
ORCA Guide

Appeon PowerBuilder® 2017 R3

FOR WINDOWS

DOCUMENT ID: DC37664-01-1700-01

LAST REVISED: July 26, 2018

Copyright © 2018 by Appeon Limited. All rights reserved.

This publication pertains to Appeon software and to any subsequent release until otherwise
indicated in new editions or technical notes. Information in this document is subject to
change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this
publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Appeon Limited.

Appeon and other Appeon products and services mentioned herein as well as their respective
logos are trademarks or registered trademarks of Appeon Limited.

SAP and other SAP products and services mentioned herein as well as their respective logos
are trademarks or registered trademarks of SAP and SAP affiliate company.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its
affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective
companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth
in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR
52.227-19(a)-(d) for civilian agencies.

Appeon Limited, 1/F, Shell Industrial Building, 12 Lee Chung Street, Chai Wan District,
Hong Kong.

Contents
1 Using ORCA .. 1

1.1 What is ORCA? ... 1
1.1.1 What can ORCA do? ... 2
1.1.2 Who can develop programs that call ORCA? 2

1.2 Installing ORCA ... 3
1.3 ORCA and the Library painter ... 3

1.3.1 Objects in a PowerBuilder library .. 3
1.3.2 Object source code ... 3
1.3.3 PowerBuilder commands and ORCA functions 4

1.4 About ORCA functions .. 5
1.4.1 Functions for managing the ORCA session 5
1.4.2 Functions for managing PowerBuilder libraries 6
1.4.3 Functions for importing and compiling PowerBuilder objects 7
1.4.4 Functions for querying PowerBuilder objects 7
1.4.5 Functions for creating executables and dynamic libraries 8
1.4.6 Functions for deploying components to EAServer (Obsolete) 8
1.4.7 Functions for managing source control operations 9

1.5 About ORCA callback functions .. 9
1.5.1 ORCA functions that use callbacks ... 10
1.5.2 How a callback works .. 10
1.5.3 Content of a callback function ... 11

1.6 Writing ORCA programs .. 13
1.6.1 Outline of an ORCA program .. 13

1.6.1.1 First step: open a session ... 13
1.6.1.2 Optional step: set the library list and current application 14
1.6.1.3 Next steps: continuing with the ORCA session 15
1.6.1.4 Final step: close the session ... 15

1.6.2 Bootstrapping a new application ... 15
1.7 Removing deprecated ORCA functions ... 16

2 ORCA Functions .. 18
2.1 About the examples ... 18
2.2 ORCA return codes ... 18
2.3 PBORCA_ApplicationRebuild .. 19
2.4 PBORCA_BuildProject ... 21
2.5 PBORCA_BuildProjectEx ... 23
2.6 PBORCA_BuildProjectWithOverrides .. 24
2.7 PBORCA_CompileEntryImport .. 25
2.8 PBORCA_CompileEntryImportList ... 32
2.9 PBORCA_CompileEntryRegenerate .. 37
2.10 PBORCA_ConfigureSession .. 39
2.11 PBORCA_DeployWinFormProject ... 43
2.12 PBORCA_DynamicLibraryCreate .. 45
2.13 PBORCA_ExecutableCreate .. 47
2.14 PBORCA_LibraryCommentModify ... 53
2.15 PBORCA_LibraryCreate .. 54
2.16 PBORCA_LibraryDelete ... 55

2.17 PBORCA_LibraryDirectory ... 56
2.18 PBORCA_LibraryEntryCopy .. 59
2.19 PBORCA_LibraryEntryDelete .. 61
2.20 PBORCA_LibraryEntryExport .. 63
2.21 PBORCA_LibraryEntryExportEx .. 67
2.22 PBORCA_LibraryEntryInformation ... 69
2.23 PBORCA_LibraryEntryMove .. 72
2.24 PBORCA_ObjectQueryHierarchy ... 74
2.25 PBORCA_ObjectQueryReference ... 76
2.26 PBORCA_SccClose ... 78
2.27 PBORCA_SccConnect ... 78
2.28 PBORCA_SccConnectOffline .. 80
2.29 PBORCA_SccExcludeLibraryList ... 82
2.30 PBORCA_SccGetConnectProperties ... 83
2.31 PBORCA_SccGetLatestVersion .. 85
2.32 PBORCA_SccRefreshTarget ... 86
2.33 PBORCA_SccResetRevisionNumber .. 87
2.34 PBORCA_SccSetTarget .. 89
2.35 PBORCA_SessionClose .. 91
2.36 PBORCA_SessionGetError .. 92
2.37 PBORCA_SessionOpen .. 93
2.38 PBORCA_SessionSetCurrentAppl ... 93
2.39 PBORCA_SessionSetLibraryList ... 95
2.40 PBORCA_SetDebug .. 97
2.41 PBORCA_SetExeInfo .. 98

3 ORCA Callback Functions and Structures ... 101
3.1 Callback function for compiling objects ... 101
3.2 PBORCA_COMPERR structure ... 101
3.3 Callback function for deploying components to EAServer (Obsolete) 103
3.4 PBORCA_BLDERR structure .. 104
3.5 Callback function for PBORCA_LibraryDirectory 104
3.6 PBORCA_DIRENTRY structure ... 105
3.7 Callback function for PBORCA_ObjectQueryHierarchy 105
3.8 PBORCA_HIERARCHY structure .. 106
3.9 Callback function for PBORCA_ObjectQueryReference 106
3.10 PBORCA_REFERENCE structure ... 107
3.11 Callback function for PBORCA_ExecutableCreate 107
3.12 PBORCA_LINKERR structure ... 108
3.13 Callback function for PBORCA_SccSetTarget 108
3.14 PBORCA_SCCSETTARGET structure .. 109

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 1

1 Using ORCA
About this chapter

This chapter describes the Appeon Open Library API (ORCA).

It explains the correspondence between tasks a PowerBuilder developer can perform in the
Library painter and tasks you want to do programmatically with ORCA for a PowerBuilder
library.

It also explains the constraints involved in developing ORCA programs and who should and
should not use ORCA, as well as the functions available in ORCA and how to conduct an
ORCA session in your program.

1.1 What is ORCA?
ORCA is software for accessing the PowerBuilder Library Manager functions that
PowerBuilder uses in the Library painter. A program (very often a C program) can use
ORCA to do the same kinds of object and library management tasks that the Library painter
interface provides.

History of ORCA

ORCA was created for CASE tool vendors as part of the CODE (Client/Server Open
Development Environment) program. CASE tools needed programmatic access to
PowerBuilder libraries to create and modify PowerBuilder objects based on an application
design.

Typical ORCA programs

Applications use ORCA to manipulate PowerBuilder objects. They might:

• Write object source code and then use ORCA functions to place that object source in a
PBL

• Extract objects from libraries using ORCA functions, modify the object source, and use
ORCA again to put the objects back in the libraries

Sample ORCA applications

ORCA has been used for many types of tools that work with PowerBuilder, such as:

• OrcaScript utility

• CASE tools

• Class libraries

• Documentation tools

• Application management tools

• Utilities that might, for example, search for text and replace it throughout a library or
display a tree view of objects in a library

• Interfaces for source control systems that PowerBuilder does not support directly

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 2

• Utilities to rebuild PowerBuilder targets from source-controlled objects

1.1.1 What can ORCA do?

ORCA lets your application do programmatically the same library and object management
tasks that a developer performs in the PowerBuilder development environment. ORCA
covers most of the functionality of the Library painter, and some of that of the Application
and Project painters.

You can:

• Copy, delete, move, rename, and export objects in a PBL

• Import and compile objects

• Create an executable or a PowerBuilder Dynamic Library (PBD or DLL) with all of the
options available in the Project painter

• Look at the ancestor hierarchy of an object or see which objects it references

• Create an entire application in a new library (called bootstrapping an application)

• Open PowerBuilder targets from source control and perform diverse source control
operations on target objects

1.1.2 Who can develop programs that call ORCA?

ORCA as a development tool is designed for vendors who want to provide tools for
PowerBuilder developers. Tool vendors must be aware of the constraints described in this
section.

ORCA as a development tool is not meant for a wider audience of PowerBuilder developers.
If you are a PowerBuilder developer, you should not develop programs that call ORCA
unless you understand and observe the constraints described next.

Constraints when using ORCA

Both PowerBuilder and ORCA make use of the PowerBuilder compiler. However, the
compiler is not reentrant, and multiple programs cannot use it simultaneously. Therefore,
PowerBuilder cannot be running when your programs call ORCA.

Tool providers who use ORCA must code their programs carefully so that when a
PowerBuilder developer calls their ORCA-based modules, their tool:

1. Exits PowerBuilder.

2. Performs the requested ORCA function.

3. Restarts PowerBuilder.

Caution

If the PowerBuilder development environment is not shut down while ORCA is
running, your PowerBuilder libraries can become corrupted. For this reason, casual
use of ORCA is not recommended.

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 3

1.2 Installing ORCA
ORCA is available to code partners, tool vendors, and customers who develop companion
products and tools that manipulate and manage objects in PowerBuilder libraries for use with
PowerBuilder.

To run ORCA programs

To run programs that use ORCA, you need the ORCA DLL (called PBORC170.DLL in
PowerBuilder 2017 R3). When you install PowerBuilder, this DLL is installed in the same
directory as other PowerBuilder DLLs.

To develop ORCA programs

To develop C programs that use ORCA, you need several items, available from the Appeon
Developers Network Web site:

• C development files

PBORCA.H

PBORCA.LIB

• This documentation, available in PDF format

1.3 ORCA and the Library painter
A PowerBuilder library (PBL) is a binary file. It stores objects you define in the
PowerBuilder painters in two forms: source and compiled. The source for an object is text.
The compiled form is binary and is not readable by humans.

The Library painter lets the PowerBuilder developer view and maintain the contents of a
PBL. The painter lists the objects in a PBL with their properties, such as modification date
and comments.

In the Library painter, the PowerBuilder developer can delete, move, compile, export,
and import objects, and can use source control systems and create PowerBuilder dynamic
libraries and DLLs.

From the Library painter, you can open objects in their own painters and view and modify the
objects graphically.

1.3.1 Objects in a PowerBuilder library

When you open an object in a painter, PowerBuilder interprets the library entries and displays
the object in a graphical format. The painter does not display the source code. If you change
the object graphically and save it again in the PBL, PowerBuilder rewrites the source code to
incorporate the changes and recompiles the object.

1.3.2 Object source code

The Library painter lets you export source code, study and even modify it in any text editor,
and import it back into the library. PowerBuilder compiles the imported object to check that
the source code is valid. It will not import objects that fail to compile.

Source code exported to a file has two header lines before the source code:

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 4

$PBExportHeader$w_about.srw
$PBExportComments$Tell us about the application level

ORCA functions ignore these header lines and use the lpszEntryName and lpszComments
arguments passed to the function.

You can view the exported source code in the PowerBuilder file editor:

Learning source code syntax

The syntax for object source code is not documented. The only way to learn what belongs in
source code is by exporting objects and studying their source.

ORCA and source code

ORCA has an export function so it can examine and modify existing objects. With
PowerBuilder 10 and higher, a developer can configure the ORCA session to export source
either to a memory buffer or to a file. The developer can also specify which of the four source
encoding formats to use, whether or not to export the two export header lines, and whether or
not to include the binary component of an object.

1.3.3 PowerBuilder commands and ORCA functions

Most ORCA functions have a counterpart in the Library painter, the Application painter, the
Project painter, or the commands that start and stop a PowerBuilder session.

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 5

The next section identifies the ORCA functions, their purpose, and what they correspond to
in the PowerBuilder development environment.

1.4 About ORCA functions

All ORCA functions are external C functions that use the WINAPI macro to specify the
calling convention of the function. On the Windows platform, WINAPI is defined as
__stdcall.

About the code examples in this book

All ORCA functions may be called from either an ANSI client program or a Unicode
client program. The code examples in this book use macros that are defined in the
tchar.h file that is installed with PowerBuilder in the Shared/Appeon/PowerBuilder/
cgen/h directory. If the /D _UNICODE compiler directive is set, these macros accept
Unicode string arguments. If _UNICODE is not defined, these macros accept ANSI
string arguments. This coding technique allows you to create ORCA programs that
run successfully as either ANSI or Unicode clients.

ORCA functions can be divided into seven groups with the following functions:

• Managing the ORCA session

• Managing PowerBuilder libraries

• Compiling PowerBuilder objects

• Querying PowerBuilder objects

• Creating executables and dynamic libraries

• Managing source control operations involving PowerBuilder objects

1.4.1 Functions for managing the ORCA session

Just as you begin a session in the PowerBuilder development environment by running
PowerBuilder and end the session by exiting PowerBuilder, you need to open a session when
using ORCA and close the session when finished.

Library list and current application

In the PowerBuilder development environment, you must first have a current application.
You also set the library list search path if you plan to view or modify objects or create
executables. ORCA has the same requirements, but in reverse order. In ORCA, you set the
library list and then set the current application.

ORCA functions that do not involve compiling objects or building applications do not
require a library list and current application. These are the library management functions. For
source control functions, PBORCA_SccSetTarget implicitly sets the library list and current
application.

Session management

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 6

Listed here are the session management functions (which all have the prefix PBORCA_), the
purpose of each, and their equivalents in the PowerBuilder development environment:

Table 1.1:

Function (prefix
PBORCA_)

Purpose Equivalent in PowerBuilder

ConfigureSession Sets session properties
that affect the behavior of
subsequent ORCA commands

Options

SessionOpen Opens an ORCA session and
returns the session handle

Starting PowerBuilder

SessionClose Closes an ORCA session Exiting PowerBuilder

SessionSetLibraryList Specifies the libraries for the
session

File>Library List

SessionSetCurrentAppl Specifies the Application
object for the session

File>Select Application

SessionGetError Provides information about
an error

No correspondence

1.4.2 Functions for managing PowerBuilder libraries

The library management functions are similar to commands in the Library painter. These
functions allow you to create and delete libraries, modify library comments, and see the list
of objects located within a library. They also allow you to examine objects within libraries;
export their syntax; and copy, move, and delete entries.

These functions can be called outside the context of a library list and current application.

Listed here are the library management functions (which all have the prefix PBORCA_), the
purpose of each, and their equivalents in the PowerBuilder Library painter:

Table 1.2:

Function (prefix
PBORCA_)

Purpose Equivalent in PowerBuilder

LibraryCommentModify Modify the comments for a
library

Library>Properties

LibraryCreate Create a new library file Library>Create

LibraryDelete Delete a library file Library>Delete

LibraryDirectory Get the library comments and
a list of its objects

List view

LibraryEntryCopy Copy an object from one
library to another

Entry>Copy

LibraryEntryDelete Delete an object from a
library

Entry>Delete

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 7

Function (prefix
PBORCA_)

Purpose Equivalent in PowerBuilder

LibraryEntryExport Get the source code for an
object

Entry>Export

LibraryEntryExportEx Get the source code for an
object

Entry>Export

LibraryEntryInformation Get details about an object List view

LibraryEntryMove Move an object from one
library to another

Entry>Move

1.4.3 Functions for importing and compiling PowerBuilder objects

These functions allow you to import new objects into a library from a text listing of their
source code and to compile entries that already exist in a library.

Entries in a library have both a source code representation and a compiled version. When you
import a new object, PowerBuilder compiles it. If there are errors, it is not imported.

You must set the library list and current application before calling these functions.

Listed here are the compilation functions (which all have the prefix PBORCA_), the purpose
of each, and their equivalents in the PowerBuilder Library painter:

Table 1.3:

Function (prefix
PBORCA_)

Purpose Equivalent in Library
painter

CompileEntryImport Imports an object and
compiles it

Entry>Import

CompileEntryImportList Imports a list of objects and
compiles them

No correspondence

CompileEntryRegenerate Compiles an object Entry>Regenerate

ApplicationRebuild Compiles all the objects in all
the libraries associated with
an application

Design>Incremental Rebuild
or Design>Full Rebuild

Compilation functions are not the functions that create an executable from a library. See
Functions for creating executables and dynamic libraries.

1.4.4 Functions for querying PowerBuilder objects

The object query functions get information about an object's ancestors and the objects it
references.

You must set the library list and current application before calling these functions.

Listed here are the object query functions (which all have the prefix PBORCA_). There are
no direct correspondences to PowerBuilder commands:

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 8

Table 1.4:

Function (prefix PBORCA_) Purpose

ObjectQueryHierarchy Gets a list of an object's ancestors

ObjectQueryReference Gets a list of the objects an object refers to

1.4.5 Functions for creating executables and dynamic libraries

These functions allow you to create executables and PowerBuilder Dynamic Libraries (PBDs
and DLLs). You can specify the same options for Pcode and machine code and tracing that
you can specify in the Project painter.

Using ORCA, PBDs or DLLs must be created in a separate step before creating the
executable.

You must set the library list and current application before calling these functions.

Listed here are the functions for creating executables and libraries (which all have the prefix
PBORCA_), the purpose of each, and their equivalents in the PowerBuilder development
environment:

Table 1.5:

Function (prefix
PBORCA_)

Purpose Equivalent in painter

ExecutableCreate Creates an executable
application using ORCA's
library list and current
Application object

Project painter

DynamicLibraryCreate Creates a PowerBuilder
dynamic library from a PBL

Project painter or Library
painter: Library>Build
Runtime Library

SetExeInfo Sets additional file properties
associated with the EXE and
DLLs that are created

Project painter

1.4.6 Functions for deploying components to EAServer (Obsolete)

These functions are obsolete because EAServer is no longer supported since PowerBuilder
2017. An obsolete feature is no longer eligible for technical support and will no longer be
enhanced, although it is still available.

These functions deploy an EAServer component using, or overwriting, specifications of the
project object:

Table 1.6:

Function (prefix PBORCA_) Purpose

BuildProject Deploys component according to the project
object specifications

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 9

Function (prefix PBORCA_) Purpose

BuildProjectEx Overrides server name and port number when
deploying component

1.4.7 Functions for managing source control operations

These functions allow you to perform source control operations involving PowerBuilder
targets and objects:

Table 1.7:

Function (prefix PBORCA_) Purpose

SccClose Closes the active SCC Project

SccConnect Initializes source control and opens a project

SccConnectOffline Simulates a connection to source control

SccExcludeLibraryList Names the libraries in the target library list
that you do not want to be synchronized
in the next PBORCA_SccRefreshTarget
operation

SccGetConnectProperties Returns the SCC connection properties
associated with a PowerBuilder workspace

SccGetLatestVersion Copies the latest version of objects from the
SCC repository to the local project path

SccRefreshTarget Refreshes the source for each of the objects
in target libraries

SccSetPassword Sets the password property prior to
SccConnect

SccSetTarget Retrieves the target file from source control,
passes the application object name to ORCA,
and sets the ORCA session library list

1.5 About ORCA callback functions
Several ORCA functions require you to code a callback function. A callback function
provides a way for the called program (the ORCA DLL or the Library Manager) to execute
code in the calling program (the ORCA program executable).

How ORCA uses callbacks

ORCA uses callback functions when an unknown number of items needs to be processed.
The purpose of the callback function is to process each of the returned items, and in most
cases return the information to the user.

Optional or required

Some callbacks handle errors that occur when the main work is being done -- for example,
when compiling objects or building executables. For handling errors, the callback function is
optional. Other callbacks handle the information you wanted when you called the function --
such as each item in a directory listing. Callbacks for information functions are required.

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 10

Language requirement

ORCA functions that require the use of callback functions can be used only by programs
written in languages that use pointers, such as C and C++.

When you create a new ORCA callback function, use the CALLBACK macro to specify the
calling convention of the function. On the Windows platform, CALLBACK is defined as
__stdcall.

1.5.1 ORCA functions that use callbacks

These functions (which all have the prefix PBORCA_) use a callback function:

Table 1.8:

ORCA function call (prefix PBORCA_) Purpose of callback

BuildProjectEx

BuildProject

Called once for each deployment error

CompileEntryImport

CompileEntryImportList

CompileEntryRegenerate

Called once for each compile error

ExecutableCreate Called once for each link error

LibraryDirectory Called once for each library entry name

ObjectQueryHierarchy Called once for every ancestor name

ObjectQueryReference Called once for every object referenced in the
entry

SccSetTarget Called once for each library in the library list

1.5.2 How a callback works

ORCA calls a callback function like this:

1. The calling program allocates a buffer to hold data (the UserData buffer).

2. The calling program calls an ORCA function, passing it pointers to the callback function
and the UserData buffer.

3. When the ORCA function needs to report information, it calls the callback function. It
passes pointers to the structure holding the information and the UserData buffer.

4. The callback function reads the information in the structure and formats it in the UserData
buffer.

Steps 3 and 4 repeat for each piece of information ORCA needs to report. An ORCA
function might call the callback once, several times, or not at all, depending on whether
errors occur or information needs to be reported.

5. The ORCA function completes and returns control to the calling program, which reads the
information in the UserData buffer.

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 11

1.5.3 Content of a callback function

The processing that occurs in the callback function is entirely up to you. This section
illustrates a simple way of handling it.

UserData buffer

In this example, the UserData buffer is a structure with a field whose value points to the
actual message buffer. Other fields keep track of the message buffer's contents as it is filled:

typedef struct ORCA_UserDataInfo {
 LPBYTE lpszBuffer; // Buffer to store data
 DWORD dwCallCount; // # of messages in buffer
 DWORD dwBufferSize; // size of buffer
 DWORD dwBufferOffset; // current offset in buffer
} ORCA_USERDATAINFO, FAR *PORCA_USERDATAINFO;

Calling program

In the calling program, the UserDataInfo structure is initialized.

The calling program does not know how much room will be required for messages, so
it allocates 60000 bytes (an arbitrary size). If you are gathering link errors, it's probably
enough. It might not be enough if you wanted directory information for a large library:

ORCA_USERDATAINFO UserDataBuffer;
PORCA_USERDATAINFO lpUserDataBuffer;

lpUserDataBuffer = &UserDataBuffer;
lpUserDataBuffer->dwCallCount = 0;
lpUserDataBuffer->dwBufferOffset = 0;
lpUserDataBuffer->dwBufferSize = 60000;
lpUserDataBuffer->lpszBuffer =
 (LPTSTR)malloc((size_t)lpUserDataBuffer->
 dwBufferSize);

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 12

memset(lpUserDataBuffer->lpszBuffer,
 0x00,(size_t)lpUserDataBuffer->dwBufferSize);

Define function pointer

The calling program defines a function pointer to the callback function that it passes to the
ORCA function:

PBORCA_LINKPROC fpLinkProc;
fpLinkProc = (PBORCA_LINKPROC)LinkErrors;

Call ORCA

The calling program calls the ORCA function, passing the callback function pointer and the
UserData buffer pointer. This example calls PBORCA_ExecutableCreate, whose callback
type is PBORCA_LNKPROC:

rtn = PBORCA_ExecutableCreate(..., (PBORCA_LNKPROC)
fpLinkProc, lpUserDataBuffer);

Process results

Finally, the calling program can process or display information that the callback function
stored in the UserData buffer.

Free allocated memory

If your UserData structure allocates memory, free the allocated memory:

free(lpUserDataBuffer->lpszBuffer)

Callback program

The callback program receives a structure with the current error or information and stores
the information in the message buffer pointed to by lpszBuffer in the UserData buffer. It also
manages the pointers stored in the UserData buffer.

Simple callback

A simple callback might do the following:

• Keep count of the number of times it is called

• Store messages and reallocate buffer if it overflows

This code implements a callback called LinkErrors for PBORCA_ExecutableCreate:

void CALLBACK LinkErrors(PPBORCA_LINKERR lpLinkError,
 LPVOID lpUserData)
{
 PORCA_USERDATAINFO lpData;
 LPBYTE lpCurrByte;
 LPTSTR lpCurrentPtr;
 int iNeededSize;
 lpData = (PORCA_USERDATAINFO) lpUserData;

 // Keep track of number of link errors
 lpData->dwCallCount++;

 // Is buffer already full?
 if (lpData->dwBufferOffset==lpData->dwBufferSize)
 return;

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 13

 // How long is the new message?
 // Message length plus carriage rtn and newline
 iNeededSize =
 (_tcslen(lpLinkError->lpszMessageText) + 2)*
 sizeof(TCHAR);
 // Reallocate buffer if necessary
 if ((lpData->dwBufferOffset + iNeededSize) >
 lpData->dwBufferSize)
 {
 LPVOID lpNewBlock;
 DWORD dwNewSize;
 dwNewSize = lpData->dwBufferSize * 2;
 lpNewBlock = realloc(lpData->lpszBuffer,
 (size_t)dwNewSize);
 if (lpNewBlock)
 {
 lpData->lpszBuffer = (LPTSTR) lpNewBlock;
 lpData->dwBufferSize = dwNewSize;
 }
 else
 return;
 }

 // Set pointer for copying message to buffer
 lpCurrentPtr = lpData->lpszBuffer
 + lpData->dwBufferOffset;
 lpCurrString = (LPTSTR) lpCurrByte;

 // Copy link error message, CR, and LF to buffer.
 _tcscpy(lpCurrentPtr, lpLinkError->lpszMessageText);
 _tcscat(lpCurrentPtr, _TEXT("\r\n"));
 lpData->dwBufferOffset += iNeededSize;
 return;
}

1.6 Writing ORCA programs
This section outlines the skeleton of an ORCA program, beginning with opening a session. It
also describes how to build an application from scratch without having to start with a library
containing an Application object.

1.6.1 Outline of an ORCA program

To use the ORCA interface, your calling program will:

1. Open an ORCA session.

2. (Optional, depending on which ORCA functions you want to call.)

Set the library list and the current Application object.

3. Call other ORCA functions as needed.

4. Close the ORCA session.

1.6.1.1 First step: open a session

Before calling any other ORCA functions, you need to open a session. The
PBORCA_SessionOpen function returns a handle that ORCA uses to manage this program's

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 14

ORCA session. The handle type HPBORCA is defined as LPVOID, meaning that it can be
a pointer to any type of data. This is because within ORCA it is mapped to a structure not
available to the calling program.

Sample code

This sample C function opens an ORCA session:

HPBORCA WINAPI SessionOpen()
{
 HPBORCA hORCASession;
 hORCASession = PBORCA_SessionOpen();
 return hORCASession;
}

1.6.1.2 Optional step: set the library list and current application

The next step in writing an ORCA program depends on the intent of the program. The
choices are:

• If the program only manages libraries, moves entries among libraries, or looks at the
source for entries, there are no other required calls. You can continue with your ORCA
session.

• If the program calls other ORCA functions, you must set the library list and then set the
current application.

Comparison to PowerBuilder

This is similar to the requirements of the PowerBuilder development environment. In the
Library painter, you can copy entries from one PBL to another, even if they are outside the
current application or library list. You can export the syntax of a library entry that is not in
the library list. However, you can only import entries into libraries in the current application's
library list.

In the PowerBuilder development environment, you select an Application object in the
Application painter and then set the library search path on the Application object's property
sheet. With ORCA, you set the library list first and then set the Application object.

Set once per session

You can set the library list and current application only once in an ORCA session. To use
another library list and application, close the ORCA session and open a new session.

Sample code

This sample C function sets the library list and the current application:

int WINAPI SetUpSession(HPBORCA hORCASession)
{
 TCHAR szApplName[36];
 int nReturnCode;
 LPTSTR lpLibraryNames[2] =
 {_TEXT("c:\\pbfiles\\demo\\master.pbl"),
 _TEXT("c:\\pbfiles\\demo\\work.pbl")};

 // Call the ORCA function
 nReturnCode = PBORCA_SessionSetLibraryList(
 hORCASession, lpLibraryNames, 2);
 if (nReturnCode != 0)

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 15

 return nReturnCode; // return if it failed

 // Set up the string containing the appl name
 _tcscpy(szApplName, _TEXT("demo"));

 // The appl object is in the first library
 nReturnCode = PBORCA_SessionSetCurrentAppl(
 hORCASession, lpLibraryName[0], szApplName))
 return nReturnCode;
}

1.6.1.3 Next steps: continuing with the ORCA session

After the library list and application are set, you can call any ORCA function using the
handle returned by the PBORCA_SessionOpen function. Most of the function calls are fairly
straightforward. Others, like those requiring callbacks, are a bit more complicated.

For information about callback functions, see About ORCA callback functions.

1.6.1.4 Final step: close the session

The last step in an ORCA program is to close the session. This allows the Library Manager to
clean up and free all resources associated with the session.

This sample C function closes the session:

void WINAPI SessionClose(hORCASession)
{
 PBORCA_SessionClose(hORCASession);
 return;
}

1.6.2 Bootstrapping a new application

Beginning with PowerBuilder 5.0, you can use ORCA to create the libraries for an entire
application from object source code. You don't need to start with an existing PBL.

To import an object, ordinarily you need a library with an Application object that already
exists. When you set the Application object to a NULL value during the bootstrap process,
ORCA uses a temporary Application object so that you can import your own Application
object. But your Application object doesn't become the current application until you close the
session, start a new session, and set the current application.

To bootstrap a new application:

1. Start an ORCA session using PBORCA_SessionOpen.

2. Create the new library using PBORCA_LibraryCreate.

3. Set the library list for the session to the new library using
PBORCA_SessionSetLibraryList.

4. Pass NULL variables as the library name and application name with
PBORCA_SessionSetCurrentAppl.

5. Import the Application object into the new library using
PBORCA_CompileEntryImportList.

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 16

Do not import other objects now

Why you should import only the Application object

Although you can import additional objects into the library, it is not a good idea.
In the bootstrap session, the default Application object is the current application. If
the objects have any dependencies on your Application object (for example, if they
reference global variables), they will cause errors and fail to be imported.

6. Close the session.

Finishing the bootstrapped application

The bootstrap process gets you started with the new application. To complete the process,
you need to import the rest of the objects into one or more libraries.

You can only set the library list and current application once in a session, so you need to start
a new ORCA session to finish the process. Since you now have a library with the Application
object you want to use, the process is the same as any other ORCA session that imports
objects.

To finish the bootstrapped application:

1. Open another ORCA session.

2. Create any additional libraries you'll need for the application.

3. Set the library list to the library created in the bootstrap procedure plus the empty
libraries just created.

4. Set the current application to the Application object imported in the bootstrap procedure.

5. Import objects into each of the libraries as needed.

When to create the libraries

You can create the additional libraries during the first bootstrap procedure. However,
you should not import objects until the second procedure, when the correct
Application object is current.

1.7 Removing deprecated ORCA functions

PowerBuilder 8 introduced a new way of accessing source control using the SCC API. The
ORCA functions for working with source control were deprecated, but were not removed
from the ORCA 8 API.

Starting with PowerBuilder 9, new ORCA source control functions have been added and old
ORCA source control functions have been removed from the ORCA API. Therefore, you
must remove all calls to the following functions from your existing ORCA applications:

• PBORCA_CheckOutEntry

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA Guide Page 17

• PBORCA_CheckInEntry

• PBORCA_ListCheckOutEntries

New ORCA functions are documented in ORCA Functions.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 18

2 ORCA Functions
About this chapter

This chapter documents the ORCA functions.

2.1 About the examples

The examples in this chapter assume that a structure was set up to store information about the
ORCA session when the session was opened. In the examples, the variable lpORCA_Info is a
pointer to an instance of this structure:

typedef struct ORCA_Info {
 LPTSTR lpszErrorMessage; // Ptr to message text
 HPBORCA hORCASession; // ORCA session handle
 DWORD dwErrorBufferLen; // Length of error buffer
 long lReturnCode; // Return code
 HINSTANCE hLibrary; // Handle to ORCA library
 PPBORCA_CONFIG_SESSION pConfig; // ConfigureSession
} ORCA_INFO, FAR *PORCA_INFO;

2.2 ORCA return codes

The header file PBORCA.H defines these return codes:

Table 2.1:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-2 PBORCA_DUPOPERATION Duplicate operation

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-5 PBORCA_LIBLISTNOTSET Library list not set

-6 PBORCA_LIBNOTINLIST Library not in library list

-7 PBORCA_LIBIOERROR Library I/O error

-8 PBORCA_OBJEXISTS Object exists

-9 PBORCA_INVALIDNAME Invalid name

-10 PBORCA_BUFFERTOOSMALL Buffer size is too small

-11 PBORCA_COMPERROR Compile error

-12 PBORCA_LINKERROR Link error

-13 PBORCA_CURRAPPLNOTSET Current application not set

-14 PBORCA_OBJHASNOANCS Object has no ancestors

-15 PBORCA_OBJHASNOREFS Object has no references

-16 PBORCA_PBDCOUNTERROR Invalid # of PBDs

-17 PBORCA_PBDCREATERROR PBD create error

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 19

Return code Description

-18 PBORCA_CHECKOUTERROR Source Management error (obsolete)

-19 PBORCA_CBCREATEERROR Could not instantiate ComponentBuilder
class

-20 PBORCA_CBINITERROR Component builder Init method failed

-21 PBORCA_CBBUILDERROR Component builder BuildProject method
failed

-22 PBORCA_SCCFAILURE Could not connect to source control

-23 PBORCA_REGREADERROR Could not read registry

-24 PBORCA_SCCLOADDLLFAILED Could not load DLL

-25 PBORCA_SCCINITFAILED Could not initialize SCC connection

-26 PBORCA_OPENPROJFAILED Could not open SCC project

-27 PBORCA_TARGETNOTFOUND Target File not found

-28 PBORCA_TARGETREADERR Unable to read Target File

-29 PBORCA_GETINTERFACEERROR Unable to access SCC interface

-30 PBORCA_IMPORTONLY_REQ Scc connect offline requires IMPORTONLY
refresh option

-31 PBORCA_GETCONNECT_REQ SCC connect offline requires
GetConnectProperties with
Exclude_Checkout

-32 PBORCA_PBCFILE_REQ SCC connect offline with Exclude_Checkout
requires PBC file

2.3 PBORCA_ApplicationRebuild

Description

Compiles all the objects in the libraries included on the library list. If necessary, the
compilation is done in multiple passes to resolve circular dependencies.

Syntax

INT PBORCA_ApplicationRebuild (HPBORCA hORCASession,
 PBORCA_REBLD_TYPE eRebldType,
 PBORCA_ERRPROC pCompErrProc,
 LPVOID pUserData);

Table 2.2:

Argument Description

hORCASession Handle to previously established ORCA
session.

eRebldType A value of the PBORCA_REBLD_TYPE
enumerated data type specifying the type of
rebuild. Values are:

PBORCA_FULL_REBUILD

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 20

Argument Description
PBORCA_INCREMENTAL_REBUILD

PBORCA_MIGRATE

PBORCA_3PASS

pCompErrorProc Pointer to the PBORCA_ApplicationRebuild
callback function. The callback function is
called for each error that occurs as the objects
are compiled.

The information ORCA passes to the
callback function is error level, message
number, message text, line number, and
column number, stored in a structure of type
PBORCA_COMPERR. The object name and
script name are part of the message text.

If you do not want to use a callback function,
set pCompErrorProc to 0.

pUserData Pointer to user data to be passed to the
PBORCA_CompileEntryImport callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback
function stores the error information as well
as information about the size of the buffer.

If you are not using a callback function, set
pUserData to 0.

Return value

INT. Typical return codes are:

Table 2.3:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-13 PBORCA_CURRAPPLNOTSET Current application not set

Usage

You must set the library list and current application before calling this function.

If you use the compile functions, errors can occur because of the order in which the
objects are compiled. If two objects refer to each other, then simple compilation will
fail. Use PBORCA_ApplicationRebuild to resolve errors due to object dependencies.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 21

PBORCA_ApplicationRebuild resolves circular dependencies with multiple passes through
the compilation process.

The rebuild types specify how objects are affected. Choices are:

Incremental rebuild

Updates all the objects and libraries referenced by any objects that have been changed since
the last time you built the application.

Full rebuild

Updates all the objects and libraries in your application.

Migrate

Updates all the objects and libraries in your application to the current version. Only
applicable when the objects were built in an earlier version.

Examples

This example recompiles all the objects in the libraries on the current library list.

Each time an error occurs, PBORCA_ApplicationRebuild calls the callback
CompileEntryErrors. In the code you write for CompileEntryErrors, you store the error
messages in the buffer pointed to by lpUserData:

PBORCA_ERRPROC fpError;
int nReturnCode;

fpError = (PBORCA_ERRPROC) ErrorProc;
nReturnCode = PBORCA_ApplicationRebuild(
 lpORCA_Info->hORCASession,
 PBORCA_FULL_REBUILD,
 fpError, lpUserData);

For more information about setting up the data buffer for the callback, see Content of a
callback function and the example for PBORCA_LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_CompileEntryRegenerate

PBORCA_CompileEntryImport

PBORCA_CompileEntryImportList

2.4 PBORCA_BuildProject

Description

This function is obsolete because EAServer is no longer supported since PowerBuilder 2017.

Deploys an EAServer component according to the specifications of the project object.

Syntax

INT PBORCA_BuildProject (HPBORCA hORCASession,

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 22

 LPTSTR lpszLibraryName,
 LPTSTR lpszProjectName,
 PBORCA_BLDPROC pBuildErrProc,
 LPVOID pUserData);

Table 2.4:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName File name of the library containing project
entry.

lpszProjectName Project object containing deployment
information.

pBuildErrProc Pointer to the PBORCA_BuildProject error
callback function.

If you don't want to use a callback function,
set pBuildErrProc to NULL.

pUserData Pointer to user data to be passed to the
callback function.

Return value

INT. Typical return codes are:

Table 2.5:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-19 PBORCA_CBCREATEERROR Component Builder class not created

-20 PBORCA_CBINITERROR Initialization of EAServer connection failed

-21 PBORCA_CBBUILDERROR Deployment failed with errors

Usage

How error information is returned

PBORCA_BuildProject error callback function stores information about an entry in the
following structure. You pass a pointer to the structure in the pBuildErrProc argument:

typedef struct PBORCA_blderr
{
 LPTSTR lpszMessageText; // Pointer to message text
} PBORCA_BLDERR, FAR *PPBORCA_BLDERR;

Prototype for callback function

The callback function has the following signature:

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 23

typedef PBCALLBACK (void, *PPBORCA_BLDPROC) (PBORCA_BLDERR, LPVOID);

See also

PBORCA_BuildProjectEx

2.5 PBORCA_BuildProjectEx

Description

This function is obsolete because EAServer is no longer supported since PowerBuilder 2017.

Deploys an EAServer component according to the specifications of the project object,
but overrides server and port properties in the project object with the argument values
you specify. However, it does not override these properties if they are set in the
server profile. To override properties in the server profile and the project object, use
PBORCA_BuildProjectWithOverrides.

Syntax

INT PBORCA_BuildProjectEx (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszProjectName,
 PBORCA_BLDPROC pBuildErrProc,
 LPTSTR lpszServerName,
 INT iPort,
 LPVOID pUserData);

Table 2.6:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName File name of the library containing project
entry.

lpszProjectName Project object containing deployment
information.

pBuildErrProc Pointer to the PBORCA_BuildProject error
callback function.

If you don't want to use a callback function,
set pBuildErrProc to NULL.

lpszServerName Server name for EAServer deployment. This
value overrides the server property in the
project object.

iPort Port number for EAServer deployment. This
value overrides the server property in the
project object.

pUserData Pointer to user data to be passed to the
callback function.

Return value

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 24

INT. Typical return codes are:

Table 2.7:

Return code Description

0 PBORCA_OK Operation successful.

-1 PBORCA_INVALIDPARMS Invalid parameter list.

-19 PBORCA_CBCREATEERROR Component Builder class not created.

-20 PBORCA_CBINITERROR Initialization of EAServer connection failed.

-21 PBORCA_CBBUILDERROR Deployment failed with errors.

See also

PBORCA_BuildProject

PBORCA_BuildProjectWithOverrides

2.6 PBORCA_BuildProjectWithOverrides

Description

This function is obsolete because EAServer is no longer supported since PowerBuilder 2017.

Deploys an EAServer component according to the specifications of the project object,
but forces overrides based on argument values you specify. This method is similar to
PBORCA_BuildProjectEx, however, it requires additional input values for the server login
ID and password, and it uses these values to override any values set in the server profile or
the project object.

Syntax

INT PBORCA_BuildProjectWithOverrides (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszProjectName,
 PBORCA_BLDPROC pBuildErrProc,
 LPTSTR lpszServerName,
 INT iPort,
 LPTSTR lpszUserid,
 LPTSTR lpszPassword,
 LPVOID pUserData);

Table 2.8:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName File name of the library containing project
entry.

lpszProjectName Project object containing deployment
information.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 25

Argument Description

pBuildErrProc Pointer to the PBORCA_BuildProject error
callback function.

If you don't want to use a callback function,
set pBuildErrProc to NULL.

lpszServerName Server name for EAServer deployment. This
value overrides the server property in the
project object.

iPort Port number for EAServer deployment. This
value overrides the server property in the
project object.

lpszUserid Login ID for the server. This value overrides
the login ID in the project object.

lpszPassword Password for the server. This value overrides
the login password in the project object.

pUserData Pointer to user data to be passed to the
callback function.

Return value

INT. Typical return codes are:

Table 2.9:

Return code Description

0 PBORCA_OK Operation successful.

-1 PBORCA_INVALIDPARMS Invalid parameter list.

-19 PBORCA_CBCREATEERROR Component Builder class not created.

-20 PBORCA_CBINITERROR Initialization of EAServer connection failed.

-21 PBORCA_CBBUILDERROR Deployment failed with errors.

See also

PBORCA_BuildProject

PBORCA_BuildProjectEx

2.7 PBORCA_CompileEntryImport

Description

Imports the source code for a PowerBuilder object into a library and compiles it.

Syntax

INT PBORCA_CompileEntryImport (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType,

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 26

 lpszComments,
 LPTSTR lpszEntrySyntax,
 LONG lEntrySyntaxBuffSize,
 PBORCA_ERRPROC pCompErrorProc,
 LPVOID pUserData);

Table 2.10:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Pointer to a string whose value is the file
name of the library into which you want to
import the object.

lpszEntryName Pointer to a string whose value is the name of
the object being imported.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being imported. Values are:

PBORCA_APPLICATION

PBORCA_BINARY

PBORCA_DATAWINDOW

PBORCA_FUNCTION

PBORCA_MENU

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

lpszComments Pointer to a string whose value is the
comments you are providing for the object.

lpszEntrySyntax Pointer to a buffer whose value is source
code for the object to be imported. If
an export header exists in the source
code it is ignored. The source encoding
for lpszEntrySyntax is specified by
the eImportEncoding property in the
PBORCA_CONFIG_SESSION structure.

lEntrySyntaxBuffSize Length of the lpszEntrySyntax buffer. This
length is specified in bytes regardless of the
source encoding.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 27

Argument Description

pCompErrorProc Pointer to the
PBORCA_CompileEntryImport callback
function. The callback function is called for
each error that occurs as the imported object
is compiled.

The information ORCA passes to the
callback function is error level, message
number, message text, line number, and
column number, stored in a structure of type
PBORCA_COMPERR. The object name and
script name are part of the message text.

If you don't want to use a callback function,
set pCompErrorProc to 0.

pUserData Pointer to user data to be passed to the
PBORCA_CompileEntryImport callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback
function stores the error information as well
as information about the size of the buffer.

If you are not using a callback function, set
pUserData to 0.

Return value

INT. Typical return codes are:

Table 2.11:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Bad library name, library not found, or object
could not be saved in the library

-6 PBORCA_LIBNOTINLIST Library not in list

-8 PBORCA_COMPERROR Compile error

-9 PBORCA_INVALIDNAME Name does not follow PowerBuilder naming
rules

-13 PBORCA_CURRAPPLNOTSET The current application has not been set

Usage

You must set the library list and current Application object before calling this function.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 28

PowerBuilder

In PowerBuilder 10 and higher, you must specify the source encoding for the
objects to be imported. You do this by setting the eImportEncoding property in the
PBORCA_CONFIG_SESSION structure and calling PBORCA_ConfigureSession.
For ANSI clients the default source encoding is ANSI/DBCS; for Unicode clients the
default source encoding is Unicode.

Importing objects with embedded binary information

Two separate calls to PBORCA_CompileEntryImport are required to import objects
containing embedded binary data such as OLE objects. The first call imports the source
component. The second call imports the binary component using an otEntryType argument
set to PBORCA_BINARY and an lpszEntrySyntax argument pointing to the start of the
binary header record.

When errors occur

When errors occur during importing, the object is brought into the library but might need
editing. An object with minor errors can be opened in its painter for editing. If the errors
are severe enough, the object can fail to open in the painter and you will have to export the
object, fix the source code, and import it again. If errors are due to the order in which the
objects are compiled, you can call the PBORCA_ApplicationRebuild function after all the
objects are imported.

Caution

When you import an entry with the same name as an existing entry, the old entry is
deleted before the import takes place. If an import fails, the old object will already be
deleted.

For information about callback processing for errors, see
PBORCA_CompileEntryImportList.

Examples

This example imports a DataWindow called d_labels into the library DWOBJECTS.PBL.
The source code is stored in a buffer called szEntrySource.

Each time an error occurs, PBORCA_CompileEntryImport calls the callback
CompileEntryErrors. In the code you write for CompileEntryErrors, you store the error
messages in the buffer pointed to by lpUserData:

PBORCA_ERRPROC fpError;
int nReturnCode;

fpError = (PBORCA_ERRPROC) ErrorProc;
nReturnCode = PBORCA_CompileEntryImport(
 lpORCA_Info->hORCASession,
 _TEXT("c:\\app\\dwobjects.pbl)",
 _TEXT("d_labels"), PBORCA_DATAWINDOW,
 (LPTSTR) szEntrySource, 60000,
 fpError, lpUserData);

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 29

This example reads a source file, determines the encoding format of the source file, and
imports it into a PBL. If the file contains an embedded binary object, this is also imported
using a second call to PBORCA_CompileEntryImport.

// Headers, Defines, Typdefs
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <tchar.h>
extern "C" {
#include "pborca.h"
}
// Global Variables
HPBORCA hPbOrca;
PBORCA_ERRPROC fpError;
// Function Declarations
void CALLBACK ErrorProc(PBORCA_COMPERR *lpCompErr,
 LPVOID lpUserData);

// NAME: Impbin.cpp
// Synopsis: Import w_edit_connect.srw (which contains
// an embedded OLE object) into a work PBL.
// This example can be compiled as an ANSI client
// or a Unicode client. To compile as Unicode
// use /DUNICODE /D_UNICODE compiler directives.
#if defined (UNICODE)
INT wmain (int argc, wchar_t *argv[])
#else
INT main (int argc, char *argv[])
#endif
{
 LPTSTR pszLibraryName[5];
 LPTSTR pszImportFile;
 HANDLE hOpenFile = NULL;
 INT iErrCode;
 BOOL rc;
 wchar_t chMarker;
 unsignedchar chMarker3;
 DWORD dBytesRead;
 DWORD dFileSize;
 PBORCA_CONFIG_SESSION Config;
 LPBYTE pReadBuffer = NULL;
 LPBYTE pEndBuffer;
 INT iSourceSize;
 INT iBinarySize;
pszLibraryName[0] = _TEXT("c:\\pb12.5\\main\\pbls\\qadb\\qadbtest\\qadbtest.pbl");
pszLibraryName[1] = _TEXT("c:\\pb12.5\\main\\pbls\\qadb\\shared_obj\
\shared_obj.pbl");
pszLibraryName[2] = _TEXT("c:\\pb12.5\\main\\pbls\\qadb\\datatypes\\datatype.pbl");
pszLibraryName[3] = _TEXT("c:\\pb12.5\\main\\pbls\\qadb\\chgreqs\\chgreqs.pbl");
pszLibraryName[4] = _TEXT("c:\\pb12.5\\main\\orca\\testexport\\work.pbl");
pszImportFile = _TEXT("c:\\pb12.5\\main\\pbls\\qadb\\qadbtest\
\w_edit_connect.srw");
memset(&Config, 0x00, sizeof(PBORCA_CONFIG_SESSION));
PbOrca = PBORCA_SessionOpen();
// Delete and re-create work.pbl
iErrCode = PBORCA_LibraryDelete(hPbOrca, pszLibraryName[4]);
iErrCode = PBORCA_LibraryCreate(hPbOrca,
 pszLibraryName[4], _TEXT("work pbl"));
iErrCode = PBORCA_SessionSetLibraryList(hPbOrca,
 pszLibraryName, 5);

if (iErrCode != PBORCA_OK)

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 30

 goto TestExit;
iErrCode = PBORCA_SessionSetCurrentAppl(hPbOrca,
 pszLibraryName[0], _TEXT("qadbtest"));
if (iErrCode != PBORCA_OK)
 goto TestExit;
// PBORCA_CompileEntryImport ignores export headers,
// so the ORCA application must progrmmatically
// determine the source encoding of the import file.
// This is done by reading the first two or three
// bytes of the file.
hOpenFile = CreateFile(pszImportFile, GENERIC_READ, 0,
 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if(hOpenFile == INVALID_HANDLE_VALUE)
 goto TestExit;
rc = ReadFile(hOpenFile, (LPVOID)&chMarker,
 sizeof(wchar_t), &dBytesRead, NULL);
if(rc)
{
 if (chMarker == 0xfeff)
 Config.eImportEncoding = PBORCA_UNICODE;
 else if (chMarker == 0xbbef)
 {
 rc = ReadFile(hOpenFile, (LPVOID)&chMarker3,
 sizeof(CHAR),&dBytesRead, NULL);
 if (chMarker3 == 0xbf)
 Config.eImportEncoding = PBORCA_UTF8;
 }
 else if (memcmp((LPBYTE) &chMarker, "HA", 2) == 0)
 Config.eImportEncoding = PBORCA_HEXASCII;
 else
 Config.eImportEncoding = PBORCA_ANSI_DBCS;

// Now allocate memory for a source buffer and read
// entire file
SetFilePointer(hOpenFile, 0, NULL, FILE_BEGIN);
dFileSize = GetFileSize(hOpenFile, NULL) ;
pReadBuffer = (LPBYTE) malloc((size_t) dFileSize + 2);
rc = ReadFile(hOpenFile, pReadBuffer, dFileSize,
 &dBytesRead, NULL);
// Append a null terminator to enable strstr() call
pEndBuffer = pReadBuffer + dFileSize;
memset(pEndBuffer, 0x00, 2); // unicode EOF marker
if (!rc)
 goto TestExit;
// Determine if the object includes a binary component.
// If it does, then make two separate calls to
// PBORCA_CompileEntryImport.
if (Config.eImportEncoding == PBORCA_UNICODE)
{
 LPWSTR
 pszUniBinHeader;
 LPWSTR
 pUniBinStart;
 pszUniBinHeader = "Start of PowerBuilder Binary
 Data Section";
 pUniBinStart = wcsstr((const wchar_t *)
 pReadBuffer, pszUniBinHeader);

 if (pUniBinStart)
 {
 pEndBuffer = (LPBYTE) pUniBinStart;
 iSourceSize = (INT) (pEndBuffer - pReadBuffer);
 iBinarySize = (INT) (dFileSize - iSourceSize);
 }

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 31

 else
 {
 iSourceSize = (INT) dFileSize;
 iBinarySize = 0;
 }
}
else
{
 LPSTR pszAnsiBinHeader;
 LPSTR pAnsiBinStart;
 pszAnsiBinHeader = "Start of PowerBuilder Binary
 Data Section";
 pAnsiBinStart = (LPSTR) strstr((const char *)
 pReadBuffer, (const char *) pszAnsiBinHeader);
 if (pAnsiBinStart)
 {
 pEndBuffer = (LPBYTE) pAnsiBinStart;
 iSourceSize = (INT) (pEndBuffer - pReadBuffer);
 iBinarySize = (INT) (dFileSize - iSourceSize);
 }
 else
 {
 iSourceSize = (INT) dFileSize;
 iBinarySize = 0;
 }
 }
// Configure ORCA session to read appropriate source
// encoding
iErrCode = PBORCA_ConfigureSession(hPbOrca, &Config);

// Now import the source for the entry
fpError = (PBORCA_ERRPROC) ErrorProc;
iErrCode = PBORCA_CompileEntryImport(
 hPbOrca,
 pszLibraryName[4],
 _TEXT("w_edit_connect"), PBORCA_WINDOW,
 _TEXT("test embedded OLE object"),
 (LPTSTR) pReadBuffer, iSourceSize,
 fpError, NULL);
if (iErrCode != PBORCA_OK)
 goto TestExit;
if (iBinarySize > 0)
{
 iErrCode = PBORCA_CompileEntryImport(
 hPbOrca,
 pszLibraryName[4],
 _TEXT("w_edit_connect"), PBORCA_BINARY,
 NULL,
 (LPTSTR) pEndBuffer, iBinarySize,
 fpError, NULL);
}
}
TestExit:
if (hOpenFile != INVALID_HANDLE_VALUE)
 CloseHandle(hOpenFile);
if (pReadBuffer)
 free(pReadBuffer);
PBORCA_SessionClose(hPbOrca);
return iErrCode;
}
// Callback error procedure used by the call to compile
// an object. In this example it is supplied by the
// program and is not a method of the ORCA class.
void CALLBACK ErrorProc(PBORCA_COMPERR *lpCompErr,

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 32

 LPVOID lpUserData)
{
 _tprintf(_TEXT("%s \n"), lpCompErr->lpszMessageText);
}

See also

PBORCA_LibraryEntryExport

PBORCA_CompileEntryImportList

PBORCA_CompileEntryRegenerate

PBORCA_ApplicationRebuild

2.8 PBORCA_CompileEntryImportList
Description

Imports the source code for a list of PowerBuilder objects into libraries and compiles them.
The name of each object to be imported is held in an array. Other arrays hold the destination
library, object type, comments, and source code. The arrays must have an element for every
object.

Syntax

INT PBORCA_CompileEntryImportList (PBORCA hORCASession,
 LPTSTR far *pLibraryNames,
 LPTSTR far *pEntryNames,
 PBORCA_TYPE far *otEntryTypes,
 LPTSTR far *pComments,
 LPTSTR far *pEntrySyntaxBuffers,
 LONG far *pEntrySyntaxBuffSizes,
 INT iNumberOfEntries,
 PBORCA_ERRPROC pCompErrorProc,
 LPVOID pUserData);

Table 2.12:

Argument Description

hORCASession Handle to previously established ORCA
session.

*pLibraryNames Pointer to an array of strings whose values
are the file names of libraries into which you
want to import the corresponding objects.

*pEntryNames Pointer to an array of strings whose values
are the names of objects to be imported into
the corresponding libraries.

*otEntryTypes Pointer to an array whose values are the
object types of the library entries, expressed
as enumerated data type PBORCA_TYPE.
Values are:

PBORCA_APPLICATION

PBORCA_DATAWINDOW

PBORCA_FUNCTION

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 33

Argument Description
PBORCA_MENU

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

PBORCA_BINARY

*pComments Pointer to an array of strings whose values
are the comments for the corresponding
objects.

*pEntrySyntaxBuffers Pointer to an array of strings whose values
are the source code for the corresponding
objects.

*pEntrySyntaxBuffSizes Pointer to an array of longs whose values
are the lengths of the strings pointed to by
*pEntrySyntaxBuffers

iNumberOfEntries Number of entries to be imported, which is
the same as the array length of all the array
arguments.

pCompErrorProc Pointer to the
PBORCA_CompileEntryImportList callback
function. The callback function is called for
each error that occurs when imported objects
are compiled.

The information ORCA passes to the
callback function is error level, message
number, message text, line number, and
column number, stored in a structure of type
PBORCA_COMPERR. The object name and
script name are part of the message text.

If you don't want to use a callback function,
set pCompErrorProc to 0.

pUserData Pointer to user data to be passed to the
PBORCA_CompileEntryImportList callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 34

Argument Description
function formats the error information as well
as information about the size of the buffer.

If you are not using a callback function, set
pUserData to 0.

Return value

INT. Typical return codes are:

Table 2.13:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Bad library name, library not found, or object
couldn't be saved in the library

-6 PBORCA_LIBNOTINLIST Library not in list

-7 PBORCA_LIBIOERROR Library I/O error

-8 PBORCA_COMPERROR Compile error

-9 PBORCA_INVALIDNAME Name does not follow PowerBuilder naming
rules

-13 PBORCA_CURRAPPLNOTSET The current application has not been set

Usage

You must set the library list and current Application object before calling this function.

PBORCA_CompileEntryImportList is useful for importing several interrelated objects -- for
example, a window, its menu, and perhaps a user object that it uses.

How imported objects are processed

ORCA imports all the objects in the list, compiling each object type definition. If no errors
occur, then ORCA compiles all the objects in all the listed libraries.

Object dependencies

In the list of objects to be imported, put ancestor objects before their descendant
objects so that the ancestors are imported first.

In the list of objects, put a user object before objects that refer to that user object so that the
referenced object is imported first.

If objects refer to each other, call PBORCA_ApplicationRebuild to get an error-free
compilation.

Populating the information arrays for imported objects

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 35

The information for each imported object is contained in several parallel arrays. For example,
if a DataWindow named d_labels is the third element in the object name array (subscript 2),
then a pointer to the name of its destination library is the third element in the library name
array; its object type is the third element in the object type array; and the pointer to its source
code buffer is the third element in the syntax buffer array.

Using PBORCA_BINARY to specify entry type

This value of the PBORCA_TYPE enumerated data type should be used when importing
or exporting entries that contain embedded binary information such as OLE objects. The
binary information is imported from a buffer previously filled on export with the hexascii
representation of the binary data.

For sample code demonstrating using PBORCA_BINARY on import, see Examples [35].

When errors occur

When errors occur during importing, the object is brought into the library but may need
editing. An object with minor errors can be opened in its painter for editing. If the errors
are severe enough, the object can fail to open in the painter, and you will have to export the
object, fix the source code, and import it again. If errors are due to the order in which the
objects are compiled, you can call the PBORCA_ApplicationRebuild function after all the
objects are imported.

Caution

When you import an entry with the same name as an existing entry, the old entry is
deleted before the import takes place. If an import fails, the old object will already
have been deleted.

Processing errors in the callback function

For each error that occurs during compiling, ORCA calls the callback function pointed
to in pCompErrorProc. How that error information is returned to your calling program
depends on the processing you provide in the callback function. ORCA passes information
to the callback function about an error in the structure PBORCA_COMPERR. The callback
function can examine that structure and store any information it wants in the buffer pointed to
by pUserData.

Because you do not know how many errors will occur, it is hard to predict the size of the
pUserData buffer. It is up to your callback function to keep track of the available space in the
buffer.

Examples

This example builds the arrays required to import three objects into two libraries (the
example assumes that source code for the objects has already been set up in the variables
szWindow1, szWindow2, and szMenu1) and imports the objects.

Each time an error occurs, PBORCA_CompileEntryImportList calls the callback
CompileEntryErrors. In the code you write for CompileEntryErrors, you store the error
messages in the buffer pointed to by lpUserData. In the example, the lpUserData buffer has
already been set up:

LPTSTR lpLibraryNames[3];

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 36

LPTSTR lpObjectNames[3];
PBORCA_TYPE ObjectTypes[3];
LPTSTR lpObjComments[3];
LPTSTR lpSourceBuffers[3];
long BuffSizes[3];
PBORCA_ERRPROC fpError;
int nReturnCode;

fpError = (PBORCA_ERRPROC) ErrorProc;
// Indicate Unicode source encoding
lpORCA_Info->pConfig->eImportEncoding = PBORCA_UNICODE;
PBORCA_ConfigureSession(lpORCA_Info->hORCASession,
 lpORCA_Info->pConfig);

// specify the library names
lpLibraryNames[0] =
 _TEXT("c:\\appeon\\pb2017\\demo\\windows.pbl");
lpLibraryNames[1] =
 _TEXT("c:\\appeon\\pb2017\\demo\\windows.pbl");
lpLibraryNames[2] =
 _TEXT("c:\\appeon\\pb2017\\demo\\menus.pbl");

// specify the object names
lpObjectNames[0] = _TEXT("w_ancestor");
lpObjectNames[1] = _TEXT("w_descendant");
lpObjectNames[2] = _TEXT("m_actionmenu");

// set up object type array
ObjectTypes[0] = PBORCA_WINDOW;
ObjectTypes[1] = PBORCA_WINDOW;
ObjectTypes[2] = PBORCA_MENU;

// specify object comments
lpObjComments[0] = _TEXT("Ancestor window");
lpObjComments[1] = _TEXT("descendant window");
lpObjComments[2] = _TEXT("Action menu");

// set pointers to source code
lpSourceBuffers[0] = (LPTSTR) szWindow1;
lpSourceBuffers[1] = (LPTSTR) szWindow2;
lpSourceBuffers[2] = (LPTSTR) szMenu1;

// Set up source code lengths array
BuffSizes[0] = _tcslen(szWindow1)*2;
 //Unicode source buffer
BuffSizes[1] = _tcslen(szWindow2)*2;
 //Size is always in bytes
BuffSizes[2] = _tcslen(szMenu1)*2;

nReturnCode = PBORCA_CompileEntryImportList(
 lpORCA_Info->hORCASession,
 lpLibraryNames, lpObjectNames, ObjectTypes,
 lpObjComments, lpSourceBuffers, BuffSizes, 3,
 fpError, lpUserData);

For more information about setting up the data buffer for the callback, see Content of a
callback function and the example for PBORCA_LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_LibraryEntryExport

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 37

PBORCA_CompileEntryImport

PBORCA_CompileEntryRegenerate

PBORCA_ApplicationRebuild

2.9 PBORCA_CompileEntryRegenerate

Description

Compiles an object in a PowerBuilder library.

Syntax

INT PBORCA_CompileEntryRegenerate (PBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType,
 PBORCA_ERRPROC pCompErrorProc,
 LPVOID pUserData);

Table 2.14:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Pointer to a string whose value is the file
name of the library containing the object to
be compiled.

lpszEntryName Pointer to a string whose value is the name of
the object to be compiled.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being compiled. Values are:

PBORCA_APPLICATION

PBORCA_DATAWINDOW

PBORCA_FUNCTION

PBORCA_MENU

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

pCompErrorProc Pointer to the
PBORCA_CompileEntryRegenerate callback

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 38

Argument Description
function. The callback function is called
for each error that occurs as the object is
compiled.

The information ORCA passes to the
callback function is error level, message
number, message text, line number, and
column number, stored in a structure of type
PBORCA_COMPERR. The object name and
script name are part of the message text.

If you don't want to use a callback function,
set pCompErrorProc to 0.

pUserData Pointer to user data to be passed to the
PBORCA_CompileEntryRegenerate callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback
function stores the error information as well
as information about the size of the buffer.

If you are not using a callback function, set
pUserData to 0.

Return value

INT. Typical return codes are:

Table 2.15:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-5 PBORCA_LIBLISTNOTSET Library list not set

-6 PBORCA_LIBNOTINLIST Library not in library list

-7 PBORCA_LIBIOERROR Library I/O error

-11 PBORCA_COMPERROR Compile error

Usage

You must set the library list and current Application object before calling this function.

When errors occur

In order to fix errors that occur during the regeneration, you need to export the source code,
fix the errors, and import the object, repeating the process until it compiles correctly.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 39

Sometimes you can open objects with minor errors in a PowerBuilder painter and fix them,
but an object with major errors must be exported and fixed.

For information about callback processing for errors, see
PBORCA_CompileEntryImportList.

Examples

This example compiles a DataWindow called d_labels in the library DWOBJECTS.PBL.

Each time an error occurs, PBORCA_CompileEntryRegenerate calls the callback
CompileEntryErrors. In the code you write for CompileEntryErrors, you store the error
messages in the buffer pointed to by lpUserData. In the example, the lpUserData buffer has
already been set up:

PBORCA fpError;
int nReturnCode;
fpError = (PBORCA_ERRPROC) ErrorProc;
nReturnCode = PBORCA_CompileEntryRegenerate(
 lpORCA_Info->hORCASession,
 _TEXT("c:\\app\\dwobjects.pbl"),
 _TEXT("d_labels"), PBORCA_DATAWINDOW,
 fpError, lpUserData);

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_LibraryEntryExport

PBORCA_CompileEntryImport

PBORCA_CompileEntryImportList

PBORCA_ApplicationRebuild

2.10 PBORCA_ConfigureSession

Description

PBORCA_ConfigureSession facilitates backward compatibility with PowerBuilder 10. It
increases the flexibility of the API and minimizes the changes necessary to other ORCA
function signatures.

Syntax

INT PBORCA_ConfigureSession (PBORCA hORCASession, PPBORCA_CONFIG_SESSION
 pSessionConfig);

Table 2.16:

Argument Description

hORCASession Handle to previously established ORCA
session.

pSessionConfig Structure that lets the ORCA client
specify the behavior of subsequent
requests. Settings remain in effect for the

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 40

Argument Description
duration of the session or until you call
PBORCA_ConfigureSession again. Be sure
to specify all of the settings each time you
call PBORCA_ConfigureSession.

Return value

INT. Typical return codes are:

Table 2.17:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Session not open or null pConfig pointer

Usage

Create an instance of a PBORCA_CONFIG_SESSION structure and populate it with
your configuration settings. Then call PBORCA_ConfigureSession immediately after
SessionOpen. You can also call this function anytime thereafter to reset configuration
properties.

typedef enum pborca_clobber
{
 PBORCA_NOCLOBBER,
 PBORCA_CLOBBER,
 PBORCA_CLOBBER_ALWAYS
 PBORCA_CLOBBER_DECIDED_BY_SYSTEM
} PBORCA_ENUM_FILEWRITE_OPTION;

typedef enum pborca_type
{
 PBORCA_UNICODE,
 PBORCA_UTF8,
 PBORCA_HEXASCII,
 PBORCA_ANSI_DBCS
} PBORCA_ENCODING;

typedef struct pborca_configsession
{
 PBORCA_ENUM_FILEWRITE_OPTION
 eClobber; // overwrite existing file?
 PBORCA_ENCODING eExportEncoding;
 // Encoding of exported source
 BOOL bExportHeaders;
 // Format source with export header
 BOOL bExportIncludeBinary; // Include the binary
 BOOL bExportCreateFile; // Export source to a file
 LPTSTR pExportDirectory;
 // Directory for exported files
 PBORCA_ENCODING eImportEncoding;
 // Encoding of imported source
 BOOL bDebug; // Debug compiler directive
 PVOID filler2;// Reserved for future use
 PVOID filler3;
 PVOID filler4;

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 41

} PBORCA_CONFIG_SESSION, FAR *PPBORCA_CONFIG_SESSION;

Table 2.18:

Member variable Description

eClobber Specifies when to overwrite existing files on
the file system. This property is used by:

PBORCA_LibraryEntryExport

PBORCA_LibraryEntryExportEx

PBORCA_DynamicLibraryCreate

PBORCA_ExecutableCreate

PBORCA_LibraryDelete

You can set any of the following
eClobber values for a configuration session:

• PBORCA_NOCLOBBER

never overwrites an existing file

• PBORCA_CLOBBER

overwrites existing files that are not write-
protected

• PBORCA_CLOBBER_ALWAYS

overwrites existing files that are write-
protected

• PBORCA_CLOBBER_DECIDED_BY_SYSTEM

causes the functions mentioned above to
behave as they did in prior ORCA releases

eExportEncoding Specifies the source encoding used by
PBORCA_LibraryEntryExport:

• PBORCA_UNICODE

default for Unicode ORCA clients

• PBORCA_ANSI_DBCS

default for ANSI ORCA clients

• PBORCA_UTF8

• PBORCA_HEXASCII

bExportHeaders If you set this variable to TRUE,
PBORCA_LibraryEntryExport generates
export headers. The default value is FALSE
for backward compatibility.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 42

Member variable Description

bExportIncludeBinary If you set this variable to TRUE,
PBORCA_LibraryEntryExport generates the
binary component of an object in addition to
the source component. The default value is
FALSE for backward compatibility.

bExportCreateFile If you set this variable to TRUE,
PBORCA_LibraryEntryExport exports
source to a file. The generated file name is
the PowerBuilder object entry name with
a .sr? file extension. The default value is
FALSE.

pExportDirectory Directory where you export PowerBuilder
objects if bExportCreateFile is TRUE.

eImportEncoding Source encoding. Subsequent calls to
PBORCA_CompileEntryImport and
PBORCA_CompileEntryImportList expect
the lpszEntrySyntax argument to contain this
information.

bDebug If you set this value to FALSE, the DEBUG
conditional compiler directive is turned off.
All subsequent methods that invoke the
PowerScript compiler will use this setting
when evaluating script inside DEBUG
conditional compilation blocks. This setting
is not used in Windows Forms targets, since
PBORCA_DeployWinFormProject uses a
setting in the Project object of these targets
to determine whether to enable or disable the
DEBUG directive.

Examples

This example populates the PBORCA_CONFIG_SESSION structure with configuration
settings:

INT ConfigureSession(LPTSTR sEncoding)
{
 INT iErrCode = -1;
 lpORCA_Info->pConfig = (PPBORCA_CONFIG_SESSION)
 malloc(sizeof(PBORCA_CONFIG_SESSION));
 memset(lpORCA_Info->pConfig, 0,
 sizeof(PBORCA_CONFIG_SESSION));

if (!_tcscmp(sEncoding, _TEXT("ANSI")))
{
 lpORCA_Info->pConfig->eExportEncoding = PBORCA_ANSI_DBCS;
 lpORCA_Info->pConfig->eImportEncoding = PBORCA_ANSI_DBCS;
}
else if (!_tcscmp(sEncoding, _TEXT("UTF8")))
{

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 43

lpORCA_Info->pConfig->eExportEncoding = PBORCA_UTF8;
lpORCA_Info->pConfig->eImportEncoding = PBORCA_UTF8;
}
else if (!_tcscmp(sEncoding, _TEXT("HEXASCII")))
{
 lpORCA_Info->pConfig->eExportEncoding = PBORCA_HEXASCII;
 lpORCA_Info->pConfig->eImportEncoding = PBORCA_HEXASCII;
}
else
{
 lpORCA_Info->pConfig->eExportEncoding = PBORCA_UNICODE;
 lpORCA_Info->pConfig->eImportEncoding = PBORCA_UNICODE;
}
lpORCA_Info->pConfig->eClobber = PBORCA_CLOBBER;
lpORCA_Info->pConfig->bExportHeaders = TRUE;
lpORCA_Info->pConfig->bExportIncludeBinary = FALSE;
lpORCA_Info->pConfig->bExportCreateFile = FALSE;
lpORCA_Info->pConfig->pExportDirectory = NULL;
lpORCA_Info->pConfig->bDebug = FALSE;
iErrCode = PBORCA_ConfigureSession(
 lpORCA_Info->hORCASession,
 lpORCA_Info->pConfig);
 return iErrCode;
}

See also

PBORCA_ApplicationRebuild

PBORCA_CompileEntryImportList

PBORCA_SetDebug

2.11 PBORCA_DeployWinFormProject
Description

Generates and compiles Windows Forms project and deploys the assemblies according to the
specifications contained in the project objects.

Syntax

INT PBORCA_DeployWinFormProject (
 HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszProjectName,
 LPTSTR lpszIconFileName,
 PBORCA_DOTNETPROC pDotNetProc
 LPVOID pUserData);

Table 2.19:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Pointer to a string whose value is the file
name containing the project entry.

lpszProjectName Project object containing deployment
information.

lpszIconFileName Name of the application icon file.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 44

Argument Description

pDotNetProc Pointer to the PBORCA_DOTNETPROC
callback function. The callback function is
called for each message that is generated.
 All ORCA_ERROR_MESSAGE
messages are returned first, followed by
all PBORCA_WARNING_MESSAGE
messages, and then, by all
PBORCA_UNSUPPORTED_FEATURE
messages.

pUserData Pointer to user data to be passed to the
PBORCA_DOTNETPROC callback
function.

Return value

INT. The typical return codes are:

Table 2.20:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Load library for necessary DLL failed

-5 PBORCA_LIBLISTNOTSET SessionSetLibraryList is prerequisite

-13 PBORCA_CURRAPPLNOTSET SessionSetCurrentAppl is prerequisite

-19 PBORCA_CBCREATEERROR Component builder create error

-20 PBORCA_CBINITERROR Component builder initialization error

-21 PBORCA_CBBUILDERROR Component builder build error

Usage

Error information is returned by first creating a callback function associated with
PBORCA_DeployWinFormProject that uses the following function signature:

void MyDotNetMessageProc (
 PPBORCA_DOTNET_MESSAGE pMsg,
 LPVOID
 pMyUserData)

The pMsg argument is a pointer to the following structure:

typedef struct pborca_dotnetmsg {
 PBROCA_DOTNET_MSGTYPE
 eMessageType;
 LPTSTR lpszMessageText;
 }
 PBORCA_DOTNET_MESSAGE FAR *PPBORCA_DOTNET_MESSAGE;

The eMessageType argument uses the following enumeration:

typedef enum pborca_dotnet_msgtype

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 45

 {
 PBORCA_ERROR_MESSAGE,
 PBORCA_WARNING_MESSAGE,
 PBORCA_UNSUPPORTED_FEATURE
 } PBORCA_DOTNET_MSGTYPE;

Messages are returned to the caller one at a time in the following order:
PBORCA_ERROR_MESSAGE messages, PBORCA_WARNING_MESSAGE messages,
and PBORCA_UNSUPPORTED_FEATURE messages.

2.12 PBORCA_DynamicLibraryCreate
Description

Creates a PowerBuilder dynamic library (PBD) or PowerBuilder DLL.

Syntax

INT PBORCA_DynamicLibraryCreate (
 HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszPBRName,
 LONG lFlags,
 LPVOID pbcPara = NULL);

Table 2.21:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Pointer to a string whose value is the file
name of the library to be built into a PBD or
DLL.

lpszPBRName Pointer to a string whose value is the name of
a PowerBuilder resource file whose objects
you want to include in the PBD or DLL. If
the application has no resource file, specify 0
for the pointer.

lFlags A long value that indicates which code
generation options to apply when building
the library.

Setting lFlags to 0 generates a native Pcode
executable.

For information about setting
machine code generation options, see
PBORCA_ExecutableCreate

pbcPara Reserved for internal use. Always set
pbcPara to NULL.

Return value

INT. The typical return codes are:

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 46

Table 2.22:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Bad library name

-17 PBORCA_PBDCREATERROR PBD create error

Usage

Before calling this function, you must have previously set the library list and current
application.

If you plan to build an executable in which some of the libraries are dynamic libraries, you
must build those dynamic libraries before building the executable.

Location and name of file

The resulting PBD or DLL will be created in the same directory using the same file name as
the PBL. Only the extension changes. For example, for a library C:\DIR1\DIR2\PROG.PBL:

• The output for Pcode is C:\DIR1\DIR2\PROG.PBD

• The output for machine code is C:\DIR1\DIR2\PROG.DLL

eClobber settings

If the PBD or DLL already exists in the file system, the current setting of the eClobber
property in the ORCA configuration block (that you set with a PBORCA_ConfigureSession
call) determines whether PBORCA_DynamicLibraryCreate succeeds or fails.

Table 2.23:

Current eClobber setting PBORCA_DynamicLibraryCreate

PBORCA_NOCLOBBER Fails when an executable file already exists
in the file system, regardless of the file
attribute settings

PBORCA_CLOBBER or
PBORCA_CLOBBER_DECIDED_BY_SYSTEM

Succeeds when the existing executable file
has read-write attributes; fails when the
executable file has read-only attributes

PBORCA_CLOBBER_ALWAYS Succeeds regardless of the file attribute
settings of an existing executable file

Examples

This example builds a machine code DLL from the library PROCESS.PBL. It is optimized
for speed with trace and error context information:

LPTSTR pszLibFile;
LPTSTR pszResourceFile;
long lBuildOptions;
int rtn;
// copy file names
pszLibFile = _TEXT("c:\\app\\process.pbl");
pszResourceFile = _TEXT("c:\\app\\process.pbr");

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 47

lBuildOptions = PBORCA_MACHINE_CODE_NATIVE |
 PBORCA_MACHINE_CODE_OPT_SPEED |
 PBORCA_TRACE_INFO | PBORCA_ERROR_CONTEXT;

// create DLL from library
rtn = PBORCA_DynamicLibraryCreate(
 lpORCA_Info->hORCASession,
 pszLibFile, pszResourceFile, lBuildOptions, NULL);

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_ConfigureSession

PBORCA_ExecutableCreate

2.13 PBORCA_ExecutableCreate
Description

Creates a PowerBuilder executable with Pcode or machine code. For a machine code
executable, you can request several debugging and optimization options.

The ORCA library list is used to create the application. You can specify which of the libraries
have already been built as PBDs or DLLs and which will be built into the executable file.

Syntax

INT PBORCA_ExecutableCreate (HPBORCA hORCASession,
 LPTSTR lpszExeName,
 LPTSTR lpszIconName,
 LPTSTR lpszPBRName,
 PBORCA_LNKPROC pLinkErrProc,
 LPVOID pUserData,
 INT FAR *iPBDFlags,
 INT iNumberOfPBDFlags,
 LONG lFlags,
 LPVOID pbcPara = NULL);

Table 2.24:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszExeName Pointer to a string whose value is the name of
the executable file to be created.

lpszIconName Pointer to a string whose value is the name of
an icon file. The icon file must already exist.

lpszPBRName Pointer to a string whose value is the name
of a PowerBuilder resource file. The resource
file you name must already exist. If the
application has no resource file, specify 0 for
the pointer.

pLinkErrProc Pointer to the PBORCA_ExecutableCreate
callback function. The callback function is
called for each link error that occurs.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 48

Argument Description
The information ORCA passes to the
callback function is the message text, stored
in a structure of type PBORCA_LINKERR.

If you don't want to use a callback function,
set pLinkErrProc to 0.

pUserData Pointer to user data to be passed to the
PBORCA_ExecutableCreate callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback
function formats the directory information
as well as information about the size of the
buffer.

If you are not using a callback function, set
pUserData to 0.

iPBDFlags Pointer to an array of integers that indicate
which libraries on the ORCA session's
library list should be built into PowerBuilder
dynamic libraries (PBDs). Each array
element corresponds to a library in the library
list. Flag values are:

• 0 -- Include the library's objects in the
executable file

• 1 -- The library is already a PBD or
PowerBuilder DLL and its objects should
not be included in the executable

iNumberOfPBDFlags The number of elements in the array
iPBDFlags, which should be the same as the
number of libraries on ORCA's library list.

lFlags A long value whose value indicates which
code generation options to apply when
building the executable.

Setting lFlags to 0 generates a native Pcode
executable. Additional settings for machine
code are described in Usage below.

Setting lFlags to PBORCA_X64 generates a
64-bit executable.

pbcPara Reserved for internal use. Always set
pbcPara to NULL.

Return value

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 49

INT. Typical return codes are:

Table 2.25:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-5 PBORCA_LIBLISTNOTSET Library list not set

-12 PBORCA_LINKERROR Link error

-13 PBORCA_CURRAPPLNOTSET Current application not set

Usage

You must set the library list and current Application object before calling this function.

For more information about various options for building executables, see the PowerBuilder
User's Guide.

Libraries used in the executable

The executable being built incorporates the objects in the libraries on ORCA's library list.
The library list must be set by calling PBORCA_SessionSetLibraryList before creating an
executable.

The iPBDFlags argument lets you specify which libraries are PBDs and which will be built
into the executable file. In the iPBDFlags array, each integer is associated with a library on
ORCA's library list. When you set an integer to 1, the objects in the corresponding library are
already built into a PBD file (if you are generating Pcode) or a PowerBuilder DLL (if you are
generating machine code). Objects in libraries whose integer flag is set to 0 will be built into
the main executable file.

Before you call PBORCA_ExecutableCreate, you must call
PBORCA_DynamicLibraryCreate to create the PBDs or DLLs that you identify in the
iPBDFlags array.

Setting code generation options

In the lFlags argument, you can set various machine code generation options by setting
individual bits. The following table shows what each defined bit means in the long value
and what constants to use in a bitwise OR expression to set the option. Bits not listed are
reserved.

Table 2.26:

Bit Value and meaning Constant to include in
ORed expression

0 0 = Pcode

1 = Machine code

To get machine code, use
PBORCA_MACHINE_CODE
or
PBORCA_MACHINE_CODE_NATIVE

1 0 = Native code

1 = 16-bit code

To get 16-bit
machine code, use
PBORCA_MACHINE_CODE

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 50

Bit Value and meaning Constant to include in
ORed expression
and
PBORCA_MACHINE_CODE_16

To get 16-bit Pcode, use
PBORCA_P_CODE_16

Not supported after
PowerBuilder 7

PowerBuilder no longer
supports the Windows 3.x 16-
bit platform.

2 0 = No Open Server

1 = Open Server

To build an Open
Server executable, use
PBORCA_OPEN_SERVER

Not supported after
PowerBuilder 5

The OpenClientServer driver
was no longer supported after
PowerBuilder 5. Therefore,
the Open Server executable
option is no longer supported.

4 0 = No trace information

1 = Trace information

To get trace information, use
PBORCA_TRACE_INFO

5 0 = No error context

1 = Error context

To get error context
information, use
PBORCA_ERROR_CONTEXT

Error context provides the
script name and line number
of an error.

8 0 = No optimization

1 = Optimization

See Bit 9

9 0 = Optimize for speed

1 = Optimize for space

To optimize the
executable for speed, use
PBORCA_MACHINE_CODE_OPT
or
PBORCA_MACHINE_CODE_OPT_SPEED

To optimize the
executable for space, use
PBORCA_MACHINE_CODE_OPT
and
PBORCA_MACHINE_CODE_OPT_SPACE

10 0 = Old style visual controls PBORCA_NEW_VISUAL_STYLE_CONTROLS

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 51

Bit Value and meaning Constant to include in
ORed expression

1 = New style visual controls
(XP)

12 1 = PocketBuilder desktop PBORCA_PK_DESKTOP
(Obsolete)

13 1 = PocketBuilder ARM PBORCA_PK_PPCARM
(Obsolete)

14 1 = PocketBuilder EM86 PBORCA_PK_PPCEM86
(Obsolete)

15 1 = PocketBuilder X86 PBORCA_PK_PPCX86
(Obsolete)

16 1 = PocketBuilder
Smartphone ARM

PBORCA_PK_SPHONEARM
(Obsolete)

17 1 = PocketBuilder
Smartphone X86

PBORCA_PK_SPHONEX86
(Obsolete)

To generate Pcode, lFlags must be 0. The other bits are not relevant:

lFlags = PBORCA_P_CODE;

To set the lFlags argument for various machine-code options, the bit flag constants are ORed
together to get the combination you want:

lFlags = PBORCA_MACHINE_CODE |
 PBORCA_MACHINE_CODE_OPT |
 PBORCA_MACHINE_CODE_OPT_SPACE;

Constants are defined in PBORCA.H for typical option combinations. They are:

PBORCA_MACHINE_DEFAULT

Meaning native machine code optimized for speed

Equivalent to:

PBORCA_MACHINE_CODE |
 PBORCA_MACHINE_CODE_OPT_SPEED

PBORCA_MACHINE_DEBUG

Meaning native machine code with trace information and error context information

Equivalent to:

PBORCA_MACHINE_CODE | PBORCA_TRACE_INFO |
 PBORCA_ERROR_CONTEXT

eClobber setting

If the executable file already exists in the file system, the current setting of the eClobber
property in the ORCA configuration block (that you set with a PBORCA_ConfigureSession
call) determines whether PBORCA_ExecutableCreate succeeds or fails.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 52

Table 2.27:

Current eClobber setting PBORCA_ExecutableCreate

PBORCA_NOCLOBBER or
PBORCA_CLOBBER_DECIDED_BY_SYSTEM

Fails when an executable file already exists
in the file system, regardless of the file
attribute settings

PBORCA_CLOBBER Succeeds when the existing executable file
has read-write attributes; fails when the
executable file has read-only attributes

PBORCA_CLOBBER_ALWAYS Succeeds regardless of the file attribute
settings of an existing executable file

Examples

This example builds a native machine code executable optimized for speed using ORCA's
library list and current application. Suppose that the current ORCA session has a library list
with four entries. The example generates DLLs for the last two libraries.

The callback function is called LinkErrors, and lpUserData points to an empty buffer to be
populated by the callback function:

LPTSTR pszExecFile;
LPTSTR pszIconFile;
LPTSTR pszResourceFile;
int iPBDFlags[4];
long lBuildOptions;
int rtn;

fpLinkProc = (PBORCA_LNKPROC) LinkProc;
// specify file names
pszExecFile = _TEXT("c:\\app\\process.exe");
pszIconFile = _TEXT("c:\\app\\process.ico");
pszResourceFile = _TEXT("c:\\app\\process.pbr");

iPBDFlags[0] = 0;
iPBDFlags[1] = 0;
iPBDFlags[2] = 1;
iPBDFlags[3] = 1;

lBuildOptions = PBORCA_MACHINE_CODE_NATIVE |
 PBORCA_MACHINE_CODE_OPT_SPEED;

// create executable
rtn = PBORCA_ExecutableCreate(
 lpORCA_Info->hORCASession,
 pszExecFile, pszIconFile, pszResourceFile,
 fpLinkProc, lpUserData,
 (INT FAR *) iPBDFlags, 4, lBuildOptions, NULL);

For more information about setting up the data buffer for the callback, see Content of a
callback function and the example for PBORCA_LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_ConfigureSession

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 53

PBORCA_DynamicLibraryCreate

2.14 PBORCA_LibraryCommentModify

Description

Modifies the comment for a PowerBuilder library.

Syntax

INT PBORCA_LibraryCommentModify (HPBORCA hORCASession,
 LPTSTR lpszLibName,
 LPTSTR lpszLibComments);

Table 2.28:

Argument Description

hORCASession Handle to previously established ORCA
session

lpszLibName Pointer to a string whose value is the name
of the library whose comments you want to
change

lpszLibComments Pointer to a string whose value is the new
library comments

Return value

INT. Typical return codes are:

Table 2.29:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Library not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

Usage

You don't need to set the library list or current application before calling this function.

Examples

This example changes the comments for the library MASTER.PBL:

LPTSTR pszLibraryName;
LPTSTR pszLibraryComments;
// Specify library name and comment string
pszLibraryName =
 _TEXT("c:\\appeon\\pb2017\\demo\\master.pbl");
pszLibraryComments =
 _TEXT("PBL contains ancestor objects for XYZ app.");
// Insert comments into library

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 54

lpORCA_Info->lReturnCode =
 PBORCA_LibraryCommentModify(
 lpORCA_Info->hORCASession,
 pszLibraryName, pszLibraryComments);

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_LibraryCreate

2.15 PBORCA_LibraryCreate

Description

Creates a new PowerBuilder library.

Syntax

INT PBORCA_LibraryCreate (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszLibraryComments);

Table 2.30:

Argument Description

hORCASession Handle to previously established ORCA
session

lpszLibraryName Pointer to a string whose value is the file
name of the library to be created

lpszLibraryComments Pointer to a string whose value is a comment
documenting the new library

Return value

INT. Typical return codes are:

Table 2.31:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

-8 PBORCA_OBJEXISTS Object already exists

-9 PBORCA_INVALIDNAME Library name is not valid

Usage

You do not need to set the library list or current application before calling this function.

Adding objects

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 55

PBORCA_LibraryCreate creates an empty library file on disk. You can add objects
to the library from other libraries with functions like PBORCA_LibraryEntryCopy
and PBORCA_CheckOutEntry. If you set the library list so that it includes the new
library and then set the current application, you can import object source code with
PBORCA_CompileEntryImport and PBORCA_CompileEntryImportList.

Examples

This example creates a library called NEWLIB.PBL and provides a descriptive comment:

LPTSTR pszLibraryName;
LPTSTR pszLibraryComments;
// Specify library name and comment string
pszLibraryName =
 _TEXT("c:\\appeon\\pb2017\\demo\\newlib.pbl");
pszLibraryComments =
 _TEXT("PBL contains ancestor objects for XYZ app.");
// Create the library
lpORCA_Info->lReturnCode =
 PBORCA_LibraryCreate(lpORCA_Info->hORCASession,
 pszLibraryName, pszLibraryComments);

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_LibraryDelete

2.16 PBORCA_LibraryDelete
Description

Deletes a PowerBuilder library file from disk.

Syntax

INT PBORCA_LibraryDelete (HPBORCA hORCASession,
 LPTSTR
 lpszLibraryName);

Table 2.32:

Argument Description

hORCASession Handle to previously established ORCA
session

lpszLibraryName Pointer to a string whose value is the file
name of the library to be deleted

Return value

INT. Typical return codes are:

Table 2.33:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 56

Return code Description

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

Usage

You do not need to set the library list or current application before calling this function. You
must set the eClobber configuration property to PBORCA_CLOBBER_ALWAYS if you
want to delete a PowerBuilder library that has a read-only attribute.

Examples

This example deletes a library called EXTRA.PBL:

LPTSTR pszLibraryName;
// Specify library name
pszLibraryName =
 _TEXT("c:\\appeon\\pb2017\\demo\\extra.pbl");

// Delete the Library
lpORCA_Info->lReturnCode =
 PBORCA_LibraryDelete(lpORCA_Info->hORCASession,
 pszLibraryName);

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_ConfigureSession

PBORCA_LibraryCreate

2.17 PBORCA_LibraryDirectory

Description

Reports information about the directory of a PowerBuilder library, including the list of
objects in the directory.

Syntax

INT PBORCA_LibraryDirectory (HPBORCA hORCASession,
 LPTSTR lpszLibName,
 LPTSTR lpszLibComments,
 INT iCmntsBuffLen,
 PBORCA_LISTPROC pListProc,
 LPVOID pUserData);

Table 2.34:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibName Pointer to a string whose value is the file
name of the library for which you want
directory information.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 57

Argument Description

lpszLibComments Pointer to a buffer in which ORCA will put
comments stored with the library.

iCmntsBuffLen Length of the buffer (specified in
TCHARs) pointed to by lpszLibComments.
The recommended length is
PBORCA_MAXCOMMENTS + 1.

pListProc Pointer to the PBORCA_LibraryDirectory
callback function. The callback function is
called for each entry in the library.

The information ORCA passes to the
callback function is entry name, comments,
size of entry, and modification time, stored in
a structure of type PBORCA_DIRENTRY.

pUserData Pointer to user data to be passed to the
PBORCA_LibraryDirectory callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback
function formats the directory information
as well as information about the size of the
buffer.

Return value

INT. Typical return codes are:

Table 2.35:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

Usage

You do not need to set the library list or current application before calling this function.

Comments for the library

PBORCA_LibraryDirectory puts the library comments in the string pointed to by
lpszLibComments. The callback function can store comments for individual objects in the
UserData buffer.

Information about library entries

The information you get back about the individual entries in the library depends on the
processing you provide in the callback function. ORCA passes information to the callback
function about a library entry in the structure PBORCA_DIRENTRY. The callback function

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 58

can examine that structure and store any information it wants in the buffer pointed to by
pUserData.

When you call PBORCA_LibraryDirectory, you do not know how many entries there are in
the library. There are two approaches you can take:

• Allocate a reasonably sized block of memory and reallocate the buffer if it overflows
(illustrated in About ORCA callback functions).

• Let lpUserDataBuffer point to the head of a linked list. For each PBORCA_DIRENTRY
returned, dynamically allocate a new list entry to capture the required information
(illustrated in the example that follows).

Examples

This example defines a linked list header:

typedef struct libinfo_head
{
 TCHAR szLibName[PBORCA_SCC_PATH_LEN];
 TCHAR szComments[PBORCA_MAXCOMMENT+1];
 INT iNumEntries;
 PLIBINFO_ENTRY pEntryAnchor;
 PLIBINFO_ENTRY pLast;
} LIBINFO_HEAD, FAR *PLIBINFO_HEAD;

Each invocation of the DirectoryProc callback function allocates a new linked list entry,
defined as follows:

typedef struct libinfo_entry
{
 TCHAR szEntryName[41];
 LONG lEntrySize;
 LONG lObjectSize;
 LONG lSourceSize;
 PBORCA_TYPE otEntryType;
 libinfo_entry * pNext;
} LIBINFO_ENTRY, FAR *PLIBINFO_ENTRY;

PBORCA_LISTPROC fpDirectoryProc;
PLIBINFO_HEAD pHead;
fpDirectoryProc = (PBORCA_LISTPROC) DirectoryProc;
pHead = new LIBINFO_HEAD;
_tcscpy(pHead->szLibName, _TEXT("c:\\myapp\test.pbl");
memset(pHead->szComments, 0x00,
 sizeof(pHead->szComments));
pHead->iNumEntries = 0;
pHead->pEntryAnchor = NULL;
pHead->pLast = NULL;
lpORCA_Info->lReturnCode = PBORCA_LibraryDirectory(
 lpORCA_Info->hORCASession,
 pHead->szLibName,
 pHead->szComments,
 (PBORCA_MAXCOMMENT+1), // specify length in TCHARs
 fpDirectoryProc,
 pHead);
// See PBORCA_LibraryEntryInformation example
if (lpORCA_Info->lReturnCode == PBORCA_OK)
 GetEntryInfo(pHead);
CleanUp(pHead);
// CleanUp - Release allocated memory
INT CleanUp(PLIBINFO_HEAD pHead)

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 59

{
 INT iErrCode = PBORCA_OK;
 PLIBINFO_ENTRY pCurrEntry;
 PLIBINFO_ENTRY pNext;
 INT idx;
for (idx = 0, pCurrEntry = pHead->pEntryAnchor;
 (idx < pHead->iNumEntries) && pCurrEntry; idx++)
{
 pNext = pCurrEntry->pNext;
 delete pCurrEntry;
 if (pNext)
 pCurrEntry = pNext;
 else pCurrEntry = NULL;
}
delete pHead;
return iErrCode;
}
// Callback procedure used by PBORCA_LibraryDirectory
void __stdcall DirectoryProc(PBORCA_DIRENTRY
 *pDirEntry, LPVOID lpUserData)
{
 PLIBINFO_HEAD pHead;
 PLIBINFO_ENTRY pNewEntry;
 PLIBINFO_ENTRY pTemp;

 pHead = (PLIBINFO_HEAD) lpUserData;
 pNewEntry = (PLIBINFO_ENTRY) new LIBINFO_ENTRY;
 memset(pNewEntry, 0x00, sizeof(LIBINFO_ENTRY));
 if (pHead->iNumEntries == 0)
 {
 pHead->pEntryAnchor = pNewEntry;
 pHead->pLast = pNewEntry;
 }
 else
 {
 pTemp = pHead->pLast;
 pTemp->pNext = pNewEntry;
 pHead->pLast = pNewEntry;
 }
 pHead->iNumEntries++;
 _tcscpy(pNewEntry->szEntryName,
 pDirEntry->lpszEntryName);
 pNewEntry->lEntrySize = pDirEntry->lEntrySize;
 pNewEntry->otEntryType = pDirEntry->otEntryType;

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_LibraryEntryInformation

2.18 PBORCA_LibraryEntryCopy
Description

Copies a PowerBuilder library entry from one library to another.

Syntax

INT PBORCA_LibraryEntryCopy (HPBORCA hORCASession,
 LPTSTR lpszSourceLibName,
 LPTSTR lpszDestLibName,
 LPTSTR lpszEntryName,

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 60

 PBORCA_TYPE otEntryType);

Table 2.36:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszSourceLibName Pointer to a string whose value is the file
name of the source library containing the
object.

lpszDestLibName Pointer to a string whose value is the file
name of the destination library to which you
want to copy the object.

lpszEntryName Pointer to a string whose value is the name of
the object being copied.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being copied. Values are:

PBORCA_APPLICATION

PBORCA_DATAWINDOW

PBORCA_FUNCTION

PBORCA_MENU

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

Return value

INT. Typical return codes are:

Table 2.37:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

Usage

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 61

You do not need to set the library list or current application before calling this function.

Unlike PBORCA_CompileEntryImport, which requires two separate API calls,
PBORCA_LibraryEntryCopy automatically copies the source component and then copies the
binary component of an object if it is present.

Examples

This example copies a DataWindow named d_labels from the library SOURCE.PBL to
DESTIN.PBL:

lpORCA_Info->lReturnCode = PBORCA_LibraryEntryCopy(
 lpORCA_Info->hORCASession,
 _TEXT("c:\\app\\source.pbl"),
 _TEXT("c:\\app\\destin.pbl"),
 _TEXT("d_labels"), PBORCA_DATAWINDOW);

This example assumes that the pointers for lpszSourceLibraryName,
lpszDestinationLibraryName, and lpszEntryName point to valid library and object names and
that otEntryType is a valid object type:

lpORCA_Info->lReturnCode = PBORCA_LibraryEntryCopy(
 lpORCA_Info->hORCASession,
 lpszSourceLibraryName,
 lpszDestinationLibraryName,
 lpszEntryName, otEntryType);

See also

PBORCA_LibraryDelete

PBORCA_LibraryEntryMove

2.19 PBORCA_LibraryEntryDelete
Description

Deletes a PowerBuilder library entry.

Syntax

INT PBORCA_LibraryEntryDelete (HPBORCA hORCASession,
 LPTSTR lpszLibName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType);

Table 2.38:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibName Pointer to a string whose value is the file
name of the library containing the object.

lpszEntryName Pointer to a string whose value is the name of
the object being deleted.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being deleted. Values are:

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 62

Argument Description
PBORCA_APPLICATION

PBORCA_DATAWINDOW

PBORCA_FUNCTION

PBORCA_MENU

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

Return value

INT. Typical return codes are:

Table 2.39:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

Usage

You do not need to set the library list or current application before calling this function.

Examples

This example deletes a DataWindow named d_labels from the library SOURCE.PBL:

lrtn = PBORCA_LibraryEntryDelete(
 lpORCA_Info->hORCASession,
 _TEXT("c:\\app\\source.pbl"),
 _TEXT("d_labels"), PBORCA_DATAWINDOW);

This example assumes that the pointers lpszLibraryName and lpszEntryName point to valid
library and object names and that otEntryType is a valid object type:

lpORCA_Info->lReturnCode = PBORCA_LibraryEntryDelete(
 lpORCA_Info->hORCASession,
 lpszLibraryName,
 lpszEntryName,
 otEntryType);

See also

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 63

PBORCA_LibraryEntryCopy

PBORCA_LibraryEntryMove

2.20 PBORCA_LibraryEntryExport

Description

Exports the source code for a PowerBuilder library entry to a source buffer or file.

Syntax

INT PBORCA_LibraryEntryExport (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType,
 LPTSTR lpszExportBuffer,
 LONG lExportBufferSize);

Table 2.40:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Pointer to a string whose value is the file
name of the library containing the object you
want to export.

lpszEntryName Pointer to a string whose value is the name of
the object being exported.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being exported. Values are:

PBORCA_APPLICATION

PBORCA_BINARY

PBORCA_DATAWINDOW

PBORCA_FUNCTION

PBORCA_MENU

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

lpszExportBuffer Pointer to the data buffer in which ORCA
stores the code for the exported source when

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 64

Argument Description
the PBORCA_CONFIG_SESSION property
bExportCreateFile is FALSE. This argument
can be NULL if bExportCreateFile is TRUE.

lExportBufferSize Size in bytes of lpszExportBuffer.
This argument is not required if the
PBORCA_CONFIG_SESSION property
bExportCreateFile is TRUE.

Return value

INT. Typical return codes are:

Table 2.41:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

-10 PBORCA_BUFFERTOOSMALL Buffer size is too small

-33 PBORCA_DBCSERROR Locale setting error when converting
Unicode to ANSI_DBCS

Usage

You do not need to set the library list or current application before calling this function.

Changes for PowerBuilder 10 and higher

In PowerBuilder 10 and higher, you can customize behavior of this function using
PBORCA_CONFIG_SESSION variables. However, for backward compatibility, the
default behavior has not changed.

How the source code is returned

If pConfigSession->bExportCreateFile is FALSE, the object's source code is returned in the
export buffer. If the bExportCreateFile property is TRUE, the source is written to a file in the
directory pointed to by pConfigSession->pExportDirectory.

If pConfigSession->bExportHeaders is TRUE, ORCA writes the two export header lines to
the beginning of the export buffer or file. The exported source code includes carriage return
(hex 0D) and new line (hex 0A) characters at the end of each display line.

Source code encoding

PowerBuilder exports source in four different encoding formats. By default, ANSI/DBCS
clients export source in PBORCA_ANSI_DBCS format; Unicode clients export source in

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 65

PBORCA_UNICODE format. You can explicitly request an encoding format by setting
pConfigSession->eExportEncoding.

Binary component

In PowerBuilder, you can explicitly request that the binary component of an object
be included automatically in the export buffer or file by setting pConfigSession-
>eExportIncludeBinary = TRUE.

This is the recommended setting for new development. Because previous releases of ORCA
did not support this feature, the old technique is still supported.

Denigrated technique

As in previous versions, after each PBORCA_LibraryEntryExport request,
you can call PBORCA_LibraryEntryInformation with an otEntryType of
PBORCA_BINARY. This function returns PBORCA_OK when binary data
exists and you could make a second PBORCA_LibraryEntryExport call with
otEntryType set to PBORCA_BINARY. For backward compatibility, setting
otEntryType to PBORCA_BINARY causes the following configuration properties
to be ignored: pConfigSession->bExportHeaders =TRUE and pConfigSession-
>bExportIncludeBinary = TRUE.

Size of source code

To find out the size of the source for an object before calling the export function, call the
PBORCA_LibraryEntryInformation function first and use the pEntryInfo->lSourceSize
information to calculate an appropriate lExportBufferSize value. lExportBufferSize is the size
of lpszExportBuffer represented in bytes.

ORCA export processing performs all necessary data conversions before determining
whether the allocated buffer is large enough to contain the export source. If not, it returns a
PBORCA_BUFFERTOOSMALL return code. If lExportBufferSize is exactly the required
length, PBORCA_LibraryEntryExport succeeds, but does not append a null terminator to the
exported source. If lExportBufferSize is sufficiently large, ORCA appends a null terminator.
Appeon recommends allocating a buffer sufficiently large to accommodate data conversions
and a null terminator. lExportBufferSize is ignored if pConfigSession->bExportCreateFile =
TRUE.

Determining the source size after data conversion and export

If you need to know the size of the actual buffer or file returned, you can call
PBORCA_LibraryEntryExportEx instead of PBORCA_LibraryEntryExport. These
functions behave exactly alike except that the PBORCA_LibraryEntryExportEx function
signature includes an additional *plReturnSize argument.

Overwriting existing export files

The value of pConfigSession->eClobber determines whether existing export files are
overwritten. If the export files do not exist, PBORCA_LibraryEntryExport returns
PBORCA_OK regardless of the eClobber setting. The following table shows how the
eClobber setting changes the action of PBORCA_LibraryEntryExport when export files
already exist. A return value of PBORCA_OBJEXISTS means that the existing files were not
overwritten.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 66

Table 2.42:

PConfigSession->eClobber
setting

Return value if read/write
file exists

Return value if read-only
file exists

PBORCA_NOCLOBBER PBORCA_OBJEXISTS PBORCA_OBJEXISTS

PBORCA_CLOBBER PBORCA_OK PBORCA_OBJEXISTS

PBORCA_CLOBBER_ALWAYSPBORCA_OK PBORCA_OK

PBORCA_CLOBBER_DECIDED_BY_SYSTEMPBORCA_OBJEXISTS PBORCA_OBJEXISTS

Examples

This example exports a DataWindow named d_labels from the library SOURCE.PBL. It
puts the PBORCA_UTF8 source code in a buffer called szEntrySource. Export headers are
included:

TCHAR szEntrySource[60000];
// Indicate UTF8 source encoding
lpORCA_Info->pConfig->eExportEncoding = PBORCA_UTF8;
// Request export headers
lpORCA_Info->pConfig->bExportHeaders = TRUE;
// Write output to memory buffer
lpORCA_Info->pConfig->bExportCreateFile = FALSE;
// Override existing session configuration
PBORCA_ConfigureSession(lpORCA_Info->hORCASession,
lpORCA_Info->pConfig);
lpORCA_Info->lReturnCode = PBORCA_LibraryEntryExport(
lpORCA_Info->hORCASession,
 _TEXT("c:\\app\\source.pbl"),
 _TEXT("d_labels"), PBORCA_DATAWINDOW,
 (LPTSTR) szEntrySource, 60000);

This example exports a DataWindow named d_labels from the library SOURCE.PBL. It
writes the PBORCA_UNICODE source code to c:\app\d_labels.srd. Export headers are
included:

// Indicate UNICODE source encoding
lpORCA_Info->pConfig->eExportEncoding = PBORCA_UNICODE;
// Write to file
lpORCA_Info->pConfig->bExportCreateFile = TRUE;
// Specify output directory
lpORCA_Info->pConfig->pExportDirectory = _TEXT("c:\\app");
// Request export headers
lpORCA_Info->pConfig->bExportHeaders = TRUE;
// Override existing session configuration
PBORCA_ConfigureSession(lpORCA_Info->hORCASession,
lpORCA_Info->pConfig);
// Perform the actual export
lpORCA_Info->lReturnCode = PBORCA_LibraryEntryExport(
 lpORCA_Info->hORCASession,
 _TEXT("c:\\app\\source.pbl"),
 _TEXT("d_labels"), PBORCA_DATAWINDOW,
 NULL, 0);

This example exports a Window named w_connect from the library SOURCE.PBL.
It contains an embedded OLE object. Both the source code and the binary object are
exported to c:\app\w_connect.srw. Export headers are included and the source is written in
PBORCA_ANSI_DBCS format:

// Indicate ANSI_DBCS source encoding

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 67

lpORCA_Info->pConfig->eExportEncoding = PBORCA_ANSI_DBCS;
// Export to a file
lpORCA_Info->pConfig->bExportCreateFile = TRUE;
// Specify output directory
lpORCA_Info->pConfig->pExportDirectory = _TEXT("c:\\app");
// Request export headers
lpORCA_Info->pConfig->bExportHeaders = TRUE;
// Include binary component
lpORCA_Info->pConfig->bExportIncludeBinary = TRUE;
// Override existing session configuration
PBORCA_ConfigureSession(lpORCA_Info->hORCASession,
lpORCA_Info->pConfig);
// Perform the actual export
lpORCA_Info->lReturnCode = PBORCA_LibraryEntryExport(
 lpORCA_Info->hORCASession,
 _TEXT("c:\\app\\source.pbl"),
 _TEXT("w_connect"), PBORCA_WINDOW,
 NULL, 0);

See also

PBORCA_ConfigureSession

PBORCA_CompileEntryImport

PBORCA_LibraryEntryExportEx

2.21 PBORCA_LibraryEntryExportEx

Description

Exports the source code for a PowerBuilder library entry to a text buffer.

Syntax

INT PBORCA_LibraryEntryExportEx (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType,
 LPTSTR lpszExportBuffer,
 LONG lExportBufferSize
 LONG *plReturnSize);

Table 2.43:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Pointer to a string whose value is the file
name of the library containing the object you
want to export.

lpszEntryName Pointer to a string whose value is the name of
the object being exported.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being exported. Values are:

PBORCA_APPLICATION

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 68

Argument Description
PBORCA_BINARY

PBORCA_DATAWINDOW

PBORCA_FUNCTION

PBORCA_MENU

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

lpszExportBuffer Pointer to the data buffer in which ORCA
stores the code for the exported source when
the PBORCA_CONFIG_SESSION property
bExportCreateFile is FALSE. This argument
can be NULL if bExportCreateFile is TRUE.

lExportBufferSize Size in bytes of lpszExportBuffer.
This argument is not required if the
PBORCA_CONFIG_SESSION property
bExportCreateFile is TRUE.

*plReturnSize The size, in BYTES, of the exported source
buffer or file.

Return value

INT. Typical return codes are:

Table 2.44:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

-10 PBORCA_BUFFERTOOSMALL Buffer size is too small

-33 PBORCA_DBCSERROR Locale setting error when converting
Unicode to ANSI_DBCS

Usage

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 69

This function behaves exactly like PBORCA_LibraryEntryExport, except that with
PBORCA_LibraryEntryExportEx, the size of the exported source is returned to the caller in
the additional *plReturnSize argument.

See also

PBORCA_ConfigureSession

PBORCA_CompileEntryImport

PBORCA_LibraryEntryExport

2.22 PBORCA_LibraryEntryInformation

Description

Returns information about an object in a PowerBuilder library. Information includes
comments, size of source, size of object, and modification time.

Syntax

INT PBORCA_LibraryEntryInformation (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType,
 PPBORCA_ENTRYINFO pEntryInformationBlock);

Table 2.45:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Pointer to a string whose value is the file
name of the library containing the object for
which you want information.

lpszEntryName Pointer to a string whose value is the name of
the object for which you want information.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry. Values are:

PBORCA_APPLICATION

PBORCA_DATAWINDOW

PBORCA_FUNCTION

PBORCA_MENU

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

PBORCA_PIPELINE

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 70

Argument Description
PBORCA_PROJECT

PBORCA_PROXYOBJECT

PBORCA_BINARY

pEntryInformationBlock Pointer to PBORCA_ENTRYINFO structure
in which ORCA will store the requested
information (see Usage below).

Return value

INT. Typical return codes are:

Table 2.46:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

Usage

You do not need to set the library list or current application before calling this function.

How entry information is returned

PBORCA_LibraryEntryInformation stores information about an entry in the following
structure. You pass a pointer to the structure in the pEntryInformationBlock argument:

typedef struct PBORCA_EntryInfo
{
 TCHAR szComments[PBORCA_MAXCOMMENT + 1];
 LONG lCreateTime; // time of entry create-mod
 LONG lObjectSize; // size of object in bytes
 LONG lSourceSize; // size of source in bytes
} PBORCA_ENTRYINFO, FAR *PPBORCA_ENTRYINFO;

Use for the source code size

PBORCA_LibraryEntryInformation is often used to estimate the size in bytes of the source
buffer needed to obtain the export source of an object. The size of the exported source
varies depending on the ConfigureSession settings in effect. The following table shows
how ConfigureSession variables affect the lSourceSize value that LibraryEntryInformation
returns:

Table 2.47:

ConfigureSession variable Effect on ISourceSize

ANSI/DBCS ORCA client No effect. User should calculate required
buffer size based on the usage tips that follow
this table.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 71

ConfigureSession variable Effect on ISourceSize

eExportEncoding No effect.
PBORCA_LibraryEntryInformation always
returns the number of bytes required for
Unicode source.

bExportHeaders=TRUE If otEntryType is not PBORCA_BINARY,
lSourceSize will be increased by the number
of bytes needed to generate Unicode export
headers.

bExportIncludeBinary=TRUE If otEntryType is not PBORCA_BINARY,
lSourceSize will be increased by the number
of bytes needed to generate the Unicode
representation of the binary object.

Calculating buffer size needed for non-Unicode encodings

The size of the buffer required for non-Unicode export encodings cannot be calculated in
advance without actually performing the data transformation. Developers should make their
own estimate to arrive at a reasonable buffer size to allocate. For example, if the source for an
entry is entirely ANSI, simply divide the lSourceSize value by 2 and add 1 byte if you want a
null terminator. For Unicode source, add 2 bytes for the null terminator.

Using PBORCA_BINARY for entry type

In previous releases of ORCA, it was necessary to call PBORCA_LibraryEntryInformation
a second time with an otEntryType of PBORCA_BINARY to determine if an entry
contained embedded OLE controls. This call determined the size of the buffer needed to
hold the representation of the binary data to be exported. Although PowerBuilder still
supports this feature for backward compatibility, it is more efficient to set pConfigSession-
>bExportIncludBinary = TRUE to obtain a buffer size sufficient for both the source and
binary components of an entry.

Examples

This example obtains information about each object in a PBL. It is an extension of the
example for PBORCA_LibraryDirectory.

INT EntryInfo(PLIBINFO_HEAD pHead)
{
INT iErrCode;
INT idx;
PLIBINFO_ENTRY pCurrEntry;
PBORCA_ENTRYINFO InfoBlock;
INT iErrCount = 0;
for (idx = 0, pCurrEntry = pHead->pEntryAnchor;
 (idx < pHead->iNumEntries) && pCurrEntry;
 idx++, pCurrEntry = pCurrEntry->pNext)
 {
iErrCode = PBORCA_LibraryEntryInformation(
 lpORCA_Info->hORCASession pHead->szLibName,
 pCurrEntry->szEntryName,
 pCurrEntry->otEntryType, &InfoBlock);

 if (iErrCode == PBORCA_OK)

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 72

 {
 pCurrEntry->lSourceSize = InfoBlock.lSourceSize;
 pCurrEntry->lObjectSize = InfoBlock.lObjectSize;
 }
 else
 {
 ErrorMsg();
 iErrCount++;
 }
 }
 if (iErrCount)
 iErrCode = -1;
 return iErrCode;
}

See also

PBORCA_LibraryDirectory

PBORCA_LibraryEntryExport

2.23 PBORCA_LibraryEntryMove

Description

Moves a PowerBuilder library entry from one library to another.

Syntax

INT PBORCA_LibraryEntryMove (PBORCA hORCASession,
 LPTSTR lpszSourceLibName,
 LPTSTR lpszDestLibName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType);

Table 2.48:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszSourceLibName Pointer to a string whose value is the file
name of the source library containing the
object.

lpszDestLibName Pointer to a string whose value is the file
name of the destination library to which you
want to move the object.

lpszEntryName Pointer to a string whose value is the name of
the object being moved.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being moved. Values are:

PBORCA_APPLICATION

PBORCA_DATAWINDOW

PBORCA_FUNCTION

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 73

Argument Description
PBORCA_MENU

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

Return value

INT. Typical return codes are:

Table 2.49:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

Usage

You do not need to set the library list or current application before calling this function.

Like PBORCA_LibraryEntryCopy, one call to PBORCA_LibraryEntryMove automatically
moves the source component and then moves the binary component of an object if it is
present.

Examples

This example moves a DataWindow named d_labels from the library SOURCE.PBL to
DESTIN.PBL:

lpORCA_Info->lReturnCode = PBORCA_LibraryEntryMove(
 lpORCA_Info->hORCASession,
 _TEXT("c:\\app\\source.pbl"),
 _TEXT ("c:\\app\\destin.pbl"),
 _TEXT ("d_labels"), PBORCA_DATAWINDOW);

This example assumes that the pointers for lpszSourceLibraryName,
lpszDestinationLibraryName, and lpszEntryName point to valid library and object names and
that otEntryType is a valid object type:

lpORCA_Info->lReturnCode = PBORCA_LibraryEntryMove(
 lpORCA_Info->hORCASession,
 lpszSourceLibraryName, lpszDestinationLibraryName,
 lpszEntryName, otEntryType);

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 74

See also

PBORCA_LibraryEntryCopy

PBORCA_LibraryEntryDelete

2.24 PBORCA_ObjectQueryHierarchy

Description

Queries a PowerBuilder object to get a list of the objects in its ancestor hierarchy. Only
windows, menus, and user objects have an ancestor hierarchy that can be queried.

Syntax

INT PBORCA_ObjectQueryHierarchy (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType,
 PBORCA_HIERPROC pHierarchyProc,
 LPVOID pUserData);

Table 2.50:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Pointer to a string whose value is the file
name of the library containing the object
being queried.

lpszEntryName Pointer to a string whose value is the name of
the object being queried.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being queried. The only values allowed
are:

PBORCA_WINDOW

PBORCA_MENU

PBORCA_USEROBJECT

pHierarchyProc Pointer to the
PBORCA_ObjectQueryHierarchy callback
function. The callback function is called for
each ancestor object.

The information ORCA passes to the
callback function is the ancestor object
name, stored in a structure of type
PBORCA_HIERARCHY.

pUserData Pointer to user data to be passed to the
PBORCA_ObjectQueryHierarchy callback
function.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 75

Argument Description
The user data typically includes the buffer or
a pointer to the buffer in which the callback
function stores the ancestor names as well as
information about the size of the buffer.

Return value

INT. The return codes are:

Table 2.51:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-5 PBORCA_LIBLISTNOTSET Library list not set

-6 PBORCA_LIBNOTINLIST Library not in library list

-7 PBORCA_LIBIOERROR Library I/O error

-9 PBORCA_INVALIDNAME Name does not follow PowerBuilder naming
rules

Usage

You must set the library list and current Application object before calling this function.

Examples

This example queries the window object w_processdata in the library WINDOWS.PBL to
get a list of its ancestors. The lpUserData buffer was previously set up to point to space for
storing the list of names.

For each ancestor in the object's hierarchy, PBORCA_ObjectQueryHierarchy calls the
callback ObjectQueryHierarchy. In the code you write for ObjectQueryHierarchy, you store
the ancestor name in the buffer pointed to by lpUserData. In the example, the lpUserData
buffer has already been set up:

PBORCA_HIERPROC fpHierarchyProc;
fpHierarchyProc = (PBORCA_HIERPROC)GetHierarchy;
lpORCA_Info->lReturnCode = PBORCA_ObjectQueryHierarchy(
 _TEXT("c:\\app\\windows.pbl"),
 _TEXT("w_processdata"),
 PBORCA_WINDOW,
 fpHierarchyProc,
 lpUserData);

For more information about setting up the data buffer for the callback, see Content of a
callback function and the example for PBORCA_LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 76

See also

PBORCA_ObjectQueryReference

2.25 PBORCA_ObjectQueryReference

Description

Queries a PowerBuilder object to get a list of its references to other objects.

Syntax

INT PBORCA_ObjectQueryReference (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType,
 PBORCA_REFPROC pRefProc,
 LPVOID pUserData);

Table 2.52:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Pointer to a string whose value is the file
name of the library containing the object
being queried.

lpszEntryName Pointer to a string whose value is the name of
the object being queried.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being queried. Values are:

PBORCA_APPLICATION

PBORCA_DATAWINDOW

PBORCA_FUNCTION

PBORCA_MENU

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

pRefProc Pointer to the
PBORCA_ObjectQueryReference callback
function. The callback function is called for
each referenced object.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 77

Argument Description
The information ORCA passes to the
callback function is the referenced object
name, its library, and its object type, stored in
a structure of type PBORCA_REFERENCE.

pUserData Pointer to user data to be passed to the
PBORCA_ObjectQueryReference callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback
function stores the object information as well
as information about the size of the buffer.

Return value

INT. Typical return codes are:

Table 2.53:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-5 PBORCA_LIBLISTNOTSET Library list not set

-6 PBORCA_LIBNOTINLIST Library not in library list

-9 PBORCA_INVALIDNAME Name does not follow PowerBuilder naming
rules

Usage

You must set the library list and current Application object before calling this function.

Examples

This example queries the window object w_processdata in the library WINDOWS.PBL
to get a list of its referenced objects. For each object that w_processdata references,
PBORCA_ObjectQueryReference calls the callback ObjectQueryReference. In the code
you write for ObjectQueryReference, you store the object name in the buffer pointed to by
lpUserData. In the example, the lpUserData buffer has already been set up:

PBORCA_REFPROC fpRefProc;
fpRefProc = (PBORCA_REFPROC) GetReferences;
lpORCA_Info->lReturnCode = PBORCA_ObjectQueryReference(
 lpORCA_Info->hORCASession,
 _TEXT("c:\\app\\windows.pbl"),
 _TEXT("w_processdata"),
PBORCA_WINDOW,
fpRefProc,
lpUserData);

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 78

For more information about setting up the data buffer for the callback, see Content of a
callback function and the example for PBORCA_LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_ObjectQueryHierarchy

2.26 PBORCA_SccClose

Description

Closes the active SCC project.

Syntax

INT PBORCA_SccClose (HPBORCA hORCASession);

Table 2.54:

Argument Description

hORCASession Handle to previously established ORCA
session

Return value

INT.

Usage

This method calls SCCUninitialize to disconnect from the source control provider. Call
PBORCA_SccClose before calling PBORCA_SessionClose.

See also

PBORCA_SccConnect

2.27 PBORCA_SccConnect

Description

Initializes source control and opens a project.

Syntax

INT PBORCA_SccConnect (HPBORCA hORCASession, PBORCA_SCC *pConfig);

Table 2.55:

Argument Description

hORCASession Handle to previously established ORCA
session

*pConfig Pointer to a preallocated structure typically
initialized to zeros

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 79

Return value

INT. Typical return codes are:

Table 2.56:

Return code Description

0 PBORCA_OK Operation successful

-22 PBORCA_SCCFAILURE Could not connect to source control

-23 PBORCA_REGREADERROR Could not read registry

-24 PBORCA_LOADDLLFAILED Could not load DLL

-25 PBORCA_SCCINITFAILED Could not initialize SCC connection

-26 PBORCA_OPENPROJFAILED Could not open project

Usage

This method initializes a source control session based on the connection information supplied
in the PBORCA_SCC structure. The PBORCA_SCC structure is defined as follows:

typedef struct pborca_scc
{
 HWND hWnd;
 TCHAR szProviderName [PBORCA_SCC_NAME_LEN + 1];
 LONG *plCapabilities;
 TCHAR szUserID [PBORCA_SCC_USER_LEN + 1];
 TCHAR szProject [PBORCA_SCC_PATH_LEN + 1];
 TCHAR szLocalProjPath [PBORCA_SCC_PATH_LEN + 1];
 TCHAR szAuxPath [PBORCA_SCC_PATH_LEN + 1];
 TCHAR szLogFile [PBORCA_SCC_PATH_LEN + 1];
 LPTEXTOUTPROC pMsgHandler;
 LONG *pCommentLen;
 LONG lAppend;
 LPVOID pCommBlk;
} PBORCA_SCC;

You can either populate the structure manually or else call
PBORCA_SccGetConnectProperties to obtain the connection information associated with a
specific workspace file. This function:

• Opens the requested source control project

• Creates a CPB_OrcaSourceControl class that implements the PBORCA_SCC methods

• Defines a runtime environment that persists until PBORCA_SccClose is called

The runtime environment has four subsystems: runtime engine (rt), object manager (ob),
PowerScript compiler (cm), and storage manager (stg). The runtime environment is used
to process the target identified by a subsequent PBORCA_SccSetTarget call. To process
multiple targets, you must close the SCC connection, close the ORCA session, and open a
new ORCA session.

Examples

The following example connects to PBNative source control:

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 80

PBORCA_SCC sccConfig;
memset(&sccConfig, 0x00, sizeof(PBORCA_SCC));
// Manually set up connection properties to PBNative
_tcscpy(sccConfig.szProviderName, _TEXT("PB Native"));
_tcscpy(sccConfig.szProject,
 _TEXT("c:\\PBNative_Archive\\qadb"));
_tcscpy(sccConfig.szUserID, _TEXT("Joe"));
_tcscpy(sccConfig.szLogFile, _TEXT("c:\\qadb\\orcascc.log"));
_tcscpy(sccConfig.szLocalProjPath, _TEXT("c:\\qadb"));
sccConfig.lAppend = 0;
lpORCA_Info->lReturnCode = PBORCA_SccConnect(
 lpORCA_Info->hORCASession,
 &sccConfig);

See also

PBORCA_SccClose

PBORCA_SccConnectOffline

PBORCA_SccGetConnectProperties

PBORCA_SccSetTarget

2.28 PBORCA_SccConnectOffline

Description

Opens a source-controlled project for refreshing and rebuilding offline.

Syntax

INT PBORCA_SccConnectOffline (HPBORCA hORCASession,
 PBORCA_SCC *pConfig);

Table 2.57:

Argument Description

hORCASession Handle to previously established ORCA
session

*pConfig Pointer to a preallocated structure typically
initialized to zeros

Return value

INT. Typical return codes are:

Table 2.58:

Return code Description

0 PBORCA_OK Operation successful

-22 PBORCA_SCCFAILURE Could not connect to source control

-23 PBORCA_REGREADERROR Could not read registry

-24 PBORCA_LOADDLLFAILED Could not load DLL

-25 PBORCA_SCCINITFAILED Could not initialize SCC connection

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 81

Return code Description

-26 PBORCA_OPENPROJFAILED Could not open project

Usage

This function is applicable only when PBORCA_SCC_IMPRORTONLY is specified on the
subsequent PBORCA_SccSetTarget command.

Import-only processing assumes that all of the objects necessary to refresh
a source-controlled target already exist on the local project path. Therefore,
PBORCA_SccConnectOffline instantiates the ORCA source control class but does not
actually connect to an SCC provider.

This function is particularly useful for developers who use laptop computers. While
connected to the network, they can refresh their SCC client view. Then, during off hours,
they can perform the time-consuming process of refreshing and rebuilding their application
without the need for a network connection.

Examples

This example populates the PBORCA_SCC structure with connection information from the
PocketBuilder qadb.pkw workspace file located in the current working directory. It then
connects in offline mode and refreshes the qadbtest.pbt target that is located in the qadbtest
subdirectory under the current working directory. Only objects that are out of sync will be
refreshed. Objects checked out by the current user will not be overwritten:

PBORCA_SCC sccConfig;
TCHAR szWorkSpace[PBORCA_SCC_PATH_LEN];
TCHAR szTarget[PBORCA_SCC_PATH_LEN];
LONG lFlags;
memset(&sccConfig, 0x00, sizeof(PBORCA_SCC));
_tcscpy(szWorkSpace, _TEXT("qadb.pkw"));
lpORCA_Info->lReturnCode =
PBORCA_SccGetConnectProperties(
 lpORCA_Info->hORCASession,
 szWorkspace,
 &sccConfig);
if (lpORCA_Info->lReturnCode == PBORCA_OK)
 {
 // Specify a different log file for the build operation
 _tcscpy(sccConfig.szLogFile, _TEXT("bldqadb.log"));
 sccConfig.lAppend = 0;
 lpORCA_Info->lReturnCode = PBORCA_SccConnectOffline(
 lpORCA_Info->hORCASession, &sccConfig);
 if (lpORCA_Info->lReturnCode == PBORCA_OK)
 {
 _tcscpy(szTarget, _TEXT("qadbtest\\qadbtest.pkt"));
 lFlags = PBORCA_SCC_IMPORTONLY |
 PBORCA_SCC_OUTOFDATE |
 PBORCA_SCC_EXCLUDE_CHECKOUT;
 lpORCA_Info->lReturnCode = PBORCA_SccSetTarget(
 lpORCA_Info->hORCASession,
 szTarget,
 lFlags,
 NULL,
 NULL);
 if (lpORCA_Info->lReturnCode == PBORCA_OK)
 {
 lpORCA_Info->lReturnCode = PBORCA_SccRefreshTarget(
 lpORCA_Info->hORCASession, PBORCA_FULL_REBUILD);

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 82

 }
 }
}

See also

PBORCA_SccClose

PBORCA_SccConnect

PBORCA_SccGetConnectProperties

PBORCA_SccSetTarget

2.29 PBORCA_SccExcludeLibraryList
Description

Names the libraries in the target library list that should not be synchronized in the next
PBORCA_SccRefreshTarget operation.

Syntax

INT PBORCA_SccExcludeLibraryList (HPBORCA hORCASession,
 LPTSTR *pLibNames,
 INT iNumberofLibs);

Table 2.59:

Argument Description

hORCASession Handle to previously established ORCA
session

*pLibNames Names of the libraries not to be refreshed

iNumberofLibs Number of libraries not to be refreshed

Return value

INT.

Usage

This method is useful if PBLs are shared among multiple targets and you are certain that the
libraries you list have been successfully refreshed by a previous PBORCA_SccRefreshTarget
operation. The refresh target operation will not refresh the libraries that are excluded;
however, the excluded libraries will still be used in the full rebuild of the application.

Examples

A previous PBORCA_SccRefreshTarget operation has successfully refreshed three of the
four PocketBuilder libraries in this target library list.

LPTSTR pExcludeArray[3];
INT lExcludeCount = 3;
TCHAR szTarget[PBORCA_SCC_PATH_LEN];
LONG lFlags;
pExcludeArray[0] = new TCHAR[PBORCA_SCC_PATH_LEN];
pExcludeArray[1] = new TCHAR[PBORCA_SCC_PATH_LEN];
pExcludeArray[2] = new TCHAR[PBORCA_SCC_PATH_LEN];
_tcscpy(pExcludeArray[0],
_TEXT("..\\shared_obj\\shared_obj.pkl"));

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 83

_tcscpy(pExcludeArray[1],
_TEXT("..\\datatypes\\datatypes.pkl"));
_tcscpy(pExcludeArray[2],
_TEXT("..\\chgreqs\\chgreqs.pkl"));
// Open ORCA Session, connect to SCC
// --
_tcscpy(szTarget, _TEXT("dbauto\\dbauto.pkt"));
lFlags = PBORCA_SCC_IMPORTONLY | PBORCA_SCC_OUTOFDATE |
 PBORCA_SCC_EXCLUDE_CHECKOUT;
lpORCA_Info->lReturnCode = PBORCA_SccSetTarget(
lpORCA_Info->hORCASession, szTarget, lFlags, NULL, NULL);

if (lpORCA_Info->lReturnCode == PBORCA_OK)
 {
 lpORCA_Info->lReturnCode = PBORCA_SccExcludeLibraryList(
lpORCA_Info->hORCASession, pExcludeArray,
lExcludeCount);

if (lpORCA_Info->lReturnCode == PBORCA_OK)
{
lpORCA_Info->lReturnCode = PBORCA_SccRefreshTarget(
lpORCA_Info->hORCASession, PBORCA_FULL_REBUILD);
 }
 }
for (int i = 0; i < lExcludeCount; i++)
delete [] pExcludeArrary[i];

See also

PBORCA_SccRefreshTarget

PBORCA_SccSetTarget

2.30 PBORCA_SccGetConnectProperties

Description

Returns the SCC connection properties associated with a PowerBuilder workspace.

Syntax

INT PBORCA_SccGetConnectProperties (HPBORCA hORCASession,
 LPTSTR pWorkspaceFile,
 PBORCA_SCC *pConfig);

Table 2.60:

Argument Description

hORCASession Handle to previously established ORCA
session

pWorkspaceFile Fully qualified or relative file name of the
PowerBuilder workspace file (PBW)

*pConfig Pointer to a preallocated structure typically
initialized to zeros

Return value

INT. Typical return codes are:

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 84

Table 2.61:

Return code Description

0 PBORCA_OK Operation successful

-3 PBORCA_OBJNOTFOUND Could not find workspace file

Usage

This method simplifies the SCC connection process. Property values returned from the
workspace you include as an argument in the PBORCA_SccGetConnectProperties call
are stored in a preallocated structure, PBORCA_SCC. These properties allow a successful
connection to a given SCC provider and project, but you can override any of these properties.

The PBORCA_SCC structure is defined as follows:

typedef struct pborca_scc {
 HWND hWnd;
 TCHAR szProviderName [PBORCA_SCC_NAME_LEN + 1];
 LONG *plCapabilities;
 TCHAR szUserID [PBORCA_SCC_USER_LEN + 1];
 TCHAR szProject [PBORCA_SCC_PATH_LEN + 1];
 TCHAR szLocalProjPath [PBORCA_SCC_PATH_LEN + 1];
 TCHAR szAuxPath [PBORCA_SCC_PATH_LEN + 1];
 TCHAR szLogFile [PBORCA_SCC_PATH_LEN + 1];
 LPTEXTOUTPROC pMsgHandler;
 LONG *pCommentLen;
 LONG lAppend;
 LPVOID pCommBlk;
} PBORCA_SCC;

The variables in the PBORCA_SCC structure are described in the following table:

Table 2.62:

Member Description

hWnd Parent window handle whose value is
typically NULL.

szProviderName Name of the SCC provider.

*plCapabilities Pointer to value returned by
PBORCA_SccConnect. Used internally to
determine what features the SCC provider
supports.

szUserID User ID for the source control project.

szProject Name of the source control project.

szLocalProjPath Local root directory for the project.

szAuxPath The Auxiliary Project Path has different
meaning for every SCC vendor. It can
contain any string that the SCC provider
wants to associate with the project.
PBORCA_SccGetConnectProperties returns
this value to enable a silent connection
(without opening a dialog box from the SCC
provider).

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 85

Member Description

szLogFile Name of the log file for the SCC connection.

pMsgHandler Callback function for SCC messages.

*pCommentLen Pointer to value returned by
PBORCA_SccConnect. Length of comments
accepted by the SCC provider.

lAppend Determines whether to append to
(lAppend=1) or overwrite (lAppend=0) the
SCC log file.

pCommBlk Reserved for internal use.

The property values added to the PBORCA_SCC structure after calling the
PBORCA_SccGetConnectProperties function are szProviderName, szUserID,
szProject, szLocalProjPath, szAuxPath, szLogFile, and lAppend. If you manually
add these values to the PBORCA_SCC structure, you do not need to call the
PBORCA_SccGetConnectProperties to connect to source control.

See also

PBORCA_SccConnect

PBORCA_SccSetTarget

2.31 PBORCA_SccGetLatestVersion

Description

Retrieves the latest version of files from the SCC provider.

Syntax

INT PBORCA_SccGetLatestVer (HPBORCA hORCASession,
 Long nFiles,
 LPTSTR *ppFileNames);

Table 2.63:

Argument Description

hORCASession Handle to previously established ORCA
session

nFiles Number of files to be retrieved

*ppFileNames Names of files to be retrieved

Return value

INT. Typical return codes are:

Table 2.64:

Return code Description

0 PBORCA_OK Operation successful

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 86

Return code Description

-22 PBORCA_SCCFAILURE Operation failure

Usage

Call this method to retrieve files from source control. Typically, these are objects that exist
outside of a PowerBuilder library but nevertheless belong to an application. Examples
include BMP, JPG, ICO, DOC, HLP, HTM, JSP, and PBR files.

Examples

The following example:

LPTSTR pOtherFiles[3];
pOtherFiles[0] = _TEXT("c:\\qadb\\qadbtest\\qadbtest.hlp");
pOtherFiles[1] = _TEXT("c:\\qadb\\datatypes\\datatypes.pbr");
pOtherFiles[2] = _TEXT("c:\\qadb\\qadbtest.bmp");

lpORCA_Info->lReturnCode = PBORCA_SccGetLatestVer
 (lpORCA_Info->hORCASession, 3, pOtherFiles);

See also

PBORCA_SccConnect

PBORCA_SccSetTarget

2.32 PBORCA_SccRefreshTarget

Description

Calls SccGetLatestVersion to refresh the source for each of the objects in the target libraries.

Syntax

INT PBORCA_SccRefreshTarget (HPBORCA hORCASession, PBORCA_REBLD_TYPE eRebldType);

Table 2.65:

Argument Description

hORCASession Handle to previously established ORCA
session

eRebldType Allows you to specify how the application is
rebuilt (see Usage section below)

Return value

INT.

Usage

Call this method to get the latest version of objects in target libraries from source control.
The refresh operation also causes the objects to be imported and compiled in their respective
PowerBuilder libraries.

Objects in target libraries that you name in a PBORCA_SccExcludeLibraryList call are not
included in the refresh operation.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 87

The PBORCA_REBLD_TYPE argument determines how the application is rebuilt when you
call PBORCA_SccRefreshTarget:

Table 2.66:

PBORCA_REBLD_TYPE Description

PBORCA_FULL_REBUILD Performs a full rebuild of the application

PBORCA_INCREMENTAL_REBUILD Performs an incremental rebuild of the
application

PBORCA_MIGRATE Migrates the application and performs full
rebuild

See also

PBORCA_SccClose

PBORCA_SccConnect

PBORCA_SccExcludeLibraryList

PBORCA_SccSetTarget

2.33 PBORCA_SccResetRevisionNumber

Description

Call this function to reset the revision number for an object. This function is useful only in
applications using SCC providers that implement the SccQueryInfoEx extension to the SCC
API.

Syntax

INT PBORCA_SccResetRevisionNumber (HPBORCA hORCASession,
 LPTSTR lpszLibraryName,
 LPTSTR lpszEntryName,
 PBORCA_TYPE otEntryType,
 LPTSTR lpszRevisionNum);

Table 2.67:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszLibraryName Absolute or relative path specification for the
PBL file containing the object for which you
want to reset the revision number.

lpszEntryName Pointer to a string whose value is the name of
the object without its .sr? extension.

otEntryType A value of the PBORCA_TYPE enumerated
data type specifying the object type of the
entry being imported. Values are:

PBORCA_APPLICATION

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 88

Argument Description
PBORCA_BINARY

PBORCA_DATAWINDOW

PBORCA_FUNCTION

PBORCA_MENU

PBORCA_PIPELINE

PBORCA_PROJECT

PBORCA_PROXYOBJECT

PBORCA_QUERY

PBORCA_STRUCTURE

PBORCA_USEROBJECT

PBORCA_WINDOW

lpszRevisionNum A string value or NULL. NULL causes the
current revision number in the PBL to be
deleted.

Return value

INT. Typical return codes are:

Table 2.68:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list (if lpszLibraryName or
lpszEntryName is null)

-7 PBORCA_LIBIOERROR Unable to open PBL for read/write access

Usage

You can call this function whether or not you are connected to source control.
The PBORCA_SccResetRevisionNumber function changes the object revision
number that is stored as metadata in the PowerBuilder library that you assign in the
lpszLibraryName argument. The revision number is changed in the object source on the
desktop machine, not in the source control repository. The library where the object resides
does not have to be in the current library list.

Typically you would call PBORCA_SccResetRevisionNumber if your ORCA program
externally modifies the object source in the PBL and one of the following is also true:

• The ORCA program has imported a specific revision of an object into the PBL
through a PBORCA_CompileEntryImport call. If the ORCA program knows the exact
revision number that was imported, that revision number should be specified in the
lpszRevisionNum argument. If the exact revision number is unknown, the ORCA program
should still call PBORCA_SccResetRevisionNum and set lpszRevisionNum to NULL.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 89

• The ORCA program is externally performing the equivalent of an SCC check-in by
exporting existing object source from the PBL through a PBORCA_LibraryEntryExport
call and checking the object source into the SCC repository itself. To complete the job, the
ORCA program must obtain the new revision number from the SCC repository and call
PBORCA_SccResetRevisionNumber. After you do this, the object source residing in the
PBL is associated with the correct revision number in the SCC repository.

See also

PBORCA_CompileEntryImport

PBORCA_LibraryEntryExport

2.34 PBORCA_SccSetTarget

Description

Retrieves the target file from source control, passes the application object name to ORCA,
and sets the ORCA session library list.

Syntax

INT PBORCA_SccSetTarget (HPBORCA hORCASession,
 LPTSTR pTargetFile,
 LONG lFlags,
 PBORCA_SETTGTPROC pSetTgtProc,
 LPVOID pUserData);

Table 2.69:

Argument Description

hORCASession Handle to previously established ORCA
session

pTargetFile Target file name

lFlags Allows you to control the behavior of the
target operation (see Usage section below)

pSetTgtProc Pointer to the user-defined callback function

pUserData Pointer to a preallocated data buffer

Return value

INT.

Usage

This method takes the place of PBORCA_SetLibraryList and PBORCA_SetCurrentAppl in a
traditional ORCA application.

In addition to retrieving the target file from source control and setting the application object
and library list, PBORCA_SccSetTarget calls a user-defined callback function one time for
each library in the library list. This lets you know which libraries will be refreshed by default
and gives you an opportunity to call PBORCA_SccExcludeLibraryList if you think that
specific shared libraries have already been refreshed by a previous task.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 90

You assign the lFlags argument to set the refresh behavior on target libraries you retrieve
from source control:

Table 2.70:

Flag Description

PBORCA_SCC_OUTOFDATE Performs comparisons to determine
if objects residing in the PBL
are out of sync. When used with
PBORCA_SCC_IMPORTONLY, only
objects that differ from the source residing
on the local project path are refreshed.
When PBORCA_SCC_IMPORTONLY
is not set, only objects that are out of date
with the SCC repository are refreshed.
PBORCA_SCC_OUTOFDATE and
PBORCA_SCC_REFRESH_ALL are
mutually exclusive.

PBORCA_SCC_REFRESH_ALL Target libraries are completely
refreshed. When used with
PBORCA_SCC_IMPORTONLY,
source code is imported directly
from the local project path. When
PBORCA_SCC_IMPORTONLY is not set,
then the latest version of all objects is first
obtained from the SCC provider and then
imported to the target libraries.

PBORCA_SCC_IMPORTONLY Indicates that all the necessary objects to
rebuild the target application already exist
on the local project path. Set this flag if
you have previously refreshed the local
path using the SCC vendor's administration
tool. PBORCA_SCC_IMPORTONLY
is required if you previously called
PBORCA_SccConnectOffline
during this ORCA session.
PBORCA_SCC_IMPORTONLY is
particularly useful to rebuild a target from
a specific SCC version label or promotion
group.

PBORCA_SCC_EXCLUDE_CHECKOUT Provides a mechanism to refresh local
targets through a batch job that does
not require user intervention. Prevents
objects that are currently checked out
from being overwritten. When used
along with PBORCA_SccConnect, the
checkout status is obtained directly
from the SCC provider. When used

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 91

Flag Description
with PBORCA_SccConnectOffline,
the checkout status is obtained from
the workspace_name.PBC file. For
offline processing, the workspace name
is obtained from a previous call to
PBORCA_SccGetConnectProperties.

If target libraries and directories do not exist in the local project path specified by
PBORCA_SccConnect, then these directories and PBL files are created dynamically by the
PBORCA_SccSetTarget call.

SccSetTarget does an implicit PBORCA_SessionSetLibraryList and
PBORCA_SessionSetCurrentAppl. After you call PBORCA_SccSetTarget (and presumably
PBORCA_SccRefreshTarget), you can do other work that requires a current application and
an initialized library list, such as creating PBDs and EXEs. This is more efficient than calling
PBORCA_SccClose, then reinitializing the library list and current application to create the
PBDs and EXEs.

See also

PBORCA_SccConnect

PBORCA_SccConnectOffline

PBORCA_SccGetConnectProperties

PBORCA_SccRefreshTarget

2.35 PBORCA_SessionClose

Description

Terminates an ORCA session.

Syntax

void PBORCA_SessionClose (HPBORCA hORCASession);

Table 2.71:

Argument Description

hORCASession Handle to previously established ORCA
session

Return value

None.

Usage

PBORCA_SessionClose frees any currently allocated resources related to the ORCA session.
If you do not close the session, memory allocated by PowerBuilder DLLs is not freed,
resulting in a memory leak. Failing to close the session does not affect data (since an ORCA
session has no connection to anything).

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 92

Examples

This example closes the ORCA session:

PBORCA_SessionClose(lpORCA_Info->hORCASession);
lpORCA_Info->hORCASession = 0;

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_SessionOpen

2.36 PBORCA_SessionGetError

Description

Gets the current error for an ORCA session.

Syntax

void PBORCA_SessionGetError (HPBORCA hORCASession, LPTSTR lpszErrorBuffer, INT
 iErrorBufferSize);

Table 2.72:

Argument Description

hORCASession Handle to previously established ORCA
session.

lpszErrorBuffer Pointer to a buffer in which ORCA will put
the current error string.

iErrorBufferSize Size of the buffer pointed to by
lpszErrorBuffer. The constant
PBORCA_MSGBUFFER provides a
suggested buffer size of 256. It is defined in
the ORCA header file PBORCA.H

Return value

None.

Usage

You can call PBORCA_SessionGetError anytime another ORCA function call results in an
error. When an error occurs, functions always return some useful error code. The complete
list of codes is shown in ORCA return codes. However, you can get ORCA's complete error
message by calling PBORCA_SessionGetError.

If there is no current error, the function puts an empty string ("") into the error buffer.

Examples

This example stores the current error message in the string buffer pointed to by
lpszErrorMessage. The size of the buffer was set previously and stored in dwErrorBufferLen:

PBORCA_SessionGetError(lpORCA_Info->hORCASession,

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 93

 lpORCA_Info->lpszErrorMessage,
 (int) lpORCA_Info->dwErrorBufferLen);

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

2.37 PBORCA_SessionOpen

Description

Establishes an ORCA session and returns a handle that you use for subsequent ORCA calls.

Syntax

HPBORCA PBORCA_SessionOpen (void);

Return value

HPBORCA. Returns a handle to the ORCA session if it succeeds and returns 0 if it fails.
Opening a session fails only if no memory is available.

Usage

You must open a session before making any other ORCA function calls.

There is no overhead or resource issue related to keeping an ORCA session open; therefore,
once it is established, you can leave the session open as long as it is needed.

For some ORCA tasks, such as importing and querying objects or building executables, you
must call PBORCA_SessionSetLibraryList and PBORCA_SessionSetCurrentAppl to provide
an application context after opening the session.

Likewise, PBORCA_SccSetTarget provides an implicit application context for SCC
operations. Do not call PBORCA_SessionSetLibraryList and PBORCA_SetCurrentAppl if
you intend to call PBORCA_SccSetTarget.

Examples

This example opens an ORCA session:

lpORCA_Info->hORCASession = PBORCA_SessionOpen();
if (lpORCA_Info->hORCASession = NULL)
{
lpORCA_Info->lReturnCode = 999;
_tcscpy(lpORCA_Info->lpszErrorMessage,
_TEXT("Open session failed"));
}

See also

PBORCA_SessionClose

PBORCA_SessionSetLibraryList

PBORCA_SessionSetCurrentAppl

2.38 PBORCA_SessionSetCurrentAppl

Description

Establishes the current Application object for an ORCA session.

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 94

Syntax

INT PBORCA_SessionSetCurrentAppl (HPBORCA hORCASession,
 LPTSTR lpszApplLibName, LPTSTR lpszApplName);

Table 2.73:

Argument Description

hORCASession Handle to previously established ORCA
session

lpszApplLibName Pointer to a string whose value is the name of
the application library

lpszApplName Pointer to a string whose value is the name of
the Application object

Return value

INT. Typical return codes are:

Table 2.74:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-2 PBORCA_DUPOPERATION Current application is already set

-3 PBORCA_OBJNOTFOUND Referenced library does not exist

-4 PBORCA_BADLIBRARY Bad library name

-5 PBORCA_LIBLISTNOTSET Library list not set

-6 PBORCA_LIBNOTINLIST Referenced library not in library list

Usage

You must set the library list before setting the current application.

You must call PBORCA_SessionSetLibraryList and then PBORCA_SessionSetCurrentAppl
before calling any ORCA function that compiles or queries objects. The library name should
include the full path for the file wherever possible.

Changing the application

You can set the library list and current application only once in a session. If you need to
change the current application after it has been set, close the session and open a new session.

New applications

To create a new application starting with an empty library, set the pointers to the application
library name and the application name to NULL. ORCA will set up an internal default
application.

For more information about creating a new application, see Bootstrapping a new application.

Examples

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 95

This example sets the current Application object to the object named demo in the library
MASTER.PBL:

LPTSTR pszLibraryName;
LPTSTR pszApplName;
// specify library name
pszLibraryName = _TEXT("c:\\app\\master.pbl");
// specify application name
pszApplName = _TEXT("demo");
// set the current Application object
lpORCA->lReturnCode = PBORCA_SessionSetCurrentAppl(
 lpORCA_Info->hORCASession,
 pszLibraryName, pszApplName);

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_SessionSetLibraryList

2.39 PBORCA_SessionSetLibraryList

Description

Establishes the list of libraries for an ORCA session. ORCA searches the libraries in the list
to resolve object references.

Syntax

INT PBORCA_SessionSetLibraryList (HPBORCA hORCASession,
 LPTSTR *pLibNames,
 INT iNumberOfLibs);

Table 2.75:

Argument Description

hORCASession Handle to previously established ORCA
session.

*pLibNames Pointer to an array of pointers to strings.
The values of the strings are file names of
libraries. Include the full path for each library
where possible.

iNumberOfLibs Number of library name pointers in the array
pLibNames points to.

Return value

INT. Typical return codes are:

Table 2.76:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 96

Return code Description

-4 PBORCA_BADLIBRARY Bad library name or a library on the list does
not exist

Usage

You must call PBORCA_SessionSetLibraryList and PBORCA_SessionSetCurrentAppl
before calling any ORCA function that compiles or queries objects.

Library names should be fully qualified wherever possible.

Changing the library list

You can set the current application and library list only once in a session. If you need to
change either the library list or current application after it has been set, close the session and
open a new session.

How ORCA uses the library list

ORCA uses the search path to find referenced objects when you regenerate or query objects
during an ORCA session. Just like PowerBuilder, ORCA looks through the libraries in the
order in which they are specified in the library search path until it finds a referenced object.

Functions that don't need a library list

You can call the following library management functions and source control functions
without setting the library list:

PBORCA_LibraryCommentModify

PBORCA_LibraryCreate

PBORCA_LibraryDelete

PBORCA_LibraryDirectory

PBORCA_LibraryEntryCopy

PBORCA_LibraryEntryDelete

PBORCA_LibraryEntryExport

PBORCA_LibraryEntryInformation

PBORCA_LibraryEntryMove

Examples

This example builds an array of library file names for PocketBuilder and sets the session's
library list:

LPTSTR lpLibraryNames[4];
// specify the library names
lpLibraryNames[0] =
 _TEXT("c:\\qadb\\qadbtest\\qadbtest.pkl");
lpLibraryNames[1] =
 _TEXT("c:\\qadb\\shared_obj\\shared_obj.pkl");
lpLibraryNames[2] =
 _TEXT("c:\\qadb\\chgreqs\\chgreqs.pkl");
lpLibraryNames[3] =
 _TEXT("c:\\qadb\\datatypes\\datatypes.pkl");
lpORCA_Info->lReturnCode = PBORCA_SessionSetLibraryList(

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 97

 lpORCA_Info->hORCASession, lpLibraryNames, 4);

In these examples, session information is saved in the data structure ORCA_Info, shown in
About the examples.

See also

PBORCA_SessionSetCurrentAppl

2.40 PBORCA_SetDebug

Description

Allows you to reset the bDebug property for the ORCA session after a
PBORCA_ConfigureSession has been issued. Methods that invoke the PowerScript compiler
use the bDebug setting to evaluate conditional compilation logic.

Syntax

INT PBORCA_SetDebug (HPBORCA hORCASession,
 BOOL bDebug);

Table 2.77:

Argument Description

hORCASession Handle to previously established ORCA
session

bDebug Setting for the DEBUG conditional compiler
directive

Return value

INT. Typical return codes are:

Table 2.78:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS hORCASession is not valid

Usage

Allows the bDebug value to be reset during an ORCA session. In typical ORCA applications,
bDebug is set in the PBORCA_ConfigureSession method that is called immediately after
opening an ORCA session. If you set bDebug with the PBORCA_ConfigureSession
method, there is typically no need to call PBORCA_SetDebug later on. If you do not call
PBORCA_ConfigureSession or PBORCA_SetDebug, the bDebug value defaults to TRUE.

The PowerScript compiler uses the bDebug value to determine whether to enable or disable
DEBUG conditional compilation directives when building or regenerating objects in standard
PowerBuilder targets. The bDebug value is not used in Windows Forms targets, since the
PBORCA_DeployWinFormProject method uses a setting in the Project object of these targets
to determine whether to enable or disable the DEBUG directive.

The following ORCA methods invoke the PowerScript compiler:

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 98

• PBORCA_ApplicationRebuild

• PBORCA_CompileEntryImport

• PBORCA_CompileEntryImportList

• PBORCA_CompileEntryRegenerate

• PBORCA_SccGetLatestVersion

• PBORCA_SccRefreshTarget

Although PBORCA_LibraryEntryCopy and PBORCA_LibraryEntryMove can add or
replace objects in a PBL, they do not invoke the PowerScript compiler and do not change
the compiled PCODE for the added or replaced objects. If you use these methods to copy
or move objects to a destination PBL, the DEBUG conditional compilation setting for these
objects should be considered as unknown.

If you are uncertain as to whether the PCODE component of an object matches the current
bDebug setting, you can call PBORCA_CompileEntryRegenerate to regenerate it with the
current setting.

PBORCA_SetDebug can be called any time after PBORCA_SessionOpen. The
PBORCA_SetDebug method does not mark an object as needing recompilation. Although
the PBORCA_ApplicationRebuild method invokes the PowerScript compiler, if you use it
with the PBORCA_INCREMENTAL_REBUILD option, it will not rebuild an object if the
only change would be in the status of its DEBUG directive. Therefore, you should not use the
PBORCA_INCREMENTAL_REBUILD option for targets that contain DEBUG conditional
compilation logic.

Similarly, you should not use the PBORCA_INCREMENTAL_REBUILD option with the
PBORCA_SccRefreshTarget method. If the only difference between the original object and
a refreshed object is in its DEBUG conditional compilation status, the object will not refresh
when this option is used.

Examples

This example is used by the OrcaScript interpreter to implement the set debug command in
OrcaScript:

Int ParserActions::setDebug(HPBORCA hORCA, Bool bDebug)
{
int orcaResult = PBORCA_OK;
orcaResult = PBORCA_SetDebug(hORCA, bDebug);
if(orcaResult != PBORCA_OK)
 orcaError(PBTEXT("set debug "), orcaResult);
return (orcaResult == PBORCA_OK);
}

See also

PBORCA_ConfigureSession

2.41 PBORCA_SetExeInfo
Description

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 99

Sets the property fields with user-specified values prior to calling
PBORCA_ExecutableCreate.

Syntax

INT PBORCA_SetExeInfo (HPBORCA hORCASession, PBORCA_EXEINFO *pExeInfo);

Table 2.79:

Argument Description

hORCASession Handle to previously established ORCA
session

*pExeInfo Pointer to a structure containing executable
properties

Return value

INT. Typical return codes are:

Table 2.80:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list (when pExeInfo or
hORCASession is NULL)

Usage

Call this function prior to calling PBORCA_ExecutableCreate.

For PowerBuilder, PBORCA_SetExeInfo also sets properties for dynamic libraries if
machine code compilation is requested.

The PBORCA_EXEINFO structure is defined as follows:

typedef struct pborca_exeinfo
{
LPTSTR lpszCompanyName;
LPTSTR lpszProductName;
LPTSTR lpszDescription;
LPTSTR lpszCopyright;
LPTSTR lpszFileVersion;
LPTSTR lpszFileVersionNum;
LPTSTR lpszProductVersion;
LPTSTR lpszProductVersionNum;
} PBORCA_EXEINFO

The user must have already issued PBORCA_SessionOpen,
PBORCA_SessionSetCurrentAppl, and PBORCA_SetLibraryList before calling
PBORCA_SetExeInfo.

Information in the PBORCA_EXEINFO structure is copied to an internal ORCA control
structure so that the caller can free this memory immediately upon completion of the
PBORCA_SetExeInfo call.

The executable version information is deleted during PBORCA_SessionClose processing.
Thus, if an ORCA program creates numerous ORCA sessions, each individual session must

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA Guide Page 100

call PBORCA_SetExeInfo and reassign all of the elements in the PBORCA_EXEINFO
structure.

The FileVersionNum and ProductVersionNum strings must consist of four integer values
representing the major version number, minor version number, fix version number, and build
number, with each integer value separated by a comma. For example, "12,0,0,0001".

Examples

This example sets the executable information for a PowerBuilder application:

memset(&ExeInfo, 0x00, sizeof(PBORCA_EXEINFO));
ExeInfo.lpszCompanyName = _TEXT("Appeon"));
ExeInfo.lpszProductName = _TEXT("PowerBuilder 2017 DBAuto"));
ExeInfo.lpszDescription = _TEXT("Batch Automation for QADB Test Suite"));
ExeInfo.lpszCopyright = _TEXT("2011"));
ExeInfo.lpszFileVersion = _TEXT("12.5.0.001");
ExeInfo.lpszFileVersionNum = _TEXT("12,5,0,001");
ExeInfo.lpszProductVersion = _TEXT("12.5.0.001");
ExeInfo.lpszProductVersionNum = _TEXT("12,5,0,001");
LpORCA_Info->lReturnCode = PBORCA_SetExeInfo(
lpORCA_Info->hORCASession, &ExeInfo);
lpORCA_Info->hORCASession, lpLibraryNames, 2);

See also

PBORCA_DynamicLibraryCreate

PBORCA_ExecutableCreate

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

ORCA Guide Page 101

3 ORCA Callback Functions and Structures
About this chapter

This chapter documents the prototypes for the callback functions used for several ORCA
functions as well as the structures passed to those functions. These prototypes are declared in
PBORCA.H.

3.1 Callback function for compiling objects

Description

Called for each error that occurs when objects in a library are compiled so that the errors can
be stored for later display.

Functions that use this callback format are:

PBORCA_ApplicationRebuild

PBORCA_CompileEntryImport

PBORCA_CompileEntryImportList

PBORCA_CompileEntryRegenerate

Syntax

typedef void (CALLBACK *PBORCA_ERRPROC) (PPBORCA_COMPERR, LPVOID);

Table 3.1:

Argument Description

PPBORCA_COMPERR Pointer to the structure
PBORCA_COMPERR (described next)

LPVOID Long pointer to user data

Return value

None.

Usage

You provide the code for the callback function. The callback function generally reads the
error information passed in the PBORCA_COMPERR structure, extracts whatever is wanted,
and formats it in the user data buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the errors and an array or text block in which
you format information about all the errors.

For information and examples of coding a callback function, see About ORCA callback
functions.

3.2 PBORCA_COMPERR structure

Description

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

ORCA Guide Page 102

Reports information about an error that occurred when you tried to import and compile
objects in a library.

The following functions pass the PBORCA_COMPERR structure to their callback functions:

PBORCA_CompileEntryImport

PBORCA_CompileEntryImportList

PBORCA_CompileEntryRegenerate

Syntax

typedef struct pborca_comperr {
 int iLevel;
 LPTSTR lpszMessageNumber;
 LPTSTR lpszMessageText;
 UINT iColumnNumber;
 UINT iLineNumber;
} PBORCA_COMPERR, FAR *PPBORCA_COMPERR;

Table 3.2:

Member Description

iLevel Number identifying the severity of the error.
Values are:

0 -- Context information, such as object or
script name

1 -- CM_INFORMATION_LEVEL

2 -- CM_OBSOLETE_LEVEL

3 -- CM_WARNING_LEVEL

4 -- CM_ERROR_LEVEL

5 -- CM_FATAL_LEVEL

6 -- CM_DBWARNING_LEVEL

lpszMessageNumber Pointer to a string whose value is the
message number

lpszMessageText Pointer to a string whose value is the text of
the error message

iColumnNumber Number of the character in the line of source
code where the error occurred

iLineNumber Number of the line of source code where the
error occurred

Usage

A single error might trigger several calls to the callback function. The first messages report
the object and script in which the error occurred. Then one or more messages report the
actual error.

For example, an IF-THEN-ELSE block missing an END IF generates these messages:

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

ORCA Guide Page 103

Table 3.3:

Lvl Num Message text Col Line

0 null Object:
f_boolean_to_char

0 0

0 null Function Source 0 0

4 null (0002): Error
C0031: Syntax
error

0 2

4 null (0016): Error
C0031: Syntax
error

0 16

4 null (0017): Error
C0031: Syntax
error

0 17

3.3 Callback function for deploying components to EAServer
(Obsolete)

Description

This function is obsolete because EAServer is no longer supported since PowerBuilder 2017.
An obsolete feature is no longer eligible for technical support and will no longer be enhanced,
although it is still available.

Called for each error that occurs when objects are deployed to EAServer so that the errors can
be stored for later display.

Functions that use this callback format are:

PBORCA_BuildProject

PBORCA_BuildProjectEx

Syntax

typedef PSCALLBACK (void, *PPBORCA_BLDPROC) (PBORCA_BLDERR, LPVOID);

Table 3.4:

Argument Description

PPBORCA_BLDERR Pointer to the structure PBORCA_BLDERR
(described next)

LPVOID Long pointer to user data

Return value

None.

Usage

For information and examples of coding a callback function, see About ORCA callback
functions.

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

ORCA Guide Page 104

3.4 PBORCA_BLDERR structure
Description

This function is obsolete because EAServer is no longer supported since PowerBuilder 2017.

Reports information about an error that occurred when you tried to deploy objects to
EAServer.

The following functions pass the PBORCA_BLDERR structure to their callback functions:

PBORCA_BuildProject

PBORCA_BuildProjectEx

Syntax

typedef struct pborca_blderr { LPTSTR lpszMessageText; } PBORCA_BLDERR, FAR
 *PPBORCA_BLDERR;

Table 3.5:

Member Description

lpszMessageText Pointer to a string whose value is the text of
the error message

3.5 Callback function for PBORCA_LibraryDirectory
Description

Called for each entry in the library so that information about the entry can be stored for later
display.

Syntax

typedef void (CALLBACK *PBORCA_LISTPROC) (PPBORCA_DIRENTRY, LPVOID);

Table 3.6:

Argument Description

PPBORCA_DIRENTRY Pointer to the structure
PBORCA_DIRENTRY (described next)

LPVOID Long pointer to user data

Return value

None.

Usage

You provide the code for the callback function. The callback function generally reads the
information about the library entry passed in the PBORCA_DIRENTRY structure, extracts
whatever is wanted, and formats it in the user data buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the entries and an array or text block in which
you format information about all the entries.

For information and examples of coding a callback function, see About ORCA callback
functions.

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

ORCA Guide Page 105

3.6 PBORCA_DIRENTRY structure

Description

Reports information about an entry in a library.

The PBORCA_LibraryDirectory function passes the PBORCA_DIRENTRY structure to its
callback function.

Syntax

typedef struct pborca_direntry {
 TCHAR szComments[PBORCA_MAXCOMMENT + 1];
 LONG lCreateTime;
 LONG lEntrySize;
 LPTSTR lpszEntryName;
 PBORCA_TYPE otEntryType;
} PBORCA_DIRENTRY, FAR *PPBORCA_DIRENTRY;

Table 3.7:

Member Description

szComments Comments stored in the library for the object

lCreateTime The time the object was created

lEntrySize The size of the object, including its source
code and the compiled object

lpszEntryName The name of the object for which information
is being returned

otEntryType A value of the enumerated data type
PBORCA_TYPE specifying the data type of
the object

3.7 Callback function for PBORCA_ObjectQueryHierarchy

Description

Called for each ancestor object in the hierarchy of the object being examined. In the callback
function, you can save the ancestor name for later display.

Syntax

typedef void (CALLBACK *PBORCA_HIERPROC)
 (PPBORCA_HIERARCHY, LPVOID);

Table 3.8:

Argument Description

PPBORCA_HIERARCHY Pointer to the PBORCA_HIERARCHY
structure (described next)

LPVOID Long pointer to user data

Return value

None.

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

ORCA Guide Page 106

Usage

You provide the code for the callback function. The callback function generally reads the
ancestor name passed in the PBORCA_HIERARCHY structure and saves it in the user data
buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the number of ancestors and an array or text
block in which you store the names.

For information and examples of coding a callback function, see About ORCA callback
functions.

3.8 PBORCA_HIERARCHY structure

Description

Reports the name of an ancestor object for the object being queried.

The PBORCA_ObjectQueryHierarchy function passes the PBORCA_HIERARCHY
structure to its callback function.

Syntax

typedef struct pborca_hierarchy {
 LPTSTR lpszAncestorName;
} PBORCA_HIERARCHY, FAR *PPBORCA_HIERARCHY;

Table 3.9:

Member Description

lpszAncestorName Pointer to name of ancestor object

3.9 Callback function for PBORCA_ObjectQueryReference

Description

Called for each referenced object in the object being examined. In the callback function, you
can save the name of the referenced object for later display.

Syntax

typedef void (CALLBACK *PBORCA_REFPROC)
 (PPBORCA_REFERENCE, LPVOID);

Table 3.10:

Argument Description

PPBORCA_REFERENCE Pointer to the PBORCA_REFERENCE
structure (described next)

LPVOID Long pointer to user data

Return value

None.

Usage

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

ORCA Guide Page 107

You provide the code for the callback function. The callback function generally reads the
name of the referenced object passed in the PBORCA_REFERENCE structure and saves it in
the user data buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the number of referenced objects and an array or
text block in which you store the names.

For information and examples of coding a callback function, see About ORCA callback
functions.

3.10 PBORCA_REFERENCE structure
Description

Reports the name of an object that the object being queried refers to.

The PBORCA_ObjectQueryReference function passes the PBORCA_REFERENCE
structure to its callback function.

Syntax

typedef struct pborca_reference {
 LPTSTR lpszLibraryName;
 LPTSTR lpszEntryName;
 PBORCA_TYPE otEntryType;
} PBORCA_REFERENCE, FAR *PPBORCA_REFERENCE;

Table 3.11:

Member Description

lpszLibraryName Pointer to a string whose value is the file
name of the library containing the referenced
object

lpszEntryName Pointer to a string whose value is the name of
the referenced object

otEntryType A value of the enumerated data type
PBORCA_TYPE specifying the type of the
referenced object

3.11 Callback function for PBORCA_ExecutableCreate
Description

Called for each link error that occurs while you are building an executable.

Syntax

typedef void (CALLBACK *PBORCA_LNKPROC)
 (PPBORCA_LINKERR, LPVOID);

Table 3.12:

Argument Description

PPBORCA_LINKERR Pointer to the PBORCA_LINKERR
structure (described next)

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

ORCA Guide Page 108

Argument Description

LPVOID Long pointer to user data

Return value

None.

Usage

You provide the code for the callback function. The callback function generally reads the
error information passed in the PBORCA_LINKERR structure and formats the message text
in the user data buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the errors and an array or text block in which
you format the message text.

For information and examples of coding a callback function, see About ORCA callback
functions.

3.12 PBORCA_LINKERR structure
Description

Reports the message text for a link error that has occurred when you build an executable.

The PBORCA_ExecutableCreate function passes the PBORCA_LINKERR structure to its
callback function.

Syntax

typedef struct pborca_linkerr {
 LPTSTR lpszMessageText;
} PBORCA_LINKERR, FAR *PPBORCA_LINKERR;

Table 3.13:

Member Description

lpszMessageText Pointer to the text of the error message

3.13 Callback function for PBORCA_SccSetTarget
Description

Called once for each library in the target library list.

Syntax

typedef PBCALLBACK (void, *PBORCA_SETTGTPROC)
 (PPBORCA_SETTARGET, LPVOID);

Table 3.14:

Argument Description

PPBORCA_SETTARGET Pointer to the PBORCA_SCCSETTARGET
structure

LPVOID Long pointer to user data

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

ORCA Guide Page 109

Return value

None.

Usage

This callback function allows you to know which libraries are going to be refreshed by
default and gives you the opportunity to call PBORCA_SccExcludeLibraryList when you are
certain that specific shared libraries have already been refreshed by a previous task.

3.14 PBORCA_SCCSETTARGET structure
Description

Reports the fully qualified name of a library in the target library list.

Syntax

typedef struct pborca_sccsettarget {
 LPTSTR lpszLibraryName;
} PBORCA_SETTARGET, FAR *PPBORCA_SETTARGET;

Table 3.15:

Member Description

lpszLibraryName Pointer to the name of a library in the target
library list

	ORCA Guide
	Contents
	1 Using ORCA
	1.1 What is ORCA?
	1.1.1 What can ORCA do?
	1.1.2 Who can develop programs that call ORCA?

	1.2 Installing ORCA
	1.3 ORCA and the Library painter
	1.3.1 Objects in a PowerBuilder library
	1.3.2 Object source code
	1.3.3 PowerBuilder commands and ORCA functions

	1.4 About ORCA functions
	1.4.1 Functions for managing the ORCA session
	1.4.2 Functions for managing PowerBuilder libraries
	1.4.3 Functions for importing and compiling PowerBuilder objects
	1.4.4 Functions for querying PowerBuilder objects
	1.4.5 Functions for creating executables and dynamic libraries
	1.4.6 Functions for deploying components to EAServer (Obsolete)
	1.4.7 Functions for managing source control operations

	1.5 About ORCA callback functions
	1.5.1 ORCA functions that use callbacks
	1.5.2 How a callback works
	1.5.3 Content of a callback function

	1.6 Writing ORCA programs
	1.6.1 Outline of an ORCA program
	1.6.1.1 First step: open a session
	1.6.1.2 Optional step: set the library list and current application
	1.6.1.3 Next steps: continuing with the ORCA session
	1.6.1.4 Final step: close the session

	1.6.2 Bootstrapping a new application

	1.7 Removing deprecated ORCA functions

	2 ORCA Functions
	2.1 About the examples
	2.2 ORCA return codes
	2.3 PBORCA_ApplicationRebuild
	2.4 PBORCA_BuildProject
	2.5 PBORCA_BuildProjectEx
	2.6 PBORCA_BuildProjectWithOverrides
	2.7 PBORCA_CompileEntryImport
	2.8 PBORCA_CompileEntryImportList
	2.9 PBORCA_CompileEntryRegenerate
	2.10 PBORCA_ConfigureSession
	2.11 PBORCA_DeployWinFormProject
	2.12 PBORCA_DynamicLibraryCreate
	2.13 PBORCA_ExecutableCreate
	2.14 PBORCA_LibraryCommentModify
	2.15 PBORCA_LibraryCreate
	2.16 PBORCA_LibraryDelete
	2.17 PBORCA_LibraryDirectory
	2.18 PBORCA_LibraryEntryCopy
	2.19 PBORCA_LibraryEntryDelete
	2.20 PBORCA_LibraryEntryExport
	2.21 PBORCA_LibraryEntryExportEx
	2.22 PBORCA_LibraryEntryInformation
	2.23 PBORCA_LibraryEntryMove
	2.24 PBORCA_ObjectQueryHierarchy
	2.25 PBORCA_ObjectQueryReference
	2.26 PBORCA_SccClose
	2.27 PBORCA_SccConnect
	2.28 PBORCA_SccConnectOffline
	2.29 PBORCA_SccExcludeLibraryList
	2.30 PBORCA_SccGetConnectProperties
	2.31 PBORCA_SccGetLatestVersion
	2.32 PBORCA_SccRefreshTarget
	2.33 PBORCA_SccResetRevisionNumber
	2.34 PBORCA_SccSetTarget
	2.35 PBORCA_SessionClose
	2.36 PBORCA_SessionGetError
	2.37 PBORCA_SessionOpen
	2.38 PBORCA_SessionSetCurrentAppl
	2.39 PBORCA_SessionSetLibraryList
	2.40 PBORCA_SetDebug
	2.41 PBORCA_SetExeInfo

	3 ORCA Callback Functions and Structures
	3.1 Callback function for compiling objects
	3.2 PBORCA_COMPERR structure
	3.3 Callback function for deploying components to EAServer (Obsolete)
	3.4 PBORCA_BLDERR structure
	3.5 Callback function for PBORCA_LibraryDirectory
	3.6 PBORCA_DIRENTRY structure
	3.7 Callback function for PBORCA_ObjectQueryHierarchy
	3.8 PBORCA_HIERARCHY structure
	3.9 Callback function for PBORCA_ObjectQueryReference
	3.10 PBORCA_REFERENCE structure
	3.11 Callback function for PBORCA_ExecutableCreate
	3.12 PBORCA_LINKERR structure
	3.13 Callback function for PBORCA_SccSetTarget
	3.14 PBORCA_SCCSETTARGET structure

