set to 0, then there is no selection, only an insertion point. If there is a
selection and you want the position of the insertion point, you will have to call Position again
with only two arguments. This difference is described next.

The position of the insertion point and end of selection can differ

When reporting the position of selected text, the positions are inclusive -- Position reports the
first line and character and the last line and character that are selected. When reporting the
position of the insertion point, Position identifies the character just after the insertion point.
Therefore, if text is selected and the insertion point is at the end, the values for the insertion
point and the end of the selection differ.

Statements, Events, and Functions

Page 1155

To illustrate, suppose the first four characters in line 1 are selected and the insertion point is
at the end. If you request the position of the insertion point:

rte_1.Position(ll_line, ll_char)

Then:

• ll_line is set to 1

• ll_char is set to 5, the character following the insertion point

If you request the position of the selection:

rte_1.Position(ll_startline, ll_startchar, &
 ll_endline, ll_endchar)

• ll_startline and ll_startchar are both set to 1

• ll_endline is 1 and ll_endchar is set to 4, the last character in the selection

Passing values to SelectText

Because values obtained with Position provide more information that simply a selection
range, you cannot pass the values directly to SelectText. In particular, 0 is not a valid
character position when selecting text, although it is meaningful in describing the selection.

Examples

This example calls Position to get the band and the line and column values for the beginning
and end of the selection. The values are converted to strings and displayed in the StaticText
st_status:

integer li_rtn
long ll_startline, ll_startchar
long ll_endline, ll_endchar
string ls_s, ls_band
band l_band

// Get the band and start and end of the selection
l_band = rte_1.Position(ll_startline, ll_startchar,&
 ll_endline, ll_endchar)

// Convert position values to strings
ls_s = "Start line/char: " + String(ll_startline) &
 + ", " + String(ll_startchar)
ls_s = ls_s + " End line/char: " &
 + String(ll_endline) + ", " + String(ll_endchar)

// Convert Band datatype to string
CHOOSE CASE l_band
CASE Detail!
 ls_band = " Detail"
CASE Header!
 ls_band = " Header"
CASE Footer!
 ls_band = " Footer"
CASE ELSE
 ls_band = " No band"
END CHOOSE
 ls_s = ls_s + ls_band

Statements, Events, and Functions

Page 1156

// Display the information
st_status.Text = ls_s

This example extends the current selection down 1 line. It takes into account whether there is
an insertion point or a selection, whether the insertion point is at the beginning or end of the
selection, and whether the selection ends at the beginning of a line:

integer rtn
long l1, c1, l2, c2, linsert, cinsert
long l1select, c1select, l2select, c2select

// Get selectio start and end
rte_1.Position(l1, c1, l2, c2)

// Get insertion point
rte_1.Position(linsert, cinsert)

IF l2 = 0 and c2 = 0 THEN //insertion point
 l1select = linsert
 c1select = cinsert
 l2select = l1select + 1 // Add 1 to end line
 c2select = c1select

ELSEIF l2 > l1 THEN // Selection, ins pt at end
 IF c2 = 0 THEN // End of selection (ins pt)
 // at beginning of a line (char 0)
 c2 = 999 // Change to end of prev line
 l2 = l2 - 1
 END IF

 l1select = l1
 c1select = c1
 l2select = l2 + 1 // Add 1 to end line
 c2select = c2

ELSEIF l2 < l1 THEN // selection, ins pt at start
 IF c1 = 0 THEN // End of selection (not ins pt)
 // at beginning of a line
 c1 = 999 // Change to end of prev line
 l1 = l1 - 1
 END IF
 l1select = l2
 c1select = c2
 l2select = l1 + 1 // Add 1 to end line
 // (start of selection)
 c2select = c1

ELSE // l1 = l2, selection on one line
 l1select = l1
 l2select = l2 + 1 // Add 1 to line
 IF c1 < c2 THEN // ins pt at end
 c1select = c1
 c2select = c2
 ELSE // c1 > c2, ins pt at start
 c1select = c2
 c2select = c1
 END IF
END IF

// Select the extended selection
rtn = rte_1.SelectText(l1select, c1select, &
 l2select, c2select)

For an example of selecting each word in a RichTextEdit control, see SelectTextWord.

Statements, Events, and Functions

Page 1157

See also

SelectedLine

SelectedStart

SelectText

2.4.572 Post

Description

Adds a message to the message queue for a window, either a PowerBuilder window or
window of another application.

Syntax

Post (handle, message#, word, long)

Table 2.1069:

Argument Description

handle A long whose value is the system handle of a window (that you have
created in PowerBuilder or another application) to which you want to
post a message.

message# An UnsignedInteger whose value is the system message number of the
message you want to post.

word A long whose value is the integer value of the message. If this argument
is not used by the message, enter 0.

long The long value of the message or a string.

Return value

Boolean. If any argument's value is null, Post returns null.

Usage

Use Post or Send when you want to trigger system events that are not PowerBuilder-defined
events. Post is asynchronous; it adds a message to the end of the window's message queue.
Send is synchronous; its message triggers an event immediately.

To obtain the handle of a PowerBuilder window, use the Handle function.

To trigger PowerBuilder events, use TriggerEvent or PostEvent. These functions run the
script associated with the event. They are easier to code and bypass the messaging queue.

When you specify a string for long, Post stores a copy of the string and passes a pointer to it.

Examples

This statement scrolls the window w_date down one page after all the previous messages in
the message queue for the window have been processed:

Post(Handle(w_date), 277, 3, 0)

See also

Handle

Statements, Events, and Functions

Page 1158

PostEvent

Send

TriggerEvent

2.4.573 PostData

Description

Sends the string or blob data with POST method.

Applies to

HTTPClient objects

Syntax

objectname.PostData (data, bufferSize)

Table 2.1070:

Argument Description

objectname The name of the HTTPClient object for which you want to post the data.

data A string or blob value specifying the data to post.

bufferSize A long value specifying the buffer size. For the string data, each
PowerBuilder character takes up two bytes of storage.

Return value

Integer.

Returns values as follows. If any argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Timed out

Examples

This example request information in a loop:

Integer i, li_PackCount, li_rc
String ls_TotalStrData, ls_NextData
Blob lblb_NextData
HttpClient lnv_HttpClient

lnv_HttpClient = Create HttpClient

// Read the file to ls_TotalStrData and calculate li_PackCount
// ...
// Construct a POST request
// Content-Length indicates the total bytes of data being sent
// Each PB character takes up two bytes of storage
lnv_HttpClient.SetRequestHeader("Content-Length", String(Len(ls_TotalStrData)*2))

// Start posting data and request information
if lnv_HttpClient.PostDataStart("https://demo.appeon.com/PB/webapi_client/
employee/102/photo") = 1 then
 for i = 1 to li_PackCount

Statements, Events, and Functions

Page 1159

 ls_NextData = mid(ls_TotalStrData, (i - 1) * 1024 + 1, 1024)
 li_rc = lnv_HttpClient.PostData(ls_NextData, Len(ls_NextData)* 2)
 if li_rc <> 1 then exit
 next
end if

if li_rc = 1 then
 li_rc = lnv_HttpClient.PostDataEnd()
end if

See also

PostDataStart

PostDataEnd

2.4.574 PostDataEnd

Description

Finishes sending the data with POST method.

Applies to

HTTPClient objects

Syntax

objectname.PostDataEnd ()

Table 2.1071:

Argument Description

objectname The name of the HTTPClient object for which you want to end posting
data.

Return value

Integer.

Returns values as follows. If any argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Timed out

Examples

Integer i, li_PackCount, li_rc
Blob lblb_photo, lblb_NextData
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient

// Read photo to lblb_photo and calculate li_PackCount
// ...
lnv_HttpClient.SetRequestHeader("Content-Type", "multipart/form-data;
 boundary--------------------------359875084413580694217125")
// Construct a POST request
lnv_HttpClient.SetRequestHeader("Content-Length", string(len(lblb_photo)))

// Start posting data and request information

Statements, Events, and Functions

Page 1160

if lnv_HttpClient.PostDataStart("https://demo.appeon.com/PB/webapi_client/
employee/102/photo") = 1 then
 for i = 1 to li_PackCount
 lblb_NextData = blobmid(lblb_photo, (i - 1) * 1024 + 1, 1024)
 li_rc = lnv_HttpClient.PostData(lblb_NextData, 1024)
 if li_rc <> 1 then exit
 next
end if

if li_rc = 1 then
 li_rc = lnv_HttpClient.PostDataEnd()
end if

See also

PostData

PostDataStart

2.4.575 PostDataStart

Description

Starts sending the data with POST method.

If IgnoreServerCertificate or CheckForServerCertRevocation is set to verify the server
certificate, and if the verification fails, an error code will be returned.

Applies to

HTTPClient objects

Syntax

objectname.PostDataStart (urlName)

Table 2.1072:

Argument Description

objectname The name of the HTTPClient object for which you want to start posting
data.

urlName A string value specifying the URL.

Return value

Integer.

Returns values as follows. If any argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timed out

-7 -- Certification revocation checking has been enabled, but the revocation check failed to
verify whether a certificate has been revoked. The server used to check for revocation might
be unreachable.

Statements, Events, and Functions

Page 1161

-8 -- SSL certificate is invalid.

-9 -- SSL certificate was revoked.

-10 -- The function is unfamiliar with the Certificate Authority that generated the server's
certificate.

-11 -- SSL certificate common name (host name field) is incorrect, for example,
if you entered www.appeon.com and the common name on the certificate says
www.demo.appeon.com.

-12 -- SSL certificate date that was received from the server is bad. The certificate is expired.

-13 -- The certificate was not issued for server authenticate purpose.

-14 -- The application experienced an internal error loading the SSL libraries.

-15 -- More than one type of errors when validating the server certificate.

Examples

This example requests information in a loop:

Integer i, li_PackCount, li_rc
Blob lblb_photo, lblb_NextData
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient

// Read photo to lblb_photo and calculate li_PackCount
//...
lnv_HttpClient.SetRequestHeader("Content-Type", "multipart/form-data;
 boundary--------------------------359875084413580694217125")
// Construct a POST request
lnv_HttpClient.SetRequestHeader("Content-Length", string(len(lblb_photo)))

// Start posting data and request information
if lnv_HttpClient.PostDataStart("https://demo.appeon.com/PB/webapi_client/
employee/102/photo") = 1 then
 for i = 1 to li_PackCount
 lblb_NextData = blobmid(lblb_photo, (i - 1) * 1024 + 1, 1024)
 li_rc = lnv_HttpClient.PostData(lblb_NextData, 1024)
 if li_rc <> 1 then exit
 next
end if

if li_rc = 1 then
 li_rc = lnv_HttpClient.PostDataEnd()
end if

See also

PostData

PostDataEnd

2.4.576 PostEvent

Description

Adds an event to the end of the event queue of an object.

Applies to

Any object, except the application object

Statements, Events, and Functions

Page 1162

Syntax

objectname.PostEvent (event {, word, long })

Table 2.1073:

Argument Description

objectname The name of any PowerBuilder object or control (except an application)
that has events associated with it.

event A value of the TrigEvent enumerated datatype that identifies
a PowerBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event. The
event must be a valid event for objectname and a script must exist for the
event in objectname.

word (optional) A long value to be stored in the WordParm property of the system's
Message object. If you want to specify a value for long, but not word,
enter 0. (For cross-platform compatibility, WordParm and LongParm are
both longs).

long

(optional)

A long value or a string that you want to store in the LongParm property
of the system's Message object. When you specify a string, a pointer to
the string is stored in the LongParm property, which you can access with
the String function (see Usage).

Return value

Boolean. Returns true if it is successful and false if the event is not a valid event for
objectnameobjectname. Also returns true if no script exists for the event in objectname. If any
argument's value is null, PostEvent returns null.

Usage

You cannot post events to the event queue for an application object. Use TriggerEvent
instead.

You cannot post or trigger events for objects that do not have events, such as drawing objects.
You cannot post or trigger events in a batch application that has no user interface because the
application has no event queue.

After you call PostEvent, check the return code to determine whether PostEvent succeeded.

You can pass information to the event script with the word and long arguments. The
information is stored in the Message object. In your script, you can reference the WordParm
and LongParm fields of the Message object to access the information. Note that the Message
object is saved and restored just before the posted event script runs so that the information
you passed is available even if other code has used the Message object too.

If you have specified a string for long, you can access it in the triggered event by using the
String function with the keyword "address" as the format parameter. (Note that PowerBuilder
has stored the string at an arbitrary memory location and you are relying on nothing else
having altered the pointer or the stored string.) Your event script might begin as follows:

string PassedString
PassedString = String(Message.LongParm, "address")

Statements, Events, and Functions

Page 1163

TriggerEvent and PostEvent are useful for preventing duplication of code. If two controls
perform the same task, you can use PostEvent in one control's event script to execute the
other's script, instead of repeating the code in two places. For example, if both a button and a
menu delete data, the button's Clicked script can perform the deletion and the menu's Clicked
event script can post an event that runs the button's Clicked event script.

Choosing PostEvent or TriggerEvent

Both PostEvent and TriggerEvent cause event scripts to be executed. PostEvent is
asynchronous; it adds the event to the end of an object's event queue. TriggerEvent is
synchronous; the event is triggered immediately.

Use PostEvent when you want the current event script to complete before the posted event
script runs. TriggerEvent interrupts the current script to run the triggered event's script. Use it
when you need to interrupt a process, such as canceling printing.

If the function is the last line in an event script and there are no other events pending,
PostEvent and TriggerEvent have the same effect.

Events and messages in Windows

Both PostEvent and TriggerEvent cause a script associated with an event to be executed.
However, these functions do not send the actual event message. This is important when you
are choosing the target object and event. The following background information explains this
concept.

Many PowerBuilder functions send Windows messages, which in turn trigger events and run
scripts. For example, the Close function sends a Windows close message (WM_CLOSE).
PowerBuilder maps the message to its internal close message (PBM_CLOSE), then runs the
Close event's script and closes the window.

If you use TriggerEvent or PostEvent with Close! as the argument, PowerBuilder runs the
Close event's script but it does not close the window because it did not receive the close
message. Therefore, the choice of which event to trigger is important. If you trigger the
Clicked! event for a button whose script calls the Close function, PowerBuilder runs the
Close event's script and closes the window.

Use Post or Send when you want to trigger system events that are not PowerBuilder-defined
events.

Examples

This statement adds the Clicked event to the event queue for CommandButton cb_OK. The
event script will be executed after any other pending event scripts are run:

cb_OK.PostEvent(Clicked!)

This statement adds the user-defined event cb_exit_request to the event queue in the parent
window:

Parent.PostEvent("cb_exit_request")

This example posts an event for cb_exit_request with an argument and then retrieves that
value from the Message object in the event's script.

The first part of the example is code for a button in a window. It adds the user-defined event
cb_exit_request to the event queue in the parent window. The value 455 is stored in the
Message object for the use of the event's script:

Statements, Events, and Functions

Page 1164

Parent.PostEvent("cb_exit_request", 455, 0)

The second part of the example is the beginning of the cb_exit_request event script, which
assigns the value passed in the Message object to a local variable. The script can use the
value in whatever way is appropriate to the situation:

integer numarg
numarg = Message.WordParm

See also

Post

Send

TriggerEvent

2.4.577 PostURL

Description

Performs an HTTP Post, allowing a PowerBuilder application to send a request through CGI,
NSAPI, or ISAPI.

Applies to

Inet objects (Obsolete)

Syntax

servicereference.PostURL (urlname, urldata, headers, {serverport, } data)

Table 2.1074:

Argument Description

servicereference Reference to the Internet service instance.

urlname String specifying the URL to post.

urldata Blob specifying arguments to the URL specified by urlname.

headers String specifying HTML headers. In Netscape, a newline (~n) is required
after each HTTP header and a final newline after all headers.

serverport

(optional)

Specifies the server port number for the request. The default value for
this argument is 0, which means that the port number is determined by
the system (port 80 for HTTP requests).

data InternetResult instance into which the function returns HTML.

Return value

Integer. Returns values as follows:

1 -- Success

-1 -- General error

-2 -- Invalid URL

-4 -- Cannot connect to the Internet

Statements, Events, and Functions

Page 1165

-5 -- Unsupported secure (HTTPS) connection attempted

-6 -- Internet request failed

Usage

Call this function to invoke a CGI, NSAPI, or ISAPI function.

Data references a standard class user object that descends from InternetResult and that has
an overridden InternetData function. This overridden function then performs the required
processing with the returned HTML. Because the Internet returns data asynchronously,
data must reference a variable that remains in scope after the function executes (such as a
window-level instance variable).

To simulate a form submission, you need to send a header that indicates the proper Content-
Type. For forms, the proper Content-Type header is:

Content-Type: application/x-www-form-urlencoded

For more information on the InternetResult standard class user object and the InternetData
function, use the PowerBuilder Browser.

Timeout value for sending a request

The PostURL function relies on wininet.dll to post a request and returns -1 when the
posting time exceeds the DLL timeout value. When you install Internet Explorer 7
or later, the default timeout value for this DLL is 30 seconds. Although it is possible
to change the timeout value by configuring a ReceiveTimeOut registry key under
HKEY_CURRENT_USER\ SOFTWARE\Microsoft\Windows\CurrentVersion
\Internet Settings, this is not recommended, since it can also affect the behavior of the
Internet Explorer browser.

Examples

This example calls the PostURL function using server port 8080. Iinet is an instance variable
of type inet:

Blob lblb_args
String ls_headers
String ls_url
Long ll_length

iir_msgbox = CREATE n_ir_msgbox
ls_url = "https://www.appeon.com/"
ls_url += "cgi-bin/pbcgi60.exe/"
ls_url += "myapp/n_cst_html/f_test?"
lblb_args = blob("")
ll_length = Len(lblb_args)
ls_headers = "Content-Length: " &
 + String(ll_length) + "~n~n"
iinet.PostURL &
 (ls_url, lblb_args, ls_headers, 8080, iir_msgbox)

This example shows the use of a header with the correct content-type for a form:

Blob lblb_args
String ls_headers
String ls_url
String ls_args

Statements, Events, and Functions

Page 1166

long ll_length
integer li_rc

li_rc = GetContextService("Internet", iinet_base)
IF li_rc = 1 THEN ir = CREATE n_ir ls_url = "http://localhost/Site/
testurl.stm?"
 ls_args = "user=MyName&pwd=MyPasswd"
 lblb_args = Blob(ls_args)
 ll_length = Len(lblb_args)
 ls_header = "Content-Type: " + &
 "application/x-www-form-urlencoded~n" + &
 "Content-Length: " + String(ll_length) + "~n~n"
 li_rc = iinet.PostURL(ls_url, lblb_args, &
 ls_header, ir)
END IF

See also

GetURL

HyperLinkToURL

InternetData

2.4.578 Preview

Description

Displays the contents of a RichTextEdit control as either a preview of the document as it
would print or in an editing view.

Applies to

RichTextEdit controls

Syntax

rtename.Preview (previewsetting)

Table 2.1075:

Argument Description

rtename The name of the RichTextEdit control which you want to preview or edit.

previewsetting A boolean value indicating whether to put the RichTextEdit into preview
or edit mode. Values are:

• True -- Preview the contents of the RichTextEdit as it would look
when printed

• False -- Displays the contents in editable form

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage

A RichTextEdit control has two ways of viewing the content: edit mode and preview mode.
The Preview function switches between the two.

Statements, Events, and Functions

Page 1167

Edit mode

Edit mode displays the text in readable form. The user can enter, select, and change text.
There are properties for controlling the display of nonprinting characters in the text, such as
carriage returns, spaces, tabs, and input fields. In edit mode, the toolbar, ruler bar, and tab
bar, if visible, display above the editing area of the control.

Preview mode

Preview mode displays a miniature page within the control. The page is sized to fit within
the control. Any selection is canceled when the control switches to preview mode. The user
cannot edit text in preview mode, but scripts can call functions for selecting and changing
text, including inserting documents. Users can page through the control contents in preview
mode by using the up arrow and down arrow keys, or the Page Up and Page Down keys.

If you call ShowHeadFoot when the control is in preview mode, you return to edit mode with
the header and footer editing panels displayed.

Make sure the RichTextEdit control is big enough to display the page formatting and
scrolling controls available in preview mode.

Examples

This example previews the page layout of the RichTextEdit rte_1:

rte_1.Preview(TRUE)

See also

IsPreview

2.4.579 Print

Sends data to the current printer (or spooler, if the user has a spooler set up). There are
several syntaxes.

For syntax for DataWindows or DataStores, see the Print method for DataWindows in
Section 9.118, “Print” in DataWindow Reference.

Table 2.1076:

To Use

Include a visual object, such as a window or a graph control in a print job Syntax 1

Send one or more lines of text as part of a print job Syntax 2

Print the contents of an RTE control Syntax 3

2.4.579.1 Syntax 1: For printing a visual object in a print job

Description

Includes a visual object, such as a window or a graph control, in a print job that you have
started with the PrintOpen function.

Applies to

Any object

Syntax

Statements, Events, and Functions

Page 1168

objectname.Print (printjobnumber, x, y {, width, height })

Table 2.1077:

Argument Description

objectname The name of the object that you want to print. The object must either be a
window or an object whose ancestor type is DragObject, which includes
all the controls that you can place in a window.

printjobnumber The number the PrintOpen function assigns to the print job.

x An integer whose value is the x coordinate on the page of the left corner
of the object, in thousandths of an inch.

y An integer whose value is the y coordinate on the page of the left corner
of the object, in thousandths of an inch.

width (optional) An integer specifying the printed width of the object in thousandths of an
inch. If omitted, PowerBuilder uses the object's original width.

height (optional) An integer specifying the printed height of the object in thousandths of an
inch. If omitted, PowerBuilder uses the object's original height.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, Print
returns null.

Usage

PowerBuilder manages print jobs by opening the job, sending data, and closing the job.
When you use Syntax 2 or 3, you must call the PrintOpen function and the PrintClose or
PrintCancel functions yourself to manage the process.

PowerBuilder copies the area of the screen occupied by the control to the printer. If any other
window or application displays on the screen in that area in front of the control while the
control is being printed, that window or application will also be printed.

Print area and margins

The print area is the physical page size minus any margins in the printer itself.

Examples

This example prints the CommandButton cb_close in its original size at location 500, 1000:

long Job
Job = PrintOpen()
cb_close.Print(Job, 500,1000)
PrintClose(Job)

This example opens a print job, which defines a new page, then prints a title using the third
syntax of Print. Then it uses this syntax of Print to print a graph on the first page and a
window on the second page:

long Job
Job = PrintOpen()
Print(Job, "Report of Year-to-Date Sales")
gr_sales1.Print(Job, 1000,PrintY(Job)+500, &
 6000,4500)
PrintPage(Job)
w_sales.Print(Job, 1000,500, 6000,4500)

Statements, Events, and Functions

Page 1169

PrintClose(Job)

See also

PrintCancel

PrintClose

PrintOpen

PrintScreen

2.4.579.2 Syntax 2: For printing text in a print job

Description

Sends one or more lines of text as part of a print job that you have opened with the PrintOpen
function. You can specify tab settings before or after the text. The tab settings control the
text's horizontal position on the page.

Applies to

Not object-specific

Syntax

Print (printjobnumber, { tab1, } string {, tab2 })

Table 2.1078:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

tab1 (optional) The position, measured from the left edge of the print area in thousandths
of a inch, to which the print cursor should move before string is printed.
If the print cursor is already at or beyond the position or if you omit tab1,
Print starts printing at the current position of the print cursor.

string The string you want to print. If the string includes carriage return-newline
character pairs (~r~n), the string will print on multiple lines. However,
the initial tab position is ignored on subsequent lines.

tab2

(optional)

The new position, measured from the left edge of the print area in
thousandths of a inch, of the print cursor after string printed. If the print
cursor is already at or beyond the specified position, Print ignores tab2
and the print cursor remains at the end of the text. If you omit tab2, Print
moves the print cursor to the beginning of a new line.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, Print
returns null.

Usage

PowerBuilder manages print jobs by opening the job, sending data, and closing the job.
When you use Syntax 2 or 3, you must call the PrintOpen function and the PrintClose or
PrintCancel functions yourself to manage the process.

Print cursor

Statements, Events, and Functions

Page 1170

In a print job, PowerBuilder uses a print cursor to keep track of the print location. The print
cursor stores the coordinates of the upper-left corner of the location at which print will being.
PowerBuilder updates the print cursor after printing text with Print.

Line spacing when printing text

Line spacing in PowerBuilder is proportional to character height. The default line spacing
is 1.2 times the character height. When Print starts a new line, it sets the x coordinate of the
cursor to 0 and increases the y coordinate by the current line spacing. You can change the
line spacing with the PrintSetSpacing function, which lets you specify a new factor to be
multiplied by the character height.

Because Syntax 3 of Print increments the y coordinate each time it creates a new line,
it also handles page breaks automatically. When the y coordinate exceeds the page size,
PowerBuilder automatically creates a new page in the print job. You do not need to call the
PrintPage function, as you would if you were using the printing functions that control the
cursor position (for example, PrintText or PrintLine).

Print area and margins

The print area is the physical page size minus any margins in the printer itself.

Using fonts

You can use PrintDefineFont and PrintSetFont to specify the font used by the Print function
when you are printing a string.

Fonts for multiple languages

The default font for print functions is the system font, but multiple languages cannot be
printed correctly using the system font. The Tahoma font typically produces good results.
However, if the printer font is set to Tahoma and the Tahoma font is not installed on the
printer, PowerBuilder downloads the entire font set to the printer when it encounters a
multilanguage character. Use the PrintDefineFont and PrintSetFont functions to specify a
font that is available on users' printers and supports multiple languages.

Examples

This example opens a print job, prints the string Appeon Corporation in the default font, and
then starts a new line:

long Job

// Define a blank page and assign the job an ID
Job = PrintOpen()

// Print the string and then start a new line
Print(Job, "Appeon Corporation")
...
PrintClose(Job)

This example opens a print job, prints the string Appeon Corporation in the default font, tabs
5 inches from the left edge of the print area but does not start a new line:

long Job

// Define a blank page and assign the job an ID
Job = PrintOpen()

Statements, Events, and Functions

Page 1171

// Print the string but do not start a new line
Print(Job, "Appeon Corporation", 5000)
...
PrintClose(Job)

The first Print statement below tabs half an inch from the left edge of the print area, prints
the string Appeon Corporation, and then starts a new line. The second Print statement tabs
one inch from the left edge of the print area, prints the string Directors:, and then starts a new
line:

long Job
// Define a blank page and assign the job an ID
Job = PrintOpen()
// Print the string and start a new line
Print(Job, 500, "Appeon Corporation")
// Tab 1 inch from the left edge and print
Print(Job, 1000, "Directors:")
...
PrintClose(Job)

The first Print statement below tabs half an inch from the left edge of the print area prints
the string Appeon Corporation, and then tabs 6 inches from the left edge of the print area but
does not start a new line. The second Print statement prints the current date and then starts a
new line:

long Job
// Define a blank page and assign the job an ID
Job = PrintOpen()
// Print string and tab 6 inches from the left edge
Print(Job, 500, "Appeon Corporation", 6000)
// Print the current date on the same line
Print(Job, String(Today()))
...
PrintClose(Job)

In a window that displays a database error message in a MultiLineEdit mle_message, the
following script for a Print button prints a title with the date and time and the message:

long li_prt
li_prt = PrintOpen("Database Error")
Print(li_prt, "Database error - " &
 + String(Today(), "mm/dd/yyyy") &
 + " - " &
 + String(Now(), "HH:MM:SS"))
Print(li_prt, " ")
Print(li_prt, mle_message.text)
PrintClose(li_prt)

See also

PrintCancel

PrintClose

PrintDataWindow

PrintOpen

PrintScreen

PrintSetFont

PrintSetSpacing

Statements, Events, and Functions

Page 1172

2.4.579.3 Syntax 3: For RichTextEdit controls

Description

Prints the contents of a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.Print (copies, pagerange, collate, canceldialog)

Table 2.1079:

Argument Description

rtename The name of the RichTextEdit control whose contents you want to print.

copies An integer specifying the number of copies you want to print.

pagerange A string describing the pages you want to print. To print all pages,
specify an empty string (""). To specify a subset of pages, use dashes
to specify a range and commas to separate ranges and individual page
numbers, for example, "1-3" or "2,5,8-10".

When rtename shares data with a DataWindow, pagerange refers to
pages based on the total number of pages in the control, not within each
instance of the document.

collate A boolean value indicating whether you want the copies collated. Values
are:

TRUE -- Collate copies

FALSE -- Do not collate copies

canceldialog A boolean value indicating whether you want to display a nonmodal
dialog box that allows the user to cancel printing. Values are:

TRUE -- Display the dialog box

FALSE -- Do not display the dialog box

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage

When the RichTextEdit control shares data with a DataWindow, the total number of pages
contained in the control is the page count of the document multiplied by the row count of the
DataWindow.

You can specify printed page numbers by including an input field in the header or footer of
your document.

Examples

This statement prints one copy of pages 1 to 5 of the document in the RichTextEdit control
rte_1. The output is not collated and a dialog box displays to allow the user to cancel the
printing:

Statements, Events, and Functions

Page 1173

rte_1.Print(1, "1-5", FALSE, TRUE)

See also

Preview

PrintEx

2.4.580 PrintAsPDF

Description

Prints the current web page as a PDF file.

Applies to

WebBrowser controls

Syntax

controlname.PrintAsPDF (string PdfFile)

Table 2.1080:

Argument Description

controlname The name of the WebBrowser control.

PdfFile The file path and file name of the PDF file to be saved.

Return value

Integer.

• 1 -- Success.

• -1 -- General error.

• -2 -- Failed to get the browser instance.

• -3 -- Invalid file path or file name.

• -4 -- The folder where the PDF file will be saved does not exist.

Examples

This example prints the current web page as printaspdf.pdf and saves it under the current
directory:

Integer li_rtn
String ls_pdfpath
Ls_pdfpath = getcurrentdirectory() + "\printaspdf.pdf"
Li_rtn = wb_1.PrintAsPDF(ls_pdfpath)

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

Statements, Events, and Functions

Page 1174

GetSource

GoBack

GoForward

Navigate

PauseDownload

Refresh

RegisterEvent

ResumeDownload

StopNavigation

UnregisterEvent

Zoom

2.4.581 PrintBitmap

Description

Writes a bitmap at the specified location on the current page.

Syntax

PrintBitmap (printjobnumber, bitmap, x, y, width, height)

Table 2.1081:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

bitmap A string whose value is the file name of the bitmap image.

x An integer whose value is the x coordinate (in thousandths of an inch) on
the page of the bitmap image.

y An integer whose value is the y coordinate (in thousandths of an inch) on
the page of the bitmap image.

width The integer width of the bitmap image in thousandths of an inch. If width
is 0, PowerBuilder uses the original width of the image.

height The integer height of the bitmap image in thousandths of an inch. If
height is 0, PowerBuilder uses the original height of the image.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintBitmap returns null.

Usage

PrintBitmap does not change the position of the print cursor, which remains where it was
before the function was called. In general, print functions in which you specify coordinates
do not affect the print cursor (see the functions listed in See also).

Examples

Statements, Events, and Functions

Page 1175

These statements define a new blank page and then print the bitmap in file d:\PB
\BITMAP1.BMP in its original size at location 50,100:

long Job

// Define a new blank page.
Job = PrintOpen()

// Print the bitmap in its original size.
PrintBitmap(Job, "d:\PB\BITMAP1.BMP", 50,100, 0,0)
// Send the page to the printer and close Job.
PrintClose(Job)

See also

PrintClose

PrintLine

PrintRect

PrintRoundRect

PrintOval

PrintOpen

2.4.582 PrintCancel

Description

Cancels printing and deletes the spool file, if any. Cancels printing of a print job that you
opened with the PrintOpen function. The print job is identified by the number returned by
PrintOpen.

For syntax for DataWindows and DataStores, see the PrintCancel method for DataWindows
in Section 9.119, “PrintCancel” in DataWindow Reference.

Syntax

PrintCancel (printjobnumber)

Table 2.1082:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If printjobnumber is null,
PrintCancel returns null.

Usage

PrintCancel cancels the specified print job by deleting the spool file, if any, and closing the
job. Because PrintCancel closes the print job, do not call the PrintClose function after you
call PrintCancel.

Examples

In this example, a script for a Print button opens a print job and then opens a window with
a cancel button. If the user clicks on the cancel button, its script sets a global variable that

Statements, Events, and Functions

Page 1176

indicates that the user wants to cancel the job. After each printing command in the Print
button's script, the code checks the global variable and cancels the job if its value is true.

The definition of the global variable is:

boolean gb_printcancel

The script for the Print button is:

long job, li

gb_printcancel = FALSE
job = PrintOpen("Test Page Breaks")
IF job < 1 THEN
 MessageBox("Error", "Can't open a print job.")
 RETURN
END IF

Open(w_printcancel)

PrintBitmap(Job, "d:\PB\bitmap1.bmp", 5, 10, 0, 0)
IF gb_printcancel = TRUE THEN
 PrintCancel(job)
 RETURN
END IF

... // Additional printing commands,
... // including checking gb_printcancel

PrintClose(job)
Close(w_printcancel)

The script for the cancel button in the second window is:

gb_printcancel = TRUE
Close(w_printcancel)

See also

Print

PrintClose

PrintOpen

2.4.583 PrintClose

Description

Sends the current page to the printer (or spooler) and closes the job. Call PrintClose as the
last command of a print job unless PrintCancel function has closed the job.

Syntax

PrintClose (printjobnumber)

Table 2.1083:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

Return value

Statements, Events, and Functions

Page 1177

Integer. Returns 1 if it succeeds and -1 if an error occurs. If printjobnumber is null,
PrintClose returns null.

Usage

When you open a print job, you must close (or cancel) it. To avoid hung print jobs, process
and close a print job in the same event in which you open it.

Examples

This example opens a print job, which creates a blank page, prints a bitmap on the page, then
sends the current page to the printer or spooler and closes the job:

ulong Job

// Begin a new job and a new page.
Job = PrintOpen()

// Print the bitmap in its original size.
PrintBitmap(Job, d:\PB\BITMAP1, 5,10, 0,0)

// Send the page to the printer and close Job.
PrintClose(Job)

See also

PrintCancel

PrintOpen

2.4.584 PrintDataWindow

Description

Prints the contents of a DataWindow control or DataStore as a print job.

Syntax

PrintDataWindow (printjobnumber, dwcontrol)

Table 2.1084:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

dwcontrol The name of the DataWindow control, child DataWindow, or DataStore
containing the DataWindow object you want to print

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintDataWindow returns null.

Usage

Do not use PrintDataWindow with any Print functions except PrintOpen and PrintClose.

When you use PrintDataWindow with PrintOpen and PrintClose, you can print several
DataWindows in one print job. The information in each DataWindow control starts printing
on a new page.

Statements, Events, and Functions

Page 1178

When you print a DataWindow using PrintDataWindow, PowerBuilder uses the fonts and
layout specified in the computer's printer setup, not the fonts and layout specified in the
DataWindow. The PrintDefineFont and PrintSetFont methods also have no effect.

When the DataWindow's presentation style is RichTextEdit, each row begins a new page in
the printed output.

For information on skipping individual pages with return codes in the PrintPage event, see
the Print function.

Examples

These statements send the contents of three DataWindow controls to the current printer in a
single print job:

long job
job = PrintOpen()
// Each DataWindow starts printing on a new page.
PrintDataWindow(job, dw_EmpHeader)
PrintDataWindow(job, dw_EmpDetail)
PrintDataWindow(job, dw_EmpDptSum)
PrintClose(job)

See also

Print

PrintClose

PrintOpen

2.4.585 PrintDefineFont

Description

Creates a numbered font definition that consists of a font supported by your printer and a set
of font properties. You can use the font number in the PrintSetFont or PrintText functions.
You can define up to eight fonts at a time.

Syntax

PrintDefineFont (printjobnumber, fontnumber, facename, height, weight, fontpitch,
 fontfamily, italic, underline)

Table 2.1085:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

fontnumber The number (1 to 8) you want to assign to the font.

facename A string whose value is the name of a typeface supported by your printer
(for example, Courier 10Cpi).

height An integer whose value is the height of the type in thousandths of an inch
(for example, 250 for 18-point 10Cpi) or a negative number representing
the point size (for example, -18 for 18-point). Specifying the point size is
more exact; the height in thousandths of an inch only approximates the
point size.

weight The stroke weight of the type. Normal weight is 400 and bold is 700.

Statements, Events, and Functions

Page 1179

Argument Description

fontpitch A value of the FontPitch enumerated datatype indicating the pitch of the
font:

Default!

Fixed!

Variable!

fontfamily A value of the FontFamily enumerated datatype indicating the family of
the font:

AnyFont!

Decorative!

Modern!

Roman!

Script!

Swiss!

italic A boolean value indicating whether the font is italic. The default is false
(not italic).

underline A boolean value indicating whether the font is underlined. The default is
false (not underlined).

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintDefineFont returns null.

Usage

You can use as many as eight fonts in one print job. If you require more than eight fonts in
one job, you can call PrintDefineFont again to change the settings for a font number.

Use PrintSetFont to make a font number the current font for the open print job.

Fonts in Microsoft Windows

Although the fontfamily argument seems to duplicate information in the font name,
Windows uses it along with the font name to identify the correct font or substitute a
similar font if the named font is unavailable.

Font names and sizes

Some font names include a size, especially monospaced fonts which include
characters per inch. This is the recommended size for the font and does not affect the
printed size, which you specify with the height argument.

Examples

These statements define a new blank page, and then define print font 1 for Job as Courier
10Cpi, 18 point, normal weight, default pitch, Decorative font, with no italic or underline:

Statements, Events, and Functions

Page 1180

long Job
Job = PrintOpen()
PrintDefineFont(Job, 1, "Courier 10Cpi", &
 -18, 400, Default!, Decorative!, FALSE, FALSE)

See also

PrintClose

PrintOpen

PrintSetFont

2.4.586 PrintEx

Description

Prints the contents of a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.PrintEx (canceldialog)

Table 2.1086:

Argument Description

rtename The name of the RichTextEdit control whose contents you want to print.

canceldialog A boolean value indicating whether you want to display a nonmodal
Cancel dialog box that allows the user to cancel printing. The System
Print dialog box always displays. Values are:

TRUE -- Display the dialog box

FALSE -- Do not display the dialog box

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If the user presses Cancel in the
Print dialog box, PrintEx returns -1. If the user presses Cancel in the Cancel dialog box,
PrintEx returns 1.

Usage

To specify a range of pages and the number of copies to print and whether pages should be
collated, use the Print function.

Examples

This statement prints the document in the RichTextEdit control rte_1. A Cancel dialog box
displays to allow the user to cancel the printing:

rte_1.PrintEx(TRUE)

See also

Preview

Print

Statements, Events, and Functions

Page 1181

2.4.587 PrintGetPrinter

Description

Gets the current printer name.

Syntax

PrintGetPrinter ()

Return value

String. Returns current printer information in a tab-delimited format: printername ~t
drivername ~t port.

Usage

The current printer is the default printer unless you change it with the PrintSetPrinter method.
A PowerBuilder application calling the PrintGetPrinter method does not get an externally
reset default after the application initializes.

Examples

This example places the current printer name, driver, and port in separate SingleLineEdit
textboxes:

String ls_fullstring
ls_fullstring=PrintGetPrinter()
String ls_name, ls_driver, ls_port, ls_temp
Long ll_place
ll_place=pos (ls_fullstring, "~t")
ls_name=left(ls_fullstring, ll_place -1)
ls_temp=mid(ls_fullstring, ll_place +1)
ll_place=pos (ls_temp, "~t")
ls_driver=left(ls_temp, ll_place -1)
ls_port=mid(ls_temp, ll_place +1)
sle_1.text=ls_name
sle_2.text=ls_driver
sle_3.text=ls_port

See also

PrintGetPrinters

PrintSetPrinter

2.4.588 PrintGetPrinters

Description

Gets the list of available printers.

Syntax

PrintGetPrinters ()

Return value

String. Each printer is listed in the string in the format printername ~t drivername ~t port ~n.

Usage

The return string can be loaded into a DataWindow using ImportString or separated using the
~n as shown in the example.

Statements, Events, and Functions

Page 1182

Examples

This example parses printer names from the return string on the PrintGetPrinters call, then
places each printer name in an existing SingleLineEdit control. If you have more printers than
SingleLineEdit boxes, the last SingleLineEdit contains a string for all the printers that are not
listed in the other SingleLineEdits:

singlelineedit sle
long ll_place, i, k
string ls_left, ls_prntrs

ls_prntrs = PrintGetPrinters ()
k = upperbound(control)
FOR i= k to 1 STEP -1
 IF parent.control[i].typeof()=singlelineedit! then
 sle=parent.control[i]
 ll_place=pos (ls_prntrs, "~n")
 ls_left = Left (ls_prntrs, ll_place - 1)
 sle.text = ls_left
 ls_prntrs = Mid (ls_prntrs, ll_place + 1)
 END IF
NEXT
sle.text = ls_prntrs

See also

ImportString method for DataWindows in Section 9.100, “ImportString” in DataWindow
Reference.

PrintGetPrinter

PrintSetPrinter

2.4.589 PrintLine

Description

Draws a line of a specified thickness between the specified endpoints on the current print
page.

Syntax

PrintLine (printjobnumber, x1, y1, x2, y2, thickness)

Table 2.1087:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x1 An integer specifying the x coordinate in thousandths of an inch of the
start of the line

y1 An integer specifying the y coordinate in thousandths of an inch of the
start of the line

x2 An integer specifying the x coordinate in thousandths of an inch of the
end of the line

y2 An integer specifying the y coordinate in thousandths of an inch of the
end of the line

Statements, Events, and Functions

Page 1183

Argument Description

thickness An integer specifying the thickness of the line in thousandths of an inch

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintLine returns null.

Usage

PrintLine does not change the position of the print cursor, which remains where it was before
the function was called.

Examples

These statements start a new page in a print job and then print a line starting at 0,5 and ending
at 7500,5 with a thickness of 10/1000 of an inch:

long Job
Job = PrintOpen()
... // various print commands
// Start a new page.
PrintPage(Job)
// Print a line at the top of the page
PrintLine(Job,0,5,7500,5,10)
... // Other printing
PrintClose(Job)

See also

PrintBitmap

PrintClose

PrintOpen

PrintOval

PrintRect

PrintRoundRect

2.4.590 PrintOpen

Description

Opens a print job and assigns it a number, which you use in other printing statements.

Syntax

PrintOpen ({ jobname {, showprintdialog } })

Table 2.1088:

Argument Description

jobname
(optional)

A string specifying a name for the print job. The name is displayed in the
Windows Print Manager dialog box and in the Spooler dialog box.

showprintdialog
(optional)

A boolean value indicating whether you want to display the system Print
dialog box that allows the user to select a printer or set print properties.
Values are:

Statements, Events, and Functions

Page 1184

Argument Description
TRUE -- Display the dialog box

FALSE -- (default) Do not display the dialog box

Return value

Long. Returns the job number if it succeeds and -1 if an error occurs. If the Print dialog box
displays and the user presses Cancel, PrintOpen returns -1. If any argument's value is null,
PrintOpen returns null.

Usage

A new print job begins on a new page and the font is set to the default font for the printer.
The print cursor is at the upper left corner of the print area.

If you specify true for the showprintdialog argument, the system Print dialog box displays
allowing the user to cancel the print job. The option to specify a page range in the Print
dialog box is disabled because PowerBuilder cannot determine the number of pages in the
print job in advance. If you specify this argument in a component that runs on a server, the
argument is ignored.

Use the job number that PrintOpen returns to identify this print job in all subsequent print
functions.

Calling MessageBox after PrintOpen can cause undesirable behavior that is confusing to a
user. Calling PrintOpen causes the currently active window in PowerBuilder to be disabled
to allow Windows to handle printing. If you display a MessageBox after calling PrintOpen,
Windows assigns the active window to be its parent, which is often another application,
causing that application to become active.

Balancing PrintOpen and PrintClose

When you open a print job, you must close (or cancel) it. To avoid hung print jobs,
process and close a print job in the same event in which you open it.

Examples

This example opens a job but does not give it a name:

ulong li_job
li_job = PrintOpen()

This example opens a job, gives it a name, and displays the Print dialog box:

ulong li_job
li_job = PrintOpen("Phone List", true)

See also

Print

PrintBitmap

PrintCancel

PrintClose

PrintDataWindow

Statements, Events, and Functions

Page 1185

PrintDefineFont

PrintLine

PrintOval

PrintPage

PrintRect

PrintRoundRect

PrintSend (obsolete)

PrintSetFont

PrintSetup

PrintText

PrintWidth

PrintX

PrintY

2.4.591 PrintOval

Description

Draws a white oval outlined in a line of the specified thickness on the print page.

Syntax

PrintOval (printjobnumber, x, y, width, height, thickness)

Table 2.1089:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x An integer specifying the x coordinate in thousandths of an inch of the
upper-left corner of the oval's bounding box

y An integer specifying the y coordinate in thousandths of an inch of the
upper-left corner of the oval's bounding box

width An integer specifying the width in thousandths of an inch of the oval's
bounding box

height An integer specifying the height in thousandths of an inch of the oval's
bounding box

thickness An integer specifying the thickness of the line that outlines the oval in
thousandths of an inch

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintOval returns null.

Usage

Statements, Events, and Functions

Page 1186

The PrintOval, PrintRect, and PrintRoundRect functions draw filled shapes. To print other
shapes or text inside the shapes, draw the filled shape first and then add text and other shapes
or lines inside it. If you draw the filled shape after other printing functions, it will cover
anything inside it. For example, to draw a border around text and lines, draw the oval or
rectangular border first and then use PrintLine and PrintText to position the lines and text
inside.

PrintOval does not change the position of the print cursor, which remains where it was before
the function was called. In general, print functions in which you specify coordinates do not
affect the print cursor.

Examples

This example starts a print job with a new blank page, and then prints an oval that fits in a 1-
inch square. The upper-left corner of the oval's bounding box is four inches from the top and
three inches from the left edge of the print area. Because its height and width are equal, the
oval is actually a circle:

long Job
// Define a new blank page.
Job = PrintOpen()
// Print an oval.
PrintOval(Job, 4000, 3000, 1000, 1000, 10)
... // Other printing
PrintClose(Job)

See also

PrintBitmap

PrintClose

PrintLine

PrintOpen

PrintRect

PrintRoundRect

2.4.592 PrintPage

Description

Sends the current page to the printer or spooler and begins a new blank page in the current
print job.

Syntax

PrintPage (printjobnumber)

Table 2.1090:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintPage returns null.

Statements, Events, and Functions

Page 1187

Examples

This example opens a print job with a new blank page, prints a bitmap on the page, and then
sends the page to the printer and sets up a new blank page. Finally, the last Print statement
prints the company name on the new page:

long Job

// Open a job with new blank page.
Job = PrintOpen()

// Print a bitmap on the page.
PrintBitmap(Job, "d:\PB\BITMAP1.BMP", 100,250, 0,0)

// Begin a new page.
PrintPage(Job)

// Print the company name on the new page.
Print(Job, "Appeon Corporation")

See also

PrintClose

PrintOpen

2.4.593 PrintRect

Description

Draws a white rectangle with a border of the specified thickness on the print page.

Syntax

PrintRect (printjobnumber, x, y, width, height, thickness)

Table 2.1091:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x An integer specifying the x coordinate in thousandths of an inch of the
upper-left corner of the rectangle

y An integer specifying the y coordinate in thousandths of an inch of the
upper-left corner of the rectangle

width An integer specifying the rectangle's width in thousandths of an inch

height An integer specifying the rectangle's height in thousandths of an inch

thickness An integer specifying the thickness of the rectangle's border line in
thousandths of an inch

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintRect returns null.

Usage

The PrintOval, PrintRect, and PrintRoundRect functions draw filled shapes. To print other
shapes or text inside the shapes, draw the filled shape first and then add text and other shapes

Statements, Events, and Functions

Page 1188

or lines inside it. If you draw the filled shape after other printing functions, it will cover
anything inside it. For example, to draw a border around text and lines, draw the oval or
rectangular border first and then use PrintLine and PrintText to position the lines and text
inside.

PrintRect does not change the position of the print cursor, which remains where it was before
the function was called. In general, print functions in which you specify coordinates do not
affect the print cursor.

Examples

These statements open a print job with a new page and draw a 1-inch square with a line
thickness of 1/8 of an inch. The square's upper left corner is four inches from the left and
three inches from the top of the print area:

long Job
// Define a new blank page.
Job = PrintOpen()
// Print the rectangle on the page.
PrintRect(Job, 4000,3000, 1000,1000, 125)
... // Other printing
PrintClose(Job)

See also

PrintBitmap

PrintClose

PrintLine

PrintOpen

PrintOval

PrintRoundRect

2.4.594 PrintRoundRect

Description

Draws a white rectangle with rounded corners and a border of the specified thickness on the
print page.

Syntax

PrintRoundRect (printjobnumber, x, y, width, height, xradius, yradius, thickness)

Table 2.1092:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x An integer specifying the x coordinate in thousandths of an inch of the
upper-left corner of the rectangle

y An integer specifying the y coordinate in thousandths of an inch of the
upper-left corner of the rectangle

width An integer specifying the rectangle's width in thousandths of an inch

height An integer specifying the rectangle's height in thousandths of an inch

Statements, Events, and Functions

Page 1189

Argument Description

xradius An integer specifying the x radius of the corner rounding

yradius An integer specifying the y radius of the corner rounding

thickness An integer specifying the thickness of the rectangle's border line in
thousandths of an inch

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintRoundRect returns null.

Usage

The PrintOval, PrintRect, and PrintRoundRect functions draw filled shapes. To print other
shapes or text inside the shapes, draw the filled shape first and then add text and other shapes
or lines inside it. If you draw the filled shape after other printing functions, it will cover
anything inside it. For example, to draw a border around text and lines, draw the oval or
rectangular border first and then use PrintLine and PrintText to position the lines and text
inside.

PrintRoundRect does not change the position of the print cursor, which remains where it was
before the function was called. In general, print functions in which you specify coordinates
do not affect the print cursor.

Examples

This example starts a new print job, which begins a new page, and prints a rectangle with
rounded corners as a page border. Then it closes the print job, which sends the page to the
printer.

The rectangle is 6 1/4 inches wide by 9 inches high and its upper corner is one inch from the
top and one inch from the left edge of the print area. The border has a line thickness of 1/8 of
an inch and the corner radius is 300:

long Job

// Define a new blank page.
Job = PrintOpen()

// Print a RoundRectangle on the page.
PrintRoundRect(Job, 1000,1000, 6250,9000, &
 300,300, 125)

// Send the page to the printer.
PrintClose(Job)

See also

PrintBitmap

PrintClose

PrintLine

PrintOpen

PrintOval

PrintRect

Statements, Events, and Functions

Page 1190

2.4.595 PrintScreen

Description

Prints the screen image as part of a print job.

Syntax

PrintScreen (printjobnumber, x, y {, width, height })

Table 2.1093:

Argument Description

printjobnumber The number the PrintOpen function assigns to the print job.

x An integer whose value is the x coordinate on the page, in thousandths of
an inch, of the upper-left corner of the screen image.

y An integer whose value is the y coordinate on the page, in thousandths of
an inch, of the upper-left corner of the screen image.

width (optional) The integer width of the printed screen in thousandths of an inch. If you
omit width, PowerBuilder prints the screen at its original width. If you
specify width, you must also specify height.

height (optional) The integer height of the printed screen in thousandths of an inch. If you
omit height, PowerBuilder prints the screen at its original height.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintScreen returns null.

Examples

This statement prints the current screen image in its original size at location 500, 1000:

long Job
Job = PrintOpen()
PrintScreen(Job, 500,1000)
PrintClose(Job)

See also

Print

PrintClose

PrintOpen

2.4.596 PrintSend (obsolete)

Description

Sends an arbitrary string of characters to the printer. PrintSend is usually used for sending
escape sequences that change the printer's setup.

Obsolete function

PrintSend is an obsolete function and is provided for backward compatibility only.
The ability to use this function is dependent upon the printer driver.

Statements, Events, and Functions

Page 1191

Syntax

PrintSend (printjobnumber, string {, zerochar })

Table 2.1094:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

string A string you want to send to the printer. In the string, use ASCII values
for nonprinting characters.

zerochar
(optional)

An ASCII value (1 to 255) that you want to use to represent the number
zero in string.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintSend returns null.

Usage

Use PrintSend to send escape sequences to specific printers (for example, to set condensed
mode or to set margins). Escape sequences are printer specific.

As with any string, the number zero terminates the string argument. If the printer code you
want to send includes a zero, you can use another character for zero in string and specify
the character that represents zero in zerochar. The character you select should be a character
you do not usually use. When PowerBuilder sends the string to the printer it converts the
substitute character to a zero.

A typical print job, in which you want to make printer-specific settings, might consist of the
following function calls:

1. PrintOpen

2. PrintSend, to change the printer orientation, select a tray, and so on

3. PrintDefineFont and PrintSetFont to specify fonts for the job

4. Print to output job text

5. PrintClose

Examples

This example opens a print job and sends an escape sequence to a printer in IBM Proprinter
mode to change the margins. There is no need to designate a character to represent zero:

long Job

// Open a print job.
Job = PrintOpen()

/* Send the escape sequence.
1B is the escape character in hexadecimal.
X indicates that you are changing the margins.

Statements, Events, and Functions

Page 1192

030 sets the left margin to 30 character spaces.
040 sets the right margin to 40 character spaces.
*/
PrintSend(Job," ~ h1BX ~ 030 ~ 040")
... // Print text or DataWindow

// Send the job to the printer or spooler.
PrintClose(Job)

This example opens a print job and sends an escape sequence to a printer in IBM Proprinter
mode to change the margins. The decimal ASCII code 255 represents zero:

long Job

// Open a print job.
Job = PrintOpen()

/* Send the escape sequence.
1B is the escape character, in hexadecimal.
X indicates that you are changing the margins.
255 sets the left margin to 0.
040 sets the right margin to 40 character spaces.
*/
PrintSend(Job, "~h1BX~255~040", 255)
PrintDataWindow(Job, dw_1)

// Send the job to the printer or spooler.
PrintClose(Job)

See also

PrintClose

PrintOpen

2.4.597 PrintSetFont

Description

Designates a font to be used for text printed with the Print function. You specify the font by
number. Use PrintDefineFont to associate a font number with the desired font, a size, and a
set of properties.

Syntax

PrintSetFont (printjobnumber, fontnumber)

Table 2.1095:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

fontnumber The number (1 to 8) of a font defined for the job in PrintDefineFont or 0
(the default font for the printer)

Return value

Integer. Returns the character height of the current font if it succeeds and -1 if an error
occurs. If any argument's value is null, PrintSetFont returns null.

Examples

Statements, Events, and Functions

Page 1193

This example starts a new print job and specifies that font number 2 is Courier, 18 point,
bold, default pitch, in modern font, with no italic or underline. The PrintSetFont statement
sets the current font to font 2. Then the Print statement prints the company name:

long Job

// Start a new print job and a new page.
Job = PrintOpen()

// Define the font for Job.
PrintDefineFont(Job, 2, "Courier 10Cps", &
 250, 700, Default!, Modern!, FALSE, FALSE)

// Set the font for Job.
PrintSetFont(Job, 2)

// Print the company name in the specified font.
Print(Job,"Appeon Corporation")

See also

PrintDefineFont

PrintOpen

2.4.598 PrintSetPrinter

Description

Sets the printer to use for the next print function call. This function does not affect open jobs.

Syntax

PrintSetPrinter (printername)

Table 2.1096:

Argument Description

printername String for the name of the printer you want to use

Return value

Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage

The printername argument must use the same format as returned by the PrintGetPrinter
function.

Examples

This example sets the printer to the first printer in the list retrieved by the PrintGetPrinters
function:

long ll_place
string ls_setprn
string ls_prntrs = PrintGetPrinters ()
ll_place=pos (ls_prntrs, "~n")
mle_1.text = PrintGetPrinters ()
ls_setprn = Left (ls_prntrs, ll_place - 1)
PrintSetPrinter (ls_setprn)

Statements, Events, and Functions

Page 1194

See also

PrintGetPrinter

PrintGetPrinters

2.4.599 PrintSetSpacing

Description

Sets the factor that PowerBuilder uses to calculate line spacing.

Syntax

PrintSetSpacing (printjobnumber, spacingfactor)

Table 2.1097:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

spacingfactor The number by which you want to multiply the character height to
determine the vertical line-to-line spacing. The default is 1.2.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintSetSpacing returns null.

Usage

Line spacing in PowerBuilder is proportional to character height. The default line spacing
is 1.2 times the character height. When Print starts a new line, it sets the x coordinate of the
cursor to 0 and increases the y coordinate by the current line spacing. The PrintSetSpacing
function lets you specify a new factor to be multiplied by the character height for an open
print job.

Examples

These statements start a new print job and set the vertical spacing factor to 1.5 (one and a half
spacing):

long Job

// Define a new blank page.
Job = PrintOpen()

// Set the spacing factor.
PrintSetSpacing(Job, 1.5)

See also

PrintOpen

2.4.600 PrintSetup

Description

Calls the Printer Setup dialog box provided by the system printer driver and lets the user
specify settings for the printer.

Statements, Events, and Functions

Page 1195

Syntax

PrintSetup ()

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs or if the application user clicks
Cancel in the Printer Setup dialog box.

Usage

The user's settings have effect for the duration of the application only. After the application
exits, printer settings revert to their previous values.

Examples

These statements call the Printer Setup dialog box for the current system printer and then start
a new print job:

long Job

// Call the printer setup program.
PrintSetup()

// Start a job and a new page.
Job = PrintOpen()

See also

PrintOpen

2.4.601 PrintSetupPrinter

Description

Displays the printer setup dialog box

Syntax

PrintSetupPrinter ()

Return value

Integer. Returns 1 if the function succeeds, 0 for cancel, -1 if an error occurs.

Usage

You can display the printer setup dialog box for different printers by first calling the
PrintSetPrinter function. You cannot change the printer by calling PrintSetupPrinter as you
can with the PrintSetup function.

Examples

This example displays the printer setup dialog box for the last printer in the list retrieved by
the PrintGetPrinters function.

long ll_place
string ls_setptr
string ls_prntrs = PrintGetPrinters ()

ll_place=lastpos (ls_prntrs, "~n")
ls_setptr = Mid (ls_prntrs, ll_place + 1)
PrintSetPrinter (ls_setptr)

Statements, Events, and Functions

Page 1196

PrintSetupPrinter ()

See also

PrintGetPrinter

PrintSetPrinter

PrintSetup

2.4.602 PrintText

Description

Prints a single line of text starting at the specified coordinates.

Syntax

PrintText (printjobnumber, string, x, y {, fontnumber })

Table 2.1098:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

string A string whose value is the text you want to print.

x An integer specifying the x coordinate in thousandths of an inch of the
beginning of the text.

y An integer specifying the y coordinate in thousandths of an inch of the
beginning of the text.

fontnumber
(optional)

The number (1 to 8) of a font defined for the job by using the
PrintDefineFont function or 0 (the default font for the printer). If you
omit fontnumber, the text prints in the current font for the print job.

Return value

Integer. Returns the x coordinate of the new cursor location (that is, the value of the
parameter x plus the width of the text) if it succeeds. PrintText returns -1 if an error occurs. If
any argument's value is null, PrintText returns null.

Usage

PrintText does change the position of the print cursor, unlike the other print functions
for which you specify coordinates. The print cursor moves to the end of the printed text.
PrintText also returns the x coordinate of the print cursor. You can use the return value to
determine where to begin printing additional text.

PrintText does not change the print cursor's y coordinate, which is its vertical position on the
page.

Examples

These statements start a new print job and then print PowerBuilder in the current font 3.7
inches from the left edge at the top of the page (location 3700,10):

long Job

Statements, Events, and Functions

Page 1197

// Define a new blank page.
Job = PrintOpen()

// Print the text.
PrintText(Job,"PowerBuilder", 3700, 10)
... // Other printing
PrintClose(Job)

The following statements define a new blank page and then print Confidential in bold (as
defined for font number 3), centered at the top of the page:

long Job

// Start a new job and a new page.
Job = PrintOpen()

// Define the font.
PrintDefineFont(Job, 3, &
 "Courier 10Cps", 250,700, &
 Default!, AnyFont!, FALSE, FALSE)

// Print the text.
PrintText(Job, "Confidential", 3700, 10, 3)
... // Other printing
PrintClose(Job)

This example prints four lines of text in the middle of the page. The coordinates for PrintText
establish a new vertical position for the print cursor, which the subsequent Print functions
use and increment. The first Print function uses the x coordinate returned by PrintText to
continue the first line. The rest of the Print functions print additional lines of text, after
tabbing to the x coordinate used initially by PrintText. In this example, each Print function
increments the y coordinate so that the following Print function starts a new line:

long Job

// Start a new job and a new page.
Job = PrintOpen()

// Print the text.
x = PrintText(Job,"The material ", 2000, 4000)
Print(Job, x, " in this report")
Print(Job, 2000, "is confidential and should not")
Print(Job, 2000, "be disclosed to anyone who")
Print(Job, 2000, "is not at this meeting.")
... // Other printing
PrintClose(Job)

See also

Print

PrintClose

PrintOpen

2.4.603 PrintWidth

Description

Determines the width of a string using the current font of the specified print job.

Syntax

Statements, Events, and Functions

Page 1198

PrintWidth (printjobnumber, string)

Table 2.1099:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

string A string whose value is the text for which you want to determine the
width

Return value

Integer. Returns the width of string in thousandths of an inch using the current font of
printjobnumber if it succeeds and -1 if an error occurs. If any argument's value is null,
PrintWidth returns null. If the returned width exceeds the maximum integer limit (+32767),
PrintWidth returns -1.

Examples

These statements define a new blank page and then set W to the length of the string
PowerBuilder in the current font and then use the length to position the next text line:

long Job
int W

// Start a new print job.
Job = PrintOpen()

// Determine the width of the text.
W = PrintWidth(Job,"PowerBuilder")

// Use the width to get the next print position.
Print(Job, W - 500, "Features List")

See also

PrintClose

PrintOpen

2.4.604 PrintX

Description

Reports the x coordinate of the print cursor.

Syntax

PrintX (printjobnumber)

Table 2.1100:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

Return value

Integer. Returns the x coordinate of the print cursor if it succeeds and -1 if an error occurs. If
any argument's value is null, PrintX returns null.

Statements, Events, and Functions

Page 1199

Examples

These statements set LocX to the x coordinate of the cursor and print End of Report an inch
beyond that location:

integer LocX
long Job
Job = PrintOpen()
... //Print statements
LocX = PrintX(Job)
Print(LocX+1000, "End of Report")

See also

PrintY

2.4.605 PrintY

Description

Reports the y coordinate of the print cursor.

Syntax

PrintY (printjobnumber)

Table 2.1101:

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

Return value

Integer. Returns the y coordinate of the cursor if it succeeds and -1 if an error occurs. If any
argument's value is null, PrintY returns null.

Examples

These statements print a bitmap one inch below the location of the print cursor:

integer LocX, LocY
long Job
Job = PrintOpen()
... //Print statements
LocX = PrintX(Job)
LocY = PrintY(Job) + 1000
PrintBitmap(Job, "CORP.BMP", LocX, LocY, 1000,1000)

See also

PrintX

2.4.606 ProfileInt

Description

Obtains the integer value of a setting in the profile file for your application.

Syntax

ProfileInt (filename, section, key, default)

Statements, Events, and Functions

Page 1200

Table 2.1102:

Argument Description

filename A string whose value is the name of the profile file. If you do not specify
a full path, ProfileInt uses the operating system's standard file search
order to find the file.

section A string whose value is the name of a group of related values in the
profile file. In the file, section names are in square brackets. Do not
include the brackets in section. Section is not case sensitive.

key A string specifying the setting name in section whose value you want.
The setting name is followed by an equal sign in the file. Do not include
the equal sign in key. Key is not case sensitive.

default An integer value that ProfileInt will return if filename is not found, if
section or key does not exist in filename, or if the value of key cannot be
converted to an integer.

Return value

Integer. Returns default if filename is not found, section is not found in filename, or key is
not found in section, or the value of key is not an integer. Returns -1 if an error occurs. If any
argument's value is null, ProfileInt returns null.

Usage

Use ProfileInt or ProfileString to get configuration settings from a profile file that you have
designed for your application.

You can use SetProfileString to change values in the profile file to customize your
application's configuration at runtime. Before you make changes, you can use ProfileInt and
ProfileString to obtain the original settings so you can restore them when the user exits the
application.

ProfileInt, ProfileString, and SetProfileString can read or write to files with ANSI or UTF16-
LE encoding on Windows systems, and ANSI or UTF16-BE encoding on UNIX systems.

Windows registry

ProfileInt can also be used to obtain configuration settings from the Windows system
registry. For information on how to use the system registry, see the discussion of
initialization files and the Windows registry in Section 8.4, “Managing Initialization
Files and the Windows Registry” in Application Techniques.

Examples

These examples use a file called PROFILE.INI, which contains the following:

[Pb]
Maximized=1
[security]
Class=7

This statement returns the integer value for the keyword Maximized in section PB of file
PROFILE.INI. If there were no PB section or no Maximized keyword in the PB section, it
would return 3:

Statements, Events, and Functions

Page 1201

ProfileInt("C:\PROFILE.INI", "PB", "maximized", 3)

The following statements display a MessageBox if the integer value for the Class setting in
section Security of file C:\PROFILE.INI is less than 10. The default security setting is 6 if the
profile file is not found or does not contain a Class setting:

IF ProfileInt("C:\PROFILE.INI", "Security", &
 "Class", 6) < 10 THEN
 // Class is < 10
 MessageBox("Warning", "Access Denied")
ELSE
 ... // Some processing
END IF

See also

ProfileString

SetProfileString

ProfileInt method for DataWindows in Section 2.4.95, “ProfileInt” in DataWindow
Reference.

2.4.607 ProfileString

Description

Obtains the string value of a setting in the profile file for your application.

Syntax

ProfileString (filename, section, key, default)

Table 2.1103:

Argument Description

filename A string whose value is the name of the profile file. If you do not specify
a full path, ProfileString uses the operating system's standard file search
order to find the file.

section A string whose value is the name of a group of related values in the
profile file. In the file, section names are in square brackets. Do not
include the brackets in section. Section is not case sensitive.

key A string specifying the setting name in section whose value you want.
The setting name is followed by an equal sign in the file. Do not include
the equal sign in key. Key is not case sensitive.

default A string value that ProfileString will return if filename is not found, if
section or key does not exist in filename, or if the value of key cannot be
converted to an integer.

Return value

String, with a maximum length of 4096 characters. Returns the string from key within section
within filename. If filename is not found, section is not found in filename, or key is not found
in section, ProfileString returns default. If an error occurs, it returns the empty string (""). If
any argument's value is null, ProfileString returns null.

Usage

Statements, Events, and Functions

Page 1202

Use ProfileInt or ProfileString to get configuration settings from a profile file that you have
designed for your application.

You can use SetProfileString to change values in the profile file to customize your
application's configuration at runtime. Before you make changes, you can use ProfileInt and
ProfileString to obtain the original settings so you can restore them when the user exits the
application.

ProfileInt, ProfileString, and SetProfileString can read or write to files with ANSI or UTF16-
LE encoding on Windows systems, and ANSI or UTF16-BE encoding on UNIX systems.

Windows registry

ProfileString can also be used to obtain configuration settings from the Windows
system registry. For information on how to use the system registry, see the
discussion of initialization files and the Windows registry in Section 8.4, “Managing
Initialization Files and the Windows Registry” in Application Techniques.

Examples

These examples use a file called PROFILE.INI, which contains the following lines. Quotes
around string values in the INI file are optional:

[Employee]
Name=Smith

[Dept]
Name=Marketing

This statement returns the string contained in keyword Name in section Employee in file C:
\PROFILE.INI and returns None if there is an error. In the example, the return value is Smith:

ProfileString("C:\PROFILE.INI", "Employee", &
 "Name", "None")

The following statements open w_marketing if the string in the keyword Name in section
Department of file C:\PROFILE.INI is Marketing:

IF ProfileString("C:\PROFILE.INI", "Department", &
 "Name", "None") = "Marketing" THEN
 Open(w_marketing)
END IF

See also

ProfileInt

SetProfileString

ProfileString method for DataWindows in Section 2.4.96, “ProfileString” in DataWindow
Reference.

2.4.608 Rand

Description

Obtains a random whole number between 1 and a specified upper limit.

Syntax

Statements, Events, and Functions

Page 1203

Rand (n)

Table 2.1104:

Argument Description

n The upper limit of the range of random numbers you want returned. The
lower limit is always 1. The upper limit is 32,767.

Return value

A numeric datatype, the datatype of n. Returns a random whole number between 1 and n
inclusive. If n is null, Rand returns null.

Usage

The sequence of numbers generated by repeated calls to the Rand function is a pseudorandom
sequence. You can control whether the sequence is different each time your application runs
by calling the Randomize function to initialize the random number generator.

Examples

This statement returns a random whole number between 1 and 10:

Rand(10)

See also

Randomize

2.4.609 Randomize

Description

Initializes the random number generator so that the Rand function begins a new series of
pseudorandom numbers.

Syntax

Randomize (n)

Table 2.1105:

Argument Description

n The starting value (seed) for the random number generator. When n
is 0, PowerBuilder takes the seed from the system clock and begins a
nonrepeatable sequence. A nonzero number generates a different but
repeatable sequence for each seed value. n cannot exceed 32,767.

Return value

Integer. If n is null, Randomize returns null. The return value is never used.

Usage

The sequence of numbers generated by repeated calls to the Rand function is a computer-
generated pseudorandom sequence. You can use the Randomize function to initialize the
random number generator with a value from the system clock, or some other changing value,
so that the sequence is always different. For testing purposes, you can select a specific seed

Statements, Events, and Functions

Page 1204

value, which you can reuse to make the pseudorandom sequence repeatable each time you
run the application.

Include Randomize in the script for the Open event in the application.

Examples

This statement sets the seed for the random number generator to 0 so that calls to Rand
generate a new sequence each time the script is run:

Randomize(0)

This statement sets the seed for the random number generator to 4 so that calls to Rand repeat
a specific sequence each time the random number generator is initialized:

Randomize(4)

See also

Rand

2.4.610 Read

Reads data from an opened OLE stream object.

Table 2.1106:

To Use

Read data into a string Syntax 1

Read data into a character array or blob Syntax 2

2.4.610.1 Syntax 1: For reading into a string

Description

Reads data from an OLE stream object into a string.

Applies to

OLEStream objects

Syntax

olestream.Read (variable {, stopforline })

Table 2.1107:

Argument Description

olestream The name of an OLE stream variable that has been opened.

variable The name of a string variable into which want to read data from
olestream.

stopforline
(optional)

A boolean value that specifies whether to read a line at a time. In other
words, Read will stop reading at the next carriage return/linefeed. Values
are:

• TRUE -- (Default) Stop at the end of a line and leave the read pointer
positioned after the carriage return/linefeed so the next read will read
the next line

Statements, Events, and Functions

Page 1205

Argument Description
• FALSE -- Read the whole stream or a maximum of 32,765 bytes

Return value

Integer. Returns the number of characters or bytes read. If an end-of-file mark (EOF) is
encountered before any characters are read, Read returns -100. Read returns one of the
following negative values if an error occurs:

-1 -- Stream is not open

-2 -- Read error

-9 -- Other error

If any argument's value is null, Read returns null.

Examples

This example opens an OLE object in the file MYSTUFF.OLE and assigns it to the
OLEStorage object stg_stuff. Then it opens the stream called info in stg_stuff and assigns
it to the stream object olestr_info. Finally, it reads the contents of olestr_info into the string
ls_info.

The example does not check the functions' return values for success, but you should be sure
to check the return values in your code:

boolean lb_memexists
OLEStorage stg_stuff
OLEStream olestr_info
blob ls_info

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

olestr_info.Open(stg_stuff, "info", &
 stgRead!, stgExclusive!)
olestr_info.Read(ls_info)

See also

Open

Length

Seek

Write

2.4.610.2 Syntax 2: For character arrays or blobs

Description

Reads data from an OLE stream object into a character array or blob.

Applies to

OLEStream objects

Syntax

olestream.Read (variable {, maximumread })

Statements, Events, and Functions

Page 1206

Table 2.1108:

Argument Description

olestream The name of an OLE stream variable that has been opened.

variable The name of a blob variable or character array into which want to read
data from olestream.

maximumread
(optional)

A long value specifying the maximum number of bytes to be read. The
default is 32,765 or the length of olestream.

Return value

Integer. Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Stream is not open

-2 -- Read error

-9 -- Other error

If any argument's value is null, Read returns null.

Examples

This example opens an OLE object in the file MYSTUFF.OLE and assigns it to the
OLEStorage object stg_stuff. Then it opens the stream called info in stg_stuff and assigns
it to the stream object olestr_info. Finally, it reads the contents of olestr_info into the blob
lb_info.

The example does not check the functions' return values for success, but you should be sure
to check the return values in your code:

boolean lb_memexists
OLEStorage stg_stuff
OLEStream olestr_info
blob lb_info

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

olestr_info.Open(stg_stuff, "info", &
 stgRead!, stgExclusive!)
olestr_info.Read(lb_info)

See also

Open

Length

Seek

Write

2.4.611 ReadData

Description

Reads the response body.

Applies to

Statements, Events, and Functions

Page 1207

HTTPClient objects

Syntax

objectname.ReadData (data, bufferSize)

Table 2.1109:

Argument Description

objectname The name of the HTTPClient object for which you want to read the
response body.

data A blob value into which the function returns data.

bufferSize A long value specifying the buffer size.

Return value

Integer.

Returns values as follows. If any argument's value is null, the method returns null.

1 -- Success

0 -- Reading data is finished

-1 -- General error

-2 -- Timed out

Example 1

Integer li_rc
Blob lblb_photo, lblb_NextData
HttpClient lnv_HttpClient

lnv_HttpClient = Create HttpClient

// Not to read data automatically after sending request (default is true)
lnv_HttpClient.AutoReadData = false

// Send request using GET method
li_rc = lnv_HttpClient.SendRequest("GET", "https://demo.appeon.com/PB/
webapi_client/employee/102/photo")

// Receive large data
if li_rc = 1 and lnv_HttpClient.GetResponseStatusCode() = 200 then
 do while true
 li_rc = lnv_HttpClient.ReadData(lblb_NextData, 1024*16)
 if li_rc = 0 then exit // Finish receiving data
 if li_rc = -1 then exit // Error occurred
 lblb_photo += lblb_NextData
 loop
end if

Example 2

This example demonstrates how to get large data (over 20 MB):

Long ll_FileNum, ll_rtn, ll_loop, ll_len
Dec{0} ldc_Count, ldc_Length
Blob lb_temp
String ls_url, ls_response, ls_Length

HttpClient lhc_Client

Statements, Events, and Functions

Page 1208

lhc_Client = Create HttpClient

lhc_Client.ClearRequestHeaders()
ls_url = "https://download.test.com/file001.zip"

// Use HEAD method to get the file size
ll_rtn = lhc_Client.sendrequest("HEAD", ls_url)
ls_response = lhc_Client.GetResponseHeaders()
ls_Length = lhc_Client.GetResponseHeader("Content-Length")
ldc_Length = Dec (ls_Length)
If ldc_Length <= 0 Then
 MessageBox("Tips", "File length is zero.")
 Return
End If
ll_len = Long (ldc_Length / 10000)
hpb_1.maxposition = 10000 // hpb_1 is a hprogressbar control
hpb_1.position = 0

// Not to read data automatically after sending request (default is true)
lhc_Client.autoreaddata = false
ll_rtn = lhc_Client.sendrequest("GET", ls_url)
//Receive 16KB data every time
ll_loop = 1024 * 16
//Write data to the file, because the blob variable is not suitable for large data
ll_FileNum = FileOpen("file001.zip", StreamMode!, Write!, LockWrite!, Replace!)
Do While (ll_rtn = 1)
 lb_temp = Blob ("")
 ll_rtn = lhc_Client.ReadData(lb_temp, ll_loop)
 FileWrite(ll_FileNum, lb_temp)
 ldc_Count += Len (lb_temp)
 hpb_1.position = Long(ldc_Count/ll_len)
 yield()
Loop

FileClose(ll_FileNum)
If IsValid (lhc_Client) Then Destroy (lhc_Client)

2.4.612 Real

Description

Converts a string value to a real datatype or obtains a real value that is stored in a blob.

Syntax

Real (stringorblob)

Table 2.1110:

Argument Description

stringorblob The string whose value you want returned as a real value or a blob in
which the first value is the real value. The rest of the contents of the blob
is ignored. Stringorblob can also be an Any variable containing a string
or blob.

Return value

Real. Returns the value of stringorblob as a real. If stringorblob is not a valid PowerScript
number or is an incompatible datatype, Real returns 0. If stringorblob is null, Real returns
null.

Statements, Events, and Functions

Page 1209

Examples

This statement returns 24 as a real:

Real("24")

This statement returns the contents of the SingleLineEdit sle_Temp as a real:

Real(sle_Temp.Text)

The following example, although of no practical value, illustrates how to assign real values
to a blob and how to use Real to extract those values. The two BlobEdit statements store
two real values in the blob, one after the other. In the statements that use Real to extract the
values, you have to know where the beginning of each real value is. Specifying the correct
length in BlobMid is not important because the Real function knows how many bytes to
evaluate:

blob{20} lb_blob
real r1, r2
integer len1, len2

len1 = BlobEdit(lb_blob, 1, 32750E0)
len2 = BlobEdit(lb_blob, len1, 43750E0)

// Extract the real value at the beginning and
// ignore the rest of the blob
r1 = Real(lb_blob)
// Extract the second real value stored in the blob
r2 = Real(BlobMid(lb_blob, len1, len2 - len1))

See also

Double

Integer

Long

Real method for DataWindows in Section 2.4.98, “Real” in DataWindow Reference.

2.4.613 RecognizeText

Description

Specifies that text in an InkEdit control should be recognized.

Applies to

InkEdit controls

Syntax

inkeditname.RecognizeText ()

Table 2.1111:

Argument Description

inkeditname The name of the InkEdit control in which you want to recognize text.

Return value

Statements, Events, and Functions

Page 1210

Integer. Returns 1 if text is recognized and 0 otherwise.

Usage

By default, ink is recognized automatically when the user pauses while entering ink and the
number of milliseconds specified in the RecognitionTimer property elapses. To enable a user
to pause without having text recognized, increase the RecognitionTimer interval and code the
RecognizeText function in a button clicked event or another event.

Examples

This code in the clicked event of a "Done" button causes the recognition engine to recognize
the strokes entered by the user as text:

boolean lb_success
lb_success = ie_1.RecognizeText()

2.4.614 Refresh

Description

Refreshes the current Web page.

Applies to

WebBrowser controls

Syntax

controlname.Refresh ()

Table 2.1112:

Argument Description

controlname The name of the WebBrowser control.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Examples

Integer li_rtn
Li_rtn = wb_1.Refresh()

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

GoForward

Navigate

Statements, Events, and Functions

Page 1211

PrintAsPDF

PauseDownload

RegisterEvent

ResumeDownload

StopNavigation

UnregisterEvent

Zoom

2.4.615 RegisterEvent

Description

Registers the PowerBuilder user defined event so they can be triggered in JavaScript.

Applies to

WebBrowser controls

Syntax

controlname.RegisterEvent (string eventname)

Table 2.1113:

Argument Description

controlname The name of the WebBrowser control.

eventname The name of the user-defined event to be registered.

Return value

Integer.

Returns values as follows.

1 -- the event is registered successfully.

-1 -- the event is already registered.

-2 -- failed to get the browser instance.

Examples

The following example defines a PowerBuilder user event which is then triggered in
JavaScript in wb_1, and the result of the JavaScript which is returned in a JSON string is
parsed by the JSONParser object.

Note that this user event should not call any other WebBrowser function, otherwise the
application may get stuck.

//define a user event: ue_getstring in wb_1
event type string ue_getstring(string as_arg);
string ls_String
ls_String = "This is PB Event!" + "~r~nFrom JavaScript:" + as_arg
Return ls_String
end event

Statements, Events, and Functions

Page 1212

Integer li_Return
String ls_JS, ls_Result, ls_Error
JsonParser lnv_JsonParser
Long ll_RootObject
String ls_Type, ls_Value

li_Return = wb_1.RegisterEvent("ue_getstring")
If li_Return = 1 Then
 ls_JS = "function event1() { return
 window.webBrowser.ue_getstring('Hi,PB!');} event1();"
 li_Return = wb_1.EvaluateJavascriptSync(ls_JS, ls_Result, ls_Error)
 If li_Return = 1 Then
 lnv_JsonParser = Create JsonParser
 lnv_JsonParser.LoadString(ls_Result)
 ll_RootObject = lnv_JsonParser.GetRootItem()
 ls_Value = lnv_JsonParser.GetItemString(ll_RootObject, "value")
 End If
End If
//{"type":"string","value":"This is PB Event!\r\nFrom JavaScript:Hi,PB!"}
MessageBox("Tips", ls_Result)

//This is PB Event!
//From JavaScript:Hi,PB!
MessageBox("Tips", ls_Value)

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

GoForward

Navigate

PrintAsPDF

PauseDownload

ResumeDownload

Refresh

StopNavigation

UnregisterEvent

Zoom

2.4.616 RegistryDelete

Description

Deletes a key or a value for a key in the Windows system registry.

Syntax

RegistryDelete (key, valuename)

Statements, Events, and Functions

Page 1213

Table 2.1114:

Argument Description

key A string whose value is the key in the system registry you want to delete
or whose value you want to delete.

To uniquely identify a key, specify the list of parent keys above it in the
hierarchy, starting with the root key. The keys in the list are separated by
backslashes.

valuename A string containing the name of a value in the registry. If the specified
key does not have a subkey, specifying an empty string deletes the key
and its named values.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage

For more information about entries in the system registry, see RegistrySet.

Examples

This statement deletes the value name Title and its associated value from the registry. The
key is not deleted:

RegistryDelete(&
 "HKEY_LOCAL_MACHINE\Software\MyApp.Settings\Fonts", &
 "Title")

See also

RegistryGet

RegistryKeys

RegistrySet

RegistryValues

2.4.617 RegistryGet

Description

Gets a value from the Windows system registry.

Syntax

RegistryGet (key, valuename {, valuetype }, valuevariable)

Table 2.1115:

Argument Description

key A string whose value names the key in the system registry whose value
you want.

To uniquely identify a key, specify the list of parent keys above it in the
hierarchy, starting with the root key. The keys in the list are separated by
backslashes.

Statements, Events, and Functions

Page 1214

Argument Description

valuename A string containing the name of a value in the registry. Each key can have
one unnamed value and several named values. For the unnamed value,
specify an empty string.

valuetype A value of the RegistryValueType enumerated datatype identifying the
datatype of a value in the registry. Values are:

• RegString! -- A null-terminated string

• RegExpandString! -- A null-terminated string that contains
unexpanded references to environment variables

• RegBinary! -- Binary data

• ReguLong! -- A 32-bit number

• ReguLongBigEndian! -- A 32-bit number

• RegLongLong! -- A 64-bit number which is the longlong type ranging
from 0 - 9,223,372,036,854,775,807, because the registry key value
cannot accept a negative number.

• RegLink! -- A Unicode symbolic link

• RegMultiString! -- An unbounded array of strings

valuevariable A variable corresponding to the datatype of valuetype in which you want
to store the value obtained from the system registry for the specified key
and value name.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. An error is returned if the datatype
of valuevariable does not correspond to the datatype specified in valuetype.

Usage

Long string values (more than 2048 bytes) should be stored as files and the file name stored
in the registry. For more information about keys and value names in the system registry, see
RegistrySet.

Examples

This statement obtains the value for the name Title and stores it in the string ls_titlefont:

string ls_titlefont
RegistryGet(&
 "HKEY_LOCAL_MACHINE\Software\MyApp.Settings\Fonts", &
 "Title", RegString!, ls_titlefont)

This statement obtains the value for the name NameOfEntryNum and stores it in the long
ul_num:

ulong ul_num
RegistryGet("HKEY_USERS\MyApp.Settings\Fonts", &

Statements, Events, and Functions

Page 1215

 "NameOfEntryNum", RegULong!, ul_num)

See also

RegistryDelete

RegistryKeys

RegistrySet

RegistryValues

2.4.618 RegistryKeys

Description

Obtains a list of the keys that are child items (subkeys) one level below a key in the Windows
system registry.

Syntax

RegistryKeys (key, subkeys)

Table 2.1116:

Argument Description

key A string whose value names the key in the system registry whose subkeys
you want.

To uniquely identify a key, specify the list of parent keys above it in the
hierarchy, starting with the root key. The keys in the list are separated by
backslashes.

subkeys An array variable of strings in which you want to store the subkeys.

If the array is variable size, its upper bound will reflect the number of
subkeys found.

If the array is fixed size, it must be large enough to hold all the subkeys.
However, there will be no way to know how many subkeys were actually
found.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage

For more information about entries in the system registry, see RegistrySet.

Examples

This example obtains the subkeys associated with the key HKEY_CLASSES_ROOT
\MyApp. The subkeys are stored in the variable-size array ls_subkeylist:

string ls_subkeylist[]
integer li_rtn
li_rtn = RegistryKeys("HKEY_CLASSES_ROOT\MyApp", &
 ls_subkeylist)
IF li_rtn = -1 THEN

Statements, Events, and Functions

Page 1216

 ... // Error processing
END IF

See also

RegistryDelete

RegistryGet

RegistrySet

RegistryValues

2.4.619 RegistrySet

Description

Sets the value for a key and value name in the system registry. If the key or value name does
not exist, RegistrySet creates a new key or name and sets its value.

Syntax

RegistrySet (key, valuename, valuetype, value)

Table 2.1117:

Argument Description

key A string whose value names the key in the system registry whose value
you want to set.

To uniquely identify a key, specify the list of parent keys above it in the
hierarchy, starting with the root key. The keys in the list are separated by
backslashes.

If key does not exist in the registry, RegistrySet creates a new key.
To create a key without a named value, specify an empty string for
valuename.

valuename A string containing the name of a value in the registry. Each key may
have several named values. To specify the unnamed value, specify an
empty string.

If valuename does not exist in the registry, RegistrySet causes a new
name to be created for key.

valuetype A value of the RegistryValueType enumerated datatype identifying the
datatype of a value in the registry. Values are:

• RegString! -- A null-terminated string

• RegExpandString! -- A null-terminated string that contains
unexpanded references to environment variables

• RegBinary! -- Binary data

• ReguLong! -- A 32-bit number

• ReguLongBigEndian! -- A 32-bit number

Statements, Events, and Functions

Page 1217

Argument Description
• RegLongLong! -- A 64-bit number which is the longlong type ranging

from 0 - 9,223,372,036,854,775,807, because the registry key value
cannot accept a negative number.

• RegLink! -- A Unicode symbolic link

• RegMultiString! -- An unbounded array of strings

value A variable corresponding to the datatype of valuetype containing a value
to be set in the registry.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. An error is returned if the datatype
of valuevariable does not correspond to the datatype specified in valuetype.

Usage

Long string values (more than 2048 bytes) should be stored as files and the file name stored
in the registry.

Table 2.1118:

Item Description

Key An element in the registry. A key is part of a tree of keys, descending
from one of the predefined root keys. Each key is a subkey or child of the
parent key above it in the hierarchy.

There are four root strings:

• HKEY_CLASSES_ROOT

• HKEY_LOCAL_MACHINE

• HKEY_USERS

• HKEY_CURRENT_USER

A key is uniquely identified by the list of parent keys above it. The keys
in the list are separated by slashes, as shown in these examples:

HKEY_CLASSES_ROOT\Appeon.Application

HKEY_USERS\MyApp\Display\Fonts

Value name The name of a value belonging to the key. A key can have one unnamed
value and one or more named values.

Value type A value identifying the datatype of a value in the registry.

Value A value associated with a value name or an unnamed value. Several
string, numeric, and binary datatypes are supported by the registry.

Examples

This example sets a value for the key Fonts and the value name Title:

Statements, Events, and Functions

Page 1218

RegistrySet(&
 "HKEY_LOCAL_MACHINE\Software\MyApp\Fonts", &
 "Title", RegString!, sle_font.Text)

This statement sets a value for the key Fonts and the value name NameOfEntryNum:

ulong ul_num
RegistrySet(&
 "HKEY_USERS\MyApp.Settings\Fonts", &
 "NameOfEntryNum", RegULong!, ul_num)

See also

RegistryDelete

RegistryGet

RegistryKeys

RegistryValues

2.4.620 RegistryValues

Description

Obtains the list of named values associated with a key.

Syntax

RegistryValues (key, valuename)

Table 2.1119:

Argument Description

key A string whose value is the key in the system registry for which you want
the values of its subkeys.

To uniquely identify a key, specify the list of parent keys above it in the
hierarchy, starting with the root key. The keys in the list are separated by
backslashes.

valuename An array variable of strings in which you want to store the names.

If the array is variable size, its upper bound will reflect the number of
named values found.

If the array is fixed size, it must be large enough to hold all the names.
However, there will be no way to know how many names were actually
found.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage

For more information about entries in the system registry, see RegistrySet.

Examples

This example gets the value names associated with the key Fonts and stores them in the array
ls_valuearray:

Statements, Events, and Functions

Page 1219

string ls_valuearray[]
RegistryValues(&
 "HKEY_LOCAL_MACHINE\Software\MyApp.Settings\Fonts",&
 ls_valuearray)

See also

RegistryDelete

RegistryGet

RegistryKeys

RegistrySet

2.4.621 RelativeDate

Description

Obtains the date that occurs a specified number of days after or before another date.

Syntax

RelativeDate (date, n)

Table 2.1120:

Argument Description

date A value of type date

n An integer indicating a number of days

Return value

Date. Returns the date that occurs n days after date if n is greater than 0. Returns the date
that occurs n days before date if n is less than 0. If any argument's value is null, RelativeDate
returns null.

Examples

This statement returns 2006-02-10:

RelativeDate(2006-01-31, 10)

This statement returns 2006-01-21:

RelativeDate(2006-01-31, - 10)

See also

DaysAfter

RelativeDate method for DataWindows in Section 2.4.99, “RelativeDate” in DataWindow
Reference.

2.4.622 RelativeTime

Description

Obtains a time that occurs a specified number of seconds after or before another time within a
24-hour period.

Statements, Events, and Functions

Page 1220

Syntax

RelativeTime (time, n)

Table 2.1121:

Argument Description

time A value of type time

n A long number of seconds

Return value

Time. Returns the time that occurs n seconds after time if n is greater than 0. Returns the time
that occurs n seconds before time if n is less than 0. The maximum return value is 23:59:59.
If any argument's value is null, RelativeTime returns null.

Usage

All PowerBuilder functions except RelativeTime use the Windows API to process dates and
times, so in most instances processing of Daylight Savings Time (DST) is dependent on the
operating system. However, the RelativeTime function is not DST-aware and therefore may
return an incorrect time in a region that is using DST.

Examples

This statement returns 19:01:41:

RelativeTime(19:01:31, 10)

This statement returns 19:01:21:

RelativeTime(19:01:31, - 10)

See also

SecondsAfter

RelativeTime method for DataWindows in Section 2.4.100, “RelativeTime” in DataWindow
Reference.

2.4.623 ReleaseAutomationNativePointer

Description

Releases the pointer to an OLE object that you got with GetAutomationNativePointer.

Applies to

OLEObject

Syntax

oleobject.ReleaseAutomationNativePointer (pointer)

Table 2.1122:

Argument Description

oleobject The name of an OLEObject variable containing the object for which you
want to release the native pointer.

Statements, Events, and Functions

Page 1221

Argument Description

pointer A UnsignedLong variable that holds the pointer you want to release.
ReleaseAutomationNativePointer sets pointer to 0 so that it is clearly no
longer a valid pointer.

Return value

Integer. Returns 0 if it succeeds and -1 if an error occurs.

Usage

Pointer is a pointer to OLE's IUnknown interface. You can use IUnknown::QueryInterface to
get other interface pointers.

When you call GetAutomationNativePointer, PowerBuilder calls OLE's AddRef function,
which locks the pointer. You can release the pointer in your DLL function or in a
PowerBuilder script with the ReleaseAutomationNativePointer function.

Examples

See GetAutomationNativePointer.

See also

GetAutomationNativePointer

GetNativePointer

ReleaseNativePointer

2.4.624 ReleaseNativePointer

Description

Releases the pointer to an OLE object that you got with GetNativePointer.

Applies to

OLE controls and OLE custom controls

Syntax

olename.ReleaseNativePointer (pointer)

Table 2.1123:

Argument Description

olename The name of the OLE control containing the object for which you want
the native pointer.

pointer A UnsignedLong variable that holds the pointer you want to release.
ReleaseNativePointer sets pointer to 0 so that it is clearly no longer a
valid pointer.

Return value

Integer. Returns 0 if it succeeds and -1 if an error occurs.

Usage

Statements, Events, and Functions

Page 1222

Pointer is a pointer to OLE's IUnknown interface. You can use IUnknown::QueryInterface to
get other interface pointers.

When you call GetNativePointer, PowerBuilder calls OLE's AddRef function, which locks
the pointer. You can release the pointer in your DLL function or in a PowerBuilder script
with the ReleaseNativePointer function.

Examples

See GetNativePointer.

See also

GetAutomationNativePointer

GetNativePointer

ReleaseAutomationNativePointer

2.4.625 Remove

Description

Removes a key. If more than one key with the same name exists, then remove the first key.
Notice that the IgnoreCase property (true by default) determines whether the key name will
be matched in a case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.remove (Key)

Table 2.1124:

Argument Description

objectname Name of the JSONPackage object.

Key A string specifying the key.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the
method returns null.

Examples

This example removes the "d_employess" key:

boolean lb_exist
datastore lds_employee
datawindowchild ldwc_active
JsonPackage lnv_package

lnv_package = create JsonPackage

...//Initialize data for lds_employee, ldwc_active

// Package the data
lnv_package.SetValue("d_department", dw_department, false)

Statements, Events, and Functions

Page 1223

lnv_package.SetValue("d_employee", lds_employee)
lnv_package.SetValue("dddw_active", ldwc_active, false)
…
 lnv_package.Remove("d_employee")
 // lb_exist will return false
 lb_exist = lnv_package.ContainsKey("d_employee")

See also

KeyCount

GetKey

ContainsKey

2.4.626 RemoveApplicationButton

Description

Removes the application button from the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.RemoveApplicationButton ()

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Only one application button is allowed in a ribbon bar, therefore, you can directly get (set
or remove) the application button without needing to insert the application button first or
identify the application button by its handle.

Examples

This example sets the Text property of the application button to "MyApp", and then removes
the application button.

Integer li_Return
RibbonApplicationButtonItem lr_AppButton

lr_AppButton.Text = "MyApp"
li_Return = rbb_1.SetApplicationButton(lr_AppButton)
li_Return = rbb_1.RemoveApplicationButton()

See also

GetApplicationButton

SetApplicationButton

2.4.627 RemoveDirectory

Description

Removes a directory.

Statements, Events, and Functions

Page 1224

Syntax

RemoveDirectory (directoryname)

Table 2.1125:

Argument Description

directoryname String for the name of the directory you want to remove. If you do not
specify an absolute path, this function deletes relative to the current
working directory.

Return value

Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage

The directory must be empty and must not be the current directory for this function to
succeed.

Examples

This example removes a subdirectory from the current directory:

string ls_path="my targets"
integer li_filenum

li_filenum = RemoveDirectory (ls_path)
If li_filename <> 1 then
MessageBox("Remove directory failed", &
 + "Check that the directory exists, is empty, and " &
 + "is not the current directory")
else
MessageBox("Success", "Directory " + ls_path + &
 " deleted")
end if

See also

DirectoryExists

GetCurrentDirectory

2.4.628 RequestResource

Description

Sends a request to get resource.

Applies to

OAuthClient objects

Syntax

objectname.RequestResource (OAuthRequest oAuthRequest, ResourceResponse
 resourceResponse)

Table 2.1126:

Argument Description

objectname A reference to the OAuthClient object.

Statements, Events, and Functions

Page 1225

Argument Description

oAuthRequest A reference to the OAuthRequest object specifying the request
information.

resourceResponse A reference to the ResourceResponse object into which the function
returns the object.

Return value

Integer.

Returns the value as follows. If any argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

Examples

The following example shows the use of the RequestResource function to get resource:

int li_return
OAuthClient lnv_OAuthClient
OAuthRequest lnv_OAuthRequest
ResourceResponse lnv_ResourceResponse

lnv_OAuthClient = create OAuthClient

li_return = lnv_OAuthClient.requestresource(lnv_OAuthRequest, lnv_ResourceResponse)

See also

AccessToken

2.4.629 Repair

Description

Updates the target database with corrections that have been made in the pipeline user object's
Error DataWindow.

Applies to

Pipeline objects

Syntax

pipelineobject.Repair (destinationtrans)

Table 2.1127:

Argument Description

pipelineobject The name of a pipeline user object that contains the pipeline object being
executed

Statements, Events, and Functions

Page 1226

Argument Description

destinationtrans The name of a transaction object with which to connect to the target
database

Return value

Integer. Returns 1 if it succeeds and a negative number if an error occurs. Error values are:

-5 -- Missing connection

-9 -- Fatal SQL error in destination

-10 -- Maximum number of errors exceeded

-11 -- Invalid window handle

-12 -- Bad table syntax

-15 -- Pipe already in progress

-17 -- Error in destination database

-18 -- Destination database is read-only

If any argument's value is null, Repair returns null.

Usage

When errors have occurred during a pipeline data transfer, Start populates its pipeline-error
DataWindow control with the rows that caused the errors. The user or a script can then make
corrections to the data. The Repair function is usually associated with a CommandButton that
the user can click after correcting data in the pipeline-error DataWindow.

If errors occur again, the rows that are in error remain in the pipeline-error DataWindow. The
user can correct the data again and click the button that calls Repair.

Examples

This statement connects to the destination database using the transaction instance variable
i_dst. It then updates the database with the corrections made in the Error DataWindow for
pipeline i_pipe:

i_pipe.Repair(i_dst)

See also

Cancel

Repair

Start

2.4.630 Replace

Description

Replaces a portion of one string with another.

Syntax

Replace (string1, start, n, string2)

Statements, Events, and Functions

Page 1227

Table 2.1128:

Argument Description

string1 The string in which you want to replace characters with string2.

start A long whose value is the number of the first character you want
replaced. (The first character in the string is number 1.)

n A long whose value is the number of characters you want to replace.

string2 The string that will replace characters in string1. The number of
characters in string2 can be greater than, equal to, or less than the number
of characters you are replacing.

Return value

String. Returns the string with the characters replaced if it succeeds and the empty string if it
fails. If any argument's value is null, Replace returns null.

Usage

If the start position is beyond the end of the string, Replace appends string2 to string1. If
there are fewer characters after the start position than specified in n, Replace replaces all the
characters to the right of character start.

If n is zero, then, in effect, Replace inserts string2 into string1.

Examples

These statements change the value of Name from Davis to Dave:

string Name
Name = "Davis"
Name = Replace(Name, 4, 2, "e")

This statement returns BABY RUTH:

Replace("BABE RUTH", 1, 4, "BABY")

This statement returns Closed for the Winter:

Replace("Closed for Vacation", 12, 8, "the Winter")

This statement returns ABZZZZEF:

Replace("ABCDEF", 3, 2, "ZZZZ")

This statement returns ABZZZZ:

Replace("ABCDEF", 3, 50, "ZZZZ")

This statement returns ABCDEFZZZZ:

Replace("ABCDEF", 50, 3, "ZZZZ")

These statements replace all occurrences of red within the string mystring with green. The
original string is taken from the SingleLineEdit sle_1 and the result becomes the new text of
sle_1:

long start_pos=1
string old_str, new_str, mystring

mystring = sle_1.Text

Statements, Events, and Functions

Page 1228

old_str = "red"
new_str = "green"

// Find the first occurrence of old_str.
start_pos = Pos(mystring, old_str, start_pos)

// Only enter the loop if you find old_str.
DO WHILE start_pos > 0

 // Replace old_str with new_str.
 mystring = Replace(mystring, start_pos, &
 Len(old_str), new_str)
 // Find the next occurrence of old_str.
 start_pos = Pos(mystring, old_str, &
 start_pos+Len(new_str))
LOOP
sle_1.Text = mystring

See also

Replace method for DataWindows in Section 2.4.101, “Replace” in DataWindow Reference.

2.4.631 ReplaceA

Description

Temporarily converts a string to DBCS based on the current locale, then replaces a portion of
one string with another.

Syntax

ReplaceA (string1, start, n, string2)

Table 2.1129:

Argument Description

string1 The string containing characters you want to replace.

start A long whose value is the position in bytes of the first character you want
to replace in string1.

n A long whose value is the number of bytes you want to replace in string1.

string2 The string that will replace characters in string1. The number of
characters in string2 can be greater than, equal to, or less than the number
of characters you are replacing.

Return value

String. Returns the string with the characters replaced if it succeeds and the empty string if it
fails. If any argument's value is null, ReplaceA returns null.

Usage

ReplaceA replaces the functionality that Replace had in DBCS environments in
PowerBuilder 9. ReplaceA replaces a string by number of bytes, whereas Replace replaces
a string by number of characters in both SBCS and DBCS environments. ReplaceA also
specifies the starting position of the string to be replaced by number of bytes, whereas
Replace specifies the starting position by number of characters.

In SBCS environments, Replace, ReplaceW, and ReplaceA return the same results.

Statements, Events, and Functions

Page 1229

2.4.632 ReplaceText

Description

Replaces selected text in an edit control with a specified string.

Applies to

DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, and DropDownPictureListBox controls

Syntax

editname.ReplaceText (string)

Table 2.1130:

Argument Description

editname The name of the DataWindow, EditMask, InkEdit, MultiLineEdit,
SingleLineEdit, RichTextEdit, DropDownListBox, or
DropDownPictureListBox control in which you want to replace the
selected string.

In a DataWindow control, the text is replaced in the edit control over the
current row and column.

string The string that replaces the selected text.

Return value

Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For InkEdit, returns 1 for success and -1 if an error occurs. For other controls, returns the
number of characters in string and -1 if an error occurs. If any argument's value is null,
ReplaceText returns null.

Usage

If there is no selection, ReplaceText inserts the replacement text at the cursor position.

In a RichTextEdit control, the selection can include pictures.

Other ways to replace text

To use the contents of the clipboard as the replacement text, call the Paste function,
instead of ReplaceText.

To replace text in a string, rather than a control, use the Replace function.

Examples

If the MultiLineEdit mle_Comment contains Offer Good for 3 Months and the selected text is
3 Months, this statement replaces 3 Months with 60 Days and returns 7. The resulting value
of mle_Comment is Offer Good for 60 Days:

mle_Comment.ReplaceText("60 Days")

If there is no selected text, this statement inserts "Draft" at the cursor position in the
SingleLineEdit sle_Comment3:

Statements, Events, and Functions

Page 1230

sle_Comment3.ReplaceText("Draft")

See also

Copy

Cut

Paste

2.4.633 ReplaceW (obsolete)

Description

Replaces a portion of one string with another.

This function is obsolete. It has the same behavior as Replace in all environments.

Syntax

ReplaceW (string1, start, n, string2)

2.4.634 Reset

Clears data from a control or object. The syntax you choose depends on the target object.

For syntax for DataWindows and DataStores, see the Reset method for DataWindows in
Section 9.122, “Reset” in DataWindow Reference.

Table 2.1131:

To Use

Delete all items from a list Syntax 1

Delete all the data (and optionally the series and categories) from a graph Syntax 2

Return to the beginning of a trace file Syntax 3

2.4.634.1 Syntax 1: For list boxes

Description

Deletes all the items from a list.

Applies to

ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox controls

Syntax

listboxname.Reset ()

Table 2.1132:

Argument Description

listboxname The name of the ListBox control from which to delete all items

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If listboxname is null, Reset returns
null. The return value is usually not used.

Statements, Events, and Functions

Page 1231

Examples

This statement deletes all items in the ListBox portion of ddlb_Actions:

ddlb_Actions.Reset()

See also

DeleteItem

2.4.634.2 Syntax 2: For graphs

Description

Deletes the data, the categories, or the series from a graph.

Applies to

Graph controls in windows and user objects and graphs within a DataWindow object with an
external data source.

Does not apply to other graphs within DataWindow objects because their data comes directly
from the DataWindow.

Syntax

controlname.Reset (graphresettype)

Table 2.1133:

Argument Description

controlname The name of the graph object in which you want to delete all the data
values or all series and all data values

graphresettype A value of the grResetType enumerated datatype specifying whether you
want to delete only data values or all series and all data values:

• All! -- Delete all series, categories, and data in controlname

• Category! -- Delete categories and data in controlname

• Data! -- Delete data in controlname

• Series! -- Delete the series and data in controlname

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
Reset returns null. The return value is usually not used.

Usage

Use Reset to clear the data in a graph before you add new data.

Examples

This statement deletes the series and data, but leaves the categories, in the graph
gr_product_data:

gr_product_data.Reset(Series!)

Statements, Events, and Functions

Page 1232

See also

AddData

AddSeries

2.4.634.3 Syntax 3: For trace files

Description

Goes back to the beginning of the trace file so you can begin rereading the file contents.

Applies to

TraceFile objects

Syntax

instancename.Reset ()

Table 2.1134:

Argument Description

instancename Instance name of the TraceFile object

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FileNotOpenError! -- The specified trace file has not been opened

Usage

Use this function to return to the start of the open trace file and begin rereading the contents
of the file. To use the Reset function, you must have previously opened the trace file with
the Open function. You use the Reset and Open functions as well as the other properties and
functions provided by the TraceFile object to access the contents of a trace file directly. You
use these functions if you want to perform your own analysis of the tracing data instead of
using the available modeling objects.

Examples

This example returns execution to the start of the open trace file ltf_file so that the file's
contents can be reread:

TraceFile ltf_file
string ls_filename

ltf_file = CREATE TraceFile
ltf_file.Open(ls_filename)
...
ltf_file.Reset(ls_filename)
...

See also

Open

Statements, Events, and Functions

Page 1233

NextActivity

Close

2.4.635 ResetArgElements

Description

Clears the argument list.

Applies to

Window ActiveX controls

Syntax

activexcontrol.ResetArgElements ()

Table 2.1135:

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window ActiveX control.
When used in HTML, this is the NAME attribute of the object element.
When used in other environments, this references the control that
contains the PowerBuilder window ActiveX.

Return value

Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function after calling InvokePBFunction or TriggerPBEvent to clear the argument
list.

If you populate the argument list with SetArgElement, you should call this function to
clear the argument list after using InvokePBFunction or TriggerPBEvent to call an event or
function with arguments.

Examples

This JavaScript example calls the ResetArgElements function:

...
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
 IF (rc != 1) {
 alert("Error. Empty string.");
 }
 PBRX1.ResetArgElements();
...

This VBScript example calls the ResetArgElements function:

...
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs)
 rc = PBRX1.GetLastReturn()
 IF rc <> 1 THEN
 msgbox "Error. Empty string."
 END IF
 PBRX1.ResetArgElements()
...

Statements, Events, and Functions

Page 1234

See also

GetLastReturn

InvokePBFunction

SetArgElement

TriggerPBEvent

2.4.636 ResetDataColors

Description

Restores the color of a data point to the default color for its series.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.ResetDataColors ({ graphcontrol, } seriesnumber, datapointnumber)

Table 2.1136:

Argument Description

controlname The name of the graph in which you want to reset the color of a data
point, or the name of the DataWindow containing the graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to reset the color

seriesnumber The number of the series in which you want to reset the color of a data
point

datapointnumber The number of the data point for which you want to reset the color

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
ResetDataColors returns null.

Default color for data points

To set the color for a series, use SetSeriesStyle. The color you set for the series is the
default color for all data points in the series.

Examples

These statements change the color of data point 10 in the series named Costs in the graph
gr_product_data to the color for the series:

SeriesNbr = gr_product_data.FinSeries("Costs")
gr_product_data.ResetDataColors(SeriesNbr, 10)

These statements change the color of data point 10 in the series named Costs in the graph
gr_comps in the DataWindow control dw_equip to the color for the series:

SeriesNbr = dw_equipment.FindSeries("Costs")

Statements, Events, and Functions

Page 1235

dw_equip.ResetDataColors("gr_comps", SeriesNbr, 10)

See also

GetDataStyle

SeriesName

GetSeriesStyle

SetDataStyle

SetSeriesStyle

2.4.637 ResetInk

Description

Clears ink from an InkPicture control.

Applies to

InkPicture controls

Syntax

inkpicname.ResetInk ()

Table 2.1137:

Argument Description

inkpicname The name of the InkPicture control from which you want to clear ink.

Return value

Integer. Returns 1 for success and -1 for failure.

Usage

Use the ResetInk function to clear the ink from an InkPicture control.

Examples

The following example clears the ink from an InkPicture control:

ip_1.ResetInk()

See also

LoadInk

LoadPicture

ResetPicture

SaveInk

Save

2.4.638 ResetPicture

Description

Clears a picture from an InkPicture control.

Statements, Events, and Functions

Page 1236

Applies to

InkPicture controls

Syntax

inkpicname.ResetPicture ()

Table 2.1138:

Argument Description

inkpicname The name of the InkPicture control from which you want to clear a
picture.

Return value

Integer. Returns 1 for success and -1 for failure.

Usage

Use the ResetInk function to clear the image from an InkPicture control.

Examples

The following example clears the image from an InkPicture control:

ip_1.ResetPicture()

See also

LoadInk

LoadPicture

ResetInk

SaveInk

Save

2.4.639 Resize

Description

Resizes an object or control by setting its Width and Height properties and then redraws the
object.

Applies to

Any object, except a child DataWindow

Syntax

objectname.Resize (width, height)

Table 2.1139:

Argument Description

objectname The name of the object or control you want to resize

width The new width in PowerBuilder units

height The new height in PowerBuilder units

Statements, Events, and Functions

Page 1237

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs or if objectname is a minimized or
maximized window. If any argument's value is null, Resize returns null.

Usage

You cannot use Resize for a child DataWindow.

Resize does not resize a minimized or maximized sheet or window. If the window is
minimized or maximized, Resize returns -1.

Equivalent syntax

You can set object's Width and Height properties instead of calling the Resize function.
However, the two statements cause PowerBuilder to redraw objectname twice; first with the
new width, and then with the new width and height.

objectname.Width = width
objectname.Height = height

The first two statements, although they redraw gb_box1 twice, achieve the same result as the
third statement:

gb_box1.Width = 100 // These lines resize
gb_box1.Height = 150 // gb_box1 to 100 x 150
gb_box1.Resize(100, 150)// So does this line

Examples

This statement changes the Width and Height properties of gb_box1 and redraws gb_box1
with the new properties:

gb_box1.Resize(100, 150)

This statement doubles the width and height of the picture control p_1:

p_1.Resize(p_1.Width*2, p_1.Height*2)

2.4.640 RespondRemote

Description

Sends a DDE message indicating whether the command or data received from a remote DDE
application was acceptable.

Syntax

RespondRemote (boolean)

Table 2.1140:

Argument Description

boolean A boolean expression. true indicates that the previously received
command or data was acceptable. false indicates that it was not.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs (for example, the function was
called in wrong context). If boolean is null, RespondRemote returns null.

Statements, Events, and Functions

Page 1238

Usage

You can use RespondRemote when the PowerBuilder application is the DDE server or DDE
client application.

You usually call RespondRemote after these functions:

GetCommandDDE

GetCommandDDEOrigin

GetDataDDE

GetDataDDEOrigin

For more information about PowerBuilder as a client, see OpenChannel and ExecRemote.
For more information about PowerBuilder as a server, see StartServerDDE.

Examples

In a script for the HotLinkAlarm event, these statements tell a remote application named
Gateway that its data was successfully received:

String Applname, Topic, Item, Value
GetDataDDEOrigin(Applname, Topic, Item)
IF Applname = "Gateway" THEN
 IF GetDataDDE(Value) = 1 THEN
 RespondRemote(TRUE)
 END IF
END IF

See also

GetCommandDDE

GetCommandDDEOrigin

GetDataDDE

GetDataDDEOrigin

2.4.641 Restart

Description

Stops the execution of all scripts, closes all windows (without executing the scripts for the
Close events), commits and disconnects from the database, restarts the application, and
executes the application-level script for the Open event.

Syntax

Restart ()

Return value

Integer. Returns 1 if it succeeds and -1 if it fails. The return value is usually not used.

Usage

You can use Restart in the application-level script for the Idle event to restart the application
after a period of user inactivity, a typical behavior of kiosk applications.

Examples

Statements, Events, and Functions

Page 1239

In the application-level script for the Idle event, this statement restarts the application:

Restart()

See also

HALT

2.4.642 ResumeDownload

Description

Resumes the download progress of the file.

Applies to

WebBrowser controls

Syntax

controlname.ResumeDownload (integer ItemId)

Table 2.1141:

Argument Description

controlname The name of the WebBrowser control.

ItemId The ID used to identify the file. The minimum value is 1.

ItemId should be the return value of DownloadingStart or
DownloadingStateChanged event.

Return value

Integer.

• 1 -- Success.

• -2 -- Failed to get the browser instance.

• -6 -- The specified download task does not exist.

Examples

Integer li_rtn, li_itemid
li_rtn = wb_1.resumedownload(li_itemid)

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

GoForward

Navigate

Statements, Events, and Functions

Page 1240

PauseDownload

PrintAsPDF

RegisterEvent

Refresh

StopNavigation

UnregisterEvent

Zoom

2.4.643 ResumeTransaction (obsolete)

Description

Associates the EAServer transaction passed as an argument with the calling thread.

Obsolete function

ResumeTransaction is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

CORBACurrent objects

Syntax

CORBACurrent.ResumeTransaction (handletrans)

Table 2.1142:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance

handletrans An unsignedlong containing the handle of a suspended transaction

Return value

Integer. Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Unknown failure

-2 -- The transaction referred to by handletrans is no longer valid

Usage

The ResumeTransaction function associates the transaction referred to by the
handletrans argument with the calling thread. The argument is obtained from a call to
SuspendTransaction and may refer to a transaction that was previously associated with the
current thread or with a different thread in the same execution environment.

Caution

The handletrans argument must be obtained from the SuspendTransaction function.
Using any other value as the argument to ResumeTransaction may have unpredictable
results.

Statements, Events, and Functions

Page 1241

ResumeTransaction can be called by a client or a component that is marked as OTS style.
must be using the two-phase commit transaction coordinator (OTS/XA).

Examples

This example shows the use of the ResumeTransaction function to associate the
calling thread with the transaction referred to by the ll_handle argument returned by
SuspendTransaction:

// Instance variable:
// CORBACurrent corbcurr
integer li_rc
unsignedlong ll_handle

li_rc = this.GetContextService("CORBACurrent", &
 corbcurr)
li_rc = corbcurr.Init()
li_rc = corbcurr.BeginTransaction()
// do some transactional work
ll_handle = corbcurr.SuspendTransaction()
//do some non-transactional work
li_rc = corbcurr.ResumeTransaction(ll_handle)
// do some more transactional work
li_rc = corbcurr.CommitTransaction()

See also

BeginTransaction (obsolete)

CommitDocking

GetContextService

GetStatus (obsolete)

GetTransactionName (obsolete)

Init (obsolete)

RollbackOnly (obsolete)

RollbackTransaction (obsolete)

SetTimeout (obsolete)

SuspendTransaction (obsolete)

2.4.644 Retrieve

Description

Retrieves data to the DataWindow, DataWindowChild, or DataStore from the RESTFul
Web service according to the key name of the JSON string. If the data received from
the RESTful web service is compressed as gzip, it will be automatically decompressed.
Only gzip compression format is supported at this moment. The developer can use the
SetRequestHeader function to set the Accept-Encoding header to allow only the gzip
compression format.

Applies to

RestClient object

Syntax

Statements, Events, and Functions

Page 1242

objectname.Retrieve (dwControl, urlName {, data} {, tokenrequest})

Table 2.1143:

Argument Description

objectname A reference to the RestClient object.

dwControl The name of the DataWindow control, DataStore, or child DataWindow.

urlName A string whose value is the URL.

data (optional) A string or blob data. If this argument is not specified, the retrieve
function sends the request to the server with "GET" method, otherwise
with "POST".

tokenrequest
(optional)

A reference to the TokenRequest object for supporting OAuth 2.0. If
this parameter is used, the token settings in the SetOAuthToken and
SetJWTToken functions will be ignored.

Usage

The Retrieve function retrieves data only when the JSON key name matches with the
DataWindow column name; if none of the JSON key name matches with any of the
DataWindow column name, then no data will be inserted into the DataWindow and the
function returns error code -17.

For the Retrieve function, the JSON string returned from the RESTFul Web service APIs
must be an array in the two-level plain JSON format (see Plain JSON: two-level structure in
Application Techniques for details); for the RetrieveOne function, the JSON string returned
from the RESTFul Web service APIs can be an array in the two-level plain JSON format (see
Plain JSON: two-level structure in Application Techniques for details) or a JSON object.

The Retrieve function is not supported in DataWindow/DataWindowChild/DataStore with
the following presentation styles: Composite, Crosstab, OLE 2.0, and RichText.

Although the Retrieve function is not supported in the Composite DataWindow, you can call
GetChild function to get the child DataWindow from the Composite DataWindow, and then
call the Retrieve function to retrieve the data into the child DataWindow.

The Retrieve function is not supported for Report controls, TableBlob controls, OLE
Database Blob controls, and InkPicture controls in DataWindow objects.

The Retrieve function is not supported for dynamically created or modified DataWindows.

AutoRetrieve for DropDownDataWindow is unsupported.

The Retrieve function will not pass the retrieval arguments used in computed fields and
DataWindow expressions.

The Retrieve function will not trigger the DataWindow RetrieveRow event considering the
performance impact, although it will trigger the RetrieveStart and RetrieveEnd events.

Return value

Long.

Returns values as follows. If any argument's value is null, the method returns null.

>=0 -- Returns the number of rows if it succeeds

Statements, Events, and Functions

Page 1243

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timed out

-5 -- Get token error

-7 -- Failed to automatically decompress the response body

-10 -- The token is invalid or has expired

-15 -- Unsupported character sets

-16 -- The JSON is not a plain JSON with two-level structure

-17 -- No data is inserted into the DataWindow because no key in the JSON matches any
column name in it

Example 1

This example retrieves data to a DataWindow:

long ll_return
RestClient lnv_RestClient
lnv_RestClient = Create RestClient

// Set DataObject
dw_emp.DataObject = "d_sq_gr_emp"

// Send request using GET
ll_return = lnv_RestClient.Retrieve(dw_emp, "https://demo.appeon.com/PB/
webapi_client/employee/102")

// Check the return value
if ll_return >= 0 then
 MessageBox("Success", "Rows = " + String(ll_return))
else
 MessageBox("Error", "Failed to retrieve data.")
end if

Example 2

This example retrieves data to a DataStore:

long ll_return
RestClient lnv_RestClient
datastore lds_datastore

lnv_RestClient = Create RestClient
lds_datastore = create datastore

// Set DataObject
lds_datastore.DataObject = "d_sq_gr_emp"

// Send request using GET
ll_return = lnv_RestClient.Retrieve(lds_datastore, "https://demo.appeon.com/PB/
webapi_client/employee/102")

// Check the return value
if ll_return >= 0 then
 MessageBox("Success", "Rows = " + String(ll_return))
else
 MessageBox("Error", "Failed to retrieve data.")

Statements, Events, and Functions

Page 1244

end if

Example 3

This example retrieves data to a DataWindowChild:

int li_return
RestClient lnv_restClient
DataWindowChild ldwc_dept

lnv_restClient = create RestClient

//get the DataWindowChild
dw_emp.getchild("dept_id", ldwc_dept)

//Get data from web api using GET method
li_return = lnv_restClient.retrieve(ldwc_dept, "https://demo.appeon.com/pb/
webapi_client/department")

if li_return >= 0 then
 messagebox("Success", "Rows = " + string(li_return))
else
 messagebox("Error", "Failed to retrieve data.")
end if

Example 4

This example passes the string data using POST method and retrieves data to a DataWindow.

long ll_return
RestClient lnv_RestClient
lnv_RestClient = Create RestClient

String ls_json = '{"empId":100, "fname":" John", "lname": "Guevara"}'

// Construct a POST request (supports all headers)
lnv_RestClient.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")

// Send the POST request (add data to the body and automatically set Content-Length
 header)
ll_return = lnv_RestClient.Retrieve(dw_emp, "https://demo.appeon.com/PB/
webapi_client/employee", ls_Json)

// Check the return value
if ll_return >= 0 then
 MessageBox("Success", "Rows = " + String(ll_return))
else
 MessageBox("Error", "Failed to retrieve data.")
end if

Example 5

This example passes the blob data using POST method and retrieves data to a DataWindow.

Long ll_rc
Blob lblb_data
RestClient lnv_RestClient
lnv_RestClient = Create RestClient

// Set DataObject
dw_1.DataObject = "d_employee"

// Construct a POST request (supports all headers)
lnv_RestClient.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")
// Content-Length is set by Retrieve automatically

Statements, Events, and Functions

Page 1245

// ...
lblb_data = blob('{"empId":100, "fname":"John", "lname":"Guevara"}', EncodingUTF8!)

// Send the POST request (add data to the body and automatically set Content-Length
 header)
ll_rc = lnv_RestClient.Retrieve(dw_1, "https://demo.appeon.com/PB/webapi_client/
employee/blob", lblb_data)

// Check the return value
if ll_rc >= 0 then
 MessageBox("Success", "Rows = " + String(ll_rc))
else
 MessageBox("Error", "Failed to retrieve data.")
end if

Example 6

This example passes the string data using POST method and retrieves data to a DataStore.

String ls_json
Long ll_rc
Datastore lds_1
RestClient lnv_RestClient
lnv_RestClient = Create RestClient

lds_1 = Create Datastore
lds_1.DataObject = "d_employee"

ls_json = '{"city": "Needham", "state": "MA", zipCode": "02192"}'

// Construct a POST request (supports all headers)
lnv_RestClient.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")
// Content-Length is set by Retrieve automatically
// ...
// Send the POST request (add data to the body and automatically set Content-Length
 header)
ll_rc = lnv_RestClient.Retrieve(lds_1, "https://demo.appeon.com/PB/webapi_client/
employee", ls_Json)

// Check the return value
if ll_rc >= 0 then
 MessageBox("Success", "Rows = " + String(ll_rc))
else
 MessageBox("Error", "Failed to retrieve data.")
end if

Example 7

This example passes the blob data using POST method and retrieves data to a DataStore.

Long ll_rc
RestClient lnv_RestClient
lnv_RestClient = Create RestClient
blob lblb_data
Datastore lds_1
lds_1 = Create Datastore

// Set DataObject
lds_1.DataObject = "d_employee"

// Construct a POST request (supports all headers)
lnv_RestClient.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")
// Content-Length is set by Retrieve automatically
// ...
lblb_data = blob('{"empId":100, "fname":"John", "lname":"Guevara"}', EncodingUTF8!)

Statements, Events, and Functions

Page 1246

// Send the POST request (add data to the body and automatically set Content-Length
 header)
ll_rc = lnv_RestClient.Retrieve(lds_1, "https://demo.appeon.com/PB/webapi_client/
employee/blob", lblb_data)

// Check the return value
if ll_rc >= 0 then
 MessageBox("Success", "Rows = " + String(ll_rc))
else
 MessageBox("Error", "Failed to retrieve data.")
end if

Example 8

This example passes the string data using POST method and retrieves data to a
DataWindowChild.

int li_return
string ls_data
RestClient lnv_restClient
DataWindowChild ldwc_dept
lnv_restClient = create RestClient

//Get DataWindowChild
dw_emp.getchild("dept_id", ldwc_dept)

ls_data = "{'id':100}"
lnv_restClient.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")
//Get data from web api using POST method

li_return = lnv_restClient.retrieve(ldwc_dept, "https://demo.appeon.com/pb/
webapi_client/department/RetrievePassJson", ls_data)

if li_return >= 0 then
 messagebox("Success", "Rows = " + string(li_return))
else
 messagebox("Error", "Failed to retrieve data.")
end if

Example 9

This example passes the blob data using POST method and retrieves data to a
DataWindowChild.

int li_return
blob lblb_data
RestClient lnv_restClient
DataWindowChild ldwc_dept

lnv_restClient = create RestClient
lnv_restClient.setrequestheader("Content-Type", "Application/json;charset=utf-8")

//Convert the string to a blob
lblb_data = blob("{'id':100}", encodingutf8!)

//Get DataWindowChild
dw_emp.getchild("dept_id", ldwc_dept)

//Pass data from web api using POST method
li_return = lnv_restClient.retrieve(ldwc_dept, "https://demo.appeon.com/pb/
webapi_client/department/RetrievePassJson", lblb_data)

if li_return >= 0 then
 messagebox("Success", "Rows = " + string(li_return))

Statements, Events, and Functions

Page 1247

else
 messagebox("Error", "Failed to retrieve data.")
end if

Example 10

This example gets data from a website with token authentication and then retrieves data to a
DataWindow.

integer li_return
RestClient lnv_restClient
TokenRequest lnv_tokenRequest

lnv_restClient = create RestClient
lnv_TokenRequest.tokenlocation = "https://demo.appeon.com/pb/identityserver/
connect/token" //Location of the token
lnv_TokenRequest.method = "post" //Request method
lnv_TokenRequest.granttype = "client_credentials" //Grant type
lnv_TokenRequest.clientid = "GRfjNAfCg2bI47l1sX5zdFiTEmdrkCKa20zm5YVS4iM=" //client
 ID
lnv_TokenRequest.clientsecret = "K7gNU3sdo-OL0wNhqoVWhr3g6s1xYv72ol/pe/Unols=" //
client certificate

li_return = lnv_restClient.retrieve(dw_dept, "https://demo.appeon.com/pb/
webapi_client/identity/departments", lnv_tokenRequest)

if li_return >= 0 then
 messagebox("Success", "Rows " + string(li_return))
else
 messagebox("Error", "Failed to retrieve data.")
end if

Example 11

This example passes the blob data using POST method and retrieves the data from the
website with token authentication to the DataWindow.

integer li_return
blob lblb_data
RestClient lnv_restClient
TokenRequest lnv_tokenRequest

lnv_restClient = create RestClient

lnv_TokenRequest.tokenlocation = "https://demo.appeon.com/pb/identityserver/
connect/token" //Location of the token
lnv_TokenRequest.method = "post" //Request method
lnv_TokenRequest.granttype = "client_credentials" //Grant type
lnv_TokenRequest.clientid = "GRfjNAfCg2bI47l1sX5zdFiTEmdrkCKa20zm5YVS4iM=" //client
 ID
lnv_TokenRequest.clientsecret = "K7gNU3sdo-OL0wNhqoVWhr3g6s1xYv72ol/pe/Unols=" //
client certificate

lnv_restClient.setrequestheader("Content-Type", "Application/json;charset=utf-8")

lblb_data = blob("{'id':100}", encodingutf8!)

li_return = lnv_restClient.retrieve(dw_dept, "https://demo.appeon.com/pb/
webapi_client/identity/department", lblb_data, lnv_tokenRequest)

if li_return >= 0 then
 messagebox("Success", "Rows " + string(li_return))
else
 messagebox("Error", "Failed to retrieve data.")

Statements, Events, and Functions

Page 1248

end if

Example 12

The client sends the server a request which includes the "gzip" compression method; then the
server compresses and returns the data as requested; and then the client automatically extracts
the data.

Integer li_Return
RestClient lrc_Dept

lrc_Dept = Create RestClient

lrc_Dept.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")
// Sets the compression method in the request header
lrc_Dept.SetRequestHeader("Accept-Encoding","gzip")

// DataWindow column name and type must match with those returned from
// URL: https://demo.appeon.com/PB/webapi_client/department
dw_submit.DataObject = 'd_example_dept'

// dw_submit datawindow will display the return data
li_Return = lrc_Dept.Retrieve(dw_submit,"https://demo.appeon.com/PB/webapi_client/
department")

If li_Return < 0 Then
 // Prints the error message
End If

See also

RetrieveOne

2.4.645 RetrieveOne

Description

Retrieves one data row to the DataWindow, DataWindowChild, or DataStore from the
RESTFul Web service.

If the data received from the RESTful web service is compressed as gzip, it will be
automatically decompressed. Only gzip compression format is supported at this moment. The
developer can use the SetRequestHeader function to set the Accept-Encoding header to allow
only the gzip compression format.

It is not recommended to use this method to process large data (20 MB or 100,000 data rows
can be considered as large data based on our tests).

Applies to

RestClient object

Syntax

objectname.RetrieveOne (DWControl dwObject, string urlName {,string data})

Table 2.1144:

Argument Description

objectname A reference to the RestClient object.

dwObject The name of the DataWindow control, DataStore, or child DataWindow.

Statements, Events, and Functions

Page 1249

Argument Description

urlName A string whose value is the URL.

data (optional) A string specifying the data to send to the server. If this argument is not
specified, the RetrieveOne function sends the request to the server with
"GET" method, otherwise with "POST".

Usage

For the RetrieveOne function, the JSON string returned from the RESTFul Web service APIs
can be an array in the two-level plain JSON format (see Plain JSON: two-level structure in
Application Techniques for details) or a JSON object; for the Retrieve function, the JSON
string returned from the RESTFul Web service APIs must be an array in the two-level plain
JSON format (see Plain JSON: two-level structure in Application Techniques for details).

If the retrieved data is a JSON object that contains one single row, the JSON object will
be imported to DataWindow as one row; if the retrieved data is a JSON array that contains
multiple rows, only the first element of the JSON array will be imported to DataWindow.

The RetrieveOne function is not supported in DataWindow/DataWindowChild/DataStore
with the following presentation styles: Composite, Crosstab, OLE 2.0, and RichText.

Although the RetrieveOne function is not supported in the Composite DataWindow, you can
call GetChild function to get the child DataWindow from the Composite DataWindow, and
then call the RetrieveOne function to retrieve the data into the child DataWindow.

The RetrieveOne function is not supported for Report controls, TableBlob controls, OLE
Database Blob controls, and InkPicture controls in DataWindow objects.

The RetrieveOne function is not supported for dynamically created or modified
DataWindows.

AutoRetrieve for DropDownDataWindow is unsupported.

The RetrieveOne function will not pass the retrieval arguments used in computed fields and
DataWindow expressions.

Return value

Long.

Returns values as follows. If any argument's value is null, the method returns null.

>=0 -- Returns the number of rows if it succeeds

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timed out

-7 -- Failed to decompress data

-10 -- The token is invalid or has expired

-15 -- Unsupported character sets

Example 1

Statements, Events, and Functions

Page 1250

The following code example shows the usage of RetrieveOne without the data argument.

RestClient lrc_P024
Long ll_P024_DepartmentID
Integer li_p024_RetrieveOneReturn

lrc_P024 = Create RestClient
lrc_P024.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip")

ll_P024_DepartmentID = 100

li_p024_RetrieveOneReturn=lrc_P024.RetrieveOne(dw_Data,"https://demo.appeon.com/PB/
webapi_client/api/department/retrieveone/"+String(ll_P024_DepartmentID))
If li_p024_RetrieveOneReturn <> 1 Then
//Checks if any error information
Else
 If lrc_P024.GetResponseStatusCode() <> 200 Then
 //Processes according to the exception information
 End If
End If

Example 2

The following code example shows the usage of RetrieveOne with the data argument.

RestClient lrc_P024
Integer li_p024_RetrieveOneReturn

lrc_P024 = Create RestClient
lrc_P024.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip")

li_p024_RetrieveOneReturn=lrc_P024.RetrieveOne(dw_Data, "https://demo.appeon.com/
PB/webapi_client/department/retrievebyid", "500")
If li_p024_RetrieveOneReturn <> 1 Then
//Checks if any error information
Else
 If lrc_P024.GetResponseStatusCode() <> 200 Then
 //Processes according to the exception information
 End If
End If

See also

Retrieve

2.4.646 Reverse

Description

Reverses the order or characters in a string.

Syntax

Reverse (string)

Table 2.1145:

Argument Description

string A string whose characters you want to reorder so that the last character is
first and the first character is last.

Statements, Events, and Functions

Page 1251

Return value

String. Returns a string with the characters of string in reversed order. Returns the empty
string if it fails.

Usage

Reverse is useful with the IsArabic and IsHebrew functions, which help you implement right-
to-left character display when you are using a version of Windows that supports right-to-left
languages.

Examples

Under a version of Windows that supports right-to-left languages, this statement returns a
string with the characters in reverse order from the characters entered in sle_name:

string ls_name
ls_name = Reverse(sle_name.Text)

See also

IsArabic

IsHebrew

2.4.647 RevertToSelf

Description

Restores the security attributes for a COM object that is running on COM+ and
impersonating the client.

Applies to

TransactionServer objects

Syntax

transactionserver.RevertToSelf ()

Table 2.1146:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage

COM objects running on COM+ can use the ImpersonateClient function to run in the
client's security context so that the object has access to the same resources as the client. Use
RevertToSelf to restore the object's security context.

Examples

The following example creates an instance of the TransactionServer service and checks
whether the COM object is currently running in the client's security context. If it is, it reverts
to the object's security context:

TransactionServer txninfo_test

Statements, Events, and Functions

Page 1252

integer li_rc

li_rc = GetContextService("TransactionServer", &
 txninfo_test)
IF txninfo_test.IsImpersonating() THEN &
 txninfo_test.RevertToSelf()

See also

ImpersonateClient

IsCallerInRole

IsImpersonating

IsSecurityEnabled

2.4.648 RGB

Description

Calculates the long value that represents the color specified by numeric values for the red,
green, and blue components of the color.

Syntax

RGB (red, green, blue)

Table 2.1147:

Argument Description

red The integer value of the red component of the desired color

green The integer value of the green component of the desired color

blue The integer value of the blue component of the desired color

Return value

Long. Returns the long that represents the color created by combining the values specified in
red, green, and blue. If an error occurs, RGB returns -1. If any argument's value is null, RGB
returns null.

Usage

The formula for combining the colors is:

65536 * Blue+ 256 * Green+ Red

Use RGB to obtain the long value required to set the color for text and drawing objects. You
can also set an object's color to the long value that represents the color. The RGB function
provides an easy way to calculate that value.

About color values

The value of a component of a color is an integer between 0 and 255 that represents
the amount of the color that is required to create the color you want. The lower the
value, the darker the color; the higher the value, the lighter the color.

To determine the values for the components of a color (known as the RGB values),
use the Edit Color Entry window. To access the Edit Color Entry window, select

Statements, Events, and Functions

Page 1253

a color in the color bar at the bottom of the workspace and then double-click the
selected color when it displays in the first box of the color bar.

The following table lists red, green, and blue values for the 16 standard colors.

Table 2.1148: Red, green, and blue color values for use with RGB

Color Red value Green value Blue value

Black 0 0 0

White 255 255 255

Light Gray 192 192 192

Dark Gray 128 128 128

Red 255 0 0

Dark Red 128 0 0

Green 0 255 0

Dark Green 0 128 0

Blue 0 0 255

Dark Blue 0 0 128

Magenta 255 0 255

Dark Magenta 128 0 128

Cyan 0 255 255

Dark Cyan 0 128 128

Yellow 255 255 0

Brown 128 128 0

Examples

This statement returns a long that represents black:

RGB(0, 0, 0)

This statement returns a long that represents white:

RGB(255, 255, 255)

These statements set the color properties of the StaticText st_title to be green letters on a dark
magenta background:

st_title.TextColor = RGB(0, 255, 0)
st_title.BackColor = RGB(128, 0, 128)

See also

RGB method for DataWindows in Section 2.4.103, “RGB” in DataWindow Reference.

2.4.649 Right

Description

Obtains a specified number of characters from the end of a string.

Statements, Events, and Functions

Page 1254

Syntax

Right (string, n)

Table 2.1149:

Argument Description

string The string from which you want characters returned

n A long whose value is the number of characters you want returned from
the right end of string

Return value

String. Returns the rightmost n characters in string if it succeeds and the empty string ("") if
an error occurs. If any argument's value is null, Right returns null. If n is greater than or equal
to the length of the string, Right returns the entire string. It does not add spaces to make the
return value's length equal to n.

Examples

This statement returns RUTH:

Right("BABE RUTH", 4)

This statement returns BABE RUTH:

Right("BABE RUTH", 75)

See also

Left

Mid

Pos

Right method for DataWindows in Section 2.4.106, “Right” in DataWindow Reference.

2.4.650 RightA

Description

Temporarily converts a string from Unicode to DBCS based on the current locale, then
returns the specified number of bytes from the end of the string.

Syntax

RightA (string, n)

Table 2.1150:

Argument Description

string The string you want to search

n A long whose value is the number of bytes you want returned from the
right end of string

Return value

Statements, Events, and Functions

Page 1255

String. Returns the rightmost n characters in string if it succeeds and the empty string ("")
if an error occurs. If any argument's value is null, RightA returns null. If n is greater than or
equal to the length of the string, RightA returns the entire string. It does not add spaces to
make the return value's length equal to n.

Usage

RightA replaces Right in DBCS environments in PowerBuilder 9. In SBCS environments,
Right, RightW, and RightA return the same results.

2.4.651 RightW (obsolete)

Description

Obtains a specified number of characters from the end of a string.

This function is obsolete. It has the same behavior as Right in all environments.

Syntax

RightW (string, n)

2.4.652 RightTrim

Description

Removes spaces from the end of a string.

Syntax

RightTrim (string {, removeallspaces })

Table 2.1151:

Argument Description

string The string you want returned with trailing blanks deleted

removeallspaces A boolean indicating that all types of spaces should be deleted

Return value

String. Returns a copy of string with trailing blanks deleted if it succeeds and the empty
string ("") if an error occurs. If any argument's value is null, RightTrim returns null.

Usage

If you do not include the optional removeallspaces argument or its value is false, only the
space character (U+0020) is removed from the string.

If the removeallspaces argument is set to true, all types of space characters are removed. See
LeftTrim for a list of space characters.

Examples

This statement returns RUTH if all the trailing blanks are space characters:

RightTrim("RUTH ")

This statement returns RUTH if the trailing blanks include other types of white space
characters:

Statements, Events, and Functions

Page 1256

RightTrim("RUTH ", true)

See also

LeftTrim

Trim

RightTrim method for DataWindows in Section 2.4.108, “RightTrim” in DataWindow
Reference.

2.4.653 RightTrimW (obsolete)

Description

Removes spaces from the end of a string.

This function is obsolete. It has the same behavior as RightTrim in all environments.

Syntax

RightTrimW (string)

2.4.654 RollbackOnly (obsolete)

Description

Modifies an EAServer transaction associated with a calling thread so that the only possible
outcome is to roll back the transaction.

Obsolete function

RollbackOnly is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

CORBACurrent objects

Syntax

CORBACurrent.RollbackOnly ()

Table 2.1152:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance

Return value

Integer. Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Failed for unknown reason

-2 -- No transaction is associated with the calling thread

Usage

RollbackTransaction is typically called by the originator of the transaction. Another
participant in a client- or OTS style transaction can call RollbackOnly to vote that the
transaction should be rolled back.

Statements, Events, and Functions

Page 1257

RollbackOnly can be called by a client or a component that is marked as OTS style.
EAServer must be using the two-phase commit transaction coordinator (OTS/XA).

Examples

In this example, a participant in a transaction has determined that it should be rolled back. It
creates and initializes an instance of the CORBACurrent service object and votes to roll back
the transaction:

// Instance variable:
// CORBACurrent corbcurr
int li_rc

li_rc = this.GetContextService("CORBACurrent", &
 corbcurr)
IF li_rc <> 1 THEN
// handle the error
END IF

li_rc = corbcurr.Init()
IF li_rc <> 0 THEN
// handle the error
ELSE
 corbcurr.RollbackOnly()
END IF

See also

BeginTransaction (obsolete)

CommitDocking

GetContextService

GetStatus (obsolete)

GetTransactionName (obsolete)

Init (obsolete)

ResumeTransaction (obsolete)

RollbackTransaction (obsolete)

SetTimeout (obsolete)

SuspendTransaction (obsolete)

2.4.655 RollbackTransaction (obsolete)

Description

Rolls back the EAServer transaction associated with the calling thread.

Obsolete function

RollbackTransaction is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

CORBACurrent objects

Statements, Events, and Functions

Page 1258

Syntax

CORBACurrent.RollbackTransaction ()

Table 2.1153:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance

Return value

Integer. Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Failed for unknown reason

-2 -- No transaction is associated with the calling thread

-3 -- The calling thread does not have permission to commit the transaction

-4 -- The HeuristicCommit exception was raised

Usage

The RollbackTransaction function rolls back the transaction associated with the calling
thread. The call fails if the HeuristicCommit exception is raised. Heuristic decisions are
usually made when normal processing cannot continue, such as when a communications
failure occurs. The HeuristicCommit exception is raised when all relevant updates have been
committed.

RollbackTransaction can be called by a client or a component that is marked as OTS style.
EAServer must be using the two-phase commit transaction coordinator (OTS/XA).

Examples

This example shows the use of RollbackTransaction to roll back a transaction when an update
does not succeed:

// Instance variables:
// CORBACurrent corbcurr
int li_rc1, li_rc2
long ll_rc

this.GetContextService("CORBACurrent", corbcurr)
li_rc1 = corbcurr.Init()
IF li_rc1 <> 1 THEN
 // handle the error
ELSE
 ll_rc = CreateInstance(mycomp)
 // invoke methods on the instantiated component
 // test return values and roll back
 // if unsatisfactory
 IF li_rc2 = 1 THEN
 corbcurr.CommitTransaction()
 ELSE
 corbcurr.RollbackTransaction()
 END IF
END IF

See also

BeginTransaction (obsolete)

Statements, Events, and Functions

Page 1259

CommitDocking

GetContextService

GetStatus (obsolete)

GetTransactionName (obsolete)

Init (obsolete)

ResumeTransaction (obsolete)

RollbackOnly (obsolete)

SetTimeout (obsolete)

SuspendTransaction (obsolete)

2.4.656 Round

Description

Rounds a number to the specified number of decimal places.

Syntax

Round (x, n)

Table 2.1154:

Argument Description

x The number you want to round.

n The number of decimal places to which you want to round x. Valid
values are 0 through 30.

Return value

Decimal. Returns x rounded to the specified number of decimal places if it succeeds, and null
if it fails or if any argument's value is null.

Examples

This statement returns 9.62:

Round(9.624, 2)

This statement returns 9.63:

Round(9.625, 2)

This statement returns 9.600:

Round(9.6, 3)

This statement returns -9.63:

Round(-9.625, 2)

This statement returns null:

Round(-9.625, -1)

Statements, Events, and Functions

Page 1260

See also

Ceiling

Init (obsolete)

Truncate

Round method for DataWindows in Section 2.4.109, “Round” in DataWindow Reference.

2.4.657 RoutineList

Description

Provides a list of the routines included in a performance analysis model.

Applies to

ProfileClass and Profiling objects

Syntax

instancename.RoutineList (list)

Table 2.1155:

Argument Description

instancename Instance name of the ProfileClass or Profiling object.

list An unbounded array variable of datatype ProfileRoutine in which
RoutineList stores a ProfileRoutine object for each routine that exists in
the model within a class. This argument is passed by reference.

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• ModelNotExistsError! -- No model exists

Usage

Use this function to extract a list of the routines included in the performance analysis model
in a particular class. You must have previously created the performance analysis model from
a trace file using the BuildModel function. Each routine is defined as a ProfileRoutine object
and provides the time spent in the routine, any called routines, the number of times each
routine was called, and the class to which the routine belongs. The routines are listed in no
particular order.

Object creation and destruction for a class are each indicated by a routine in this list as well
as by embedded SQL statements.

Examples

This example lists the routines included in each class found in a performance analysis model:

Long ll_cnt
ProfileCall lproc_call[]

Statements, Events, and Functions

Page 1261

lpro_model.BuildModel()
lpro_model.RoutineList(iprort_list)
...

See also

ClassList

2.4.658 Run

Description

Runs the specified application program.

Syntax

Run (string {, windowstate })

Table 2.1156:

Argument Description

string A string whose value is the file name of the program you want to execute.
Optionally, string can contain one or more parameters for the program.

windowstate
(optional)

A value of the WindowState enumerated datatype indicating the state in
which you want to run the program:

• Maximized! -- Maximized; enlarge the program window to its
maximum size when it starts

• Minimized! -- Minimized; shrink the program window to an icon when
it starts

• Normal! -- (Default) Run the program window in its normal size

Return value

Integer. Returns 1 if it is successful and -1 if an error occurs. If any argument's value is null,
Run returns null.

Usage

You can use Run for any program that you can run from the operating system. If you do not
specify parameters, Run opens the application and displays the first application window. If
you specify windowstate, the application window is displayed in the specified state.

If you specify parameters, the application determines the meaning of those parameters. A
typical use is to identify a data file to be opened when the program is executed. If you are
running another PowerBuilder application, that application can call the CommandParm
function to retrieve the parameters and process them as it sees fit.

If the file extension is omitted from the file name, PowerBuilder assumes the extension
is .EXE. To run a program with another extension (for example, .BAT, .COM, or .PIF), you
must specify the extension.

Examples

Statements, Events, and Functions

Page 1262

This statement runs the Microsoft Windows Clock accessory application in its normal size:

Run("Clock")

This statement runs the Microsoft Windows Clock accessory application minimized:

Run("Clock", Minimized!)

This statement runs the program WINNER.COM on the C drive in a maximized state. The
parameter passed to WINNER.COM opens the file EMPLOYEE.INF:

Run("C:\WINNER.COM EMPLOYEE.INF", Maximized!)

This example runs the DOS batch file MYBATCH.BAT and passes the parameter TEST to
the batch file. In the batch file, you include percent substitution characters in the commands
to indicate where the parameter is used:

Run("MYBATCH.BAT TEST")

In the batch file the following statement renames FILE1 to TEST:

RENAME c:\PB\FILE1 %1

2.4.659 Save

Saves saves a picture and optionally overlay ink to a file or blob from an InkPicture control
or saves an OLE object in an OLE control or an OLE storage object. The syntax you use
depends on the type of object you want to save.

Table 2.1157:

To To

Save the contents of an InkPicture control Syntax 1

Save an OLE object Syntax 2

2.4.659.1 Syntax 1: For InkPicture controls

Description

Saves a picture and optionally overlay ink to a file or blob from an InkPicture control.

Applies to

InkPicture controls

Syntax

inkpicname.Save(t | b , format { , WithInk })

Table 2.1158:

Argument Description

inkpicname The name of the InkPicture control from which you want to save a
picture.

t A string containing the name and location of the file into which the
picture will be saved.

Statements, Events, and Functions

Page 1263

Argument Description

b The name of a blob passed by reference that will hold the picture in the
control.

format An integer specifying the format in which the picture is to be saved.
Values are:

0 -- BMP (bitmap)

1 -- JPEG (Joint Photographic Experts Group)

2 -- GIF (Graphics Interchange Format)

3 -- TIFF (Tagged Image File Format)

4 -- PNG (Portable Network Graphics)

WithInk
(optional)

A boolean specifying whether overlay ink should be saved with the
picture. Values are:

True -- overlay ink is saved with the picture (default)

False -- overlay ink is not saved with the picture

Return value

Integer. Returns 1 for success and -1 for failure.

Usage

Use the Save function to save the image in an InkPicture control to a file or blob with or
without any ink annotations that have been made to it. By default, the ink is saved with the
image.

Examples

The following example saves the image in an InkPicture control and its ink annotations in
bitmap format into a blob, and attempts to update the image in the database:

int li_return
blob lblb_ink

li_return = ip_1.save(lblb_ink, 0, true)
UPDATEBLOB employee SET backimage = :lbb_ink WHERE emp_id = :gi_id;
IF sqlca.SQLNRows > 0 THEN
 COMMIT;
ELSE
 messagebox("Update failed",sqlca.sqlerrtext)
END IF

The following example saves the image in an InkControl into a GIF file without any ink
annotations:

int li_return
string ls_pathname, ls_filename

GetFileSaveName("Save As", ls_pathname, ls_filename, "GIF")
li_return = ip_1.save(ls_pathname, 2, false)

See also

LoadInk

Statements, Events, and Functions

Page 1264

LoadPicture

ResetInk

ResetPicture

SaveInk

2.4.659.2 Syntax 2: For OLE objects

Description

Saves an OLE object in an OLE control or an OLE storage object.

Syntax

oleobject.Save ()

Table 2.1159:

Argument Description

oleobject The name of an OLE control or an OLE storage variable

Return value

Integer. Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Control is empty

-9 -- Other error

If oleobject is null, Save returns null.

Usage

When you save an OLE object, PowerBuilder saves it according to the current connection
between it and an open storage or file. You establish an initial connection when you call the
Open function. When you call SaveAs, the old connection is ended and a new connection is
established with another storage or file.

When you call Save for an OLE control, PowerBuilder saves the object in the OLE control to
the storage to which it is currently connected. The storage can be a storage object variable or
a OLE storage file.

If the data has never been saved in the server application, so that there is no file on disk, the
Save function in PowerBuilder returns an error.

When you call Save for a storage object variable, PowerBuilder saves the storage to the file,
or substorage within the file, to which it is currently connected. You must have previously
established a connection to an OLE storage file on disk, or a substorage within the file, either
with Open or SaveAs.

When do you have to save twice?

If you create a storage object variable and then open that object in an OLE control,
you need to call Save twice to write changed OLE information to disk: once to save
from the object in the control to the storage, and again to save the storage to its
associated file.

Statements, Events, and Functions

Page 1265

Examples

This example saves the object in the control ole_1 back to the storage from which it was
loaded, either a storage object variable or a file on disk:

integer result
result = ole_1.Save()

This example saves a storage object to its file. Olestor_1 is an instance variable of type
olestorage:

integer result
result = olestor_1.Save()

In a window's Open script, this code creates a storage variable ole_stor, which is declared as
an instance variable, and associates it with a storage file that contains several Visio drawings.
The script then opens one of the drawings into the control ole_draw. After the user activates
and edits the object, the script for a Save button saves the object to the storage and then to the
storage's file.

The script for the window's Open event includes:

OLEStorage stg_stor
stg_stor = CREATE OLEStorage
stg_stor.Open("myvisio.ole")
ole_draw.Open(ole_stor, "visio_drawing1")

The script for the Save button's Clicked event is:

integer result
result = ole_draw.Save()
IF result = 0 THEN ole_stor.Save()

See also

Close

SaveAs

2.4.660 SaveAs

Saves the contents of a DataWindow, DataStore, graph, OLE control, or OLE storage in a
file. The syntax you use depends on the type of object you want to save.

For DataWindow and DataStore syntax, see the SaveAs method for DataWindows in
Section 9.132, “SaveAs” in DataWindow Reference.

Table 2.1160:

To To

Save the data in a graph Syntax 1

Save the OLE object in an OLE control to a storage file Syntax 2

Save the OLE object in an OLE control to a storage object in memory Syntax 3

Save an OLE storage and any controls that have opened that storage in a
file

Syntax 4

Save an OLE storage object in another OLE storage object Syntax 5

Statements, Events, and Functions

Page 1266

2.4.660.1 Syntax 1: For graph objects

Description

Saves the data in a graph in the format you specify.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls and
DataStores

Syntax

controlname.SaveAs ({ filename, } { graphcontrol, saveastype, colheading { ,
 encoding } })

Table 2.1161:

Argument Description

controlname The name of the graph control whose contents you want to save or the
name of the DataWindow DataStore containing the graph.

filename
(optional)

A string whose value is the name of the file in which you want to save
the data in the graph. If you omit filename or specify an empty string (""),
PowerBuilder prompts the user for a file name.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
or DataStore whose contents you want to save.

saveastype
(optional)

A value of the SaveAsType enumerated datatype specifying the format in
which to save the data represented in the graph. Values are:

• Clipboard! -- Save an image of the graph to the clipboard

• CSV! -- Comma-separated values

• dBASE2! -- dBASE-II format

• dBASE3! -- dBASE-III format

• DIF! -- Data Interchange Format

• EMF! -- Enhanced Metafile Format

• Excel! -- Microsoft Excel format

• Excel5! -- Microsoft Excel version 5 format

• Excel8! -- Microsoft Excel version 8 and higher format

• HTMLTable! -- HTML TABLE, TR, and TD elements

• PDF! -- Adobe Portable Document Format

• PSReport! -- Powersoft Report (PSR) format

Statements, Events, and Functions

Page 1267

Argument Description
• SQLInsert! -- SQL syntax

• SYLK! -- Microsoft Multiplan format

• Text! -- (Default) Tab-separated columns with a return at the end of
each row

• WKS! -- Lotus 1-2-3 format

• WK1! -- Lotus 1-2-3 format

• WMF! -- Windows Metafile Format

• XLSB! -- Excel format for binary data

• XLSX! -- Excel format for XML data

• XML! -- Extensible Markup Language

• XSLFO! -- Extensible Stylesheet Language Formatting Objects

Obsolete values

The following SaveAsType values are considered to be obsolete and will
be removed in a future release: Excel!, WK1!, WKS!, SYLK!, dBase2!,
WMF!. Use Excel8!, XLSB!, or XLSX! for current versions of Microsoft
Excel! and EMF! in place of WMF!.

colheading
(optional)

A boolean value indicating whether you want column headings with the
saved data. The default value is true. Colheading is ignored for dBASE
files; column headings are always saved.

encoding
(optional)

Character encoding of the file to which the data is saved. This parameter
applies only to the following formats: TEXT, CSV, SQL, HTML, and
DIF. If you do not specify an encoding parameter, the file is saved in
ANSI format. Values are:

• EncodingANSI! (default)

• EncodingUTF8!

• EncodingUTF16LE!

• EncodingUTF16BE!

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SaveAs
returns null.

Usage

Statements, Events, and Functions

Page 1268

You must use zero or three arguments. If you do not specify any arguments for SaveAs,
PowerBuilder displays the Save As dialog box, letting the user specify the format of the
saved data.

Regional settings

If you use date formats in your graph, you must verify that yyyy is the Short Date
Style for year in the Regional Settings of the user's Control Panel. Your program can
check this with the RegistryGet function.

If the setting is not correct, you can ask the user to change it manually or to have the
application change it (by calling the RegistrySet function). The user may need to
reboot after the setting is changed.

Examples

This statement saves the contents of the graph gr_History. The file and format information
are not specified, so PowerBuilder prompts for the file name and save the graph as tab-
delimited text:

gr_History.SaveAs()

This statement saves the contents of gr_History to the file G:\HR\EMPLOYEE.HIS. The
format is CSV without column headings:

gr_History.SaveAs("G:\HR\EMPLOYEE.HIS" ,CSV!, FALSE)

This statement saves the contents of gr_computers in the DataWindow control dw_equipmt
to the file G:\INVENTORY\SALES.XLS. The format is Excel with column headings:

dw_equipmt.SaveAs("gr_computers", &
 "G:\INVENTORY\SALES.XLS", Excel!, TRUE)

See also

Print

2.4.660.2 Syntax 2: For saving an OLE control to a file

Description

Saves the object in an OLE control in a storage file.

Applies to

OLE controls

Syntax

olecontrol.SaveAs (OLEtargetfile)

Table 2.1162:

Argument Description

olecontrol The name of the OLE control containing the object you want to save.

OLEtargetfile A string specifying the name of an OLE storage file. The file can already
exist. OLEtargetfile can include a path, as well as information about
where to store the object in the file's internal structure.

Statements, Events, and Functions

Page 1269

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The control is empty

-2 -- The storage is not open

-3 -- The storage name is invalid

-9 -- Other error

If any argument's value is null, SaveAs returns null.

Usage

The Open function establishes a connection between a storage file and a storage object, or a
storage file or object and an OLE control. The Save function uses this connection to save the
OLE data.

When you call SaveAs for an OLE control, it closes the current connection between the OLE
object and its storage, either file or storage object. It establishes a new connection with the
new storage, which will be the target of subsequent calls to the Save function.

Examples

This example saves the object in the control ole_1:

integer result
result = ole_1.SaveAs("c:\ole\expense.ole")

See also

Open

Save

2.4.660.3 Syntax 3: For saving an OLE control to an OLE storage

Description

Saves the object in an OLE control to an OLE storage object in memory.

Applies to

OLE controls

Syntax

olecontrol.SaveAs (targetstorage, substoragename)

Table 2.1163:

Argument Description

olecontrol The name of the OLE control containing the object you want to save.

targetstorage The name of an object variable of OLEStorage in which to store the
object in olecontrol.

substoragename A string whose value is the name of a substorage within targetstorage. If
substorage does not exist, SaveAs creates it.

Statements, Events, and Functions

Page 1270

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The control is empty

-2 -- The storage is not open

-3 -- The storage name is invalid

-9 -- Other error

If any argument's value is null, SaveAs returns null.

Usage

The Open function establishes a connection between a storage file and a storage object, or a
storage file or object and an OLE control. The Save function uses this connection to save the
OLE data.

When you call SaveAs for an OLE control, it closes the current connection between the OLE
object and its storage, either file or storage object. It establishes a new connection with the
new storage, which will be the target of subsequent calls to the Save function.

Examples

This example saves the object in the control ole_1 in the storage variable stg_stuff:

integer result
result = ole_1.SaveAs(stg_stuff)

See also

Open

Save

2.4.660.4 Syntax 4: For saving an OLE storage object to a file

Description

Saves an OLE storage object to a file. If OLE controls have opened the OLE storage object,
this syntax of SaveAs puts them in a saved state too.

Applies to

OLE storage objects

Syntax

olestorage.SaveAs (OLEtargetfile)

Table 2.1164:

Argument Description

olestorage The name of an object variable of type OLEStorage containing the OLE
object you want to save.

OLEtargetfile A string specifying the name of a new OLE storage file. OLEtargetfile
can include a path.

Statements, Events, and Functions

Page 1271

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The storage is not open

-2 -- The storage name is invalid

-3 -- The parent storage is not open

-4 -- The file already exists

-5 -- Insufficient memory

-6 -- Too many files open

-7 -- Access denied

-9 -- Other error

If any argument's value is null, SaveAs returns null.

Usage

The Open function establishes a connection between a storage file and a storage object, or a
storage file or object and an OLE control. The Save function uses this connection to save the
OLE data.

When you call SaveAs for a storage object, it closes the current connection between the
storage object and a file and creates a new file for the storage object's data.

For information about the structure of storage files, see the Open function.

Examples

This example saves the storage object stg_stuff to the file MYSTUFF.OLE. Olest_stuff is an
instance variable:

integer result
result = stg_stuff.SaveAs("c:\ole\mystuff.ole")

This example opens a substorage in one file and saves it in another file. An OLE storage
file called MYROOT.OLE contains several substorages; one is called sub1. To open sub1
and save it in another file, the example defines two storage objects: stg1 and stg2. First
MYROOT.OLE is opened into stg1. Next, sub1 is opened into stg2. Finally, stg2 is saved to
the new file MYSUB.OLE. Just as when you open a word processing document and save it
to a new name, the open object in stg2 is no longer associated with MYROOT.OLE; it is now
connected to MYSUB.OLE:

olestorage stg1, stg2
stg1 = CREATE OLEStorage
stg2 = CREATE OLEStorage
stg1.Open("myroot.ole")
stg2.Open("sub1", stg1)

stg2.SaveAs("mysub.ole")

See also

Close

Open

Statements, Events, and Functions

Page 1272

Save

2.4.660.5 Syntax 5: For saving an OLE storage object in another OLE storage

Description

Saves an OLE storage object to another OLE storage object variable in memory.

Applies to

OLE storage objects

Syntax

olestorage.SaveAs (substoragename, targetstorage)

Table 2.1165:

Argument Description

olestorage The name of an object variable of type OLEStorage containing the OLE
object you want to save.

substoragename A string whose value is the name of a substorage within targetstorage. If
substorage does not exist, SaveAs creates it.

targetstorage The name of an object variable of OLEStorage in which to store the
object in olestorage. Note the reversed order of the substoragename and
targetstorage arguments from Syntax 4.

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- The storage is not open

-2 -- The storage name is invalid

-3 -- The parent storage is not open

-4 -- The file already exists

-5 -- Insufficient memory

-6 -- Too many files open

-7 -- Access denied

-9 -- Other error

If any argument's value is null, SaveAs returns null.

Usage

The Open function establishes a connection between a storage file and a storage object, or a
storage file or object and an OLE control. The Save function uses this connection to save the
OLE data.

When you call SaveAs for a storage object, it closes the current connection between the
storage object and a file and creates a new file for the storage object's data.

For information about the structure of storage files, see the Open function.

Statements, Events, and Functions

Page 1273

Examples

This example saves the object in the OLEStorage variable stg_stuff in a second storage
variable stg_clone as the substorage copy1:

integer result
result = stg_stuff.SaveAs("copy1", stg_clone)

See also

Close

Open

Save

2.4.661 SaveDockingState

Description

Stores the MDI state in the registry.

Applies to

Window objects

Syntax

SaveDockingState (regkey)

Table 2.1166:

Argument Description

regkey The regkey argument is the registry key. If no entry for the key exists in
the registry, one is created. Existing keys are overwritten.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null
SaveDockingState returns null.

Usage

You can set the application so that it saves the states of the open sheets. You should call this
function when the application closes.

Examples

Save all sheets in register

integer li_rtn
string is_register = "Appeon\PowerBuilder\Examples\Docking\"
li_rtn = this.SaveDockingState (is_register)

2.4.662 SaveDocument

Description

Saves the contents of a RichTextEdit control in a file. You can specify either rich-text format
(RTF) or text format for the file.

Statements, Events, and Functions

Page 1274

Applies to

RichTextEdit controls

Syntax

rtename.SaveDocument (filename {, filetype {, encoding }})

Table 2.1167:

Argument Description

rtename The name of the RichTextEdit control whose contents you want to save.

filename A string whose value is the name of the file to be saved. If the file already
exists, the FileExists event is triggered.

filetype

(optional)

A value of the FileType enumerated datatype specifying the format of the
saved file. Values are:

• FileTypeRichText! -- Save the file in rich text format

• FileTypeText! -- Save the file as text

• FileTypeDoc! -- Save the file in Microsoft Word format

• FileTypeHTML! -- Save the file in HTML format

• FileTypePDF! -- Save the file in PDF format

encoding
(optional)

Character encoding of the file to which the data is saved. This parameter
applies only to text files. If you do not specify an encoding parameter, the
file is saved in ANSI format.

The filetype argument must be set to FileTypeText! If the filetype
argument is set to any other file type, this argument is ignored. Values
are:

• EncodingANSI! (default)

• EncodingUTF8!

• EncodingUTF16LE!

• EncodingUTF16BE!

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

SaveDocument triggers a FileExists event when the file you name already exists. If you do
not specify a filetype, SaveDocument saves the file as a text file if you specify a file name
with the extension .txt, as a Microsoft Word document if you specify a file name with the
extension .doc, and as an RTF file if you specify a file name with the .rtf extension.

Statements, Events, and Functions

Page 1275

The format that you specify in the encoding argument is valid only if you specified
FileTypeText! for the filetype argument. SaveDocument saves text in ANSI format only for
all other file types.

Examples

This code for a CommandButton saves the document in the RichTextEdit rte_1:

integer li_rtn
li_rtn = rte_1.SaveDocument("c:\test.rtf", &
FileTypeRichText!)

If the file TEST.RTF already exists, PowerBuilder triggers the FileExists event with the
following script. OpenWithParm displays a response window that asks the user if it is OK to
overwrite the file. The return value from FileExists determines whether the file is saved:

OpenWithParm(w_question, &
 "The specified file already exists. " + &
 "Do you want to overwrite it?")
IF Message.StringParm = "Yes" THEN
 RETURN 0 // File is saved
ELSE
 RETURN -1 // Saving is canceled
END IF

This code for a CommandButton saves the document in the RichTextEdit rte_1 in a text file
with UTF-16LE encoding:

integer li_rtn
li_rtn = rte_1.SaveDocument("c:\test.txt", &
 FileTypeText!, EncodingUTF16LE!)

See also

InsertDocument

2.4.663 SaveInk

Description

Saves ink to a file or blob from an InkPicture control.

Applies to

InkPicture controls

Syntax

inkpicname.SaveInk (t | b {, format {, mode } })

Table 2.1168:

Argument Description

inkpicname The name of the InkPicture control from which you want to save ink.

t A string containing the name and location of a file that will hold the ink
you want to save from the control.

b The name of a blob passed by reference that will hold the ink you want to
save from the control.

format (optional) A value of the InkPersistenceFormat enumerated variable that specifies
the format in which you want to save the ink. Values are:

Statements, Events, and Functions

Page 1276

Argument Description
• Base64GIFFormat!

• Base64InkSerializedFormat!

• GIFFormat!

• InkSerializedFormat! (default)

mode (optional) A value of the InkCompressionMode enumerated variable that specifies
the compression mode in which you want to save the ink. Values are:

• DefaultCompression! (default)

• MaximumCompression!

• NoCompression!

Return value

Integer.

Returns 1 for success and -1 for failure.

Usage

Use the SaveInk function to save annotations made to an image in an InkPicture control to a
separate file or blob.

InkSerializedFormat! (ISF) provides the most compact persistent ink representation.
This format can be embedded inside a binary document format or added to the clipboard.
Base64InkSerializedFormat! encodes the ISF format as a base64 stream, which allows the ink
to be encoded in an XML or HTML file.

GIFFormat! saves the image in a Graphics Interchange Format (GIF) file in which ISF is
embedded as metadata. This format can be viewed in applications that are not ink enabled.
Base64GIFFormat! is persisted by using a base64 encoded fortified GIF. Use this format
if the ink is to be encoded directly in an XML or XHTML file and will be converted to an
image at a later time. It supports XSLT transformations to HTML.

Examples

The following example saves the ink in an InkPicture control into an ISF file with default
compression:

int li_return
string ls_pathname, ls_filename

GetFileSaveName("Save As", ls_pathname, ls_filename, "ISF")
li_return = ip_1.SaveInk(ls_pathname)

The following example saves the ink in an InkPicture control into a GIF file with maximum
compression:

int li_return
string ls_pathname, ls_filename

GetFileSaveName("Save As", ls_pathname, ls_filename, "GIF")

Statements, Events, and Functions

Page 1277

li_return = ip_1.SaveInk(ls_pathname, GIFFormat!, MaximumCompression!)

See also

LoadInk

LoadPicture

ResetInk

ResetPicture

Save

2.4.664 SaveToFile

Description

Saves the JSON data to the local file.

Applies to

JSONGenerator and JSONPackage

Syntax

objectname.SaveToFile (FileName {, Encoding e})

Table 2.1169:

Argument Description

objectname The name of the JSONGenerator or JSONPackage object whose data you
want to save to the file.

FileName A string whose value is the file full name.

e (optional) Character encoding of the resulting blob.

Values are: EncodingANSI!, EncodingUTF8!, EncodingUTF16LE!
(default), and EncodingUTF16BE!.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

This example generates the following JSON string and saves to d:\test.json:

{ "string": "string", "long": 100, "boolean": true, "datetime": "2017-09-21 12:00:00", "blob":
"dABoAGkAcwAgAGkAcwAgAGIAbABvAGIA", "remark": null }

Long ll_RootObject
JsonGenerator lnv_JsonGenerator
lnv_JsonGenerator = Create JsonGenerator

// Create an object root item
ll_RootObject = lnv_JsonGenerator.CreateJsonObject()

// Add a value child item

Statements, Events, and Functions

Page 1278

lnv_JsonGenerator.AddItemString(ll_RootObject, "string", "string")
lnv_JsonGenerator.AddItemNumber(ll_RootObject, "long", 100)
lnv_JsonGenerator.AddItemBoolean(ll_RootObject, "boolean", true)
lnv_JsonGenerator.AddItemDateTime(ll_RootObject, "datetime", datetime("2017-09-21
 12:00:00"))
lnv_JsonGenerator.AddItemBlob(ll_RootObject, "blob", blob("this is blob"))
lnv_JsonGenerator.AddItemNull(ll_RootObject, "remark")

// Get the JSON data
lnv_JsonGenerator.SaveToFile("d:\test.json")

This example packages the data of the DataWindow, DataStore, and DataWindowChild
control and then saves the data to D:\temp\json.txt.

datastore lds_employee
datawindowchild ldwc_active
JsonPackage lnv_package
lnv_package = create JsonPackage

...//Initialize data for lds_employee, ldwc_active

// package the data
lnv_package.SetValue("d_department", dw_department, false)
lnv_package.SetValue("d_employee", lds_employee)
lnv_package.SetValue("dddw_active", ldwc_active, false)
lnv_package.SaveToFile("D:\temp\json.txt")

2.4.665 Scroll

Description

Scrolls a multiline edit control or the edit control of a DataWindow a specified number of
lines up or down.

Applies to

DataWindow, MultiLineEdit, and RichTextEdit controls

Syntax

editname.Scroll (number)

Table 2.1170:

Argument Description

editname The name of the DataWindow, RichTextEdit, or MultiLineEdit in which
you want to scroll up or down. If editname is a DataWindow, then Scroll
affects its edit control.

number A long specifying the direction and number of lines you want to scroll.
To scroll down, use a positive long value. To scroll up, use a negative
long value.

Return value

Long.

For RichTextEdit controls, Scroll returns 1 if it succeeds. For other controls, Scroll returns
the line number of the first visible line in editname if it succeeds. Scroll returns -1 if an error
occurs. If any argument's value is null, Scroll returns null.

Statements, Events, and Functions

Page 1279

Usage

If the number of lines left in the list is less than the number of lines that you want to scroll,
then Scroll scrolls to the beginning or end, depending on the direction specified.

Examples

This statement scrolls mle_Employee down 4 lines:

mle_Employee.Scroll(4)

This statement scrolls mle_Employee up 4 lines:

mle_Employee.Scroll(-4)

See also

The following functions implement scrolling in a DataWindow or a RichTextEdit:

ScrollNextPage

ScrollNextRow

ScrollPriorPage

ScrollPriorRow

ScrollToRow

2.4.666 ScrollNextPage

Description

Scrolls to the next page of the document in a RichTextEdit control or RichTextEdit
DataWindow.

For DataWindow syntax, see the ScrollNextPage method for DataWindows in Section 9.141,
“ScrollNextPage” in DataWindow Reference.

Applies to

RichTextEdit controls

Syntax

rtename.ScrollNextPage ()

Table 2.1171:

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you want
to scroll to the next page.

The DataWindow object in the DataWindow control must be a
RichTextEdit DataWindow.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Statements, Events, and Functions

Page 1280

When the RichTextEdit control shares data with a DataWindow, the RichTextEdit contains
multiple instances of the document, one instance for each row.

When the last page of the document for one row is visible, calling ScrollNextPage advances
to the first page for the next row.

ScrollNextPage and ScrollPriorPage work in the RichTextEdit control edit mode only when
the HeaderFooter property of a rich text control is selected. They work in print preview mode
regardless of the HeaderFooter property setting and they work for the RichText DataWindow
control in edit mode whether or not the DataWindow has header or footer bands.

Examples

This statement scrolls to the next page of the document in the RichTextEdit control rte_1. If
there are multiple instances of the document, it can scroll to the next instance:

rte_1.ScrollNextPage()

See also

Scroll

ScrollNextRow

ScrollPriorPage

ScrollPriorRow

2.4.667 ScrollNextRow

Description

Scrolls to the next instance of the document in a RichTextEdit control or RichTextEdit
DataWindow. A RichTextEdit control has multiple instances of its document when it shares
data with a DataWindow. The next instance of the document is associated with the next row
in the DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the ScrollNextRow
method for DataWindows in Section 9.142, “ScrollNextRow” in DataWindow Reference.

Applies to

DataWindow and RichTextEdit controls

Syntax

rtename.ScrollNextRow ()

Table 2.1172:

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you want
to scroll to the next document instance. Each instance is associated with a
DataWindow row.

The DataWindow object in the DataWindow control must be a
RichTextEdit DataWindow.

Return value

Statements, Events, and Functions

Page 1281

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

When the RichTextEdit shares data with a DataWindow, the RichTextEdit contains multiple
instances of the document, one instance for each row.

ScrollNextRow advances to the next instance of the RichTextEdit document. In contrast,
repeated calls to ScrollNextPage advance through all the pages of the document instance and
then on to the pages for the next row.

Examples

This statement scrolls to the next instance of the document in the RichTextEdit control rte_1.
Each document instance is associated with a row of data.

rte_1.ScrollNextRow()

See also

Scroll

ScrollNextPage

ScrollPriorPage

ScrollPriorRow

2.4.668 ScrollPriorPage

Description

Scrolls to the prior page of the document in a RichTextEdit control or RichTextEdit
DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the ScrollPriorPage
method for DataWindows in Section 9.143, “ScrollPriorPage” in DataWindow Reference.

Applies to

DataWindow and RichTextEdit controls

Syntax

rtename.ScrollPriorPage ()

Table 2.1173:

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you want
to scroll to the prior page.

The DataWindow object in the DataWindow control must be a
RichTextEdit DataWindow.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Statements, Events, and Functions

Page 1282

Usage

When the RichTextEdit shares data with a DataWindow, the RichTextEdit contains multiple
instances of the document, one instance for each row.

When the first page of the document for one row is visible, calling ScrollPriorPage goes to
the last page for the prior row.

ScrollNextPage and ScrollPriorPage work in the RichTextEdit control edit mode only when
the HeaderFooter property of a rich text control is selected. They work in print preview mode
regardless of the HeaderFooter property setting and they work for the RichText DataWindow
control in edit mode whether or not the DataWindow has header or footer bands.

Examples

This statement scrolls to the prior page of the document in the RichTextEdit control rte_1. If
there are multiple instances of the document, it can scroll to the prior instance:

rte_1.ScrollPriorPage()

See also

Scroll

ScrollNextPage

ScrollNextRow

ScrollPriorRow

2.4.669 ScrollPriorRow

Description

Scrolls to the prior instance of the document in a RichTextEdit control or RichTextEdit
DataWindow. A RichTextEdit control has multiple instances of its document when it shares
data with a DataWindow. The next instance of the document is associated with the next row
in the DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the ScrollPriorRow
method for DataWindows in Section 9.144, “ScrollPriorRow” in DataWindow Reference.

Applies to

DataWindow and RichTextEdit controls

Syntax

rtename.ScrollPriorRow ()

Table 2.1174:

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you want
to scroll to the prior document instance. Each instance is associated with
a DataWindow row.

The DataWindow object in the DataWindow control must be a
RichTextEdit DataWindow.

Statements, Events, and Functions

Page 1283

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

When the RichTextEdit shares data with a DataWindow, the RichTextEdit contains multiple
instances of the document, one instance for each row.

ScrollPriorRow goes to the prior instance of the RichTextEdit document. In contrast, repeated
calls to ScrollPriorPage pages back through all the pages of the document instance and then
back to the pages for the prior row.

Examples

This statement scrolls to the prior instance of the document in the RichTextEdit control rte_1.
Each document instance is associated with a row of data.

rte_1.ScrollPriorRow()

See also

Scroll

ScrollNextPage

ScrollNextRow

ScrollPriorPage

2.4.670 ScrollToRow

Description

Scrolls to the document instance associated with the specified row when the RichTextEdit
controls shares data with a DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the ScrollToRow
method for DataWindows in Section 9.145, “ScrollToRow” in DataWindow Reference.

Applies to

RichTextEdit controls

Syntax

rtename.ScrollToRow (row)

Table 2.1175:

Argument Description

rtename The name of the RichTextEdit control in which you want to scroll to a
document instance associated with the specified row.

row A long identifying the row to which you want to scroll. If row, is 0,
ScrollToRow scrolls to the first row. If row is greater than the number of
rows in the associated DataWindow, it scrolls to the last row.

Return value

Statements, Events, and Functions

Page 1284

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

When the RichTextEdit shares data with a DataWindow, the RichTextEdit contains multiple
instances of the document, one instance for each row. ScrollToRow goes to the instance
associated with the specified row.

Examples

In this example, dw_1 has retrieved at least 25 rows of data. After calling DataSource, the
RichTextEdit control contains at least 25 instances of its document. ScrollToRow scrolls to
the 25th instance:

rte_1.DataSource(dw_1)
rte_1.ScrollToRow(25)

See also

Scroll

ScrollNextPage

ScrollNextRow

ScrollPriorPage

ScrollPriorRow

2.4.671 Second

Description

Obtains the number of seconds in the seconds portion of a time value.

Syntax

Second (time)

Table 2.1176:

Argument Description

time The time value from which you want the seconds

Return value

Integer.

Returns the seconds portion of time (00 to 59). If time is null, Second returns null.

Examples

This statement returns 31:

Second(19:01:31)

See also

Hour

Minute

Statements, Events, and Functions

Page 1285

Second method for DataWindows in Section 2.4.112, “Second” in DataWindow Reference.

2.4.672 SecondsAfter

Description

Determines the number of seconds one time occurs after another.

Syntax

SecondsAfter (time1, time2)

Table 2.1177:

Argument Description

time1 A time value that is the start time of the interval being measured

time2 A time value that is the end time of the interval

Return value

Long.

Returns the number of seconds time2 occurs after time1. If time2 occurs before time1,
SecondsAfter returns a negative number. If any argument's value is null, SecondsAfter
returns null.

Examples

This statement returns 15:

SecondsAfter(21:15:30, 21:15:45)

This statement returns -15:

SecondsAfter(21:15:45, 21:15:30)

This statement returns 0:

SecondsAfter(21:15:45, 21:15:45)

If you declare start_time and end_time time variables and assign 19:02:16 to start_time and
19:02:28 to end_time as shown below:

time start_time, end_time
start_time = 19:02:16
end_time = 19:02:28

then each of these statements returns 12:

SecondsAfter(start_time, end_time)
SecondsAfter(19:02:16, end_time)
SecondsAfter(start_time, 19:02:28)
SecondsAfter(19:02:16, 19:02:28)

See also

DaysAfter

RelativeDate

RelativeTime

Statements, Events, and Functions

Page 1286

SecondsAfter method for DataWindows in Section 2.4.113, “SecondsAfter” in DataWindow
Reference.

2.4.673 Seek

Moves the file pointer in an OLE stream object or displays a specified frame in an AVI clip
in an animation control.

Table 2.1178:

To To

Move the read/write pointer in an OLE stream object. Syntax 1

Displays a specific frame in an AVI clip Syntax 2

2.4.673.1 Syntax 1: For OLE stream objects

Description

Moves the read/write pointer to the specified position in an OLE stream object. The pointer is
the position in the stream at which the next read or write begins.

Applies to

OLEStream objects

Syntax

olestream.Seek (position {, origin })

Table 2.1179:

Argument Description

olestream The name of an OLE stream variable that has been opened.

position A long whose value is the position relative to origin to which you want to
move the read/write pointer.

origin (optional) The value of the SeekType enumerated datatype specifying where you
want to start the seek. Values are:

• FromBeginning! -- (Default) At the beginning of the file

• FromCurrent! -- At the current position

• FromEnd! -- At the end of the file

Return value

Integer.

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Stream is not open

-2 -- Seek error

-9 -- Other error

Statements, Events, and Functions

Page 1287

If any argument's value is null, Seek returns null.

Examples

This example writes additional data to an OLE stream. First, it opens an OLE object in the
file MYSTUFF.OLE and assigns it to the OLEStorage object stg_stuff. Then it opens the
stream called info in stg_stuff and assigns it to the stream object olestr_info. Seek positions
the read/write pointer at the end of the stream so that the contents of the instance blob
variable lb_info is written at the end.

The example does not check the functions' return values for success, but you should be sure
to check the return values in your code:

boolean lb_memexists
OLEStorage stg_stuff
OLEStream olestr_info

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole\mystuff.ole")
olestr_info.Open(stg_stuff, "info", &
 stgReadWrite!, stgExclusive!)
olestr_info.Seek(0, FromEnd!)
olestr_info.Write(lb_info)

See also

Open

Length

Read

Write

2.4.673.2 Syntax 2: For animation controls

Description

Displays a specific frame in an AVI clip in an animation control.

Applies to

Animation controls

Syntax

animationname.Seek (s)

Table 2.1180:

Argument Description

animationname The name of animation control displaying the AVI clip

s A long value in the range 0 to 65,535 indicating the frame to display

Return value

Integer.

Returns 1 for success and -1 for failure.

Usage

Statements, Events, and Functions

Page 1288

Seek displays the specified frame. If you specify a value that is greater than the number of
frames in the clip, Seek displays the last frame in the clip and returns 1. If you specify a value
that is not in the specified range, Seek does nothing and returns -1. If the animation was
playing, Seek always triggers the Stop event.

Examples

This code in a button's clicked event displays the frame specified by a number in a single line
edit control, then increments the number by one. Each click of the button advances the clip by
one frame:

// instance variable number
integer li_return
number = long (sle_seek.text)
li_return = am_1.Seek(number)
number +=1
sle_seek.text = string(number)

See also

Play

Stop

2.4.674 SelectedColumn

Description

Obtains the number of the character column just after the insertion point in a RichTextEdit
control.

Applies to

RichTextEdit controls

Syntax

rtename.SelectedColumn ()

Table 2.1181:

Argument Description

rtename The name of the RichTextEdit in which you want the number of the
character after the insertion point

Return value

Long.

Returns the number of the character just after the insertion point in rtename. If an error
occurs, SelectedColumn returns -1.

Usage

The insertion point can be at the beginning or end of the selection. Therefore,
SelectedColumn can return the first character of the selection or the character just after the
selection, depending on the position of the insertion point.

Examples

Statements, Events, and Functions

Page 1289

If the insertion point is positioned before the fifth character on line 8 of the RichTextEdit
rte_Contact, the following example sets ll_col to 5 and ll_line to 8:

long ll_col, ll_line
ll_col = rte_Contact.SelectedColumn()
ll_line = rte_Contact.SelectedLine()

See also

LineLength

Position

SelectedLine

SelectedPage

SelectedText

TextLine

2.4.675 SelectedIndex

Description

Obtains the number of the selected item in a ListBox, ListView, or RibbonComboBoxItem
control.

Applies to

ListBox, ListView, and RibbonComboBoxItem controls

Syntax

listcontrolname.SelectedIndex ()

Table 2.1182:

Argument Description

listcontrolname The name of the ListBox, ListView, or RibbonComboBoxItem control in
which you want to locate the selected item

Return value

Integer.

Returns the index of the selected item in listcontrolname. If more than one item is selected,
SelectedIndex returns the index of the first selected item. If there are no selected items or an
error occurs, SelectedIndex returns -1. If listcontrolname is null, SelectedIndex returns null.

Usage

SelectedIndex and SelectedItem are meant for lists that allow a single selection only (when
the MultiSelect property for the control is false).

When the MultiSelect property is true, SelectedIndex gets the index of the first selected item
only. Use the State function, instead of SelectedIndex, to check each item in the list and find
out if it is selected. Use the Text function to get the text of any item in the list.

Examples

Statements, Events, and Functions

Page 1290

If item 5 in lb_actions is selected, then this example sets li_Index to 5:

integer li_Index
li_Index = lb_actions.SelectedIndex()

These statements open the window w_emp if item 5 in lb_actions is selected:

integer li_X
li_X = lb_actions.SelectedIndex()
If li_X = 5 then Open(w_emp)

These statements return the index of the selected item in the RibbonBar ComboBox:

Integer li_Return
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.AddItem("Item1")
li_Return = lr_ComboBox.AddItem("Item2")
li_Return = lr_ComboBox.SelectedIndex()

See also

SelectedItem

2.4.676 SelectedItem

Description

Obtains the text of the selected item in a ListBox control.

Applies to

ListBox and PictureListBox controls

Syntax

listboxname.SelectedItem ()

Table 2.1183:

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want the text of
the currently selected item

Return value

String.

Returns the text of the selected item in listboxname. Returns the empty string ("") if no items
are selected. If listboxname is null, SelectedItem returns null.

Usage

SelectedIndex and SelectedItem are meant for lists that allow a single selection only (when
the MultiSelect property for the control is false).

When the MultiSelect property is true, SelectedItem gets the text of the first selected item
only. Use the State function, instead of SelectedItem, to check each item in the list and find
out if it is selected. Use the Text function to get the text of any item in the list.

Examples

Statements, Events, and Functions

Page 1291

If the text of the selected item in the ListBox lb_shortcuts is F1, then this example sets
ls_item to F1:

string ls_Item
ls_Item = lb_Shortcuts.SelectedItem()

See also

SelectedIndex

State

2.4.677 SelectedLength

Description

Determines the total number of characters in the selected text in an editable control, including
spaces and line endings.

Applies to

DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, and DropDownPictureListBox controls

Syntax

editname.SelectedLength ()

Table 2.1184:

Argument Description

editname The name of the DataWindow, EditMask, MultiLineEdit, SingleLineEdit,
RichTextEdit, DropDownListBox, or DropDownPictureListBox control
in which you want the length of the selected text.

For a DataWindow, it reports the length of the selected text in the edit
control over the current row and column.

Return value

Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

Returns the length of the selected text in editname. If no text is selected, SelectedLength
returns 0. If an error occurs, it returns -1. If editname is null, SelectedLength returns null.

Usage

Except for text in rich text controls, the characters that make up a line ending (produced
by typing Ctrl+Enter or Enter) can be different on different platforms. On Windows, it is a
carriage return plus a line feed and equals two characters when calculating the length. On
other platforms, a line ending is a single character. A line that has wrapped has no line-ending
character. For DropDownListBox and DropDownPictureListBox controls, SelectedLength
returns -1 if the control's AllowEdit property is set to false.

RichTextEdit controls

For rich text controls, a carriage return plus a line feed always count as a single
character when calculating the text length.

Statements, Events, and Functions

Page 1292

Focus and the selection in a drop-down list

When a DropDownListBox or DropDownPictureListBox loses focus, the selected text
is no longer selected.

Examples

If the selected text in the MultiLineEdit mle_Contact is John Smith, then this example sets
li_length to 10:

long ll_length
ll_length = mle_Contact.SelectedLength()

See also

LineLength

SelectedItem

SelectedLine

SelectedPage

SelectedStart

TextLine

2.4.678 SelectedLine

Description

Obtains the number of the line that contains the insertion point in an editable control. The
insertion point moves to the next line if the current line contains a carriage return.

Applies to

DataWindow, MultiLineEdit, and RichTextEdit controls

Syntax

editname.SelectedLine ()

Table 2.1185:

Argument Description

editname The name of the DataWindow, MultiLineEdit, or RichTextEdit in which
you want the number of the line containing the insertion point. For a
DataWindow, it reports the line number in the edit control over the
current row and column.

Return value

Long.

Returns the number of the line containing the insertion point in editname. If an error occurs,
SelectedLine returns -1. If editname is null, SelectedLine returns null.

Usage

For EditMask controls, SelectedLine compiles but always returns 1.

Statements, Events, and Functions

Page 1293

The insertion point can be at the beginning or end of the selection. Therefore, SelectedLine
can return the first or last selected line, depending on the position of the insertion point.

Examples

If the insertion point is positioned anywhere in line 5 of the MultiLineEdit mle_Contact, the
following example sets li_SL to 5:

integer li_SL
li_SL = mle_Contact.SelectedLine()

In this example, the line the user selects in the MultiLineEdit mle_winselect determines
which window to open:

integer li_SL
li_SL = mle_winselect.SelectedLine()
IF li_SL = 1 THEN
 Open(w_emp_data)
ELSEIF li_SL = 2 THEN
 Open(w_dept_data)
END IF

See also

LineLength

Position

SelectedColumn

SelectedPage

SelectedText

TextLine

2.4.679 SelectedPage

Description

Obtains the number of the current page in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.SelectedPage ()

Table 2.1186:

Argument Description

rtename The name of the RichTextEdit control in which you want the number of
the current page

Return value

Integer.

Returns the number of the current page in rtename. If an error occurs, SelectedPage returns
-1.

Statements, Events, and Functions

Page 1294

Usage

The current page in a RichTextEdit control is the page that contains the insertion point in text
entry mode or the page currently being displayed in preview mode.

When the RichTextEdit shares data with a DataWindow, SelectedPage returns the page
number within the document instance for the current row.

For more information about document instances, see DataSource.

Examples

This example returns the page number of the current page:

integer li_pagect
li_pagect = rte_1.SelectedPage()

See also

DataSource

PageCount

Preview

SelectedLength

SelectedLine

SelectedStart

SelectedText

2.4.680 SelectedStart

Description

Reports the position of the first selected character in an editable control.

Applies to

DataWindow, EditMask, MultiLineEdit, SingleLineEdit, RichTextEdit, DropDownListBox,
and DropDownPictureListBox controls

Syntax

editname.SelectedStart ()

Table 2.1187:

Argument Description

editname The name of the DataWindow, EditMask, MultiLineEdit, SingleLineEdit,
RichTextEdit, DropDownListBox, or DropDownPictureListBox control
in which you want to determine the starting position of selected text.

For a DataWindow, it reports the starting position in the edit control over
the current row and column.

Return value

Long.

Statements, Events, and Functions

Page 1295

Returns the starting position of the selected text in editname. If no text is selected,
SelectedStart returns the position of the character immediately following the insertion point.
If an error occurs, SelectedStart returns -1. If editname is null, SelectedStart returns null.

Usage

For all controls except RichTextEdit, SelectedStart counts from the start of the text and
includes spaces and line endings.

For RichTextEdit controls, SelectedStart counts from the start of the line on which the
selection begins. The start is at the opposite end of the selection from the insertion point. For
example, if the user dragged back to make the selection, the start of the selection is at the end
of the highlighted text and the insertion point is before the start. Use the Position function to
get information about the start and end of the selection.

Focus and the selection in a drop-down list

When a DropDownListBox or DropDownPictureListBox loses focus, the selected text
is no longer selected.

Examples

If the MultiLineEdit mle_Comment contains Closed for Vacation July 3 to July 10, and
Vacation is selected, then this example sets li_Start to 12 (the position of the first character in
Vacation):

integer li_Start
li_Start = mle_Comment.SelectedStart()

See also

Position

SelectedLine

SelectedPage

2.4.681 SelectedText

Description

Obtains the selected text in an editable control.

Applies to

DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, and DropDownPictureListBox controls

Syntax

editname.SelectedText ()

Table 2.1188:

Argument Description

editname The name of the DataWindow, EditMask, MultiLineEdit, SingleLineEdit,
RichTextEdit, DropDownListBox, or DropDownPictureListBox control
from which you want the selected text.

Statements, Events, and Functions

Page 1296

Argument Description
For a DropDownListBox or DropDownPictureListBox, the AllowEdit
property must be true.

For a DataWindow, it reports the selected text in the edit control over the
current row and column.

Return value

String.

Returns the selected text in editname. If there is no selected text or if an error occurs,
SelectedText returns the empty string (""). If editname is null, SelectedText returns null.

Usage

In a RichTextEdit control, any pictures in the selection are ignored. If the selection contains
input fields, the names of the input fields, enclosed in brackets, become part of the string
SelectedText returns. The contents of the input fields are not returned.

For example, when the salutation of a letter is selected, SelectedText might return:

Dear {title} {lastname}:

Focus and the selection in a drop-down list

When a DropDownListBox or DropDownPictureListBox loses focus, the selected text
is no longer selected.

Examples

If the text in the MultiLineEdit mle_Contact is James B. Smith and James B. is selected,
these statements set the value of emp_fname to James B:

string ls_emp_fname
ls_emp_fname = mle_Contact.SelectedText()

If the selected text in the edit portion of the DropDownListBox ddlb_Location is Maine,
these statements display the ListBox lb_LBMaine:

string ls_Loc
ls_Loc = ddlb_Location.SelectedText()
IF ls_Loc = "Maine" THEN
 lb_LBMaine.Show()
ELSE
 ...
END IF

See also

SelectText

2.4.682 SelectionRange

Description

Highlights a range of contiguous values in a trackbar control. The range you select is
highlighted in the trackbar channel, with an arrow at each end of the range.

Statements, Events, and Functions

Page 1297

Applies to

Trackbar controls

Syntax

control.SelectionRange (startpos, endpos)

Table 2.1189:

Argument Description

control The name of the trackbar control

startpos An integer that specifies the starting position of the range

endpos An integer that specifies the ending position of the range

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Use this function to indicate a range of preferred values.

In a scheduling application, the selection range could indicate a block of time that is
unavailable. Setting a selection range does not prevent the user from selecting a value either
inside or outside the range.

Examples

This statement highlights the trackbar values between 30 and 70:

HTrackBar.SelectionRange(30, 70)

See also

HTrackBar method for DataWindows in Section 2.40, “HTrackBar control” in Objects and
Controls

VTrackBar method for DataWindows in Section 2.149, “VTrackBar control” in Objects and
Controls

2.4.683 SelectItem

Finds and highlights an item in a ListBox, DropDownListBox, RibbonComboBoxItem, or
TreeView control.

Table 2.1190:

To select an item Use

In a ListBox control when you know the text of the item, but not its
position

Syntax 1

In a ListBox or RibbonComboBoxItem control when you know the
position of the item in the control's list, or to clear the current selection

Syntax 2

Statements, Events, and Functions

Page 1298

To select an item Use

In a TreeView control Syntax 3

2.4.683.1 Syntax 1: When you know the text of an item

Description

Finds and highlights an item in a ListBox when you can specify some or all of the text of the
item.

Applies to

ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox controls

Syntax

listboxname.SelectItem (item, index)

Table 2.1191:

Argument Description

listboxname The name of the ListBox control in which you want to select a line

item A string whose value is the starting text of the item you want to select

index The number of the item after which you want to begin the search

Return value

Integer.

Returns the index number of the selected item. If no match is found, SelectItem returns 0; it
returns -1 if an error occurs. If any argument's value is null, SelectItem returns null.

Usage

SelectItem begins searching for the desired item after the item identified by index. To match,
the item must start with the specified text; however, the text in the item can be longer than the
specified text.

To find an item but not select it, use the FindItem function.

MultiSelect ListBoxes

SelectItem has no effect on a ListBox or PictureListBox whose MultiSelect property
is true. Instead, use SetState to select items without affecting the selected state of
other items in the list.

Clearing the edit box of a drop-down list

To clear the edit box of a DropDownListBox or DropDownPictureListBox that the
user cannot edit, use Syntax 2 of SelectItem.

Examples

If item 5 in lb_Actions is Delete Files, this example starts searching after item 2, finds and
highlights Delete Files, and sets li_Index to 5:

Statements, Events, and Functions

Page 1299

integer li_Index
li_Index = lb_Actions.SelectItem("Delete Files", 2)

If item 4 in lb_Actions is Select Objects, this example starts searching after item 2, finds and
highlights Select Objects, and sets li_Index to 4:

integer li_Index
li_Index = lb_Actions.SelectItem("Sel", 2)

See also

AddItem

DeleteItem

FindItem

InsertItem

SetState

2.4.683.2 Syntax 2: When you know the item number

Description

Finds and highlights an item in a ListBox or RibbonComboBoxItem when you can specify
the index number of the item. You can also clear the selection by specifying zero as the index
number.

Applies to

ListBox, DropDownListBox, PictureListBox, DropDownPictureListBox, and
RibbonComboBoxItem controls

Syntax

listboxname.SelectItem (itemnumber)

Table 2.1192:

Argument Description

listboxname The name of the ListBox or RibbonComboBoxItem control in which you
want to select an item

itemnumber An integer whose value is the location (index) of the item in the ListBox
or the ListBox portion of the drop-down list.

Specify 0 for itemnumber to clear the selected item. For a ListBox
or PictureListBox, 0 removes highlighting from the selected
item. For a DropDownListBox, DropDownPictureListBox or
RibbonComboBoxItem, 0 clears the text box.

Return value

Integer.

Returns the index number of the selected item. SelectItem returns 0 if itemnumber is not
valid or if you specified 0 in order to clear the selected item. It returns -1 if an error occurs. If
any argument's value is null, SelectItem returns null.

Usage

Statements, Events, and Functions

Page 1300

To find an item but not select it, use the FindItem function.

MultiSelect ListBoxes

SelectItem has no effect on a ListBox or PictureListBox whose MultiSelect property
is true. Instead, use SetState to select items without affecting the selected state of
other items in the list.

Clearing the text box of a drop-down list

To clear the text box of a DropDownListBox, DropDownPictureListBox, or
RibbonComboBoxItem that the user cannot edit, set itemnumber to 0. Setting the
control's text to the empty string does not work if the control's AllowEdit property is
false.

Examples

This example highlights item number 5:

integer li_Index
li_Index = lb_Actions.SelectItem(5)

This example clears the selection from the text box of the DropDownListBox ddlb_choices
and sets li_Index to 0:

integer li_Index
li_Index = ddlb_choices.SelectItem(0)

This example highlights item 2 in the ribbon combo box:

Integer li_Return
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.AddItem("Item1")
li_Return = lr_ComboBox.AddItem("Item2")
li_Return = lr_ComboBox.SelectedIndex()
li_Return = lr_ComboBox.SelectItem(2)
li_Return = lr_ComboBox.SelectedIndex()

See also

AddItem

DeleteItem

FindItem

InsertItem

SetState

2.4.683.3 Syntax 3: For TreeView controls

Description

Selects a specified item.

Applies to

TreeView controls

Statements, Events, and Functions

Page 1301

Syntax

treeviewname.SelectItem (itemhandle)

Table 2.1193:

Argument Description

treeviewname The name of the TreeView control in which you want to select an item

itemhandle The handle of the specified item

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Use the FindItem function to get handles for items at specific positions in the TreeView
control.

Examples

This example selects the parent of the current TreeView item:

long ll_tvi, ll_tvparent
int li_tvret
ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)
ll_tvparent = tv_list.FindItem(ParentTreeItem! , &
 ll_tvi)
li_tvret = tv_list.SelectItem(ll_tvparent)

See also

FindItem

2.4.684 SelectObject

Description

Selects or clears the object in an OLE control but does not activate the server application. The
server's menus are added to the PowerBuilder application's menus.

Applies to

OLE controls

Syntax

olecontrol.SelectObject (selectstate)

Table 2.1194:

Argument Description

olecontrol The name of the OLE control containing the object you want to select

selectstate A boolean value indicating whether you want to select or deselect the
object

Return value

Integer.

Statements, Events, and Functions

Page 1302

Returns 0 if it succeeds and one of the following negative values if an error occurs:

-1 -- Control is empty

-9 -- Other error

If any argument's value is null, SelectObject returns null.

Examples

This example selects the object in the OLE control ole_1:

integer result
result = ole_1.SelectObject(TRUE)

2.4.685 SelectTab

Description

Selects the specified tab, displaying its tab page in the Tab control.

Applies to

Tab controls

Syntax

tabcontrolname.SelectTab (tabidentifier)

Table 2.1195:

Argument Description

tabcontrolname The name of the Tab control in which you want to select a tab

tabidentifier The tab you want to select. You can specify:

• The tab page index (an integer)

• The name of the user object (datatype DragObject or UserObject)

• A string holding the name of the user object

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Equivalent syntax

You can select a tab by setting the SelectedTab property to the tab's index number:

tab_1.SelectedTab = 3

Examples

These three examples select the third tab in tab_1. They could be in the script for a
CommandButton on the window containing the Tab control tab_1:

tab_1.SelectTab(3)
tab_1.SelectTab(tab_1.uo_3)

Statements, Events, and Functions

Page 1303

string ls_tabpage
ls_tabpage = "uo_3"
tab_1.SelectTab(ls_tabpage)

This example opens an instance of the user object uo_fontsettings as a tab page and selects it:

userobject uo_tabpage
string ls_tabpage
ls_tabpage = "uo_fontsettings"
tab_1.OpenTab(uo_tabpage, ls_tabpage, 0)
tab_1.SelectTab(uo_tabpage)

See also

OpenTab

2.4.686 SelectText

Selects text in an editable control.

Table 2.1196:

To select text in Use

Any editable control, other than a RichTextEdit Syntax 1

A RichTextEdit control or a DataWindow whose object has the
RichTextEdit presentation style

Syntax 2

2.4.686.1 Syntax 1: For editable controls (except RichTextEdit)

Description

Selects text in an editable control. You specify where the selection begins and how many
characters to select.

Applies to

DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit, DropDownListBox, and
DropDownPictureListBox controls

Syntax

editname.SelectText (start, length)

Table 2.1197:

Argument Description

editname The name of the DataWindow, EditMask, InkEdit, MultiLineEdit,
SingleLineEdit, DropDownListBox, or DropDownPictureListBox control
in which you want to select text.

start A long specifying the position at which you want to start the selection.

length A long specifying the number of characters you want to select. If length
is 0, no text is selected but PowerBuilder moves the insertion point to the
location specified in start.

Return value

Integer for DataWindow and list boxes, Long for other controls.

Statements, Events, and Functions

Page 1304

Returns the number of characters selected. If an error occurs, SelectText returns -1.

Usage

If the control does not have the focus when you call SelectText, then the text is not
highlighted until the control has focus. To set focus on the control so that the selected text is
highlighted, call the SetFocus function.

How much to select

When you want to select all the text of a line edit or select the contents from a
specified position to the end of the edit, use the Len function to obtain the length of
the control's text.

To select text in a DataWindow with the RichTextEdit presentation style, use Syntax 2.

Examples

This statement sets the insertion point at the end of the text in the SingleLineEdit sle_name:

sle_name.SelectText(Len(sle_name.Text), 0)

This statement selects the entire contents of the SingleLineEdit sle_name:

sle_name.SelectText(1, Len(sle_name.Text))

The rest of these examples assume the MultiLineEdit mle_EmpAddress contains Boston
Street.

The following statement selects the string ost and returns 3:

mle_EmpAddress.SelectText(2, 3)

The next statement selects the string oston Street and returns 12:

mle_EmpAddress.SelectText(2, &
 Len(mle_EmpAddress.Text))

These statements select the string Bos, returns 3, and sets the focus to mle_EmpAddress so
that Bos is highlighted:

mle_EmpAddress.SelectText(1, 3)
mle_EmpAddress.SetFocus()

See also

Len

Position

SelectedItem

SelectedText

SetFocus

TextLine

2.4.686.2 Syntax 2: For RichTextEdit controls and presentation styles

Description

Selects text beginning and ending at a line and character position in a RichTextEdit control.

Statements, Events, and Functions

Page 1305

Applies to

RichTextEdit and DataWindow controls

Syntax

rtename.SelectText (fromline, fromchar, toline, tochar { band })

Table 2.1198:

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you want
to select text. The DataWindow object in the DataWindow control must
be a RichTextEdit DataWindow.

fromline A long specifying the line number where the selection starts.

fromchar A long specifying the number in the line of the first character in the
selection.

toline A long specifying the line number where the selection ends. To specify
an insertion point, set toline and tochar to 0.

tochar A long specifying the number in the line of the character before which
the selection ends.

band (optional) A value of the Band enumerated datatype specifying the band in which to
make the selection. Values are:

• Detail!

• Header!

• Footer!

The default is the band that contains the insertion point.

Return value

Long.

Returns the number of characters selected. A carriage return with a line feed counts as a
single character. If an error occurs SelectText returns -1. If any argument's value is null, it
returns null.

Usage

The insertion point is at the "to" end of the selection, that is, the position specified by toline
and tochar. If toline and tochar are before fromline and fromchar, then the insertion point is at
the beginning of the selection.

You cannot specify 0 for a character position when making a selection.

You cannot always use the values returned by Position to make a selection. Position can
return a character position of 0 when the insertion point is at the beginning of a line.

To select an entire line, set the insertion point and call SelectTextLine. To select the rest of a
line, set the insertion point and call SelectText with a character position greater than the line
length.

Statements, Events, and Functions

Page 1306

Examples

This statement selects text from the first character in the RichTextEdit control to the fourth
character on the third line:

rte_1.SelectText(1,1, 3,4)

This statement sets the insertion point at the beginning of line 2:

rte_1.SelectText(2,1, 0,0)

This example sets the insertion point at the end of line 2 by specifying a large number of
characters. The selection highlight extends past the end of the line:

rte_1.SelectText(2,999, 0,0)

This example sets the insertion point at the end of line 2 by finding out how long the line
really is. The code moves the insertion point to the beginning of the line, gets the length, and
then sets the insertion point at the end:

long ll_length
//Make line 2 the current line
rte_1.SelectText(2,1, 0,0)
// Specify a position after the last character
ll_length = rte_1.LineLength() + 1
// Set the insertion point at the end
rte_1.SelectText(2,ll_length, 0,0)
rte_1.SetFocus()

This example selects the text from the insertion point to the end of the current line. If the
current line is the last line, the reported line length is 1 greater than the number of character
you can select, so the code adjusts for it:

long ll_insertline, ll_insertchar
long ll_line, ll_count
// Get the insertion point
rte_1.Position(ll_insertline, ll_insertchar)
// Get the line number and line length
ll_line = rte_1.SelectedLine()
ll_count = rte_1.LineLength()
// Line length includes the eof file character,
// which can't be selected
IF ll_line = rte_1.LineCount() THEN ll_count -= 1
// Select from the insertion point to the end of
// line
rte_1.SelectText(ll_insertline, ll_insertchar, &
ll_line, ll_count)

See also

SelectedText

SelectTextAll

SelectTextLine

SelectTextWord

2.4.687 SelectTextAll

Description

Statements, Events, and Functions

Page 1307

Selects all the contents of a RichTextEdit control including any special characters such as
carriage return and end-of-file (EOF) markers.

Applies to

RichTextEdit and DataWindow controls

Syntax

rtename.SelectTextAll ({ band })

Table 2.1199:

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you want
to select all the contents. The DataWindow object in the DataWindow
control must be a RichTextEdit DataWindow.

band

(optional)

A value of the Band enumerated datatype specifying the band in which
you want to select all the text. Values are:

• Detail!

• Header!

• Footer!

The default is the band that contains the insertion point.

Return value

Integer.

Returns the number of characters selected. A carriage return with a line feed counts as a
single character. If an error occurs, SelectTextAll returns -1.

Examples

This statement selects all the text in the detail band:

rte_1.SelectTextAll()

This statement selects all the text in the header band:

rte_1.SelectTextAll(Header!)

See also

SelectedText

SelectText

SelectTextLine

SelectTextWord

2.4.688 SelectTextLine

Description

Selects the line containing the insertion point in a RichTextEdit control.

Statements, Events, and Functions

Page 1308

Applies to

RichTextEdit and DataWindow controls

Syntax

rtename.SelectTextLine ()

Table 2.1200:

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you want
select a line. The DataWindow object in the DataWindow control must be
a RichTextEdit DataWindow.

Return value

Integer.

Returns the number of characters selected if it succeeds and -1 if an error occurs.

Usage

If the RichTextEdit control contains a selection, the insertion point is either at the beginning
or end of the selection. The way the text was selected determines which. If the user made
the selection by dragging toward the end, then calling SelectTextLine selects the line at the
end of the selection. If the user dragged back, then SelectTextLine selects the line at the
beginning of the selection.

SelectTextLine does not select the line-ending characters (carriage return and linefeed in
Windows).

Examples

This statement selects the current line:

rte_1.SelectTextLine()

See also

SelectedText

SelectText

SelectTextAll

SelectTextWord

2.4.689 SelectTextWord

Description

Selects the word containing the insertion point in a RichTextEdit control.

Applies to

RichTextEdit and DataWindow controls

Syntax

rtename.SelectTextWord ()

Statements, Events, and Functions

Page 1309

Table 2.1201:

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you want
to select a word. The DataWindow object in the DataWindow control
must be a RichTextEdit DataWindow.

Return value

Integer.

Returns the number of characters selected if it succeeds and -1 if a word cannot be selected or
an error occurs.

Usage

A word is any group of alphanumeric characters. A word can include underscores and single
quotes but does not include punctuation and special characters such as $ or #. If punctuation
or special characters follow the selected word, they are not selected.

If the character after the insertion point is a space, punctuation, special character, or end-of-
line mark, SelectTextWord does not select anything and returns -1.

Examples

The following statement selects the word containing the insertion point:

rte_1.SelectTextWord()

This example selects the word at the insertion point. If there is no word, it increments the
position until it finds a word. It checks when it reaches the end of a line and wraps to the next
line as it looks for a word. If this script is assigned to a command button and the button is
clicked repeatedly, you step through the text word by word:

integer li_rtn
long llstart, lcstart, ll_lines, ll_chars

ll_lines = rte_1.LineCount()
ll_chars = rte_1.LineLength()

li_rtn = rte_1.SelectTextWord()

// -1 if a word is not found at the insertion point
 DO WHILE li_rtn = -1

 // Get the position of the cursor
 rte_1.Position(llstart, lcstart)

 // Increment by 1 to look for next word
 lcstart += 1
 // If at end of line move to next line
 IF lcstart >= ll_chars THEN
 lcstart = 1 // First character
 llstart += 1 // next line

 // If beyond last line, return
 IF llstart > ll_lines THEN
 RETURN 0
 END IF
 END IF

Statements, Events, and Functions

Page 1310

 // Set insertion point
 rte_1.SelectText(llstart, lcstart, 0, 0)
 // In case it's a new line, get new line length
 // Can't do this until the ins pt is in the line
 ll_chars = rte_1.LineLength()

 // Select word, if any
 li_rtn = rte_1.SelectTextWord()
LOOP

// Add code here to process the word (for example,
// passing the word to a spelling checker)

See also

SelectedText

SelectText

SelectTextAll

SelectTextLine

2.4.690 Send

Description

Sends a message to a window so that it is executed immediately.

Syntax

Send (handle, message#, lowword, long)

Table 2.1202:

Argument Description

handle A long whose value is the system handle of a window (that you have
created in PowerBuilder or another application) to which you want to
send a message.

message# An UnsignedInteger whose value is the system message number of the
message you want to send.

lowword A long whose value is the integer value of the message. If this argument
is not used by the message, enter 0.

long The long value of the message or a string.

Return value

Long.

Returns the value returned by SendMessage in Windows if it succeeds and -1 if an error
occurs. If any argument's value is null, Send returns null.

Usage

PowerBuilder's Send function sends the message identified by message# and optionally,
lowword and long, to the window identified by handle to the Windows function
SendMessage. The message is sent directly to the object, bypassing the object's message
queue. Send waits until the message is processed and obtains the value returned by
SendMessage.

Statements, Events, and Functions

Page 1311

Messages in Windows

Use the Handle function to get the Windows handle of a PowerBuilder object.

You specify Windows messages by number. They are documented in the file
WINDOWS.H that is part of the Microsoft Windows Software Development Kit
(SDK) and other Windows development tools.

Posting a message

Messages sent with Send are executed immediately. To post a message to the end of
an object's message queue, use the Post function.

Examples

This statement scrolls the window w_emp up one page:

Send(Handle(w_emp), 277, 2, 0)

Both of the following statements click the CommandButton cb_OK:

Send(Handle(Parent), 273, 0, Handle(cb_OK))

cb_OK.TriggerEvent(Clicked!)

You can send messages to maximize or minimize a DataWindow, and return it to normal.
To use these messages, enable the TitleBar, Minimize, and Maximize properties of your
DataWindow control. Also, you should give your DataWindow control an icon for its
minimized state.

This statement minimizes the DataWindow:

Send(Handle(dw_whatever), 274, 61472, 0)

This statement maximizes the DataWindow:

Send(Handle(dw_whatever), 274, 61488, 0)

This statement returns the DataWindow to its normal, defined size:

Send(Handle(dw_whatever), 274, 61728, 0)

You can send a Windows message to determine the last item clicked in a multiselect ListBox.
The following script for the SelectionChanged event of a ListBox control gets the return
value of the LB_GETCURSEL message which is the item number in the list (where the first
item is 0, not 1).

To get PowerBuilder's index for the list item, the example adds 1 to the return value from
Send. In this example, idx is an integer instance variable for the window:

// Send the Windows message for LB_GETCURSEL
// to the list box
idx = Send(Handle(This), 1033, 0, 0)
idx = idx + 1

See also

Handle

Post

Statements, Events, and Functions

Page 1312

2.4.691 SendDeleteRequest

Description

Sends the HTTP DELETE request to the server and then gets the content of the server
response. It does not parse the HTTP response code and content of the server response.

It is not recommended to use this method to process large data (20 MB or 100,000 data rows
can be considered as large data based on our tests).

Applies to

RESTClient objects

Syntax

objectname.SendDeleteRequest(string urlName{, string data }, ref string response)

Table 2.1203:

Argument Description

objectname The name of the RESTClient object from which you want to send the
request.

urlName A string value specifying the URL.

data (optional) A string value specifying the data to send.

If the user sets the encoding charset in the Content-Type request header,
this function will encode the data with the specified charset; if charset is
not specified, this function will encode the data in UTF-8 by default.

response The content of the server response.

If RESTClient failed to send request or server provides no response, the
response value is an empty string. If the response value is compressed
as gzip, it will be automatically decompressed. Only gzip compression
format is supported at this moment. If the server specified the Content-
Type response header, and in which the encoding charset is specified, this
function will encode the data with the specified charset; if charset is not
specified, this function will encode the data in UTF-8 by default.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

-7 -- Failed to decompress data

-10 -- The token is invalid or has expired

Statements, Events, and Functions

Page 1313

-14 -- Code conversion failed

-15 -- Unsupported character set

Example

The following example deletes the current row in DataWindow via SendDeleteRequest.

RestClient lrc_P022
String ls_P022_Response
Integer li_P022_SendReturn,li_P022_GetTokenReturn
String ls_P022_Token

lrc_P022 = Create RestClient

//Sets the token parameters
TokenRequest ltreq_P022_Appeon
ltreq_P022_Appeon.tokenlocation = "https://demo.appeon.com/pb/identityserver/
connect/token"
ltreq_P022_Appeon.method = "post"
ltreq_P022_Appeon.GrantType = "password"
ltreq_P022_Appeon.ClientId = "P0VRQ-ddHn/WWd6lcCNJbaO9ny-JCNHirDJkHNgZ0-M="
ltreq_P022_Appeon.ClientSecret = "K7gNU3sdo-OL0wNhqoVWhr3g6s1xYv72ol/pe/Unols="
ltreq_P022_Appeon.UserName = "TestUser"
ltreq_P022_Appeon.PassWord = "TestPassword"

//Gets token via RESTClient
li_P022_GetTokenReturn = lrc_P022.GetOauthtoken(ltreq_P022_Appeon, ls_P022_Token)
If li_P022_GetTokenReturn = 1 Then
 lrc_P022.SetRequestHeaders("Content-Type:application/
json;charset=UTF-8~r~nAccept-Encoding:gzip")
 lrc_P022.SetOauthToken(ls_P022_Token) //Sets the authentication
 //Gets data
 lrc_P022.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
 If dw_Data.GetRow() > 0 Then
 li_P022_SendReturn = lrc_P022.SendDeleteRequest("https://
demo.appeon.com/PB/webapi_client/api/department/
DeleteByID/"+String(dw_Data.GetItemNumber(dw_Data.GetRow(),1)), ls_P022_Response)
 If li_P022_SendReturn <> 1 Or lrc_P022.GetResponseStatusCode() <> 200 Then
 //Checks if any error information
 End If
 //Finds out if data is deleted via https://demo.appeon.com/PB/webapi_client/api/
department/retrieve
 lrc_P022.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
 End If
Else
//Gets the token failure error
End If

See also

SendGetRequest

SendPostRequest

SendPutRequest

SendPatchRequest

2.4.692 SendGetRequest

Description

Statements, Events, and Functions

Page 1314

Sends the HTTP GET request to the server and then gets the content of the server response. It
does not parse the HTTP response code and content of the server response.

It is not recommended to use this method to process large data (20 MB or 100,000 data rows
can be considered as large data based on our tests).

Applies to

RESTClient objects

Syntax

objectname.SendGetRequest(string urlName, ref string response)

Table 2.1204:

Argument Description

objectname The name of the RESTClient object from which you want to send the
request.

urlName A string value specifying the URL.

response The content of the server response.

If RESTClient failed to send request or server provides no response, the
response value is an empty string. If the response value is compressed
as gzip, it will be automatically decompressed. Only gzip compression
format is supported at this moment. If the server specified the Content-
Type response header, and in which the encoding charset is specified, this
function will encode the data with the specified charset, if charset is not
specified, this function will encode the data in UTF-8 by default.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

-7 -- Failed to decompress data

-10 -- The token is invalid or has expired

-14 -- Code conversion failed

-15 -- Unsupported character set

Example

The following example shows the usage of SendGetRequest.

RestClient lrc_P019
String ls_P019_ResPonse
lrc_P019 = Create RestClient

Statements, Events, and Functions

Page 1315

//Sets the request header to return a gzip package
lrc_P019.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip")
lrc_P019.SendGetRequest('https://demo.appeon.com/PB/webapi_client/api/department/
retrieve', ls_P019_ResPonse)
If lrc_P019.GetResponseStatusCode() = 200 Then
 //Column name and type between dw_Data the returned JSON string ls_P019_ResPonse
 must match.
 dw_Data.ImportJson(ls_P019_ResPonse)
Else
 //Checks if any error according to the value of ResponseStatuscode and ls_Response
End If

See also

SendPostRequest

SendPutRequest

SendDeleteRequest

SendPatchRequest

2.4.693 SendPatchRequest

Description

Sends the HTTP PATCH request to the server and then gets the content of the server
response. It does not parse the HTTP response code and content of the server response.

It is not recommended to use this method to process large data (20 MB or 100,000 data rows
can be considered as large data based on our tests).

Applies to

RESTClient objects

Syntax

objectname.SendPatchRequest(string urlName, string data, ref string response)

Table 2.1205:

Argument Description

objectname The name of the RESTClient object from which you want to send the
request.

urlName A string value specifying the URL.

data A string value specifying the data to send.

If the user sets the encoding charset in the Content-Type request header,
this function will encode the data with the specified charset; if charset is
not specified, this function will encode the data in UTF-8 by default.

response The content of the server response.

If RESTClient failed to send request or server provides no response, the
response value is an empty string. If the response value is compressed
as gzip, it will be automatically decompressed. Only gzip compression
format is supported at this moment. If the server specified the Content-

Statements, Events, and Functions

Page 1316

Argument Description
Type response header, and in which the encoding charset is specified, this
function will encode the data with the specified charset; if charset is not
specified, this function will encode the data in UTF-8 by default.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

-7 -- Failed to decompress data

-10 -- The token is invalid or has expired

-14 -- Code conversion failed

-15 -- Unsupported character set

Example

The following example submits the new value of the current row in DataWindow to server
and then returns the updated value.

RestClient lrc_P023
String ls_P023_Response
Integer li_P023_SendReturn,li_P023_GetTokenReturn
String ls_P023_Token,ls_P023_SendData

lrc_P023 = Create RestClient

//Sets the token parameters
TokenRequest ltreq_P023_Appeon
ltreq_P023_Appeon.tokenlocation = "https://demo.appeon.com/pb/identityserver/
connect/token"
ltreq_P023_Appeon.method = "post"
ltreq_P023_Appeon.GrantType = "password"
ltreq_P023_Appeon.ClientId = "P0VRQ-ddHn/WWd6lcCNJbaO9ny-JCNHirDJkHNgZ0-M="
ltreq_P023_Appeon.ClientSecret = "K7gNU3sdo-OL0wNhqoVWhr3g6s1xYv72ol/pe/Unols="
ltreq_P023_Appeon.UserName = "TestUser"
ltreq_P023_Appeon.PassWord = "TestPassword"

//Gets token via RESTClient
li_P023_GetTokenReturn = lrc_P023.GetOauthtoken(ltreq_P023_Appeon, ls_P023_Token)
If li_P023_GetTokenReturn = 1 Then
 lrc_P023.SetRequestHeaders("Content-Type:application/
json;charset=UTF-8~r~nAccept-Encoding:gzip")
 lrc_P023.SetOauthToken(ls_P023_Token) //Sets authentication
 lrc_P023.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
 //Modifies the column data in DataWindow
 If dw_Data.GetRow() > 0 Then
 dw_Data.SetItem(dw_Data.GetRow(), 2, "Test send patch request"+String(rand(100)))
 //.....

Statements, Events, and Functions

Page 1317

 //Exports the modified row to DataWindow JSON string
 ls_P023_SendData = dw_Data.Exportjson(Primary!,
 dw_Data.GetRow(),dw_Data.GetRow(), True)
 //Updates data via the following URL and returns the updated data row
 li_P023_SendReturn=lrc_P023.SendPatchRequest("https://demo.appeon.com/
PB/webapi_client/api/department/update/modelentry", ls_P023_SendData,
 ls_P023_Response)
 If li_P023_SendReturn <> 1 Or lrc_P023.GetResponseStatusCode() <> 200 Then
 //Checks if any error information and checks the responsebody: ls_P023_Response
 End If
 //Imports the returned data row to DataWindow
 dw_Data.ImportRowFromJson(ls_P023_Response,0)
 End If
Else
//Checks if any failure message
End If

See also

SendGetRequest

SendPostRequest

SendPutRequest

SendDeleteRequest

2.4.694 SendPostRequest

Description

Sends the HTTP POST request to the server and then gets the content of the server response.
It does not parse the HTTP response code and content of the server response.

It is not recommended to use this method to process large data (20 MB or 100,000 data rows
can be considered as large data based on our tests).

Applies to

RESTClient objects

Syntax

objectname.SendPostRequest(string urlName, string data, ref string response)

Table 2.1206:

Argument Description

objectname The name of the RESTClient object from which you want to send the
request.

urlName A string value specifying the URL.

data A string value specifying the data to send.

If the user sets the encoding charset in the Content-Type request header,
this function will encode the data with the specified charset, if charset is
not specified, this function will encode the data in UTF-8 by default.

response The content of the server response.

If RESTClient failed to send request or server provides no response, the
response value is an empty string. If the response value is compressed

Statements, Events, and Functions

Page 1318

Argument Description
as gzip, it will be automatically decompressed. Only gzip compression
format is supported at this moment. If the server specified the Content-
Type response header, and in which the encoding charset is specified, this
function will encode the data with the specified charset, if charset is not
specified, this function will encode the data in UTF-8 by default.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

-7 -- Failed to decompress data

-10 -- The token is invalid or has expired

-14 -- Code conversion failed

-15 -- Unsupported character set

Example

The following example adds a data record and then submits it to server via SendPostRequest.

String ls_P020_Responsebody,ls_Token,ls_PostData
Long ll_InsertRow
Integer li__P020_SendReturn
Integer li_P020_GetTokenReturn
RestClient lrc_P020
lrc_P020 = Create RestClient

//Sets the token parameters
TokenRequest ltreq_Appeon
ltreq_Appeon.tokenlocation = "https://demo.appeon.com/pb/identityserver/connect/
token"
ltreq_Appeon.method = "post"
ltreq_Appeon.GrantType = "password"
ltreq_Appeon.ClientId = "P0VRQ-ddHn/WWd6lcCNJbaO9ny-JCNHirDJkHNgZ0-M="
ltreq_Appeon.ClientSecret = "K7gNU3sdo-OL0wNhqoVWhr3g6s1xYv72ol/pe/Unols="
ltreq_Appeon.UserName = "TestUser"
ltreq_Appeon.PassWord = "TestPassword"

//Gets token via RESTClient
li_P020_GetTokenReturn = lrc_P020.GetOauthtoken(ltreq_Appeon, ls_Token)
If li_P020_GetTokenReturn = 1 Then
 lrc_P020.SetRequestHeaders("Content-Type:application/
json;charset=UTF-8~r~nAccept-Encoding:gzip")
 lrc_P020.SetOauthToken(ls_Token) //Sets the token authentication
 //Adds a new data row
 ll_InsertRow = dw_Data.InsertRow(0)
 //Sets the data value
 dw_Data.SetItem(ll_InsertRow,1,0)
 dw_Data.SetItem(ll_InsertRow,2,"TestCreate"+String(rand(50)))

Statements, Events, and Functions

Page 1319

 //Once https://demo.appeon.com/PB/webapi_client/api/department/create Web service
 detects that
 //the passed-in department id is smaller than 1, it will automatically finds the
 largest ID
 //value and assigns value to it
 ls_PostData=dw_Data.Exportrowasjson(ll_InsertRow)//Exports the newly added data
 row from dw_Data to JSON string
 li__P020_SendReturn = lrc_P020.SendPostRequest("https://demo.appeon.com/PB/
webapi_client/api/department/create", ls_PostData, ls_P020_Responsebody)
 If li__P020_SendReturn <> 1 Or lrc_P020.GetResponseStatusCode() <> 201 Then
 //Checks if any error information
 End If
 //Finds out if the newly added data exists via https://demo.appeon.com/PB/
webapi_client/api/department/retrieve
 lrc_P020.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
Else
 //Gets the token failure error
End If
If IsValid(lrc_P020) Then Destroy lrc_P020

See also

SendGetRequest

SendPutRequest

SendDeleteRequest

SendPatchRequest

2.4.695 SendPutRequest

Description

Sends the HTTP PUT request to the server and then gets the content of the server response. It
does not parse the HTTP response code and content of the server response.

It is not recommended to use this method to process large data (20 MB or 100,000 data rows
can be considered as large data based on our tests).

Applies to

RESTClient objects

Syntax

objectname.SendPutRequest(string urlName, string data, ref string response)

Table 2.1207:

Argument Description

objectname The name of the RESTClient object from which you want to send the
request.

urlName A string value specifying the URL.

data A string value specifying the data to send.

If the user sets the encoding charset in the Content-Type request header,
this function will encode the data with the specified charset; if charset is
not specified, this function will encode the data in UTF-8 by default.

response The content of the server response.

Statements, Events, and Functions

Page 1320

Argument Description
If RESTClient failed to send request or server provides no response, the
response value is an empty string. If the response value is compressed
as gzip, it will be automatically decompressed. Only gzip compression
format is supported at this moment. If the server specified the Content-
Type response header, and in which the encoding charset is specified, this
function will encode the data with the specified charset; if charset is not
specified, this function will encode the data in UTF-8 by default.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

-7 -- Failed to decompress data

-10 -- The token is invalid or has expired

-14 -- Code conversion failed

-15 -- Unsupported character set

Example

The following example updates the value of Department Name for the current row via
SendPutRequest.

RestClient lrc_P021
String ls_P021_Response
String ls_P021_PostData
String ls_P021_Token
Integer li_P021_SendReturn
Integer li_P021_GetTokenReturn
lrc_P021 = Create RestClient

//Sets the token parameters
TokenRequest ltreq_P021_Appeon
ltreq_P021_Appeon.tokenlocation = "https://demo.appeon.com/pb/identityserver/
connect/token"
ltreq_P021_Appeon.method = "post"
ltreq_P021_Appeon.GrantType = "password"
ltreq_P021_Appeon.ClientId = "P0VRQ-ddHn/WWd6lcCNJbaO9ny-JCNHirDJkHNgZ0-M="
ltreq_P021_Appeon.ClientSecret = "K7gNU3sdo-OL0wNhqoVWhr3g6s1xYv72ol/pe/Unols="
ltreq_P021_Appeon.UserName = "TestUser"
ltreq_P021_Appeon.PassWord = "TestPassword"

//Gets token via RESTClient
li_P021_GetTokenReturn = lrc_P021.GetOauthtoken(ltreq_P021_Appeon, ls_P021_Token)
If li_P021_GetTokenReturn = 1 Then

lrc_P021.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip")

Statements, Events, and Functions

Page 1321

lrc_P021.SetOauthToken(ls_P021_Token) //Sets the authentication

lrc_P021.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
If dw_Data.GetRow() > 0 Then
 //Modifies the data in DataWindow
 dw_Data.SetItem(dw_Data.GetRow(),2,"Update"+String(rand(50)))
 //Exports a DataWindow row to JSON string
 ls_P021_PostData=dw_Data.Exportrowasjson(dw_Data.GetRow())
 li_P021_SendReturn = lrc_P021.SendPutRequest("https://demo.appeon.com/PB/
webapi_client/api/department/update",ls_P021_PostData, ls_P021_Response)
 If li_P021_SendReturn <> 1 Or lrc_P021.GetResponseStatusCode() <> 200 Then
 //Checks the error information
 End If
 //Finds out if data is modified via https://demo.appeon.com/PB/webapi_client/api/
department/retrieve
 lrc_P021.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
End If
Else
//Gets the token failure error
End If

See also

SendGetRequest

SendPostRequest

SendDeleteRequest

SendPatchRequest

2.4.696 SendRequest

Description

Sends the request from the HTTPClient object to the server.

If IgnoreServerCertificate or CheckForServerCertRevocation is set to verify the server
certificate, and if the verification fails, an error code will be returned.

It is not recommended to use this method to process large data (20 MB or 100,000 data rows
can be considered as large data based on our tests).

Applies to

HTTPClient objects

Syntax

objectname.SendRequest (methodName, urlName)

objectname.SendRequest (methodName, urlName, string data)

objectname.SendRequest (methodName, urlName, blob data)

objectname.SendRequest (methodName, urlName, string data, encodingType)

Table 2.1208:

Argument Description

objectname The name of the HTTPClient object from which you want to send the
request.

Statements, Events, and Functions

Page 1322

Argument Description

methodName A string value specifying the request method name, including GET,
POST, PUT, DELETE, OPTIONS, TRACE, HEAD, and CONNECT.

urlName A string value specifying the URL.

data A blob or string value specifying the data.

encodingType
(optional)

A value specifying the encoding charset of the string data to be
sent: EncodingANSI!, EncodingUTF8!, EncodingUTF16LE!, or
EncodingUTF16BE!.

For the string data, it will be encoded in the charset specified by the
encodingType argument; if the encodingType argument is not specified,
the data will be encoded in the charset specified in the Content-Type
request header; if no charset is specified in the Content-Type request
header, the data will be encoded in UTF-8 by default.

Return value

Integer.

Returns values as follows. If any argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timed out

-5 -- Code conversion failed

-6 -- Unsupported character sets

-7 -- Certification revocation checking has been enabled, but the revocation check failed to
verify whether a certificate has been revoked. The server used to check for revocation might
be unreachable.

-8 -- SSL certificate is invalid.

-9 -- SSL certificate was revoked.

-10 -- The function is unfamiliar with the Certificate Authority that generated the server
certificate.

-11 -- SSL certificate common name (host name field) is incorrect, for example, you entered
www.appeon.com and the common name on the certificate says www.demo.appeon.com.

-12 -- SSL certificate date that was received from the server is invalid. The certificate has
expired.

-13 -- The certificate was not issued for the server authentication purpose.

-14 -- The application experienced an internal error when loading the SSL libraries.

-15 -- More than one type of errors when validating the server certificate.

Example 1

Statements, Events, and Functions

Page 1323

This example requests information from a URL using the GET method:

Integer li_rc
String ls_string
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient

// Sends request using GET method
li_rc = lnv_HttpClient.SendRequest("GET", "https://demo.appeon.com/PB/
webapi_client/employee/102")
// Obtains the response data
if li_rc = 1 and lnv_HttpClient.GetResponseStatusCode() = 200 then
 lnv_HttpClient.GetResponseBody(ls_string)
end if

Example 2

This example sends a string query when requesting information from a URL using the POST
method:

Integer li_rc
String ls_ReturnJson
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient

String ls_json = '{"empId":100, "fname":" John", "lname": "Guevara"}'

// Constructs a POST request (supports all headers)
lnv_HttpClient.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")
// Content-Length header set by SendRequest

// Sends request using POST method (to add the string data to the body and set to
 the Content-Length header)
li_rc = lnv_HttpClient.SendRequest("POST", "https://demo.appeon.com/PB/
webapi_client/employee", ls_json)

// Obtains the response data
if li_rc = 1 and lnv_HttpClient.GetResponseStatusCode() = 200 then
 lnv_HttpClient.GetResponseBody(ls_ReturnJson)
end if

Example 3

This example sends a string query in EncodingUTF8 when requesting information from a
URL using the POST method:

Integer li_rc
String ls_ReturnJson
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient

String ls_json = '{"empId":101, "fname":" John", "lname": "Guevara"}'

// Constructs a POST request (supports all headers)
lnv_HttpClient.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")
// Content-Length header set by SendRequest

// Sends request using POST method (to add the string data to the body and set to
 the Content-Length header)
li_rc = lnv_HttpClient.SendRequest("POST", " https://demo.appeon.com/PB/
webapi_client/employee", ls_json, EncodingUTF8!)
// Obtains the response data
if li_rc = 1 and lnv_HttpClient.GetResponseStatusCode() = 200 then
 lnv_HttpClient.GetResponseBody(ls_ReturnJson)

Statements, Events, and Functions

Page 1324

end if

Example 4

This example sends a blob query when requesting information from a URL using the POST
method:

Integer li_rc
String ls_ReturnJson
HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient
Blob lblb_data
lblb_data = Blob('{"empId":101, "fname":" John", "lname": "Guevara"}',
 EncodingUTF8!)

// Sends request using POST method (to add the string data to the body and set to
 the Content-Length header)
li_rc = lnv_HttpClient.SendRequest("POST", "https://demo.appeon.com/PB/
webapi_client/employee/blob", lblb_data)

// Obtains the response data
if li_rc = 1 and lnv_HttpClient.GetResponseStatusCode() = 200 then
 lnv_HttpClient.GetResponseBody(ls_ReturnJson)
end if

2.4.697 SeriesCount

Description

Counts the number of series in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SeriesCount ({ graphcontrol })

Table 2.1209:

Argument Description

controlname The name of the graph for which you want the number of series, or the
name of the DataWindow control containing the graph

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
for which you want the number of series

Return value

Integer.

Returns the number of series in the graph if it succeeds and -1 if an error occurs. If any
argument's value is null, SeriesCount returns null.

Examples

These statements store in the variable li_series_count the number of series in the graph
gr_product_data:

Statements, Events, and Functions

Page 1325

integer li_series_count
li_series_count = gr_product_data.SeriesCount()

These statements store in the variable li_series_count the number of series in the graph
gr_computers in the DataWindow control dw_equipment:

integer li_series_count
li_series_count = &
 dw_equipment.SeriesCount("gr_computers")

See also

CategoryCount

DataCount

2.4.698 SeriesName

Description

Obtains the series name associated with the specified series number.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SeriesName ({ graphcontrol, } seriesnumber)

Table 2.1210:

Argument Description

controlname The name of the graph in which you want the name of a series, or the
name of the DataWindow containing the graph

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
for which you want the name of a series

seriesnumber The number of the series for which you want to obtain the name

Return value

String.

Returns the name assigned to the series. If an error occurs, it returns the empty string (""). If
any argument's value is null, SeriesName returns null.

Usage

Series are numbered consecutively, from 1 to the value returned by SeriesCount. When you
delete a series, the series are renumbered to keep the numbering consecutive. You can use
SeriesName to find out the name of the series associated with a series number.

Examples

These statements store in the variable ls_SeriesName the name of series 5 in the graph
gr_product_data:

Statements, Events, and Functions

Page 1326

string ls_SeriesName
ls_SeriesName = gr_product_data.SeriesName(5)

These statements store in the variable ls_SeriesName the name of series 5 in the graph
gr_computers in the DataWindow control dw_equipment:

string ls_SeriesName
ls_SeriesName = &
 dw_equipment.SeriesName("gr_computers", 5)

See also

CategoryName

DeleteSeries

FindSeries

2.4.699 SetAbort

Declares that a transaction on a transaction server should be rolled back.

Table 2.1211:

To roll back a transaction Use

For OLETxnObject objects Syntax 1

For TransactionServer objects Syntax 2

2.4.699.1 Syntax 1: For OLETxnObject objects

Description

Declares that the current transaction should be rolled back.

Applies to

OLETxnObject objects

Syntax

oletxnobject.SetAbort ()

Table 2.1212:

Argument Description

oletxnobject The name of the OLETxnObject variable that is connected to the COM
object

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Call the SetAbort function from the client to force a COM+ transaction to be rolled back. The
default is to complete the transaction if all participants in the transaction on the COM+ server
have called SetComplete or EnableCommit.

Statements, Events, and Functions

Page 1327

Examples

The following example shows the use of SetAbort in a component method that performs
database updates:

integer li_rc
OleTxnObject lotxn_obj
lotxn_obj = CREATE OleTxnObject
li_rc = lotxn_obj.ConnectToNewObject("pbcom.n_test")
IF li_rc <> 0 THEN
 Messagebox("Connect Error", string(li_rc))
 // handle error
END IF
lotxn_obj.f_dowork()
lotxn_obj.f_domorework()
IF /* test for client satisfaction */ THEN
 lotxn_obj.SetComplete()
ELSE
 lotxn_obj.SetAbort()
END IF
lotxn_obj.DisconnectObject()

See also

SetComplete

2.4.699.2 Syntax 2: For TransactionServer objects

Description

Declares that a component cannot complete its work for the current transaction and that the
transaction should be rolled back. The component instance are deactivated when the method
returns.

Applies to

TransactionServer objects

Syntax

transactionserver.SetAbort ()

Table 2.1213:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

The SetAbort function corresponds to the rollbackWork transaction primitive in EAServer.

Any component that participates in a transaction can roll back the transaction by calling the
rollbackWork primitive. Only the action of the root component (the component instance that
began the transaction) determines when EAServer commits the transaction.

Examples

Statements, Events, and Functions

Page 1328

The following example shows the use of SetAbort in a component method that performs
database updates:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts

Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", ts)
IF li_rc <> 1 THEN
 // handle the error
END IF
...
...
ll_rv = ids_datastore.Update()
IF ll_rv = 1 THEN
 ts.SetComplete()
ELSE
 ts.SetAbort()
END IF

See also

DisableCommit

EnableCommit

IsInTransaction (obsolete)

IsTransactionAborted (obsolete)

Lookup (obsolete)

SetComplete

Which

2.4.700 SetAccessToken

Description

Sets the access token.

Applies to

OAuthRequest objects

Syntax

objectname.SetAccessToken (string accessToken)

Table 2.1214:

Argument Description

objectname A reference to the OAuthRequest object in which you want to set the
access token.

accessToken A string specifying the access token.

Return value

Statements, Events, and Functions

Page 1329

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the SetAccessToken function to set the access token:

int li_return
string ls_accesstoken
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.setaccesstoken(ls_accesstoken)

See also

ClearHeaders

GetBody

GetHeader

GetHeaders

SetBody

SetHeader

SetHeaders

2.4.701 SetActiveCategory

Description

Sets the active category in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetActiveCategory (Long ItemHandle)

Table 2.1215:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the category that you will set to active.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Examples

This example inserts two categories "MyCategory1" and "MyCategory2" and sets
"MyCategory2" as the active category.

Integer li_Return

Statements, Events, and Functions

Page 1330

Long ll_Handle, ll_Handle2

ll_Handle = rbb_1.InsertCategoryFirst("MyCategory1")
ll_Handle2 = rbb_1.InsertCategoryLast("MyCategory2")
li_Return = rbb_1.SetActiveCategory(ll_Handle2)

See also

InsertCategory

InsertCategoryFirst

InsertCategoryLast

DeleteCategory

SetCategory

GetCategory

GetCategoryByIndex

GetCategoryCount

GetActiveCategory

SetActiveCategoryByIndex

2.4.702 SetActiveCategoryByIndex

Description

Sets the active category according to its index in the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetActiveCategoryByIndex (Long Index)

Table 2.1216:

Argument Description

controlname The name of the RibbonBar control.

Index The index number of the category that you want to set as active.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Examples

This example inserts two categories "MyCategory1" and "MyCategory2" and sets
"MyCategory2" (whose index number is 2) as the active category.

Integer li_Return
Long ll_Handle, ll_Handle2

ll_Handle = rbb_1.InsertCategoryFirst("MyCategory1")

Statements, Events, and Functions

Page 1331

ll_Handle2 = rbb_1.InsertCategoryLast("MyCategory2")
li_Return = rbb_1.SetActiveCategoryByIndex(2)

See also

InsertCategory

InsertCategoryFirst

InsertCategoryLast

DeleteCategory

SetCategory

GetCategory

GetCategoryByIndex

GetCategoryCount

GetActiveCategory

SetActiveCategory

2.4.703 SetAlignment

Description

Sets the alignment of the selected paragraphs in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtename.SetAlignment (align)

Table 2.1217:

Argument Description

rtename The name of the RichTextEdit control in which you want to set the
alignment of selected paragraphs.

align A value of the Alignment enumerated datatype specifying how to align
the paragraphs. Values are:

• Left! -- Align each line at the left margin

• Right! -- Align each line at the right margin

• Center! -- Center the text between the left and right margins

• Justify! -- Justify the paragraphs

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Statements, Events, and Functions

Page 1332

Examples

This example sets the alignment of the selected paragraphs in the RichTextEdit control rte_1:

integer li_success
li_success = rte_1.SetAlignment(Right!)

See also

GetAlignment

GetSpacing

GetTextStyle

SetSpacing

SetTextStyle

2.4.704 SetApplicationButton

Description

Sets the application button for the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetApplicationButton (RibbonApplicationButtonItem Item)

Table 2.1218:

Argument Description

controlname The name of the RibbonBar control.

Item The application button item you want to set.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

Only one application button is allowed in a ribbon bar, therefore, you can directly get (set
or remove) the application button without needing to insert the application button first or
identify the application button by its handle.

You can also use the SetItem function to set the application button. Refer to SetItem for the
difference between SetItem and SetApplicationButton.

Examples

This example sets the value of the Text property of the application button to "MyApp".

Integer li_Return
RibbonApplicationButtonItem lr_AppButton

Statements, Events, and Functions

Page 1333

lr_AppButton.Text = "MyApp"
li_Return = rbb_1.SetApplicationButton(lr_AppButton)

See also

GetApplicationButton

RemoveApplicationButton

2.4.705 SetArgElement

Description

Sets the value in the specified argument element.

Applies to

Window ActiveX controls

Syntax

activexcontrol.SetArgElement (index, argument)

Table 2.1219:

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window ActiveX control.
When used in HTML, this is the NAME attribute of the object element.
When used in other environments, this references the control that
contains the PowerBuilder window ActiveX.

index Integer specifying argument placement.

argument Any specifying the argument value.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function before calling InvokePBFunction or TriggerPBEvent to specify an
argument for the passed function.

JavaScript scripts must use this function to specify function and event arguments. VBScript
scripts can either use this function or specify the arguments array directly.

Examples

This JavaScript example calls the SetArgElement function:

function triggerEvent(f) {
 var retcd;
 var rc;
 var numargs;
 var theEvent;
 var theArg;
 retcd = 0;
 numargs = 1;
 theArg = f.textToPB.value;

Statements, Events, and Functions

Page 1334

 PBRX1.SetArgElement(1, theArg);
 theEvent = "ue_args";
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs);
...

See also

GetArgElement

GetLastReturn

InvokePBFunction

TriggerPBEvent

2.4.706 SetAutomationLocale

Description

Sets the language to be used in automation programming for an OLE object. Call
SetAutomationLocale if you have programmed automation commands in a language other
than the user's locale.

Applies to

OLE objects

Syntax

olename.SetAutomationLocale (language, sortorder)

Table 2.1220:

Argument Description

olename The name of the object for which you want to set the automation locale.

language A value of the LanguageID enumerated datatype specifying the language
you have used for automation commands. The OLE server must have
function and property names defined in the language you specify.

Some values of LanguageID are:

• LanguageNeutral! -- No language is assumed. Automation commands
match the server's default command set.

• LanguageUserDefault! -- The language locale is taken from the user's
settings in the International control panel.

• LanguageSystemDefault! -- The language locale is taken from the
version of Windows that is installed on the user's machine.

You can also specify a language or dialect, such as LanguagePolish! or
LanguagePortuguese_Brazilian!

For the list of language-specific values for LanguageID, use the
PowerBuilder Browser.

sortorder A value of the LanguageSortID enumerated datatype specifying the sort
order for the language. Values are:

Statements, Events, and Functions

Page 1335

Argument Description
• LanguageSortNative! -- Use the traditional sort order of the selected

language.

• LanguageSortUnicode! -- Use the sort order defined for Unicode

Return value

Integer.

Returns 0 if it succeeds and -1 if an error occurs.

Usage

For most situations, you do not need to call SetAutomationLocale. If an automation
command fails, PowerBuilder makes additional attempts to execute it in other languages
before it triggers the Error event. It attempts to execute the command using these languages:

1. The command as is (the command is in a language the server understands)

2. The current locale (if it is different from the user's default locale)

3. The user's default locale (LanguageUserDefault!)

4. The system's default locale (LanguageSystemDefault!)

5. English (LanguageEnglish!)

If PowerBuilder is successful in validating the name in any of the languages above, it resets
the locale to the value that succeeded. While this may result in the wrong locale in ambiguous
cases, it will probably simplify access to standard Microsoft Office products that ship with
both localized and English function and property names.

If you specify a language with SetAutomationLocale, but the OLE server does not
have function and property names in that language, your OLE automation commands
will fail unless the above procedure finds a language that works. If you have called
SetAutomationLocale, PowerBuilder's procedure for finding the correct language can reset it,
as described in the previous paragraph.

Examples

This example sets the language to German for an OLEObject called oleobj_report:

oleobj_report.SetAutomationLocale(LanguageGerman!)

This example sets the language to German for an OLE control ole_1:

ole_1.Object.SetAutomationLocale(LanguageGerman!)

2.4.707 SetAutomationPointer

Description

Sets the automation pointer of an OLEObject object to the value of the automation pointer of
another object.

Applies to

Statements, Events, and Functions

Page 1336

OLEObject

Syntax

oleobject.SetAutomationPointer (object)

Table 2.1221:

Argument Description

oleobject The name of an OLEObject variable whose automation pointer you want
to set. You cannot specify an OLEObject that is the Object property of an
OLE control.

object The name of an OLEObject variable that contains the automation pointer
you want to use to set the pointer value in oleobject.

Return value

Integer.

Returns 0 if it succeeds and -1 if the object does not contain a valid OLE automation pointer.

Usage

SetAutomationPointer assigns the underlying automation pointer used by OLE into a
descendant of OLEObject.

Examples

This example creates an OLEObject variable and calls ConnectToNewObject to create a
new Excel object and connect to it. It also creates an object of type oleobjectchild (which
is a descendant of OLEObject) and sets the automation pointer of the descendant object
to the value of the automation pointer in the OLEObject object. Then it sets a value in the
worksheet using the descendant object, saves it to a different file, and destroys both objects:

OLEObject ole1
oleobjectchild oleChild
integer rs

ole1= CREATE OLEObject
rs = ole1.ConnectToNewObject("Excel.Application")
oleChild = CREATE oleobjectchild
rs = oleChild.SetAutomationPointer(ole1)
IF (rs = 0) THEN
 oleChild.workbooks.open("d:\temp\expenses.xls")
 oleChild.cells(1,1).value = 11111
 oleChild.activeworkbook.saveas(&
 "d:\temp\newexp.xls")
 oleChild.activeworkbook.close()
 oleChild.quit()
END IF
ole1.disconnectobject()
DESTROY oleChild
DESTROY ole1

2.4.708 SetAutomationTimeout

Description

Sets the number of milliseconds that a PowerBuilder client waits before canceling an OLE
procedure call to the server.

Statements, Events, and Functions

Page 1337

Applies to

OLEObject objects

Syntax

oleobject.SetAutomationTimeout (interval)

Table 2.1222:

Argument Description

oleobject The name of an OLEObject variable containing the object for which you
want to set the timeout period.

interval A 32-bit signed long integer value (in milliseconds) specifying how
long a PowerBuilder client waits before canceling a procedure call. The
default value is 300,000 milliseconds (5 minutes). Specifying 0 or a
negative value resets interval to the default value.

Return value

Integer.

Returns 0 if it succeeds and -1 if it fails.

Usage

This function passes the value of interval to PowerBuilder's implementation of the
IMessageFilter interface and determines how long PowerBuilder tries to complete an OLE
procedure call. The value applies only when PowerBuilder is the OLE client, not when
PowerBuilder is the OLE server.

Default timeout period

For most situations, you do not need to call SetAutomationTimeout. The default
timeout period of five minutes is usually appropriate. Use SetAutomationTimeout to
change the default timeout period if you expect a specific OLE request to take longer
than five minutes.

If the timeout period is too short, you may get a PowerBuilder application execution error,
R0035. In this case, use SetAutomationTimeout to lengthen the timeout period.

If the timeout period expires, runtime error 1037 occurs. You may want to add code to
handle this error, which is often the only indication of a hung server. Note that canceling a
transaction often causes memory leaks on both the server and the operating system.

The value that you specify with SetAutomationTimeout applies to all OLE transactions in the
current session, including calls that relate to other objects.

Examples

This example calls the ConnectToObject function to connect to an Excel worksheet and sets a
timeout period of 900,000 milliseconds (15 minutes):

OLEObject ole1
integer rs
long interval
interval = 900000

Statements, Events, and Functions

Page 1338

ole1 = create OLEObject
rs = ole1.ConnectToObject("Excel.Application")
rs = ole1.SetAutomationTimeOut(interval)

2.4.709 SetBody

Description

Sets the request body.

Applies to

OAuthRequest objects

Syntax

objectname.SetBody (string data)

objectname.SetBody (blob data)

objectname.SetBody (string data, encoding encodingType)

Table 2.1223:

Argument Description

objectname A reference to the OAuthRequest object in which you want to set the
request body.

data A string or blob specifying the data. The data will be converted to
EncodingUTF8!.

encodingType An encoding value specifying the string data.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the SetBody function to set the request body of
string data type:

int li_return
string ls_data
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.setbody(ls_data)

The following example shows the use of the SetBody function to set the request body of
string data type in encodingUTF8!:

int li_return
string ls_data
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.setbody(ls_data, encodingUTF8!)

The following example shows the use of the SetBody function to set the request body of blob
data type:

Statements, Events, and Functions

Page 1339

int li_return
blob lblb_data
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.setbody(lblb_data)

See also

ClearHeaders

GetBody

GetHeader

GetHeaders

SetAccessToken

SetHeader

SetHeaders

2.4.710 SetBoldDate

Description

Displays the specified date in bold.

Applies to

MonthCalendar control

Syntax

controlname.SetBoldDate (d, onoff {, rt })

Table 2.1224:

Argument Description

controlname The name of the MonthCalendar control in which you want to clear the
bold dates

d The date to be set in bold

onoff A boolean specifying whether the date is to be set to bold. Values are:

true -- Set the date to bold

false -- Clear the date's bold setting

rt (optional) A value of the MonthCalRepeatType enumerated variable. Values are:

Once! -- Set or clear the bold setting for the specified date (default)

Monthly! -- Using the day portion of the specified date, set or clear the
bold setting for this day in all months

Yearly! -- Using the day and month portion of the specified date, set or
clear the bold setting for this date in all years

Return value

Integer.

Statements, Events, and Functions

Page 1340

Returns 0 for success and one of the following negative values for failure:

-1 -- Invalid arguments

-2 -- Unknown failure

Usage

You can use the SetBoldDate function to specify that a selected date, such as an anniversary
date, displays in bold. If a specific date has been set to bold, you can clear the bold setting by
passing false as the second parameter. ClearBoldDates clears all such settings.

Examples

This example sets the date January 5, 2005 to bold in the control mcVacation:

integer li_return
Date d
d = date("January 5, 2005")

li_return = mcVacation.SetBoldDate(d, true)

This example sets the fifth day of every month to bold in the control mcVacation:

integer li_return
Date d
d = date("January 5, 2005")

li_return = mcVacation.SetBoldDate(d, true, Monthly!)

This example sets the date January 5 to bold for all years in the control mcVacation:

integer li_return
Date d
d = date("January 5, 2005")

li_return = mcVacation.SetBoldDate(d, true, Yearly!)

This example clears the bold setting for the fifth day of every month in the control
mcVacation:

integer li_return
Date d
d = date("January 5, 2005")

li_return = mcVacation.SetBoldDate(d, false, Monthly!)

See also

ClearBoldDates

2.4.711 SetBoxPictureList

Description

Sets the picture files for the items in the ribbon combo box.

Applies to

RibbonComboBoxItem control

Syntax

controlname.SetBoxPictureList (String PictureList)

Statements, Events, and Functions

Page 1341

Table 2.1225:

Argument Description

controlname The name of the RibbonComboBoxItem control.

PictureList A comma-separated list of picture files, in full path with file extension.
The picture is displayed in 16*16 or 32*32 pixels. If the image is 16*16
pixels, it will be displayed as 16*16; if the image is bigger than 16*16
pixels, it will be displayed as 32*32.

Return value

Integer.

Returns 1 if it succeeds; and -1 if an error occurs. If any argument's value is null, returns null.

Examples

This example sets two built-in picture files for the items in the ribbon combo box.

Integer li_Return
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.SetBoxPictureList ("PaperSizeA0Small!, PaperSizeA1Small!")

See also

GetBoxPictureList

2.4.712 SetByte

Description

Sets data of type Byte for a blob variable.

Syntax

SetByte (blobvariable, n, b)

Table 2.1226:

Argument Description

blobvariable A variable of the Blob datatype in which you want to insert a value of the
Byte datatype

n The number of the position in blobvariable at which you want to insert a
value of the Byte datatype

b Data of the Byte datatype that you want to set into blobvariable at
position n.

Return value

Integer.

Returns 1 if it succeeds or -1 if n exceeds the scope of blobvariable; it returns null if the value
of any of its arguments is null.

Examples

Statements, Events, and Functions

Page 1342

This example adds the byte equivalent of 37 at the initial position of the emp_photo blob. If
no byte is assigned to the second position, the blob displays as the ASCII equivalent of 37
(the percent character, %) in the second message box:

blob {100} emp_photo
byte b1 = byte (37)
int li_rtn
li_rtn = SetByte(emp_photo, 1, b1)
messagebox("setbyte", string(b1))
messagebox("setbyte", string(emp_photo))

See also

Byte

GetByte

2.4.713 SetCategory

Description

Sets the category for the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetCategory (Long ItemHandle, RibbonCategoryItem Item)

Table 2.1227:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the category you want to set.

Item A category item that will be set.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also use the SetItem function to set the category. Refer to SetItem for the difference
between SetItem and SetCategory.

Examples

This example changes the value of the Text property of the category from "MyCategory" to
"MyCategory1".

Integer li_Return
Long ll_Handle
RibbonCategoryItem lr_Category

ll_Handle = rbb_1.InsertCategoryLast ("MyCategory")
lr_Category.Text = "MyCategory1"

Statements, Events, and Functions

Page 1343

li_Return = rbb_1.SetCategory (ll_Handle, lr_Category)

See also

InsertCategory

InsertCategoryFirst

InsertCategoryLast

DeleteCategory

GetCategory

GetCategoryByIndex

GetCategoryCount

SetActiveCategory

GetActiveCategory

2.4.714 SetCheckBox

Description

Sets the check box for the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetCheckBox (Long ItemHandle, RibbonCheckBoxItem Item)

Table 2.1228:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the item (check box, combo box, large button, small
button, group) on the same level that you will set the item.

Item A check box item you are setting.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also use the SetItem function to set the check box. Refer to SetItem for the
difference between SetItem and SetCheckBox.

The user events to be bound with the check box must be defined correctly according to the
requirements of RibbonCheckBoxItem. For details, see Clicked and Selected.

Examples

This example inserts the "MyCheckBox1" check box and binds it with the
"Ue_CheckBoxClicked" user event, and then changes the check box text from

Statements, Events, and Functions

Page 1344

"MyCheckBox1" to "MyCheckBox2", and changes the bound user events from
"Ue_CheckBoxClicked" to "Ue_CheckBoxClicked2" and "Ue_CheckBoxSelected2".

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_CheckBox
RibbonCheckBoxItem lr_CheckBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_CheckBox = rbb_1.InsertCheckBoxFirst (ll_Handle_Panel, "MyCheckBox1",
 "Ue_CheckBoxClicked")
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_CheckBox)
If li_Return = 1 Then
 lr_CheckBox.Text = "MyCheckBox2"
 lr_CheckBox.Clicked = "Ue_CheckBoxClicked2"
 lr_CheckBox.Selected = "Ue_CheckBoxSelected2"
 li_Return = rbb_1.SetCheckBox (lr_CheckBox.ItemHandle, lr_CheckBox)
End If

See also

InsertCheckBox

InsertCheckBoxFirst

InsertCheckBoxLast

DeleteCheckBox

GetCheckBox

GetChildItemByIndex

2.4.715 SetColumn

Description

Sets column information for a DataWindow, child DataWindow, or ListView control.

For syntax for a DataWindow or child DataWindow, see the SetColumn method for
DataWindows in Section 9.161, “SetColumn” in DataWindow Reference.

Applies to

ListView controls

Syntax

listviewname.SetColumn (index, label, alignment, width)

Table 2.1229:

Argument Description

listviewname The name of the ListView control for which you want to set column
properties.

index The number of the column for which you want to set column properties.

label The label of the column for which you want to set column properties.

alignment A value of the Alignment enumerated datatype specifying how to align
the column. Values are:

Statements, Events, and Functions

Page 1345

Argument Description
• Left! -- Align the column at the left margin

• Right! -- Align the column at the right margin

• Center! -- Center the column between the left and right margins

• Justify! -- Not valid for the SetColumn function

width The width of the column for which you want to set column properties.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

SetColumn

is used only in report views.

Examples

This example sets the second column of a ListView:

lv_list.SetColumn(2 , "Order" , Center! , 800)

See also

AddColumn

AddItem

SetItem

2.4.716 SetComboBox

Description

Sets the combo box for the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetComboBox (Long ItemHandle, RibbonComboBoxItem Item)

Table 2.1230:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the item (check box, combo box, large button, small
button, group) on the same level that you will set the item.

Item A combo box item you are setting.

Return value

Statements, Events, and Functions

Page 1346

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also use the SetItem function to set the combo box. Refer to SetItem for the
difference between SetItem and SetComboBox.

The user events to be bound with the combo box must be defined correctly according
to the requirements of RibbonComboBoxItem. For details, see Modified, Selected, and
SelectionChanged.

Examples

This example inserts a combo box and binds it with the "Ue_ComboBoxClicked" user event,
and then sets values for various properties (including Label, PictureName, SelectionChanged,
Selected, Modified etc.) of the combo box.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_ComboBox
RibbonComboBoxItem lr_ComboBox

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_ComboBox = rbb_1.InsertComboBoxFirst (ll_Handle_Panel,
 "Ue_ComboBoxClicked")
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_ComboBox)
If li_Return = 1 Then
 lr_ComboBox.Label = "MyComboBox2"
 lr_ComboBox.PictureName = "HelpSmall!"
 lr_ComboBox.SelectionChanged = "Ue_ComboBoxSelectionChanged"
 lr_ComboBox.Selected = "Ue_ComboBoxSelected"
 lr_ComboBox.Modified = "Ue_ComboBoxModified"
 li_Return = rbb_1.SetComboBox (lr_ComboBox.ItemHandle, lr_ComboBox)
End If

See also

InsertComboBox

InsertComboBoxFirst

InsertComboBoxLast

DeleteComboBox

GetComboBox

GetChildItemByIndex

2.4.717 SetComplete

Declares that a transaction on a transaction server should be committed.

Table 2.1231:

To commit a transaction Use

For OLETxnObject objects Syntax 1

For TransactionServer objects Syntax 2

Statements, Events, and Functions

Page 1347

2.4.717.1 Syntax 1: For OLETxnObject objects

Description

Declares that the current transaction should be committed.

Applies to

OLETxnObject objects

Syntax

oletxnobject.SetComplete ()

Table 2.1232:

Argument Description

oletxnobject The name of the OLETxnObject variable that is connected to the COM
object

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Call the SetComplete function from a client to allow a COM+ transaction to be completed
if all participants in the transaction on the COM+ server have called SetComplete or
EnableCommit. If any participant in the transaction has called DisableCommit or SetAbort,
the transaction is not completed.

Examples

The following example shows the use of SetComplete in a component method that performs
database updates:

integer li_rc
OleTxnObject lotxn_obj

lotxn_obj = CREATE OleTxnObject
li_rc = lotxn_obj.ConnectToNewObject("pbcom.n_test")
IF li_rc <> 0 THEN
 Messagebox("Connect Error", string(li_rc))
 // handle error
END IF

lotxn_obj.f_dowork()
lotxn_obj.f_domorework()
lotxn_obj.SetComplete()
lotxn_obj.DisconnectObject()

See also

SetAbort

2.4.717.2 Syntax 2: For TransactionServer objects

Description

Declares that the transaction in which a component is participating should be committed and
the component instance should be deactivated.

Statements, Events, and Functions

Page 1348

Applies to

TransactionServer objects

Syntax

transactionserver.SetComplete ()

Table 2.1233:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

The SetComplete function corresponds to the completeWork transaction primitive in
EAServer.

Any component that participates in a transaction can roll back the transaction by calling the
rollbackWork primitive. Only the action of the root component (the component instance that
began the transaction) determines when EAServer commits the transaction.

The transaction is committed if either of the following occurs:

• The root component returns with a state of completeWork and no participating component
has set a state of disallowCommit.

• The root component is deactivated due to an explicit destroy from the client and no
participating component has set a state of disallowCommit. (A client disconnect that is not
preceded by an explicit destroy request always causes a rollback.)

You can use the transaction state primitives in any component; the component does not have
to be declared transactional. Calling completeWork or rollbackWork from methods causes
early deactivation.

Examples

The following example shows the use of SetComplete in a component method that performs
database updates:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts
Integer li_rc
long ll_rv
li_rc = this.GetContextService("TransactionServer", ts)
IF li_rc <> 1 THEN
 // handle the error
END IF
...
ll_rv = ids_datastore.Update()
IF ll_rv = 1 THEN
 ts.SetComplete()
ELSE

Statements, Events, and Functions

Page 1349

 ts.SetAbort()
END IF

See also

DisableCommit

EnableCommit

IsInTransaction (obsolete)

IsTransactionAborted (obsolete)

Lookup (obsolete)

SetAbort

Which

2.4.718 SetData

Description

Sets data in the OLE server associated with an OLE control using Uniform Data Transfer.

Applies to

OLE controls and OLE custom controls

Syntax

olename.SetData (clipboardformat, data)

Table 2.1234:

Argument Description

olename The name of the OLE or custom control associated with the OLE server
to which you want to transfer data.

clipboardformat The format of the data. You can specify a standard format with a
value of the ClipboardFormat enumerated datatype. You can specify a
nonstandard format as a string.Values for ClipboardFormat are:

ClipFormatBitmap!

ClipFormatDIB!

ClipFormatDIF!

ClipFormatEnhMetafile!

ClipFormatHdrop!

ClipFormatLocale!

ClipFormatMetafilePict!

ClipFormatOEMText!

ClipFormatPalette!

ClipFormatPenData!

ClipFormatRIFF!

Statements, Events, and Functions

Page 1350

Argument Description
ClipFormatSYLK!

ClipFormatText!

ClipFormatTIFF!

ClipFormatUnicodeText!

ClipFormatWave!

If clipboardformat is an empty string or a null value, SetData transfers the
data with the format ClipFormatText!.

data A string or blob whose value is the data you want to transfer.

Return value

Integer.

Returns 0 if it succeeds and -1 if an error occurs.

Usage

SetData returns an error if you specify a clipboard format that the OLE server does not
support. See the documentation for the OLE server to find out what formats it supports.

SetData operates via Uniform Data Transfer, a mechanism defined by Microsoft for
exchanging data with container applications. PowerBuilder enables data transfer via a global
handle. The OLE server must also support data transfer via a global handle. If it does not, you
cannot transfer data to or from that server.

Examples

For an example of moving data between two OLE controls (a Microsoft Word table and a
Microsoft Graph), see GetData.

See also

GetData

2.4.719 SetDataDDE

Description

Sends data to a DDE client application when PowerBuilder is acting as a DDE server. You
would usually call SetDataDDE in the script for the RemoteRequest event, which is triggered
by a DDE request for data from the client application.

Syntax

SetDataDDE (string {, applname, topic, item })

Table 2.1235:

Argument Description

string The data you want to send to a DDE client application

applname
(optional)

The DDE name for the client application

Statements, Events, and Functions

Page 1351

Argument Description

topic (optional) A string whose value is the basic data grouping the DDE client
application referenced

item (optional) A string (data within topic)

Return value

Integer.

Returns 1 if it succeeds. If an error occurs, SetDataDDE returns a negative integer. Values
are:

-1 -- Function called in the wrong context

-2 -- Data not accepted

If any argument's value is null, SetDataDDE returns null.

Usage

To enable DDE server mode in your PowerBuilder application, call the StartServerDDE
function. Then DDE messages from a DDE client trigger events in the PowerBuilder
window. It is up to you to decide how your application responds by writing code for those
events. When an application requests data of the DDE server, it triggers a RemoteRequest
event. You typically call SetDataDDE in the script for a window's RemoteRequest event.

If a client application has established a hot link with a location in your PowerBuilder
application, you can call SetDataDDE in an event for the object associated with the location.
As a server application, you decide how location names map to the controls in your
application. For example, your application can decide that the DDE name loc1 refers to the
SingleLineEdit sle_name and a client application can establish a hot link with "loc1." Then
in the Modified event for sle_name, you can call SetDataDDE so that the client application
receives changes each time sle_name is changed. Likewise, if loc1 referred to a DataWindow,
you can call SetDataDDE in the ItemChanged event for the DataWindow.

The applname argument refers to the client application that has established a channel or a hot
link with your application. Topic and item refer to a topic and location recognized by your
server application. You only need to specify these arguments to make it clear to the client
application who should receive the message and what is being sent.

Examples

This statement illustrates how SetDataDDE is used in a script for a RemoteRequest event
when another DDE application requests data. The data sent is the text of the SingleLineEdit
sle_Address:

SetDataDDE(sle_Address.Text)

This statement illustrates how the optional arguments are specified:

SetDataDDE(sle_Address.Text, "MYDB", &
 "Employee", "Address")

See also

GetDataDDE

StartServerDDE

Statements, Events, and Functions

Page 1352

2.4.720 SetDataLabelling

Description

Set the data label for a DirectX 3D graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetDataLabelling ({graphcontrol}, series, datapoint, value)

Table 2.1236:

Argument Description

controlname The name of the graph from which you want data, or the name of the
DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control.

seriesnumber The number that identifies the series in which you want to label a data
point.

datapoint The data point that you want to label.

value Indicates whether to label the data with its value.

Return value

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetDataLabelling returns null.

Usage

SetDataLabelling is used to indicate whether or not to label the data with the numbers for
DirectX 3D Area, Bar, Col, or Line graphs. You cannot use this method with DirectX 3D Pie
graphs.

Examples

These statements set the series and datapoint for the graph gr_1 in the DataWindow control
dw_employee.

integer SeriesNbr, ItemNbr
grObjectType clickedtype

// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &
 SeriesNbr, ItemNbr)

// Set data label
dw_employee.SetDataLabelling("gr_1", &
 SeriesNbr, ItemNbr, true)

These statements set the series and datapoint for the graph gr_1.

integer SeriesNbr, ItemNbr
grObjectType clickedtype

Statements, Events, and Functions

Page 1353

clickedtype = gr_1.ObjectAtPointer(SeriesNbr, &
 ItemNbr)

gr_1.SetDataLabeling(SeriesNbr, ItemNbr, true)

See also

GetDataLabelling

GetSeriesLabelling

SetSeriesLabelling

2.4.721 SetDataPieExplode

Description

Explodes a pie slice in a pie graph. The exploded slice is moved away from the center of the
pie, which draws attention to the data. You can explode any number of slices of the pie.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetDataPieExplode ({ graphcontrol, } seriesnumber, datapoint,
 percentage)

Table 2.1237:

Argument Description

controlname The name of the graph in which you want to explode a pie slice, or the
name of the DataWindow containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
in which you want to explode a pie slice.

seriesnumber The number that identifies the series.

datapoint The number of the data point (that is, the pie slice) to be exploded.

percentage A number between 0 and 100 which is the percentage of the radius that
the pie slice is moved away from the center. When percentage is 100, the
tip of the slice is even with the circumference of the pie's circle.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetDataPieExplode returns null.

Usage

If the graph is not a pie graph, the function has no effect.

Examples

Statements, Events, and Functions

Page 1354

This example explodes the pie slice under the pointer to 50% when the user double-clicks
within the graph. The code checks the property GraphType to make sure the graph is a pie
graph. It then finds out whether the user clicked on a pie slice by checking the series and data
point values set by ObjectAtPointer. The script is for the DoubleClicked event of a graph
object:

integer series, datapoint
grObjectType clickedtype
integer percentage

percentage = 50
IF (This.GraphType <> PieGraph! AND &
 This.GraphType <> Pie3D!) THEN RETURN
clickedtype = This.ObjectAtPointer(&
 series, datapoint)
IF (series > 0 and datapoint > 0) THEN
 This.SetDataPieExplode(series, datapoint, &
 percentage)
END IF

See also

GetDataPieExplode

2.4.722 SetDataStyle

Specifies the appearance of a data point in a graph. The data point's series has appearance
settings that you can override with SetDataStyle.

Table 2.1238:

To Use

Set the data point's colors Syntax 1

Set the line style and width for the data point Syntax 2

Set the fill pattern or symbol for the data point Syntax 3

2.4.722.1 Syntax 1: For setting a data point's colors

Description

Specifies the colors of a data point in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetDataStyle ({ graphcontrol, } seriesnumber, datapointnumber,
 colortype, color)

Table 2.1239:

Argument Description

controlname The name of the graph in which you want to set the color of a data point,
or the DataWindow containing the graph.

graphcontrol
(DataWindow

A string whose value is the name of the graph in the DataWindow control
in which you want to set the color of a data point.

Statements, Events, and Functions

Page 1355

Argument Description
control only)
(optional)

seriesnumber The number of the series in which you want to set the color of a data
point.

datapointnumber The number of the data point for which you want to set the color.

colortype A value of the grColorType enumerated datatype specifying the aspect of
the data point for which you want to set the color. Values are:

• Foreground! -- Text color

• Background! -- Background color

• LineColor! -- Line color

• Shade! -- Shade (for graphics that are three-dimensional or have solid
objects)

color A long whose value is the new color for colortype.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SetDataStyle
returns null.

Usage

To change the appearance of a series, use SetSeriesStyle. The settings you make for the series
are the defaults for all data points in the series.

To reset the color of individual points back to the series color, call ResetDataColors.

For a graph in a DataWindow, you can specify the appearance of a data point in the graph
before PowerBuilder draws the graph. To do so, define a user event for pbm_dwngraphcreate
and call SetDataStyle in the script for that event. The event pbm_dwngraphcreate is triggered
just before a graph is created in a DataWindow object.

Using SetDataStyle with DirectX 3D Graphs

You can only set the color for the foreground. Background, line color, and shade are
not supported.

Examples

This example checks the background color for data point 6 in the series named Salary in the
graph gr_emp_data. If it is red, SetDataStyle sets it to black:

long color_nbr
integer SeriesNbr
// Get the number of the series
SeriesNbr = gr_emp_data.FindSeries("Salary")
// Get the background color
gr_emp_data.GetDataStyle(SeriesNbr, 6, &

Statements, Events, and Functions

Page 1356

 Background!, color_nbr)
// If color is red, change it to black
IF color_nbr = 255 THEN &
 gr_emp_data.SetDataStyle(SeriesNbr, 6, &
 Background!, 0)

These statements set the text (foreground) color to black for data point 6 in the series named
Salary in the graph gr_depts in the DataWindow control dw_employees:

integer SeriesNbr
// Get the number of the series
SeriesNbr = &
 dw_employees.FindSeries("gr_depts" , "Salary")
// Set the background color
dw_employees.SetDataStyle("gr_depts" , SeriesNbr, &
 6, Background!, 0)

See also

GetDataStyle

GetSeriesStyle

ResetDataColors

SeriesName

SetSeriesStyle

2.4.722.2 Syntax 2: For the line associated with a data point

Description

Specifies the style and width of a data point's line in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetDataStyle ({ graphcontrol, } seriesnumber, datapointnumber,
 linestyle, linewidth)

Table 2.1240:

Argument Description

controlname The name of the graph in which you want to set the line style and width
of a data point, or the name of the DataWindow containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
in which you want to set the line style and width.

seriesnumber The number of the series in which you want to set the line style and width
of a data point.

datapointnumber The number of the data point for which you want to set the line style and
width.

linestyle A value of the LineStyle enumerated datatype. Values are:

Statements, Events, and Functions

Page 1357

Argument Description
Continuous!

Dash!

DashDot!

DashDotDot!

Dot!

Transparent!

linewidth An integer whose value is the width of the line in pixels.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SetDataStyle
returns null.

Usage

To change the appearance of a series, use SetSeriesStyle. The settings you make for the series
are the defaults for all data points in the series.

For a graph in a DataWindow, you can specify the appearance of a data point in the graph
before PowerBuilder draws the graph. To do so, define a user event for pbm_dwngraphcreate
and call SetDataStyle in the script for that event. The event pbm_dwngraphcreate is triggered
just before a graph is created in a DataWindow object.

Examples

This example checks the line style used for data point 10 in the series named Costs in
the graph gr_computers in the DataWindow control dw_equipment. If it is dash-dot, the
SetDataStyle sets it to continuous. The line width stays the same:

integer SeriesNbr, line_width
LineStyle line_style

// Get the number of the series
SeriesNbr = dw_equipment.FindSeries(&
 "gr_computers", "Costs")

// Get the current line style
dw_equipment.GetDataStyle("gr_computers", &
 SeriesNbr, 10, line_style, line_width)

// If the pattern is dash-dot, change to continuous
IF line_style = DashDot! THEN &
 dw_equipment.SetDataStyle("gr_computers", &
 SeriesNbr, 10, Continuous!, line_width)

See also

GetDataStyle

GetSeriesStyle

SeriesName

SetSeriesStyle

Statements, Events, and Functions

Page 1358

2.4.722.3 Syntax 3: For the fill pattern and symbol of a data point

Description

Specifies the fill pattern and symbol for a data point in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetDataStyle ({ graphcontrol, } seriesnumber, datapointnumber,
 enumvalue)

Table 2.1241:

Argument Description

controlname The name of the graph in which you want to set the appearance of a data
point, or the name of the DataWindow containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
in which you want to set the appearance.

seriesnumber The number of the series in which you want to set the appearance of a
data point.

datapointnumber The number of the data point for which you want to set the appearance.

enumvalue An enumerated datatype specifying the appearance setting for the data
point. You can specify a FillPattern or grSymbolType value.

To change the fill pattern, use a FillPattern value:

Bdiagonal! -- Lines from lower left to upper right

Diamond!

Fdiagonal! -- Lines from upper left to lower right

Horizontal!

Solid!

Square!

Vertical!

To change the symbol type, use a grSymbolType value:

NoSymbol!

SymbolHollowBox!

SymbolX!

SymbolStar!

SymbolHollowUpArrow!

SymbolHollowCircle!

SymbolHollowDiamond!

Statements, Events, and Functions

Page 1359

Argument Description
SymbolSolidDownArrow!

SymbolSolidUpArrow!

SymbolSolidCircle!

SymbolSolidDiamond!

SymbolPlus!

SymbolHollowDownArrow!

SymbolSolidBox!

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SetDataStyle
returns null.

Usage

To change the appearance of a series, use SetSeriesStyle. The settings you make for the series
are the defaults for all data points in the series.

For a graph in a DataWindow, you can specify the appearance of a data point in the graph
before PowerBuilder draws the graph. To do so, define a user event for pbm_dwngraphcreate
and call SetDataStyle in the script for that event. The event pbm_dwngraphcreate is triggered
just before a graph is created in a DataWindow object.

Using SetDataStyle with DirectX 3D Graphs

You cannot use a fill pattern or specify specific symbols for the data point.

Examples

This example checks the fill pattern used for data point 10 in the series named Costs in the
graph gr_product_data. If it is diamond, then SetDataStyle changes it to solid:

integer SeriesNbr
FillPattern data_pattern

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")

// Get the current fill pattern
gr_product_data.GetDataStyle(SeriesNbr, 10, &
 data_pattern)

// If the pattern is diamond, change it to solid
IF data_pattern = Diamond! THEN &
 gr_product_data.SetDataStyle(SeriesNbr, &
 10, Solid!)

See also

GetDataStyle

GetSeriesStyle

Statements, Events, and Functions

Page 1360

SeriesName

SetSeriesStyle

2.4.723 SetDataTransparency

Description

Sets the transparency percentage of a data point in a series in a DirectX 3D graph (those with
3D rendering).

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetDataTransparency ({ graphcontrol, } seriesnumber, datapoint,
 transparency)

Table 2.1242:

Argument Description

controlname The name of the graph in which you want to set data, or the name of the
DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to set the transparency value of a
data point.

seriesnumber The number that identifies the series in which you want to set data.

datapoint The number of the data point for which you want to set a transparency
value.

transparency Integer value for percent transparency. A value of 0 means that the
data point is opaque and a value of 100 means that it is completely
transparent.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetDataTransparency returns null.

Usage

SetDataTransparency sets the transparency value for a data point in any DirectX 3D graph
(those with 3D rendering).

Examples

These statements set the transparency percentage to 50% for the clicked data in the graph
gr_1 in the DataWindow control dw_employee:

integer SeriesNbr, ItemNbr, TransNbr
grObjectType clickedtype
// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &
 SeriesNbr, ItemNbr)
//The following statement sets Transparency to 50%

Statements, Events, and Functions

Page 1361

TransNbr = 50

dw_employee.SetDataTransparency("gr_1", &
 SeriesNbr , ItemNbr, TransNbr)

These statements set the transparency percentage to 50% for the clicked data point in the
graph gr_employee.

integer SeriesNbr, ItemNbr, TransNbr
grObjectType clickedtype

clickedtype = gr_employee.ObjectAtPointer(&
 SeriesNbr, ItemNbr)

TransNbr = 50

gr_employee.SetDataTransparency(SeriesNbr, &
 ItemNbr, TransNbr)

See also

FindSeries

GetDataTransparency

GetSeriesTransparency

SetSeriesTransparency

2.4.724 SetDateLimits

Description

Sets the maximum and minimum date limits for the calendar.

Applies to

MonthCalendar control

Syntax

controlname.SetDateLimits (min, max)

Table 2.1243:

Argument Description

controlname The name of the MonthCalendar control for which you want to set the
date limits

min A date value to be set as the minimum date that can be referenced or
displayed in the calendar

max A date value to be set as the maximum date that can be referenced or
displayed in the calendar

Return value

Integer.

Returns 0 when both limits are set successfully and one of the following negative values
otherwise:

-1 -- Invalid arguments

Statements, Events, and Functions

Page 1362

-2 -- Unknown failure

Usage

Use the SetDateLimits function to set minimum and maximum dates. SetDateLimits uses the
maximum date as the minimum date and vice versa if you set a maximum date that is earlier
than the minimum date.

Examples

This example sets the minimum and maximum dates for a control using today's date as the
minimum date and a date specified in an EditMask control as the maximum date:

integer li_return
Date mindate, maxdate

mindate = Today()
maxdate = Date(em_1.Text)
li_return = mc_1.SetDateLimits(mindate, maxdate)

See also

GetDateLimits

2.4.725 SetDropHighlight

Description

Highlights the specified item as the drop target.

Applies to

TreeView controls

Syntax

treeviewname.SetDropHighlight (itemhandle)

Table 2.1244:

Argument Description

treeviewname The TreeView control in which you want to highlight an item as the
target of a drag-and-drop operation

itemhandle The handle of the item you want to highlight as the target in a drag-and-
drop operation

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Use in a drag operation to specify a drop target.

Examples

This example uses the TreeView Clicked event to set the current TreeView item as the drop
target:

handle = tv_list.FindItem(CurrentTreeItem!,0)

Statements, Events, and Functions

Page 1363

tv_list.SetDropHighlight(handle)

See also

FindItem

SetItem

2.4.726 SetDynamicParm

Description

Specifies a value for an input parameter in the DynamicDescriptionArea that is used in an
SQL OPEN or EXECUTE statement.

Only for Format 4 dynamic SQL

Use this function only in conjunction with Format 4 dynamic SQL statements.

Syntax

DynamicDescriptionArea.SetDynamicParm (index, value)

Table 2.1245:

Argument Description

DynamicDescriptionAreaThe name of the DynamicDescriptionArea, usually SQLDA.

index An integer identifying the input parameter descriptor in which you want
to set the data. Index must be less than or equal to the value in NumInputs
in DynamicDescriptionArea.

value The value you want to use to fill the input parameter descriptor identified
by index.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetDynamicParm returns null.

Usage

SetDynamicParm specifies a value for the parameter identified by index in the array of input
parameter descriptors in DynamicDescriptionArea.

Use SetDynamicParm to fill the parameters in the input parameter descriptor array in the
DynamicDescriptionArea before executing an OPEN or EXECUTE statement.

Examples

This statement fills the first input parameter descriptor in SQLDA with the string MA:

SQLDA.SetDynamicParm(1, "MA")

This statement fills the fourth input parameter descriptor in SQLDA with the number 01742:

SQLDA.SetDynamicParm(4, "01742")

This statement fills the third input parameter descriptor in SQLDA with the date 12-31-2002:

Statements, Events, and Functions

Page 1364

SQLDA.SetDynamicParm(3, "12-31-2002")

See also

GetDynamicDate

GetDynamicDateTime

GetDynamicNumber

GetDynamicString

GetDynamicTime

Using dynamic SQL

OPEN Cursor

2.4.727 SetFirstVisible

Description

Sets the specified item as the first visible item in a TreeView control.

Applies to

TreeView controls

Syntax

treeviewname.SetFirstVisible (itemhandle)

Table 2.1246:

Argument Description

treeviewname The TreeView control in which you want to identify an item as the first
visible item

itemhandle The handle of the item you are identifying as the first visible item in the
TreeView control

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Use to give focus to the TreeView item specified by the itemhandle and scroll it to the top of
the TreeView control (or as close to the top as the item list allows; if the item is the last item
in a TreeView control, for example, it cannot scroll to the top of the control).

Examples

This example sets the current TreeView item as the first item visible in a TreeView control:

long ll_tvi
int li_tvret

ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)

li_tvret = tv_list.SetFirstVisible(ll_tvi)
IF li_tvret = -1 THEN

Statements, Events, and Functions

Page 1365

 MessageBox("Warning!" , "Didn't Work")
END IF

See also

FindItem

SetItem

2.4.728 SetFocus

Description

Sets the focus on the specified object or control.

Applies to

Any object

Syntax

objectname.SetFocus ()

Table 2.1247:

Argument Description

objectname The name of the object or control in which you want to set the focus

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If objectname is null, SetFocus returns null.

Usage

If objectname is a ListBox, SetFocus displays the focus rectangle around the first item. If
objectname is a DropDownListBox, SetFocus highlights the edit box. To select an item in a
ListBox or DropDownListBox, use SelectItem.

Drawing objects cannot have focus. Therefore, you cannot use SetFocus to set focus to in a
Line, Oval, Rectangle, or RoundRectangle.

Examples

This statement in the script for the Open event in a window moves the focus to the first item
in lb_Actions:

lb_Actions.SetFocus()

See also

SetItem

SetState

SetTop

2.4.729 SetGroup

Description

Sets the group for the RibbonBar control.

Statements, Events, and Functions

Page 1366

Applies to

RibbonBar controls

Syntax

controlname.SetGroup (Long ItemHandle, RibbonGroupItem Item)

Table 2.1248:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the group on the same level that you will set.

Item A group item you are setting.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also use the SetItem function to set the group. Refer to SetItem for the difference
between SetItem and SetGroup.

Examples

This example inserts a group and then sets the value of the NewLine property of the group.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_Group
RibbonGroupItem lr_Group

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_Group = rbb_1.InsertGroupFirst (ll_Handle_Panel)
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_Group)
If li_Return = 1 Then
 lr_Group.NewLine = true
 li_Return = rbb_1.SetGroup (lr_Group.ItemHandle, lr_Group)
End If

See also

InsertGroup

InsertGroupFirst

InsertGroupLast

DeleteGroup

SetGroup

GetGroup

GetChildItemByIndex

2.4.730 SetGlobalProperty (obsolete)

Description

Statements, Events, and Functions

Page 1367

Sets the value of an SSL global property.

Obsolete function

SetGlobalProperty is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

SSLServiceProvider object

Syntax

sslserviceprovider.SetGlobalProperty (property, value)

Table 2.1249:

Argument Description

sslserviceprovider Reference to the SSLServiceProvider service instance.

property The name of the SSL property you want to set.

For a complete list of supported SSL properties, see your EAServer
documentation for the Connection object.

value String value of the SSL property.

Return value

Long.

Returns one of the following values:

0 -- Success

-1 -- Unknown property

-2 -- Property is read only

-3 -- Invalid value for property

-10 -- An EAServer or SSL failure has occurred

-11 -- Bad argument list

Usage

The SetGlobalProperty function allows PowerBuilder clients that connect to EAServer
through SSL to set global SSL properties.

Any properties set using the SSLServiceProvider interface are global to all connections
made by the client to all EAServer servers. You can override any of the global settings at the
connection level by specifying them as options to the Connection object.

Only clients can get and set SSL properties. Server components do not have permission to
use the SSLServiceProvider service.

Examples

The following example shows the use of the SetGlobalProperty function to set the value of
the cacheSize property to 300:

Statements, Events, and Functions

Page 1368

SSLServiceProvider ssl
long rc
...
this.GetContextService("SSLServiceProvider", ssl)
rc = ssl.SetGlobalProperty("cacheSize", "300")
...

See also

GetGlobalProperty (obsolete)

2.4.731 SetHeader

2.4.731.1 Syntax 1: for TokenRequest objects

Description

Sets the request header. If SetHeader or SetHeaders is not used to set the header for
Authorization, the program will automatically set the header for Authorization and Content-
type.

Applies to

TokenRequest objects

Syntax

objectname.SetHeader (string headerName, string headerValue)

Table 2.1250:

Argument Description

objectname A reference to the TokenRequest object in which you want to set the
request header.

headerName A string specifying the header name.

headerValue A string specifying the header value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the SetHeader function to set the value of the
content-type header to "application/x-www-form-urlencoded":

int li_return
TokenRequest lnv_TokenRequest

li_return = lnv_TokenRequest.setheader("content-type", "application/x-www-form-
urlencoded")

See also

AppendParam

ClearHeaders

Statements, Events, and Functions

Page 1369

GetHeader

GetHeaders

SetHeaders

2.4.731.2 Syntax 2: for OAuthRequest objects

Description

Sets the request header.

Applies to

OAuthRequest objects

Syntax

objectname.SetHeader (string headerName, string headerValue)

Table 2.1251:

Argument Description

objectname A reference to the OAuthRequest object in which you want to set the
request header.

headerName A string specifying the header name.

headerValue A string specifying the header value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the SetHeader function to set the value of the
content-type header:

int li_return
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.setheader("content-type", "application/x-www-form-
urlencoded")

See also

ClearHeaders

GetBody

GetHeader

GetHeaders

SetAccessToken

SetBody

SetHeaders

Statements, Events, and Functions

Page 1370

2.4.732 SetHeaders

2.4.732.1 Syntax 1: for TokenRequest objects

Description

Sets the header information of all requests. If SetHeader or SetHeaders is not used to set the
header for Authorization, the program will automatically set the header for Authorization and
Content-type.

Applies to

TokenRequest objects

Syntax

objectname.SetHeaders (string headers)

Table 2.1252:

Argument Description

objectname A reference to the TokenRequest object in which you want to set the
request header.

headers A string specifying all of the header names.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the SetHeaders function to set the value of the
content-type header and the charset header:

int li_return
TokenRequest lnv_TokenRequest

li_return = lnv_TokenRequest.setheaders("content-type:application/x-www-form-
urlencoded; charset=UTF-8~r~nCache-Control:no-cache")

See also

AppendParam

ClearHeaders

GetHeader

GetHeaders

SetHeader

2.4.732.2 Syntax 2: for OAuthRequest objects

Description

Sets the header information of all requests.

Statements, Events, and Functions

Page 1371

Applies to

OAuthRequest objects

Syntax

objectname.SetHeaders (string headers)

Table 2.1253:

Argument Description

objectname A reference to the OAuthRequest object in which you want to set the
request header.

headers A string specifying all of the header names.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

The following example shows the use of the SetHeaders function to set the value of the
content-type header and the charset header:

int li_return
OAuthRequest lnv_OAuthRequest

li_return = lnv_OAuthRequest.setheaders("content-type:application/x-www-form-
urlencoded; charset=UTF-8~r~nCache-Control:no-cache")

See also

ClearHeaders

GetBody

GetHeader

GetHeaders

SetAccessToken

SetBody

SetHeader

2.4.733 SetItem

Sets the value of an item in a list.

For use with DataWindows and DataStores, see the SetItem method for DataWindows in
Section 9.171, “SetItem” in DataWindow Reference.

Table 2.1254:

To set the values of Use

A ListView control item Syntax 1

Statements, Events, and Functions

Page 1372

To set the values of Use

A ListView control item and column Syntax 2

A TreeView control item Syntax 3

RibbonMenu controls Syntax 4

RibbonBar controls Syntax 5

2.4.733.1 Syntax 1: For ListView controls

Description

Sets data associated with a ListView item to the property values you specify in a
ListViewItem variable.

Applies to

ListView controls

Syntax

listviewname.SetItem (index {, column }, item)

Table 2.1255:

Argument Description

listviewname The ListView for which you are setting item properties

index The index number of the item for which you are setting properties

column The index number of the column of the item for which you want to set
properties

item The ListViewItem variable containing property values you want to assign
to a ListView item

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

You can set properties for any ListView item with this syntax. If you do not specify a
column, SetItem sets properties for the first column of an item. Only report views display
multiple columns.

To add items to a ListView control, use the AddItem function. To add columns to a ListView
control, use AddColumn. To set display values for the columns of a ListView item, use
Syntax 2.

If you want to set column properties, such as alignment or width, use SetColumn. These
column properties are independent of the ListViewItem objects.

To change pictures and other property values associated with a ListView item, use GetItem,
change the property values, and use SetItem to apply the changes back to the ListView.

Examples

Statements, Events, and Functions

Page 1373

This example uses SetItem to change the state picture index for the selected lv_list ListView
item:

listviewitem lvi_1

lv_list.GetItem(lv_list.SelectedIndex(), lvi_1)
lvi_1.StatePictureIndex = 2
lv_list.SetItem(lv_list.SelectedIndex () , lvi_1)

See also

AddColumn

AddItem

GetItem

SetItem

2.4.733.2 Syntax 2: For ListView controls

Description

Sets the value displayed for a particular column of a ListView item.

Applies to

ListView control

Syntax

listviewname.SetItem (index, column, label)

Table 2.1256:

Argument Description

listviewname The ListView control for which you are setting a display value

index The index number of the item for which you are setting a display value

column The index number of the column for which you want to set a display
value

label The string value or variable which you are assigning to the specified
column of the specified ListView item

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

You must include the column number as an argument, even if you are only assigning values
to a single-column ListView control. To specify the properties for a ListView item, use
Syntax 1.

Examples

This example assigns display values to three columns in a report view for three lv_list
ListView items:

Statements, Events, and Functions

Page 1374

listviewitem l_lvi
integer li_count, li_index

FOR li_index = 1 to 3
 li_count=li_count+1
 lv_1ist.AddItem("Category " + String(li_index), 1)
NEXT

lv_list.AddColumn("Composition", Left! , 860)
lv_list.AddColumn(" Album", Left! , 610)
lv_list.AddColumn(" Artist", Left! , 710)

lv_list.SetItem(1 , 1 , "St. Thomas")
lv_list.SetItem(1 , 2 , "The Bridge")
lv_list.SetItem(1 , 3 , "Sonny Rollins")

lv_list.SetItem(2 , 1 , "So What")
lv_list.SetItem(2 , 2 , "Kind of Blue")
lv_list.SetItem(2 , 3 , "Miles Davis")

lv_list.SetItem(3 , 1 , "Goodbye, Porkpie Hat")
lv_list.SetItem(3 , 2 , "Mingus-Ah-Um")
lv_list.SetItem(3 , 3 , "Charles Mingus")

See also

GetItem

2.4.733.3 Syntax 3: For TreeView controls

Description

Sets the data associated with a specified item.

Applies to

TreeView controls

Syntax

treeviewname.SetItem (itemhandle, item)

Table 2.1257:

Argument Description

treeviewname The name of the TreeView control in which you want to set the data for a
specific item

itemhandle The handle associated with the item you want to change

item The TreeView item you want to change

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Typically, you would call GetItem first, edit the data, and then call SetItem to reflect your
changes in the TreeView control.

Examples

Statements, Events, and Functions

Page 1375

This example uses the ItemExpanding event to change the picture index and selected picture
index of the current TreeView item:

treeviewitem l_tvi
long ll_tvi

ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)
tv_list.GetItem(ll_tvi , l_tvi)
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 5

tv_list.SetItem(ll_tvi, l_tvi)

See also

GetItem

2.4.733.4 Syntax 4: For RibbonMenu controls

Description

Sets a menu item for a ribbon menu.

Applies to

RibbonMenu controls

Syntax

controlname.SetItem ({ Long ParentIndex, } Long Index, RibbonMenuItem Item)

Table 2.1258:

Argument Description

controlname The name of the RibbonMenu control in which you want to set the menu
item.

ParentIndex The index of the menu item (RibbonMenuItem) whose submenu item you
want to set.

If not specified, the menu item will be set; if specified to a valid value,
the submenu item of the menu item (whose index is ParentIndex) will
be set; if specified to an invalid value, an error would occur and this
operation would return -1.

Index The index of the menu item or submenu item for which you want to set.
If index is invalid, an error would occur and this operation would return
-1.

Item A RibbonMenuItem item you want to set. Only RibbonMenuItem
with "Normal(0)" or "Separator(1)" ItemType is supported. If
RibbonMenuItem is with other ItemType such as "Recent(2)", an error
would occur and this operation would return -1.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

Statements, Events, and Functions

Page 1376

Only menu items with the "Normal" or "Separator" type (that is RibbonMenuItem with
ItemType 0 or 1) can be added to the RibbonMenu control.

A RibbonMenu control can contain menu items in no more than two levels.

The user events to be bound with the menu item must be defined correctly according to the
requirements of RibbonMenuItem. For details, see Clicked and Selected.

Examples

This example inserts the "MenuItem" menu and the "SubMenuItem" submenu and then sets
values for their properties (including Text, PictureName, and Clicked etc.).

Integer li_Return
Long ll_Index, ll_Index2
RibbonMenu lr_Menu
RibbonMenuItem lr_MenuItem1, lr_MenuItem2

ll_Index = lr_Menu.InsertItemLast ("MenuItem", "AddSmall!", "Ue_MenuItem1Clicked")
ll_Index2 = lr_Menu.InsertItemLast (ll_Index, "SubMenuItem", "AddSmall!",
 "Ue_MenuItem11Clicked")

lr_MenuItem1.Text = "MenuItem1"
lr_MenuItem1.PictureName = "DeleteSmall!"
lr_MenuItem1.Clicked = "Ue_MenuItem2Clicked"
lr_MenuItem2.Text = "SubMenuItem1"
lr_MenuItem2.PictureName = "DeleteSmall!"
lr_MenuItem2.Clicked = "Ue_MenuItem21Clicked"

li_Return = lr_Menu.SetItem (ll_Index, lr_MenuItem1)
li_Return = lr_Menu.SetItem (ll_Index, ll_Index2, lr_MenuItem2)

See also

AddSeparatorItem

DeleteItem

GetItem

GetItemCount

InsertItem

InsertItemFirst

InsertItemLast

2.4.733.5 Syntax 5: For RibbonBar controls

Description

Sets the item control in the RibbonBar.

Applies to

RibbonBar controls

Syntax 1

controlname.SetItem (Long ItemHandle, PowerObject Item)

Syntax 2

controlname.SetItem (PowerObject Item)

Statements, Events, and Functions

Page 1377

Table 2.1259:

Argument Description

controlname The name of the RibbonBar control in which you want to set the item.

ItemHandle The handle of the item which you want to set.

Item The object of type PowerObject containing information about the class
definition of the item.

Usage

This function can be used to set items including ApplicationButton, TabButton, Category,
Panel, Group, CheckBox, ComboBox, LargeButton, and SmallButton; but cannot set
RibbonMenuItem, RibbonApplicationMenu, and RibbonMenu. To set RibbonMenuItem,
you can use the SetItem Syntax 4, SetMasterItem, and SetRecentItem functions. To set
RibbonApplicationMenu and RibbonMenu, you can use the SetMenu function.

You can also use the following functions to set the individual control: SetApplicationButton,
SetCategory, SetCheckBox, SetComboBox, SetGroup, SetLargeButton, SetPanel,
SetSmallButton, and SetTabButton. For example, the following three statements have the
same effect:

This statement is the simplest, and does not require the item handle; but it needs to convert
the object type from PowerObject to RibbonCheckBoxItem:

rbb_1.SetItem (lr_CheckBox)

This statement requires the item handle and it needs to convert the object type from
PowerObject to RibbonCheckBoxItem:

rbb_1.SetItem (lr_CheckBox.itemhandle, lr_CheckBox)

This statement requires the item handle but it does not need to convert the object type:

rbb_1.SetCheckBox (lr_CheckBox.itemhandle, lr_CheckBox)

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Example 1

This example inserts two tab buttons and then sets the value of the Enabled property of the
first tab button.

Long ll_TabCount, ll_i
Integer li_return
RibbonTabButtonItem lr_Tab

rbb_1.InsertTabButtonFirst("TabButton1", "ArrowUpSmall!", "ue_TabButtonClicked")
rbb_1.InsertTabButtonLast("TabButton2", "HelpSmall!", "ue_TabButtonClicked")

ll_TabCount = Rbb_1.GetTabbuttoncount()
For ll_I = 1 To ll_TabCount
 If rbb_1.Gettabbuttonbyindex(ll_I, lr_Tab) = 1 Then
 If lr_Tab.Enabled Then
 lr_Tab.Enabled = False

Statements, Events, and Functions

Page 1378

 Else
 lr_Tab.Enabled = True
 End If
 li_return = rbb_1.SetItem(lr_Tab.itemhandle, lr_Tab)
 End If
Next

Example 2

This example sets the value of the Tag property of the button (a small button or a large
button) being clicked.

//Event ue_buttonclicked (long itemhandle)
PowerObject lpo_Object
RibbonSmallButtonItem lr_SmallButton
RibbonLargeButtonItem lr_LargeButton
Integer li_Return, li_Return2

li_Return = rbb_1.GetItem(Itemhandle, lpo_Object)
If li_Return = 1 Then
 Choose Case lpo_Object.ClassName()
 Case "ribbonsmallbuttonitem"
 lr_SmallButton = lpo_Object
 lr_SmallButton.Tag = "SmallButton Clicked"
 li_Return2 = rbb_1.SetItem(lr_SmallButton)
 Case "ribbonlargebuttonitem"
 lr_LargeButton = lpo_Object
 lr_LargeButton.Tag = "LargeButton Clicked"
 li_Return2 = rbb_1.SetItem(lr_LargeButton)
 End Choose
End If

2.4.734 SetJWTToken

Description

Sets the JWT token string to the HTTP request header which will be sent to the server in
the following interface: Submit, SendGetRequest, SendPostRequest, SendDeleteRequest,
SendPatchRequest, SendPutRequest, Retrieve, and RetrieveOne. If a token has been set in the
HTTP request header, it will replace the original token.

Applies to

RESTClient objects

Syntax

objectname.SetJWTToken(string jwtToken)

Table 2.1260:

Argument Description

objectname The name of the RESTClient object in which you want to set the JWT
token.

jwtToken A string value specifying the JWT token.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

Statements, Events, and Functions

Page 1379

1 -- Success

-1 -- General error

Example 1

The following code example sets the JWT token authentication.

String ls_P028_JWTToken
Integer li_P028_GetJWTTokenReturn
RestClient lrc_P028
lrc_P028 = Create RestClient

lrc_P028.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip") //Sets the request header
//Gets the JWT token. The second parameter provides the value according to the
 token server request.
li_P028_GetJWTTokenReturn=lrc_P028.GetJWTToken("https://demo.appeon.com/pb/jwt/
HSExample/api/values/GetToken", '{"Username":"user1","Password":"password1"}',
 ls_P028_JWTToken)

If li_P028_GetJWTTokenReturn = 1 Then
 //Sets the JWT token
 lrc_P028.SetJwtToken(ls_P028_JWTToken)
 //Retrieves data for dw_Data
 lrc_P028.retrieve(dw_Data, "https://demo.appeon.com/pb/jwt/HSExample/api/
department/retrieve")
Else
 //Prints the GetJWTToken error message if any
End If

Example 2

The following code example sets the JWT token authentication.

String ls_P028_JWTToken
Integer li_P028_GetJWTTokenReturn
JsonPackage ljpk_JWTINF
ljpk_JWTINF =Create JsonPackage
RestClient lrc_P028
lrc_P028 = Create RestClient

lrc_P028.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip") //Sets the request header
//Gets the JWT token. The second parameter provides the value according to the
 token server request.
li_P028_GetJWTTokenReturn=lrc_P028.GetJWTToken("https://demo.appeon.com/pb/jwt/
HSExample/api/values/Authenticate", '{"Username":"user1","Password":"password1"}',
 ls_P028_JWTToken)
If li_P028_GetJWTTokenReturn = 1 Then
 //If the token server returns the token as well as other information, gets the
 token first and then provides it to RestClient
 //in this example, the token server returns a JSON string which contains token,
 therefore, gets the token via the following scripts
 ljpk_JWTINF.Loadstring(ls_P028_JWTToken)
 If ljpk_JWTINF.ContainsKey("token") Then
 ls_P028_JWTToken = ljpk_JWTINF.GetValueString("token")
 End If
 //Sets the JWT token
 lrc_P028.SetJwtToken(ls_P028_JWTToken)
 //Retrieves data for dw_Data
 lrc_P028.retrieve(dw_Data, "https://demo.appeon.com/pb/jwt/HSExample/api/
department/retrieve")
Else
 //Prints the GetJWTToken error message if any

Statements, Events, and Functions

Page 1380

End If

See also

GetJWTToken

2.4.735 SetLargeButton

Description

Sets the large button for the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetLargeButton (Long ItemHandle, RibbonLargeButtonItem Item)

Table 2.1261:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the large button on the same level that you will set.

Item A large button item you are setting.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also use the SetItem function to set the large button. Refer to SetItem for the
difference between SetItem and SetLargeButton.

The user events to be bound with the large button must be defined correctly according to the
requirements of RibbonLargeButtonItem. For details, see Clicked and Selected.

Examples

This example inserts the "Add" large button and binds it with the "Ue_LargeButtonClicked"
user event, and then sets values for various properties (including Text, PictureName, Clicked,
Selected etc.) of this large button.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_LargeButton
RibbonLargeButtonItem lr_LargeButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_LargeButton = rbb_1.InsertLargeButtonFirst (ll_Handle_Panel, "Add",
 "AddBig!", "Ue_LargeButtonClicked")
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_LargeButton)
If li_Return = 1 Then
 lr_LargeButton.Text = "Delete"
 lr_LargeButton.PictureName = "DeleteBig!"
 lr_LargeButton.Clicked = "Ue_LargeButtonClicked2"
 lr_LargeButton.Selected = "Ue_LargeButtonSelected2"

Statements, Events, and Functions

Page 1381

 li_Return = rbb_1.SetLargeButton (lr_LargeButton.ItemHandle, lr_LargeButton)
End If

See also

InsertLargeButton

InsertLargeButtonFirst

InsertLargeButtonLast

DeleteLargeButton

GetLargeButton

GetChildItemByIndex

2.4.736 SetLevelPictures

Description

Sets the picture indexes for all items at a particular level.

Applies to

TreeView controls

Syntax

treeviewname.SetLevelPictures (level, pictureindex, selectedpictureindex,
 statepictureindex, overlaypictureindex)

Table 2.1262:

Argument Description

treeviewname The TreeView control in which you want to set the pictures for a given
TreeView level

level The TreeView level for which you are setting the picture indexes

pictureindex An index from the regular picture list specifying the picture to be
displayed when the item is not selected

selectedpictureindexAn index from the regular picture list specifying the picture to be
displayed when the item is selected

statepictureindex An index from the state picture list specifying the picture to be displayed
to the left of the regular picture

overlaypictureindexAn index from the overlay picture list specifying the picture to be
displayed on top of the regular picture

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

To set pictures for individual items, call GetItem, set the picture properties, and call SetItem
to copy the changes to the TreeView. You must specify a value for all four indexes. To
display nothing, specify 0.

Statements, Events, and Functions

Page 1382

Examples

This example sets the pictures for TreeView level 3, then inserts two new TreeView items:

long ll_tvi, ll_child, ll_child2
int li_pict, li_level
treeviewitem l_tvi

li_level = 6
tv_list.SetLevelPictures(3, li_level, li_level, &
 li_level, li_level)

ll_tvi = tv_list.FindItem(RootTreeItem! , 0)
ll_child = tv_list.InsertItemLast(ll_tvi, "Walton",2)
ll_child2 = tv_list.InsertItemLast(ll_child, &
 "Spitfire Suite", li_level)
tv_list.ExpandItem(ll_child)
tv_list.SetFirstVisible(ll_child)

See also

AddPicture

2.4.737 SetLibraryList

Description

Changes the files in the library search path of the application at runtime.

Obsolete syntax

You can still use the old syntax with the name of the application object before the
function call: applicationname.SetLibraryList (filelist).

Syntax

SetLibraryList (filelist)

Table 2.1263:

Argument Description

filelist A comma-separated list of file names. Specify the full file name with its
extension. If you do not specify a path, PowerBuilder uses the system's
search path to find the file.

Return value

Integer.

Returns 1 if it succeeds. If an error occurs, it returns:

-1 -- The application is being run from PowerBuilder, rather than from a standalone
executable.

-2 -- A currently instantiated object is in a library that is not on the new list. If any argument's
value is null, SetLibraryList returns null.

Usage

When your application needs to load an object, PowerBuilder searches for the object
first in the executable file and then in the dynamic libraries specified for the application.

Statements, Events, and Functions

Page 1383

You can specify a different list of library files from those specified in the executable with
SetLibraryList.

Calling SetLibraryList replaces the list of library files specified in the executable with a new
list of files. For example, you might use SetLibraryList to configure the library list for an
application containing many subsystems. You should always use GetLibraryList to return
the current library search path and then append any files you want to add to this list. You can
then pass the complete list in the filelist argument.

PowerBuilder cannot check whether the libraries you specify are appropriate for the
application. It is up to you to make sure the libraries contain the objects that the application
needs.

The executable file is always first in the library search path. If you include it in filelist, it is
ignored.

If you are running your application in the PowerBuilder development environment, this
function has no effect.

Examples

This example specifies different files in the library search path based on the selected
application subsystem:

string ls_list

ls_list = getlibrarylist ()
CHOOSE CASE configuration
 CASE "Config1"
 SetLibraryList(ls_list + ",lib1.pbd, lib2.pbd, &
 lib5.pbd")
 CASE "Config2"
 SetLibraryList(ls_list + ",lib1.pbd, lib3.pbd, &
 lib4.pbd")
END CHOOSE

See also

AddToLibraryList

GetLibraryList

2.4.738 SetMask

Description

Sets the edit mask and edit mask datatype for an EditMask control.

Applies to

EditMask controls

Syntax

editmaskname.SetMask (maskdatatype, mask)

Table 2.1264:

Argument Description

editmaskname The name of the EditMask for which you want to specify the edit mask.

Statements, Events, and Functions

Page 1384

Argument Description

maskdatatype A MaskDataType enumerated datatype indicating the datatype of the
mask. Values are:

• DateMask!

• DateTimeMask!

• DecimalMask!

• NumericMask!

• StringMask!

• TimeMask!

mask A string whose value is the edit mask.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SetMask
returns null.

Usage

In an edit mask, a fixed set of characters represent a type of character that the user can enter.
In addition, punctuation controls the format of the entered value. Each mask datatype has its
own set of valid characters.

For example, the following is a mask of type string for a telephone number. The EditMask
control displays the punctuation (the parentheses and dash). The pound signs represent the
digits that the user enters. The user cannot enter any characters other than digits.

(###) ###-####

For help in specifying a valid mask, see the Edit Mask Style dialog box for an EditMask
control in the Window painter. A ListBox in the dialog box shows the meaning of the special
mask characters for each datatype, as well as masks that have already been defined.

If you are specifying the mask for a number, the format must use U.S. notation. That is,
comma represents the thousands delimiter and a period represents the decimal place. At
runtime, the locally correct symbols are displayed.

You cannot use SetMask to change the maskdatatype if the DropDownCalendar, Spin, or
UseCodeTable properties of the EditMask control are set to true. If any of these properties is
set to true, set the property value to false before calling SetMask, then reset the value to true.

You cannot use color for edit masks as you can for display formats.

Examples

These statements set the mask for the EditMask password_mask to the mask in pword_code.
The mask requires the user to enter a digit followed by four characters of any type:

string pword_code

Statements, Events, and Functions

Page 1385

pword_code = "#xxxx"
password_mask.SetMask(StringMask!, pword_code)

This statement sets the mask for the EditMask password_mask to a 5-digit numeric mask:

password_mask.SetMask(NumericMask!, "#####")

2.4.739 SetMasterItem

Description

Sets a master menu item for the application menu in the RibbonBar control.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.SetMasterItem ({ Long ParentIndex, } Long Index, RibbonMenuItem Item)

Table 2.1265:

Argument Description

controlname The name of the RibbonApplicationMenu control in which you want to
set the master menu item.

ParentIndex
(optional)

The index of the master menu item (RibbonMenuItem) whose submenu
item you want to set.

If not specified, the master menu item will be set; if specified to a valid
value, the submenu item of the master menu item (whose index is
ParentIndex) will be set; if specified to an invalid value, an error would
occur and this operation would return -1.

Index The index for the master menu item or submenu item for which you want
to set. If index is invalid, an error would occur and this operation would
return -1.

Item A RibbonMenuItem item you want to set. Only RibbonMenuItem
with "Normal(0)" or "Separator(1)" ItemType is supported. If
RibbonMenuItem is with other ItemType such as "Recent(2)", an error
would occur and this operation would return -1.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

Only the menu item with the "Normal" or "Separator" type (that is RibbonMenuItem with
ItemType 0 or 1) can be added as a master menu item.

The master menu can have no more than two levels.

The user events to be bound with the master menu item must be defined correctly according
to the requirements of RibbonMenuItem. For details, see Clicked and Selected.

Examples

Statements, Events, and Functions

Page 1386

This example inserts the "MenuItem" master menu item and the "SubMenuItem" submenu
item and then sets values for their properties (including Text, PictureName, Clicked etc.).

Integer li_Return
Long ll_Index,ll_Index2
RibbonApplicationMenu lr_AppMenu
RibbonMenuItem lr_MenuItem1,lr_MenuItem2

ll_Index =
 lr_AppMenu.InsertMasterItemLast("MenuItem","AddSmall!","Ue_MenuItem1Clicked")
ll_Index2 =
 lr_AppMenu.InsertMasterItemLast(ll_Index,"SubMenuItem","AddSmall!","Ue_MenuItem11Clicked")

lr_MenuItem1.Text = "Account"
lr_MenuItem1.PictureName = "AccountBig!"
lr_MenuItem1.Clicked = "Ue_AccountMenuItemClicked"
lr_MenuItem2.Text = "Account Settings"
lr_MenuItem2.PictureName = "AccountSettingsBig!"
lr_MenuItem2.Clicked = "Ue_AccountSettingsClicked"

li_Return = lr_AppMenu.SetMasterItem(ll_Index,lr_MenuItem1)
li_Return = lr_AppMenu.SetMasterItem(ll_Index,ll_Index2,lr_MenuItem2)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetRecentItem

SetRecentTitle

2.4.740 SetMenu

Description

Sets a menu to the button in the RibbonBar control.

Applies to

Statements, Events, and Functions

Page 1387

RibbonApplicationButtonItem, RibbonTabButtonItem, RibbonLargeButtonItem,
RibbonSmallButtonItem controls

Syntax

For RibbonApplicationButtonItem:

controlname.SetMenu (RibbonApplicationMenu ApplicationMenu)

For RibbonTabButtonItem, RibbonLargeButtonItem, and RibbonSmallButtonItem:

controlname.SetMenu (RibbonMenu Menu)

Table 2.1266:

Argument Description

controlname The name of the RibbonApplicationButtonItem, RibbonTabButtonItem,
RibbonLargeButtonItem, or RibbonSmallButtonItem control.

ApplicationMenu The RibbonApplicationMenu item you want to set.

Menu The RibbonMenu item you want to set.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

A RibbonApplicationMenu control can contain a master menu and a recent menu. The master
menu can have no more than two levels. The recent menu can have only one level; and can
contain no more than 9 items. Only the menu item with the "Normal" or "Separator" type
(that is RibbonMenuItem with ItemType 0 or 1) can be added as a master menu item. Only
the menu item with the "Recent" type (that is RibbonMenuItem with ItemType 2) can be
added as a recent menu item. See InsertMasterItem and InsertRecentItem for more.

A RibbonMenu control can contain menu items in no more than two levels. Only menu items
with the "Normal" or "Separator" type (that is RibbonMenuItem with ItemType 0 or 1) can be
added to the RibbonMenu control. See InsertItem for more.

Example 1

This example sets a menu to the "MyApp" application button. The menu includes an
"Account" master menu item and a "RecentItem1" recent menu item.

Integer li_Return
RibbonApplicationButtonItem lr_AppButton
RibbonApplicationMenu lr_AppMenu

lr_AppMenu.InsertMasterItemFirst ("Account", "AccountBig!",
 "ue_AccountMenuClicked")
lr_AppMenu.InsertRecentItemFirst ("RecentItem1", "ue_RecentMenuClicked")
lr_AppButton.Text = "MyApp"
li_Return = lr_AppButton.SetMenu (lr_AppMenu)
If li_Return = 1 Then
 li_Return = rbb_1.SetApplicationButton (lr_AppButton)
End If

Example 2

Statements, Events, and Functions

Page 1388

This example sets a menu to a tab button. The menu includes an "Add" menu item.

Integer li_Return
RibbonTabButtonItem lr_TabButton
RibbonMenu lr_Menu

lr_Menu.InsertItemFirst ("Add", "AddSmall!", "Ue_AddMenuClicked")
li_Return = lr_TabButton.SetMenu (lr_Menu)

See also

GetMenu

GetMenuByButtonHandle

2.4.741 SetMessage

Description

Sets an error message for an object of type Throwable.

Syntax

throwableobject.SetMessage (newMessage)

Table 2.1267:

Argument Description

throwableobject Object of type Throwable for which you want to set an error message.

newMessage String containing the message you want to set. Must be surrounded by
quotation marks.

Return value

None

Usage

Use to set a customized message on a user-defined exception object. Although it is possible
to use SetMessage to modify the preset error messages for RuntimeError objects, this is not
recommended.

Examples

This statement is an example of a message set on a user object of type Throwable:

MyException.SetMessage ("MyException thrown")

This example uses SetMessage in the try-catch block for a user-defined function that takes an
input value from one text box and outputs the arccosine for that value into another text box:

uo_exception lu_error
Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)
 lu_error = Create uo_exception
 lu_error.SetMessage("Value must be between -1" +&

Statements, Events, and Functions

Page 1389

 "and 1")
 Throw lu_error
END TRY

See also

GetMessage

2.4.742 SetMicroHelp

Description

Specifies the text to be displayed in the MicroHelp box in an MDI frame window.

Applies to

MDI frame windows

Syntax

windowname.SetMicroHelp (string)

Table 2.1268:

Argument Description

windowname The name of the MDI frame window with MicroHelp for which you want
to set the MicroHelp text

string A string whose value is the new MicroHelp text

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetMicroHelp returns null.

Usage

The Tag property of a control is a useful place to store MicroHelp text. When the control
gets the focus, you can use SetMicroHelp in the GetFocus event script to display the Tag
property's text in the MicroHelp box on the window frame.

For menus, PowerBuilder automatically displays the MicroHelp text you have specified in
the Menu painter when the user selects the menu item. You can use SetMicroHelp in the
script for a menu item's Selected event to override the predefined MicroHelp and display
some other text in the MicroHelp box. SetMicroHelp does not change the predefined
MicroHelp text.

Examples

This statement changes the MicroHelp displayed in the frame of W_New to Delete selected
text:

W_New.SetMicroHelp("Delete selected text")

In this example, the string Close the Window is a tag value associated with the
CommandButton cb_done in W_New. In the script for the GetFocus event in cb_done, this
statement displays Close the Window as MicroHelp in W_New when cb_done gets focus:

Statements, Events, and Functions

Page 1390

W_New.SetMicroHelp(This.Tag)

2.4.743 SetMinimized

Description

Sets the RibbonBar control to be minimized.

Applies to

RibbonBar controls

Syntax

controlname.SetMinimized (Boolean Minimized)

Table 2.1269:

Argument Description

controlname The name of the RibbonBar control.

Minimized A boolean indicating whether to set the RibbonBar control to be
minimized.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

When the RibbonBar control is minimized, only the application button title, the category title,
and the tab header will be displayed.

If the HideTabHeader property is set to TRUE (which means the application button title,
category title, and the tab header are invisible), the SetMinimized function will not take
effect.

Examples

This example sets the ribbon bar to be minimized.

Integer li_Return
li_Return = rbb_1.SetMinimized (True)

See also

IsMinimized

2.4.744 SetNewMobiLinkPassword

Description

Sets a new password for the current MobiLink user.

Applies to

MLSynchronization, MLSync controls

Syntax

Statements, Events, and Functions

Page 1391

syncObject.SetNewMobiLinkPassword (newPW)

Table 2.1270:

Argument Description

syncObject The name of the synchronization object that starts a connection to the
synchronization server.

newPW A string consisting of the new password that you want to set for
MobiLink.

Return value

Integer.

Returns 1 for success and -1 for failure.

Usage

SetNewMobiLinkPassword uses the properties in the synchronization object to generate a
typical dbmlsync command line. The command line includes the -pi (ping) option as well as
the -mn option to set the new MobiLink password (newPW). The new password will not be
set if any of the required properties (Datasource, Publication, MLServerVersion, or MLUser)
are missing from the synchronization object.

See also

GetCommandString

SetParm

SetSyncRegistryProperties

Synchronize

2.4.745 SetNull

Description

Sets a variable to null. The variable can be any datatype except for a structure or
autoinstantiated object.

Syntax

SetNull (anyvariable)

Table 2.1271:

Argument Description

anyvariable The variable you want to set to null

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SetNull
returns null.

Usage

Statements, Events, and Functions

Page 1392

Use SetNull to set a variable to null before writing it to the database. Note that PowerBuilder
does not initialize variables to null; it initializes variables to the default initial value for the
datatype unless you specify a value when you declare the variable.

If you assign a value to a variable whose datatype is Any and then set the variable to null, the
datatype of the null value is still the datatype of the assigned value. You cannot untype an
Any variable with the SetNull function.

Examples

This statement sets the variable Salary to null:

SetNull(Salary)

See also

IsNull

2.4.746 SetOAuthToken

Description

Sets the OAuth 2.0 token string to the HTTP request header which will be sent to the server
in the following interface: Submit, SendGetRequest, SendPostRequest, SendDeleteRequest,
SendPatchRequest, SendPutRequest, Retrieve, and RetrieveOne. If a token has been set in the
HTTP request header, it will replace the original token.

Applies to

RESTClient objects

Syntax

objectname.SetOAuthToken(string token)

Table 2.1272:

Argument Description

objectname The name of the RESTClient object in which you want to set the OAuth
2.0 access token.

token A string value specifying the OAuth 2.0 access token.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

1 -- Success

-1 -- General error

Example

The following code example adds a new data record and submits it to the server.

String ls_P020_Responsebody,ls_Token,ls_PostData
Long ll_InsertRow
Integer li__P020_SendReturn

Statements, Events, and Functions

Page 1393

Integer li_P020_GetTokenReturn
RestClient lrc_P020
lrc_P020 = Create RestClient

//Sets the token parameters
TokenRequest ltreq_Appeon
ltreq_Appeon.tokenlocation = "https://demo.appeon.com/pb/identityserver/connect/
token"
ltreq_Appeon.method = "post"
ltreq_Appeon.GrantType = "password"
ltreq_Appeon.ClientId = "P0VRQ-ddHn/WWd6lcCNJbaO9ny-JCNHirDJkHNgZ0-M="
ltreq_Appeon.ClientSecret = "K7gNU3sdo-OL0wNhqoVWhr3g6s1xYv72ol/pe/Unols="
ltreq_Appeon.UserName = "TestUser"
ltreq_Appeon.PassWord = "TestPassword"

//Gets token via RESTClient
li_P020_GetTokenReturn = lrc_P020.GetOauthtoken(ltreq_Appeon, ls_Token)
If li_P020_GetTokenReturn = 1 Then
 lrc_P020.SetRequestHeaders("Content-Type:application/
json;charset=UTF-8~r~nAccept-Encoding:gzip")
 lrc_P020.SetOauthToken(ls_Token) //Sets authentication
 //Adds a new data row
 ll_InsertRow = dw_Data.InsertRow(0)
 //Sets the data value
 dw_Data.SetItem(ll_InsertRow,1,0)
 dw_Data.SetItem(ll_InsertRow,2,"TestCreate"+String(rand(50)))
 //Once https://demo.appeon.com/PB/webapi_client/api/department/create Web service
 detects that
 //the passed-in department id is smaller than 1, it will automatically finds the
 largest ID
 //value and assigns value to it
 ls_PostData=dw_Data.Exportrowasjson(ll_InsertRow)//Exports the new data row from
 dw_Data to JSON string
 li__P020_SendReturn = lrc_P020.SendPostRequest("https://demo.appeon.com/PB/
webapi_client/api/department/create", ls_PostData, ls_P020_Responsebody)
 If li__P020_SendReturn <> 1 Or lrc_P020.GetResponseStatusCode() <> 201 Then
 //Checks if any error information
 End If
 //Finds out if the new data record exists via https://demo.appeon.com/PB/
webapi_client/api/department/retrieve
 lrc_P020.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
Else
//Gets the token failure error
End If
If IsValid(lrc_P020) Then Destroy lrc_P020

See also

GetOAuthToken

2.4.747 SetOverlayPicture

Description

Puts an image in the control's image list into an overlay image list.

Applies to

ListView and TreeView controls

Syntax

controlname.SetOverlayPicture (overlayindex, imageindex)

Statements, Events, and Functions

Page 1394

Table 2.1273:

Argument Description

controlname The name of the ListView or TreeView control to which you want to add
an overlay image.

overlayindex The index number of the overlay picture in the overlay image list. The
overlay image list is a 1-based array. Overlayindex must be 1 (for the first
image), a previously designated index (replacing an image), or 1 greater
than the current largest index (adding another image). SetOverlayPicture
fails if you specify an index that creates gaps in the array.

imageindex The index number of an image in the control's main image list. For
ListViews, both the large and small pictures at that index become overlay
images. The image is still available for use as an item's main image.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

An overlay picture must have the same height and width as the picture it is used to overlay.
The color specified in the SetPictureMask property when the picture is inserted becomes
transparent when the picture is used as an overlay, allowing part of the original image to be
visible beneath the overlay.

The overlay list acts as a pointer back to the source image in the regular picture lists. If you
delete an image that is also used in the overlay list, the displayed overlay pictures are affected
too.

Examples

This example designates overlay images in a ListView control. The same picture is used for
large and small images:

// Set up the overlay images
integer index
index = lv_1.AddLargePicture("shortcut.ico")
index = lv_1.AddSmallPicture("shortcut.ico")
lv_1.SetOverlayPicture(1, index)
index = lv_1.AddLargePicture("not.ico")
index = lv_1.AddSmallPicture("not.ico")
lv_1.SetOverlayPicture(2, index)
// Assign the second overlay image to the first item
listviewitem lvi
integer i
i = lv_1.GetItem(1, lvi)
lvi.OverlayPictureIndex = 2
i = lv_1.SetItem(1, lvi)

This example designates the first picture in the TreeView's main image list as the first overlay
picture. The picture was added to the main image list on the TreeView's property sheet:

tv_list.SetOverlayPicture(1, 1)

This code in the TreeView's Clicked event assigns the overlay image to the clicked item:

Statements, Events, and Functions

Page 1395

treeviewitem tvi
tv_list.GetItem(handle, tvi)
tvi.OverlayPictureIndex = 1
tv_list.SetItem(handle, tvi)

2.4.748 SetPanel

Description

Sets the panel for the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetPanel (Long ItemHandle, RibbonPanelItem Item)

Table 2.1274:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the panel on the same level that you will set the panel.

Item A panel item you are setting.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also use the SetItem function to set the panel. Refer to SetItem for the difference
between SetItem and SetPanel.

Examples

This example inserts a panel and then sets new values for its Text and PictureName
properties.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel
RibbonPanelItem lr_Panel

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel1",
 "AddSmall!")
lr_Panel.Text = "MyPanel2"
lr_Panel.PictureName = "BOMSmall!"
li_Return = rbb_1.SetPanel (ll_Handle_Panel, lr_Panel)

See also

InsertPanel

InsertPanelFirst

InsertPanelLast

DeletePanel

Statements, Events, and Functions

Page 1396

GetPanel

GetChildItemByIndex

2.4.749 SetParagraphSetting

Description

Sets the size of the indentation, left margin, or right margin of the paragraph containing the
insertion point in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

rtecontrol.SetParagraphSetting (whichsetting, value)

Table 2.1275:

Argument Description

rtecontrol The name of the control for which you want paragraph information.

whichsetting A value of the ParagraphSetting enumerated datatype specifying the
setting you want to change. Values are:

• Indent! -- Returns the indentation of the paragraph

• LeftMargin! -- Returns the left margin of the paragraph

• RightMargin! -- Returns the right margin of the paragraph

value A long whose value is the width of the margin or indent in units of
1000ths of an inch. For example, a value of 500 specifies a width of half
an inch.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument is null, it returns null.

Usage

Each paragraph has indentation, left margin, and right margin settings. To set all three for the
current paragraph, call SetParagraphSetting three times.

Examples

This example sets the indentation setting for the current paragraph to a quarter inch:

ll_indent = rte_1.SetParagraphSetting(Indent!, 250)

This example sets the left margin for the current paragraph to an inch:

rte_1.SetParagraphSetting(LeftMargin!, 1000)

See also

GetParagraphSetting

Statements, Events, and Functions

Page 1397

SetAlignment

SetSpacing

SetTextColor

SetTextStyle

2.4.750 SetParm

Description

Sets the parameters to send to the MobiLink synchronization server.

Applies to

MLSynchronization, MLSync controls

Syntax

SyncObject.SetParm (syncparm)

Table 2.1276:

Argument Description

syncObject The name of the synchronization object.

syncparm A structure of type SyncParm containing property values that can be set
as synchronization parameters.

Return value

Integer.

Returns 1 for success and -1 for failure.

Examples

The code fragment below creates an instance of an MLSync object and programmatically
populates all of the necessary properties -- as well as some optional properties -- using an
instance of the system SyncParm structure. Then it calls the Synchronize function to start the
database synchronization.

SyncParm Parms
MLSync mySync
Long rc

mySync = CREATE MLSync
mySync.MLServerVersion = 9 // required property
mySync.Publication = 'salesapi '// required property
mySync.UseLogFile = TRUE // optional
mySync.LogFileName = "C:\temp\sync.log "// optional
mySync.Datasource = 'salesdb_remote '// required
Parms.MLUser = '50 '// required
Parms.MLPass = 'xyz123 '// required
//The following values are required if they are not
//set by the DSN
Parms.DBUser = 'dba '
Parms.DBPass = 'sql '

// Apply the property values to the sync object
mySync.SetParm(Parms)
// Launch the synchronization process

Statements, Events, and Functions

Page 1398

rc = mySync.Synchronize()
destroy mySync

Maintaining property settings in the MLSync object

Normally when you call SetParm(SyncParm) from an MLSync object, you
automatically override any authentication values (AuthenticateParms, Datasource,
DBUser, DBPass, EncryptionKey, MLUser, and MLPass) that you set for properties
of the MLSync object -- even when the value of a particular SyncParm property
is an empty string. However, if you call SetNull to set a particular property of
the SyncParm object to NULL before you call SetParm, the property value in the
MLSync object will be used instead.

See also

GetCommandString

SetNewMobiLinkPassword

SetSyncRegistryProperties

2.4.751 SetPicture

Description

Assigns an image stored in a blob to be the image in a Picture control.

Applies to

Picture controls

Syntax

picturecontrol.SetPicture (bimage)

Table 2.1277:

Argument Description

picturecontrol The name of a Picture control in which you want to set the bitmap.

bimage A blob containing the new bitmap. bimage must be a valid picture in
bitmap (BMP), Compuserve Graphics Interchange Format (GIF), Joint
Photographic Experts Group (JPEG), run-length encoded (RLE), or
Windows Metafile (WMF).

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SetPicture
returns null.

Usage

If you use FileRead to get the bitmap image from a file, remember that the FileRead function
can read a maximum of 32,765 bytes at a time. To check the length of a file, call FileLength.
If the file is over 32,765 bytes, you can call FileRead more than once and concatenate the
return values, or you can call FileReadEx.

Statements, Events, and Functions

Page 1399

For Unicode files and files that you convert to Unicode, you must make sure that the file
length value is an even number. Otherwise FileRead or FileReadEx cannot parse the entire
file.

Examples

These statements allow the user to select a file and then open the file and set the Picture
control p_1 to the bitmap in the selected file:

integer fh, ret
blob Emp_pic
string txtname, named
string defext = "BMP"
string Filter = "bitmap Files (*.bmp), *.bmp"
ret = GetFileOpenName("Open Bitmap", txtname, &
 named, defext, filter)
IF ret = 1 THEN
 fh = FileOpen(txtname, StreamMode!)
 IF fh <> -1 THEN
 FileRead(fh, Emp_pic)
 FileClose(fh)
 p_1.SetPicture(Emp_pic)
 END IF
END IF

2.4.752 SetPointer

Sets the mouse pointer to a specified shape.

Table 2.1278:

To Use

Specifies a system-defined designated shape Syntax 1

Specifies a file-defined designated shape Syntax 2

2.4.752.1 Syntax 1: System-defined shape

Description

Sets the mouse pointer to a specified system-defined shape.

Syntax

SetPointer (type)

Table 2.1279:

Argument Description

type A value of the Pointer enumerated datatype indicating the type of pointer
you want. Values are:

AppStarting!

Arrow!

Cross!

Beam!

Help!

Statements, Events, and Functions

Page 1400

Argument Description
HourGlass!

Hyperlink!

Icon!

None!

Size!

SizeNS!

SizeNESW!

SizeWE!

SizeNWSE!

UpArrow!

Return value

Pointer. Returns the enumerated type of the pointer it replaced so the script can restore it, if
necessary. If type is null, SetPointer returns null.

Usage

Use SetPointer to display an hourglass at the beginning of a script when the script will take
a long time to execute. The pointer remains set until you change it again in the script or the
script terminates.

Restoring the arrow pointer

The pointer automatically changes back to an arrow when the script finishes
executing. You do not have to change it back to an arrow.

In PowerBuilder's painters, you can specify the pointer shape that PowerBuilder displays
when the user moves the pointer over a window, a control, or specific parts of a DataWindow
object. The available shapes include the stock pointers listed above, as well as any custom
cursor files you have.

Examples

This statement sets the pointer to the hourglass shape:

SetPointer(HourGlass!)

This example saves the old pointer and restores it when a long activity is completed:

pointer oldpointer // Declares a pointer variable
oldpointer = SetPointer(HourGlass!)
... // Performs some long activity
SetPointer(oldpointer)

2.4.752.2 Syntax 2: File-defined shape

Description

Sets the mouse pointer to a specified system-defined shape.

Statements, Events, and Functions

Page 1401

Syntax

SetPointer (shape)

Table 2.1280:

Argument Description

shape A string reference to a CUR file specifying the pointer type that you want
to use.

Return value

Pointer. Returns an enumerated type for the pointer. However, this value should be ignored
when you set the pointer with a shape from a CUR file. If shape is null, SetPointer returns
null.

2.4.753 SetPosition

Specifies the front-to-back position of a control in a window, a window, or an object within a
DataWindow.

Table 2.1281:

To Use

Specify the front-to-back position of a control in a window, or specify
that a window should always display on top of other windows

Syntax 1

Move an object in a DataWindow to another band or to specify its front-
to-back position within a band

Syntax 2

2.4.753.1 Syntax 1: For positioning windows and controls in windows

Description

For controls in a window, specifies the position of a control in the front-to-back order within
a window. For a window, specifies whether it always displays on top of other open windows.

Applies to

A control within a window or a window

Syntax

objectname.SetPosition (position {, precedingobject })

Table 2.1282:

Argument Description

objectname The name of a control for which you want to specify a location in the
front-to-back order within the window, or the name of a window for
which you want to specify whether it always displays on top. Objectname
cannot be a child window or a sheet.

position A SetPosType enumerated datatype. The values you can specify depend
on whether objectname is a control or a window.

For controls, values are:

Statements, Events, and Functions

Page 1402

Argument Description
• Behind! -- Position objectname behind precedingobject in the order

• ToTop! -- Position objectname on top of all other controls

• ToBottom! -- Position objectname behind all other controls

For windows, values are:

• TopMost! -- Always display objectname on top of all other open
windows

• NoTopMost! -- Do not always display objectname on top of all other
open windows

precedingobject
(optional)

The name of the object you want to position objectname behind.
Precedingobject is required if position is Behind!.

Return value

Integer.

Returns 1 when it succeeds and -1 if an error occurs. If any argument's value is null,
SetPosition returns null.

Usage

The front-to-back order for controls determines which control covers another when they
overlap. If a control completely covers another control, the control that is in back becomes
inaccessible to the user.

When you specify TopMost! for more than one window, the most recently executed
SetPosition function controls which window displays on top.

Examples

This statement positions cb_two on top:

cb_two.SetPosition(ToTop!)

This statement positions cb_two behind cb_three:

cb_two.SetPosition(Behind!, cb_three)

This statement makes the window w_signon the topmost window:

w_signon.SetPosition(TopMost!)

This statement makes the window w_signon no longer necessarily the topmost window:

w_signon.SetPosition(NoTopMost!)

2.4.753.2 Syntax 2: For positioning objects within a DataWindow

Description

Moves an object within the DataWindow to another band or changes the front-to-back order
of objects within a band.

Statements, Events, and Functions

Page 1403

Applies to

DataWindow controls and DataStores

Syntax

dwcontrol.SetPosition (objectname, band, bringtofront)

Table 2.1283:

Argument Description

dwcontrol The name of the DataWindow control or DataStore containing the object.

objectname The name of the object within the DataWindow that you want to move.
You assign names to the DataWindow objects in the DataWindow
painter.

band The name of the band or layer in which you want to position objectname.

Layer names are background and foreground.

Band names are detail, header, footer, summary, header.#, and trailer.#.

is the group level number. Enter the empty string ("") if you do not
want to change the band

bringtofront A boolean indicating whether you want to bring objectname to the front
within the band:

• TRUE -- Bring it to the front

• FALSE -- Do not bring it to the front

Return value

Integer.

Returns 1 when it succeeds and -1 if an error occurs. If any argument's value is null,
SetPosition returns null.

Examples

This statement moves oval_red in dw_rpt to the header and brings it to the front:

dw_rpt.SetPosition("oval_red", "header", TRUE)

This statement does not change the position of oval_red , but does bring it to the front:

dw_rpt.SetPosition("oval_red", "", TRUE)

This statement moves oval_red to the footer but does not bring it to the front:

dw_rpt.SetPosition("oval_red", "footer", FALSE)

2.4.754 SetProfileString

Description

Writes a value in a profile file for a PowerBuilder application.

Syntax

Statements, Events, and Functions

Page 1404

SetProfileString (filename, section, key, value)

Table 2.1284:

Argument Description

filename A string whose value is the name of the profile file. If you do not include
the full path in filename, PowerBuilder searches the DOS path for
filename.

section A string whose value is the name of a group of related values in the
profile file. If section does not exist in the file, PowerBuilder adds it.

key A string whose value is the key in section for which you want to specify a
value. If key does not exist in section, PowerBuilder adds it.

value A string whose value is the value you want to specify for key.

Return value

Integer.

Returns 1 when it succeeds and -1 if it fails because filename is not found or cannot be
accessed. If any argument's value is null, SetProfileString returns null.

Usage

A profile file consists of section labels, which are enclosed in square brackets, and keys,
which are followed by an equal sign and a value. By changing the values assigned to the
keys, you can specify custom settings for each installation of your application. When you are
planning your own profile file, you select the section and key names and determine how the
values are used.

For example, a profile file might contain information about the user. In the sample below,
User Info is the section name and the other values are the keys. There is no space before and
after the equal sign used in the keys or in the section label (if you use a section name such as
Section=1):

[User Info]
Name="James Smith"
JobTitle="Window Washer"
SecurityClearance=9
Password=

Call SetProfileString to store configuration information, supplied by you or the user, in a
profile file. You can call the functions ProfileInt and ProfileString to use that information to
customize your PowerBuilder application at runtime.

ProfileInt, ProfileString, and SetProfileString can read or write to files with ANSI or UTF16-
LE encoding on Windows systems, and ANSI or UTF16-BE encoding on UNIX systems.

Accessing the profile file

SetProfileString uses profile calls to write data to the profile file. Consequently it does not
control when the profile file is written and closed. If you try to read data from the profile file
immediately after calling SetProfileString, the file may still be open and you will receive
incomplete or incorrect data.

To avoid this problem, you can use the PowerScript FileOpen, FileWrite, and FileClose
functions to write data to the profile file instead of using SetProfileString. Or you can add

Statements, Events, and Functions

Page 1405

some additional processing after the SetProfileString call so that the profile calls have time to
complete before you try to read from the profile file.

Windows registry

SetProfileString can also be used to obtain configuration settings from the Windows
system registry. For information on how to use the system registry, see the
discussion of initialization files and the Windows registry in Section 8.4, “Managing
Initialization Files and the Windows Registry” in Application Techniques.

Examples

This statement sets the keyword Title in section Position of file C:\PROFILE.INI to the string
MGR:

SetProfileString("C:\PROFILE.INI", &
 "Position", "Title", "MGR")

See also

ProfileInt

ProfileString

2.4.755 SetRange

Description

Sets a duration for a progress bar control or sets the start and end position for a trackbar
control.

Applies to

Progress bar controls

Syntax

controlname.SetRange (startpos, endpos)

Table 2.1285:

Argument Description

controlname The name of the progress bar or trackbar

startpos Integer indicating the initial position of the range

endpos Integer indicating the terminal position of the range

Return value

Integer.

Returns 1 if it succeeds and -1 if there is an error.

Usage

The default range for the progress bar controls is 0 to 100.

Examples

This statement sets a range of 1 to 10 for a progress bar control:

Statements, Events, and Functions

Page 1406

HProgressBar.SetRange (1, 10)

See also

OffsetPos

SelectionRange

StepIt

2.4.756 SetRecentItem

Description

Sets a recent menu item for the application menu in the RibbonBar control.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.SetRecentItem (Long Index, RibbonMenuItem Item)

Table 2.1286:

Argument Description

controlname The name of the RibbonApplicationMenu control in which you want to
set the recent menu item.

Index The index of the recent menu item for which you want to set. If index is
invalid, an error would occur and this operation would return -1.

Item A RibbonMenuItem item you want to set. Only RibbonMenuItem with
"Recent(2)" ItemType is supported. If RibbonMenuItem is with other
ItemType such as "Normal(0)" or "Separator(1)", an error would occur
and this operation would return -1.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

Only the menu item with the "Recent" type (that is RibbonMenuItem with ItemType 2) can
be added as a recent menu item.

The recent menu can have only one level; and can contain no more than 9 items.

The user events to be bound with the recent menu item must be defined correctly according to
the requirements of RibbonMenuItem. For details, see Clicked and Selected.

Examples

This example inserts the "RecentItem1" recent menu item and binds it with the
"Ue_RecentItem1Clicked" user event, and then changes the text of this item to
"RecentItem2" and the bound user event to "Ue_RecentItem2Clicked".

Integer li_Return
Long ll_Index

Statements, Events, and Functions

Page 1407

RibbonApplicationMenu lr_AppMenu
RibbonMenuItem lr_MenuItem

ll_Index = lr_AppMenu.InsertRecentItemFirst("RecentItem1", "Ue_RecentItem1Clicked")
lr_MenuItem.ItemType = 2
lr_MenuItem.Text = "RecentItem2"
lr_MenuItem.Clicked = "Ue_RecentItem2Clicked"
li_Return = lr_AppMenu.SetRecentItem(ll_Index, lr_MenuItem)

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentTitle

2.4.757 SetRecentTitle

Description

Sets the title for the recent menu list in the application menu. The title will be displayed on
top of the recent menu list.

Applies to

RibbonApplicationMenu controls

Syntax

controlname.SetRecentTitle (String Title)

Table 2.1287:

Argument Description

controlname The name of the RibbonApplicationMenu control in which you want to
set the title of the recent menu list.

Statements, Events, and Functions

Page 1408

Argument Description

Title Title of the recent menu list. It will be displayed on top of the recent
menu list.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Examples

This example sets the title of the recent menu list to "Recently Opened Windows".

Long li_Return
RibbonApplicationMenu lr_AppMenu

li_Return = lr_AppMenu.SetRecentTitle ("Recently Opened Windows")

See also

AddMasterSeparatorItem

ClearRecentItems

DeleteMasterItem

DeleteRecentItem

GetMasterItem

GetMasterItemCount

GetRecentItem

GetRecentItemCount

GetRecentTitle

InsertMasterItem

InsertMasterItemFirst

InsertMasterItemLast

InsertRecentItem

InsertRecentItemFirst

InsertRecentItemLast

SetMasterItem

SetRecentItem

2.4.758 SetRecordSet

Description

Sets an ADOResultSet object to obtain its data and metadata from a passed ADO Recordset.

Applies to

ADOResultSet objects

Statements, Events, and Functions

Page 1409

Syntax

adoresultset.SetRecordSet (adorecordsetobject)

Table 2.1288:

Argument Description

adoresultset An ADOResultSet object into which the function places the passed ADO
Recordset.

adorecordsetobjectAn OLEObject object that contains an ADO Recordset. Passing an
OLEObject that does not contain an ADO Recordset generates an error.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Use the SetRecordSet function to populate an ADOResultSet object with data passed in
an OLEObject that contains an ADO Recordset. Record sets are returned from COM+
components as ADO Recordsets.

Examples

The following example connects to a COM+ component and calls a method on the
component that returns an ADO Recordset to an OLEObject object. Then it creates an
ADOResultSet object and populates it with data from the OLEObject using SetRecordSet:

OLEObject loo_mycomponent
OLEObject loo_ADOrecordset
ADOresultset lrs_ADOresultset
integer li_rc

loo_mycomponent = CREATE OLEObject
li_rc = loo_mycomponent.ConnectToNewObject("PB.Test")
IF li_rc <> 0 THEN
 MessageBox("Connect Failed", string(li_rc))
 RETURN
END IF

// Use an OLEObject to hold ADO Recordset
// returned from method on COM+ component
loo_ADOrecordset = loo_mycomponent.GetTestResult()

// Create an ADOResultSet and get its data
// from OLEObject holding passed ADO Recordset
lrs_ADOresultset = CREATE ADOResultSet
lrs_ADOresultset.SetRecordSet(loo_ADOrecordset)

See also

CreateFrom method for DataWindows in Section 9.15, “CreateFrom” in DataWindow
Reference.

GenerateResultSet method for DataWindows in Section 9.42, “GenerateResultSet” in
DataWindow Reference.

GetRecordSet

Statements, Events, and Functions

Page 1410

SetResultSet

2.4.759 SetRedraw

Description

Controls the automatic redrawing of an object or control after each change to its properties.

Applies to

Any object except a Menu

Syntax

objectname.SetRedraw (boolean)

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If boolean is null, SetRedraw returns null.

Usage

By default, PowerBuilder redraws a control after each change to properties that affect
appearance. Use SetRedraw to turn off redrawing temporarily in order to avoid flicker and
reduce redrawing time when you are making several changes to the properties of an object or
control. If the window is not visible, SetRedraw fails.

Caution

If you turn redraw off, you must turn it on again. Otherwise, problems may result. In
addition, if redraw is off and you change the Visible or Enabled property of an object
in the window, the tabbing order may be affected.

Examples

This statement turns off redraw for lb_Location:

lb_Location.SetRedraw(FALSE)

If lb_Location is sorted (lb_Location.Sorted = TRUE), these statements use SetRedraw to
avoid sorting and redrawing the list of lb_Location until all the new items have been added:

lb_Location.SetRedraw(FALSE)
lb_Location.AddItem("Atlanta")
lb_Location.AddItem("Boston")
lb_Location.AddItem("Washington")
lb_Location.SetRedraw(TRUE)

2.4.760 SetRemote

Asks a DDE server application to accept data and store it in the specified location. There
are two ways of calling SetRemote, depending on the type of DDE connection you have
established.

Table 2.1289:

To Use

Make a single DDE request of a server application (a cold link) Syntax 1

Statements, Events, and Functions

Page 1411

To Use

Make a DDE request of a server application when you have established a
warm link by opening a channel

Syntax 2

2.4.760.1 Syntax 1: For single DDE requests

Description

Asks a DDE server application to accept data to be stored in the specified location without
requiring an open channel. This syntax is appropriate when you will make only one or two
requests of the server.

Syntax

SetRemote (location, value, applname, topicname {, bAnsi})

Table 2.1290:

Argument Description

location A string whose value is the location of the data in the server application
that will accept the data. The format of location depends on the
application that will receive the request.

value A string whose value you want to send to the remote application.

applname A string whose value is the DDE name of the server application.

topicname A string identifying the data or the instance of the application that will
accept the data (for example, in Microsoft Excel, the topic name could be
the name of an open spreadsheet).

bAnsi

(optional)

A boolean identifying whether the string to send to the DDE server is
in ANSI format. If bAnsi is NULL, false, or empty, PowerBuilder will
first try to send the data in a UNICODE formatted string. If bAnsi is true,
PowerBuilder will try to send the data in an ANSI formatted string.

Return value

Integer.

Returns 1 if it succeeds and a negative integer if an error occurs. Values are:

-1 -- Link was not started

-2 -- Request denied

If any argument's value is null, SetRemote returns null.

Usage

When using DDE, your PowerBuilder application must have an open window, which will be
the client window. For this syntax, the active window is the DDE client window.

For more information about DDE channels and warm and cold links, see the ExecRemote
function.

Examples

This statement asks Microsoft Excel to set the value of the data in row 5, column 7 of a
worksheet called SALES.XLS to 4500:

Statements, Events, and Functions

Page 1412

SetRemote("R5C7", "4500", "Excel", "SALES.XLS")

See also

ExecRemote

GetRemote

OpenChannel

2.4.760.2 Syntax 2: For DDE requests via an open channel

Description

Asks a DDE server application to accept data to be stored in the specified location when you
have already established a warm link by opening a channel to the server. A warm link, with
an open channel, is more efficient when you intend to make several DDE requests.

Syntax

SetRemote (location, value, handle {, windowhandle } {, bAnsi})

Table 2.1291:

Argument Description

location A string whose value is the location of the data in the server application
that will accept the data. The format of location depends on the
application that will receive the request.

value A string whose value you want to send to the remote application.

handle A long that identifies the channel to the DDE server application. Handle
is the value returned by OpenChannel, which you call to open a DDE
channel.

windowhandle
(optional)

The handle to the window that is acting as the DDE client.

bAnsi

(optional)

A boolean identifying whether the string to send to the DDE server is
in ANSI format. If bAnsi is NULL, false, or empty, PowerBuilder will
first try to send the data in a UNICODE formatted string. If bAnsi is true,
PowerBuilder will try to send the data in an ANSI formatted string.

Return value

Integer.

Returns 1 if it succeeds and a negative integer if an error occurs. Values are:

-1 -- Link was not started

-2 -- Request denied

-9 -- Handle is null

Usage

When using DDE, your PowerBuilder application must have an open window, which will
be the client window. For this syntax, you can specify a client window other than the active
window with the windowhandle argument.

Statements, Events, and Functions

Page 1413

Before using this syntax of SetRemote, call OpenChannel to establish a DDE channel.

For more information about DDE channels and warm and cold links, see the ExecRemote
function.

Examples

This example opens a channel to a Microsoft Excel worksheet and asks it to set the value of
the data in row 5 column 7 to 4500:

long handle
handle = OpenChannel("Excel", "REGION.XLS")
SetRemote("R5C7", "4500", handle)

See also

ExecRemote

GetRemote

OpenChannel

2.4.761 SetRequestHeader

Description

Sets the request header.

Applies to

HTTPClient and RestClient objects

Syntax

objectname.SetRequestHeader (string headerName, string headerValue{, Boolean
 replace })

Table 2.1292:

Argument Description

objectname The name of the HTTPClient or RestClient object in which you want to
set the request header.

headerName A string whose value is the header name.

headerValue A string whose value is the header value.

replace
(optional)

A boolean determines whether to replace the current existing request
value if the same header name already exists.

• TRUE -- to replace the value in the current existing request header if
the same header name already exists.

• FALSE -- to add the value (with a “,”) to the current existing request
header if the same header name already exists. The default value is
FALSE.

Note: use this argument cautiously (TRUE is recommended) when you
specify the charset in the "Content-Type" header, because no more than
one charset is allowed.

Statements, Events, and Functions

Page 1414

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

This example constructs a GET request which supports all header settings:

HttpClient lnv_HttpClient
lnv_HttpClient = Create HttpClient
lnv_HttpClient.SetRequestHeader("Accept", "*/*")
lnv_HttpClient.SetRequestHeader("Accept-Encoding", "gzip")
lnv_HttpClient.SetRequestHeader("Accept-Language", "en")
lnv_HttpClient.SetRequestHeader("Connection", "keep-alive")
lnv_HttpClient.SetRequestHeader("User-Agent", "Chrome/60.0.3112.113")
lnv_HttpClient.SetRequestHeader("Cache-Control", "no-cache")

See also

ClearRequestHeaders

GetRequestHeader

GetRequestHeaders

SetRequestHeaders

2.4.762 SetRequestHeaders

Description

Sets all of the request headers.

Applies to

HTTPClient and RestClient objects

Syntax

objectname.SetRequestHeaders (headers)

Table 2.1293:

Argument Description

objectname The name of the HTTPClient or RestClient object in which you want to
set the request header

headers A string whose value is the information of all of the headers

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

Integer li_rc
HttpClient lnv_HttpClient

Statements, Events, and Functions

Page 1415

lnv_HttpClient = Create HttpClient
li_rc = lnv_HttpClient.SetRequestHeaders("content-type:application/json;
 charset=UTF-8~r~nCache-Control:no-cache")

See also

ClearRequestHeaders

GetRequestHeader

GetRequestHeaders

SetRequestHeader

2.4.763 SetResultSet

Description

Populates a new ADOResultSet object with data passed in a ResultSet object.

Applies to

ADOResultSet objects

Syntax

adoresultset.SetResultSet (resultsetobject)

Table 2.1294:

Argument Description

adoresultset An ADOResultSet object into which the function places the passed result
set as an ADO Recordset

resultsetobject A ResultSet object that contains result set data

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Use SetResultSet when you want to create an ADOResultSet object and populate it with data
from a ResultSet object. The ResultSet object can be generated from a DataStore object using
the GenerateResultSet function.

After you create the ADOResultSet object using SetResultSet, you can use the GetRecordSet
function to return the ADO result set in an ADO Recordset object of type OLEObject that
you can use as a native ADO Recordset object in PowerScript.

Examples

See GetRecordSet.

See also

GenerateResultSet method for DataWindows in Section 9.42, “GenerateResultSet” in
DataWindow Reference.

GetRecordSet

Statements, Events, and Functions

Page 1416

SetRecordSet

2.4.764 SetSelectedDate

Description

Selects a specified date.

Applies to

MonthCalendar control

Syntax

controlname.SetSelectedDate (d)

Table 2.1295:

Argument Description

controlname The name of the MonthCalendar control for which you want to set the
selected date

d A date value to be set as the date selected

Return value

Integer.

Returns 0 for success and one of the following negative values otherwise:

-1 -- Invalid arguments

-2 -- Unknown failure

Usage

Use the SetSelectedDate function to select a single date. SetSelectedDate returns -1 if you
try to specify a date that is outside the range of minimum and maximum dates specified with
SetDateLimits.

SetSelectedDate and SetSelectedRange trigger a DateChanged event. You should not call
either method in a DateChanged event, particularly using the Post method.

Examples

This example sets the selected date to a date passed into a function:

// function argument seldate
integer li_return

li_return = mc_1.SetSelectedDate(seldate)

See also

GetSelectedDate

SetDateLimits

2.4.765 SetSelectedRange

Description

Statements, Events, and Functions

Page 1417

Sets the range of selected dates.

Applies to

MonthCalendar control

Syntax

controlname.SetSelectedRange (start, end)

Table 2.1296:

Argument Description

controlname The name of the MonthCalendar control for which you want to set the
selected range

start A date value to be set as the earliest date selected

end A date value to be set as the latest date selected

Return value

Integer.

Returns 0 for success and one of the following negative values otherwise:

-1 -- Invalid arguments

-2 -- Unknown failure

Usage

Use the SetSelectedRange function to select a range of consecutive dates.

SetSelectedRange uses the start date as the end date and vice versa if you specify an end date
that is earlier than the start date. You must set the MaxSelectedCount property to a value
large enough to support the range before calling SetSelectedRange. SetSelectedRange returns
-1 if the dates you specify are outside the range of minimum and maximum dates specified
with SetDateLimits, or if the range exceeds MaxSelectedCount. If the start and end dates are
the same, a single date is selected.

If the user scrolls the calendar with the navigation buttons when a date range is selected, the
date range changes as the calendar scrolls.

SetSelectedDate and SetSelectedRange trigger a DateChanged event. You should not call
either method in a DateChanged event, particularly using the Post method.

Examples

This example sets the start date of the selected range to startdate and the end date to enddate:

integer li_return
Date startdate, enddate
startdate = Today()
enddate = Date("12-31-2007")
li_return = mc_1.SetSelectedRange(startdate, enddate)

See also

GetSelectedRange

SetDateLimits

Statements, Events, and Functions

Page 1418

2.4.766 SetSeriesLabelling

Description

Set the series label for a DirectX 3D graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetSeriesLabelling ({graphcontrol, } series, value)

Table 2.1297:

Argument Description

controlname The name of the graph in which you want to set data, or the name of the
DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control.

series The string that names the series in which you want to change the series
label setting.

value Indicates whether to label the series with its values.

Return value

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetSeriesLabelling returns null.

Usage

SetSeriesLabelling is used to indicate whether or not to label the series with the data numbers
for DirectX 3D Area, Bar, Col, or Line graphs. You cannot use this method with DirectX 3D
Pie graphs.

Examples

These statements obtain the series and data point of graph gr_1 in the DataWindow control
dw_employee.

integer SeriesNbr, ItemNbr
string ls_SeriesName
grObjectType clickedtype

// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &
 SeriesNbr, ItemNbr)

//Get the name of series
ls_SeriesName = dw_employee.SeriesName("gr_1", &
 SeriesNbr)

// Set Series label
dw_employee.SetSeriesLabelling("gr_1", &
 ls_SeriesName, true)

These statements obtain the series and data point of graph gr_1.

Statements, Events, and Functions

Page 1419

integer SeriesNbr, ItemNbr
string ls_SeriesName
grObjectType clickedtype

clickedtype = gr_1.ObjectAtPointer(SeriesNbr, &
 ItemNbr)

ls_SeriesName = gr_1.SeriesName(SeriesNbr)

gr_1.SetSeriesLabelling(ls_SeriesName, true)

See also

GetDataLabelling

GetSeriesLabelling

SetDataLabelling

2.4.767 SetSeriesStyle

Specifies the appearance of a series in a graph. There are several syntaxes, depending on
what settings you want to change.

Table 2.1298:

To Use

Set the series' colors Syntax 1

Set the line style and width Syntax 2

Set the fill pattern or symbol for the series Syntax 3

Specify that the series is an overlay Syntax 4

2.4.767.1 Syntax 1: For setting a series' colors

Description

Specifies the colors of a series in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetSeriesStyle ({ graphcontrol, } seriesname, colortype, color)

Table 2.1299:

Argument Description

controlname The name of the graph in which you want to set the color of a series, or
the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
for which you want to set the color of a series.

seriesname A string whose value is the name of the series for which you want to set
the color.

Statements, Events, and Functions

Page 1420

Argument Description

colortype A value of the grColorType enumerated datatype specifying the item for
which you want to set the color. Values are:

• Foreground! -- Text color

• Background! -- Background color

• LineColor! -- Line color

• Shade! -- Shade (for graphics that are three-dimensional or have solid
objects)

color A long specifying the new color for colortype.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetSeriesStyle returns null.

Usage

Data points in a series can have their own style settings. Settings made with SetDataStyle set
the style of individual data points and override series settings.

The graph stores style information for properties that do not apply to the current graph type.
For example, you can set the fill pattern in a two-dimensional line graph or the line style in a
bar graph, but that fill pattern or line style will not be visible.

For a graph in a DataWindow, you can specify the appearance of a series in the graph before
PowerBuilder draws the graph. To do so, define a user event for pbm_dwngraphcreate and
call SetSeriesStyle in the script for that event. The event pbm_dwngraphcreate is triggered
just before a graph is created in a DataWindow object.

Using SetSeriesStyle with DirectX 3D Graphs

You can only set the color for the foreground. Background, line color, and shade are
not supported.

Examples

This statement sets the text (foreground) color of the series named Salary in the graph
gr_emp_data to black:

gr_emp_data.SetSeriesStyle("Salary", &
 Foreground!, 0)

This statement sets the background color of the series named Salary in the graph gr_depts in
the DataWindow control dw_employees to black:

dw_employees.SetSeriesStyle("gr_depts", &
 "Salary", Background!, 0)

These statements in the Clicked event of the graph control gr_product_data coordinate line
color between it and the graph gr_sales_data. The script stores the line color for the series

Statements, Events, and Functions

Page 1421

under the mouse pointer in the graph gr_product_data in the variable line_color. Then it sets
the line color for the series northeast in the graph gr_sales_data to that color:

string SeriesName
integer SeriesNbr, Series_Point
long line_color
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr,Series_Point)

IF MouseHit = TypeSeries! THEN
 SeriesName = &
 gr_product_data.SeriesName(SeriesNbr)

 gr_product_data.GetSeriesStyle(SeriesName, &
 LineColor!, line_color)

 gr_sales_data.SetSeriesStyle("Northeast", &
 LineColor!, line_color)
END IF

See also

GetDataStyle

GetSeriesStyle

SeriesName

SetDataStyle

2.4.767.2 Syntax 2: For lines in a graph

Description

Specifies the style and width of a series' lines in a graph.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls objects

Syntax

controlname.SetSeriesStyle ({ graphcontrol, } seriesname, linestyle, linewidth)

Table 2.1300:

Argument Description

controlname The name of the graph in which you want to set the line style and width
of a series, or the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
in which you want to set the line style and width.

seriesname A string whose value is the name of the series for which you want to set
the line style and width.

linestyle A value of the LineStyle enumerated datatype. Values are:

Continuous!

Statements, Events, and Functions

Page 1422

Argument Description
Dash!

DashDot!

DashDotDot!

Dot!

Transparent!

linewidth An integer specifying the width of the line in pixels.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetSeriesStyle returns null.

Usage

Data points in a series can have their own style settings. Settings made with SetDataStyle set
the style of individual data points and override series settings.

The graph stores style information for properties that do not apply to the current graph type.
For example, you can set the fill pattern in a two-dimensional line graph or the line style in a
bar graph, but that fill pattern or line style will not be visible.

For a graph in a DataWindow, you can specify the appearance of a series in the graph before
PowerBuilder draws the graph. To do so, define a user event for pbm_dwngraphcreate and
call SetSeriesStyle in the script for that event. The event pbm_dwngraphcreate is triggered
just before a graph is created in a DataWindow object.

Examples

This statement sets the line style and width for the series named Costs in the graph
gr_product_data:

gr_product_data.SetSeriesStyle("Costs", &
 Dot!, 5)

See also

GetDataStyle

GetSeriesStyle

SeriesName

SetDataStyle

2.4.767.3 Syntax 3: For the fill pattern and symbols in a graph

Description

Specifies the fill pattern and symbol for data markers in a series.

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Statements, Events, and Functions

Page 1423

Syntax

controlname.SetSeriesStyle ({ graphcontrol, } seriesname, enumvalue)

Table 2.1301:

Argument Description

controlname The name of the graph in which you want to set the appearance of a
series, or the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
in which you want to set the appearance.

seriesname A string whose value is the name of the series in which you want to set
the appearance.

enumvalue A value of an enumerated datatype specifying an appearance setting
for the series. Values for the FillPattern or grSymbolType enumerated
datatypes follow.

 To change the fill pattern, use a FillPattern value:

Bdiagonal! (Lines from lower left to upper right)

Diamond!

Fdiagonal! (Lines from upper left to lower right)

Horizontal!

Solid!

Square!

Vertical!

To change the symbol type, use a grSymbolType value:

NoSymbol!

SymbolHollowBox!

SymbolX!

SymbolStar!

SymbolHollowUpArrow!

SymbolHollowCircle!

SymbolHollowDiamond!

SymbolSolidDownArrow!

SymbolSolidUpArrow!

SymbolSolidCircle!

SymbolSolidDiamond!

SymbolPlus!

SymbolHollowDownArrow!

Statements, Events, and Functions

Page 1424

Argument Description
SymbolSolidBox!

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetSeriesStyle returns null.

Usage

Data points in a series can have their own style settings. Settings made with SetDataStyle set
the style of individual data points and override series settings.

The graph stores style information for properties that do not apply to the current graph type.
For example, you can set the fill pattern in a two-dimensional line graph or the line style in a
bar graph, but that fill pattern or line style will not be visible.

For a graph in a DataWindow, you can specify the appearance of a series in the graph before
PowerBuilder draws the graph. To do so, define a user event for pbm_dwngraphcreate and
call SetSeriesStyle in the script for that event. The event pbm_dwngraphcreate is triggered
just before a graph is created in a DataWindow object.

Using SetSeriesStyle with DirectX 3D Graphs

You cannot use a fill pattern or specify specific symbols for a series.

Examples

This statement sets the symbol used for the series named Costs in the graph gr_product_data
to a plus sign:

gr_product_data.SetSeriesStyle("Costs", &
 SymbolPlus!)

This statement sets the symbol used for the series named Costs in the graph gr_computers in
the DataWindow control dw_equipment to X:

dw_equipment.SetSeriesStyle("gr_computers", &
 "Costs", SymbolX!)

See also

GetDataStyle

GetSeriesStyle

SeriesName

SetDataStyle

2.4.767.4 Syntax 4: For creating an overlay in a graph

Description

Specifies whether a series is an overlay, meaning that the series is represented by a line on
top of another graph type.

Statements, Events, and Functions

Page 1425

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetSeriesStyle ({ graphcontrol, } seriesname, overlaystyle)

Table 2.1302:

Argument Description

controlname The name of the graph in which you want to set the overlay status of a
series, or the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the DataWindow control
in which you want to set the overlay status.

seriesname A string whose value is the name of the series whose overlay status you
want to change.

overlaystyle A boolean value indicating whether you want the series to be an overlay,
meaning that the series is shown in front as a line. Set overlaystyle to
true to make the specified series an overlay. Set it to false to remove the
overlay setting.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetSeriesStyle returns null.

Usage

For a graph in a DataWindow, you can specify the appearance of a series in the graph before
PowerBuilder draws the graph. To do so, define a user event for pbm_dwngraphcreate and
call SetSeriesStyle in the script for that event. The event pbm_dwngraphcreate is triggered
just before a graph is created in a DataWindow object.

Using SetSeriesStyle with DirectX 3D Graphs

You cannot use the overlay style for a series.

Examples

This statement sets the style of the series named Costs in the graph gr_product_data to
overlay:

gr_product_data.SetSeriesStyle("Costs", TRUE)

These statements in the Clicked event of the DataWindow control dw_employees store the
style of the series under the pointer in the graph gr_depts in the variable style_type. If the
style of the series is overlay (true), the script changes the style to normal (false):

string SeriesName

Statements, Events, and Functions

Page 1426

integer SeriesNbr, Data_Point
boolean overlay_style
grObjectType MouseHit

MouseHit = dw_employees.ObjectAtPointer(&
 "gr_depts", SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
 SeriesName = &
 dw_employees.SeriesName("gr_depts",SeriesNbr)

 dw_employees.GetSeriesStyle("gr_depts", &
 SeriesName, overlay_style)

 IF overlay_style THEN &
 dw_employees.SetSeriesStyle("gr_depts", &
 SeriesName, FALSE)
END IF

See also

GetDataStyle

GetSeriesStyle

SeriesName

SetDataStyle

2.4.768 SetSeriesTransparency

Description

Sets the tranparency percentage of a series in a DirectX 3D graph (those with 3D rendering).

Applies to

Graph controls in windows and user objects, and graphs in DataWindow controls

Syntax

controlname.SetSeriesTransparency ({ graphcontrol, } series, transparency)

Table 2.1303:

Argument Description

controlname The name of the graph in which you want to set a series transparency
value, or the name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to set a series transparency
value.

series The string that identifies the series for which you want to set the
transparency value.

transparency Integer value for percent transparency. A value of 0 means that the series
is opaque and a value of 100 means that it is completely transparent.

Return value

Integer.

Statements, Events, and Functions

Page 1427

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null,
SetSeriesTransparency returns null.

Usage

SetSeriesTransparency sets the transparency value for a series in any DirectX 3D graph
(those with 3D rendering).

Examples

These statements set the transparency percentage to 50% for the clicked series in the graph
gr_1 in the DataWindow control dw_employee:

integer SeriesNbr, ItemNbr, TransNbr
string ls_SeriesName
grObjectType clickedtype

// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &
 SeriesNbr, ItemNbr)

//Get the name of series
ls_SeriesName = dw_employee.SeriesName("gr_1", &
 SeriesNbr)

//The following statement sets Transparency to 50%
TransNbr = 50

dw_employee.SetSeriesTransparency("gr_1", &
 ls_SeriesName, TransNbr)

These statements set the transparency to 50% for the clicked series in the graph gr_employee.

integer SeriesNbr, ItemNbr, TransNbr
string ls_SeriesName
grObjectType clickedtype

clickedtype = gr_employee.ObjectAtPointer(&
 SeriesNbr, ItemNbr)

ls_SeriesName = gr_employee.SeriesName(SeriesNbr)

TransNbr = 50

gr_employee.SetSeriesTransparency(&
 ls_SeriesName, TransNbr)

See also

FindSeries

GetSeriesTransparency

GetDataTransparency

SetDataTransparency

2.4.769 SetSheetID

Description

Sets the unique identifier for an open sheet.

Applies to

Statements, Events, and Functions

Page 1428

Window objects

Syntax

controlname.SetSheetID (sheetname)

Table 2.1304:

Argument Description

controlname The open sheet to be identified.

sheetname A unique string identifier for the sheet, which is used when layout is
persisted.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SetSheetID
returns null.

Usage

If no sheet identifier was set when it was opened by one of the OpenSheet functions, you can
set an ID using the SetSheetID function. You can also change a sheet's ID.

Examples

window win[]
OpenSheetDocked(win[1], this, WindowDockLeft!, "")
win[1].SetSheetID("sheet1")

See also

SetTextColor

SetTextStyle

2.4.770 SetSmallButton

Description

Sets the small button for the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetSmallButton (Long ItemHandle, RibbonSmallButtonItem Item)

Table 2.1305:

Argument Description

controlname The name of the RibbonBar control.

ItemHandle The handle of the small button on the same level that you will set the
item.

Item A small button item you are setting.

Statements, Events, and Functions

Page 1429

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also use the SetItem function to set the small button. Refer to SetItem for the
difference between SetItem and SetSmallButton.

The user events to be bound with the small button must be defined correctly according to the
requirements of RibbonSmallButtonItem. For details, see Clicked and Selected.

Examples

This example inserts the "Add" small button and binds it with the "Ue_SmallButtonClicked"
user event, and then sets new values for various properties (including Text, PictureName,
Clicked, Selected etc.) of this small button.

Integer li_Return
Long ll_Handle_Category, ll_Handle_Panel, ll_Handle_SmallButton
RibbonSmallButtonItem lr_SmallButton

ll_Handle_Category = rbb_1.InsertCategoryFirst ("MyCategory")
ll_Handle_Panel = rbb_1.InsertPanelFirst (ll_Handle_Category, "MyPanel",
 "AddSmall!")
ll_Handle_SmallButton = rbb_1.InsertSmallButtonFirst (ll_Handle_Panel, "Add",
 "AddSmall!", "Ue_SmallButtonClicked")
li_Return = rbb_1.GetChildItemByIndex (ll_Handle_Panel, 1, lr_SmallButton)
If li_Return = 1 Then
 lr_SmallButton.Text = "Delete"
 lr_SmallButton.PictureName = "DeleteSmall!"
 lr_SmallButton.Clicked = "Ue_SmallButtonClicked2"
 lr_SmallButton.Selected = "Ue_SmallButtonSelected2"
 li_Return = rbb_1.SetSmallButton (lr_SmallButton.ItemHandle, lr_SmallButton)
End If

See also

InsertSmallButton

InsertSmallButtonFirst

InsertSmallButtonLast

DeleteSmallButton

GetSmallButton

GetChildItemByIndex

2.4.771 SetSpacing

Description

Sets the line spacing for the selected paragraphs or the paragraph containing the insertion
point in a RichTextEdit control.

Applies to

RichTextEdit controls

Syntax

Statements, Events, and Functions

Page 1430

rtename.SetSpacing (spacing)

Table 2.1306:

Argument Description

rtename The name of the RichTextEdit control in which you want to set the line
spacing.

spacing A value of the Spacing enumerated datatype specifying the line spacing
for the text. Values are:

Spacing1! -- Single spacing

Spacing15! -- One and a half line spacing

Spacing2! -- Double spacing

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

Because spacing is a setting for paragraphs, not individual lines, then if lines have wrapped,
spacing will change for all the lines in all the paragraphs that are selected.

When you expand the line spacing, the extra space is added before the affected lines.

Examples

This example specifies double spacing for the selected paragraphs in the RichTextEdit rte_1:

rte_1.SetSpacing(Spacing2!)

This example specifies one and a half line spacing:

rte_1.SetSpacing(Spacing15!)

2.4.772 SetState

Description

Sets the highlighted state of an item in a list box. SetState is only applicable to a list box
control whose MultiSelect property is set to true.

Applies to

ListBox and PictureListBox controls

Syntax

listboxname.SetState (index, state)

Table 2.1307:

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want to set
the state (highlighted or not highlighted) for an item. The MultiSelect
property for the control must be set to true.

Statements, Events, and Functions

Page 1431

Argument Description

index The number of the item for which you want to set the state. Specify 0 to
set the state of all the items in the ListBox.

state A boolean value that determines the state of the item:

• TRUE -- Selected

• FALSE -- Not selected

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SetState
returns null.

Usage

When the MultiSelect property for the control is false, use SelectItem, instead of SetState, to
select one item at a time.

Examples

This statement turns on the highlight for item 6 in lb_Actions:

lb_Actions.SetState(6, TRUE)

This statement deselects all items in lb_Actions:

lb_Actions.SetState(0, FALSE)

This statement turns off the highlight for item 6 in lb_Actions if it is selected and turns it on
again if it is not selected:

IF lb_Actions.State(6) = 1 THEN
 lb_Actions.SetState(6, FALSE)
ELSE
 lb_Actions.SetState(6, TRUE)
END IF

See also

SelectItem

SetTop

State

2.4.773 SetSyncRegistryProperties

Description

Sets synchronization properties in the local machine registry.

Applies to

MLSynchronization, MLSync controls

Syntax

SyncObject.SetSyncRegistryProperties ()

Statements, Events, and Functions

Page 1432

Table 2.1308:

Argument Description

syncObject The name of the synchronization object.

Return value

Integer.

Returns 1 for success and -1 for failure.

Usage

If necessary, the SetSyncRegistryProperties function can create a key in the Windows
registry from the value of the SyncRegistryKey property of the synchronization object.
Failure occurs if the SyncRegistryKey property is not set in the synchronization object.

Examples

The MLSync object generated by the MobiLink wizard for SQL Anywhere uses the
following code in its Constructor event:

IF d_Registry_Build < d_this_object_build THEN
// First time deployment of new revision - set
//"ObjectRevision" to this revision of the wizard
// objects and override all registry values
 rc = this.SetSyncRegistryProperties()
ELSE
 rc = this.GetSyncRegistryProperties()
END IF

This code sets the values of authentication properties in the Windows registry when the build
number of the running application is higher than the build number in the registry (or when the
build number in the registry cannot be found).

See also

GetCommandString

GetSyncRegistryProperties

SetParm

2.4.774 SetTabButton

Description

Sets the tab button for the RibbonBar control.

Applies to

RibbonBar controls

Syntax

controlname.SetTabButton (Long ItemHandle, RibbonTabButtonItem Item)

Table 2.1309:

Argument Description

controlname The name of the RibbonBar control.

Statements, Events, and Functions

Page 1433

Argument Description

ItemHandle The handle of the tab button on the same level that you will set the tab
button.

Item A tab button item you are setting.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, returns null.

Usage

You can also use the SetItem function to set the tab button. Refer to SetItem for the
difference between SetItem and SetTabButton.

The user events to be bound with the tab button must be defined correctly according to the
requirements of RibbonTabButtonItem. For details, see Clicked and Selected.

Examples

This example inserts the "TabButton1" tab button and binds it with the
"Ue_TabButtonClicked" user event, and then sets new values for various properties
(including Text, PictureName, Clicked, Selected etc.) of this tab button.

Integer li_Return
Long ll_Handle
RibbonTabButtonItem lr_TabButton

ll_Handle = rbb_1.InsertTabButtonFirst ("TabButton1", "ArrowUpSmall!",
 "Ue_TabButtonClicked")
lr_TabButton.Text = "TabButton2"
lr_TabButton.PictureName = "HelpSmall!"
lr_TabButton.Clicked = "Ue_TabButtonClicked2"
lr_TabButton.Selected = "Ue_TabButtonSelected"
li_Return = rbb_1.SetTabButton (ll_Handle, lr_TabButton)

See also

InsertTabButton

InsertTabButtonFirst

InsertTabButtonLast

DeleteTabButton

GetTabButton

GetTabButtonByIndex

GetTabButtonCount

2.4.775 SetTextColor

Description

Sets the color of selected text in a RichTextEdit control.

Applies to

Statements, Events, and Functions

Page 1434

RichTextEdit controls

Syntax

rtename.SetTextColor (colornumber)

Table 2.1310:

Argument Description

rtename The name of the RichTextEdit control in which you want to set the color
of selected text

colornumber A long specifying the color of the selected text

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

For more information about calculating color values, see RGB.

Examples

This example sets the selected text in RichTextEdit rte_1 to dark red:

rte_1.SetTextColor(RGB(100, 0, 0))

See also

GetTextColor

RGB

SetTextStyle

2.4.776 SetTextStyle

Description

Specifies the text formatting for selected text in a RichTextEdit control. You can make
the text bold, underlined, italic, and struck out. You can also make it either a subscript or
superscript.

Applies to

RichTextEdit controls

Syntax

rtename.SetTextStyle (bold, underline {, subscript} {, superscript}, italic,
 strikeout)

Table 2.1311:

Argument Description

rtename The name of the RichTextEdit control in which you want to specify
formatting for selected text.

Statements, Events, and Functions

Page 1435

Argument Description

bold A boolean value specifying whether the selected text is bold.

underline A boolean value specifying whether the selected text is underlined.

subscript
(obsolete)

Maintained for backward compatibility only. A boolean value specifying
whether the selected text is a subscript. This value is currently ignored.

superscript
(obsolete)

A boolean value specifying whether the selected text is a superscript.
Maintained for backward compatibility only. If both subscript
and superscript are true, subscript takes precedence and the text is
subscripted. This value is currently ignored.

italic A boolean value specifying whether the selected text is italic.

strikeout A boolean value specifying whether the selected text is has a line drawn
through it.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

This example makes selected text in the RichTextEdit rte_1 bold and italic:

rte_1.SetTextStyle(TRUE, FALSE, &
 TRUE, FALSE)

This example makes the selected text italic but keeps other text formatting as it was:

rte_1.SetTextStyle(rte_1.GetTextStyle(Bold!), &
 rte_1.GetTextStyle(Underlined!), &
 TRUE,
 rte_1.GetTextStyle(Strikeout!))

See also

GetTextStyle

SetSpacing

SetTextColor

2.4.777 SetTimeout (obsolete)

Description

Sets the timeout value for subsequent EAServer transactions. The transaction is rolled back if
it does not complete before the timeout expires.

Obsolete function

SetTimeout is obsolete, because EAServer is no longer supported since PowerBuilder
2017.

Applies to

CORBACurrent objects

Statements, Events, and Functions

Page 1436

Syntax

CORBACurrent.SetTimeout (seconds)

Table 2.1312:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance

seconds An unsignedlong that specifies the number of seconds that elapse before
a transaction is rolled back

Return value

Boolean.

Returns true if it succeeds and false if an error occurs.

Usage

The SetTimeout function specifies the number of seconds that can elapse before a transaction
is rolled back. The timeout period applies to transactions created by subsequent invocations
of BeginTransaction. If seconds is 0, no timeout period is in effect.

SetTimeout can be called by a client or a component that is marked as OTS style. EAServer
must be using the two-phase commit transaction coordinator (OTS/XA).

Examples

This example shows how to set the timeout period to five minutes:

// Instance variables:
// CORBACurrent corbcurr
boolean lb_timeout
integer li_rc

li_rc = this.GetContextService("CORBACurrent", &
 corbcurr)
IF li_rc <> 1 THEN
 // handle the error
END IF
li_rc = corbcurr.Init("iiop://server1:9003")
IF li_rc <> 1 THEN
 // handle the error
ELSE
 lb_timeout = corbcurr.SetTimeout(300)
 li_rc = corbcurr.BeginTransaction()
END IF

See also

BeginTransaction (obsolete)

CommitDocking

GetContextService

GetStatus (obsolete)

GetTransactionName (obsolete)

Init (obsolete)

Statements, Events, and Functions

Page 1437

ResumeTransaction (obsolete)

RollbackOnly (obsolete)

RollbackTransaction (obsolete)

SuspendTransaction (obsolete)

2.4.778 SetToday

Description

Sets the value that is used by the calendar as today's date.

Applies to

DatePicker, MonthCalendar controls

Syntax

controlname.SetToday (d)

Table 2.1313:

Argument Description

controlname The name of the control for which you want to set the Today date

d The date you want to specify as the Today date

Return value

Integer.

Returns 0 for success and -1 for failure.

Usage

By default, the current system date is set as the Today date. You can use the SetToday
function to specify a different date. If the date is set to any date other than the current system
date, the following restrictions apply:

• The control does not automatically update the Today selection when the time passes
midnight for the current day.

• The control does not automatically update its display based on locale changes.

Examples

This example gets a date from an EditMask control and sets it as the Today date in a
MonthCalendar control:

Date currentdate
integer li_return

currentdate = Date(em_1.Text)
li_return = mc_1.SetToday(currentdate)

See also

GetToday

Statements, Events, and Functions

Page 1438

2.4.779 SetToolbar

Description

Specifies the alignment, visibility, and title for the specified toolbar.

Applies to

MDI frame and sheet windows

Syntax

window.SetToolbar (toolbarindex, visible {, alignment {, floatingtitle } })

Table 2.1314:

Argument Description

window The MDI frame or sheet to which the toolbar belongs.

toolbarindex An integer whose value is the index of the toolbar whose settings you
want to change.

visible A boolean value specifying whether to make the toolbar visible. Values
are:

• TRUE -- Make the toolbar visible

• FALSE -- Hide the toolbar

alignment

(optional)

A value of the ToolbarAlignment enumerated datatype specifying the
alignment for the toolbar. Values are:

• AlignAtTop! -- Dock the toolbar at the top of the frame.

• AlignAtLeft! -- Dock the toolbar on the left side of the frame.

• AlignAtRight! -- Dock the toolbar on the right side of the frame.

• AlignAtBottom! -- Dock the toolbar at the bottom of the frame.

• Floating! -- Float the toolbar. The floating toolbar has its own frame
and miniature title bar

floatingtitle
(optional)

A string whose value is the title for the toolbar when its alignment is
Floating!.

Return value

Integer.

Returns 1 if it succeeds. SetToolbar returns -1 if there is no toolbar for the index you specify
or if an error occurs. If any argument's value is null, returns null.

Usage

When you use SetToolbar to change the toolbar alignment from a docked position to
Floating!, PowerBuilder uses the last known position information unless you also call
SetToolbarPos to adjust the position.

Statements, Events, and Functions

Page 1439

The toolbars are not redrawn until the script ends, so setting the alignment with SetToolbar
and the position with SetToolbarPos looks like a single change to the user.

Examples

This example allows the user to choose an alignment in a ListBox lb_position. The selected
string is converted to a ToolbarAlignment enumerated value, which is used to change the
alignment of toolbar index 1:

toolbaralignment tba_align

CHOOSE CASE lb_position.SelectedItem()

CASE "Top"
 tba_align = AlignAtTop!
CASE "Left"
 tba_align = AlignAtLeft!
CASE "Right"
 tba_align = AlignAtRight!
CASE "Bottom"
 tba_align = AlignAtBottom!
CASE "Floating"
 tba_align = Floating!
END CHOOSE

w_frame.SetToolbar(1, TRUE, tba_align)

In this example, the user clicks a radio button to choose an alignment. The radio button's
Clicked event sets an instance variable of type ToolbarAlignment. Here the radio buttons are
packaged as a custom visual user object. I_toolbaralign is an instance variable of the user
object. This is the script for the Top radio button:

Parent.i_toolbaralign = AlignAtTop!

This script changes the toolbar alignment:

w_frame.SetToolbar(1, TRUE, &
 uo_toolbarpos.i_toolbaralign)

See also

GetToolbar

GetToolbarPos

SetToolbarPos

2.4.780 SetToolbarPos

Sets the position of the specified toolbar.

Table 2.1315:

To set Use

Docking position of a docked toolbar Syntax 1

Coordinates and size of a floating toolbar Syntax 2

2.4.780.1 Syntax 1: For docked toolbars

Description

Statements, Events, and Functions

Page 1440

Sets the position of a docked toolbar.

Applies to

MDI frame and sheet windows

Syntax

window.SetToolbarPos (toolbarindex, dockrow, offset, insert)

Table 2.1316:

Argument Description

window The MDI frame or sheet to which the toolbar belongs.

toolbarindex An integer whose value is the index of the toolbar whose settings you
want to change.

dockrow An integer whose value is the number of the docking row for the toolbar.
Docking rows are numbered from left to right or top to bottom.

offset An integer whose value specifies the distance of the toolbar from the
beginning of the docking row. For toolbars at the top or bottom, offset
is measured from the left edge. For toolbars on the left or right, offset is
measured from the top.

If insert is true, the offset you specify is adjusted so that the toolbar does
not overlap others in the row.

Specify an offset of 0 to position the toolbar ahead of other toolbars in
dockrow.

insert A boolean value specifying whether you want to insert the specified
toolbar before the toolbars in dockrow causing them to move over or
down a row, or you want to add toolbarindex to dockrow. Values are:

• TRUE -- Move any toolbars already in dockrow or higher rows over
or down a row so that the toolbar you are moving is the only toolbar in
the row.

• FALSE -- Add the toolbar you are moving to dockrow. Its position in
relation to other toolbars in the row is determined by offset.

Return value

Integer.

Returns 1 if it succeeds. SetToolbarPos returns -1 if there is no toolbar for the index you
specify or if an error occurs. If any argument's value is null, returns null.

Usage

To find out whether the docked toolbar is at the top, bottom, left, or right edge of the
window, call GetToolbar.

If the toolbar's alignment is floating, instead of docked, then values you specify with Syntax
1 of SetToolbarPos take effect when you change the alignment to a docked position with
SetToolbar.

Statements, Events, and Functions

Page 1441

When insert is false, to move the toolbar before other toolbars in dockrow, specify a value
that is less than the offset for the existing toolbars. If there is already a toolbar at offset 1,
then you can move the toolbar to the beginning of the row by setting offset to 0. If offset
is equal to or greater than the offset of existing toolbars, but less than their end, the newly
positioned toolbar will begin just after the existing one. Otherwise, the toolbar will be
positioned at offset.

If the user drags the toolbar to a docked position, the new row and offset replace values set
with SetToolbarPos.

Examples

This example docks toolbar 1 at the left, adding it to docking row 1:

w_frame.SetToolbar(1, TRUE, AlignAtLeft!)
w_frame.SetToolbarPos(1, 1, 1, FALSE)

This example docks toolbar 2 at the left, adding it to docking row 1. If the toolbars already
in the dock extend past offset 250, then the offset of toolbar 2 is increased to accommodate
them. Otherwise, it is positioned at offset 250:

w_frame.SetToolbar(2, TRUE, AlignAtLeft!)
w_frame.SetToolbarPos(2, 1, 250, FALSE)

This example docks toolbar 2 at the left in docking row 2. Any toolbar docked on the left in
row 2 or higher is moved over a row:

w_frame.SetToolbar(1, TRUE, AlignAtLeft!)
w_frame.SetToolbarPos(1, 2, 1, TRUE)

See also

GetToolbar

GetToolbarPos

SetToolbar

2.4.780.2 Syntax 2: For floating toolbars

Description

Sets the position and size of a floating toolbar.

Applies to

MDI frame and sheet windows

Syntax

window.SetToolbarPos (toolbarindex, x, y, width, height)

Table 2.1317:

Argument Description

window The MDI frame or sheet to which the toolbar belongs

toolbarindex An integer whose value is the index of the toolbar whose settings you
want to change

x An integer whose value is the x coordinate of the floating toolbar

Statements, Events, and Functions

Page 1442

Argument Description

y An integer whose value is the y coordinate of the floating toolbar

width An integer whose value is the width of the floating toolbar

height An integer whose value is the height of the floating toolbar

Return value

Integer.

Returns 1 if it succeeds. SetToolbarPos returns -1 if there is no toolbar for the index you
specify or if an error occurs. If any argument's value is null, SetToolbarPos returns null.

Usage

If the toolbar's alignment is a docked position, instead of floating, then values you specify
with Syntax 2 of SetToolbarPos take effect when you change the alignment to floating in a
script with SetToolbar.

If the user drags the toolbar to a floating position, the new position values replace values set
with SetToolbarPos.

The floating toolbar is never too large or too small for the buttons. If you specify width
and height values that are too small to accommodate the buttons, the width and height are
adjusted to make room for the buttons. If both width and height are larger than needed, the
height is reduced.

If you specify x and y coordinates that are outside the frame, the toolbar becomes
inaccessible to the user.

Examples

This example displays toolbar 1 near the upper-left corner of the frame. An arbitrary width
and height lets PowerBuilder size the toolbar as needed:

w_frame.SetToolbarPos(1, 10, 10, 400, 1)
w_frame.SetToolbar(1, TRUE, Floating!)

This example displays toolbar 2 close to the lower-right corner of the frame. GetToolbarPos
gets the current width and height of the toolbar so that the toolbar stays the same size:

integer ix, iy, iw, ih

w_frame.GetToolbarPos(2, ix, iy, iw, ih)

w_frame.SetToolbarPos(2, &
 w_frame.WorkspaceWidth()-400, &
 w_frame.WorkspaceHeight()-400, &
 iw, ih)
w_frame.SetToolbar(2, TRUE, Floating!)

This example positions floating toolbar 2 just inside the lower-right corner of the MDI frame.
GetToolbarPos gets the current width and height of the toolbar. These values and the height
of the MicroHelp are used to calculate the x and y coordinates for the floating toolbar:

integer ix, iy, iw, ih

// Find out toolbar size
w_frame.GetToolbarPos(2, ix, iy, iw, ih)

Statements, Events, and Functions

Page 1443

// Set the position, taking the size into account
w_frame.SetToolbarPos(2, &
 w_frame.WorkspaceWidth() - iw, &
 w_frame.WorkspaceHeight() &
 - ih - w_frame.MDI_1.MicroHelpHeight, &
 iw, ih)

// Set the alignment to floating
w_frame.SetToolbar(2, TRUE, Floating!)

See also

GetToolbar

SetToolbar

SetToolbarPos

2.4.781 SetTop

Description

Scrolls a list box control so that the specified item is the first visible item.

Applies to

ListBox and PictureListBox controls

Syntax

listboxname.SetTop (index)

Table 2.1318:

Argument Description

listboxname The name of the ListBox or PictureListBox that you want to scroll

index The number of the item you want to become the first visible item

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, SetTop
returns null.

Examples

This statement scrolls item 6 in lb_Actions to the top of the ListBox so that it is the first
visible item:

lb_Actions.SetTop(6)

The following statement scrolls the currently selected item in lb_Actions to the top of the list
of items:

lb_Actions.SetTop(lb_Actions.SelectedIndex())

See also

SetFocus

Statements, Events, and Functions

Page 1444

SetState

2.4.782 SetTraceFileName

Description

Specifies the name of the trace file PowerBuilder will analyze when the BuildModel function
is called.

Applies to

Profiling and TraceTree objects

Syntax

instancename.SetTraceFileName (tracefilename)

Table 2.1319:

Argument Description

instancename Instance name of the Profiling or TraceTree object

tracefilename A string that identifies the name of the trace file PowerBuilder will
analyze

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FileOpenError! -- The file could not be opened

• FileInvalidFormatError! -- The trace file is not in the correct format

• ModelExistsError! -- A model has already been built

If an error occurs, the name is not set.

Usage

Use this function to specify the trace file PowerBuilder should analyze with the BuildModel
function. You call the SetTraceFileName function before calling the BuildModel function.

Examples

This example provides the name of the trace file for which a performance analysis model is to
be built:

Profiling lpro_model
String ls_line

lpro_model = CREATE Profiling

lpro_model.SetTraceFileName (filename)
ls_line = "CollectionTime = " + &
 String(lpro_model.CollectionTime) + "~r~n" &
 + "Num Activities = " &

Statements, Events, and Functions

Page 1445

 + String(lpro_model.NumberOfActivities) + "~r~n"

lpro_model.BuildModel()
...

See also

BuildModel

2.4.783 SetTransPool

Description

Sets up a pool of database transactions for a distributed application. SetTransPool was used
with a feature that has been removed from PowerBuilder and is an obsolete function.

Applies to

Application object

Syntax

applicationname.SetTransPool (minimum, maximum, timeout)

Table 2.1320:

Argument Description

applicationname The name of the application object for which you want to establish a
transaction pool

minimum The minimum number of transactions to be kept open in the pool

maximum The maximum number of transactions that can be open in the pool

timeout The number of seconds to allow a request to wait for a connection in the
transaction pool

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

2.4.784 SetValue

Sets the value for a control.

Table 2.1321:

To obtain Use

The date and time in the Value property of the DatePicker control. Syntax 1

The value of the key of the JSONPackage object Syntax 2

2.4.784.1 Syntax 1: for DatePicker control

Description

Sets the date and time in the Value property of the control.

Statements, Events, and Functions

Page 1446

Applies to

DatePicker control

Syntax

controlname.SetValue (d, t)
controlname.SetValue (dt)

Table 2.1322:

Argument Description

controlname The name of the control for which you want to set the date and time

d The date value to be set in the Value property

t The time value to be set in the Value property

dt The DateTime value to be set in the Value property

Return value

Integer.

Returns 1 for success and one of the following negative values for failure:

-1 -- The value cannot be set

-2 -- Other error

Usage

The SetValue function can set the Value property using separate date and time variables or a
single DateTime variable.

Examples

This example sets the Value property of a DatePicker control using separate date and time
values:

date d
time t
d=date("2007/12/27")
t=time("12:00:00")
dp_1.SetValue(d, t)

This example sets the Value property using a DateTime value:

date d
time t
datetime dt
dt = DateTime(d, t)
dp_1.SetValue(dt)

See also

GetText

GetValue

2.4.784.2 Syntax 2: for JSONPackage object

Description

Statements, Events, and Functions

Page 1447

Sets the value for a key. If the key does not exist, then create the key and set its value. If the
key already exists, then overwrite the value of this key. If more than one key with the same
name already exists, then overwrite the value of the first key. Notice that the IgnoreCase
property (true by default) determines whether the key name will be matched in a case-
sensitive manner.

Applies to

JSONPackage

Syntax

objectname.SetValue (Key, Value {, Flag})

objectname.SetValue (Key, DWControl {, ChangedOnly})

Table 2.1323:

Argument Description

objectname The name of the JSONPackage object.

Key A string specifying the key.

Value A string specifying the value.

Flag (optional) A boolean specifying the flag: true indicates the value is in JSON format,
false indicates the value is a string. The default value is true.

DWControl The name of the DataWindow, DataStore or DataWindowChild control.

ChangedOnly
(optional)

A boolean specifying the changing flag: true indicates including changed
data only (in DataWindow JSON format) for all DataWindow buffers,
false indicates including data (in plain JSON format) of primary buffer.
The default value is true.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

This example packages the JSON data and a string and then sends the package to the server:

int li_rc
string ls_json, ls_EmployeeJson, ls_ReturnJson
HttpClient lnv_HttpClient
JsonPackage lnv_package

lnv_HttpClient = create HttpClient
lnv_package = create JsonPackage

ls_EmployeeJson = dw_employee.ExportJson(false)

// Package the data
lnv_package.SetValue("d_employee ", ls_EmployeeJson)
lnv_package.SetValue("MyString", "Test String", false)
ls_json = lnv_package.GetJsonString()

Statements, Events, and Functions

Page 1448

// Construct a POST request
lnv_HttpClient.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")
// Send the package to the server
li_rc = lnv_HttpClient.SendRequest("POST", "https://demo.appeon.com/PB/
webapi_client/postJsonpackage/employee", ls_json)

// Get the data
if li_rc = 1 and lnv_HttpClient.GetResponseStatusCode() = 200 then
 lnv_HttpClient.GetResponseBody(ls_ReturnJson, EncodingUTF8!)
else
 MessageBox("Error", "Failed to call service.")
end if

This example packages the data of the DataWindow, DataStore and DataWindowChild
controls and then sends the package to the server:

int li_rc
string ls_json, ls_ReturnJson
datastore lds_employee
datawindowchild ldwc_active
HttpClient lnv_HttpClient
JsonPackage lnv_package

lnv_HttpClient = create HttpClient
lnv_package = create JsonPackage

...//Initialize data for lds_employee, ldwc_active

// Package the data
lnv_package.SetValue("d_department", dw_department, false)
lnv_package.SetValue("d_employee", lds_employee) //includes the changed data
lnv_package.SetValue("dddw_active", ldwc_active, false)
ls_json = lnv_package.GetJsonString()

// Construct a POST request
lnv_HttpClient.SetRequestHeader("Content-Type", "application/json;charset=UTF-8")
// Send the package to the server
li_rc = lnv_HttpClient.SendRequest("POST", "https://demo.appeon.com/PB/
webapi_client/postJsonpackage/employee", ls_json)

// Get the data
if li_rc = 1 and lnv_HttpClient.GetResponseStatusCode() = 200 then
 lnv_HttpClient.GetResponseBody(ls_ReturnJson, EncodingUTF8!)
else
 MessageBox("Error", "Failed to call service.")
end if

See also

GetValue

2.4.785 SetValueBlob

Description

Sets the blob value for a key. If the key does not exist, then create the key and set its value.
If the key already exists, then overwrite the value of this key. If more than one key with
the same name already exists, then overwrite the value of the first key. Notice that the
IgnoreCase property (true by default) determines whether the key name will be matched in a
case-sensitive manner.

Applies to

Statements, Events, and Functions

Page 1449

JSONPackage

Syntax

objectname.SetValueBlob (Key, Value)

Table 2.1324:

Argument Description

objectname The name of the JSONPackage object.

Key A string specifying the key name.

Value A blob specifying the key value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

This example sets the value of the picturepath key to A:\Document4D\PowerBuilder Picture
\images\startup.BMP

// Integer SetValueBlob (string Key, blob Value)
String ls_PicturePath
JsonPackage ljpk_User
ljpk_User = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_User.loadstring('{"id":100,"name":"Henry.Ken","birthday":"1998-01-01","picturepath":"QTpcV29ya0RvY3VtZW50XFVwZ3JhZGVc5Zu
+54mHXGF1dG9ydW4uQk1Q" }')
// Sets the key value and uses the UTF8 encoding.
ljpk_User.SetValueBlob("picturepath", Blob("A:\Document4D\PowerBuilder Picture
\images\startup.BMP",EncodingUTF8!))
// Gets the key value: A:\Document4D\PowerBuilder Picture\images\startup.BMP
ls_PicturePath = String(ljpk_User.GetValueBlob("picturepath"),EncodingUTF8!)

See also

GetValueBlob

SetValueBoolean

SetValueByDataWindow

SetValueDate

SetValueDateTime

SetValueNumber

SetValueString

SetValueTime

2.4.786 SetValueBoolean

Description

Statements, Events, and Functions

Page 1450

Sets the boolean value for a key. If the key does not exist, then create the key and set its
value. If the key already exists, then overwrite the value of this key. If more than one key
with the same name already exists, then overwrite the value of the first key. Notice that the
IgnoreCase property (true by default) determines whether the key name will be matched in a
case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.SetValueBoolean (Key, Value)

Table 2.1325:

Argument Description

objectname The name of the JSONPackage object.

Key A string specifying the key name.

Value A boolean specifying the key value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

This example modifies the value of the Status key in the JSON string, from TRUE to FALSE.

// Integer SetValueBoolean (string Key, boolean Value)
Boolean lbl_Status
Integer li_Return
JsonPackage ljpk_Dept
ljpk_Dept = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_Dept.loadstring('{"dept_id":100,"dept_name":"R & D8","Status":true}')

// Sets the boolean value of the Status key
li_Return = ljpk_Dept.SetValueBoolean("Status", FALSE)
If li_Return <> 1 Then // If SetValueBoolean failed
 // Prints the error message
Else
 lbl_Status = ljpk_Dept.GetValueBoolean("Status")
 If lbl_Status <> FALSE Then // If the value obtained is different from the value
 set
 // Prints the error message
 End If
End If

See also

GetValueBoolean

SetValueBlob

SetValueByDataWindow

SetValueDate

Statements, Events, and Functions

Page 1451

SetValueDateTime

SetValueNumber

SetValueString

SetValueTime

2.4.787 SetValueByDataWindow

Description

Sets the value of the key using the data from a DataWindow control, DataStore object, or
DataWindowChild object.

Applies to

JSONPackage

Syntax

objectname.SetValueByDataWindow (string Key, dwcontrol DWControl {, boolean
 format })

objectname.SetValueByDataWindow (string Key, dwcontrol DWControl {, DWBuffer
 dwbuffer }, boolean changedonly, boolean format)

objectname.SetValueByDataWindow (string Key, dwcontrol DWControl, boolean
 primarydata, boolean filterdata, boolean deletedata, boolean dwcdata {, boolean
 format })

objectname.SetValueByDataWindow (string Key, dwcontrol DWControl, DWBuffer
 dwbuffer {, long startrow {, long endrow {, long startcolumn {, long
 endcolumn } } } } {, boolean format })

Table 2.1326:

Argument Description

objectname The name of the JSONPackage object

Key A string specifying the key name.

dwcontrol A reference to a DataWindow control, DataStore, or DataWindowChild.

dwbuffer A value of the dwBuffer enumerated datatype identifying the
DataWindow buffer from which you want to get the data. For a list of
valid values, see Section 6.9, “DWBuffer” in DataWindow Reference.

If not specified, all of the DataWindow buffers will be obtained,
however, the data for DataWindowChild will not be obtained (even if
changedonly is false).

changedonly A boolean specifying the changing flag.

• True -- to get the changed rows only (and all rows of the Delete
buffer).

• False -- to get all rows. The default is false.

primarydata A boolean specifying whether to get the data from the primary buffer.

• True -- to get

Statements, Events, and Functions

Page 1452

Argument Description
• False -- not to get

filterdata A boolean specifying whether to get the data from the filter buffer.

• True -- to get

• False -- not to get

deletedata A boolean specifying whether to get the data from the delete buffer.

• True -- to get

• False -- not to get

dwcdata A boolean specifying whether to get the DataWindowChild data.

• True -- to get. If it is to get the DataWindowChild data, data from all
buffers will be set to a plain JSON, regardless of the value of the other
arguments.

• False -- not to get

startrow
(optional)

The number of the first detail row in the buffer that you want to get. The
default is 1. If it is 0 or negative, 1 is used.

endrow
(optional)

The number of the last detail row in the buffer that you want to get. The
default is the rest of the rows. If it is 0 or negative, it indicates the rest of
rows.

startcolumn
(optional)

The number of the first column in the buffer that you want to get. The
default is 1. If it is 0 or negative, 1 is used.

endcolumn
(optional)

The number of the last column in the buffer that you want to get. The
default is the rest of the columns. If it is 0 or negative, it indicates the rest
of columns.

format A boolean specifying the JSON format.

• True indicates the DataWindow JSON.

• False (default) indicates the plain JSON.

See Section 4.7.1, “Supported JSON formats” in Application Techniques
for details about the JSON format.

Return value

Long. Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the
method returns null.

Example 1

This example exports data from the DataWindow to the JSONPackage object.

// Integer SetValueByDataWindow (string Key, dwcontrol DWControl {, boolean
 format})
String ls_Dept_id_100

Statements, Events, and Functions

Page 1453

Restclient lrc_Dept
JsonPackage ljpk_Dept
ljpk_Dept = Create JsonPackage
lrc_Dept = Create RestClient

// The DataWindow column name and type must match with that of the JSON string
 returned from https://demo.appeon.com/PB/webapi_client/department
dw_Dept.DataObject = "d_example_dept"
lrc_Dept.Retrieve(dw_Dept, "https://demo.appeon.com/PB/webapi_client/
department") // Gets data via RestClient
dw_Dept.SetFilter("dept_id = 100") // Filters the data that will be exported to
 the JSON string
dw_Dept.Filter()

// Exports the data from DataWindow to JSONPackage as a plain JSON string
ljpk_Dept.SetValueByDataWindow("dept_id_100", dw_Dept, False)

ls_Dept_id_100 = ljpk_Dept.GetJsonString() // Exports the data from JSONPackage at
 the string format
// Prints ls_Dept_id_100 = {"dept_id_100":[{"dept_id":100, "dept_name":"R & D8",
 "dept_head_id":105}]}

Example 2

This example exports the modified data from the DataWindow to the JSONPackage object.

// Integer SetValueByDataWindow (string Key, dwcontrol DWControl {, DWBuffer
 dwbuffer}, boolean changedonly, boolean format)
String ls_Dept_ModifyRow
Restclient lrc_Dept
JsonPackage ljpk_Dept
ljpk_Dept = Create JsonPackage
lrc_Dept = Create RestClient

// The DataWindow column name and type must match with that of the JSON string
 returned from https://demo.appeon.com/PB/webapi_client/department
dw_Dept.DataObject = "d_example_dept"
lrc_Dept.Retrieve(dw_Dept, "https://demo.appeon.com/PB/webapi_client/
department") // Gets data via RestClient

// Modifies the DataWindow data
If dw_Dept.RowCount() > 0 Then
 dw_Dept.SetItem(1, 2, "TestJsonPackage")
End If

// Exports the modified data from DataWindow to JSONPackage as a plain JSON string
ljpk_Dept.SetValueByDataWindow("Dept_ModifyRow", dw_Dept, Primary!, TRUE, FALSE)

ls_Dept_ModifyRow = ljpk_Dept.GetJsonString() // Exports the data from JSONPackage
 at the string format
// Prints ls_Dept_ModifyRow = {"Dept_ModifyRow":[{"dept_id":100,
 "dept_name":"TestJsonPackage", "dept_head_id":105}]}

Example 3

This example exports the data from the specified DataWindow row and column to the
JSONPackage object.

// Integer SetValueByDataWindow (string Key, dwcontrol DWControl, DWBuffer dwbuffer
 {, long startrow {, long endrow {, long startcolumn {, long endcolumn } } } } {,
 boolean format })
String ls_Dept_Row_Column
Integer li_Return
Restclient lrc_Dept

Statements, Events, and Functions

Page 1454

JsonPackage ljpk_Dept
ljpk_Dept = Create JsonPackage
lrc_Dept = Create RestClient

// The DataWindow column name and type must match with that of the JSON string
 returned from https://demo.appeon.com/PB/webapi_client/department
dw_Dept.DataObject = "d_example_dept"
lrc_Dept.Retrieve(dw_Dept, "https://demo.appeon.com/PB/webapi_client/
department") // Gets data via RestClient

// Exports data in rows 1 through 3 and in column 2
li_Return = ljpk_Dept.SetValueByDataWindow ("Dept_Name", dw_Dept, Primary!, 1, 3,
 2, 2, FALSE)
If li_Return <> 1 Then
// Prints the error message if SetValueByDataWindow failed
End If
ls_Dept_Row_Column = ljpk_Dept.GetJsonString() // Exports the data as a string
// Prints ls_Dept_Row_Column={"Dept_Name":[{"dept_name":"R & D8"},
 {"dept_name":"Sales"}, {"dept_name":"Finance"}]}

See also

GetValueToDataWindow

SetValueBlob

SetValueBoolean

SetValueDate

SetValueDateTime

SetValueNumber

SetValueString

SetValueTime

2.4.788 SetValueDate

Description

Sets the date value for a key. If the key does not exist, then create the key and set its value.
If the key already exists, then overwrite the value of this key. If more than one key with
the same name already exists, then overwrite the value of the first key. Notice that the
IgnoreCase property (true by default) determines whether the key name will be matched in a
case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.SetValueDate (Key, Value)

Table 2.1327:

Argument Description

objectname The name of the JSONPackage object.

Key A string specifying the key name.

Statements, Events, and Functions

Page 1455

Argument Description

Value A date specifying the key value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

This example modifies the value of the birthday key in the JSON string, from 1998-12-01 to
2001-01-01.

// Integer SetValueDate (string Key, date Value)
Date ld_Birthday
Integer li_Return
JsonPackage ljpk_User
ljpk_User = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_User.loadstring('{"id":100, "name":"Henry.Ken", "birthday":"1998-12-01",
 "CreateDate":1543900359 }')
li_Return = ljpk_User.SetValueDate("birthday", 2001-01-01)
If li_Return = 1 Then
 // Gets the value of the birthday key: ld_Birthday = 2001-01-01
 ld_Birthday = ljpk_User.GetValueDate("birthday")
Else
 // Prints the error message if SetValueDate failed
End If

See also

GetValueDate

SetValueBlob

SetValueBoolean

SetValueByDataWindow

SetValueDateTime

SetValueNumber

SetValueString

SetValueTime

2.4.789 SetValueDateTime

Description

Sets the datetime value for a key. If the key does not exist, then create the key and set its
value. If the key already exists, then overwrite the value of this key. If more than one key
with the same name already exists, then overwrite the value of the first key. Notice that the
IgnoreCase property (true by default) determines whether the key name will be matched in a
case-sensitive manner.

Applies to

Statements, Events, and Functions

Page 1456

JSONPackage

Syntax

objectname.SetValueDateTime (Key, Value)

objectname.SetValueDateTime (Key, Value, Flag)

Table 2.1328:

Argument Description

objectname The name of the JSONPackage object.

Key A string specifying the key name.

Value A datetime specifying the key value.

Flag A boolean whose value is the type of the child item.

True -- JsonNumberItem type. A JsonNumberItem type value is a UTC
timestamp converted from the local time using the local timezone.

False -- JsonStringItem type. A JsonStringItem type value is a string
converted from the local time directly (no timezone conversion).

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

This example sets the value of the birthday key and the createdate key in the JSON string.

// Integer SetValueDateTime (string Key, datetime Value)
DateTime ldt_CreateDate,ldt_Birthday
JsonPackage ljpk_User
ljpk_User = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_User.loadstring('{"id":100,"name":"Henry.Ken","birthday":"1998-12-01
 08:02:30","CreateDate":1543900359 }')
ljpk_User.SetValueDateTime("birthday", DateTime(Today(), Now()))
// This will change the ItemType of the CreateDate key to JsonStringItem!
ljpk_User.SetValueDateTime("CreateDate", DateTime(Today(), Now()))

// GetValueDateTime can also get a long value or a string value.
// It is recommended to check if it is a datetime value, otherwise exception may be
 thrown.
ldt_CreateDate = ljpk_User.GetValueDateTime("CreateDate")
ldt_Birthday = ljpk_User.GetValueDateTime("birthday")

See also

GetValueDateTime

SetValueBlob

SetValueBoolean

SetValueByDataWindow

Statements, Events, and Functions

Page 1457

SetValueDate

SetValueNumber

SetValueString

SetValueTime

2.4.790 SetValueNumber

Description

Sets the number value for a key. If the key does not exist, then create the key and set its
value. If the key already exists, then overwrite the value of this key. If more than one key
with the same name already exists, then overwrite the value of the first key. Notice that the
IgnoreCase property (true by default) determines whether the key name will be matched in a
case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.SetValueNumber (Key, Value)

Table 2.1329:

Argument Description

objectname The name of the JSONPackage object.

Key A string specifying the key name.

Value A double specifying the key value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

This example modifies the value of the dept_id key in the JSON string, from 100 to 999.99.

// Integer SetValueNumber (string Key, double Value)
Double ldb_DeptID
JsonPackage ljp_Dept
ljp_Dept = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljp_Dept.loadstring ('{"dept_id":100, "dept_name":"R & D8", "dept_head_id":105}')
ljp_Dept.SetValueNumber("dept_id", 999.99) // Sets the value of dept_id to 999.99
ldb_DeptID = ljp_Dept.GetValueNumber("dept_id") // Checks if the value is 999.99
If ldb_DeptID <> 999.99 Then
 // Prints the error message if SetValueNumber failed
End If

See also

Statements, Events, and Functions

Page 1458

GetValueNumber

SetValueBlob

SetValueBoolean

SetValueByDataWindow

SetValueDate

SetValueDateTime

SetValueString

SetValueTime

2.4.791 SetValueString

Description

Sets the string value for a key. If the key does not exist, then create the key and set its value.
If the key already exists, then overwrite the value of this key. If more than one key with
the same name already exists, then overwrite the value of the first key. Notice that the
IgnoreCase property (true by default) determines whether the key name will be matched in a
case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.SetValueString (Key, Value)

Table 2.1330:

Argument Description

objectname The name of the JSONPackage object.

Key A string specifying the key name.

Value A string specifying the key value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Examples

This example modifies the value of the dept_name key in the JSON string, from "R & D8" to
"D & R".

// Integer SetValueString (string Key, string Value)
String ls_DeptName
Integer li_Return
JsonPackage ljp_Dept
ljp_Dept = Create JsonPackage

Statements, Events, and Functions

Page 1459

// Loads the JSON string to the JSONPackage object
ljp_Dept.loadstring('{"dept_id":100, "dept_name":"R & D8", "dept_head_id":105}')
li_Return = ljp_Dept.SetValueString("dept_name", "D & R") // Sets the value for
 dept_name
If li_Return = 1 Then
 ls_DeptName = ljp_Dept.GetValueString("dept_name") // Gets the value of
 dept_name
Else
 // Prints the error message
End If

See also

GetValueString

SetValueBlob

SetValueBoolean

SetValueByDataWindow

SetValueDate

SetValueDateTime

SetValueNumber

SetValueTime

2.4.792 SetValueTime

Description

Sets the time value for a key. If the key does not exist, then create the key and set its value.
If the key already exists, then overwrite the value of this key. If more than one key with
the same name already exists, then overwrite the value of the first key. Notice that the
IgnoreCase property (true by default) determines whether the key name will be matched in a
case-sensitive manner.

Applies to

JSONPackage

Syntax

objectname.SetValueTime (Key, Value)

Table 2.1331:

Argument Description

objectname The name of the JSONPackage object.

Key A string specifying the key name.

Value A time specifying the key value.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If any argument's value is null, the method
returns null.

Statements, Events, and Functions

Page 1460

Examples

This example modifies the value of the endtime key in the JSON string, from 21:02:30 to
23:59:59.

// Integer SetValueTime (string Key, time Value)
Time lt_EndTime
Integer li_Return
JsonPackage ljpk_User
ljpk_User = Create JsonPackage

// Loads the JSON string to the JSONPackage object
ljpk_User.loadstring ('{"id":100, "name":"Henry.Ken", "starttime":"08:02:30",
 "endtime":"21:02:30" }')

li_Return = ljpk_User.SetValueTime ("endtime", 23:59:59.325)
If li_Return = 1 Then
 lt_EndTime = ljpk_User.GetValueTime ("endtime") // Gets the value of endtime:
 lt_EndTime=23:59:59
Else
 // Prints the error message
End If

See also

GetValueTime

SetValueBlob

SetValueBoolean

SetValueByDataWindow

SetValueDate

SetValueDateTime

SetValueNumber

SetValueString

2.4.793 SHA

Description

Calculates the SHA value of a blob.

Applies to

CrypterObject objects

Syntax

crypter.SHA (algorithm, variable)

Table 2.1332:

Argument Description

crypter The name of the CrypterObject object

algorithm A value of the SHAAlgorithm enumerated type that specifies the type of
SHA algorithm.

Values are:

Statements, Events, and Functions

Page 1461

Argument Description
• SHA1! – SHA1

• SHA224! – SHA224

• SHA256! – SHA256

• SHA384! – SHA384

• SHA512! – SHA512

• SHA3_224! – SHA3-224

• SHA3_256! – SHA3-256

• SHA3_384! – SHA3-384

• SHA3_512! – SHA3-512

variable A blob whose value is the data you want to process with SHA.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

Return value

Blob. Returns the result of the SHA if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

This statement encrypts the data using SHA1.

Blob lblb_data
Blob lblb_sha1
String ls_data

lblb_data = Blob("Test SHA1", EncodingANSI!)

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

// Encrypt with SHA
lblb_sha1= lnv_CrypterObject.SHA(SHA1!, lblb_data)

Coderobject lnv_code
Lnv_code = create coderobject
//Encode the SHA blob data to be hex data and output as a string
Ls_data = lnv_code.hexencode(lblb_sha1)

See also

SymmetricEncrypt

SymmetricDecrypt

SymmetricGenerateKey

Statements, Events, and Functions

Page 1462

AsymmetricEncrypt

AsymmetricDecrypt

AsymmetricSign

AsymmetricVerifySign

AsymmetricGenerateKey

MD5

HMAC

2.4.794 SharedObjectDirectory

Description

Retrieves the list of objects that have been registered for sharing.

Syntax

SharedObjectDirectory (instancenames {, classnames })

Table 2.1333:

Argument Description

instancenames An unbounded array of type string in which you want to store the names
of objects that have been registered for sharing

classnames
(optional)

An unbounded array of type string in which you want to store the class
names of objects registered for sharing

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FeatureNotSupportedError! -- This function is not supported on this platform

Usage

Use this function to obtain a list of objects that have been registered for sharing.

Examples

In this example, the application retrieves the list of shared objects and their class names:

errorreturn status
string InstanceNames[]
string ClassNames[]

status = SharedObjectDirectory(InstanceNames, &
 ClassNames)

See also

SharedObjectGet

SharedObjectRegister

Statements, Events, and Functions

Page 1463

2.4.795 SharedObjectGet

Description

Gets a reference to a shared object instance.

Syntax

SharedObjectGet (instancename , objectinstance)

Table 2.1334:

Argument Description

instancename The name of a shared object instance to which you want to obtain
references. The name you specify must match the name given to the
object instance when it was first registered with the SharedObjectRegister
function.

objectinstance An object variable of type PowerObject in which you want to store an
instance of a shared object.

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• SharedObjectCreateInstanceError! -- The local reference to the shared object could not be
created

• SharedObjectNotExistsError! -- The instance name has not been registered

Usage

SharedObjectGet retrieves a reference to an object that was created with
SharedObjectRegister.

You can use a shared object on a PowerBuilder client to simulate an asynchronous call to
the server. The main thread on the client makes an asynchronous call to a function on the
shared object, passing it a callback object that is notified when processing has finished on the
server. The method on the shared object makes a synchronous call to the server component
method that performs processing. Since the shared object is running in a separate thread on
the client, the main thread on the client can proceed with other work while the process runs
on the server.

Examples

This example shows how you might use a shared object to make an asynchronous request
against a server component method and return data back to a client application window.
The client has a Retrieve button on a window, a SetDW function, a shared object, and a
callback handler. The component deployed to the server retrieves employee information from
a database.

The Retrieve button on the window creates a shared object that communicates with the server
as well as an instance of a callback handler:

// instance variables

Statements, Events, and Functions

Page 1464

// uo_sharedobject iuo_sharedobject
// uo_callback iuo_callback
long ll_rv

SharedObjectRegister("uo_sharedobject","myshare")
SharedObjectGet("myshare",iuo_sharedobject)

iuo_callback = CREATE uo_callback
// Pass a reference to the window to
// the callback object
iuo_callback.passobject (parent)

iuo_sharedobject.post retrievedata(iuo_callback)

The SetDW function applies the contents of the DataWindow blob returned from the server
component to a DataWindow control in the window:

long ll_rv

ll_rv = dw_employee.SetFullState(ablb_data)
if ll_rv = -1 then
 MessageBox("Error", "SetFullState call failed!")
end if

return ll_rv

The Constructor event of the shared object uses a custom Connection object called
n_jagclnt_connect to connect to the server. Then it creates an instance of the server
component:

// Instance variables
// uo_employee iuo_employee
// n_jagclnt_connect myconnect
Constructor event
long ll_rc
myconnect = create n_jagclnt_connect
ll_rc = myconnect.ConnectToServer()
ll_rv = myconnect.CreateInstance(iuo_employee, &
 "uo_employee")

RetrieveData

The shared object has a single function called that makes a synchronous call to the
RetrieveData function on the server component.

When the function completes processing, it calls the Notify function asynchronously on the
callback object, posting it to the DataWindow blob returned from the server component:

blob lblb_data
long ll_rv
ll_rv = iuo_employee.retrievedata(lblb_data)
auo_callback.post notify(lblb_data)
return ll_rv

When the server component has finished processing, the shared object notifies a user object
called uo_callback, which in turns notifies the w_employee window. The uo_callback object
has two functions, Notify and PassObject.The Notify function calls a function called SetDW
on the w_employee window, passing it the DataWindow blob returned from the server
component:

long ll_rv
ll_rv = iw_employee.setdw(ablb_data)

Statements, Events, and Functions

Page 1465

if ll_rv = -1 then
 MessageBox("Error", "SetDW call failed!")
end if
return ll_rv

The callback handler's PassObject function caches a reference to the w_employee window in
the iw_employee instance variable. The function takes the argument aw_employee, which is
of type w_employee, and returns a long value:

iw_employee = aw_employee
return 1

The server component is a PowerBuilder user object called uo_employee. The uo_employee
object has a function called RetrieveData that uses a DataStore to retrieve employee rows
from the database:

// instance variables
// protected TransactionServer txnsrv
// protected DataStore ids_datastore
long ll_rv
ll_rv = ids_datastore.Retrieve()
ll_rv = ids_datastore.GetFullState(ablb_data)
txnsrv.SetComplete()
return ll_rv

See also

SharedObjectRegister

SharedObjectUnregister

GetFullState and SetFullState method for DataWindows in Section 9.58, “GetFullState” in
DataWindow Reference and Section 9.168, “SetFullState” in DataWindow Reference.

2.4.796 SharedObjectRegister

Description

Registers a user object so that it can be shared.

Syntax

SharedObjectRegister (classname , instancename)

Table 2.1335:

Argument Description

classname The name of the user object that you want to share

instancename A string whose value is the name you want to assign to the shared object
instance

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• SharedObjectExistsError! -- The instance name has already been used

Statements, Events, and Functions

Page 1466

• SharedObjectCreateInstanceError! -- The object could not be created

• SharedObjectCreatePBSessionError! -- The shared object session could not be created

Usage

When you call the SharedObjectRegister function, PowerBuilder opens a separate runtime
session for the shared object and creates the shared object. The name you specify for the
object instance provides a way for you to access the object instance with the SharedObjectGet
function.

Examples

In this example, the user object uo_customers is registered so that it can be shared. The name
assigned to the shared object instance is share1. After registering the object, the application
uses the SharedObjectGet function to store an instance of the object in an object variable:

SharedObjectRegister("uo_customers", "share1")
SharedObjectGet("share1",shared_object)

See also

SharedObjectGet

SharedObjectUnregister

2.4.797 SharedObjectUnregister

Description

Unregisters a user object that was previously registered.

Syntax

SharedObjectUnregister (instancename)

Table 2.1336:

Argument Description

instancename The name assigned to the shared object instance when it was first
registered

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• SharedObjectNotExistsError! -- The instance name has not been registered

Usage

This function marks a shared object for destruction. But the object is not actually destroyed
until there are no more references to the object.

Examples

In this example the application unregisters the object instance called share1:

Statements, Events, and Functions

Page 1467

SharedObjectUnregister("share1")

See also

SharedObjectRegister

2.4.798 Show

Description

Makes an object or control visible, if it is hidden. If the object is already visible, Show brings
it to the top.

Applies to

Any object

Syntax

objectname.Show ()

Table 2.1337:

Argument Description

objectname The name of the object or control you want to make visible (show)

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If objectname is null, Show returns null.

Usage

If the specified object is a window that is not open, an execution error occurs.

You cannot use Show to show a drop-down or cascading menu, or any menu that has an MDI
frame window as its parent window.

Equivalent syntax

You can set the object's Visible property instead of calling Show:

objectname.Visible = true

This statement:

m_status.m_options.Visible = TRUE

is equivalent to:

m_status.m_options.Show()

Examples

This statement makes visible the menu selection called m_options on the menu m_status:

m_status.m_options.Show()

This statement makes the child window w_child visible:

w_child.Show()

See also

Statements, Events, and Functions

Page 1468

Hide

2.4.799 ShowHeadFoot

Description

Displays the panels for editing the header and footer in a RichTextEdit control or hides the
panels and returns to editing the main text.

Applies to

RichTextEdit controls and DataWindow controls with the RichTextEdit style

Syntax

rtename.ShowHeadFoot (editheadfoot {, headerfooter})

Table 2.1338:

Argument Description

rtename The name of the RichTextEdit or DataWindow control for which you
want to edit header and footer information.

editheadfoot A boolean value specifying the editing panel to display. Values are:

• TRUE -- Display the header and footer editing panels

• FALSE -- Display the detail editing panel for the document body

headerfooter
(optional)

A boolean value specifying whether the insertion point (caret) for editing
the header/footer panel is in the header or the footer section. Values are:

• True -- Caret is in the header section.

• False -- Caret is in the footer section.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

ShowHeadFoot takes effect when the control is in preview mode or when it is in edit mode
for the main text. If the control is in preview mode, calling ShowHeadFoot returns to edit
mode.

The headerfooter argument is ignored if the editheadfoot argument is false. The headerfooter
argument defaults to "true" if a value is not provided. The header and footer can include input
fields for page numbers and dates.

For a DataWindow control, ShowHeadFoot has no effect if the DataWindow object does not
have the RichTextEdit presentation style.

Examples

This example displays the header and footer editing panels, allowing the user to specify the
contents of the footer:

Statements, Events, and Functions

Page 1469

rte_1.ShowHeadFoot(TRUE, FALSE)

The following script inserts the current page number in the footer, then returns the focus to
the body of the document in the rich text control:

rte_1.ShowHeadFoot(true,false)
rte_1.SetAlignment (Center!)
rte_1.InputFieldInsert("PAGENO")
rte_1.ShowHeadFoot(false,false)

See also

Preview

2.4.800 ShowHelp

Description

Provides access to a Microsoft Windows-based Help system or to compiled HTML Help
files that you have created for your PowerBuilder application. When you call ShowHelp,
PowerBuilder starts the Help executable and displays the Help file you specify.

Syntax

ShowHelp (helpfile, helpcommand {, typeid })

Table 2.1339:

Argument Description

helpfile A string whose value is the name of the compiled HLP file or the CHM
(HTML Help) file.

helpcommand A value of the HelpCommand enumerated type. Values are:

• Finder! -- Displays the Help file in its most recently used state (the
Help Topics dialog box in WinHelp or the Navigator pane in the
HTML Help viewer open to the last-used tab or the default tab for the
Help file).

• Index! -- Displays the top-level contents topic in the Help file.

• Keyword! -- Goes to the topic identified by the keyword in typeid.

• Topic! -- Displays the topic identified by the number in typeid.

typeid

(optional)

A number identifying the topic if helpcommand is Topic! or a string
whose value is a keyword of a help topic if helpcommand is Keyword!.

Do not specify typeid when helpcommand is Finder! or Index!.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. ShowHelp returns -1 if you specify typeid
when helpcommand is Finder! or Index!. If any argument's value is null, ShowHelp returns
null.

Statements, Events, and Functions

Page 1470

Usage

To provide context-sensitive Help, use ShowHelp in appropriate scripts throughout your
application with specific topic IDs or keywords.

If you specify Keyword! for helpcommand and the string in typeid is not unique, the Help
Search window displays.

For information on how to create online Help files for your PowerBuilder application, see
Section 3.7, “Providing Online Help for an Application” in Application Techniques.

Examples

This statement displays the Help index in the INQ.HLP file:

ShowHelp("C:\PB\INQ.HLP", Index!)

This statement displays Help topic 143 in the file EMP.HLP file:

ShowHelp("EMP.HLP", Topic!, 143)

This statement displays the Help topic associated with the keyword Part# in the file
EMP.HLP:

ShowHelp("EMP.HLP", Keyword!, "Part#")

This statement displays the Help search window. The word in the box above the keyword list
is the first keyword that begins with M:

ShowHelp("EMP.HLP", Keyword!, "M")

See also

Help

ShowPopupHelp

2.4.801 ShowPopupHelp

Description

Displays pop-up help for the specified control.

Applies to

Any control

Syntax

ShowPopupHelp (helpfile, control, contextid)

Table 2.1340:

Argument Description

helpfile String for the Help file name to be used

control Dragobject for which the pop-up help is displayed

contextid Long for the context ID number

Return value

Statements, Events, and Functions

Page 1471

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

A typical location for the ShowPopupHelp call is in the Help event of a response window
with the Context Help property enabled. Events relating to movement of the cursor over a
control or to the dragging of a control or object are also logical places for a ShowPopupHelp
call.

You must type a correct context ID number for the contextid argument or you get a message
that a Help topic does not exist for the item calling the ShowPopupHelp function.

Examples

This example calls a help file in a subdirectory of the current directory:

ShowPopupHelp ("Help/my_app.hlp", this, 510)

See also

Help

ShowHelp

2.4.802 Sign

Description

Reports whether a number is negative, zero, or positive.

Syntax

Sign (n)

Table 2.1341:

Argument Description

n The number for which you want to find out the sign

Return value

Integer.

Returns a number (-1, 0, or 1) indicating the sign of n. If n is null, Sign returns null.

Examples

This statement returns 1 (the number is positive):

Sign(5)

This statement returns 0 (zero has no sign):

Sign(0)

This statement returns -1 (the number is negative):

Sign(-5)

See also

Statements, Events, and Functions

Page 1472

Sign method for DataWindows in Section 2.4.114, “Sign” in DataWindow Reference.

2.4.803 SignalError

Description

Causes a SystemError event at the application level.

Syntax

SignalError ({ number } {, text })

Table 2.1342:

Argument Description

number
(optional)

The integer (stored in the number property of the Error object) to be used
in the message object

text (optional) The string (stored in the text property of the Error object) to be used in
the message object

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. The return value is usually not used.

Usage

During development you can use SignalError to test error-processing scripts.You can call
PopulateError to populate the Error object and call SignalError without arguments. You can
examine how the SystemError event script handles the forced error. If you pass the optional
number and text arguments to SignalError, it populates all the fields in the Error object and
then triggers a SystemError event.

In an application, SignalError can also be useful. For example, if a user error is so severe that
you do not want the application to continue, you can set values in the Error object, including
your own error number, and call SignalError. You need to include code in the SystemError
event script to recognize and handle the error you have created.If there is no script for the
SystemError event, the SignalError function does nothing.

For the runtime error numbers assigned to the Number property of the Error object when an
application error occurs, see Section 7.1.3.2, “Handling errors at runtime” in Users Guide.

Examples

These statements set values in the Error object and then trigger a SystemError event so the
error processing for these values can be tested:

int error_number
string error_text
Error.Number = 1010
Error.Text = "Salary must be a positive number."
Error.Windowmenu = "w_emp"

error_number = Error.Number
error_text = Error.Text

Statements, Events, and Functions

Page 1473

SignalError(error_number, error_text)

See also

PopulateError

2.4.804 Sin

Description

Calculates the sine of an angle.

Syntax

Sin (n)

Table 2.1343:

Argument Description

n The angle (in radians) for which you want the sine

Return value

Double.

Returns the sine of n. If n is null, Sin returns null.

Examples

This statement returns .8414709848078965:

Sin(1)

This statement returns 0:

Sin(0)

This statement returns 0:

Sin(Pi(1))

See also

ASin

ATan

Pi

Tan

Sin method for DataWindows in Section 2.4.115, “Sin” in DataWindow Reference.

2.4.805 Sleep

Description

Causes the application to pause for a specified time.

Syntax

Sleep (seconds)

Statements, Events, and Functions

Page 1474

Table 2.1344:

Argument Description

seconds Long for the number of seconds you want the application to pause

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Examples

This example pauses the application for 5 seconds:

Sleep (5)

2.4.806 Sort

Sorts rows in a DataWindow control, DataStore, or child DataWindow, or items in a
TreeView or ListView control.

For syntax for DataWindows and DataStores, see the Sort method for DataWindows in
Section 9.206, “Sort” in DataWindow Reference.

Table 2.1345:

To sort Use

Items in a TreeView Syntax 1

Items in a ListView Syntax 2

2.4.806.1 Syntax 1: For TreeView controls

Description

Sorts the children of an item in a TreeView control.

Applies to

TreeView controls

Syntax

treeviewname.Sort (itemhandle , sorttype)

Table 2.1346:

Argument Description

treeviewname The name of the TreeView control in which you want to sort items.

itemhandle The item for which you want to sort its children.

sorttype The sort method you want to use. Valid values are:

Ascending!

Descending!

UserDefinedSort!

Return value

Statements, Events, and Functions

Page 1475

Integer.

Returns 1 if it succeeds and -1 if it fails.

Usage

The Sort function only sorts the immediate level beneath the specified item. If you want to
sort multiple levels, use SortAll. If you specify UserDefinedSort! as your sorttype, define
your sort criteria in the Sort event of the TreeView control. To sort level 1 of a TreeView, set
itemhandle to 0.

Examples

This example sorts the children of the current TreeView item:

long ll_tvi
ll_tvi = tv_foo.FindItem(CurrentTreeItem! , 0)
tv_foo.SetRedraw(false)
tv_foo.Sort(ll_tvi , Ascending!)
tv_foo.SetRedraw(true)

See also

SortAll

2.4.806.2 Syntax 2: For ListView controls

Description

Sorts items in ListView controls.

Applies to

ListView controls

Syntax

listviewname.Sort (sorttype {, column })

Table 2.1347:

Argument Description

listviewname The ListView in which you want to sort items.

sorttype The method you want to use when you sort the ListView items. Values
are:

Ascending!

Descending!

Unsorted!

UserDefinedSort!

column
(optional)

The number of the column by which you wish to sort the ListView items.

Return value

Integer.

Returns 1 if it succeeds and -1 if it fails.

Statements, Events, and Functions

Page 1476

Usage

The default sort is alphanumeric.

If you do not specify a column to sort, the first column is sorted.

Examples

This example sorts the items in column three of a ListView:

lv_list.SetRedraw(false)
lv_list.Sort(Ascending! , 3)
lv_list.SetRedraw(true)

See also

SortAll

2.4.807 SortAll

Description

Sorts all the levels below an item in the TreeView item hierarchy.

Applies to

TreeView controls

Syntax

treeviewname.SortAll (itemhandle, sorttype)

Table 2.1348:

Argument Description

treeviewname The TreeView control in which you want to sort the subsequent levels in
an item's hierarchy.

itemhandle The item for which you want to sort all the levels below it.

sorttype The sort method you want to use. Values are:

Ascending!

Descending!

Unsorted!

UserDefinedSort!

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Usage

If you specify UserDefinedSort! as your sorttype, define your sort criteria in the Sort event of
the TreeView control.

The SortAll function cannot sort level 1 of a TreeView. However, level 1 is sorted
automatically when the TreeView's SortType property calls for sorting.

Statements, Events, and Functions

Page 1477

Examples

This example sorts the subsequent levels recursively under the current TreeView item:

long ll_tvi

//Find the current treeitem
ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)

//Sort all children
tv_list.SortAll(ll_tvi , Ascending!)

This example recursively sorts the entire TreeView control:

long ll_tvi

//Find the root treeitem
ll_tvi = tv_list.FindItem(RootTreeItem! , 0)

//Sort all children
tv_list.SortAll(ll_tvi , Ascending!)

See also

Sort

2.4.808 Space

Description

Builds a string of the specified length whose value consists of spaces.

Syntax

Space (n)

Table 2.1349:

Argument Description

n A long whose value is the length of the string to be filled with spaces.
The maximum value is 2,147,483,647.

Return value

String.

Returns a string filled with n spaces if it succeeds and the empty string ("") if an error occurs.
If n is null, Space returns null.

Examples

This statement puts a string whose value is four spaces in Name:

string Name
Name = Space(4)

This statement assigns 40 spaces to the string Name:

string Name
Name = Space(40)

See also

Statements, Events, and Functions

Page 1478

Fill

Space method for DataWindows in Section 2.4.117, “Space” in DataWindow Reference.

2.4.809 Sqrt

Description

Calculates the square root of a number.

Syntax

Sqrt (n)

Table 2.1350:

Argument Description

n The number for which you want the square root

Return value

Double.

Returns the square root of n. If n is null, Sqrt returns null.

Usage

Sqrt

(n) is the same as n^.5. Taking the square root of a negative number causes an execution
error.

Examples

This statement returns 1.414213562373095:

Sqrt(2)

This statement results in an error at execution time:

Sqrt(-2)

See also

Sqrt method for DataWindows in Section 2.4.118, “Sqrt” in DataWindow Reference.

2.4.810 Start

Start has two basic syntaxes.

Table 2.1351:

To Use

Execute a pipeline object Syntax 1

Activate a timing object Syntax 2

2.4.810.1 Syntax 1: For executing pipeline objects

Description

Statements, Events, and Functions

Page 1479

Executes a pipeline object, which transfers data from the source to the destination as
specified by the SQL query in the pipeline object. This pipeline object is a property of a user
object inherited from the pipeline system object.

Applies to

Pipeline objects

Syntax

pipelineobject.Start (sourcetrans, destinationtrans, errorobject {, arg1,
 arg2,..., argn })

Table 2.1352:

Argument Description

pipelineobject The name of a pipeline user object that contains the pipeline object to be
executed

sourcetrans The name of a transaction object with which to connect to the source
database

destinationtrans The name of a transaction object with which to connect to the target
database

errorobject The name of a DataWindow control or Data Store in which to store the
pipeline error DataWindow

argn (optional) One or more retrieval arguments as specified for the pipeline object in the
Data Pipeline painter

Return value

Integer.

Returns 1 if it succeeds and a negative number if an error occurs. Error values are:

-1 -- Pipe open failed

-2 -- Too many columns

-3 -- Table already exists

-4 -- Table does not exist

-5 -- Missing connection

-6 -- Wrong arguments

-7 -- Column mismatch

-8 -- Fatal SQL error in source

-9 -- Fatal SQL error in destination

-10 -- Maximum number of errors exceeded

-12 -- Bad table syntax

-13 -- Key required but not supplied

-15 -- Pipe already in progress

-16 -- Error in source database

Statements, Events, and Functions

Page 1480

-17 -- Error in destination database

-18 -- Destination database is read-only

If any argument's value is null, Start returns null.

Usage

A pipeline transfer involves several PowerBuilder objects. You need:

• A pipeline object, which you define in the Data Pipeline painter. It contains the SQL
statements that specify what data is transferred and how that data is mapped from the
tables in the source database to those in the target database.

• A user object inherited from the pipeline system object. It inherits properties that let you
check the progress of the pipeline transfer. In the painter, you define instance variables and
write scripts for pipeline events.

• A window that contains a DataWindow control or a Data Store for the pipeline-error
DataWindow. Do not put a DataWindow object in the DataWindow control. The control
displays PowerBuilder's pipeline-error DataWindow object if errors occur when the
pipeline executes.

The window can also include buttons, menus, or some other means to execute the pipeline,
repair errors, and cancel the execution. The scripts for these actions use the functions Start,
Repair, and Cancel.

Before the application executes the pipeline, it needs to connect to the source and destination
databases, create an instance of the user object, and assign the pipeline object to the user
object's DataObject property. Then it can call Start to execute the pipeline. This code may be
in one or several scripts.

When you execute the pipeline, the piped data is committed according to the settings you
make in the Data Pipeline painter. You can specify that:

• The data is committed when the pipeline finishes. If the maximum error limit is exceeded,
all data is rolled back.

• Data is committed at regular intervals, after a specified number of rows have been
transferred. When the maximum error limit is exceeded, all rows already transferred are
committed.

For information about specifying the pipeline object in the Data Pipeline painter and how the
settings affect committing, see Section 5.2, “Working with Data Pipelines” in Users Guide.
For more information on using a pipeline in an application, see Section 4.6, “Piping Data
Between Data Sources” in Application Techniques.

When you dynamically assign the pipeline object to the user object's DataObject property,
you must remember to include the pipeline object in a dynamic library when you build your
application's executable.

Examples

The following script creates an instance of the pipeline user object, assigns a pipeline object
to the pipeline user object's DataObject property, and executes the pipeline. I_src and i_dst

Statements, Events, and Functions

Page 1481

are transaction objects that have been previously declared and created. Another script has
established the database connections.

U_pipe is the user object inherited from the pipeline system object. I_upipe is an instance
variable of type u_pipe. P_pipe is a pipeline object created in the Data Pipeline painter:

i_upipe = CREATE u_pipe
i_upipe.DataObject = "p_pipe"
i_upipe.Start(i_src, i_dst, dw_1)

See also

Cancel

Repair

2.4.810.2 Syntax 2: For activating timing objects

Description

Activates a timing object causing a Timer event to occur repeatedly at the specified interval.

Applies to

Timing objects

Syntax

timingobject.Start (interval)

Table 2.1353:

Argument Description

timingobject The name of the timing object you want to activate.

interval An expression of type double specifying the number of seconds that
you want between timer events. The interval can be a whole number or
fraction greater than 0 and less than or equal to 4,294,967 seconds. An
interval of 0 is invalid.

Return value

Integer.

Returns 1 if it succeeds and -1 if the timer is already running, the interval specified is invalid,
or there are no system timers available.

Usage

This syntax of the Start function is used to activate a nonvisual timing object. Timing objects
can be used to trigger a Timer event that is not associated with a PowerBuilder window, and
they are therefore useful for distributed PowerBuilder servers or shared objects that do not
have a window for each client connection.

A timing object is a standard class user object inherited from the Timing system object.
Once you have created a timing object and coded its timer event, you can create any number
of instances of the object within the constraints of your operating system. An operating
system supports a fixed number of timers. Some of those timers will already be in use by
PowerBuilder and other applications and by the operating system itself.

Statements, Events, and Functions

Page 1482

To activate an instance of the timing object, call the Start function, specifying the interval
that you want between Timer events. The Timer event of that instance is triggered as soon as
possible after the specified interval, and will continue to be triggered until you call the Stop
function on that instance of the timing object or the object is destroyed.

When the Timer event occurs

The interval specified for the Start function is the minimum interval between Timer
events. All other posted events occur before the Timer event.

The resolution of the interval depends on your operating system.

You can determine what the timing interval is and whether a timer is running by accessing
the timing object's Interval and Running properties. These properties are read-only. You must
stop and restart a timer in order to change the value of the timing interval.

Garbage collection

If a timing object is running, it is not subject to garbage collection. Garbage collection
can occur only if the timing object is not running and there are no references to it.

Examples

Example 1

Suppose you have a distributed application in which the local client performs some
processing, such as calculating the value of a stock portfolio, based on values in a database.
The client requests a user object on a remote server to retrieve the data values from the
database.

Create a standard class user object on the server called uo_timer, inherited from the Timing
system object, and code its Timer event to refresh the data. Then the following code creates
an instance, MyTimer, of the timing object uo_timer. The Start function activates the
timer with an interval of 60 seconds so that the request to the server is issued at 60-second
intervals:

uo_timer MyTimer

MyTimer = CREATE uo_timer
MyTimer.Start(60)

Example 2

The following example uses a timing object as a shared object in a window that has buttons
for starting a timer, getting a hit count, stopping the timer, and closing the window. Status is
shown in a single line edit called sle_state. The timing object, uo_timing, is a standard class
user object inherited from the Timing system object. It has one instance variable that holds
the number of times a connection is made:

long il_hits

The timing object uo_timing has three functions:

• of_connect increments il_hits and returns an integer (this example omits the connection
code for simplicity):

Statements, Events, and Functions

Page 1483

il_hits++
// connection code omitted
RETURN 1

• of_hitcount returns the value of il_hits:

RETURN il_hits

• of_resetcounter resets the value of the counter to 0:

il_hits = 0

The timer event in uo_timing calls the of_connect function:

integer li_err

li_err = This.of_connect()
IF li_err <> 1 THEN
 MessageBox("Timer Error", "Connection failed ")
END IF

When the main window (w_timer) opens, its Open event script registers the uo_timing user
object as a shared object:

ErrorReturn result
string ls_result

SharedObjectRegister("uo_timing","Timing")
result = SharedObjectGet("Timing", iuo_timing)
// convert enumerated type to string
ls_result = of_converterror(result)

IF result = Success! THEN
 sle_stat.text = "Object Registered"
ELSE
 MessageBox("Failed", "SharedObjectGet failed, " &
 + "Status code: "+ls_result)
END IF

The Start Timer button starts the timer with an interval of five seconds:

double ld_interval
integer li_err

IF (isvalid(iuo_timing)) THEN
 li_err = iuo_timing.Start(5)
 ld_interval = iuo_timing.interval
 sle_2.text = "Timer started. Interval is " &
 + string(ld_interval) + " seconds"
 // disable Start Timer button
 THIS.enabled = FALSE
ELSE
 sle_2.text = "No timing object"
END IF

The Get Hits button calls the of_hitcount function and writes the result in a single line edit:

long ll_hits

IF (isvalid(iuo_timing)) THEN
 ll_hits = iuo_timing.of_hitcount()
 sle_hits.text = string(ll_hits)

Statements, Events, and Functions

Page 1484

ELSE
 sle_hits.text = ""
 sle_stat.text = "Invalid timing object..."
END IF

The Stop Timer button stops the timer, re-enables the Start Timer button, and resets the hit
counter:

integer li_err

IF (isvalid(iuo_timing)) THEN
 li_err = iuo_timing.Stop()

 IF li_err = 1 THEN
 sle_stat.text = "Timer stopped"
 cb_start.enabled = TRUE
 iuo_timing.of_resetcounter()
 ELSE
 sle_stat.text = "Error - timer could " &
 not be stopped"
 END IF

ELSE
 sle_stat.text = "Error - no timing object"
END IF

The Close button checks that the timer has been stopped and closes the window if it has:

IF iuo_timing.running = TRUE THEN
 MessageBox("Error","Click the Stop Timer " &
 + "button to clean up before closing")
ELSE
 close(parent)
END IF

The Close event for the window unregisters the shared timing object:

SharedObjectUnregister("Timing")

The of_converterror window function converts the ErrorReturn enumerated type to a string. It
takes an argument of type ErrorReturn:

string ls_result

CHOOSE CASE a_error
CASE Success!
 ls_result = "The function succeeded"
CASE FeatureNotSupportedError!
 ls_result = "Not supported on this platform"
CASE SharedObjectExistsError!
 ls_result = "Instance name already used"
CASE MutexCreateError!
 ls_result = "Locking mechanism unobtainable"
CASE SharedObjectCreateInstanceError!
 ls_result = "Object could not be created"
CASE SharedObjectCreatePBSessionError!
 ls_result = "Could not create context session"
CASE SharedObjectNotExistsError!
 ls_result = "Instance name not registered"
CASE ELSE
 ls_result = "Unknown Error Code"
END CHOOSE

RETURN ls_result

Statements, Events, and Functions

Page 1485

See also

Stop

2.4.811 StartHotLink

Description

Establishes a hot link with a DDE server application so that PowerBuilder is notified
immediately of any changes in the specified data. When the data changes in the server
application, it triggers a HotLinkAlarm event in the current application.

Syntax

StartHotLink (location, applname, topic {, bAnsi})

Table 2.1354:

Argument Description

location A string whose value is the location of the data in which a change of
value triggers a HotLinkAlarm event. The format of the location depends
on the application that contains the data.

applname A string whose value is the DDE name of the server application.

topic A string identifying the data or the instance of the application in which a
change triggers a HotLinkAlarm event (for example, in Microsoft Excel,
the topic name could be the name of an open spreadsheet).

bAnsi

(optional)

A boolean identifying whether the string to get from the DDE server is
in ANSI format. If bAnsi is NULL, false, or empty, PowerBuilder will
first try to get the data in a UNICODE formatted string. If bAnsi is true,
PowerBuilder will try to get the data in an ANSI formatted string.

Return value

Integer.

Returns 1 if it succeeds. If an error occurs, StartHotLink returns a negative integer. Values
are:

-1 -- No server

-2 -- Request denied

If any argument's value is null, StartHotLink returns null.

Usage

After establishing a hot link, you can include the following functions in the HotLinkAlarm
event:

• GetDataDDEOrigin -- To determine what application sent the notification of changed data

• GetDataDDE -- To obtain the new data

• RespondRemote -- To acknowledge receipt of the data

Examples

Statements, Events, and Functions

Page 1486

In this example, another PowerBuilder application has called the StartServerDDE function
and identified itself as MyPBApp. This statement in your application establishes a hot link
to data in MyPBApp. The values you specify for location and topic depend on conventions
established by MyPBApp:

StartHotLink("Any", "MyPBApp", "Any")

This statement establishes a hot link with Microsoft Excel, which notifies the PowerBuilder
window when the data at row 1 column 2 of REGION.XLS changes:

StartHotLink("R1C2", "Excel", "Region.XLS")

See also

StopHotLink

2.4.812 StartServerDDE

Description

Establishes your application as a DDE server. You specify the DDE name, topic, and items
that you support.

Syntax

StartServerDDE ({ windowname, } applname, topic {, item })

Table 2.1355:

Argument Description

windowname
(optional)

The name of the server window. The default is the current window.

applname The DDE name for your application.

topic A string whose value is the basic data grouping the DDE client
application references.

item (optional) A comma-separated list of one or more strings (data within topic)
that specify what your DDE server application supports (for example,
"Table1","Table2").

Return value

Integer. Returns 1 if it succeeds. If an error occurs, StartServerDDE returns -1, meaning
the your application is already started as a server. If any argument's value is null,
StartServerDDE returns null.

Usage

When a DDE client application sends a DDE request, the request includes one of the items
you have declared that you support. You determine how your application responds to each of
those items.

A window must be open to provide a handle for the DDE conversation. You cannot call
StartServerDDE and other DDE functions in an application object's events.

When your application has established itself as a DDE server, other applications can send
DDE requests that trigger these events in your application.

Statements, Events, and Functions

Page 1487

Table 2.1356: Events triggered by DDE requests and DDE functions available to each event

Client action Event triggered Functions available Purpose of function

Sends a request
for a hot link

RemoteHotLinkStart

Sends a
command to
your application

RemoteExec GetCommandDDE

GetCommandDDEOrigin

Obtain the command

Find out what client
application sent the
command

Sends data RemoteSend GetDataDDE

GetDataDDEOrigin

Obtain the data

Find out what client
application sent the data

Requests data
from your server
application

RemoteRequest SetDataDDE

RespondRemote

Send the requested data

Acknowledge the
request

Wants to
terminate the hot
link

RemoteHotLinkStop

Examples

This statement causes your PowerBuilder application to begin acting as a server. It is known
to other DDE applications as MyPBApp; its topic is System, and it supports items called
Table1 and Table2:

StartServerDDE(w_emp, "MyPBApp","System", &
 "Table1", "Table2")

See also

StopServerDDE

2.4.813 State

Description

Determines whether an item in a ListBox control is highlighted.

Applies to

ListBox and PictureListBox controls

Syntax

listboxname.State (index)

Table 2.1357:

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want to obtain
the state (highlighted or not highlighted) of the item identified by index

index The number of the item for which you want to obtain the state

Statements, Events, and Functions

Page 1488

Return value

Integer.

Returns 1 if the item in listboxname identified by index is highlighted and 0 if it is not. If the
index does not point to a valid item number, State returns -1. If any argument's value is null,
State returns null.

Usage

The State and SetState functions are meant for a ListBox that allows multiple selections
(its MultiSelect property is true). To find all of a list's selected items, loop through the list,
checking the state of each item.

The SelectedItem and SelectItem functions are meant for single-selection ListBox controls.
SelectedItem reports the selection directly with no need for looping. In a multiple-selection
ListBox control, SelectedItem reports the first selected item only.

When you know the index of an item, you can use the Text function to get the item's text.

Examples

If item 3 in lb_Contact is selected (highlighted), then this example sets li_Item to 1:

integer li_Item
li_Item = lb_Contact.State(3)

The following statements obtain the text of all the selected items in a ListBox that allows the
user to select more than one item. The MessageBox function displays each item as it is found.
You could include other processing that created an array or list of the selected values:

integer li_ItemTotal, li_ItemCount

// Get the number of items in the ListBox.
li_ItemTotal = lb_contact.TotalItems()

// Loop through all the items.
FOR li_ItemCount = 1 to li_ItemTotal
 // Is the item selected? If so, display the text
 IF lb_Contact.State(li_ItemCount) = 1 THEN &
 MessageBox("Selected Item", &
 lb_Contact.text(li_ItemCount))
NEXT

This statement executes some statements if item 3 in the ListBox lb_Contact is highlighted:

IF lb_Contact.State(3) = 1 THEN ...

See also

SelectedItem

SetState

2.4.814 StepIt

Description

Increments the current position in a progress bar control by the value specified in the SetStep
property of the control.

Applies to

Statements, Events, and Functions

Page 1489

Progress bar controls

Syntax

control.StepIt ()

Table 2.1358:

Argument Description

control The name of the progress bar

Return value

Integer.

Returns 1 if it succeeds and -1 if there is an error.

Usage

StepIt causes the position in a progress bar to wrap if the value of the SetStep takes the
current position out of range. For example, if the SetStep value is 40, the current position
80, and the range is set from 0 to 100, the position on the redrawn progress bar after you call
StepIt is 20.

The SetStep property can have a negative value. The default value for SetStep is 10.

Examples

This statement adds the SetStep increment to a progress bar control:

HProgressBar.StepIt ()

See also

SetRange

2.4.815 Stop

Stop has two syntaxes.

Table 2.1359:

To Use

Deactivate a timing object Syntax 1

Stop playing an animation Syntax 2

2.4.815.1 Syntax 1: For deactivating timing objects

Description

Deactivates a timing object.

Applies to

Timing objects

Syntax

timingobject.Stop ()

Statements, Events, and Functions

Page 1490

Table 2.1360:

Argument Description

timingobject The name of the timing object you want to deactivate

Return value

Integer.

Returns 1 if it succeeds and -1 if the timer is not running or could not be stopped.

Usage

Use this function to deactivate a timing object. A stopped timer can be reactivated with the
Start function.

Examples

This statement stops the timing object instance MyTimer:

MyTimer.Stop()

See also

Start

2.4.815.2 Syntax 2: For stopping an animation from playing

Description

Stops an animation (an AVI clip) from playing.

Applies to

Animation controls

Syntax

animationname.Stop ()

Table 2.1361:

Argument Description

animationname The name of the animation control displaying the AVI clip

Return value

Integer.

Returns 1 if it succeeds and -1 if the animation is not running or could not be stopped.

Usage

Use this function to stop an animation that is playing. A stopped animation can be restarted
with the Play function.

Examples

This statement stops the AVI clip that is playing in the animation control MyAnimation:

MyAnimation.Stop()

See also

Statements, Events, and Functions

Page 1491

Play

2.4.816 StopHotLink

Description

Terminates a hot link with a DDE server application.

Caution

All arguments must match the arguments in an earlier StartHotLink call.

Syntax

StopHotLink (location, applname, topic)

Table 2.1362:

Argument Description

location A string whose value is the location at which you want to end the hot
link, as specified in the StartHotLink function that established the link

applname A string whose value is the DDE name of the server application, as
specified in the StartHotLink function

topic A string identifying the data or the instance of the application in which
the hot link is stopped, as specified in the StartHotLink function

Return value

Integer.

Returns 1 if it succeeds. If an error occurs, StopHotLink returns a negative integer. Values
are:

-1 -- Link was not started

-2 -- Request denied

-3 -- Could not terminate server

If any argument's value is null, StopHotLink returns null.

Examples

If another PowerBuilder application called StartServerDDE to establish itself as a
server using the name MyPBApp, then your application can act as a DDE client and call
StartHotLink to establish a hot link with MyPBApp. The following statement ends that hot
link. The values you specify for location and topic depend on conventions established by
MyPBApp:

StopHotLink("Any", "MyPBApp", "Any")

This statement stops the hot link with Microsoft Excel for row 1 column 2 in the spreadsheet
REGION.XLS:

StopHotLink("R1C2", "Excel", "Region.XLS")

See also

StartHotLink

Statements, Events, and Functions

Page 1492

2.4.817 StopNavigation

Description

Stops navigating the page.

Applies to

WebBrowser controls

Syntax

controlname.StopNavigation ()

Table 2.1363:

Argument Description

controlname The name of the WebBrowser control.

Return value

Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples

Integer li_rtn
li_rtn = wb_1.StopNavigation()

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

GoForward

Navigate

PrintAsPDF

PauseDownload

RegisterEvent

ResumeDownload

Refresh

UnregisterEvent

Zoom

2.4.818 StopServerDDE

Description

Causes your application to stop acting as a DDE server application. Any subsequent requests
from a DDE client application fail.

Statements, Events, and Functions

Page 1493

Syntax

StopServerDDE ({ windowname, } applname, topic)

Table 2.1364:

Argument Description

windowname
(optional)

The name of the server window. The default is the current window. If
you have more than one server window, windowname is required.

applname The DDE name for your PowerBuilder application.

topic A string whose value is the topic you declared when you called
StartServerDDE.

Return value

Integer.

Returns 1 if it succeeds. If an error occurs, StopServerDDE returns -1, meaning the DDE
server was not started. If any argument's value is null, StopServerDDE returns null.

Caution

The arguments applname and topic must match the arguments in a prior
StartServerDDE call.

Examples

This statement causes the PowerBuilder application MyPBApp to stop acting as a server:

StopServerDDE(w_emp, "MyPBApp", "System")

See also

StartServerDDE

2.4.819 String

String has two syntaxes.

Table 2.1365:

To Use

Format data as a string according to a specified display format mask Syntax 1

Convert a blob to a string Syntax 2

2.4.819.1 Syntax 1: For formatting data

Description

Formats data, such as time or date values, according to a format mask. You can convert and
format date, DateTime, numeric, and time data. You can also apply a display format to a
string.

Syntax

String (data {, format })

Statements, Events, and Functions

Page 1494

Table 2.1366:

Argument Description

data The data you want returned as a string with the specified formatting. Data
can have a date, DateTime, numeric, time, or string datatype. Data can
also be an Any variable containing one of these datatypes.

format (optional) A string whose value is the display masks you want to use to format
the data. The masks consists of formatting information specific to the
datatype of data. If data is type string, format is required.

The format can consist of more than one mask, depending on the datatype
of data. Each mask is separated by a semicolon. (For details on each
datatype, see Usage).

Return value

String.

Returns data in the specified format if it succeeds and the empty string ("") if the datatype of
data does not match the type of display mask specified, format is not a valid mask, or data is
an incompatible datatype.

Usage

For date, DateTime, numeric, and time data, PowerBuilder uses the system's default format
for the returned string if you do not specify a format. For numeric data, the default format is
the [General] format.

For string data, a display format mask is required. (Otherwise, the function would have
nothing to do.)

The format can consist of one or more masks:

• Formats for date, DateTime, string, and time data can include one or two masks. The first
mask is the format for the data; the second mask is the format for a null value.

• Formats for numeric data can have up to four masks. A format with a single mask handles
both positive and negative data. If there are additional masks, the first mask is for positive
values, and the additional masks are for negative, zero, and null values.

To display additional characters as part of the mask for a decimal value, you must precede
each character with a backslash. For example, to display a decimal number with two digits of
precision preceded by four asterisks, you must type a backslash before each asterisk:

dec{2} amount
string = ls_result
amount = 123456.32
ls_result = string(amount,"****0.00")

The resulting string is ****123456.32.

For more information on specifying display formats, see Section 6.5.4, “Defining display
formats” in Users Guide. Note that, although a format can include color specifications,
the colors are ignored when you use String in PowerScript. Colors appear only for display
formats specified in the DataWindow painter.

Statements, Events, and Functions

Page 1495

If the display format does not match the datatype, PowerBuilder tries to apply the mask,
which can produce unpredictable results.

Times and dates from a DataWindow control

When you call GetItemTime or GetItemString as an argument for the String function
and do not specify a display format, the value is formatted as a DateTime value. This
statement returns a string like "2/26/03 00:00:00":

String(dw_1.GetItemTime(1, "start_date"))

International deployment

When you use String to format a date and the month is displayed as text (for example, the
display format includes "mmm"), the month is in the language of the runtime DLLs available
when the application is run. If you have installed localized runtime files in the development
environment or on a user's machine, then on that machine, the month in the resulting string is
in the language of the localized files.

For information about the localized runtime files, which are available in French, German,
Italian, Spanish, Dutch, Danish, Norwegian, and Swedish, see Section 8.1, “Internationalizing
an Application” in Application Techniques.

Handling ANSI data

Since this function does not have an encoding argument to allow you to specify the encoding
of the data, the string returned can contain garbage characters if the data has ANSI encoding.
You can handle this by converting the ANSI string returned from the String function to a
Unicode blob, and then converting the ANSI string in the blob to a Unicode string, using the
encoding parameters provided in the Blob and String conversion functions:

ls_temp = String(long, "address")
lb_blob = blob(ls_temp) //EncodingUTF16LE! is default
ls_result = string(lb_blob, EncodingANSI!)

Message object

You can also use String to extract a string from the Message object after calling TriggerEvent
or PostEvent. For more information, see the TriggerEvent or PostEvent functions.

Examples

This statement applies a display format to a date value and returns Jan 31, 2002:

String(2002-01-31, "mmm dd, yyyy")

This example applies a format to the value in order_date and sets date1 to 6-11-02:

Date order_date = 2002-06-11
string date1
date1 = String(order_date,"m-d-yy")

This example includes a format for a null date value so that when order_date is null, date1 is
set to none:

Date order_date = 2002-06-11
string date1
SetNull(order_date)
date1 = String(order_date, "m-d-yy;'none'")

Statements, Events, and Functions

Page 1496

This statement applies a format to a DateTime value and returns Jan 31, 2001 6 hrs and 8
min:

String(DateTime(2001-01-31, 06:08:00), &
 'mmm dd, yyyy h "hrs and" m "min"')

This example builds a DateTime value from the system date and time using the Today and
Now functions. The String function applies formatting and sets the text of sle_date to that
value, for example, 6-11-02 8:06 pm:

DateTime sys_datetime
string datetime1
sys_datetime = DateTime(Today(), Now())
sle_date.text = String(sys_datetime, &
 "m-d-yy h:mm am/pm;'none'")

This statement applies a format to a numeric value and returns $5.00:

String(5,"$#,##0.00")

These statements set string1 to 0123:

integer nbr = 123
string string1
string1 = String(nbr,"0000;(000);****;empty")

These statements set string1 to (123):

integer nbr = -123
string string1
string1 = String(nbr,"000;(000);****;empty")

These statements set string1 to ****:

integer nbr = 0
string string1
string1 = String(nbr,"0000;(000);****;empty")

These statements set string1 to "empty":

integer nbr
string string1
SetNull(nbr)
string1 = String(nbr,"0000;(000);****;empty")

This statement formats string data and returns A-B-C. The display format assigns a character
in the source string to each @ and inserts other characters in the format at the appropriate
positions:

String("ABC", "@-@-@")

This statement returns A*B:

String("ABC", "@*@")

This statement returns ABC:

String("ABC", "@@@")

This statement returns a space:

String("ABC", " ")

This statement applies a display format to time data and returns 6 hrs and 8 min:

Statements, Events, and Functions

Page 1497

String(06:08:02,'h "hrs and" m "min"')

This statement returns 08:06:04 pm:

String(20:06:04,"hh:mm:ss am/pm")

This statement returns 8:06:04 am:

String(08:06:04,"h:mm:ss am/pm")

See also

String method for DataWindows in Section 2.4.121, “String” in DataWindow Reference.

2.4.819.2 Syntax 2: For blobs

Description

Converts data in a blob to a string value. If the blob's value is not text data, String attempts to
interpret the data as characters.

Syntax

String (blob {,encoding})

Table 2.1367:

Argument Description

blob The blob whose value you want returned as a string. Blob can also be an
Any variable containing a blob.

encoding Character encoding of the blob you want converted. Values are:

• EncodingANSI!

• EncodingUTF8!

• EncodingUTF16LE! (default)

• EncodingUTF16BE!

Return value

String.

Returns the value of blob as a string if it succeeds and the empty string ("") if it fails. It the
blob does not contain string data, String interprets the data as characters, if possible, and
returns a string. If blob is null, String returns null.

Usage

If the encoding argument is not provided, String converts a Unicode blob to a Unicode string.
You must provide the encoding argument if the blob has a different encoding.

If the blob has a byte-order mark (BOM), String filters it out automatically. For example,
suppose the blob's hexadecimal display is: FF FE 54 00 68 00 69 00 73 00. The BOM is FF
FE, which indicates that the blob has UTF-16LE encoding, and is filtered out. The string
returned is "This".

You can also use String to extract a string from the Message object after calling TriggerEvent
or PostEvent. For more information, see the TriggerEvent or PostEvent functions.

Statements, Events, and Functions

Page 1498

Examples

This example converts the blob instance variable ib_sblob, which contains string data in
ANSI format, to a string and stores the result in sstr:

string sstr
sstr = String(ib_sblob, EncodingANSI!)

This example stores today's date and test status information in the blob bb. Pos1 and pos2
store the beginning and end of the status text in the blob. Finally, BlobMid extracts a "sub-
blob" that String converts to a string. Sle_status displays the returned status text:

blob{100} bb
long pos1, pos2
string test_status
date test_date

test_date = Today()
IF DayName(test_date) = "Wednesday" THEN &
 test_status = "Coolant Test"
IF DayName(test_date) = "Thursday" THEN &
 test_status = "Emissions Test"

// Store data in the blob
pos1 = BlobEdit(bb, 1, test_date)
pos2 = BlobEdit(bb, pos1, test_status)

... // Some processing

// Extract the status stored in bb and display it
sle_status.text = String(&
 BlobMid(bb, pos1, pos2 - pos1))

See also

Blob

String method for DataWindows in Section 2.4.121, “String” in DataWindow Reference.

2.4.820 Submit

Description

Sends the data to the server via the HTTP POST method and then gets the response body
from the server.

It is not recommended to use this method to process large data (20 MB or 100,000 data rows
can be considered as large data based on our tests).

Applies to

RESTClient object

Syntax

objectname.Submit(string urlName, ref string response, DWControl dwObject{, boolean
 format})

objectname.Submit(string urlName, ref string response, DWControl dwObject
 {,DWBuffer dwbuffer}, boolean changedonly, boolean format)

objectname.Submit(string urlName, ref string response, DWControl dwObject, boolean
 primarydata, boolean filterdata, boolean deletedata, boolean dwcdata {, boolean
 format})

Statements, Events, and Functions

Page 1499

objectname.Submit(string urlName, ref string response, DWControl dwObject, DWBuffer
 dwbuffer{,long startrow{, long endrow{, long startcol{, long endcol}}}} {, boolean
 format})

objectname.Submit(string urlName, ref string response, ref JsonPackage package)

Table 2.1368:

Argument Description

objectname The name of the RESTClient object.

urlName The URL indicating where the data will be submitted.

response The content of the server response.

If RESTClient failed to send request or server provides no response, the
response value is an empty string. If the response value is compressed
as gzip, it will be automatically decompressed. Only gzip compression
format is supported at this moment. If the server specified the Content-
Type response header, and in which the encoding charset is specified, this
function will encode the data with the specified charset, if charset is not
specified, this function will encode the data in UTF-8 by default.

dwObject The DataWindow control, DataStore, or DataWindowChild object whose
data will be submitted.

primarydata A boolean indicating whether to export and submit the data from the
primary buffer.

• True -- to export.

• False -- not to export.

filterdata A boolean indicating whether to export and submit the data from the filter
buffer.

• True -- to export.

• False -- not to export.

deletedata A boolean indicating whether to export and submit the data from the
delete buffer.

• True -- to export.

• False -- not to export.

dwcdata A boolean specifying whether to export the DataWindowChild data.

• True -- to export. If it is to export the DataWindowChild data, data
from all buffers will be exported to a plain JSON, regardless of the
value of the other arguments.

• False -- not to export.

dwbuffer A value of the dwBuffer enumerated datatype identifying the
DataWindow buffer from which you want to export the data. For a list of
valid values, see Section 6.9, “DWBuffer” in DataWindow Reference.

Statements, Events, and Functions

Page 1500

Argument Description
If not specified, all of the DataWindow buffers will be exported,
however, the data for DataWindowChild will not be exported (even if
changedonly is false).

startrow
(optional)

A long value specifying the start row in the dwbuffer DataWindow
buffer. The default is 1. If it is 0 or negative, 1 is used.

endrow
(optional)

A long value specifying the end row in the dwbuffer DataWindow buffer.
The default is the rest of the rows. If it is 0 or negative, it indicates the
rest of rows.

startcol
(optional)

A long value specifying the start column in the dwbuffer DataWindow
buffer. The default is 1. If it is 0 or negative, 1 is used.

endcol (optional) A long value specifying the end column in the dwbuffer DataWindow
buffer. The default is the rest of the columns. If it is 0 or negative, it
indicates the rest of columns.

changedonly A boolean specifying the changing flag.

• True -- to export the changed rows only (and all rows of the Delete
buffer).

• False -- to export all rows. The default is false.

format (optional) A boolean specifying the JSON format.

• True indicates the DataWindow JSON. For syntax 1, 3, 4, the default is
true.

• False indicates the plain JSON. For syntax 2, the default is false.

See Section 4.7.1, “Supported JSON formats” in Application Techniques
for details about the JSON format.

package A reference to JsonPackage object whose data will be submitted.

Return value

Integer. Returns 1 if the function succeeds and a negative value if an error occurs. If any
argument's value is null, the method returns null.

1 -- Success

-1 -- General error

-2 -- Invalid URL

-3 -- Cannot connect to the Internet

-4 -- Timeout

-6 -- Failed to export JSON

-7 -- Failed to decompress data

-10 -- The token is invalid or has expired

Statements, Events, and Functions

Page 1501

-14 -- Code conversion failed

-15 -- Unsupported character set

Examples

The following example demonstrates the usage of syntax 1: Submit(string urlName, ref string
response, DWControl dwObject{, boolean format}).

String ls_P025_ResponseBody
Integer li_P025_SendReturn
RestClient lrc_P025
lrc_P025 = Create RestClient
lrc_P025.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip")

lrc_P025.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
//Modifies the data in dw_Data
If dw_Data.GetRow() > 0 Then
 dw_Data.SetItem(dw_Data.GetRow(), 2, "Test submit")
 //....
End If
//Uses the DataWindow JSON
//Server determines whether to update according to the data state
//DataWindow column name and type must match with that of server
li_P025_SendReturn = lrc_P025.submit ("https://demo.appeon.com/PB/webapi_client/
department/updateByJson",ls_P025_Responsebody, dw_Data,True)

If li_P025_SendReturn <> 1 Or lrc_P025.GetResponseStatusCode() <> 200 Then
 //Checks if any error information
End If

//Finds out if data is updated via https://demo.appeon.com/PB/webapi_client/api/
department/retrieve
lrc_P025.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")

The following example submits the data of the DataWindow primary buffer using syntax 2:
Submit(string urlName, ref string response, DWControl dwObject {,DWBuffer dwbuffer},
boolean changedonly, boolean format).

String ls_P025_ResponseBody
Integer li_P025_SendReturn
RestClient lrc_P025
lrc_P025 = Create RestClient
lrc_P025.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip")

lrc_P025.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
//Modifies the data in dw_Data
If dw_Data.GetRow() > 0 Then
 dw_Data.SetItem(dw_Data.GetRow(), 2, "Test submit primary")
 //....
End If
//Uses the DataWindow JSON
//Server determines whether to update according to the data state
//DataWindow column name and type must match with that of server
li_P025_SendReturn = lrc_P025.Submit("https://demo.appeon.com/PB/webapi_client/
department/updateByJson",ls_P025_Responsebody, dw_Data,Primary!, True, True)
If li_P025_SendReturn <> 1 Or lrc_P025.GetResponseStatusCode() <> 200 Then
 //Checks if any error information
End If

Statements, Events, and Functions

Page 1502

//Finds out if data is updated via https://demo.appeon.com/PB/webapi_client/api/
department/retrieve
lrc_P025.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")

The following example submits the data of the DataWindow delete buffer using syntax 3:
Submit(string urlName, ref string response, DWControl dwObject, boolean primarydata,
boolean filterdata, boolean deletedata, boolean dwcdata {, boolean format}).

String ls_P025_ResponseBody
Integer li_P025_SendReturn
RestClient lrc_P025
lrc_P025 = Create RestClient
lrc_P025.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip")

lrc_P025.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
//Modifies the data in dw_Data
If dw_Data.RowCount() > 0 Then
 dw_Data.DeleteRow(dw_Data.RowCount())
 //....
End If
//Uses the DataWindow JSON
//Server determines whether to update according to the data state
//DataWindow column name and type must match with that of server
li_P025_SendReturn = lrc_P025.Submit("https://demo.appeon.com/PB/webapi_client/
department/updateByJson", ls_P025_Responsebody, dw_Data, False, False, True, False,
 True)
If li_P025_SendReturn <> 1 Or lrc_P025.GetResponseStatusCode() <> 200 Then
 //Checks if any error information
End If

//Finds out if data is deleted via https://demo.appeon.com/PB/webapi_client/api/
department/retrieve
lrc_P025.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")

The following example submits the data of the specified row and column using syntax
4: Submit(string urlName, ref string response, DWControl dwObject, DWBuffer
dwbuffer{,long startrow{, long endrow{, long startcol{, long endcol}}}} {, boolean
format}).

String ls_P025_ResponseBody
Integer li_P025_SendReturn
RestClient lrc_P025
lrc_P025 = Create RestClient
lrc_P025.SetRequestHeaders("Content-Type:application/json;charset=UTF-8~r~nAccept-
Encoding:gzip")

//Retrieves data for dw_Data
lrc_P025.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
//Modifies the data in dw_Data
If dw_Data.GetRow() > 0 Then
 dw_Data.SetItem(dw_Data.GetRow(), 2,"Submit row col"+String(rand(100)))
 dw_Data.SetItem(dw_Data.GetRow(), 3,rand(1000))
 //....
End If
//Uses the DataWindow JSON
//Server determines whether to update according to the data state
//DataWindow column name and type must match with that of server

Statements, Events, and Functions

Page 1503

li_P025_SendReturn = lrc_P025.Submit("https://demo.appeon.com/PB/webapi_client/
department/updateByJson", ls_P025_Responsebody, dw_Data, Primary!,1, 2, 1, 2)
If li_P025_SendReturn <> 1 Or lrc_P025.GetResponseStatusCode() <> 200 Then
 //checke the failed information
End If

//Finds out if data of column 2 is updated via https://demo.appeon.com/PB/
webapi_client/api/department/retrieve
lrc_P025.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")

The following example submits data via JSONPackage object and token authentication using
syntax 5: Submit(string urlName, ref string response, ref JsonPackage package).

JsonPackage ljpk_submit
RestClient lrc_JPK_Submit
String ls_P017_Token
String ls_Submit_Responsebody
Integer li_JsonpackageSetValueReturn
Integer li_P017_GetTokenReturn
Integer li_SubmitReturn

ljpk_submit = Create JsonPackage
lrc_JPK_Submit = Create RestClient

//Sets the token parameters
TokenRequest ltreq_P017_Appeon
ltreq_P017_Appeon.tokenlocation = "https://demo.appeon.com/pb/identityserver/
connect/token"
ltreq_P017_Appeon.method = "post"
ltreq_P017_Appeon.GrantType = "password"
ltreq_P017_Appeon.ClientId = "P0VRQ-ddHn/WWd6lcCNJbaO9ny-JCNHirDJkHNgZ0-M="
ltreq_P017_Appeon.ClientSecret = "K7gNU3sdo-OL0wNhqoVWhr3g6s1xYv72ol/pe/Unols="
ltreq_P017_Appeon.UserName = "TestUser"
ltreq_P017_Appeon.PassWord = "TestPassword"

//Gets token via RESTClient
li_P017_GetTokenReturn = lrc_JPK_Submit.GetOauthtoken(ltreq_P017_Appeon,
 ls_P017_Token)
If li_P017_GetTokenReturn = 1 Then
 lrc_JPK_Submit.SetRequestHeaders("Content-Type:application/
json;charset=UTF-8~r~nAccept-Encoding:gzip")
 lrc_JPK_Submit.SetOauthToken(ls_P017_Token) //Sets the authentication
 lrc_JPK_Submit.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
 //Modifies data
 If dw_Data.GetRow() >0 Then
 dw_Data.SetItem(dw_Data.GetRow(),2,"Test submit from
 jsonpackage"+String(rand(100)))
 //...
 End If
 //Value of JSONPackage comes from dw_Data
 li_JsonpackageSetValueReturn = ljpk_submit.setvalue("AppeonJsonPackageKey",
 dw_Data, True)

 //Submits the DataWindow data to server
 //Requires token authentication
 //DataWindow column name and type must match with that of server
 li_SubmitReturn = lrc_JPK_Submit.Submit("https://demo.appeon.com/PB/
webapi_client/identity/department/UpdateByJsonPackage",ls_Submit_Responsebody,
 ljpk_submit)
 If li_SubmitReturn <> 1 Or lrc_JPK_Submit.GetResponseStatusCode() <> 200 Then
 //Checks if any error information and checks the submit parameter:
 ls_Submit_Responsebody

Statements, Events, and Functions

Page 1504

 End If

 //Finds out if data is updated via https://demo.appeon.com/PB/webapi_client/api/
department/retrieve
 lrc_JPK_Submit.Retrieve(dw_Data, "https://demo.appeon.com/PB/webapi_client/api/
department/retrieve")
End If

2.4.821 SuspendTransaction (obsolete)

Description

Suspends the EAServer transaction associated with the calling thread.

Obsolete function

SuspendTransaction is obsolete, because EAServer is no longer supported since
PowerBuilder 2017.

Applies to

CORBACurrent objects

Syntax

CORBACurrent.SuspendTransaction ()

Table 2.1369:

Argument Description

CORBACurrent Reference to the CORBACurrent service instance

Return value

Unsigned long.

Returns a handle that refers to the transaction associated with the thread or 0 if an error
occurs.

Usage

The SuspendTransaction function returns a handle referring to the transaction associated
with the calling thread. This handle can be passed to the ResumeTransaction function on the
same or a different thread. When SuspendTransaction is called, the current thread is no longer
associated with a transaction.

SuspendTransaction can be called by a client or a component that is marked as OTS style. It
must be using the two-phase commit transaction coordinator (OTS/XA).

Examples

This example shows the use of the SuspendTransaction function to disassociate the calling
thread from the current transaction:

// Instance variable:
// CORBACurrent corbcurr
integer li_rc
unsignedlong ll_handle

// Get and initialize an instance of CORBACurrent
...
li_rc = corbcurr.BeginTransaction()
// do some transactional work

Statements, Events, and Functions

Page 1505

ll_handle = corbcurr.SuspendTransaction()
// do some nontransactional work
li_rc = corbcurr.ResumeTransaction(ll_handle)
// do some more transactional work
li_rc = corbcurr.CommitTransaction()

See also

BeginTransaction (obsolete)

CommitDocking

GetTransactionName (obsolete)

ResumeTransaction (obsolete)

RollbackTransaction (obsolete)

SetTimeout (obsolete)

2.4.822 SymmetricDecrypt

Description

Decrypts a blob value using symmetric algorithm.

Applies to

CrypterObject objects

Syntax

crypter.SymmetricDecrypt (algorithm, variable, key{, operationmode{, iv{,
 padding}}})

Table 2.1370:

Argument Description

crypter The name of the CrypterObject object.

algorithm A value of the SymmetricAlgorithm enumerated type that specifies the
type of symmetric algorithm.

Values are:

• AES! – The Advanced Encryption Standard

• DES! – The Data Encryption Standard

• TDES! – The Triple-DES

• DESX! – The DES-XEX3

• Blowfish! – The Blowfish

variable A blob whose value is the data you want to decrypt with symmetric
algorithm.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

Statements, Events, and Functions

Page 1506

Argument Description

key A blob specifying the secret key.

The length of the secret key can be 128 bits, 192 bits, 256 bits with AES.

The length of the secret key must be 64 bits with DES.

The length of the secret key can be 128 bits, 192 bits with TDES.

The length of the secret key must be 192 bits with DESX.

The length of the secret key can be 32 bits~448 bits with Blowfish.

operationmode
(optional)

A value of the OperationMode enumerated type that specifies the mode
of operation.

Values are:

• OperationModeECB! – (Default) The Electronic Codebook (ECB)
mode

• OperationModeCBC! – The Cipher Block Chaining (CBC) mode

• OperationModeCFB! – The Cipher Feedback (CFB) mode

• OperationModeOFB! – The Output Feedback (OFB) mode

• OperationModeCTR! – The Counter (CTR) mode

iv (optional) A blob specifying the initialization vector. Zeros filled by default. In the
AES algorithm, the effective length of the iv is 16 bytes and the others
are 8 bytes. If the length is not enough, it will be automatically filled with
zeros. In the ECB operation mode, the iv will be ignored.

padding
(optional)

A value of the PaddingScheme enumerated type that specifies the
padding schemes used for block cipher.

Values are:

• NoPadding! – No padding added to a block

• ZerosPadding! – 0's padding added to a block

• PKCSPadding! – PKCS #5 padding added to a block

• OneAndZerosPadding! – 1 and 0's padding added to a block

• DefaultPadding! – (Default) Default padding scheme. DefaultPadding!
means PKCSPadding! for ECB or CBC mode. Otherwise, NoPadding!
for modes like CFB, OFB, and CTR.

ZerosPadding!, PKCSPadding!, and OneAndZerosPadding! can be used
with ECB and CBC operation mode. NoPadding! can be used with CFB,
OFB and CTR operation mode.

Return value

Statements, Events, and Functions

Page 1507

Blob.

Returns the result of the decrypt if it succeeds. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

The following statements encrypt the data using AES and then decrypt the data using AES.

Blob lblb_data
Blob lblb_key
Blob lblb_iv
Blob lblb_encrypt
Blob lblb_decrypt

lblb_data = Blob("Test AES", EncodingANSI!)
lblb_key = Blob("Test Key12345678", EncodingANSI!)
lblb_iv = Blob("Test IV 12345678", EncodingANSI!)

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

// Encrypt data using AES
lblb_encrypt = lnv_CrypterObject.SymmetricEncrypt(AES!, lblb_data, lblb_key, &
 OperationModeCBC!, lblb_iv, PKCSPadding!)

// Decrypt data using AES
lblb_decrypt = lnv_CrypterObject.SymmetricDecrypt(AES!, lblb_encrypt, lblb_key, &
 OperationModeCBC!, lblb_iv, PKCSPadding!)

messagebox("SymmetricDecrypt", string(lblb_decrypt, EncodingANSI!))

See also

SymmetricEncrypt

SymmetricGenerateKey

AsymmetricEncrypt

AsymmetricDecrypt

AsymmetricSign

AsymmetricVerifySign

AsymmetricGenerateKey

MD5

SHA

HMAC

2.4.823 SymmetricEncrypt

Description

Encrypts a blob value using symmetric algorithm.

Applies to

CrypterObject objects

Syntax

Statements, Events, and Functions

Page 1508

crypter.SymmetricEncrypt (algorithm, variable, key{, operationmode{, iv{,
 padding}}})

Table 2.1371:

Argument Description

crypter The name of the CrypterObject object.

algorithm A value of the SymmetricAlgorithm enumerated type that specifies the
type of symmetric algorithm.

Values are:

• AES! – The Advanced Encryption Standard

• DES! – The Data Encryption Standard

• TDES! – The Triple-DES

• DESX! – The DES-XEX3

• Blowfish! – The Blowfish

variable A blob whose value is the data you want to encrypt with symmetric
algorithm.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

key A blob specifying the secret key.

The length of the secret key can be 128 bits, 192 bits, 256 bits with AES.

The length of the secret key must be 64 bits with DES.

The length of the secret key can be 128 bits, 192 bits with TDES.

The length of the secret key must be 192 bits with DESX.

The length of the secret key can be 32 bits~448 bits with Blowfish.

operationmode
(optional)

A value of the OperationMode enumerated type that specifies the mode
of operation.

Values are:

• OperationModeECB! – (Default) The Electronic Codebook (ECB)
mode

• OperationModeCBC! – The Cipher Block Chaining (CBC) mode

• OperationModeCFB! – The Cipher Feedback (CFB) mode

• OperationModeOFB! – The Output Feedback (OFB) mode

• OperationModeCTR! – The Counter (CTR) mode

Statements, Events, and Functions

Page 1509

Argument Description

iv (optional) A blob specifying the initialization vector. Zeros filled by default. In the
AES algorithm, the effective length of the iv is 16 bytes and the others
are 8 bytes. If the length is not enough, it will be automatically filled with
zeros. In the ECB operation mode, the iv will be ignored.

padding
(optional)

A value of the PaddingScheme enumerated type that specifies the
padding schemes used for block cipher.

Values are:

• NoPadding! – No padding added to a block

• ZerosPadding! – 0's padding added to a block

• PKCSPadding! – PKCS #5 padding added to a block

• OneAndZerosPadding! – 1 and 0's padding added to a block

• DefaultPadding! – (Default) Default padding scheme. DefaultPadding!
means PKCSPadding! for ECB or CBC mode. Otherwise, NoPadding!
for modes like CFB, OFB, and CTR.

ZerosPadding!, PKCSPadding!, and OneAndZerosPadding! can be used
with ECB and CBC operation mode. NoPadding! can be used with CFB,
OFB and CTR operation mode.

Return value

Blob.

Returns the encryption result (length: 24) if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

The following statements encrypt the data using AES and return the encrypted data.

Blob lblb_data
Blob lblb_key
Blob lblb_iv
Blob lblb_encrypt

lblb_data = Blob("Test AES", EncodingANSI!)
lblb_key = Blob("Test Key12345678", EncodingANSI!)
lblb_iv = Blob("Test IV 12345678", EncodingANSI!)

CrypterObject lnv_CrypterObject
lnv_CrypterObject = Create CrypterObject

lblb_encrypt = lnv_CrypterObject.SymmetricEncrypt(AES!, lblb_data, lblb_key, &
 OperationModeCBC!, lblb_iv, PKCSPadding!)

See also

SymmetricDecrypt

SymmetricGenerateKey

Statements, Events, and Functions

Page 1510

AsymmetricEncrypt

AsymmetricDecrypt

AsymmetricSign

AsymmetricVerifySign

AsymmetricGenerateKey

MD5

SHA

HMAC

2.4.824 SymmetricGenerateKey

Description

Generates a secret key for asymmetric algorithm.

Applies to

CrypterObject objects

Syntax

crypter.SymmetricGenerateKey (SymmetricAlgorithm algorithm, Integer len, ref Blob
 key)

Table 2.1372:

Argument Description

crypter The name of the CrypterObject object.

algorithm A value of the SymmetricAlgorithm enumerated type that specifies the
type of symmetric algorithm.

Values are:

• AES! – The Advanced Encryption Standard

• DES! – The Data Encryption Standard

• TDES! – The Triple-DES

• DESX! – The DES-XEX3

• Blowfish! – The Blowfish

len An integer value specifying the key length.

Values are:

• The value can be 16, 24, or 32 with AES

• The value must be 8 with DES

• The value can be 16 or 24 with TDES

Statements, Events, and Functions

Page 1511

Argument Description
• The value must be 24 with DESX

• The value can range from 4 to 56 with Blowfish

key A blob specifying the secret key.

The length of the secret key can be 128 bits, 192 bits, 256 bits with AES.

The length of the secret key must be 64 bits with DES.

The length of the secret key can be 128 bits, 192 bits with TDES.

The length of the secret key must be 192 bits with DESX.

The length of the secret key can range from 32 bits to 448 bits with
Blowfish.

Return value

Integer. Returns 1 if it succeeds and -1 if it failed. If any argument's value is null, the method
returns null. If an error occurs, throw the exception.

Examples

CoderObject lco_Code
CrypterObject lco_Crypt
Blob lbb_Key, lb_Return, lb_Decrypt, lb_Data
Integer li_Return
String ls_Return

lco_Code = Create CoderObject
lco_Crypt = Create CrypterObject

li_Return = lco_Crypt.SymmetricGenerateKey(AES!,16,lbb_Key)
If li_Return = 1 Then
 lb_Data = Blob("Appeon", EncodingUTF8!)
 lb_Return = lco_Crypt.SymmetricEncrypt(AES!, lb_Data, lbb_Key)
 lb_Decrypt = lco_Crypt.SymmetricDecrypt(AES!, lb_Return, lbb_Key)
 ls_Return = String(lb_Decrypt, EncodingUTF8!)
End If

DesTroy (lco_Crypt)
DesTroy (lco_Code)

See also

SymmetricDecrypt

SymmetricEncrypt

AsymmetricEncrypt

AsymmetricDecrypt

AsymmetricSign

AsymmetricVerifySign

AsymmetricGenerateKey

MD5

SHA

Statements, Events, and Functions

Page 1512

HMAC

2.4.825 Synchronize

Starts synchronization between a remote and consolidated database. The syntax you
use depends on whether you include command line parameters with the dbmlsync
synchronization call.

Table 2.1373:

To start synchronization Use

Without including command line parameters Syntax 1

With command line parameters that you include in the synchronization
call

Syntax 2

2.4.825.1 Syntax 1: For synchronization without parameters

Description

Starts synchronization between a remote and consolidated database.

Applies to

MLSynchronization, MLSync controls

Syntax

SyncObject.Synchronize ()

Table 2.1374:

Argument Description

syncObject The name of the synchronization object.

Return value

Integer.

Returns 1 for success and -1 for failure. Any other return value is an error code from
dbmlsync.

Examples

If all the properties of a synchronization object are initialized, including userids and
passwords, it is ready for immediate use. To launch a synchronization requires very little
coding, as in the following example for an MLsync object named "nvo_my_mlsync":

nvu_my_mlsync mySync
Long rc
mySync = CREATE nvo_my_mlsync
mySync.Synchronize()
destroy mySync

You would typically add the above code to the Clicked event for a menu item or a command
button on an application window.

2.4.825.2 Syntax 2: For synchronization with parameters

Description

Statements, Events, and Functions

Page 1513

Starts dbmlsync synchronization with command line parameters that are passed from the
values of a syncparm structure.

Applies to

MLSync controls

Syntax

SyncObject.Synchronize (cmdstring)

Table 2.1375:

Argument Description

syncObject The name of the synchronization object.

cmdstring A read-only string containing command line arguments for a
synchronization call.

Return value

Integer.

Returns 1 for success and any other value for failure.

Usage

The following is an example of a command string for a Synchronize call:

C:\Program Files\SAP\SQL Anywhere 11\Bin32\ dbmlsync.exe
-c "DSN=salesdb_remote;UID=dba;PWD=sql" -n salesapi
-u 50 -mp "pw10" -wc salesapi_50_sync
-o "C:\temp\dbmlsync.log" -v+ -q -k

If the path to the dbmlsync executable (C:\Program Files\SAP\SQL Anywhere
11\Bin32\dbmlsync.exe in the above example) is not part of the command string, the
application searches the Windows registry to find it.

Examples

For MLSync objects, you can allow a user to edit the command line arguments for a
synchronization call as follows:

long rc
string cmd
cmd = myMLSync.GetCommandString()
// Edit cmd however you wish
...
rc = myMLSync.Synchronize(cmd)

See also

CancelSync

GetCommandString

SetParm

2.4.826 SyntaxFromSQL

Description

Generates DataWindow source code based on a SQL SELECT statement.

Statements, Events, and Functions

Page 1514

Applies to

Transaction objects

Syntax

transaction.SyntaxFromSQL (sqlselect, presentation, err)

Table 2.1376:

Argument Description

transaction The name of a connected transaction object.

sqlselect A string whose value is a valid SQL SELECT statement.

presentation A string whose value is the default presentation style you want for the
DataWindow. The simple format is:

Style(Type=presentationstyle)

Values for presentationstyle correspond to selected styles in the New
DataWindow dialog box in the DataWindow painter. Keywords are:

(Default) Tabular

Grid

Form (for freeform)

Graph

Group

Label

The Usage section lists the keywords you can use in presentation.

err A string variable to which PowerBuilder will assign any error messages
that occur.

Return value

String.

Returns the empty string ("") if an error occurs. If SyntaxFromSQL fails, err may contain
error messages if warnings or soft errors occur (for example, a syntax error). If any
argument's value is null, SyntaxFromSQL returns null.

Usage

To create a DataWindow object, you can pass the source code returned by SyntaxFromSQL
directly to the Create function.

Table owner in the SQL statement

If the value of the LogID property of the Transaction object is not the owner of the table
being accessed in the SQL statement for the SyntaxFromSQL function, then the table name in
the SQL SELECT statement must be qualified with the owner name.

Note for Adaptive Server Enterprise

If your DBMS is Adaptive Server Enterprise and you call SyntaxFromSQL,
PowerBuilder must determine whether the tables are updatable through a

Statements, Events, and Functions

Page 1515

unique index. This is only possible if you set AutoCommit to true before calling
SyntaxFromSQL, as shown here:

sqlca.autocommit=TRUE
ls_dws=sqlca.syntaxfromsql (sqlstmt, presentation, err)
sqlca.autocommit=FALSE

The presentation string can also specify object keywords followed by properties and values to
customize the DataWindow. You can specify the style of a column, the entire DataWindow,
areas of the DataWindow, and text in the DataWindow. The object keywords are:

Column

DataWindow

Group

Style

Text

Title

A full presentation string has the format:

"Style (Type=value property=value ...)
 DataWindow (property=value ...)
 Column (property=value ...)
 Group (colnum1 colnum2 ... property ...) //Effective only when Type=Group
 Text (property=value ...)
 Title ('titlestring')"

The checklists in Chapter 3, DataWindow Object Properties in DataWindow Reference
identify the properties that you can use for each object keyword.

If a database column has extended attributes with font information, then font information you
specify in the SyntaxFromSQL presentation string is ignored.

Examples

The following statements display the DataWindow source for a tabular DataWindow object
generated by the SyntaxFromSQL function in a MultiLineEdit.

If errors occur, PowerBuilder fills the string ERRORS with any error messages that are
generated:

string ERRORS, sql_syntax

sql_syntax = "SELECT emp_data.emp_id," &
 + "emp_data.emp_name FROM emp_data " &
 + "WHERE emp_data.emp_salary >45000"

mle_sql.text = &
 SQLCA.SyntaxFromSQL(sql_syntax, "", ERRORS)

The following statements create a grid DataWindow dw_1 from the DataWindow source
generated in the SyntaxFromSQL function. If errors occur, the string ERRORS contains any
error messages that are generated, which are displayed to the user in a message box. Note
that you need to call SetTransObject with SQLCA as its argument before you can call the
Retrieve function:

Statements, Events, and Functions

Page 1516

string ERRORS, sql_syntax
string presentation_str, dwsyntax_str

sql_syntax = "SELECT emp_data.emp_id,"&
 + "emp_data.emp_name FROM emp_data "&
 + "WHERE emp_data.emp_salary > 45000"

presentation_str = "style(type=grid)"

dwsyntax_str = SQLCA.SyntaxFromSQL(sql_syntax, &
 presentation_str, ERRORS)

IF Len(ERRORS) > 0 THEN
 MessageBox("Caution", &
 "SyntaxFromSQL caused these errors: " + ERRORS)
 RETURN
END IF

dw_1.Create(dwsyntax_str, ERRORS)

IF Len(ERRORS) > 0 THEN
 MessageBox("Caution", &
 "Create cause these errors: " + ERRORS)
 RETURN
END IF

See also

Create method for DataWindows in Section 9.13, “Create” in DataWindow Reference.

Information on Chapter 3, DataWindow Object Properties in DataWindow Reference

2.4.827 SystemRoutine

Description

Provides the routine node representing the system root in a performance analysis model.

Applies to

Profiling object

Syntax

instancename.SystemRoutine (theroutine)

Table 2.1377:

Argument Description

instancename Instance name of the Profiling object.

theroutine A value of type ProfileRoutine containing the routine node representing
the system root. This argument is passed by reference.

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• ModelNotExistsError! -- The function failed because no model exists

Statements, Events, and Functions

Page 1517

Usage

Use this function to extract the routine node representing the system root in a performance
analysis model. You must have previously created the performance analysis model from a
trace file using the BuildModel function. The routine node is defined as a ProfileRoutine
object and provides the time spent in the routine, any called routines, the number of times
each routine was called, and the class to which the routine belongs.

Examples

This example provides the routine that represents the system root in a performance analysis
model:

Profiling lpro_model
ProfileRoutine lprort_routine

lpro_model.BuildModel()
lpro_model.SystemRoutine(lprort_routine)
...

See also

BuildModel

2.4.828 TabPostEvent

Description

Posts the specified event for each tab page in a Tab control, adding them to the end of the
event queues for the tab page user objects.

Applies to

Tab controls

Syntax

tabcontrolname.TabPostEvent (event {, word, long })

Table 2.1378:

Argument Description

tabcontrolname The name of the Tab control for which you want to post events for its tab
page user objects.

event A value of the TrigEvent enumerated datatype that identifies
a PowerBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event. The
event must be a valid event for a tab page user object in tabcontrolname
and a script must exist for the event in tabcontrolname.

word (optional) A long value to be stored in the WordParm property of the system's
Message object. If you want to specify a value for long, but not word,
enter 0. (For cross-platform compatibility, WordParm and LongParm are
both longs).

long

(optional)

A long value or a string that you want to store in the LongParm property
of the system's Message object. When you specify a string, a pointer to

Statements, Events, and Functions

Page 1518

Argument Description
the string is stored in the LongParm property, which you can access with
the String function (see Usage for PostEvent).

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs, if the event is not a valid event for the tab
page user object, or if a script does not exist for the event.

Examples

Suppose tab_address contains several tab pages inherited from uo_list and uo_list has a user
event called ue_display. This statement posts the event ue_display for each the tab pages in
tab_address:

tab_address.TabPostEvent("ue_display")

See also

TabTriggerEvent

2.4.829 TabTriggerEvent

Description

Triggers the specified event for each tab page in a Tab control, which executes the scripts
immediately in the index order of the tab pages.

Applies to

Tab controls

Syntax

tabcontrolname.TabTriggerEvent (event {, word, long })

Table 2.1379:

Argument Description

tabcontrolname The name of the Tab control for which you want to trigger events for its
tab page user objects.

event A value of the TrigEvent enumerated datatype that identifies
a PowerBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event. The
event must be a valid event for a tab page user object in tabcontrolname
and a script must exist for the event in tabcontrolname.

word (optional) A long value to be stored in the WordParm property of the system's
Message object. If you want to specify a value for long, but not word,
enter 0. (For cross-platform compatibility, WordParm and LongParm are
both longs).

long (optional) A long value or a string that you want to store in the LongParm property
of the system's Message object. When you specify a string, a pointer to

Statements, Events, and Functions

Page 1519

Argument Description
the string is stored in the LongParm property, which you can access with
the String function (see Usage for TriggerEvent).

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs, if the event is not a valid event for the tab
page user object, or if a script does not exist for the event.

Examples

Suppose tab_address contains several tab pages inherited from uo_list and uo_list has a user
event called ue_display. This statement executes immediately the script for ue_display for
each the tab pages in tab_address:

tab_address.TabTriggerEvent("ue_display")

See also

TabPostEvent

2.4.830 Tan

Description

Calculates the tangent of an angle.

Syntax

Tan (n)

Table 2.1380:

Argument Description

n The angle (in radians) for which you want the tangent

Return value

Double.

Returns the tangent of n. An execution error occurs if n is not valid. If n is null, Tan returns
null.

Examples

Both these statements return 0:

Tan(0)
Tan(Pi(1))

This statement returns 1.55741:

Tan(1)

See also

ATan

Statements, Events, and Functions

Page 1520

Cos

Pi

Sin

Tan method for DataWindows in Section 2.4.124, “Tan” in DataWindow Reference.

2.4.831 Text

2.4.831.1 Syntax for ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Description

Obtains the text of an item in a ListBox control.

Applies to

ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox controls

Syntax

listboxname.Text (index)

Table 2.1381:

Argument Description

listboxname The name of the ListBox control in which you want the text of an item

index The number of the item for which you want the text

Return value

String.

Returns the text of the item in listboxname identified by index. If the index does not point to
a valid item number, Text returns the empty string (""). If any argument's value is null, Text
returns null.

Examples

Assume the ListBox lb_Cities contains:

Atlanta

Boston

Chicago

Then these statements store the text of item 3, which is Chicago, in current_city:

string current_city
current_city = lb_Cities.Text(3)

See also

FindItem

SelectedItem

SelectedText

Statements, Events, and Functions

Page 1521

2.4.831.2 Syntax for RibbonComboBoxItem controls

Description

Obtains the text of an item from a ribbon combo box.

Applies to

RibbonComboBoxItem controls

Syntax

controlname.Text (Integer Index)

Table 2.1382:

Argument Description

controlname The name of the RibbonComboBoxItem control for which you want to
get the text

Index The index of the item for which you want the text

Return value

String.

Returns the text of the item in the box portion of the combo box. If any argument's value is
null, returns null.

Examples

This example gets the text of the item whose index number is 2. It returns "Item2".

Integer li_Return
String ls_Text
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.AddItem("Item1")
li_Return = lr_ComboBox.AddItem("Item2")
ls_Text = lr_ComboBox.Text(2)

2.4.832 TextLine

Description

Obtains the text of the line that contains the insertion point. TextLine works for controls that
can contain multiple lines.

Applies to

DataWindow, EditMask, MultiLineEdit, and RichTextEdit controls

Syntax

editname.TextLine ()

Table 2.1383:

Argument Description

editname The name of the DataWindow control, EditMask, MultiLineEdit, or
RichTextEdit control in which you want the text on the line that contains
the insertion point

Statements, Events, and Functions

Page 1522

Return value

String.

Returns the text on the line with the insertion point in editname. If an error occurs, TextLine
returns the empty string (""). If editname is null, TextLine returns null.

Usage

If editname is a DataWindow control, then TextLine reports information about the edit
control over the current row and column.

Examples

In the MultiLineEdit mle_state, if the insertion point is on line 4 and its text is North
Carolina, then this example sets linetext to North Carolina:

string linetext
linetext = mle_state.TextLine()

If the insertion point is on a line whose text is Y in the MultiLineEdit mle_contact, then some
processing takes place:

IF mle_contact.TextLine() = "Y" THEN ...

See also

SelectedItem

SelectTextLine

2.4.833 Time

Converts DateTime, string, or numeric data to data of type time. It also extracts a time value
from a blob. You can use one of three syntaxes, depending on the datatype of the source data.

Table 2.1384:

To Use

Extract the time from DateTime data, or to extract a time stored in a blob Syntax 1

Convert a string to a time Syntax 2

Combine numbers for hours, minutes, and seconds into a time value Syntax 3

2.4.833.1 Syntax 1: For DateTime and blob values

Description

Extracts a time value from a DateTime value or a blob.

Syntax

Time (datetime)

Table 2.1385:

Argument Description

datetime A DateTime value or a blob in which the first value is a time or
DateTime value. The rest of the contents of the blob is ignored. Datetime
can also be an Any variable containing a DateTime or blob.

Statements, Events, and Functions

Page 1523

Return value

Time.

Returns the time in datetime as a time. If datetime does not contain a valid time or is an
incompatible datatype, Time returns 00:00:00.000000. If datetime is null, Time returns null.

Examples

After StartDateTime has been retrieved from the database, this example sets StartTime equal
to the time in StartDateTime:

DateTime StartDateTime
time StartTime
...
StartTime = Time(StartDateTime)

Suppose that the value of a blob variable ib_blob contains a DateTime value beginning at
byte 32. The following statement extracts the time from the value:

time lt_time
lt_time = Time(BlobMid(ib_blob, 32))

See also

Time method for DataWindows in Section 2.4.125, “Time” in DataWindow Reference.

2.4.833.2 Syntax 2: For strings

Description

Converts a string containing a valid time into a time value.

Syntax

Time (string)

Table 2.1386:

Argument Description

string A string whose value is a valid time (such as 8am or 10:25) that you want
returned as a time. Only the hour is required; you do not have to include
the minutes, seconds, or microseconds of the time or am or pm.

The default value is 00 for minutes and seconds and 000000 for
microseconds. PowerBuilder determines whether the time is am or pm
based on a 24-hour clock.

String can also be an Any variable containing a string or blob.

Return value

Time.

Returns the time in string as a time. If string does not contain a valid time or is an
incompatible datatype, Time returns 00:00:00.000000. If string is null, Time returns null.

Usage

Valid times can include any combination of hours (00 to 23), minutes (00 to 59), seconds (00
to 59), and microseconds (0 to 999999).

Statements, Events, and Functions

Page 1524

Examples

These statements set What_Time to null:

Time What_Time
string null_string

SetNull(null_string)
What_Time = Time(null_string)

This statement returns a time value for 45 seconds before midnight (23:59:15), which is
specified as a string:

Time("23:59:15")

This statement converts the text in the SingleLineEdit sle_Time_Received to a time value:

Time(sle_Time_Received.Text)

See also

Time method for DataWindows in Section 2.4.125, “Time” in DataWindow Reference.

2.4.833.3 Syntax 3: For integers

Description

Combines integers representing hours, minutes, seconds, and microseconds into a time value.

Syntax

Time (hour, minute, second {, microsecond })

Table 2.1387:

Argument Description

hour The integer for the hour (00 to 23) of the time

minute The integer for the minutes (00 to 59) of the time

second The integer for the seconds (0 to 59) of the time

microsecond
(optional)

The integer for the microseconds (0 to 32767) of the time (note that the
range of values supported for this argument is less than the total range of
values possible for a microsecond)

Return value

Time.

Returns the time as a time datatype and 00:00:00 if the value in any argument is not valid
(out of the specified range of values). If any argument is null, Time returns null.

Examples

These statements set What_Time to a time value with microseconds, and display the resulting
time as a string in st_1. The default display format does not include microseconds, so the
String function specifies a display format with microseconds. Leading zeros are appended to
the string value for microseconds:

Time What_Time
What_Time = Time(10, 15, 45, 234)

Statements, Events, and Functions

Page 1525

st_1.Text = String(What_Time, "hh:mm:ss.ffffff")

The time in the string variable is set to 10:15:45.000234.

These statements set What_Time to 10:15:45:

Time What_Time
What_Time = Time(10, 15, 45)

See also

Time method for DataWindows in Section 2.4.125, “Time” in DataWindow Reference.

2.4.834 Timer

Description

Causes a Timer event in a window to occur repeatedly at the specified interval. When you
call Timer, it starts a timer. When the interval is over, PowerBuilder triggers the Timer event
and resets the timer.

Syntax

Timer (interval {, windowname })

Table 2.1388:

Argument Description

interval The number of seconds that you want between Timer events. interval can
be a whole number or fraction greater than 0 and less than or equal to
4,294,967 seconds. If interval is 0, Timer turns off the timer so that it no
longer triggers Timer events.

windowname
(optional)

The window in which you want the timer event to be triggered. The
window must be an open window. If you do not specify a window, the
Timer event occurs in the current window.

Return value

Integer.

Returns 1 if succeeds and -1 if an error occurs. If any argument's value is null, Timer returns
null.

Usage

Do not call the Timer function in the Timer event. The timer gets reset automatically and
the Timer event re-triggers at the interval that has already been established. Call the Timer
function in another event's script when you want to stop the timer or change the interval.

Examples

This statement triggers a Timer event every two seconds in the active window:

Timer(2)

This statement stops the triggering of the Timer event in the active window:

Timer(0)

These statements trigger a Timer event every half second in the window w_Train:

Statements, Events, and Functions

Page 1526

Open(w_Train)
Timer(0.5, w_Train)

This example causes the current time to be displayed in a StaticText control in a window.
Calling Timer in the window's Open event script starts the timer. The script for the Timer
event refreshes the displayed time.

In the window's Open event script, the following code displays the time initially and starts the
timer:

st_time.Text = String(Now(), "hh:mm")
Timer(60)

In the window's Timer event, which is triggered every minute, this code displays the current
time in the StaticText st_time:

st_time.Text = String(Now(), "hh:mm")

See also

Idle

2.4.835 ToAnsi

Description

Converts a character string to an ANSI blob.

Syntax

ToAnsi (string)

Table 2.1389:

Argument Description

string A character string you want to convert to an ANSI blob

Return value

Blob.

Returns an ANSI blob if it succeeds and an empty blob if it fails.

Usage

The ToAnsi function converts a Unicode character string to an ANSI blob. ToAnsi has
the same result as Blob(string, EncodingANSI!) and will be obsolete in a future version of
PowerBuilder.

Unicode file format

Unicode files sometimes have two extra bytes at the start of the file to indicate that
they are Unicode files. If you are opening a Unicode file in stream mode, skip the first
two bytes if they are present.

See also

Blob

FromAnsi

Statements, Events, and Functions

Page 1527

FromUnicode

ToUnicode

2.4.836 Today

Description

Obtains the system date and, in some cases, the system time.

Syntax

Today ()

Return value

Date.

Returns the current system date.

Usage

Although the datatype of the Today function is date, it can also return the current time. This
occurs when Today is used as an argument for another function and that argument allows
different datatypes.

For example, if you call Today as an argument to the String function, String returns both
the date and time when you use a date-plus-time display format. A second example: if you
call Today as an argument for the SetItem function and the datatype of the target column is
DateTime, both the date and time are assigned to the DataWindow.

Examples

This statement returns the current system date:

Today()

This statement executes some statements when the current system date is before April 15,
2003:

IF Today() < 2003-04-15 THEN ...

This statement displays the current date in the StaticText st_date in the corner of a window:

st_date.Text = String(Today(), "m/d/yy")

This statement displays the current date and time in the StaticText st_date:

st_date.Text = String(Today(), "m/d/yy hh:mm")

See also

Now

Today method for DataWindows in Section 2.4.126, “Today” in DataWindow Reference.

2.4.837 Top

Description

Obtains the index number of the first visible item in a ListBox control. Top lets you to find
out how the user has scrolled the list.

Statements, Events, and Functions

Page 1528

Applies to

ListBox and PictureListBox controls

Syntax

listboxname.Top ()

Table 2.1390:

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want the index
of the first visible item in the list

Return value

Integer.

Returns the index of the first visible item in listboxname. Top returns -1 if an error occurs. If
listboxname is null, Top returns null.

Usage

The index of a list item is its position in the full list of items, regardless of how many are
currently visible in the control.

Examples

If item 15 has been scrolled to the top of the list in lb_Contacts, then this example sets Num
to 15:

integer Num
Num = lb_Contacts.Top()

If the user has not scrolled the list in lb_Contacts, then Num is set to 1:

integer Num
Num = lb_Contacts.Top()

If the item at the top of the list in lb_Contacts is not the currently selected item, the following
statements scroll the currently selected item to the top:

integer Num
Num = lb_Contacts.SelectedIndex()
IF lb_Contacts.Top() <> Num THEN &
 lb_contacts.SetTop(Num)

See also

SelectedIndex

SetTop

2.4.838 TotalColumns

Description

Finds the number of columns in a ListView control.

Applies to

ListView controls

Statements, Events, and Functions

Page 1529

Syntax

listviewname.TotalColumns ()

Table 2.1391:

Argument Description

listviewname The name of the ListView control for which you want to find the number
of columns

Return value

Integer.

Returns the number of columns if it succeeds and -1 if an error occurs.

Usage

Use when the ListView control is set to report view.

Examples

This example displays the number of columns in a ListView report view in a SingleLineEdit:

int li_cols
li_cols = lv_list.TotalColumns()
sle_info.text = "Total columns = " + string(li_cols)

See also

TotalItems

TotalSelected

2.4.839 TotalItems

Description

Determines the total number of items in a ListBox or RibbonComboBoxItem control.

Applies to

ListBox, DropDownListBox, PictureListBox, DropDownPictureListBox, ListView, and
RibbonComboBoxItem controls

Syntax

listcontrolname.TotalItems ()

Table 2.1392:

Argument Description

listcontrolname The name of the ListBox, DropDownListBox, PictureListBox,
DropDownPictureListBox, ListView, or RibbonComboBoxItem in which
you want the total number of items

Return value

Integer.

Statements, Events, and Functions

Page 1530

Returns the total number of items in listcontrolname. If listcontrolname contains no items,
TotalItems returns 0. If an error occurs, it returns -1. If listcontrolname is null, TotalItems
returns null.

Examples

If lb_Actions contains a total of five items, this example sets Total to 5:

integer Total
Total = lbx_Actions.TotalItems()

This FOR loop is executed for each item in lb_Actions:

integer Total, n
Total = lb_Actions.TotalItems()
FOR n = 1 to Total
... // Some processing
NEXT

This example gets the total item of the RibbonBar ComboBox:

Integer li_Return
RibbonComboBoxItem lr_ComboBox

li_Return = lr_ComboBox.AddItem("Item1")
li_Return = lr_ComboBox.AddItem("Item2")
li_Return = lr_ComboBox.TotalItems()

See also

TotalSelected

2.4.840 TotalSelected

Description

Determines the number of items in a ListBox control that are selected.

Applies to

ListBox, PictureListBox, and ListView controls

Syntax

listcontrolname.TotalSelected ()

Table 2.1393:

Argument Description

listcontrolname The name of the ListBox, PictureListBox, or ListView in which you want
the number of items that are selected

Return value

Integer.

Returns the number of items in listcontrolname that are selected. If no items in
listcontrolname are selected, TotalSelected returns 0. If an error occurs, it returns -1. If
listcontrolname is null, TotalSelected returns null.

Usage

Statements, Events, and Functions

Page 1531

TotalSelected works only if the MultiSelect property of listcontrolname is TRUE.

Examples

If three items are selected in lb_Actions, this example sets SelectedTotal to 3:

integer SelectedTotal
SelectedTotal = lb_Actions.TotalSelected()

These statements in the SelectionChanged event of lb_Actions display a MessageBox if the
user tries to select more than three items:

IF lb_Actions.TotalSelected() > 3 THEN
 MessageBox("Warning", &
 "You can only select 3 items!")
ELSE
... // Some processing
END IF

See also

TotalItems

2.4.841 ToUnicode

Description

Converts a character string to a Unicode blob.

Syntax

ToUnicode (string)

Table 2.1394:

Argument Description

string A character string you want to convert to a Unicode blob

Return value

Blob.

Returns a Unicode blob if it succeeds and an empty blob if it fails.

Usage

The ToUnicode function converts an ANSI character string to a Unicode blob. ToUnicode
has the same result as Blob(string) and will be obsolete in a future version of PowerBuilder.

Unicode file format

Unicode files sometimes have two extra bytes at the start of the file to indicate that
they are Unicode files.

See also

FromAnsi

FromUnicode

ToAnsi

Statements, Events, and Functions

Page 1532

2.4.842 TraceBegin

Description

Inserts an activity type value in the trace file indicating that logging has begun and then starts
logging all the enabled application trace activities. Before calling TraceBegin, you must have
opened the trace file using the TraceOpen function.

Syntax

TraceBegin (identifier)

Table 2.1395:

Argument Description

identifier A read-only string, logged to the trace file, used to identify a tracing
block. If identifier is null, an empty string is placed in the trace file.

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FileNotOpenError! -- TraceOpen has not been called yet

• TraceStartedError! -- TraceBegin has already been called

Usage

The TraceBegin call inserts an activity type value of ActBegin! in the trace file to indicate
that logging has begun and then begins logging all the application activities you have selected
for tracing.

TraceBegin can only be called following a TraceOpen call. And all activities to be logged
must be enabled using the TraceEnableActivity function before calling TraceBegin.

If you want to generate a trace file for an entire application run, you typically include the
TraceBegin function in your application's open script. If you want to generate a trace file for
only a portion of the application run, you typically include the TraceBegin function in the
script that initiates the functionality on which you're trying to collect data.

You can use the identifier argument to identify the tracing blocks within a trace file. A
tracing block represents the data logged between calls to TraceBegin and TraceEnd. There
may be multiple tracing blocks within a single trace file if you are tracing more than one
portion of the application run.

Examples

This example opens a trace file with the name you entered in a single line edit box and a
timer kind selected from a drop-down list. It then begins logging the enabled activities for the
first block of code to be traced:

TimerKind ltk_kind

CHOOSE CASE ddlb_timestamp.text
CASE "None"
 ltk_kind = TimerNone!

Statements, Events, and Functions

Page 1533

CASE "Clock"
 ltk_kind = Clock!
CASE "Process"
 ltk_kind = Process!
CASE "Thread"
 ltk_kind = Thread!
END CHOOSE

TraceOpen(sle_filename.text,ltk_kind)
TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActGarbageCollect!)
TraceEnableActivity(ActObjectCreate!)
TraceEnableActivity(ActObjectDestroy!)

TraceBegin("Trace_block_1")

See also

TraceOpen

TraceEnableActivity

TraceEnd

2.4.843 TraceClose

Description

Closes the trace file.

Syntax

TraceClose ()

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FileNotOpenError! -- TraceOpen has not been called yet

• FileCloseError! -- The log file is full

Usage

TraceClose closes the trace file. If you have not already called TraceEnd, TraceClose will call
that function before proceeding with its processing.

You typically include the TraceClose function in your application's Close script.

Examples

This example stops logging of application trace activities and then closes the open trace file:

TraceEnd()
TraceClose()

See also

TraceBegin

TraceEnd

Statements, Events, and Functions

Page 1534

TraceOpen

2.4.844 TraceDisableActivity

Description

Disables logging of the specified trace activity.

Syntax

TraceDisableActivity (activity)

Table 2.1396:

Argument Description

activity A value of the enumerated datatype TraceActivity that identifies the
activity for which logging should be disabled. Values are:

• ActError! -- Occurrences of system errors and warnings

• ActESQL! -- Embedded SQL statement entry and exit

• ActGarbageCollect! -- Start and finish of garbage collection

• ActLine! -- Routine line hits

• ActObjectCreate! -- Object creation entry and exit

• ActObjectDestroy! -- Object destruction entry and exit

• ActProfile! -- Abbreviation for the ActRoutine!, ActESQL!,
ActObjectCreate!, ActObjectDestroy!, and ActGarbageCollect! values

• ActRoutine! -- Routine entry and exit (if this value is disabled,
ActLine! is automatically disabled)

• ActTrace! -- Abbreviation for all activities except ActLine!

• ActUser! -- Occurrences of an activity you selected

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FileNotOpenError! -- TraceOpen has not been called yet

• TraceStartedError! -- You have called TraceDisableActivity after TraceBegin and before
TraceEnd

Usage

Use this function to disable the logging of the specified trace activities. You typically use
this function if you are tracing only portions of an application run (and thus you are calling

Statements, Events, and Functions

Page 1535

TraceBegin multiple times) and you want to log different activities during each portion of the
application.

Unless specifically disabled with TraceDisableActivity, activities that were previously
enabled with a call to the TraceEnableActivity function remain enabled throughout the entire
application run.

You must always call the TraceEnd function before calling TraceDisableActivity.

Examples

This example logs the enabled activities for the first block of code to be traced. Then it stops
logging and disables two activity types for a second trace block. When logging is resumed for
another portion of the application run, the activities that are not specifically disabled remain
enabled until TraceClose is called:

TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActGarbageCollect)
TraceEnableActivity(ActObjectCreate!)
TraceEnableActivity(ActObjectDestroy!)

TraceBegin("Trace_block_1")

TraceEnd()

TraceDisableActivity(ActESQL!)
TraceDisableActivity(ActGarbageCollect!)

TraceBegin("Trace_block_2")

See also

TraceEnd

TraceEnableActivity

2.4.845 TraceEnableActivity

Description

Enables logging of the specified trace activity.

Syntax

TraceEnableActivity (activity)

Table 2.1397:

Argument Description

activity A value of the enumerated datatype TraceActivity that identifies the
activity to be logged. Values are:

• ActError! -- Occurrences of system errors and warnings

• ActESQL! -- Embedded SQL statement entry and exit

• ActGarbageCollect! -- Start and finish of garbage collection

• ActLine! -- Routine line hits (if this value is enabled, ActRoutine! is
automatically enabled)

Statements, Events, and Functions

Page 1536

Argument Description
• ActObjectCreate! -- Object creation entry and exit

• ActObjectDestroy! -- Object destruction entry and exit

• ActProfile! -- Abbreviation for the ActRoutine!, ActESQL!,
ActObjectCreate!, ActObjectDestroy, and ActGarbageCollect! values

• ActRoutine! -- Routine entry and exit

• ActTrace! -- Abbreviation for all activities except ActLine!

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FileNotOpenError! -- TraceOpen has not been called yet

• TraceStartedError! -- You have called TraceEnableActivity after TraceBegin and before
TraceEnd

Usage

Call the TraceEnableActivity function following the TraceOpen function.
TraceEnableActivity allows you to specify the types of activities you want logged in the trace
file. The default activity type logged is a user-defined activity type identified by the value
ActUser!. This activity is enabled by the TraceOpen call. You must call TraceEnableActivity
to specify the activities to be logged before you call TraceBegin.

Each call to TraceOpen resets the activity types to be logged to the default (that is, only
ActUser! activities are logged).

Since the ActError! and ActUser! values require the passing of strings to the trace file, you
must call the TraceError and TraceUser functions to log this information.

Unless specifically disabled with a call to the TraceDisableActivity function, activities that
are enabled with TraceEnableActivity remain enabled throughout the entire application run.

Examples

This example opens a trace file with the name you entered in a single line edit box and a
timer kind selected from a drop-down list. Then it begins logging the enabled activities for
the first block of code to be traced:

TimerKind ltk_kind

CHOOSE CASE ddlb_timestamp.text
CASE "None"
 ltk_kind = TimerNone!
CASE "Clock"
 ltk_kind = Clock!
CASE "Process"
 ltk_kind = Process!
CASE "Thread"

Statements, Events, and Functions

Page 1537

 ltk_kind = Thread!
END CHOOSE

TraceOpen(sle_filename.text,ltk_kind)

TraceEnableActivity(ActRoutine!)
TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActGarbageCollect!)
TraceEnableActivity(ActError!)
TraceEnableActivity(ActCreateObject!)
TraceEnableActivity(ActDestroyObject!)

TraceBegin("Trace_block_1")

See also

TraceOpen

TraceBegin

TraceDisableActivity

2.4.846 TraceEnd

Description

Inserts an activity type value in the trace file indicating that logging has ended and then stops
logging application trace activities.

Syntax

TraceEnd ()

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FileNotOpenError! -- TraceOpen has not been called yet

• TraceNotStartedError! -- TraceBegin has not been called yet

Usage

The TraceEnd call inserts an activity type value of ActBegin! in the trace file to indicate
that logging has ended and then stops logging all application activities that you selected for
tracing.

If you have not already called TraceEnd when you call TraceClose, TraceClose calls
TraceEnd before proceeding.

If you want to generate a trace file for an entire application run, you would typically include
the TraceEnd function in your application's Close script. If you want to generate a trace file
for only a portion of the application run, you typically include the TraceEnd function in the
script that terminates the functionality on which you're trying to collect data.

Examples

This example stops logging of application trace activities and then closes the open trace file:

Statements, Events, and Functions

Page 1538

TraceEnd()
TraceClose()

See also

TraceOpen

TraceBegin

TraceClose

TraceDisableActivity

2.4.847 TraceError

Description

Logs your own error message and its severity level to the trace file if tracing of this activity
type has been enabled.

Syntax

TraceError (severity, message)

Table 2.1398:

Argument Description

severity A long whose value is a number you want to indicate the severity of the
error

message A string whose value is the error message you want to add to the trace
file

Return value

ErrorReturn. This function always returns Success!.

If severity or message is null, TraceError returns null and no entry is made in the trace file.

Usage

TraceError logs an activity type value of ActError! to the trace file if you enabled the tracing
of this type with the TraceEnableActivity function and then called the TraceBegin function.
You use the TraceError function to record your own error message. It works just like the
TraceUser function except that you use it to identify more severe problems. The severity and
message values are passed without modification to the trace file.

Examples

This example logs an error message to the trace file when a database retrieval fails:

dw_1.SetTransObject(SQLCA)

TraceUser(100, "Starting database retrieval")
IF dw_1.Retrieve() = -1 THEN
 TraceError(999, "Retrieve for dw_1 failed")
ELSE
 TraceUser(200, "Database retrieval complete")
END IF

See also

Statements, Events, and Functions

Page 1539

TraceEnableActivity

TraceUser

2.4.848 TraceOpen

Description

Opens a trace file with the specified name and enables logging of application trace activities.

Syntax

TraceOpen (filename, timer)

Table 2.1399:

Argument Description

filename A read-only string used to identify the trace file

timer A value of the enumerated datatype TimerKind that identifies the timer.
Values are:

• Clock! -- Use the clock timer

• Process! -- Use the process timer

• Thread! -- Use the thread timer

• TimerNone! -- Do not log timer values

Return value

ErrorReturn. Returns one of the following values:

• Success! -- The function succeeded

• FileAlreadyOpenError! -- TraceOpen has been called again without an intervening
TraceClose

• FileOpenError! -- The file could not be opened for writing

• EnterpriseOnlyFeature! -- (Obsolete) This function is only supported in the Enterprise
edition of PowerBuilder 12.6 and earlier versions.

If filename is null, TraceOpen returns null.

Usage

TraceOpen opens the specified trace file and enables logging of application trace activities.
When it opens the trace file, TraceOpen logs the current application and library list to the
trace file. It also enables logging of the default activity type, a user-defined activity type
identified by the value ActUser!.

After calling TraceOpen, you can select any additional activities to be logged in the
trace file using the TraceEnableActivity function. Once you have called TraceOpen and
TraceEnableActivity, you must then call TraceBegin for logging to begin.

Statements, Events, and Functions

Page 1540

To stop logging of application trace activity, you must call the TraceEnd function followed
by TraceClose to close the trace file. Each call to TraceOpen resets the logging of activity
types to the default ActUser!

You typically include the TraceOpen function in your application's Open script.

Caution

If the trace file runs out of disk space, no error is generated, but logging is stopped,
and the trace file cannot be used for analysis.

By default, the time at which each activity begins and ends is recorded using the clock timer,
which measures an absolute time with reference to an external activity, such as the machine's
startup time. The clock timer measures time in microseconds. Depending on the speed of
your machine's central processing unit, the clock timer can offer a resolution of less than one
microsecond. A timer's resolution is the smallest unit of time the timer can measure.

You can also use process or thread timers, which measure time in microseconds with
reference to when the process or thread being executed started. Use the thread timer
for distributed applications. Both process and thread timers give you a more accurate
measurement of how long the process or thread is taking to execute, but both have a lower
resolution than the clock timer.

If your analysis does not require timing information, you can omit timing information from
the trace file.

Collection time

The timestamps in the trace file exclude the time taken to collect the trace data.

Examples

This example opens a trace file with the name you entered in a single line edit box and a
timer kind selected from a drop-down list. Then it begins logging the enabled activities for
the first block of code to be traced:

TimerKind ltk_kind

CHOOSE CASE ddlb_timestamp.text
CASE "None"
 ltk_kind = TimerNone!
CASE "Clock"
 ltk_kind = Clock!
CASE "Process"
 ltk_kind = Process!
CASE "Thread"
 ltk_kind = Thread!
END CHOOSE

TraceOpen(sle_filename.text,ltk_kind)

See also

TraceBegin

TraceClose

TraceEnableActivity

TraceEnd

Statements, Events, and Functions

Page 1541

2.4.849 TraceUser

Description

Logs the activity type value you specify to the trace file.

Syntax

TraceUser (info, message)

Table 2.1400:

Argument Description

info A long whose value is a reference number you want to associate with the
logged activity

message A string whose value is the activity type value you want to add to the
trace file

Return value

ErrorReturn. This function always returns Success!.

If info or message is null, TraceUser returns null and no entry is made in the log file.

Usage

TraceUser logs an activity type value of ActUser! to the trace file. This is the default activity
type and is enabled when the TraceOpen function is called. You use the TraceUser function
to record your own message identifying a specific occurrence during an application run. For
example, you may want to log the occurrences of a specific return value or the beginning and
end of a body of code. TraceUser works just like the TraceError function except that you use
TraceError to identify more severe problems. The info and message values are passed without
modification to the trace file.

Examples

This example logs user messages to the trace file identifying when a database retrieval is
started and when it is completed:

dw_1.SetTransObject(SQLCA)

TraceUser(100, "Starting database retrieval")
IF dw_1.Retrieve() = -1 THEN
 TraceError(999, "Retrieve for dw_1 failed")
ELSE
 TraceUser(200, "Database retrieval complete")
END IF

See also

TraceEnableActivity

TraceError

2.4.850 TriggerEvent

Description

Triggers an event associated with the specified object, which executes the script for that event
immediately.

Statements, Events, and Functions

Page 1542

Applies to

Any object

Syntax

objectname.TriggerEvent (event {, word, long })

Table 2.1401:

Argument Description

objectname The name of any PowerBuilder object or control that has events
associated with it.

event A value of the TrigEvent enumerated datatype that identifies
a PowerBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event. The
event must be a valid event for objectname and a script must exist for the
event in objectname.

word (optional) A long value to be stored in the WordParm property of the system's
Message object. If you want to specify a value for long, but not word,
enter 0. (For cross-platform compatibility, WordParm and LongParm are
both longs.)

long

(optional)

A long value or a string that you want to store in the LongParm property
of the system's Message object. When you specify a string, a pointer to
the string is stored in the LongParm property, which you can access with
the String function (see Usage).

Return value

Integer.

Returns 1 if it is successful and the event script runs and -1 if the event is not a valid event for
objectname, or no script exists for the event in objectname. If any argument's value is null,
TriggerEvent returns null.

Usage

If you specify the name of an event instead of a value of the TrigEvent enumerated datatype,
enclose the name in double quotation marks.

Check return code

It is a good idea to check the return code to determine whether TriggerEvent
succeeded and, based on the result, perform the appropriate processing.

You can pass information to the event script with the word and long arguments. The
information is stored in the Message object. In your script, you can reference the WordParm
and LongParm fields of the Message object to access the information.

If you have specified a string for long, you can access it in the triggered event by using the
String function with the keyword "address" as the format parameter. Your event script might
begin as follows:

string PassedString

Statements, Events, and Functions

Page 1543

PassedString = String(Message.LongParm, "address")

Caution

Do not use this syntax unless you are certain the long argument contains a valid string
value.

For more information about events and when to use PostEvent and TriggerEvent, see
PostEvent.

To trigger system events that are not PowerBuilder-defined events, use Post or Send, instead
of PostEvent and TriggerEvent. Although Send can send messages that trigger PowerBuilder
events, as shown below, you have to know the codes for a particular message. It is easier to
use the PowerBuilder functions that trigger the desired events.

Equivalent syntax

Both of the following statements click the CheckBox cb_OK. The following call to the Send
function:

Send(Handle(Parent), 273, 0, Long(Handle(cb_OK), 0))

is equivalent to:

cb_OK.TriggerEvent(Clicked!)

Examples

This statement executes the script for the Clicked event in the CommandButton cb_OK
immediately:

cb_OK.TriggerEvent(Clicked!)

This statement executes the script for the user-defined event cb_exit_request in the parent
window:

Parent.TriggerEvent("cb_exit_request")

This statement executes the script for the Clicked event in the menu selection m_File on the
menu m_Appl:

m_Appl.m_File.TriggerEvent(Clicked!)

See also

Post

PostEvent

Send

2.4.851 TriggerPBEvent

Description

Triggers the specified user event in the child window contained in a PowerBuilder window
ActiveX control.

Applies to

Window ActiveX controls

Statements, Events, and Functions

Page 1544

Syntax

activexcontrol.TriggerPBEvent (name {, numarguments {, arguments } })

Table 2.1402:

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window ActiveX control.
When used in HTML, this is the NAME attribute of the object element.
When used in other environments, this references the control that
contains the PowerBuilder window ActiveX.

name String specifying the name of the user event. This argument is passed by
reference.

numarguments
(optional)

Integer specifying the number of elements in the arguments array. The
default is zero.

arguments
(optional)

Variant array containing event arguments. In PowerBuilder, Variant maps
to the Any datatype. This argument is passed by reference.

If you specify this argument, you must also specify numarguments. If
you do not specify this argument and the function contains arguments,
populate the argument list by calling the SetArgElement function once
for each argument.

JavaScript cannot use this argument.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Usage

Call this function to trigger a user event in the child window contained in a PowerBuilder
window ActiveX control.

To check the PowerBuilder function's return value, call the GetLastReturn function.

JavaScript cannot use the arguments argument.

Examples

This JavaScript example calls the TriggerPBEvent function:

function triggerEvent(f) {
 var retcd;
 var rc;
 var numargs;
 var theEvent;
 var theArg;
 retcd = 0;
 numargs = 1;
 theArg = f.textToPB.value;
 PBRX1.SetArgElement(1, theArg);
 theEvent = "ue_args";
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
 if (rc != 1) {
 alert("Error. Empty string.");

Statements, Events, and Functions

Page 1545

 }
 PBRX1.ResetArgElements();
}

This VBScript example calls the TriggerPBEvent function:

Sub TrigEvent_OnClick()
 Dim retcd
 Dim myForm
 Dim args(1)
 Dim rc
 Dim numargs
 Dim theEvent
 retcd = 0
 numargs = 1
 rc = 0
 theEvent = "ue_args"
 Set myForm = Document.buttonForm
 args(0) = buttonForm.textToPB.value
 retcd = PBRX1.TriggerPBEvent(theEvent, &
 numargs, args)
 rc = PBRX1.GetLastReturn()
 if rc <> 1 then
 msgbox "Error. Empty string."
 end if
end sub

See also

GetLastReturn

SetArgElement

InvokePBFunction

2.4.852 Trim

Description

Removes leading and trailing spaces from a string.

Syntax

Trim (string {, removeallspaces })

Table 2.1403:

Argument Description

string The string you want returned with leading and trailing spaces deleted

removeallspaces A boolean indicating that all types of spaces should be deleted

Return value

String.

Returns a copy of string with all leading and trailing spaces deleted if it succeeds and the
empty string ("") if an error occurs. If string is null, Trim returns null.

Usage

Trim is useful for removing spaces that a user may have typed before or after newly entered
data.

Statements, Events, and Functions

Page 1546

If you do not include the optional removeallspaces argument or its value is false, only the
space character (U+0020) is removed from the string.

If the removeallspaces argument is set to true, all types of space characters are removed. See
LeftTrim for a list of space characters.

Examples

This statement returns BABE RUTH if all the leading and trailing spaces are space
characters:

Trim(" BABE RUTH ")

This statement returns BABE RUTH if the leading and trailing spaces include other types of
white space characters:

Trim(" BABE RUTH ", true)

This example removes the leading and trailing spaces from the user-entered value in the
SingleLineEdit sle_emp_fname and saves the value in emp_fname:

string emp_fname
emp_fname = Trim(sle_emp_fname.Text)

See also

LeftTrim

RightTrim

Trim method for DataWindows in Section 2.4.127, “Trim” in DataWindow Reference.

2.4.853 TrimW (obsolete)

Description

Removes leading and trailing spaces from a string.

This function is obsolete. It has the same behavior as Trim in all environments.

Syntax

TrimW (string)

2.4.854 Truncate

Description

Truncates a number to the specified number of decimal places.

Syntax

Truncate (x, n)

Table 2.1404:

Argument Description

x The number you want to truncate.

n The number of decimal places to which you want to truncate x. Valid
values are 0 through 28.

Statements, Events, and Functions

Page 1547

Return value

Decimal.

Returns the result of the truncation if it succeeds and null if it fails or if any argument is null.

Using Truncate on a computed field

A real number loaded into a floating point register (used for calculation) is
represented as precisely as the binary storage will permit. For example, the real
number displayed as 2.07 is actually stored as 2.06999999999999999999999997.

Truncating such a number may not give the expected result. To avoid this problem,
you can change the initial real datatype to long, integer, or decimal, or you can append
a constant in the truncate argument: Truncate (x + 0.0000001, n)

Examples

This statement returns 9.2:

Truncate(9.22, 1)

This statement returns 9.2:

Truncate(9.28, 1)

This statement returns 9:

Truncate(9.9, 0)

This statement returns -9.2:

Truncate(-9.29, 1)

See also

Ceiling

Init (obsolete)

Round

Truncate method for DataWindows in Section 2.4.128, “Truncate” in DataWindow
Reference.

2.4.855 TrustVerify (obsolete)

Description

Called by EAServer when an SSL certificate chain needs to be approved for use by a client.
This function is used by PowerBuilder clients connecting to EAServer.

Obsolete function

TrustVerify is obsolete, because EAServer is no longer supported since PowerBuilder
2017.

Applies to

SSLCallBack objects

Statements, Events, and Functions

Page 1548

Syntax

sslcallback.TrustVerify (thesessioninfo, reason)

Table 2.1405:

Argument Description

sslcallback An instance of a customized SSLCallBack object

thesessioninfo A CORBAObject that contains information about the SSL session

reason A long value indicating the reason for the call back. Values are:

• 1 REASON_CHAIN_INCOMPLETE

• 2 REASON_UNKNOWN_CA

• 3 REASON_CHAIN_EXPIRED

• 4 REASON_TRUSTDBPINNOTSET

• 5 REASON_TRUSTDBLOGINFAILED

Return value

Long.

Returns one of the following values:

1 -- TRUST_ONCE (accept the current connection)

2 -- TRUST_FAIL (reject the current connection)

3 -- TRUST_ALWAYS (accept and mark as trusted in the database)

4 -- TRUST_NEVER (reject and mark as untrusted in the database)

5 -- TRUST_SESSION (accept now and throughout the current session)

6 -- TRUST_FAIL_SESSION (reject throughout the current session)

Usage

A PowerBuilder application does not usually call the TrustVerify function directly.
TrustVerify is called by EAServer when the internal SSL trust verification check fails to
verify the server's certificate chain or when the PIN to log in to the Sybase PKCS11 token
was not supplied or incorrect. TrustVerify can be invoked when you are using any SSL
protocol, because server authentication is a required step in the SSL handshake process.

To override the behavior of any of the functions of the SSLCallBack object, create a standard
class user object that descends from SSLCallBack and customize this object as necessary.
To let EAServer know which object to use when a callback is required, specify the name of
the object in the callbackImpl SSL property. You can set this property value by calling the
SetGlobalProperty function.

If you do not provide an implementation of TrustVerify, EAServer receives the
CORBA::NO_IMPLEMENT exception and the connection is rejected.

To obtain a useful return value, provide the user with information about the reason for failure
and ask the user to determine whether the server certificate chain can be trusted so that the

Statements, Events, and Functions

Page 1549

session can continue. If the user specifies TRUST_FAIL or TRUST_ONCE, the function
may be called again during the current session.

You can enable the user to cancel the attempt to connect by throwing an exception in this
callback function. You need to catch the exception by wrapping the ConnectToServer
function in a try-catch block.

Examples

This example checks whether the failure was called by a bad or missing PIN and returns
TRUST_FAIL to call GetPin if it was. If not, it displays the reason why the server failed
to verify the certificate chain and prompts the user to choose whether to continue with the
session:

long rc
string stmp, stmp2
w_response w_ssl_response
string ls_rc

sslSessionInfo mySessionInfo
rc = thesessioninfo._narrow(mySessionInfo, &
 "thesessioninfo")

is_tokenName = mySessionInfo.getProperty("tokenName")

CHOOSE CASE reason
CASE 4 MessageBox("The SSL session requires a PIN", &
 "Please enter the PIN for access to the " + &
 is_tokenName + " certificate database.")
 return 2
CASE 5 MessageBox("The PIN you entered is incorrect", &
 "Please reenter the PIN for access to the " + &
 is_tokenName + " certificate database.")
 return 2
CASE 1
 MessageBox("Certificate verification failed", &
 "Server's certificate chain is incomplete.ORB " &
 + "~nis unable to complete the chain using the " &
 + "CA certificates in the " &
 + "~nSybase PKCS11 Token.")

CASE 2
 MessageBox("Certificate verification failed", &
 "Server's certificate chain expired. One or " &
 + " more of the certificates in the " &
 + "chain is no longer valid.")
CASE 3
 MessageBox("Certificate verification failed", &
 "Server's certificate chain contains an " &
 + "unknown root certification authority. " &
 + "This CA is not found in the trust data in " &
 + "the Sybase PKCS11 Token.")
END CHOOSE

sTmp = "~nVersion: "
stmp += mySessionInfo.getProperty("Version")

sTmp = "~nHost: "
stmp += mySessionInfo.getProperty("host")

stmp += "~nport: "
stmp += mySessionInfo.getProperty("port")
stmp += "~nciphersuite: "

Statements, Events, and Functions

Page 1550

stmp += mySessionInfo.getProperty("ciphersuite")
stmp += "~nCertificateLabel: "
stmp += mySessionInfo.getProperty("certificateLabel")
stmp += "~nUserData: "
stmp += mySessionInfo.getProperty("UserData")
stmp += "~ntokenName: "
stmp += mySessionInfo.getProperty("tokenName")
stmp += "~npkcs11Module: "
stmp += mySessionInfo.getProperty("pkcs11Module")
stmp += "~nPlease enter your choice: "
stmp += "~n 1: Accept this connection"
stmp += "~n 2: Reject this connection"
stmp += "~n 3: Accept this connection and mark CA as
 trusted"
stmp += "~n 4: Reject this connection and mark CA as
 untrusted"
stmp += "~n 5: Accept this CA throughout this session"
stmp += "~n 6: Reject this CA throughout this session"
// Display information in a response window and return
// response with CloseWithReturn
openwithparm(w_response, stmp)
ls_rc = Message.StringParm
return long(ls_rc)

See also

ConnectToServer (obsolete)

GetCertificateLabel (obsolete)

GetCredentialAttribute (obsolete)

GetPin (obsolete)

2.4.856 TypeOf

Description

Determines the type of an object or control, reported as a value of the Object enumerated
datatype.

Applies to

Any object

Syntax

objectname.TypeOf ()

Table 2.1406:

Argument Description

objectname The name of the object or control for which you want the type

Return value

Object enumerated datatype. Returns the type of objectname. If objectname is null, TypeOf
returns null.

Usage

Use TypeOf to determine the type of a selected or dragged control.

Statements, Events, and Functions

Page 1551

Examples

If dw_Customer is a DataWindow control, this statement returns DataWindow!:

dw_Customer.Typeof()

This example looks at the first five controls in the w_dept window's Control array property.
The loop executes some statements for each control that is a CheckBox:

integer n
FOR n = 1 to 5
 IF w_dept.Control[n].TypeOf() = CheckBox! THEN
 ... // Some processing
 END IF
NEXT

This loop stores in the winobject array the type of each object in the window's Control array
property:

object winobjecttype[]
long ll_count
FOR ll_count = 1 to UpperBound(Control[])
 winobjecttype[ll_count] = &
 TypeOf(Control[ll_count])
NEXT

If you do not know the type of a control passed via PowerObjectParm in the Message
object, the following example assigns the passed object to a graphic object variable, the
ancestor of all the control types, and assigns the type to a variable of type object, which is
the enumerated datatype that TypeOf returns. The CHOOSE CASE statement can include
processing for each control type that you want to handle. This code would be in the Open
event for a window that was opened with OpenWithParm:

graphicobject stp_obj
object type_obj

stp_obj = Message.PowerObjectParm
type_obj = stp_obj.TypeOf()

CHOOSE CASE type_obj
CASE DataWindow!
 MessageBox("The object"," Is a datawindow")

CASE SingleLineEdit!
 MessageBox("The object"," Is a sle")

... // Cases for additional object types
CASE ELSE
 MessageBox("The object"," Is irrelevant!")
END CHOOSE

See also

ClassName

2.4.857 Uncheck

Description

Removes the check mark, if any, next to an item a drop-down or cascading menu and sets the
item's Checked property to false.

Statements, Events, and Functions

Page 1552

Applies to

Menu objects

Syntax

menuname.Uncheck ()

Table 2.1407:

Argument Description

menuname The fully qualified name of the menu selection from which you want
to remove the checkmark, if any. The menu must be on a drop-down or
cascading menu, not an item on a menu bar.

Return value

Integer.

Returns 1 if it succeeds and -1 if an error occurs. If menuname is null, Uncheck returns null.

Usage

A checkmark next to a menu item indicates that the menu option is currently on and that
the user can turn the option on and off by choosing it. For example, in the Window painter's
Design menu, a checkmark is displayed next to Grid when the grid is on.

You can use Check in an item's Clicked script to mark a menu item when the user turns the
option on and Uncheck to remove the check when the user turns the option off.

Equivalent syntax

You can set the object's Checked property instead of calling Uncheck:

menuname.Checked = false

This statement:

m_appl.m_view.m_grid.Checked = FALSE

is equivalent to:

m_appl.m_view.m_grid.Uncheck()

Examples

This statement removes the checkmark next to the m_grid menu selection in the drop-down
menu m_view on the menu bar m_appl:

m_appl.m_view.m_grid.Uncheck()

This example checks whether the m_grid menu selection in the drop-down menu m_view
of the menu bar m_appl is currently checked. If so, the script unchecks the item. If it is not
checked, the script checks the item:

IF m_appl.m_view.m_grid.Checked = TRUE THEN
 m_appl.m_view.m_grid.Uncheck()
ELSE
 m_appl.m_view.m_grid.Check()
END IF

Statements, Events, and Functions

Page 1553

See also

Check

2.4.858 Undo

Description

Cancels the last edit in an edit control, restoring the text to the content before the last change.

Applies to

DataWindow, MultiLineEdit, RichTextEdit, and SingleLineEdit controls

Syntax

editname.Undo ()

Table 2.1408:

Argument Description

editname The name of the DataWindow control, MultiLineEdit, RichTextEdit, or
SingleLineEdit in which you want to cancel (reverse) the last edit. For
a DataWindow control, reverses the last edit in the edit control over the
current row and column.

Return value

Integer.

Returns 1 when it succeeds and -1 if an error occurs. If editname is null, Undo returns null.

Usage

To determine whether the last action can be canceled, call the CanUndo function.

Examples

This statement reverses the last edit in MultiLineEdit mle_Contact:

mle_Contact.Undo()

The following statement checks to see if the last edit in the MultiLineEdit mle_Contact can
be reversed, and if so reverse it:

IF mle_Contact.CanUndo() THEN mle_Contact.Undo()

See also

CanUndo

2.4.859 UnitsToPixels

Description

Converts PowerBuilder units to pixels and reports the measurement. Because pixels are not
usually square, you also specify whether to convert in the horizontal or vertical direction.

Syntax

UnitsToPixels (units, type)

Statements, Events, and Functions

Page 1554

Table 2.1409:

Argument Description

units An integer or long whose value is the number of PowerBuilder units you
want to convert to pixels

type A value of the ConvertType enumerated datatype indicating how to
convert the value:

• XUnitsToPixels! -- Convert the units in the horizontal direction

• YUnitsToPixels! -- Convert the units in the vertical direction

Return value

Integer or long.

Returns the converted value if it succeeds and -1 if an error occurs. If any argument's value is
null, UnitsToPixels returns null.

If the value of the first argument is an integer type, then the return value is an integer type; if
the value of the first argument is a long type, then the return value is a long type; if the value
of the first argument is a numeric value, then the return value is a long type by default.

Examples

These statements convert 350 vertical PowerBuilder units to vertical pixels and set value
equal to the converted value:

long Value
Value = UnitsToPixels(350, YUnitsToPixels!)

See also

PixelsToUnits

2.4.860 UnregisterEvent

Description

Unregisters the user defined event that is registered using the RegisterEvent function.

Applies to

WebBrowser controls

Syntax

controlname.UnregisterEvent (string eventname)

Table 2.1410:

Argument Description

controlname The name of the WebBrowser control.

eventname The name of the user-defined event to be unregistered.

Return value

Statements, Events, and Functions

Page 1555

Integer.

Returns 1 if it succeeds and -1 if an error occurs.

Examples

The following example triggers an unregistered event in JavaScript and returns an error:

Integer li_Return
String ls_JS, ls_Result, ls_Error

li_Return = wb_1.UnregisterEvent("ue_getstring")
If li_Return = 1 Then
 ls_JS = "function event1() { return window.webBrowser.ue_getstring('Hi,PB!');}
 event1();"
 wb_1.EvaluateJavascriptSync(ls_JS, ls_Result, ls_Error)
 If Len(ls_Error) > 0 Then
 MessageBox("Error", ls_Error)
 End If
End If

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

GoForward

Navigate

PrintAsPDF

PauseDownload

RegisterEvent

ResumeDownload

Refresh

StopNavigation

Zoom

2.4.861 UpdateLinksDialog

Description

Attempts to find a file linked to an OLE container. If the linked file is not found, a dialog box
tells the user and lets them bring up a second dialog box for find the file or changing the link.

Applies to

OLE controls and OLE DWObjects (objects within a DataWindow object that is within a
DataWindow control)

Syntax

objectref.UpdateLinksDialog ()

Statements, Events, and Functions

Page 1556

Table 2.1411:

Argument Description

objectref The name of the OLE control or the fully qualified name of a OLE
DWObject within a DataWindow control that contains the object for
which you want to establish a link.

The fully qualified name for a DWObject has this syntax:

dwcontrol.Object.dwobjectname

Return value

Integer.

Returns 0 if it succeeds and -1 if an error occurs.

Usage

If a container's LinkUpdateOptions property is set for automatic update, PowerBuilder tries
to update the link when the OLE container is created and the object is loaded (for example,
when the window is opened). If the linked file is not found, a message informs the user and
he or she can choose to edit the link (for example, break the link or browse for the correct
file).

UpdateLinksDialog and LinkTo are useful when a linked file has been moved and the
container's LinkUpdateOptions property is set for manual update.

UpdateLinksDialog

Calling this function triggers the same process that occurs for automatic update.
PowerBuilder tries to find the file and if it fails it gives the user the opportunity to edit the
link.

LinkTo

If you want to establish a link without involving the user, call the LinkTo function. Its
arguments specify the file and item you want to link. If you want to display your own dialog
for selecting the linked file, you can take the information the user specifies and call the
LinkTo function.

If the OLE container holds an embedded object, calling UpdateLinksDialog has no effect. It
returns zero because no link is broken.

For more information about updating links, see Section 5.3.3.2, “Linking versus embedding”
in Application Techniques.

Examples

This example looks for the linked file for an OLE control ole_report. If the file is missing, it
prompts the user to display the Links dialog and edit the link:

ole_report.UpdateLinksDialog()

This example looks for the linked file for an OLE DWObject ole_word in the DataWindow
control dw_customer_data. If the file is missing, the user can choose to edit the link using the
Links dialog:

dw_customer_data.Object.ole_word.UpdateLinksDialog()

Statements, Events, and Functions

Page 1557

See also

InsertObject

LinkTo

2.4.862 Upper

Description

Converts all the characters in a string to uppercase.

Syntax

Upper (string)

Table 2.1412:

Argument Description

string The string you want to convert to uppercase letters

Return value

String.

Returns string with lowercase letters changed to uppercase if it succeeds and the empty string
("") if an error occurs. If string is null, Upper returns null.

Examples

This statement returns BABE RUTH:

Upper("Babe Ruth")

See also

Lower

Upper method for DataWindows in Section 2.4.129, “Upper” in DataWindow Reference.

2.4.863 UpperBound

Description

Obtains the upper bound of a dimension of an array.

Syntax

UpperBound (array {, n })

Table 2.1413:

Argument Description

array The name of the array for which you want the upper bound of a
dimension

n (optional) The number of the dimension for which you want the upper bound. The
default is 1

Return value

Statements, Events, and Functions

Page 1558

Long.

Returns the upper bound of dimension n of array. If n is greater than the number of
dimensions of the array, UpperBound returns -1. If any argument's value is null, UpperBound
returns null.

Usage

For variable-size arrays, memory is allocated for the array when you assign values to it.
UpperBound returns the largest value that has been defined for the array in the current script.
Before you assign values, the lower bound is 1 and the upper bound is 0. For fixed arrays,
whose size is specified when it is declared, UpperBound always returns the declared size.

Examples

The following statements illustrate the values UpperBound reports for fixed-size arrays and
for variable-size arrays before and after memory has been allocated:

integer a[5]
UpperBound(a) // Returns 5
UpperBound(a,1) // Returns 5
UpperBound(a,2) // Returns -1; no 2nd dimension

integer b[10,20]
UpperBound(b,1) // Returns 10
UpperBound(b,2) // Returns 20

integer c[]
UpperBound(c) // Returns 0; no memory allocated
c[50] = 900
UpperBound(c) // Returns 50
c[60] = 800
UpperBound(c) // Returns 60
c[60] = 800
c[50] = 700
UpperBound(c) // Returns 60

integer d[10 to 50]
UpperBound(d) // Returns 50

This example determines the position of a menu bar item called File, and if the item has a
cascading menu with an item called Update, disables the Update item. The code could be a
script for a control in a window.

The code includes a rather complicated construct: Parent.Menuid.Item. Its components are:

• Parent -- The parent window of the control that is running the script.

• Menuid -- A property of a window whose value identifies the menu associated with the
window.

• Item -- A property of a menu that is an array of items in that menu. If Item is itself a drop-
down or cascading menu, it has its own item array, which can be a fourth qualifier.

The script is:

long i, k, tot1, tot2

// Determine how many menu bar items there are.
tot1 = UpperBound(Parent.Menuid.Item)

Statements, Events, and Functions

Page 1559

FOR i = 1 to tot1
 // Find the position of the File item.
 IF Parent.Menuid.Item[i].text = "File" THEN
 MessageBox("Position", &
 "File is in Position "+ string(i))
 tot2 = UpperBound(Parent.Menuid.Item[i].Item)

 FOR k = 1 to tot2
 // Find the Update item under File.
 IF Parent.Menuid.Item[i].Item[k].Text = &
 "Update" THEN
 // Disable the Update menu option.
 Parent.Menuid.Item[i].Item[k].Disable()
 EXIT
 END IF
 NEXT
 EXIT
 END IF
NEXT

See also

LowerBound

2.4.864 UrlDecode

Description

Decodes a string value using URL decoder.

Applies to

CoderObject object

Syntax

coder.UrlDecode (variable)

Table 2.1414:

Argument Description

coder The name of the CoderObject object.

variable A string whose value is the data you want to decode with URL decoder.

Return value

Blob. Returns the result of the decoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement decodes the data that is encoded using URL.

Blob lblb_data
String ls_UrlStr

CoderObject lnv_CoderObject
lnv_CoderObject = Create CoderObject

//ls_UrlStr = lnv_CoderObject.UrlEncode(Blob("https://www.appeon.com",
 EncodingANSI!))

Statements, Events, and Functions

Page 1560

ls_UrlStr = "https%3A%2F%2Fwww.appeon.com"

lblb_data = lnv_CoderObject.UrlDecode(ls_UrlStr)
messagebox("UrlDecode", string(lblb_data, EncodingANSI!))

See also

HexDecode

HexEncode

Base32Decode

Base32Encode

Base64Decode

Base64Encode

Base64UrlDecode

Base64UrlEncode

UrlEncode

2.4.865 UrlEncode

Description

Encodes a blob value using URL encoder.

Applies to

CoderObject object

Syntax

coder.UrlEncode (variable)

Table 2.1415:

Argument Description

coder The name of the CoderObject object.

variable A blob whose value is the data you want to encode with URL encoder.

When using the system blob function to convert a string to a blob, it is
recommended to specify its encoding argument to be EncodingANSI!
(for English characters only) or EncodingUTF8!, otherwise, the default
EncodingUTF16LE! will be used.

Return value

String. Returns the result of the encoding if it succeeds. If any argument's value is null, the
method returns null. If an error occurs, throw the exception.

Examples

This statement encodes the data using URL and returns the encoded data.

Blob lblb_data
String ls_UrlStr

Statements, Events, and Functions

Page 1561

lblb_data = Blob("https://www.appeon.com", EncodingANSI!)

CoderObject lnv_CoderObject
lnv_CoderObject = Create CoderObject

ls_UrlStr = lnv_CoderObject.UrlEncode(lblb_data)

See also

HexDecode

HexEncode

Base32Decode

Base32Encode

Base64Decode

Base64Encode

Base64UrlDecode

Base64UrlEncode

UrlDecode

2.4.866 WebBrowserGet

Description

Gets the settings of the WebBrowser control.

Syntax

WebBrowserGet (string n, ref string v)

Table 2.1416:

Argument Description

n The name of the setting. See WebBrowserSet for the list of available
settings.

v The value of the setting that is obtained.

Return value

Integer.

Returns the following error code:

• 1 -- Success

• -8 -- The setting name does not exist.

Examples

The following example gets the values that are set for the proxy for the WebBrowser control:

WebBrowserGet ("ProxyAddress", strValue)
WebBrowserGet ("ProxyPort", strValue)

Statements, Events, and Functions

Page 1562

WebBrowserGet ("ProxyUser", strValue)
WebBrowserGet ("ProxyPassword", strValue)

See also

WebBrowserSet

2.4.867 WebBrowserSet

Description

Configures the settings for the WebBrowser control.

Syntax

WebBrowserSet (string n, string v)

Table 2.1417:

Argument Description

n The name of the setting. The setting can be:

• CachePath -- The folder that stores the web page cache, cookies etc.
You can specify a directory or use the default directory which uses the
system environment %HOMEPATH% and %TEMP%, for example, C:
\Users\appeon\AppData\Local\Temp\pbcefcache.

CachePath must be set before the WebBrowser control is initialized. It
must be an absolute path, and cannot be a relative path.

• UserDataPath -- The folder that stores the user data dictionary. You
can specify a directory or use the default directory which uses the
system environment %HOMEPATH% and %TEMP%, for example, C:
\Users\appeon\AppData\Local\pbcef\User Data\Dictionaries.

UserDataPath must be set before the WebBrowser control is initialized.
It must be an absolute path, and cannot be a relative path.

• DownloadPath -- The folder that stores the downloaded files etc. You
can specify a directory or use the default directory which uses the
system environment %HOMEPATH% and %TEMP%, for example, C:
\Users\appeon\AppData\Local\Temp\pbcefdownload.

DownloadPath must be set before the WebBrowser control starts
downloading files. It must be an absolute path, and cannot be a relative
path.

• UserAgent -- The User-Agent request header that contains a
characteristic string that allows the network protocol peers to identify
the application type, operating system, software vendor or software
version of the requesting software user agent.

UserAgent must be set before the WebBrowser control is initialized.

• ProxyAuto -- Whether to use auto proxy detection. The value could be
1 or 0 (the default). Auto proxy detection is used if it is set to 1.

Statements, Events, and Functions

Page 1563

Argument Description
• ProxyPacUrl -- The URL address of the PAC file. It is unsupported to

load the PAC file on the local directory via file:/// (you will have to put
the file on the server and load it via http or https).

• ProxyAddress -- The address of the proxy server.

• ProxyPort -- The port of the proxy server. The default value is -1.

• ProxyUser -- The user name that will be authenticated by the proxy
server.

• ProxyPassword -- The password that will be authenticated by the proxy
server.

WebBrowser supports auto proxy detection, PAC (proxy auto
configuration) file setting, and manual proxy settings. The priority
order of the settings is: auto proxy detection > PAC file setting >
manual proxy settings. By default the IE proxy is used.

If the proxy setting is set before the WebBrowser control is initialized,
it will be effective to all Web pages loaded; if it is set before the
Navigate operation, then it will be effective to only the Web page
being navigated.

• allow-file-access-from-files -- Whether to allow access to the local
files (XML etc.). The value is "true" or "false" (the default).

• enable-media-stream -- Whether to allow access to the microphone or
camera. The value is "true" or "false" (the default).

v The value of the setting to be set.

Return value

Integer.

Returns the following error code:

• 1 -- Success

• -7 -- CEF has been initialized, and the current item can only be set before CEF
initialization.

• -8 -- The setting name does not exist.

• -9 -- The path is invalid or does not exist.

Examples

The following example configures the proxy settings for the WebBrowser control in the
application Open event.

Open(string commandline)

Statements, Events, and Functions

Page 1564

{
 WebBrowserSet ("ProxyAddress", "192.168.5.16")
 WebBrowserSet ("ProxyPort", "8080")
 WebBrowserSet ("ProxyUser", "Admin")
 WebBrowserSet ("ProxyPassword", "123Test")
}

See also

WebBrowserGet

2.4.868 Which

Description

Allows a component to find out whether it is running on a transaction server.

Applies to

TransactionServer objects

Syntax

transactionserver.Which ()

Table 2.1418:

Argument Description

transactionserver Reference to the TransactionServer service instance

Return value

Integer.

Returns 0 if the object is not running on a transaction server, 1 if it is running on EAServer
(obsolete), or 2 if it is running on COM+.

Usage

The Which function allows a custom class user object to perform different processing
depending on its runtime context.

Examples

The code in the following example checks to see whether the runtime context is a transaction
server. If it is, it uses transaction semantics that are appropriate for a transaction server;
otherwise, it uses COMMIT and ROLLBACK to communicate directly with the database:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts

Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", &
 ts)
IF li_rc <> 1 THEN
 // handle the error
END IF
...
...

Statements, Events, and Functions

Page 1565

ll_rv = ids_datastore.Update()

IF ts.Which() > 0 THEN
 IF ll_rv = 1 THEN
 ts.EnableCommit()
 ELSE
 ts.DisableCommit()
 END IF
ELSE
 IF ll_rv = 1 THEN
 COMMIT USING SQLCA;
 ELSE
 ROLLBACK USING SQLCA;
 END IF
END IF

See also

EnableCommit

IsInTransaction (obsolete)

IsTransactionAborted (obsolete)

Lookup (obsolete)

SetAbort

SetComplete

2.4.869 WordCap

Description

Capitalizes the first letter of each word in a passed script. It sets the remaining letters in each
word to lowercase.

Applies to

All text objects

Syntax

WordCap (text)

Table 2.1419:

Argument Description

text String to be modified

Return value

String.

If it succeeds, returns the text passed in the function argument with the first letter of each
word in uppercase and the remaining letters in lowercase. Returns null if an error occurs.

Examples

This example takes user-entered text from a SingleLineEdit control, capitalizing the first
letter in each word and setting the other letters to lowercase, before passing it in a string
variable:

Statements, Events, and Functions

Page 1566

string ls_fullname
ls_fullname = WordCap (sle_1.text)

The text joe MaCdonald would be rendered as Joe Macdonald by the WordCap function.

2.4.870 WorkSpaceHeight

Description

Obtains the height of the workspace within the boundaries of the specified window.

Applies to

Window objects

Syntax

windowname.WorkSpaceHeight ()

Table 2.1420:

Argument Description

windowname The name of the window for which you want the height of the workspace
area

Return value

Integer.

Returns the height of the workspace area in PowerBuilder units in windowname. If an error
occurs, WorkSpaceHeight returns -1. If windowname is null, WorkSpaceHeight returns null.

Usage

The workspace height does not include the thickness of the frame, the title bar, menu bar,
horizontal scroll bar, or any toolbars at the top or bottom. The workspace height includes the
MicroHelp status bar.

The workspace width does not include the thickness of the frame, the vertical scroll bar, or
any toolbars on the left or right.

Examples

This example returns the height of the workspace area in the w_employee window:

Integer Height
Height = W_employee.WorkSpaceHeight()

This example resizes the client area of a custom MDI frame window (that is, a frame window
in which you have placed controls). P_logo is the control that has been placed on the window.
The code belongs in the script for the frame's Resize event:

integer lw, lh
// Get the current workspace measurements
lw = This.WorkSpaceWidth()
lh = This.WorkSpaceHeight()

// Subtract the logo, MicroHelp from the height
lh = lh - (p_logo.Y + p_logo.Height)
lh = lh - MDI_1.MicroHelpHeight

Statements, Events, and Functions

Page 1567

// Add the distance between the top of the frame
// (just below the menu bar or toolbar, if any)
// and top of the workspace.
lh = lh + This.WorkspaceY()

// Move the client area below the picture control
MDI_1.Move(This.WorkspaceX(), &
 p_logo.Y + p_logo.Height)

// Resize the client area using the calculated dims
mdi_1.Resize(lw, lh)

See also

WorkSpaceWidth

WorkSpaceX

WorkSpaceY

PointerX

PointerY

2.4.871 WorkSpaceWidth

Description

Obtains the width of the workspace within the boundaries of the specified window.

Applies to

Window objects

Syntax

windowname.WorkSpaceWidth ()

Table 2.1421:

Argument Description

windowname The name of the window for which you want the width of the workspace
area

Return value

Integer.

Returns the width of the workspace area (in PowerBuilder units) in windowname. If an error
occurs, WorkSpaceWidth returns -1. If windowname is null, WorkSpaceWidth returns null.

Usage

The workspace height does not include the thickness of the frame, the title bar, menu bar,
horizontal scroll bar, or any toolbars at the top or bottom. The workspace height includes the
MicroHelp status bar.

The workspace width does not include the thickness of the frame, the vertical scroll bar, or
any toolbars on the left or right.

Examples

This example returns the width of the workspace area in the w_employee window:

Statements, Events, and Functions

Page 1568

integer Width
Width = w_employee.WorkSpaceWidth()

See also

PointerX

PointerY

WorkSpaceHeight

WorkSpaceX

WorkSpaceY

2.4.872 WorkSpaceX

Description

Obtains the distance between the left edge of a window's workspace and the left edge of the
screen.

For custom MDI frames, WorkSpaceX obtains the distance between the left edge of the
frame window and the left side of the workspace area.

Applies to

Window objects

Syntax

windowname.WorkSpaceX ()

Table 2.1422:

Argument Description

windowname The name of the window for which you want the distance between the
left edge of the workspace area and the left edge of the screen

Return value

Integer.

Returns the distance that the left edge of the workspace area of windowname is from the
left edge of the screen (in PowerBuilder units). WorkSpaceX returns -1 if an error occurs. If
windowname is null, WorkSpaceX returns null.

Usage

The workspace area is the area between the sides of the window (not including the thickness
of the frame or the vertical scroll bar, if any) and the top and bottom of the window (not
including the thickness of the frame or the title bar, menu bar, or horizontal scroll bar, if any).

Examples

This example returns the distance from the left edge of the screen to the left edge of the
workspace area in the w_employee window:

integer workx
workx = w_employee.WorkSpaceX()

See also

Statements, Events, and Functions

Page 1569

PointerX

PointerY

WorkSpaceHeight

WorkSpaceWidth

WorkSpaceY

2.4.873 WorkSpaceY

Description

Obtains the distance between the top of a window's workspace and the top of the screen.

For custom MDI frames, WorkSpaceY obtains the distance from the top of the frame window
and the top of the workspace area. The top of the frame window is the lower edge of the
menu bar or toolbar, if any.

Applies to

Window objects

Syntax

windowname.WorkSpaceY ()

Table 2.1423:

Argument Description

windowname The name of the window for which you want the distance between the
top of the workspace area and the top of the screen

Return value

Integer.

Returns the distance that the top of the workspace area of windowname is from the top of the
screen (in PowerBuilder units). If an error occurs, WorkSpaceY returns -1. If windowname is
null, WorkSpaceY returns null.

Usage

The workspace area is the area between the sides of the window (not including the thickness
of the frame or the vertical scroll bar, if any) and the top and bottom of the window (not
including the thickness of the frame or the title bar, menu bar, or horizontal scroll bar, if any).

Examples

This example returns the distance from the top of the screen to the top of the workspace area
in the w_employee window:

integer worky
worky = w_employee.WorkSpaceY()

See also

PointerX

PointerY

Statements, Events, and Functions

Page 1570

WorkSpaceHeight

WorkSpaceWidth

WorkSpaceX

2.4.874 Write

Description

Writes data to an opened OLE stream object.

Applies to

OLEStream objects

Syntax

olestream.Write (dataforstream)

Table 2.1424:

Argument Description

olestream The name of an OLE stream variable that has been opened

dataforstream A string, blob, or character array whose value you want to write to
olestream

Return value

Long.

Returns the number of characters or bytes written if it succeeds and one of the following
negative values if an error occurs:

-1 -- Stream is not open

-2 -- Read error

-9 -- Other error

If any argument's value is null, Write returns null.

Examples

This example opens an OLE object in the file MYSTUFF.OLE and assigns it to the
OLEStorage object olest_stuff. Then it opens the stream called info in olest_stuff and assigns
it to the stream object olestr_info. It writes the contents of the blob variable lb_info to the
stream olestr_info. Finally, it saves the storage olest_stuff:

boolean lb_memexists
OLEStorage olest_stuff
OLEStream olestr_info
integer li_result
long ll_result

olest_stuff = CREATE OLEStorage
li_result = olest_stuff.Open("c:\ole2\mystuff.ole")
IF li_result <> 0 THEN RETURN

li_result = olestr_info.Open(olest_stuff, "info", &
 stgReadWrite!, stgExclusive!)

Statements, Events, and Functions

Page 1571

IF li_result <> 0 THEN RETURN
ll_result = olestr_info.Write(lb_info)
IF ll_result = 0 THEN olest_stuff.Save()

See also

Length

Open

Read

Seek

2.4.875 XMLParseFile

Description

Parses an XML file and determines whether the file is well formed or complies with a
specified grammar.

Syntax

XMLParseFile (xmlfilename {, validationscheme }{, parsingerrors } {,
 namespaceprocessing {, schemaprocessing {, schemafullchecking }}})

Table 2.1425:

Argument Description

xmlstring A string whose value is the name of the XML file to be parsed.

validationscheme
(optional)

A value of the ValSchemeType enumerated datatype specifying the
validation method used by the SAX parser. Values are:

• ValNever! -- Do not report validation errors.

• ValAlways! -- Always report validation errors.

• ValAuto! -- (default) Report validation errors only if a grammar is
specified.

parsingerrors
(optional)

A string buffer to which error messages can be saved. If not specified or
set to null, errors display in a message box.

namespaceprocessing
(optional)

A boolean specifying whether name space rules are enforced. When set
to true, the parser enforces the constraints and rules defined by the W3C
recommendation on namespaces in XML.

If validationscheme is set to ValAlways! or ValAuto!, the document must
contain a grammar that supports the use of namespaces.

The default is false.

schemaprocessing
(optional)

A boolean specifying whether schema support is enabled. When set to
false, the parser does not process any schema found.

If schemaprocessing is true, namespaceprocessing must also be set to
true.

The default is false.

Statements, Events, and Functions

Page 1572

Argument Description

schemafullchecking
(optional)

A boolean specifying whether schema constraints are checked. When set
to true, the schema grammar is checked for errors.

Setting schemafullchecking to true has no effect unless schemaprocessing
is also set to true.

The default is false.

Return value

Long.

Returns 0 for success and one of the following negative values if an error occurs:

-1 -- Parsing error

-2 -- Argument error

Usage

Use XMLParseFile to validate an XML file against a DTD or XML schema before
proceeding with additional processing.

If no DTD or schema is included or referenced in the file, XMLParseFile checks whether the
document contains well-formed XML. If the XML document fails validation or is not well-
formed, XMLParseFile returns -1.

Because XSD You can also check the well-formedness of an XSD file because they are
in XML format. The validation scheme must be ValAuto!, which is the default validation
scheme.

To suppress the display of message boxes if errors occur, specify a string value for the
parsingerrors argument.

The files pbxercesNN.dll and xerces-c_XX.dll, where NN represents the PowerBuilder
version and XX represents the Xerces version, must be deployed with the other PowerBuilder
runtime files in the search path of any application or component that uses this function.

Examples

These statements parse an XML document. If a DTD is included or referenced, the document
is validated. Otherwise the parser checks for well-formedness. If the document passes
validation, it is imported into a DataWindow control:

long ll_ret

ll_ret = XMLParseFile("c:\temp\mydoc.xml")
if ll_ret = 0 then dw_1.ImportFile("c:\temp\mydoc.xml")

These statements parse an XML document and save any errors in the string variable ls_err. If
errors occur, no message boxes display. If a DTD is included or referenced, the document is
validated. Otherwise the parser checks for well-formedness:

long ll_ret
string ls_err
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ls_err)

These statements parse an XML document. If an XMLSchema is included or referenced, the
document is validated, otherwise the parser checks for well-formedness:

Statements, Events, and Functions

Page 1573

long ll_ret
ll_ret = XMLParseFile("c:\temp\mydoc.xml", TRUE, TRUE)

These statements parse an XML document, validate against a given XML schema, and save
any errors that occur in a string variable. If errors occur, no message boxes display. If no
schema is included or referenced in the file, XMLParseFile returns -1:

long ll_ret
string ls_err
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ValAlways!, ls_err, TRUE, TRUE)

These statements parse an XML document, validate against a given XML schema, and parse
the schema itself for additional errors. If no schema is included or referenced in the file,
XMLParseFile returns -1:

long ll_ret
string ls_err
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ValAlways!, ls_err, TRUE, TRUE, TRUE)

These statements parse an XML document, validate against a given DTD, and save any
errors that occur in a string variable. If errors occur, no message boxes display. If no DTD is
included or referenced in the file, XMLParseFile returns -1:

long ll_ret
string ls_err
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ValAlways!, ls_err)

These statements parse an XSD file and test it for well-formedness. You must use ValAuto!
when you parse an XSD file because there is no external schema associated with it. However,
you do not need to specify the option when you call the function because it is the default
validation method:

long ll_ret
ll_ret = XMLParseFile ("c:\mydoc.xsd")

See also

ImportFile

XMLParseString

ImportFile method for DataWindows in Section 9.96, “ImportFile” in DataWindow
Reference.

2.4.876 XMLParseString

Description

Parses an XML string and determines whether the string is well formed or complies with a
specified grammar.

Syntax

XMLParseString (xmlstring {, validationscheme }{, parsingerrors } {,
 namespaceprocessing {, schemaprocessing {, schemafullchecking }}})

Table 2.1426:

Argument Description

xmlstring A string that holds the XML document to be parsed.

Statements, Events, and Functions

Page 1574

Argument Description

validationscheme
(optional)

A value of the ValSchemeType enumerated datatype specifying the
validation method used by the SAX parser. Values are:

• ValNever! -- Do not report validation errors.

• ValAlways! -- Always report validation errors. Use ValAlways! only
when you know there is a DTD or schema against which the file can be
validated.

• ValAuto! -- (default) Report validation errors only if a grammar is
specified.

parsingerrors
(optional)

A string buffer to which error messages can be saved. If not specified or
set to null, errors are shown to the user in a dialog box.

namespaceprocessing
(optional)

A boolean specifying whether name space rules are enforced. When set
to true, the parser enforces the constraints and rules defined by the W3C
recommendation on namespaces in XML.

If validationscheme is set to ValAlways! or ValAuto!, the document must
contain a grammar that supports the use of namespaces.

The default is false.

schemaprocessing
(optional)

A boolean specifying whether schema support is enabled. When set to
false, the parser does not process any schema found.

If schemaprocessing is true, namespaceprocessing must also be set to
true.

The default is false.

schemafullchecking
(optional)

A boolean specifying whether schema constraints are checked. When set
to true, the schema grammar is checked for errors.

Setting schemafullchecking to true has no effect unless schemaprocessing
is also set to true.

The default is false.

Return value

Long.

Returns 0 for success and one of the following negative values if an error occurs:

-1 -- Parsing error

-2 -- Argument error

Usage

Use XMLParseString to validate an XML string against a DTD or XML schema before
proceeding with additional processing.

If no DTD or schema is included or referenced in the string, XMLParseString checks whether
the string contains well-formed XML. If the XML string fails validation or is not well-
formed, XMLParseString returns -1.

Statements, Events, and Functions

Page 1575

XSD (schema) files are in XML format and you can check them for well-formedness.
The validation scheme must be ValAuto!, which is the default validation scheme, because
ValAlways! requires that there be a schema or DTD against which to validate the file.

For example, given the following schema file, the parser fails because there is no external
XSD file that defines xs:schema, xs:element, and xs:complextype. The schema is defined by
the namespace http://www.w3.org/2001/XMLSchema.

<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs=
 "http://www.w3.org/2001/XMLSchema">
 <xs:element name="test3">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="test3_row" maxOccurs=
 "unbounded" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

Using ValAlways! also fails for an XML file if there is no schema defined or the reference
does not point to a valid schema. If you use ValAuto!, validation is performed only if
the schema or DTD file is present in the desired location. If it is not present, only well-
formedness is checked.

To suppress the display of message boxes if errors occur, specify a string value for the
parsingerrors argument.

The files pbxercesNN.dll and xerces-c_XX.dll, where NN represents the PowerBuilder
version and XX represents the Xerces version, must be deployed with the other PowerBuilder
runtime files in the search path of any application or component that uses this function.

Examples

These statements parse an XML string. If a DTD is included or referenced, the string is
validated. Otherwise the parser checks for well-formedness:

// string argument as_xmlstring passed in
long ll_ret

ll_ret = XMLParseString(as_xmlstring)

These statements parse an XML string, validate against a given XML schema, and save any
errors that occur in a string variable. If errors occur, no message boxes display. If no schema
is included or referenced in the string, XMLParseString returns -1:

long ll_ret
string ls_xmlstr, ls_err

ll_ret = XMLParseString(ls_xmlstr, ValAlways!, ls_err, TRUE, TRUE)

These statements parse an XML string, validate against a given DTD, and save any errors
that occur in a string variable. If errors occur, no message boxes display. If no DTD
is included or referenced in the string, XMLParseString returns -1. If the string passes
validation, it is imported into a DataWindow control:

long ll_ret
string ls_xmlstr, ls_err

Statements, Events, and Functions

Page 1576

ll_ret = XMLParseString(ls_xmlstr, ValAlways!, ls_err)
if ll_ret = 1 then dw_1.ImportString(ls_xmlstr)

See also

ImportString

XMLParseFile

ImportString method for DataWindows in Section 9.100, “ImportString” in DataWindow
Reference.

2.4.877 Year

Description

Determines the year of a date value.

Syntax

Year (date)

Table 2.1427:

Argument Description

date The date from which you want the year

Return value

Integer.

Returns an integer whose value is a 4-digit year adapted from the year portion of date if it
succeeds and 1900 if an error occurs. If date is null, Year returns null.

When you convert a string that has a two-digit year to a date, then PowerBuilder chooses the
century, as follows. If the year is between 00 to 49, PowerBuilder assumes 20 as the first two
digits; if it is between 50 and 99, PowerBuilder assumes 19.

Usage

PowerBuilder handles years from 1000 to 3000 inclusive.

If your data includes date before 1950, such as birth dates, always specify a 4-digit year so
that Year and other PowerBuilder functions, such as Sort, interpret the date as intended.

Windows settings

To make sure you get correct return values for the year, you must verify that yyyy
is the Short Date Style for year in the Regional Settings of the user's Control Panel.
Your program can check this with the RegistryGet function.

If the setting is not correct, you can ask the user to change it manually or have the
application change it (by calling the RegistrySet function). The user may need to
reboot after the setting is changed.

Examples

This statement returns 2005:

Year(2005-01-31)

Statements, Events, and Functions

Page 1577

See also

Day

Month

Year method for DataWindows in Section 2.4.133, “Year” in DataWindow Reference.

2.4.878 Yield

Description

Yields control to other graphic objects, including objects that are not PowerBuilder objects.
Yield checks the message queue and if there are messages in the queue, it pulls them from the
queue.

Syntax

Yield ()

Return value

Boolean.

Returns true if it pulls messages from the message queue and false if there are no messages.

Usage

Include Yield within a loop so that other processes can happen. For example, use Yield to
allow end users to interrupt a loop. By yielding control, you allow the user time to click on a
cancel button in another window. Then code in the loop can check whether a global variable's
status has changed. You can also use Yield in a loop in which you are waiting for something
to finish so that other processing can take place, in either your or some other application.

Using other applications while retrieving data

Although the user cannot do other activities in a PowerBuilder application while
retrieving data, you can allow them to use other applications on their system. Put
Yield in the RetrieveRow event so that other applications can run during the retrieval.

Of course, Yield will make your PowerBuilder application run slower because
processing time will be shared with other applications.

Examples

In this example, some code is processing a long task. A second window includes a button
that the user can click to interrupt the loop by setting a shared boolean variable sb_interrupt.
When the user clicks the button, its Clicked script sets sb_interrupt, shown here:

sb_interrupt = TRUE

The script that is doing the processing checks the shared variable sb_interrupt and interrupts
the processing if it is true. The Yield function allows a break in the processing so the user has
the opportunity to click the button:

integer n
// sb_interrupt is a shared variable.
sb_interrupt = FALSE

FOR n = 1 to 3000

Statements, Events, and Functions

Page 1578

 Yield()
 IF sb_interrupt THEN // var set in other script
 MessageBox("Debug","Interrupted!")
 sb_interrupt = FALSE
 EXIT
 ELSE
 ... // Some processing
 END IF
NEXT

In this example, this script doing some processing runs in one window while users interact
with controls in a second window. Without Yield, users could click in the second window,
but they would not see focus change or their actions processed until the loop completed:

integer n

FOR n = 1 to 3000
 Yield()
 ... // Some processing
NEXT

In this example, a script wants to open a DDE channel with Lotus Notes, whose executable
name is stored in the variable mailprogram. If the program is not running, the script starts it
and loops, waiting until the program's startup is finished and it can establish a DDE channel.
The loop includes Yield, so that the computer can spend time actually starting the other
program:

time starttime
long hndl

SetPointer(HourGlass!)
//Try to establish a handle; SendMail is the topic.
hndl = OpenChannel("Notes","SendMail")

//If the program is not running, start it
IF hndl < 1 then
 Run(mailprogram, Minimized!)
 starttime = Now()

 // Wait up to 2 minutes for Notes to load
 // and the user to log on.
 DO
 //Yield control occasionally.
 Yield()
 //Is Notes active yet?
 hndl = OpenChannel("Notes","SendMail")
 // If Notes is active.
 IF hndl > 0 THEN EXIT
 LOOP Until SecondsAfter(StartTime,Now()) > 120

 // If 2 minutes pass without opening a channel
 IF hndl < 1 THEN
 MessageBox("Error", &
 "Can't start Notes.", StopSign!)
 SetPointer(Arrow!)
 RETURN
 END IF
END IF

2.4.879 Zoom

Description

Statements, Events, and Functions

Page 1579

Scales the current view with the specified zoom ratio.

Applies to

WebBrowser controls

Syntax

controlname.Zoom (integer zoomlevel)

Table 2.1428:

Argument Description

controlname The name of the WebBrowser control.

zoomlevel The ratio to zoom the web page. The default zoom ratio is 0. The range of
values (in percentage) is 0~500, and 1~99 for reduction.

Return value

Integer.

Returns 1 if the function succeeds and -1 if an error occurs.

Examples

This example zooms out the screen to 80%:

Integer li_rtn, li_zoom

Li_zoom = 80
Li_rtn = wb_1.zoom(li_zoom)

See also

CancelDownload

EvaluateJavascriptAsync

EvaluateJavascriptSync

GetSource

GoBack

GoForward

Navigate

PrintAsPDF

PauseDownload

RegisterEvent

ResumeDownload

Refresh

StopNavigation

UnregisterEvent

Index

Page 1580

Index

Symbols
_Is_A (PowerScript function), 973

A
Abs (PowerScript function), 345
AccessToken (PowerScript function), 346
ACos (PowerScript function), 345
Activate (PowerScript event), 177
Activate (PowerScript function), 347
AddCategory (PowerScript function), 348
AddColumn (PowerScript function), 350
AddData (PowerScript function), 351
AddItem (PowerScript function), 353
AddItemArray (PowerScript function), 358
AddItemBlob (PowerScript function), 360
AddItemBoolean (PowerScript function),
362
AddItemDate (PowerScript function), 364
AddItemDateTime (PowerScript function),
365
AddItemNull (PowerScript function), 369
AddItemNumber (PowerScript function), 371
AddItemObject (PowerScript function), 374
AddItemString (PowerScript function), 376
AddItemTime (PowerScript function), 378
AddLargePicture (PowerScript function),
379
AddMasterSeparatorItem (PowerScript
function), 380
AddPicture (PowerScript function), 382
AddressChange (PowerScript event), 178
AddSeparatorItem (PowerScript function),
383
AddSeries (PowerScript function), 384
AddSmallPicture (PowerScript function),
385
AddStatePicture (PowerScript function), 386
AddToLibraryList (PowerScript function),
387
Any datatype, 53
AppendParam (PowerScript function), 388
ApplyTheme (PowerScript function), 389
Arabic functions

IsAllArabic, 975
IsAnyArabic, 976
IsArabic, 978

IsArabicAndNumbers, 979
arithmetic operator

in PowerBuilder, 85
Arrange (PowerScript function), 391
ArrangeSheets (PowerScript function), 392
array

declare, 68
array elements

values, 71
Asc (PowerScript function), 393
AscA (PowerScript function), 394
ASCII characters, 36
ASin (PowerScript function), 395
assignment

for autoinstantiated user object, 100
for object, 100
for structure, 99

Assignment (PowerScript statement), 124
assignment and data type, 91
AsymmetricDecrypt (PowerScript function),
396
AsymmetricEncrypt (PowerScript function),
397
AsymmetricGenerateKey (PowerScript
function), 399
AsymmetricSign (PowerScript function), 400
AsymmetricVerifySign (PowerScript
function), 401
ATan (PowerScript function), 403
autoinstantiated user object

assignment, 100

B
Base32Decode (PowerScript function), 404
Base32Encode (PowerScript function), 405
Base64Decode (PowerScript function), 406
Base64Encode (PowerScript function), 407
Base64UrlDecode (PowerScript function),
408
Base64UrlEncode (PowerScript function),
409
Beep (PowerScript function), 410
BeginDownload (PowerScript event), 178
BeginDrag (PowerScript event), 179
BeginLabelEdit (PowerScript event), 182
BeginLogScan (PowerScript event), 184
BeginRightDrag (PowerScript event), 184
BeginSync (PowerScript event), 187

Index

Page 1581

BeginTransaction (PowerScript function),
410
BeginUpload (PowerScript event), 187
Blob (PowerScript function), 412
BlobEdit (PowerScript function), 413
BlobMid (PowerScript function), 415
blobs

assigning to a picture control, 1398
converting to byte arrays, 614
converting to bytes, 418, 613
converting to string, 412
selecting from database, 159
updating, 160
writing to stream, 1570

BuildModel (PowerScript function), 416
Byte (PowerScript function), 418

C
CALL (PowerScript statement), 126
call function and event

in an object's ancestor, 120
Cancel (PowerScript function), 419
CancelDownload (PowerScript function),
421
CancelSync (PowerScript function), 422
CanUndo (PowerScript function), 422
cascaded calls and return values, 117
CategoryCollapsed (PowerScript event), 188
CategoryCount (PowerScript function), 423
CategoryExpanded (PowerScript event), 189
CategoryName (PowerScript function), 424
CategorySelectionChanged (PowerScript
event), 189
CategorySelectionChanging (PowerScript
event), 190
Ceiling (PowerScript function), 425
CertificateError (PowerScript event), 191
ChangeDirectory (PowerScript function),
426
ChangeMenu (PowerScript function), 426
Char (PowerScript function), 427
CharA (PowerScript function), 428
Check (PowerScript function), 429
CHOOSE CASE (PowerScript statement),
127
ChooseColor (PowerScript function), 430
ClassList (PowerScript function), 430
ClassName (PowerScript function), 431

Clear (PowerScript function), 433
ClearAll (PowerScript function), 437
ClearBoldDates (PowerScript function), 437
ClearHeaders (PowerScript function), 438
ClearParams (PowerScript function), 440
ClearRecentItems (PowerScript function),
440
ClearRequestHeaders (PowerScript
function), 442
Clicked (PowerScript event), 192
Clipboard (PowerScript function), 442
Close (PowerScript event), 201
Close (PowerScript function), 445
CLOSE Cursor (SQL statement), 147
CLOSE Procedure (SQL statement), 147
CloseChannel (PowerScript function), 449
CloseQuery (PowerScript event), 203
CloseTab (PowerScript function), 450
CloseUp (PowerScript event), 205
CloseUserObject (PowerScript function), 451
CloseWithReturn (PowerScript function),
452
CollapseItem (PowerScript function), 454
ColumnClick (PowerScript event), 205
CommandParm (PowerScript function), 455
comments, 33
COMMIT (SQL statement), 148
CommitDocking (PowerScript function), 456
CommitTransaction (PowerScript function),
457
Compress (PowerScript function), 459
concatenation operator

in PowerBuilder, 88
conditional compilation, 46
CONNECT (SQL statement), 149
ConnectMobiLink (PowerScript event), 206
ConnectToNewObject (PowerScript
function), 461
ConnectToNewRemoteObject (PowerScript
function), 463
ConnectToObject (PowerScript function),
464
ConnectToRemoteObject (PowerScript
function), 467
ConnectToServer (PowerScript function),
469
constant

declare, 67

Index

Page 1582

Constructor (PowerScript event), 207
ContainsKey (PowerScript function), 471
ContainsPath (PowerScript function), 473
CONTINUE (PowerScript statement), 128
Copy (PowerScript function), 475
CopyRTF (PowerScript function), 476
Cos (PowerScript function), 478
Cpu (PowerScript function), 479
CREATE (PowerScript statement), 129
CreateDirectory (PowerScript function), 479
CreateInstance (PowerScript function), 480
CreateJsonArray (PowerScript function), 483
CreateJsonObject (PowerScript function),
484
CreatePage (PowerScript function), 484
Cut (PowerScript function), 485

D
data type

Any, 53
enumerated, 56
for external function arguments, 80
numeric datatypes in PowerBuilder, 90
of PowerBuilder expressions, 90
promotion, 90, 112
standard, 48
string and char datatypes in PowerBuilder,
92
system object, 55

data type and assignment, 91
DataChange (PowerScript event), 208
DataCount (PowerScript function), 487
DataSource (PowerScript function), 488
Date (PowerScript function), 489
DateChanged (PowerScript event), 209
DateSelected (PowerScript event), 209
DateTime (PowerScript function), 493
Day (PowerScript function), 495
DayName (PowerScript function), 496
DayNumber (PowerScript function), 497
DaysAfter (PowerScript function), 498
DBError (PowerScript event), 210
DBHandle (PowerScript function), 499
DBMS stored procedure

declare as remote procedure calls, 83
DBNotification (PowerScript event), 212
Deactivate (PowerScript event), 214
DebugBreak (PowerScript function), 500

Dec (PowerScript function), 500
declare

constants, 67
DBMS stored procedures, 83
external functions, 76
variables, 56

declare arrays, 68
DECLARE Cursor (SQL statement), 150
DECLARE Procedure (SQL statement), 150
DELETE (SQL statement), 152
DELETE Where Current of Cursor (SQL
statement), 152
DeleteAllItems (PowerScript event), 215
DeleteCategory (PowerScript function), 501
DeleteCheckBox (PowerScript function), 503
DeleteColumn (PowerScript function), 504
DeleteColumns (PowerScript function), 504
DeleteComboBox (PowerScript function),
505
DeleteData (PowerScript function), 506
DeleteGroup (PowerScript function), 507
DeleteItem (PowerScript event), 215
DeleteItem (PowerScript function), 508
DeleteItems (PowerScript function), 513
DeleteLargeButton (PowerScript function),
514
DeleteLargePicture (PowerScript function),
515
DeleteLargePictures (PowerScript function),
515
DeleteMasterItem (PowerScript function),
516
DeletePanel (PowerScript function), 517
DeletePicture (PowerScript function), 518
DeletePictures (PowerScript function), 519
DeleteRecentItem (PowerScript function),
520
DeleteSeries (PowerScript function), 521
DeleteSmallButton (PowerScript function),
522
DeleteSmallPicture (PowerScript function),
523
DeleteSmallPictures (PowerScript function),
523
DeleteStatePicture (PowerScript function),
524
DeleteStatePictures (PowerScript function),
524

Index

Page 1583

DeleteTabButton (PowerScript function),
525
DESTROY (PowerScript statement), 132
DestroyModel (PowerScript function), 526
Destructor (PowerScript event), 217
DirectoryExists (PowerScript function), 527
DirList (PowerScript function), 527
DirSelect (PowerScript function), 529
Disable (PowerScript function), 530
DisableCommit (PowerScript function), 531
DISCONNECT (SQL statement), 153
DisconnectMobiLink (PowerScript event),
217
DisconnectObject (PowerScript function),
532
DisconnectServer (PowerScript function),
533
DisplayMessage (PowerScript event), 218
DO...LOOP (PowerScript statement), 133
Double (PowerScript function), 534
DoubleClicked (PowerScript event), 219
DoVerb (PowerScript function), 535
DownloadingStart (PowerScript event), 223
DownloadingStateChanged (PowerScript
event), 224
Drag (PowerScript function), 536
DragDrop (PowerScript event), 225
DragEnter (PowerScript event), 229
DragLeave (PowerScript event), 230
DragWithin (PowerScript event), 231
Draw (PowerScript function), 539
DropDown (PowerScript event), 234
dynamic calls, 107
Dynamic SQL Format 1, 165
Dynamic SQL Format 2, 166
Dynamic SQL Format 3, 167
Dynamic SQL Format 4, 170

E
EditLabel (PowerScript function), 540
embedded SQL

use in scripts, 144
Enable (PowerScript function), 542
EnableCommit (PowerScript function), 543
EndDownload (PowerScript event), 235
EndLabelEdit (PowerScript event), 235
EndLogScan (PowerScript event), 237
EndSync (PowerScript event), 238

EndUpload (PowerScript event), 239
EntryList (PowerScript function), 544
enumerated datatypes, 56
Error (PowerScript event), 239
ErrorMessage (PowerScript event), 244
EvaluateJavascriptAsync (PowerScript
function), 545
EvaluateJavascriptFinished (PowerScript
event), 245
EvaluateJavascriptSync (PowerScript
function), 546
event

extend and override, 113
find, 105
return value, 116

events
about, 174

ExecRemote (PowerScript function), 548
EXECUTE (SQL statement), 154
EXIT (PowerScript statement), 135
Exp (PowerScript function), 551
ExpandAll (PowerScript function), 551
ExpandItem (PowerScript function), 552
ExportJSON (PowerScript function), 553
ExportToJSONFile (PowerScript function),
554
ExportToXMLFile (PowerScript function),
555
ExportXML (PowerScript function), 554
extend function and event, 112
external function

call, 82
declare, 76
define source, 82

external function argument
data type, 80

ExternalException (PowerScript event), 246
Extract (PowerScript function), 557

F
Fact (PowerScript function), 560
FETCH (SQL statement), 154
file functions

FileClose, 560
FileCopy, 561
FileDelete, 562
FileEncoding, 562
FileExists, 564

Index

Page 1584

FileLength, 564
FileLength64, 566
FileMove, 567
FileOpen, 567
FileRead, 571
FileReadEx, 573
FileSeek, 575
FileSeek64, 576
FileWrite, 577
FileWriteEx, 579
GetFileOpenName, 671
GetFileSaveName, 675
GetFilesCount, 677
GetFilesList, 678

FileClose (PowerScript function), 560
FileCopy (PowerScript function), 561
FileDelete (PowerScript function), 562
FileEncoding (PowerScript function), 562
FileExists (PowerScript event), 248
FileExists (PowerScript function), 564
FileLength (PowerScript function), 564
FileLength64 (PowerScript function), 566
FileMessage (PowerScript event), 249
FileMove (PowerScript function), 567
FileOpen (PowerScript function), 567
FileRead (PowerScript function), 571
FileReadEx (PowerScript function), 573
files

importing data from, 866
linking, 1017
security and sharing violation, 566

FileSeek (PowerScript function), 575
FileSeek64 (PowerScript function), 576
FileWrite (PowerScript function), 577
FileWriteEx (PowerScript function), 579
Fill (PowerScript function), 581
FillA (PowerScript function), 581
FillW (PowerScript function), 582
find

event, 105
function, 104

Find (PowerScript function), 582
FindCategory (PowerScript function), 584
FindClassDefinition (PowerScript function),
585
FindFunctionDefinition (PowerScript
function), 586
FindItem (PowerScript function), 587

FindMatchingFunction (PowerScript
function), 593
FindNext (PowerScript function), 594
FindSeries (PowerScript function), 595
FindTypeDefinition (PowerScript function),
596
FOR...NEXT (PowerScript statement), 135
FromAnsi (PowerScript function), 598
FromUnicode (PowerScript function), 599
function

find, 104
overload and override, 112
return value, 116

function and event
call in an object's ancestor, 120
find and execute, 104
overload; override; and extend, 112
pass arguments to, 114
pass arrays, 115
pass objects, 114
pass structures, 115
syntax for calling, 117
trigger versus post, 105

G
GarbageCollect (PowerScript function), 599
GarbageCollectGetTimeLimit (PowerScript
function), 600
GarbageCollectSetTimeLimit (PowerScript
function), 600
Gesture (PowerScript event), 250
GetAccessToken (PowerScript function), 601
GetActiveCategory (PowerScript function),
602
GetActiveSheet (PowerScript function), 603
GetAlignment (PowerScript function), 604
GetApplication (PowerScript function), 605
GetApplicationButton (PowerScript
function), 605
GetArgElement (PowerScript function), 606
GetAutomationNativePointer (PowerScript
function), 607
GetBestHeight (PowerScript function), 608
GetBody (PowerScript function), 609
GetBoxPictureList (PowerScript function),
612
GetByte (PowerScript function), 613
GetByteArray (PowerScript function), 614

Index

Page 1585

GetCategory (PowerScript function), 614
GetCategoryByIndex (PowerScript function),
615
GetCategoryCount (PowerScript function),
616
GetCategoryIndex (PowerScript function),
617
GetCheckBox (PowerScript function), 620
GetChildCount (PowerScript function), 621
GetChildItem (PowerScript function), 623
GetChildItemByIndex (PowerScript
function), 625
GetChildItemCount (PowerScript function),
626
GetChildKey (PowerScript function), 627
GetChildrenList (PowerScript function), 629
GetColumn (PowerScript function), 630
GetComboBox (PowerScript function), 631
GetCommandDDE (PowerScript function),
632
GetCommandDDEOrigin (PowerScript
function), 633
GetCommandString (PowerScript function),
634
GetCompanyName (PowerScript function),
635
GetContextKeywords (PowerScript
function), 636
GetContextService (PowerScript function),
637
GetCurrentDirectory (PowerScript function),
641
GetData (PowerScript function), 641
GetDataDDE (PowerScript function), 646
GetDataDDEOrigin (PowerScript function),
646
GetDataLabelling (PowerScript function),
647
GetDataPieExplode (PowerScript function),
649
GetDataStyle (PowerScript function), 650
GetDataTransparency (PowerScript
function), 655
GetDataValue (PowerScript function), 656
GetDateLimits (PowerScript function), 658
GetDbmlsyncPath (PowerScript function),
659

GetDisplayRange (PowerScript function),
660
GetDotNetCoreVersion (PowerScript
function), 661
GetDynamicDate (PowerScript function),
662
GetDynamicDateTime (PowerScript
function), 664
GetDynamicDecimal (PowerScript function),
665
GetDynamicNumber (PowerScript function),
666
GetDynamicString (PowerScript function),
667
GetDynamicTime (PowerScript function),
668
GetEnvironment (PowerScript function), 669
GetExpiresIn (PowerScript function), 670
GetFileOpenName (PowerScript function),
671
GetFileSaveName (PowerScript function),
675
GetFilesCount (PowerScript function), 677
GetFilesList (PowerScript function), 678
GetFirstSheet (PowerScript function), 679
GetFixesVersion (PowerScript function), 680
GetFocus (PowerScript event), 252
GetFocus (PowerScript function), 681
GetFolder (PowerScript function), 682
GetGlobalProperty (PowerScript function),
684
GetGroup (PowerScript function), 683
GetHeader (PowerScript function), 685
GetHeaders (PowerScript function), 689
GetHostObject (PowerScript function), 692
GetInstalledRuntimes (PowerScript
function), 693
GetItem (PowerScript function), 693
GetItemArray (PowerScript function), 699
GetItemArrayJSONString (PowerScript
function), 703
GetItemAtPointer (PowerScript function),
707
GetItemBlob (PowerScript function), 707
GetItemBoolean (PowerScript function), 711
GetItemByPath (PowerScript function), 717
GetItemByTag (PowerScript function), 715
GetItemCount (PowerScript function), 719

Index

Page 1586

GetItemDate (PowerScript function), 720
GetItemDateTime (PowerScript function),
724
GetItemNumber (PowerScript function), 728
GetItemObject (PowerScript function), 731
GetItemObjectJSONString (PowerScript
function), 734
GetItemParent (PowerScript function), 738
GetItemString (PowerScript function), 739
GetItemTime (PowerScript function), 743
GetItemType (PowerScript function), 747
GetJsonBlob (PowerScript function), 752
GetJsonString (PowerScript function), 753
GetJWTToken (PowerScript function), 754
GetKey (PowerScript function), 756
GetLargeButton (PowerScript function), 757
GetLastReturn (PowerScript function), 758
GetLibraryList (PowerScript function), 759
GetMajorVersion (PowerScript function),
760
GetMasterItem (PowerScript function), 761
GetMasterItemCount (PowerScript function),
763
GetMenu (PowerScript function), 764
GetMenuByButtonHandle (PowerScript
function), 765
GetMessage (PowerScript function), 767
GetMinorVersion (PowerScript function),
768
GetName (PowerScript function), 769
GetNativePointer (PowerScript function),
770
GetNextSheet (PowerScript function), 771
GetNumberType (PowerScript function), 772
GetOAuthToken (PowerScript function), 776
GetObjectRevisionFromRegistry
(PowerScript function), 777
GetOrigin (PowerScript function), 778
GetPanel (PowerScript function), 779
GetParagraphSetting (PowerScript function),
780
GetParent (PowerScript function), 781
GetPathByItem (PowerScript function), 782
GetRecentItem (PowerScript function), 785
GetRecentItemCount (PowerScript function),
786
GetRecentTitle (PowerScript function), 787
GetRecordSet (PowerScript function), 789

GetRefreshToken (PowerScript function),
790
GetRemote (PowerScript function), 791
GetRequestHeader (PowerScript function),
794
GetRequestHeaders (PowerScript function),
794
GetResponseBody (PowerScript function),
795
GetResponseHeader (PowerScript function),
797
GetResponseHeaders (PowerScript function),
797
GetResponseStatusCode (PowerScript
function), 798
GetResponseStatusText (PowerScript
function), 799
GetRootItem (PowerScript function), 800
GetSelectedDate (PowerScript function), 801
GetSelectedRange (PowerScript function),
802
GetSeriesLabelling (PowerScript function),
803
GetSeriesStyle (PowerScript function), 804
GetSeriesTransparency (PowerScript
function), 810
GetShortName (PowerScript function), 811
GetSmallButton (PowerScript function), 812
GetSource (PowerScript function), 813
GetSpacing (PowerScript function), 814
GetStatusCode (PowerScript function), 815
GetStatusText (PowerScript function), 817
GetSyncRegistryProperties (PowerScript
function), 820
GetTabButton (PowerScript function), 821
GetTabButtonByIndex (PowerScript
function), 822
GetTabButtonCount (PowerScript function),
823
GetText (PowerScript function), 824
GetTextColor (PowerScript function), 825
GetTextStyle (PowerScript function), 826
GetTheme (PowerScript function), 827
GetToday (PowerScript function), 827
GetTokenError (PowerScript function), 828
GetTokenType (PowerScript function), 829
GetToolbar (PowerScript function), 830
GetToolbarPos (PowerScript function), 832

Index

Page 1587

GetTransactionName (PowerScript function),
834
GetURL (PowerScript function), 835
GetValue (PowerScript function), 837
GetValueBlob (PowerScript function), 839
GetValueBoolean (PowerScript function),
840
GetValueDate (PowerScript function), 841
GetValueDateTime (PowerScript function),
842
GetValueNumber (PowerScript function),
844
GetValueString (PowerScript function), 845
GetValueTime (PowerScript function), 846
GetValueToDataWindow (PowerScript
function), 847
GetVersionName (PowerScript function),
851
GoBack (PowerScript function), 852
GoForward (PowerScript function), 853
GOTO (PowerScript statement), 137

H
HALT (PowerScript statement), 138
Handle (PowerScript function), 854
Help (PowerScript event), 253
HexDecode (PowerScript function), 855
HexEncode (PowerScript function), 856
Hide (PowerScript event), 254
Hide (PowerScript function), 857
HMAC (PowerScript function), 859
HotLinkAlarm (PowerScript event), 255
Hour (PowerScript function), 860
HyperLinkToURL (PowerScript function),
861

I
identifier names, 34
Idle (PowerScript event), 255
Idle (PowerScript function), 861
IF...THEN (PowerScript statement), 139
ImpersonateClient (PowerScript function),
863
ImportClipboard (PowerScript function), 864
ImportFile (PowerScript function), 866
ImportFromJSONFile (PowerScript
function), 878
ImportFromXMLFile (PowerScript
function), 879

ImportJSON (PowerScript function), 876
ImportString (PowerScript function), 872
ImportXML (PowerScript function), 877
IncomingCallList (PowerScript function),
880
Init (PowerScript function), 882
InputFieldChangeData (PowerScript
function), 884
InputFieldCurrentName (PowerScript
function), 885
InputFieldDeleteCurrent (PowerScript
function), 886
InputFieldGetData (PowerScript function),
887
InputFieldInsert (PowerScript function), 888
InputFieldLocate (PowerScript function),
888
InputFieldSelected (PowerScript event), 256
INSERT (SQL statement), 155
InsertCategory (PowerScript function), 890
InsertCategoryFirst (PowerScript function),
893
InsertCategoryLast (PowerScript function),
894
InsertCheckBox (PowerScript function), 895
InsertCheckBoxFirst (PowerScript function),
897
InsertCheckBoxLast (PowerScript function),
898
InsertClass (PowerScript function), 900
InsertColumn (PowerScript function), 901
InsertComboBox (PowerScript function),
901
InsertComboBoxFirst (PowerScript
function), 904
InsertComboBoxLast (PowerScript
function), 905
InsertData (PowerScript function), 907
InsertDocument (PowerScript function), 909
InsertFile (PowerScript function), 911
InsertGroup (PowerScript function), 912
InsertGroupFirst (PowerScript function), 913
InsertGroupLast (PowerScript function), 914
InsertItem (PowerScript event), 257
InsertItem (PowerScript function), 915
InsertItemFirst (PowerScript function), 923
InsertItemLast (PowerScript function), 927
InsertItemSort (PowerScript function), 932

Index

Page 1588

InsertLargeButton (PowerScript function),
934
InsertLargeButtonFirst (PowerScript
function), 936
InsertLargeButtonLast (PowerScript
function), 937
InsertMasterItem (PowerScript function),
939
InsertMasterItemFirst (PowerScript
function), 941
InsertMasterItemLast (PowerScript function),
944
InsertObject (PowerScript function), 946
InsertPanel (PowerScript function), 946
InsertPanelFirst (PowerScript function), 948
InsertPanelLast (PowerScript function), 949
InsertPicture (PowerScript function), 950
InsertRecentItem (PowerScript function),
951
InsertRecentItemFirst (PowerScript
function), 953
InsertRecentItemLast (PowerScript function),
954
InsertSeries (PowerScript function), 956
InsertSmallButton (PowerScript function),
957
InsertSmallButtonFirst (PowerScript
function), 959
InsertSmallButtonLast (PowerScript
function), 961
InsertTabButton (PowerScript function), 962
InsertTabButtonFirst (PowerScript function),
964
InsertTabButtonLast (PowerScript function),
966
Int (PowerScript function), 967
Integer (PowerScript function), 968
InternetData (PowerScript function), 969
IntHigh (PowerScript function), 970
IntLow (PowerScript function), 971
InvokePBFunction (PowerScript function),
971
IsAlive (PowerScript function), 974
IsAllArabic (PowerScript function), 975
IsAllHebrew (PowerScript function), 976
IsAnyArabic (PowerScript function), 976
IsAnyHebrew (PowerScript function), 977
IsArabic (PowerScript function), 978

IsArabicAndNumbers (PowerScript
function), 979
IsCallerInRole (PowerScript function), 979
IsDate (PowerScript function), 981
IsHebrew (PowerScript function), 982
IsHebrewAndNumbers (PowerScript
function), 983
IsImpersonating (PowerScript function), 983
IsInTransaction (PowerScript function), 984
IsMinimized (PowerScript function), 986
IsNull (PowerScript function), 986
IsNumber (PowerScript function), 987
IsPBApp (PowerScript function), 988
IsPowerClientApp (PowerScript function),
989
IsPreview (PowerScript function), 989
IsSecurityEnabled (PowerScript function),
990
IsTime (PowerScript function), 991
IsValid (PowerScript function), 993
ItemActivate (PowerScript event), 257
ItemChanged (PowerScript event), 259
ItemChanging (PowerScript event), 259
ItemCollapsed (PowerScript event), 260
ItemCollapsing (PowerScript event), 261
ItemExpanded (PowerScript event), 262
ItemExpanding (PowerScript event), 263
ItemPopulate (PowerScript event), 264
ItemUnselected (PowerScript event), 265

K
Key (PowerScript event), 265
KeyCount (PowerScript function), 994
KeyDown (PowerScript function), 995

L
labels, 35
LastPos (PowerScript function), 998
Left (PowerScript function), 999
LeftA (PowerScript function), 1000
LeftTrim (PowerScript function), 1001
LeftTrimW (PowerScript function), 1002
LeftW (PowerScript function), 1001
Len (PowerScript function), 1003
LenA (PowerScript function), 1004
Length (PowerScript function), 1005
LenW (PowerScript function), 1005
LibraryCreate (PowerScript function), 1006
LibraryDelete (PowerScript function), 1007

Index

Page 1589

LibraryDirectory (PowerScript function),
1008
LibraryDirectoryEx (PowerScript function),
1009
LibraryExport (PowerScript function), 1011
LibraryImport (PowerScript function), 1012
LineCount (PowerScript function), 1014
LineDown (PowerScript event), 267
LineLeft (PowerScript event), 268
LineLength (PowerScript function), 1015
LineList (PowerScript function), 1016
LineRight (PowerScript event), 269
LineUp (PowerScript event), 270
LinkTo (PowerScript function), 1017
LoadDockingState (PowerScript function),
1018
LoadFile (PowerScript function), 1018
LoadInk (PowerScript function), 1022
LoadPicture (PowerScript function), 1023
LoadString (PowerScript function), 1020
LoadWithDotNetCore (PowerScript
function), 1024
LoadWithDotNetFramework (PowerScript
function), 1025
Log (PowerScript function), 1027
LogTen (PowerScript function), 1029
Long (PowerScript function), 1030
LongLong (PowerScript function), 1032
LoseFocus (PowerScript event), 271
Lower (PowerScript function), 1038
LowerBound (PowerScript function), 1039

M
mailAddress (PowerScript function), 1040
mailDeleteMessage (PowerScript function),
1041
mailGetMessages (PowerScript function),
1042
mailHandle (PowerScript function), 1044
mailLogoff (PowerScript function), 1044
mailLogon (PowerScript function), 1045
mailReadMessage (PowerScript function),
1047
mailRecipientDetails (PowerScript function),
1049
mailResolveRecipient (PowerScript
function), 1050

mailSaveMessage (PowerScript function),
1052
mailSend (PowerScript function), 1054
Match (PowerScript function), 1056
MatchW (PowerScript function), 1058
Max (PowerScript function), 1059
MD5 (PowerScript function), 1059
MemberDelete (PowerScript function), 1061
MemberExists (PowerScript function), 1062
MemberRename (PowerScript function),
1063
MessageBox (PowerScript function), 1064
Mid (PowerScript function), 1066
MidA (PowerScript function), 1068
MidW (PowerScript function), 1068
Min (PowerScript function), 1068
Minute (PowerScript function), 1069
Mod (PowerScript function), 1070
Modified (PowerScript event), 272
ModifyData (PowerScript function), 1070
Month (PowerScript function), 1073
MouseDown (PowerScript event), 275
MouseMove (PowerScript event), 277
MouseUp (PowerScript event), 280
Move (PowerScript function), 1073
Moved (PowerScript event), 282
MoveTab (PowerScript function), 1075

N
Navigate (PowerScript function), 1077
NavigationError (PowerScript event), 283
NavigationProgressIndex (PowerScript
event), 284
NavigationStart (PowerScript event), 285
NavigationStateChanged (PowerScript
event), 286
NextActivity (PowerScript function), 1078
Notify (PowerScript event), 287
Now (PowerScript function), 1079
NULL values, 37
numeric data type

in PowerBuilder, 90

O
object

about, 94
assignment, 100

ObjectAtPointer (PowerScript function),
1080

Index

Page 1590

objects, 93
OffsetPos (PowerScript function), 1082
Open (PowerScript event), 287
Open (PowerScript function), 1082
OPEN Cursor (SQL statement), 156
OpenChannel (PowerScript function), 1096
OpenSheet (PowerScript function), 1098
OpenSheetAsDocument (PowerScript
function), 1100
OpenSheetDocked (PowerScript function),
1101
OpenSheetFromDockingState (PowerScript
function), 1102
OpenSheetInTabGroup (PowerScript
function), 1103
OpenSheetWithParm (PowerScript function),
1103
OpenSheetWithParmAsDocument
(PowerScript function), 1106
OpenSheetWithParmDocked (PowerScript
function), 1108
OpenSheetWithParmFromDockingState
(PowerScript function), 1109
OpenSheetWithParmInTabGroup
(PowerScript function), 1111
OpenTab (PowerScript function), 1112
OpenTabWithParm (PowerScript function),
1116
OpenUserObject (PowerScript function),
1120
OpenUserObjectWithParm (PowerScript
function), 1123
OpenWithParm (PowerScript function), 1127
operator

arithmetic operator in PowerBuilder, 85
concatenation operator in PowerBuilder,
88
in PowerBuilder, 85
relational operator in PowerBuilder, 87

operator precedence
in PowerBuilder expressions, 89

Other (PowerScript event), 291
OutgoingCallList (PowerScript function),
1131
overload function and event, 112
override function and event, 112

P
PageCount (PowerScript function), 1133
PageCreated (PowerScript function), 1133
PageDown (PowerScript event), 291
PageLeft (PowerScript event), 292
PageRight (PowerScript event), 293
PageUp (PowerScript event), 294
parent pronoun, 40
ParentWindow (PowerScript function), 1134
pass arguments to function and event, 114
pass arrays

to function and event, 115
pass objects

to function and event, 114
pass structures

to function and event, 115
Paste (PowerScript function), 1135
PasteLink (PowerScript function), 1137
PasteRTF (PowerScript function), 1138
PasteSpecial (PowerScript function), 1139
PauseDownload (PowerScript function),
1140
PBAddCookie (PowerScript function), 1141
PBGetCookies (PowerScript function), 1142
PBGetMenuString (PowerScript function),
1142
PdfPrintFinished (PowerScript event), 299
Pi (PowerScript function), 1143
PictureSelected (PowerScript event), 295
PipeEnd (PowerScript event), 296
PipeMeter (PowerScript event), 297
PipeStart (PowerScript event), 298
PixelsToUnits (PowerScript function), 1144
Play (PowerScript function), 1145
PointerX (PowerScript function), 1146
PointerY (PowerScript function), 1147
PopMenu (PowerScript function), 1148
PopulateError (PowerScript function), 1149
Pos (PowerScript function), 1150
PosA (PowerScript function), 1151
Position (PowerScript function), 1152
Post (PowerScript function), 1157
post function and event, 105
PostData (PowerScript function), 1158
PostDataEnd (PowerScript function), 1159
PostDataStart (PowerScript function), 1160
PostEvent (PowerScript function), 1161
PostURL (PowerScript function), 1164

Index

Page 1591

PosW (PowerScript function), 1152
PowerBuilder expression

data type, 90
Preview (PowerScript function), 1166
Print (PowerScript function), 1167
PrintAsPDF (PowerScript function), 1173
PrintBitmap (PowerScript function), 1174
PrintCancel (PowerScript function), 1175
PrintClose (PowerScript function), 1176
PrintDataWindow (PowerScript function),
1177
PrintDefineFont (PowerScript function),
1178
PrintEx (PowerScript function), 1180
PrintFooter (PowerScript event), 298
PrintGetPrinter (PowerScript function), 1181
PrintGetPrinters (PowerScript function),
1181
PrintHeader (PowerScript event), 299
PrintLine (PowerScript function), 1182
PrintOpen (PowerScript function), 1183
PrintOval (PowerScript function), 1185
PrintPage (PowerScript function), 1186
PrintRect (PowerScript function), 1187
PrintRoundRect (PowerScript function),
1188
PrintScreen (PowerScript function), 1190
PrintSetFont (PowerScript function), 1192
PrintSetPrinter (PowerScript function), 1193
PrintSetSpacing (PowerScript function),
1194
PrintSetup (PowerScript function), 1194
PrintSetupPrinter (PowerScript function),
1195
PrintText (PowerScript function), 1196
PrintWidth (PowerScript function), 1197
PrintX (PowerScript function), 1198
PrintY (PowerScript function), 1199
ProfileInt (PowerScript function), 1199
ProfileString (PowerScript function), 1201
ProgressIndex (PowerScript event), 300
pronouns

parent pronouns, 40
super pronouns, 43
this pronouns, 42

PropertyChanged (PowerScript event), 301
PropertyRequestEdit (PowerScript event),
302

R
Rand (PowerScript function), 1202
Randomize (PowerScript function), 1203
RButtonDown (PowerScript event), 303
RButtonUp (PowerScript event), 305
Read (PowerScript function), 1204
ReadData (PowerScript function), 1206
Real (PowerScript function), 1208
RecognitionResult (PowerScript event), 306
RecognizeText (PowerScript function), 1209
Refresh (PowerScript function), 1210
RegisterEvent (PowerScript function), 1211
RegistryDelete (PowerScript function), 1212
RegistryGet (PowerScript function), 1213
RegistryKeys (PowerScript function), 1215
RegistrySet (PowerScript function), 1216
RegistryValues (PowerScript function), 1218
relational operator

in PowerBuilder, 87
RelativeDate (PowerScript function), 1219
RelativeTime (PowerScript function), 1219
ReleaseAutomationNativePointer
(PowerScript function), 1220
ReleaseNativePointer (PowerScript
function), 1221
RemoteExec (PowerScript event), 306
RemoteHotLinkStart (PowerScript event),
307
RemoteHotLinkStop (PowerScript event),
307
RemoteRequest (PowerScript event), 308
RemoteSend (PowerScript event), 309
Remove (PowerScript function), 1222
RemoveApplicationButton (PowerScript
function), 1223
RemoveDirectory (PowerScript function),
1223
Rename (PowerScript event), 309
Repair (PowerScript function), 1225
Replace (PowerScript function), 1226
ReplaceA (PowerScript function), 1228
ReplaceText (PowerScript function), 1229
ReplaceW (PowerScript function), 1230
RequestResource (PowerScript function),
1224
reserved words, 39
Reset (PowerScript function), 1230

Index

Page 1592

ResetArgElements (PowerScript function),
1233
ResetDataColors (PowerScript function),
1234
ResetInk (PowerScript function), 1235
ResetPicture (PowerScript function), 1235
Resize (PowerScript event), 310
Resize (PowerScript function), 1236
ResourceRedirect (PowerScript event), 311
RespondRemote (PowerScript function),
1237
Restart (PowerScript function), 1238
ResumeDownload (PowerScript function),
1239
ResumeTransaction (PowerScript function),
1240
Retrieve (PowerScript function), 1241
RetrieveOne (PowerScript function), 1248
RETURN (PowerScript statement), 140
return value

cascaded calls and return value, 117
event, 116
function, 116

Reverse (PowerScript function), 1250
RevertToSelf (PowerScript function), 1251
RGB (PowerScript function), 1252
Right (PowerScript function), 1253
RightA (PowerScript function), 1254
RightClicked (PowerScript event), 312
RightDoubleClicked (PowerScript event),
313
RightTrim (PowerScript function), 1255
RightTrimW (PowerScript function), 1256
RightW (PowerScript function), 1255
ROLLBACK (SQL statement), 157
Round (PowerScript function), 1259
RoutineList (PowerScript function), 1260
Run (PowerScript function), 1261

S
Save (PowerScript event), 315
Save (PowerScript function), 1262
SaveAs (PowerScript function), 1265
SaveDockingState (PowerScript function),
1273
SaveDocument (PowerScript function), 1273
SaveInk (PowerScript function), 1275
SaveObject (PowerScript event), 316

SaveToFile (PowerScript function), 1277
Scroll (PowerScript function), 1278
ScrollNextPage (PowerScript function), 1279
ScrollNextRow (PowerScript function), 1280
ScrollPriorPage (PowerScript function), 1281
ScrollPriorRow (PowerScript function), 1282
ScrollToRow (PowerScript function), 1283
Second (PowerScript function), 1284
SecondsAfter (PowerScript function), 1285
Seek (PowerScript function), 1286
SELECT (SQL statement), 158
SELECTBLOB (SQL statement), 159
Selected (PowerScript event), 317
SelectedColumn (PowerScript function),
1288
SelectedIndex (PowerScript function), 1289
SelectedItem (PowerScript function), 1290
SelectedLength (PowerScript function), 1291
SelectedLine (PowerScript function), 1292
SelectedPage (PowerScript function), 1293
SelectedStart (PowerScript function), 1294
SelectedText (PowerScript function), 1295
SelectionChanged (PowerScript event), 321
SelectionChanging (PowerScript event), 325
SelectionRange (PowerScript function), 1296
SelectItem (PowerScript function), 1297
SelectObject (PowerScript function), 1301
SelectTab (PowerScript function), 1302
SelectText (PowerScript function), 1303
SelectTextAll (PowerScript function), 1306
SelectTextLine (PowerScript function), 1307
SelectTextWord (PowerScript function),
1308
Send (PowerScript function), 1310
SendDeleteRequest (PowerScript function),
1312
SendGetRequest (PowerScript function),
1313
SendPatchRequest (PowerScript function),
1315
SendPostRequest (PowerScript function),
1317
SendPutRequest (PowerScript function),
1319
SendRequest (PowerScript function), 1321
SeriesCount (PowerScript function), 1324
SeriesName (PowerScript function), 1325
SetAbort (PowerScript function), 1326

Index

Page 1593

SetAccessToken (PowerScript function),
1328
SetActiveCategory (PowerScript function),
1329
SetActiveCategoryByIndex (PowerScript
function), 1330
SetAlignment (PowerScript function), 1331
SetApplicationButton (PowerScript
function), 1332
SetArgElement (PowerScript function), 1333
SetAutomationLocale (PowerScript
function), 1334
SetAutomationPointer (PowerScript
function), 1335
SetAutomationTimeout (PowerScript
function), 1336
SetBody (PowerScript function), 1338
SetBoldDate (PowerScript function), 1339
SetBoxPictureList (PowerScript function),
1340
SetByte (PowerScript function), 1341
SetCategory (PowerScript function), 1342
SetCheckBox (PowerScript function), 1343
SetColumn (PowerScript function), 1344
SetComboBox (PowerScript function), 1345
SetComplete (PowerScript function), 1346
SetData (PowerScript function), 1349
SetDataDDE (PowerScript function), 1350
SetDataLabelling (PowerScript function),
1352
SetDataPieExplode (PowerScript function),
1353
SetDataStyle (PowerScript function), 1354
SetDataTransparency (PowerScript function),
1360
SetDateLimits (PowerScript function), 1361
SetDropHighlight (PowerScript function),
1362
SetDynamicParm (PowerScript function),
1363
SetFirstVisible (PowerScript function), 1364
SetFocus (PowerScript function), 1365
SetGlobalProperty (PowerScript function),
1366
SetGroup (PowerScript function), 1365
SetHeader (PowerScript function), 1368
SetHeaders (PowerScript function), 1370
SetItem (PowerScript function), 1371

SetJWTToken (PowerScript function), 1378
SetLargeButton (PowerScript function), 1380
SetLevelPictures (PowerScript function),
1381
SetLibraryList (PowerScript function), 1382
SetMask (PowerScript function), 1383
SetMasterItem (PowerScript function), 1385
SetMenu (PowerScript function), 1386
SetMessage (PowerScript function), 1388
SetMicroHelp (PowerScript function), 1389
SetMinimized (PowerScript function), 1390
SetNewMobiLinkPassword (PowerScript
function), 1390
SetNull (PowerScript function), 1391
SetOAuthToken (PowerScript function),
1392
SetOverlayPicture (PowerScript function),
1393
SetPanel (PowerScript function), 1395
SetParagraphSetting (PowerScript function),
1396
SetParm (PowerScript function), 1397
SetPicture (PowerScript function), 1398
SetPointer (PowerScript function), 1399
SetPosition (PowerScript function), 1401
SetProfileString (PowerScript function),
1403
SetRange (PowerScript function), 1405
SetRecentItem (PowerScript function), 1406
SetRecentTitle (PowerScript function), 1407
SetRecordSet (PowerScript function), 1408
SetRedraw (PowerScript function), 1410
SetRemote (PowerScript function), 1410
SetRequestHeader (PowerScript function),
1413
SetRequestHeaders (PowerScript function),
1414
SetResultSet (PowerScript function), 1415
SetSelectedDate (PowerScript function),
1416
SetSelectedRange (PowerScript function),
1416
SetSeriesLabelling (PowerScript function),
1418
SetSeriesStyle (PowerScript function), 1419
SetSeriesTransparency (PowerScript
function), 1426
SetSheetID (PowerScript function), 1427

Index

Page 1594

SetSmallButton (PowerScript function), 1428
SetSpacing (PowerScript function), 1429
SetState (PowerScript function), 1430
SetSyncRegistryProperties (PowerScript
function), 1431
SetTabButton (PowerScript function), 1432
SetTextColor (PowerScript function), 1433
SetTextStyle (PowerScript function), 1434
SetToday (PowerScript function), 1437
SetToolbar (PowerScript function), 1438
SetToolbarPos (PowerScript function), 1439
SetTop (PowerScript function), 1443
SetTraceFileName (PowerScript function),
1444
SetTransPool (PowerScript function), 1445
SetValue (PowerScript function), 1445
SetValueBlob (PowerScript function), 1448
SetValueBoolean (PowerScript function),
1449
SetValueByDataWindow (PowerScript
function), 1451
SetValueDate (PowerScript function), 1454
SetValueDateTime (PowerScript function),
1455
SetValueNumber (PowerScript function),
1457
SetValueString (PowerScript function), 1458
SetValueTime (PowerScript function), 1459
SHA (PowerScript function), 1460
SharedObjectDirectory (PowerScript
function), 1462
SharedObjectGet (PowerScript function),
1463
SharedObjectRegister (PowerScript
function), 1465
SharedObjectUnregister (PowerScript
function), 1466
Show (PowerScript event), 327
Show (PowerScript function), 1467
ShowHeadFoot (PowerScript function), 1468
ShowHelp (PowerScript function), 1469
ShowPopupHelp (PowerScript function),
1470
Sign (PowerScript function), 1471
SignalError (PowerScript function), 1472
Sin (PowerScript function), 1473
Sleep (PowerScript function), 1473
Sort (PowerScript event), 328

Sort (PowerScript function), 1474
SortAll (PowerScript function), 1476
Space (PowerScript function), 1477
special ASCII characters, 36
SQL

use in scripts, 144
SQLPreview (PowerScript event), 331
Sqrt (PowerScript function), 1478
standard datatypes, 48
Start (PowerScript event), 332
Start (PowerScript function), 1478
StartHotLink (PowerScript function), 1485
StartServerDDE (PowerScript function),
1486
State (PowerScript function), 1487
statement continuation, 43
statement separation, 45
static calls, 107
StepIt (PowerScript function), 1488
Stop (PowerScript event), 333
Stop (PowerScript function), 1489
StopHotLink (PowerScript function), 1491
StopNavigation (PowerScript function), 1492
StopServerDDE (PowerScript function),
1492
String (PowerScript function), 1493
string and char data type

in PowerBuilder, 92
Stroke (PowerScript event), 334
structure

about, 93
assignment, 99

structures, 93
Submit (PowerScript function), 1498
super pronoun, 43
SuspendTransaction (PowerScript function),
1504
SymmetricDecrypt (PowerScript function),
1505
SymmetricEncrypt (PowerScript function),
1507
SymmetricGenerateKey (PowerScript
function), 1510
Synchronize (PowerScript function), 1512
SyncPreview (PowerScript event), 334
syntax for calling PowerBuilder function and
event, 117

Index

Page 1595

SyntaxFromSQL (PowerScript function),
1513
system object datatypes, 55
SystemError (PowerScript event), 335
SystemKey (PowerScript event), 336
SystemRoutine (PowerScript function), 1516

T
TabPostEvent (PowerScript function), 1517
TabTriggerEvent (PowerScript function),
1518
Tan (PowerScript function), 1519
Text (PowerScript function), 1520
TextLine (PowerScript function), 1521
This pronoun, 42
THROW (PowerScript statement), 141
THROWS (PowerScript statement), 142
Time (PowerScript function), 1522
Timer (PowerScript event), 337
Timer (PowerScript function), 1525
TitleTextChanged (PowerScript event), 338
ToAnsi (PowerScript function), 1526
Today (PowerScript function), 1527
ToolbarMoved (PowerScript event), 339
Top (PowerScript function), 1527
TotalColumns (PowerScript function), 1528
TotalItems (PowerScript function), 1529
TotalSelected (PowerScript function), 1530
ToUnicode (PowerScript function), 1531
TraceBegin (PowerScript function), 1532
TraceClose (PowerScript function), 1533
TraceDisableActivity (PowerScript function),
1534
TraceEnableActivity (PowerScript function),
1535
TraceEnd (PowerScript function), 1537
TraceError (PowerScript function), 1538
TraceOpen (PowerScript function), 1539
TraceUser (PowerScript function), 1541
trigger function and event, 105
TriggerEvent (PowerScript function), 1541
TriggerPBEvent (PowerScript function),
1543
Trim (PowerScript function), 1545
TrimW (PowerScript function), 1546
Truncate (PowerScript function), 1546
TRY...CATCH...FINALLY...END TRY
PowerScript statement, 143

TypeOf (PowerScript function), 1550

U
Uncheck (PowerScript function), 1551
Undo (PowerScript function), 1553
UnitsToPixels (PowerScript function), 1553
UnregisterEvent (PowerScript function),
1554
UPDATE (SQL statement), 160
UPDATE Where Current of Cursor (SQL
statement), 162
UPDATEBLOB (SQL statement), 160
UpdateLinksDialog (PowerScript function),
1555
UploadAck (PowerScript event), 340
Upper (PowerScript function), 1557
UpperBound (PowerScript function), 1557
UrlDecode (PowerScript function), 1559
UrlEncode (PowerScript function), 1560
UserString (PowerScript event), 341

V
ValueChanged (PowerScript event), 342
variable

declaration syntax, 60
declare, 56

variable-size arrays
size, 72

ViewChange (PowerScript event), 343

W
WaitForUploadAck (PowerScript event), 343
WarningMessage (PowerScript event), 344
WebBrowserGet (PowerScript function),
1561
WebBrowserSet (PowerScript function),
1562
Which (PowerScript function), 1564
white space, 45
WordCap (PowerScript function), 1565
WorkSpaceHeight (PowerScript function),
1566
WorkSpaceWidth (PowerScript function),
1567
WorkSpaceX (PowerScript function), 1568
WorkSpaceY (PowerScript function), 1569
Write (PowerScript function), 1570

Index

Page 1596

X
XMLParseFile (PowerScript function), 1571
XMLParseString (PowerScript function),
1573

Y
Year (PowerScript function), 1576
Yield (PowerScript function), 1577

Z
Zoom (PowerScript function), 1578

	PowerScript Reference
	Contents
	1 PowerScript Topics
	1.1 Language Basics
	1.1.1 Comments
	1.1.2 Identifier names
	1.1.3 Labels
	1.1.4 Special ASCII characters
	1.1.5 NULL values
	1.1.6 Reserved words
	1.1.7 Pronouns
	1.1.7.1 Parent pronoun
	1.1.7.2 This pronoun
	1.1.7.3 Super pronoun

	1.1.8 Statement continuation
	1.1.9 Statement separation
	1.1.10 White space
	1.1.11 Conditional compilation

	1.2 Datatypes
	1.2.1 Standard datatypes
	1.2.2 The Any datatype
	1.2.3 System object datatypes
	1.2.4 Enumerated datatypes

	1.3 Declarations
	1.3.1 Declaring variables
	1.3.1.1 Where to declare variables
	1.3.1.2 About using variables
	1.3.1.3 Syntax of a variable declaration
	1.3.1.3.1 Datatype of a variable
	1.3.1.3.2 Variable names
	1.3.1.3.3 Initial values for variables
	1.3.1.3.4 Access for instance variables
	1.3.1.3.5 Another format for access-right keywords

	1.3.2 Declaring constants
	1.3.3 Declaring arrays
	1.3.3.1 Values for array elements
	1.3.3.2 Size of variable-size arrays
	1.3.3.3 More about arrays
	1.3.3.3.1 Assigning one array to another
	1.3.3.3.2 Using arraylists to assign values to an array
	1.3.3.3.3 Errors that occur when addressing arrays

	1.3.4 Declaring external functions
	1.3.4.1 Datatypes for external function arguments
	1.3.4.2 Calling external functions
	1.3.4.3 Defining source for external functions

	1.3.5 Declaring DBMS stored procedures as remote procedure calls

	1.4 Operators and Expressions
	1.4.1 Operators in PowerBuilder
	1.4.1.1 Arithmetic operators in PowerBuilder
	1.4.1.2 Relational operators in PowerBuilder
	1.4.1.3 Concatenation operator in PowerBuilder

	1.4.2 Operator precedence in PowerBuilder expressions
	1.4.3 Datatype of PowerBuilder expressions
	1.4.3.1 Numeric datatypes in PowerBuilder
	1.4.3.1.1 Datatype promotion when evaluating numeric expressions
	1.4.3.1.2 Assignment and datatypes

	1.4.3.2 String and char datatypes in PowerBuilder

	1.5 Structures and Objects
	1.5.1 About structures
	1.5.2 About objects
	1.5.2.1 About user objects
	1.5.2.2 Instantiating objects
	1.5.2.3 Using ancestors and descendants
	1.5.2.4 Garbage collection
	1.5.2.5 User objects that behave like structures

	1.5.3 Assignment for objects and structures
	1.5.3.1 Assignment for structures
	1.5.3.2 Assignment for objects
	1.5.3.3 Assignment for autoinstantiated user objects

	1.6 Calling Functions and Events
	1.6.1 About functions and events
	1.6.2 Finding and executing functions and events
	1.6.2.1 Finding functions
	1.6.2.2 Finding events

	1.6.3 Triggering versus posting functions and events
	1.6.4 Static versus dynamic calls
	1.6.4.1 Static calls
	1.6.4.2 Dynamic calls
	1.6.4.2.1 Errors when calling functions and events dynamically

	1.6.5 Overloading, overriding, and extending functions and events
	1.6.5.1 Overloading and overriding functions
	1.6.5.1.1 Type promotion when matching arguments for overloaded functions

	1.6.5.2 Extending and overriding events

	1.6.6 Passing arguments to functions and events
	1.6.6.1 Passing objects
	1.6.6.2 Passing structures
	1.6.6.3 Passing arrays

	1.6.7 Using return values
	1.6.7.1 Functions
	1.6.7.2 Events
	1.6.7.3 Using cascaded calling and return values

	1.6.8 Syntax for calling PowerBuilder functions and events
	1.6.9 Calling functions and events in an object's ancestor

	2 Statements, Events, and Functions
	2.1 PowerScript Statements
	2.1.1 Assignment
	2.1.2 CALL
	2.1.3 CHOOSE CASE
	2.1.4 CONTINUE
	2.1.5 CREATE
	2.1.6 DESTROY
	2.1.7 DO...LOOP
	2.1.8 EXIT
	2.1.9 FOR...NEXT
	2.1.10 GOTO
	2.1.11 HALT
	2.1.12 IF...THEN
	2.1.13 RETURN
	2.1.14 THROW
	2.1.15 THROWS
	2.1.16 TRY...CATCH...FINALLY...END TRY

	2.2 SQL Statements
	2.2.1 Using SQL in scripts
	2.2.1.1 CLOSE Cursor
	2.2.1.2 CLOSE Procedure
	2.2.1.3 COMMIT
	2.2.1.4 CONNECT
	2.2.1.5 DECLARE Cursor
	2.2.1.6 DECLARE Procedure
	2.2.1.7 DELETE
	2.2.1.8 DELETE Where Current of Cursor
	2.2.1.9 DISCONNECT
	2.2.1.10 EXECUTE
	2.2.1.11 FETCH
	2.2.1.12 INSERT
	2.2.1.13 OPEN Cursor
	2.2.1.14 ROLLBACK
	2.2.1.15 SELECT
	2.2.1.16 SELECTBLOB
	2.2.1.17 UPDATE
	2.2.1.18 UPDATEBLOB
	2.2.1.19 UPDATE Where Current of Cursor

	2.2.2 Using dynamic SQL
	2.2.2.1 Dynamic SQL Format 1
	2.2.2.2 Dynamic SQL Format 2
	2.2.2.3 Dynamic SQL Format 3
	2.2.2.4 Dynamic SQL Format 4

	2.3 PowerScript Events
	2.3.1 About events
	2.3.2 Activate
	2.3.3 AddressChange
	2.3.4 BeginDownload
	2.3.5 BeginDrag
	2.3.5.1 Syntax 1: For ListView controls
	2.3.5.2 Syntax 2: For TreeView controls

	2.3.6 BeginLabelEdit
	2.3.6.1 Syntax 1: For ListView controls
	2.3.6.2 Syntax 2: For TreeView controls

	2.3.7 BeginLogScan
	2.3.8 BeginRightDrag
	2.3.8.1 Syntax 1: For ListView controls
	2.3.8.2 Syntax 2: For TreeView controls

	2.3.9 BeginSync
	2.3.10 BeginUpload
	2.3.11 CategoryCollapsed
	2.3.12 CategoryExpanded
	2.3.13 CategorySelectionChanged
	2.3.14 CategorySelectionChanging
	2.3.15 CertificateError
	2.3.16 Clicked
	2.3.16.1 Syntax 1: For menus
	2.3.16.2 Syntax 2: For ListView and Toolbar controls
	2.3.16.3 Syntax 3: For Tab controls
	2.3.16.4 Syntax 4: For TreeView controls
	2.3.16.5 Syntax 5: For windows and progress bars
	2.3.16.6 Syntax 6: For Ribbon controls
	2.3.16.7 Syntax 7: For other controls

	2.3.17 Close
	2.3.17.1 Syntax 1: For the application object
	2.3.17.2 Syntax 2: For OLE controls
	2.3.17.3 Syntax 3: For windows

	2.3.18 CloseQuery
	2.3.19 CloseUp
	2.3.20 ColumnClick
	2.3.21 ConnectMobiLink
	2.3.22 Constructor
	2.3.23 DataChange
	2.3.24 DateChanged
	2.3.25 DateSelected
	2.3.26 DBError
	2.3.27 DBNotification
	2.3.28 Deactivate
	2.3.29 DeleteAllItems
	2.3.30 DeleteItem
	2.3.30.1 Syntax 1: For ListView controls
	2.3.30.2 Syntax 2: For TreeView controls

	2.3.31 Destructor
	2.3.32 DisconnectMobiLink
	2.3.33 DisplayMessage
	2.3.34 DoubleClicked
	2.3.34.1 Syntax 1: For ListBox, PictureListBox, ListView, and Tab controls
	2.3.34.2 Syntax 2: For TreeView controls
	2.3.34.3 Syntax 3: For windows
	2.3.34.4 Syntax 4: For other controls

	2.3.35 DownloadingStart
	2.3.36 DownloadingStateChanged
	2.3.37 DragDrop
	2.3.37.1 Syntax 1: For ListBox, PictureListBox, ListView, and Tab controls
	2.3.37.2 Syntax 2: For TreeView controls
	2.3.37.3 Syntax 3: For windows and other controls

	2.3.38 DragEnter
	2.3.39 DragLeave
	2.3.40 DragWithin
	2.3.40.1 Syntax 1: For ListBox, PictureListBox, ListView, and Tab controls
	2.3.40.2 Syntax 2: For TreeView controls
	2.3.40.3 Syntax 3: For windows and other controls

	2.3.41 DropDown
	2.3.42 EndDownload
	2.3.43 EndLabelEdit
	2.3.43.1 Syntax 1: For ListView controls
	2.3.43.2 Syntax 2: For TreeView controls

	2.3.44 EndLogScan
	2.3.45 EndSync
	2.3.46 EndUpload
	2.3.47 Error
	2.3.47.1 Syntax 1: for Connection, DataWindow, DataStore, OLE, OLEObject, OLETxnObject
	2.3.47.2 Syntax 2: for CompressorObject objects
	2.3.47.3 Syntax 3: for ExtractorObject objects

	2.3.48 ErrorMessage
	2.3.49 EvaluateJavascriptFinished
	2.3.50 ExternalException
	2.3.51 FileExists
	2.3.52 FileMessage
	2.3.53 Finished
	2.3.54 Gesture
	2.3.55 GetFocus
	2.3.56 Help
	2.3.57 Hide
	2.3.58 HotLinkAlarm
	2.3.59 Idle
	2.3.60 InputFieldSelected
	2.3.61 InsertItem
	2.3.62 ItemActivate
	2.3.63 ItemChanged
	2.3.64 ItemChanging
	2.3.65 ItemCollapsed
	2.3.66 ItemCollapsing
	2.3.67 ItemExpanded
	2.3.68 ItemExpanding
	2.3.69 ItemPopulate
	2.3.70 ItemUnselected
	2.3.71 Key
	2.3.72 LineDown
	2.3.73 LineLeft
	2.3.74 LineRight
	2.3.75 LineUp
	2.3.76 LoseFocus
	2.3.77 Modified
	2.3.77.1 Syntax 1: For Ribbon controls
	2.3.77.2 Syntax 2: For all other controls

	2.3.78 MouseDown
	2.3.78.1 Syntax 1: For RichTextEdit controls
	2.3.78.2 Syntax 2: For windows

	2.3.79 MouseMove
	2.3.79.1 Syntax 1: For RichTextEdit controls
	2.3.79.2 Syntax 2: For windows

	2.3.80 MouseUp
	2.3.80.1 Syntax 1: For RichTextEdit controls
	2.3.80.2 Syntax 2: For windows

	2.3.81 Moved
	2.3.82 NavigationError
	2.3.83 NavigationProgressIndex
	2.3.84 NavigationStart
	2.3.85 NavigationStateChanged
	2.3.86 Notify
	2.3.87 Open
	2.3.87.1 Syntax 1: For the application object
	2.3.87.2 Syntax 2: For windows

	2.3.88 Other
	2.3.89 PageDown
	2.3.90 PageLeft
	2.3.91 PageRight
	2.3.92 PageUp
	2.3.93 PictureSelected
	2.3.94 PipeEnd
	2.3.95 PipeMeter
	2.3.96 PipeStart
	2.3.97 PrintFooter (obsolete)
	2.3.98 PrintHeader (obsolete)
	2.3.99 PdfPrintFinished
	2.3.100 ProcessingFile
	2.3.101 ProgressIndex
	2.3.102 PropertyChanged
	2.3.103 PropertyRequestEdit
	2.3.104 RButtonDown
	2.3.104.1 Syntax 1: For controls and windows, except RichTextEdit
	2.3.104.2 Syntax 2: For RichTextEdit controls

	2.3.105 RButtonUp
	2.3.106 RecognitionResult
	2.3.107 RemoteExec
	2.3.108 RemoteHotLinkStart
	2.3.109 RemoteHotLinkStop
	2.3.110 RemoteRequest
	2.3.111 RemoteSend
	2.3.112 Rename
	2.3.113 Resize
	2.3.114 ResourceRedirect
	2.3.115 RightClicked
	2.3.115.1 Syntax 1: For ListView and Tab controls
	2.3.115.2 Syntax 2: For TreeView controls

	2.3.116 RightDoubleClicked
	2.3.116.1 Syntax 1: For ListView and Tab controls
	2.3.116.2 Syntax 2: For TreeView controls

	2.3.117 Save
	2.3.118 SaveObject
	2.3.119 Selected
	2.3.119.1 Syntax 1: For Ribbon controls
	2.3.119.2 Syntax 2: for all other controls

	2.3.120 SelectionChanged
	2.3.120.1 Syntax 1: For Listboxes
	2.3.120.2 Syntax 2: For Tab controls
	2.3.120.3 Syntax 3: For TreeView controls
	2.3.120.4 Syntax 4: For Ribbon controls

	2.3.121 SelectionChanging
	2.3.121.1 Syntax 1: For Tab controls
	2.3.121.2 Syntax 2: For TreeView controls

	2.3.122 Show
	2.3.123 SizeCompleted
	2.3.124 Sort
	2.3.124.1 Syntax 1: For ListView controls
	2.3.124.2 Syntax 2: For TreeView controls

	2.3.125 SQLPreview
	2.3.126 Start
	2.3.126.1 Syntax 1: for Animation controls
	2.3.126.2 Syntax 2: for CompressorObject and ExtractorObject objects

	2.3.127 Stop
	2.3.128 Stroke
	2.3.129 SyncPreview
	2.3.130 SystemError
	2.3.131 SystemKey
	2.3.132 Timer
	2.3.133 TitleTextChanged
	2.3.134 ToolbarMoved
	2.3.135 UploadAck
	2.3.136 UserString
	2.3.137 ValueChanged
	2.3.138 ViewChange
	2.3.139 WaitForUploadAck
	2.3.140 WarningMessage

	2.4 PowerScript Functions
	2.4.1 Abs
	2.4.2 ACos
	2.4.3 AccessToken
	2.4.4 Activate
	2.4.5 AddCategory
	2.4.6 AddColumn
	2.4.7 AddData
	2.4.7.1 Syntax 1: For all graph types except scatter
	2.4.7.2 Syntax 2: For scatter graphs

	2.4.8 AddItem
	2.4.8.1 Syntax 1: For ListBox and DropDownListBox controls
	2.4.8.2 Syntax 2: For PictureListBox, DropDownPictureListBox, and RibbonComboBoxItem controls
	2.4.8.3 Syntax 3: For ListView controls
	2.4.8.4 Syntax 4: For ListView controls

	2.4.9 AddItemArray
	2.4.10 AddItemBlob
	2.4.11 AddItemBoolean
	2.4.12 AddItemDate
	2.4.13 AddItemDateTime
	2.4.14 AddItemNull
	2.4.15 AddItemNumber
	2.4.16 AddItemObject
	2.4.17 AddItemString
	2.4.18 AddItemTime
	2.4.19 AddLargePicture
	2.4.20 AddMasterSeparatorItem
	2.4.21 AddPicture
	2.4.22 AddSeparatorItem
	2.4.23 AddSeries
	2.4.24 AddSmallPicture
	2.4.25 AddStatePicture
	2.4.26 AddToLibraryList
	2.4.27 AppendParam
	2.4.28 ApplyTheme
	2.4.29 Arrange
	2.4.30 ArrangeSheets
	2.4.31 Asc
	2.4.32 AscA
	2.4.33 ASin
	2.4.34 AsymmetricDecrypt
	2.4.35 AsymmetricEncrypt
	2.4.36 AsymmetricGenerateKey
	2.4.37 AsymmetricSign
	2.4.38 AsymmetricVerifySign
	2.4.39 ATan
	2.4.40 Base32Decode
	2.4.41 Base32Encode
	2.4.42 Base64Decode
	2.4.43 Base64Encode
	2.4.44 Base64UrlDecode
	2.4.45 Base64UrlEncode
	2.4.46 Beep
	2.4.47 BeginTransaction (obsolete)
	2.4.48 Blob
	2.4.49 BlobEdit
	2.4.50 BlobMid
	2.4.51 BuildModel
	2.4.52 Byte
	2.4.53 Cancel
	2.4.53.1 Syntax 1: for Pipeline objects
	2.4.53.2 Syntax 2: for CompressorObject and ExtractorObject objects

	2.4.54 CancelDownload
	2.4.55 CancelSync
	2.4.56 CanUndo
	2.4.57 CategoryCount
	2.4.58 CategoryName
	2.4.59 Ceiling
	2.4.60 ChangeDirectory
	2.4.61 ChangeMenu
	2.4.62 Char
	2.4.63 CharA
	2.4.64 Check
	2.4.65 ChooseColor
	2.4.66 ClassList
	2.4.67 ClassName
	2.4.67.1 Syntax 1: For any object
	2.4.67.2 Syntax 2: For variables

	2.4.68 Clear
	2.4.68.1 Syntax 1: For selected text
	2.4.68.2 Syntax 2: For RichTextEdit controls
	2.4.68.3 Syntax 3: For JSONPackage objects

	2.4.69 ClearAll
	2.4.70 ClearBoldDates
	2.4.71 ClearHeaders
	2.4.71.1 Syntax 1: for TokenRequest objects
	2.4.71.2 Syntax 2: for OAuthRequest objects

	2.4.72 ClearParams
	2.4.73 ClearRecentItems
	2.4.74 ClearRequestHeaders
	2.4.75 Clipboard
	2.4.75.1 Syntax 1: For text
	2.4.75.2 Syntax 2: For bitmaps of graphs

	2.4.76 Close
	2.4.76.1 Syntax 1: For windows
	2.4.76.2 Syntax 2: For OLEStorage objects
	2.4.76.3 Syntax 3: For OLEStream objects
	2.4.76.4 Syntax 4: For trace files

	2.4.77 CloseChannel
	2.4.78 CloseTab
	2.4.79 CloseUserObject
	2.4.80 CloseWithReturn
	2.4.81 CollapseItem
	2.4.82 CommandParm
	2.4.83 CommitDocking
	2.4.84 CommitTransaction (obsolete)
	2.4.85 Compress
	2.4.86 ConnectToNewObject
	2.4.87 ConnectToNewRemoteObject
	2.4.88 ConnectToObject
	2.4.89 ConnectToRemoteObject
	2.4.90 ConnectToServer (obsolete)
	2.4.91 ContainsKey
	2.4.92 ContainsPath
	2.4.93 Copy
	2.4.94 CopyRTF
	2.4.95 Cos
	2.4.96 Cpu
	2.4.97 CreateDirectory
	2.4.98 CreateInstance
	2.4.98.1 Syntax 1: for TransactionServer objects
	2.4.98.2 Syntax 2: for DotNetAssembly objects

	2.4.99 CreateJsonArray
	2.4.100 CreateJsonObject
	2.4.101 CreatePage
	2.4.102 Cut
	2.4.103 DataCount
	2.4.104 DataSource
	2.4.105 Date
	2.4.105.1 Syntax 1: For DateTime data and blobs
	2.4.105.2 Syntax 2: For strings
	2.4.105.3 Syntax 3: For combining numbers into a date

	2.4.106 DateTime
	2.4.106.1 Syntax 1: For creating DateTime values
	2.4.106.2 Syntax 2: For extracting DateTime values from blobs
	2.4.106.3 Syntax 3: For extracting DateTime values from strings

	2.4.107 Day
	2.4.108 DayName
	2.4.109 DayNumber
	2.4.110 DaysAfter
	2.4.111 DBHandle
	2.4.112 DebugBreak
	2.4.113 Dec
	2.4.114 DeleteCategory
	2.4.114.1 Syntax 1: for Graph controls
	2.4.114.2 Syntax 2: for RibbonBar controls

	2.4.115 DeleteCheckBox
	2.4.116 DeleteColumn
	2.4.117 DeleteColumns
	2.4.118 DeleteComboBox
	2.4.119 DeleteData
	2.4.120 DeleteGroup
	2.4.121 DeleteItem
	2.4.121.1 Syntax 1: For ListBox, DropDownListBox, and RibbonComboBoxItem controls
	2.4.121.2 Syntax 2: For ListView controls
	2.4.121.3 Syntax 3: For TreeView controls
	2.4.121.4 Syntax 4: For RibbonMenu controls
	2.4.121.5 Syntax 5: For RibbonBar controls

	2.4.122 DeleteItems
	2.4.123 DeleteLargeButton
	2.4.124 DeleteLargePicture
	2.4.125 DeleteLargePictures
	2.4.126 DeleteMasterItem
	2.4.127 DeletePanel
	2.4.128 DeletePicture
	2.4.129 DeletePictures
	2.4.130 DeleteRecentItem
	2.4.131 DeleteSeries
	2.4.132 DeleteSmallButton
	2.4.133 DeleteSmallPicture
	2.4.134 DeleteSmallPictures
	2.4.135 DeleteStatePicture
	2.4.136 DeleteStatePictures
	2.4.137 DeleteTabButton
	2.4.138 DestroyModel
	2.4.139 DirectoryExists
	2.4.140 DirList
	2.4.141 DirSelect
	2.4.142 Disable
	2.4.143 DisableCommit
	2.4.144 DisconnectObject
	2.4.145 DisconnectServer
	2.4.146 Double
	2.4.147 DoVerb
	2.4.148 Drag
	2.4.149 DraggedObject (obsolete)
	2.4.150 Draw
	2.4.151 EditLabel
	2.4.151.1 Syntax 1: For editing a label in a ListView
	2.4.151.2 Syntax 2: For editing a label in a TreeView

	2.4.152 Enable
	2.4.153 EnableCommit
	2.4.154 EntryList
	2.4.155 EvaluateJavascriptAsync
	2.4.156 EvaluateJavascriptSync
	2.4.157 ExecRemote
	2.4.157.1 Syntax 1: For sending single commands
	2.4.157.2 Syntax 2: For commands over an opened channel

	2.4.158 Exp
	2.4.159 ExpandAll
	2.4.160 ExpandItem
	2.4.161 ExportJSON
	2.4.162 ExportXML
	2.4.163 ExportToJSONFile
	2.4.164 ExportToXMLFile
	2.4.165 Extract
	2.4.166 Fact
	2.4.167 FileClose
	2.4.168 FileCopy
	2.4.169 FileDelete
	2.4.170 FileEncoding
	2.4.171 FileExists
	2.4.172 FileLength
	2.4.173 FileLength64
	2.4.174 FileMove
	2.4.175 FileOpen
	2.4.176 FileRead
	2.4.177 FileReadEx
	2.4.178 FileSeek
	2.4.179 FileSeek64
	2.4.180 FileWrite
	2.4.181 FileWriteEx
	2.4.182 Fill
	2.4.183 FillA
	2.4.184 FillW (obsolete)
	2.4.185 Find
	2.4.186 FindCategory
	2.4.187 FindClassDefinition
	2.4.188 FindFunctionDefinition
	2.4.189 FindItem
	2.4.189.1 Syntax 1: For ListBox, DropDownListBox, and RibbonComboBoxItem controls
	2.4.189.2 Syntax 2: For ListView controls
	2.4.189.3 Syntax 3: For ListView controls
	2.4.189.4 Syntax 4: For TreeView controls

	2.4.190 FindMatchingFunction
	2.4.191 FindNext
	2.4.192 FindSeries
	2.4.193 FindTypeDefinition
	2.4.194 FromAnsi
	2.4.195 FromUnicode
	2.4.196 GarbageCollect
	2.4.197 GarbageCollectGetTimeLimit
	2.4.198 GarbageCollectSetTimeLimit
	2.4.199 GetAccessToken
	2.4.200 GetActiveCategory
	2.4.201 GetActiveSheet
	2.4.202 GetAlignment
	2.4.203 GetApplication
	2.4.204 GetApplicationButton
	2.4.205 GetArgElement
	2.4.206 GetAutomationNativePointer
	2.4.207 GetBestHeight
	2.4.208 GetBody
	2.4.208.1 Syntax 1: for TokenResponse objects
	2.4.208.2 Syntax 2: for OAuthRequest objects
	2.4.208.3 Syntax 3: for ResourceResponse objects

	2.4.209 GetBoxPictureList
	2.4.210 GetByte
	2.4.211 GetByteArray
	2.4.212 GetCategory
	2.4.213 GetCategoryByIndex
	2.4.214 GetCategoryCount
	2.4.215 GetCategoryIndex
	2.4.216 GetCertificateLabel (obsolete)
	2.4.217 GetCheckBox
	2.4.218 GetChildCount
	2.4.219 GetChildItem
	2.4.220 GetChildItemByIndex
	2.4.221 GetChildItemCount
	2.4.222 GetChildKey
	2.4.223 GetChildrenList
	2.4.224 GetColumn
	2.4.225 GetComboBox
	2.4.226 GetCommandDDE
	2.4.227 GetCommandDDEOrigin
	2.4.228 GetCommandString
	2.4.229 GetCompanyName
	2.4.230 GetContextKeywords
	2.4.231 GetContextService
	2.4.232 GetCredentialAttribute (obsolete)
	2.4.233 GetCurrentDirectory
	2.4.234 GetData
	2.4.234.1 Syntax 1: For data points in graphs
	2.4.234.2 Syntax 2: For EditMask controls
	2.4.234.3 Syntax 3: For data in an OLE server

	2.4.235 GetDataDDE
	2.4.236 GetDataDDEOrigin
	2.4.237 GetDataLabelling
	2.4.238 GetDataPieExplode
	2.4.239 GetDataStyle
	2.4.239.1 Syntax 1: For the colors of a data point
	2.4.239.2 Syntax 2: For the line style and width used by a data point
	2.4.239.3 Syntax 3: For the fill pattern or symbol of a data point

	2.4.240 GetDataTransparency
	2.4.241 GetDataValue
	2.4.242 GetDateLimits
	2.4.243 GetDbmlsyncPath
	2.4.244 GetDisplayRange
	2.4.245 GetDotNetCoreVersion
	2.4.246 GetDynamicDate
	2.4.247 GetDynamicDateTime
	2.4.248 GetDynamicDecimal
	2.4.249 GetDynamicNumber
	2.4.250 GetDynamicString
	2.4.251 GetDynamicTime
	2.4.252 GetEnvironment
	2.4.253 GetExpiresIn
	2.4.254 GetFileOpenName
	2.4.255 GetFileSaveName
	2.4.256 GetFilesCount
	2.4.257 GetFilesList
	2.4.258 GetFirstSheet
	2.4.259 GetFixesVersion
	2.4.260 GetFocus
	2.4.261 GetFolder
	2.4.262 GetGroup
	2.4.263 GetGlobalProperty (obsolete)
	2.4.264 GetHeader
	2.4.264.1 Syntax 1: for TokenRequest objects
	2.4.264.2 Syntax 2: for TokenResponse objects
	2.4.264.3 Syntax 3: for OAuthRequest objects
	2.4.264.4 Syntax 4: for ResourceResponse objects

	2.4.265 GetHeaders
	2.4.265.1 Syntax 1: for TokenRequest objects
	2.4.265.2 Syntax 2: for TokenResponse objects
	2.4.265.3 Syntax 3: for OAuthRequest objects
	2.4.265.4 Syntax 4: for ResourceResponse objects

	2.4.266 GetHostObject
	2.4.267 GetInstalledRuntimes
	2.4.268 GetItem
	2.4.268.1 Syntax 1: For ListView controls
	2.4.268.2 Syntax 2: For ListView controls
	2.4.268.3 Syntax 3: For TreeView controls
	2.4.268.4 Syntax 4: For RibbonMenu controls
	2.4.268.5 Syntax 5: For RibbonBar controls

	2.4.269 GetItemArray
	2.4.269.1 Syntax 1
	2.4.269.2 Syntax 2

	2.4.270 GetItemArrayJSONString
	2.4.270.1 Syntax 1
	2.4.270.2 Syntax 2
	2.4.270.3 Syntax 3

	2.4.271 GetItemAtPointer
	2.4.272 GetItemBlob
	2.4.272.1 Syntax 1
	2.4.272.2 Syntax 2
	2.4.272.3 Syntax 3

	2.4.273 GetItemBoolean
	2.4.273.1 Syntax 1
	2.4.273.2 Syntax 2
	2.4.273.3 Syntax 3

	2.4.274 GetItemByTag
	2.4.275 GetItemByPath
	2.4.276 GetItemCount
	2.4.277 GetItemDate
	2.4.277.1 Syntax 1
	2.4.277.2 Syntax 2
	2.4.277.3 Syntax 3

	2.4.278 GetItemDateTime
	2.4.278.1 Syntax 1
	2.4.278.2 Syntax 2
	2.4.278.3 Syntax 3

	2.4.279 GetItemNumber
	2.4.279.1 Syntax 1
	2.4.279.2 Syntax 2
	2.4.279.3 Syntax 3

	2.4.280 GetItemObject
	2.4.280.1 Syntax 1
	2.4.280.2 Syntax 2

	2.4.281 GetItemObjectJSONString
	2.4.281.1 Syntax 1
	2.4.281.2 Syntax 2
	2.4.281.3 Syntax 3

	2.4.282 GetItemParent
	2.4.283 GetItemString
	2.4.283.1 Syntax 1
	2.4.283.2 Syntax 2
	2.4.283.3 Syntax 3

	2.4.284 GetItemTime
	2.4.284.1 Syntax 1
	2.4.284.2 Syntax 2
	2.4.284.3 Syntax 3

	2.4.285 GetItemType
	2.4.286 GetJsonBlob
	2.4.287 GetJsonString
	2.4.288 GetJWTToken
	2.4.289 GetKey
	2.4.290 GetLargeButton
	2.4.291 GetLastReturn
	2.4.292 GetLibraryList
	2.4.293 GetMajorVersion
	2.4.294 GetMasterItem
	2.4.295 GetMasterItemCount
	2.4.296 GetMenu
	2.4.297 GetMenuByButtonHandle
	2.4.298 GetMessage
	2.4.299 GetMinorVersion
	2.4.300 GetName
	2.4.301 GetNativePointer
	2.4.302 GetNextSheet
	2.4.303 GetNumberType
	2.4.304 GetOAuthToken
	2.4.305 GetObjectRevisionFromRegistry
	2.4.306 GetOrigin
	2.4.307 GetPanel
	2.4.308 GetParagraphSetting
	2.4.309 GetParent
	2.4.310 GetPathByItem
	2.4.311 GetPin (obsolete)
	2.4.312 GetRecentItem
	2.4.313 GetRecentItemCount
	2.4.314 GetRecentTitle
	2.4.315 GetRecordSet
	2.4.316 GetRefreshToken
	2.4.317 GetRemote
	2.4.317.1 Syntax 1: For single DDE requests
	2.4.317.2 Syntax 2: For DDE requests via an open channel

	2.4.318 GetRequestHeader
	2.4.319 GetRequestHeaders
	2.4.320 GetResponseBody
	2.4.321 GetResponseHeader
	2.4.322 GetResponseHeaders
	2.4.323 GetResponseStatusCode
	2.4.324 GetResponseStatusText
	2.4.325 GetRootItem
	2.4.326 GetSelectedDate
	2.4.327 GetSelectedRange
	2.4.328 GetSeriesLabelling
	2.4.329 GetSeriesStyle
	2.4.329.1 Syntax 1: For the colors of a series
	2.4.329.2 Syntax 2: For the line style and width used by a series
	2.4.329.3 Syntax 3: For the fill pattern or symbol of a series
	2.4.329.4 Syntax 4: For determining whether a series is an overlay

	2.4.330 GetSeriesTransparency
	2.4.331 GetShortName
	2.4.332 GetSmallButton
	2.4.333 GetSource
	2.4.334 GetSpacing
	2.4.335 GetStatusCode
	2.4.335.1 Syntax 1: for TokenResponse objects
	2.4.335.2 Syntax 2: for ResourceResponse objects

	2.4.336 GetStatusText
	2.4.336.1 Syntax 1: for TokenResponse objects
	2.4.336.2 Syntax 2: for ResourceResponse objects

	2.4.337 GetStatus (obsolete)
	2.4.338 GetSyncRegistryProperties
	2.4.339 GetTabButton
	2.4.340 GetTabButtonByIndex
	2.4.341 GetTabButtonCount
	2.4.342 GetText
	2.4.343 GetTextColor
	2.4.344 GetTextStyle
	2.4.345 GetTheme
	2.4.346 GetToday
	2.4.347 GetTokenError
	2.4.348 GetTokenType
	2.4.349 GetToolbar
	2.4.350 GetToolbarPos
	2.4.350.1 Syntax 1: For docked toolbars
	2.4.350.2 Syntax 2: For floating toolbars

	2.4.351 GetTransactionName (obsolete)
	2.4.352 GetURL
	2.4.353 GetValue
	2.4.353.1 Syntax 1: for DatePicker control
	2.4.353.2 Syntax 2: for JSONPackage object

	2.4.354 GetValueBlob
	2.4.355 GetValueBoolean
	2.4.356 GetValueDate
	2.4.357 GetValueDateTime
	2.4.358 GetValueNumber
	2.4.359 GetValueString
	2.4.360 GetValueTime
	2.4.361 GetValueToDataWindow
	2.4.362 GetVersionName
	2.4.363 GoBack
	2.4.364 GoForward
	2.4.365 Handle
	2.4.366 HexDecode
	2.4.367 HexEncode
	2.4.368 Hide
	2.4.369 HMAC
	2.4.370 Hour
	2.4.371 HyperLinkToURL
	2.4.372 Idle
	2.4.373 ImpersonateClient
	2.4.374 ImportClipboard
	2.4.375 ImportFile
	2.4.375.1 Syntax 1: for Graph controls
	2.4.375.2 Syntax 2: for JSONGenerator objects

	2.4.376 ImportString
	2.4.376.1 Syntax 1: for Graph controls
	2.4.376.2 Syntax 2: for JSONGenerator objects

	2.4.377 ImportJSON
	2.4.378 ImportXML
	2.4.379 ImportFromJSONFile
	2.4.380 ImportFromXMLFile
	2.4.381 IncomingCallList
	2.4.382 Init (obsolete)
	2.4.383 InputFieldChangeData
	2.4.384 InputFieldCurrentName
	2.4.385 InputFieldDeleteCurrent
	2.4.386 InputFieldGetData
	2.4.387 InputFieldInsert
	2.4.388 InputFieldLocate
	2.4.389 InsertCategory
	2.4.389.1 Syntax 1: for Graph controls
	2.4.389.2 Syntax 2: for RibbonBar controls

	2.4.390 InsertCategoryFirst
	2.4.391 InsertCategoryLast
	2.4.392 InsertCheckBox
	2.4.393 InsertCheckBoxFirst
	2.4.394 InsertCheckBoxLast
	2.4.395 InsertClass
	2.4.396 InsertColumn
	2.4.397 InsertComboBox
	2.4.398 InsertComboBoxFirst
	2.4.399 InsertComboBoxLast
	2.4.400 InsertData
	2.4.401 InsertDocument
	2.4.402 InsertFile
	2.4.403 InsertGroup
	2.4.404 InsertGroupFirst
	2.4.405 InsertGroupLast
	2.4.406 InsertItem
	2.4.406.1 Syntax 1: For ListBox and DropDownListBox controls
	2.4.406.2 Syntax 2: For PictureListBox, DropDownPictureListBox, RibbonComboBoxItem controls
	2.4.406.3 Syntax 3: For ListView controls
	2.4.406.4 Syntax 4: For ListView controls
	2.4.406.5 Syntax 5: For TreeView controls
	2.4.406.6 Syntax 6: For TreeView controls
	2.4.406.7 Syntax 7: For RibbonMenu controls

	2.4.407 InsertItemFirst
	2.4.407.1 Syntax 1: For TreeView controls
	2.4.407.2 Syntax 2: For TreeView controls
	2.4.407.3 Syntax 3: For RibbonMenu controls

	2.4.408 InsertItemLast
	2.4.408.1 Syntax 1: For TreeView controls
	2.4.408.2 Syntax 2: For TreeView controls
	2.4.408.3 Syntax 3: For RibbonMenu controls

	2.4.409 InsertItemSort
	2.4.409.1 Syntax 1: For TreeView controls
	2.4.409.2 Syntax 2: For TreeView controls

	2.4.410 InsertLargeButton
	2.4.411 InsertLargeButtonFirst
	2.4.412 InsertLargeButtonLast
	2.4.413 InsertMasterItem
	2.4.414 InsertMasterItemFirst
	2.4.415 InsertMasterItemLast
	2.4.416 InsertObject
	2.4.417 InsertPanel
	2.4.418 InsertPanelFirst
	2.4.419 InsertPanelLast
	2.4.420 InsertPicture
	2.4.421 InsertRecentItem
	2.4.422 InsertRecentItemFirst
	2.4.423 InsertRecentItemLast
	2.4.424 InsertSeries
	2.4.425 InsertSmallButton
	2.4.426 InsertSmallButtonFirst
	2.4.427 InsertSmallButtonLast
	2.4.428 InsertTabButton
	2.4.429 InsertTabButtonFirst
	2.4.430 InsertTabButtonLast
	2.4.431 Int
	2.4.432 Integer
	2.4.433 InternetData
	2.4.434 IntHigh
	2.4.435 IntLow
	2.4.436 InvokePBFunction
	2.4.437 _Is_A (obsolete)
	2.4.438 IsAlive
	2.4.439 IsAllArabic
	2.4.440 IsAllHebrew
	2.4.441 IsAnyArabic
	2.4.442 IsAnyHebrew
	2.4.443 IsArabic
	2.4.444 IsArabicAndNumbers
	2.4.445 IsCallerInRole
	2.4.446 IsDate
	2.4.447 IsHebrew
	2.4.448 IsHebrewAndNumbers
	2.4.449 IsImpersonating
	2.4.450 IsInTransaction (obsolete)
	2.4.451 IsMinimized
	2.4.452 IsNull
	2.4.453 IsNumber
	2.4.454 IsPBApp
	2.4.455 IsPowerClientApp
	2.4.456 IsPreview
	2.4.457 IsSecurityEnabled
	2.4.458 IsTime
	2.4.459 IsTransactionAborted (obsolete)
	2.4.460 IsValid
	2.4.461 KeyCount
	2.4.462 KeyDown
	2.4.463 LastPos
	2.4.464 Left
	2.4.465 LeftA
	2.4.466 LeftW (obsolete)
	2.4.467 LeftTrim
	2.4.468 LeftTrimW (obsolete)
	2.4.469 Len
	2.4.470 LenA
	2.4.471 LenW (obsolete)
	2.4.472 Length
	2.4.473 LibraryCreate
	2.4.474 LibraryDelete
	2.4.475 LibraryDirectory
	2.4.476 LibraryDirectoryEx
	2.4.477 LibraryExport
	2.4.478 LibraryImport
	2.4.479 LineCount
	2.4.480 LineLength
	2.4.481 LineList
	2.4.482 LinkTo
	2.4.483 LoadDockingState
	2.4.484 LoadFile
	2.4.485 LoadString
	2.4.486 LoadInk
	2.4.487 LoadPicture
	2.4.488 LoadWithDotNetCore
	2.4.489 LoadWithDotNetFramework
	2.4.490 Log
	2.4.490.1 Syntax 1: For all objects
	2.4.490.2 Syntax 2: For ErrorLogging objects

	2.4.491 LogTen
	2.4.492 Long
	2.4.492.1 Syntax 1: For combining integers
	2.4.492.2 Syntax 2: For converting strings and blobs

	2.4.493 LongLong
	2.4.493.1 Syntax 1: For combining longs
	2.4.493.2 Syntax 2: For converting strings and blobs

	2.4.494 Lookup (obsolete)
	2.4.494.1 Syntax 1: For CORBA-compliant EAServer components
	2.4.494.2 Syntax 2: For instances of an EJB component

	2.4.495 Lower
	2.4.496 LowerBound
	2.4.497 mailAddress
	2.4.498 mailDeleteMessage
	2.4.499 mailGetMessages
	2.4.500 mailHandle
	2.4.501 mailLogoff
	2.4.502 mailLogon
	2.4.503 mailReadMessage
	2.4.504 mailRecipientDetails
	2.4.505 mailResolveRecipient
	2.4.506 mailSaveMessage
	2.4.507 mailSend
	2.4.508 Match
	2.4.509 MatchW (obsolete)
	2.4.510 Max
	2.4.511 MD5
	2.4.512 MemberDelete
	2.4.513 MemberExists
	2.4.514 MemberRename
	2.4.515 MessageBox
	2.4.516 Mid
	2.4.517 MidA
	2.4.518 MidW (obsolete)
	2.4.519 Min
	2.4.520 Minute
	2.4.521 Mod
	2.4.522 ModifyData
	2.4.522.1 Syntax 1: For all graph types except scatter
	2.4.522.2 Syntax 2: For scatter graphs

	2.4.523 Month
	2.4.524 Move
	2.4.525 MoveTab
	2.4.526 _Narrow (obsolete)
	2.4.527 Navigate
	2.4.528 NextActivity
	2.4.529 Now
	2.4.530 ObjectAtPointer
	2.4.531 OffsetPos
	2.4.532 Open
	2.4.532.1 Syntax 1: For windows of a known datatype
	2.4.532.2 Syntax 2: For windows of unknown datatype
	2.4.532.3 Syntax 3: For loading an OLE object from a file into a control
	2.4.532.4 Syntax 4: For opening an OLE object in memory into a control
	2.4.532.5 Syntax 5: For opening an OLE object in a file into an OLEStorage
	2.4.532.6 Syntax 6: For opening an OLE storage member into a storage
	2.4.532.7 Syntax 7: For opening OLE streams
	2.4.532.8 Syntax 8: For opening trace files

	2.4.533 OpenChannel
	2.4.534 OpenSheet
	2.4.535 OpenSheetAsDocument
	2.4.536 OpenSheetDocked
	2.4.537 OpenSheetFromDockingState
	2.4.538 OpenSheetInTabGroup
	2.4.539 OpenSheetWithParm
	2.4.540 OpenSheetWithParmAsDocument
	2.4.541 OpenSheetWithParmDocked
	2.4.542 OpenSheetWithParmFromDockingState
	2.4.543 OpenSheetWithParmInTabGroup
	2.4.544 OpenTab
	2.4.544.1 Syntax 1: For user objects of a known datatype
	2.4.544.2 Syntax 2: For user objects of unknown datatype

	2.4.545 OpenTabWithParm
	2.4.545.1 Syntax 1: For user objects of a known datatype
	2.4.545.2 Syntax 2: For user objects of unknown datatype

	2.4.546 OpenUserObject
	2.4.546.1 Syntax 1: For user objects of a known datatype
	2.4.546.2 Syntax 2: For user objects of unknown datatype

	2.4.547 OpenUserObjectWithParm
	2.4.547.1 Syntax 1: For user objects of a known datatype
	2.4.547.2 Syntax 2: For user objects of unknown datatype

	2.4.548 OpenWithParm
	2.4.548.1 Syntax 1: For windows of a known datatype
	2.4.548.2 Syntax 2: For windows of unknown datatype

	2.4.549 OutgoingCallList
	2.4.550 PageCount
	2.4.551 PageCreated
	2.4.552 ParentWindow
	2.4.553 Paste
	2.4.554 PasteLink
	2.4.555 PasteRTF
	2.4.556 PasteSpecial
	2.4.557 PauseDownload
	2.4.558 PBAddCookie (Obsolete)
	2.4.559 PBGetCookies (Obsolete)
	2.4.560 PBGetMenuString
	2.4.561 Pi
	2.4.562 PixelsToUnits
	2.4.563 Play
	2.4.564 PointerX
	2.4.565 PointerY
	2.4.566 PopMenu
	2.4.567 PopulateError
	2.4.568 Pos
	2.4.569 PosA
	2.4.570 PosW (obsolete)
	2.4.571 Position
	2.4.571.1 Syntax 1: For editable controls, except RichTextEdit
	2.4.571.2 Syntax 2: For RichTextEdit controls

	2.4.572 Post
	2.4.573 PostData
	2.4.574 PostDataEnd
	2.4.575 PostDataStart
	2.4.576 PostEvent
	2.4.577 PostURL
	2.4.578 Preview
	2.4.579 Print
	2.4.579.1 Syntax 1: For printing a visual object in a print job
	2.4.579.2 Syntax 2: For printing text in a print job
	2.4.579.3 Syntax 3: For RichTextEdit controls

	2.4.580 PrintAsPDF
	2.4.581 PrintBitmap
	2.4.582 PrintCancel
	2.4.583 PrintClose
	2.4.584 PrintDataWindow
	2.4.585 PrintDefineFont
	2.4.586 PrintEx
	2.4.587 PrintGetPrinter
	2.4.588 PrintGetPrinters
	2.4.589 PrintLine
	2.4.590 PrintOpen
	2.4.591 PrintOval
	2.4.592 PrintPage
	2.4.593 PrintRect
	2.4.594 PrintRoundRect
	2.4.595 PrintScreen
	2.4.596 PrintSend (obsolete)
	2.4.597 PrintSetFont
	2.4.598 PrintSetPrinter
	2.4.599 PrintSetSpacing
	2.4.600 PrintSetup
	2.4.601 PrintSetupPrinter
	2.4.602 PrintText
	2.4.603 PrintWidth
	2.4.604 PrintX
	2.4.605 PrintY
	2.4.606 ProfileInt
	2.4.607 ProfileString
	2.4.608 Rand
	2.4.609 Randomize
	2.4.610 Read
	2.4.610.1 Syntax 1: For reading into a string
	2.4.610.2 Syntax 2: For character arrays or blobs

	2.4.611 ReadData
	2.4.612 Real
	2.4.613 RecognizeText
	2.4.614 Refresh
	2.4.615 RegisterEvent
	2.4.616 RegistryDelete
	2.4.617 RegistryGet
	2.4.618 RegistryKeys
	2.4.619 RegistrySet
	2.4.620 RegistryValues
	2.4.621 RelativeDate
	2.4.622 RelativeTime
	2.4.623 ReleaseAutomationNativePointer
	2.4.624 ReleaseNativePointer
	2.4.625 Remove
	2.4.626 RemoveApplicationButton
	2.4.627 RemoveDirectory
	2.4.628 RequestResource
	2.4.629 Repair
	2.4.630 Replace
	2.4.631 ReplaceA
	2.4.632 ReplaceText
	2.4.633 ReplaceW (obsolete)
	2.4.634 Reset
	2.4.634.1 Syntax 1: For list boxes
	2.4.634.2 Syntax 2: For graphs
	2.4.634.3 Syntax 3: For trace files

	2.4.635 ResetArgElements
	2.4.636 ResetDataColors
	2.4.637 ResetInk
	2.4.638 ResetPicture
	2.4.639 Resize
	2.4.640 RespondRemote
	2.4.641 Restart
	2.4.642 ResumeDownload
	2.4.643 ResumeTransaction (obsolete)
	2.4.644 Retrieve
	2.4.645 RetrieveOne
	2.4.646 Reverse
	2.4.647 RevertToSelf
	2.4.648 RGB
	2.4.649 Right
	2.4.650 RightA
	2.4.651 RightW (obsolete)
	2.4.652 RightTrim
	2.4.653 RightTrimW (obsolete)
	2.4.654 RollbackOnly (obsolete)
	2.4.655 RollbackTransaction (obsolete)
	2.4.656 Round
	2.4.657 RoutineList
	2.4.658 Run
	2.4.659 Save
	2.4.659.1 Syntax 1: For InkPicture controls
	2.4.659.2 Syntax 2: For OLE objects

	2.4.660 SaveAs
	2.4.660.1 Syntax 1: For graph objects
	2.4.660.2 Syntax 2: For saving an OLE control to a file
	2.4.660.3 Syntax 3: For saving an OLE control to an OLE storage
	2.4.660.4 Syntax 4: For saving an OLE storage object to a file
	2.4.660.5 Syntax 5: For saving an OLE storage object in another OLE storage

	2.4.661 SaveDockingState
	2.4.662 SaveDocument
	2.4.663 SaveInk
	2.4.664 SaveToFile
	2.4.665 Scroll
	2.4.666 ScrollNextPage
	2.4.667 ScrollNextRow
	2.4.668 ScrollPriorPage
	2.4.669 ScrollPriorRow
	2.4.670 ScrollToRow
	2.4.671 Second
	2.4.672 SecondsAfter
	2.4.673 Seek
	2.4.673.1 Syntax 1: For OLE stream objects
	2.4.673.2 Syntax 2: For animation controls

	2.4.674 SelectedColumn
	2.4.675 SelectedIndex
	2.4.676 SelectedItem
	2.4.677 SelectedLength
	2.4.678 SelectedLine
	2.4.679 SelectedPage
	2.4.680 SelectedStart
	2.4.681 SelectedText
	2.4.682 SelectionRange
	2.4.683 SelectItem
	2.4.683.1 Syntax 1: When you know the text of an item
	2.4.683.2 Syntax 2: When you know the item number
	2.4.683.3 Syntax 3: For TreeView controls

	2.4.684 SelectObject
	2.4.685 SelectTab
	2.4.686 SelectText
	2.4.686.1 Syntax 1: For editable controls (except RichTextEdit)
	2.4.686.2 Syntax 2: For RichTextEdit controls and presentation styles

	2.4.687 SelectTextAll
	2.4.688 SelectTextLine
	2.4.689 SelectTextWord
	2.4.690 Send
	2.4.691 SendDeleteRequest
	2.4.692 SendGetRequest
	2.4.693 SendPatchRequest
	2.4.694 SendPostRequest
	2.4.695 SendPutRequest
	2.4.696 SendRequest
	2.4.697 SeriesCount
	2.4.698 SeriesName
	2.4.699 SetAbort
	2.4.699.1 Syntax 1: For OLETxnObject objects
	2.4.699.2 Syntax 2: For TransactionServer objects

	2.4.700 SetAccessToken
	2.4.701 SetActiveCategory
	2.4.702 SetActiveCategoryByIndex
	2.4.703 SetAlignment
	2.4.704 SetApplicationButton
	2.4.705 SetArgElement
	2.4.706 SetAutomationLocale
	2.4.707 SetAutomationPointer
	2.4.708 SetAutomationTimeout
	2.4.709 SetBody
	2.4.710 SetBoldDate
	2.4.711 SetBoxPictureList
	2.4.712 SetByte
	2.4.713 SetCategory
	2.4.714 SetCheckBox
	2.4.715 SetColumn
	2.4.716 SetComboBox
	2.4.717 SetComplete
	2.4.717.1 Syntax 1: For OLETxnObject objects
	2.4.717.2 Syntax 2: For TransactionServer objects

	2.4.718 SetData
	2.4.719 SetDataDDE
	2.4.720 SetDataLabelling
	2.4.721 SetDataPieExplode
	2.4.722 SetDataStyle
	2.4.722.1 Syntax 1: For setting a data point's colors
	2.4.722.2 Syntax 2: For the line associated with a data point
	2.4.722.3 Syntax 3: For the fill pattern and symbol of a data point

	2.4.723 SetDataTransparency
	2.4.724 SetDateLimits
	2.4.725 SetDropHighlight
	2.4.726 SetDynamicParm
	2.4.727 SetFirstVisible
	2.4.728 SetFocus
	2.4.729 SetGroup
	2.4.730 SetGlobalProperty (obsolete)
	2.4.731 SetHeader
	2.4.731.1 Syntax 1: for TokenRequest objects
	2.4.731.2 Syntax 2: for OAuthRequest objects

	2.4.732 SetHeaders
	2.4.732.1 Syntax 1: for TokenRequest objects
	2.4.732.2 Syntax 2: for OAuthRequest objects

	2.4.733 SetItem
	2.4.733.1 Syntax 1: For ListView controls
	2.4.733.2 Syntax 2: For ListView controls
	2.4.733.3 Syntax 3: For TreeView controls
	2.4.733.4 Syntax 4: For RibbonMenu controls
	2.4.733.5 Syntax 5: For RibbonBar controls

	2.4.734 SetJWTToken
	2.4.735 SetLargeButton
	2.4.736 SetLevelPictures
	2.4.737 SetLibraryList
	2.4.738 SetMask
	2.4.739 SetMasterItem
	2.4.740 SetMenu
	2.4.741 SetMessage
	2.4.742 SetMicroHelp
	2.4.743 SetMinimized
	2.4.744 SetNewMobiLinkPassword
	2.4.745 SetNull
	2.4.746 SetOAuthToken
	2.4.747 SetOverlayPicture
	2.4.748 SetPanel
	2.4.749 SetParagraphSetting
	2.4.750 SetParm
	2.4.751 SetPicture
	2.4.752 SetPointer
	2.4.752.1 Syntax 1: System-defined shape
	2.4.752.2 Syntax 2: File-defined shape

	2.4.753 SetPosition
	2.4.753.1 Syntax 1: For positioning windows and controls in windows
	2.4.753.2 Syntax 2: For positioning objects within a DataWindow

	2.4.754 SetProfileString
	2.4.755 SetRange
	2.4.756 SetRecentItem
	2.4.757 SetRecentTitle
	2.4.758 SetRecordSet
	2.4.759 SetRedraw
	2.4.760 SetRemote
	2.4.760.1 Syntax 1: For single DDE requests
	2.4.760.2 Syntax 2: For DDE requests via an open channel

	2.4.761 SetRequestHeader
	2.4.762 SetRequestHeaders
	2.4.763 SetResultSet
	2.4.764 SetSelectedDate
	2.4.765 SetSelectedRange
	2.4.766 SetSeriesLabelling
	2.4.767 SetSeriesStyle
	2.4.767.1 Syntax 1: For setting a series' colors
	2.4.767.2 Syntax 2: For lines in a graph
	2.4.767.3 Syntax 3: For the fill pattern and symbols in a graph
	2.4.767.4 Syntax 4: For creating an overlay in a graph

	2.4.768 SetSeriesTransparency
	2.4.769 SetSheetID
	2.4.770 SetSmallButton
	2.4.771 SetSpacing
	2.4.772 SetState
	2.4.773 SetSyncRegistryProperties
	2.4.774 SetTabButton
	2.4.775 SetTextColor
	2.4.776 SetTextStyle
	2.4.777 SetTimeout (obsolete)
	2.4.778 SetToday
	2.4.779 SetToolbar
	2.4.780 SetToolbarPos
	2.4.780.1 Syntax 1: For docked toolbars
	2.4.780.2 Syntax 2: For floating toolbars

	2.4.781 SetTop
	2.4.782 SetTraceFileName
	2.4.783 SetTransPool
	2.4.784 SetValue
	2.4.784.1 Syntax 1: for DatePicker control
	2.4.784.2 Syntax 2: for JSONPackage object

	2.4.785 SetValueBlob
	2.4.786 SetValueBoolean
	2.4.787 SetValueByDataWindow
	2.4.788 SetValueDate
	2.4.789 SetValueDateTime
	2.4.790 SetValueNumber
	2.4.791 SetValueString
	2.4.792 SetValueTime
	2.4.793 SHA
	2.4.794 SharedObjectDirectory
	2.4.795 SharedObjectGet
	2.4.796 SharedObjectRegister
	2.4.797 SharedObjectUnregister
	2.4.798 Show
	2.4.799 ShowHeadFoot
	2.4.800 ShowHelp
	2.4.801 ShowPopupHelp
	2.4.802 Sign
	2.4.803 SignalError
	2.4.804 Sin
	2.4.805 Sleep
	2.4.806 Sort
	2.4.806.1 Syntax 1: For TreeView controls
	2.4.806.2 Syntax 2: For ListView controls

	2.4.807 SortAll
	2.4.808 Space
	2.4.809 Sqrt
	2.4.810 Start
	2.4.810.1 Syntax 1: For executing pipeline objects
	2.4.810.2 Syntax 2: For activating timing objects

	2.4.811 StartHotLink
	2.4.812 StartServerDDE
	2.4.813 State
	2.4.814 StepIt
	2.4.815 Stop
	2.4.815.1 Syntax 1: For deactivating timing objects
	2.4.815.2 Syntax 2: For stopping an animation from playing

	2.4.816 StopHotLink
	2.4.817 StopNavigation
	2.4.818 StopServerDDE
	2.4.819 String
	2.4.819.1 Syntax 1: For formatting data
	2.4.819.2 Syntax 2: For blobs

	2.4.820 Submit
	2.4.821 SuspendTransaction (obsolete)
	2.4.822 SymmetricDecrypt
	2.4.823 SymmetricEncrypt
	2.4.824 SymmetricGenerateKey
	2.4.825 Synchronize
	2.4.825.1 Syntax 1: For synchronization without parameters
	2.4.825.2 Syntax 2: For synchronization with parameters

	2.4.826 SyntaxFromSQL
	2.4.827 SystemRoutine
	2.4.828 TabPostEvent
	2.4.829 TabTriggerEvent
	2.4.830 Tan
	2.4.831 Text
	2.4.831.1 Syntax for ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox controls
	2.4.831.2 Syntax for RibbonComboBoxItem controls

	2.4.832 TextLine
	2.4.833 Time
	2.4.833.1 Syntax 1: For DateTime and blob values
	2.4.833.2 Syntax 2: For strings
	2.4.833.3 Syntax 3: For integers

	2.4.834 Timer
	2.4.835 ToAnsi
	2.4.836 Today
	2.4.837 Top
	2.4.838 TotalColumns
	2.4.839 TotalItems
	2.4.840 TotalSelected
	2.4.841 ToUnicode
	2.4.842 TraceBegin
	2.4.843 TraceClose
	2.4.844 TraceDisableActivity
	2.4.845 TraceEnableActivity
	2.4.846 TraceEnd
	2.4.847 TraceError
	2.4.848 TraceOpen
	2.4.849 TraceUser
	2.4.850 TriggerEvent
	2.4.851 TriggerPBEvent
	2.4.852 Trim
	2.4.853 TrimW (obsolete)
	2.4.854 Truncate
	2.4.855 TrustVerify (obsolete)
	2.4.856 TypeOf
	2.4.857 Uncheck
	2.4.858 Undo
	2.4.859 UnitsToPixels
	2.4.860 UnregisterEvent
	2.4.861 UpdateLinksDialog
	2.4.862 Upper
	2.4.863 UpperBound
	2.4.864 UrlDecode
	2.4.865 UrlEncode
	2.4.866 WebBrowserGet
	2.4.867 WebBrowserSet
	2.4.868 Which
	2.4.869 WordCap
	2.4.870 WorkSpaceHeight
	2.4.871 WorkSpaceWidth
	2.4.872 WorkSpaceX
	2.4.873 WorkSpaceY
	2.4.874 Write
	2.4.875 XMLParseFile
	2.4.876 XMLParseString
	2.4.877 Year
	2.4.878 Yield
	2.4.879 Zoom

	Index

