ORCA Guide

Appeon PowerBuilder® 2017 R3
FOR WINDOWS

DOCUMENT ID: DC37664-01-1700-01
LAST REVISED: July 26, 2018
Copyright © 2018 by Appeon Limited. All rights reserved.

This publication pertains to Appeon software and to any subsequent release until otherwise
indicated in new editions or technical notes. Information in this document is subject to
change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software rel ease dates. No part of this
publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Appeon Limited.

Appeon and other Appeon products and services mentioned herein as well as their respective
logos are trademarks or registered trademarks of Appeon Limited.

SAP and other SAP products and services mentioned herein as well as their respective logos
are trademarks or registered trademarks of SAP and SAP affiliate company.

Javaand all Java-based marks are trademarks or registered trademarks of Oracle and/or its
affiliatesin the U.S. and other countries,

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective
companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth
in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR
52.227-19(a)-(d) for civilian agencies.

Appeon Limited, 1/F, Shell Industrial Building, 12 L ee Chung Street, Chai Wan District,
Hong Kong.

Contents

I £ [T O] O S 1
1.1 WhaAL IS ORCA? eeeeeeie ettt ettt e e e e e e st e e e e e e e nnneeneeas 1
1.1.1 What can ORCA 07 ..cooiiiiiiiiiiiiiiiie ettt 2
1.1.2 Who can develop programs that call ORCA?oovvvvviiiiiiiiiiieeeeeee, 2

1.2 Installing ORCA ...ttt r e e e e e e e e e e e e aeeeeeenennnes 3
1.3 ORCA and the Library paintercccccviiiiieiiiiiiiiciise e 3
1.3.1 Objects in a PowerBuilder library ..., 3
1.3.2 ODJECt SOUICE COUEccciiiiieeeeieiiiice e e e e e e e e e eaes 3
1.3.3 PowerBuilder commands and ORCA functionsccccceevvvviiiinnns 4

1.4 About ORCA TUNCHIONScooiiiiiiiii e 5
1.4.1 Functions for managing the ORCA SESSIONcccuvvvvviiiiiiiiieeeeeennn, 5
1.4.2 Functions for managing PowerBuilder librariesccccccevvvivninnnnns 6
1.4.3 Functions for importing and compiling PowerBuilder objects 7
1.4.4 Functions for querying PowerBuilder objectscccccccccceeiiiieeeeeeenn. 7
1.4.5 Functions for creating executables and dynamic libraries 8
1.4.6 Functions for deploying components to EAServer (Obsolete) 8
1.4.7 Functions for managing source control operationsccc.ccuvveee. 9

1.5 About ORCA callback fUNCLIONScuuiiiiiiiiiiiiiiiiie e 9
1.5.1 ORCA functions that use callbackscccccoviiiiiiiiiiiieeee, 10
1.5.2 How a callback WOIKSccuuuiiiiiiiiiiiiiiiiiiiee e 10
1.5.3 Content of a callback functionooooiiiiiiiiii 11

1.6 Writing ORCA PrOQIamS ...cceevuuuuueeeiiaieeeeeeeereeereeenssnnnssaaeaaaaaaasseesemssmmmnnnns 13
1.6.1 Outline of an ORCA Programcccceeieeeeeeeeeeeeeeeeeiiiiiiesss e e e eeeaaeeeees 13
1.6.1.1 First Step: OPeNn @ SESSIONcccceveeeeeeieeieeeeeeeeiiee e e e e e 13

1.6.1.2 Optional step: set the library list and current application 14

1.6.1.3 Next steps: continuing with the ORCA sessSion 15

1.6.1.4 Final step: close the SeSSIiONccvvvvvviiiiiieiieeeeeeeeeeeeeeiiine 15

1.6.2 Bootstrapping a new applicationcooevveiiiiiiiiiiiieee e e 15

1.7 Removing deprecated ORCA fUNCLIONScoovvvviiiiiiiiiiiiiiee e eeeeeeeeeeeinnns 16
2 ORCA FUNCHONS ...tiiitiiiiiiiiiiiiteete e e e e e e e e e e e e e sttt e e e e e e e e e e e aaeeeeeaaaasaaaaaanns 18
2.1 About the eXamples ... 18
2.2 ORCA TetUIN COUBS ...oooiiiiiiieeeeeie ettt e e e e e e 18
2.3 PBORCA_ApplicationRebuildcccooiiiiiiiiiiiiiiieeeceis e 19
2.4 PBORCA _BUIIAPIOJECL ...uuiiie i 21
2.5 PBORCA _BUIIAPIOJECIEX ...vvvvvvviiiiiiiiiei i i e e e ee et e e e e e e e e e e eeeenannees 23
2.6 PBORCA _BuildProjectWithOVerridesuuuveiiieiiiiieeeeeeeeeeeiinn 24
2.7 PBORCA_CompileENtryIMPOrtueiiiiiiiieeeeeeeeeeeeeeeeitieenn s e e e e e e e 25
2.8 PBORCA_CompileEntryImportLiStcceiiiiiieieeeeeeeeeeeeiee e 32
2.9 PBORCA_CompileEntryRegeneratecccceeviieeeeeeeeeeiieeeiiiicinns e 37
2.10 PBORCA_CoONfIQUIESESSION ..cccevvviviiiiiiiiiiieeeeeeeeeeeeeeeeeensissnnna e e e e eeeeaeaes 39
2.11 PBORCA _DeployWINFOIMPIOJECTccevvviiieiiiiiiie e e eeeeeeeeeeeevvie e 43
2.12 PBORCA_DynamicLibraryCreatecccccoevviiieeiiiiiiiiieeeiiciene e 45
2.13 PBORCA _ExecutableCreateccccvvveviiiiiiiiiiiie e eee e a7
2.14 PBORCA _LibraryCommentModifycccovviiiiiiiiiiiiiiiiei e, 53
2.15 PBORCA _LIDraryCreatecccccceeiiiiieeeiiiiieeeeiiicee s e e e e e e e e e e eeeeennanannnns 54

2.16 PBORCA_LIbraryDeleteuuuuuiiiiiiiiiieeeeeeieeeeeee e e e e e e 55

2.17 PBORCA _LiDraryDir€CtOrYccuuuuuuuiiiiiiiiiieeeeeeee et a e e e e e e e e e 56

2.18 PBORCA _LibraryENtryCopYuuuucciiieiieeeeeeeeeeeeeeeiiiiis s e e e e e e e e e eeeeeennnnns 59
2.19 PBORCA _LibraryEntryDeleteccocoiiiiiiiieiiiiiieeeeiieee e, 61
2.20 PBORCA _LibraryENtryEXPOrtuuuiiiieiiieeeeeeeeeceeeeeeines e e e e e e e e e e 63
2.21 PBORCA _LibraryENntryEXPOMEXcoovvviiiiiiiiiiiiiiieee e 67
2.22 PBORCA _LibraryEntryInformationcccceevveeeiiiiiiiiiiceiee e 69
2.23 PBORCA _LibraryENtryMOVEcccoooiiieiiiiiiiieeeeiiie e 72
2.24 PBORCA_ObjectQueryHierarchycccoovviiiiiiiiiiieieeeeeeeeeeee 74
2.25 PBORCA_ObjectQUEryREeferenceccccceeviiiieeieeiiieieeeieis e 76
2.26 PBORGCA _SCCCIOSE ...cooieieeeeeeeii ettt ettt 78
2.27 PBORCA _SCCCONNECTiiiiiiiiiiiieeeiiis ettt e et s et e e et e e e e e e e e aees 78
2.28 PBORCA _SccConnecCtOfflinguveiiiiiiiiiieiiieeeiiiee e, 80
2.29 PBORCA_SccEXcludeLibraryListcccceiiiiiiiieeiiiiieeeeeicieee e 82
2.30 PBORCA_SccGetConNeCtPropertiescoovvveevvvvveiiiiiiieeeeeeeeeeeeeeeeesnnnnnns 83
2.31 PBORCA _ScCGetLateStVEerSiONcccceiieeeieeeeeeeeeeeeeeere e e e 85
2.32 PBORCA _SccRefreshTargetooovvviiiiiiiiiiiiii e 86
2.33 PBORCA_SccResetReVISIONNUMDETovvviiiiiiiiiieeeeieeeeeeee, 87
2.34 PBORCA _SCCSEtTArgeluuiiiiiiiiiiiiii ettt e 89
2.35 PBORCA _SESSIONCIOSE ...ccoiiiiieeeeeeeiie s a e e e e e 91
2.36 PBORCA _SeSSIONGELEIOr ..o 92
2.37 PBORCA _SESSIONOPENcceeeeieeiieeeeiiie et a e e e e e 93
2.38 PBORCA_SessionSetCurrenNtAPPlevveiiieiieeeeeeeeeeeeeeie e 93
2.39 PBORCA _SessionSetLibraryLiStccccooiiiiiiiiiiiiiicines e 95
2.40 PBORCA_SetDEeDUQGuuviiiiiiiiiiiiiiiiee et 97
2.41 PBORCA_SEtEXEINTO .oviiiiiieiiiiiiie ettt 98
3 ORCA Callback Functions and StrUCTUIESuuuviriiiiiiiiiiiiiiieeeeeeeeeeeeasnennnnns 101
3.1 Callback function for compiling ObJECLScceeiiiiiiieiiiiie e, 101
3.2 PBORCA_COMPERR SITUCIUIEuvviiiiiiiiiiiiiiiiieee e 101
3.3 Callback function for deploying components to EAServer (Obsolete) 103
3.4 PBORCA _BLDERR StIUCIUIEuiiiiiiiiciiiiieceiis sttt eai e 104
3.5 Callback function for PBORCA _LibraryDireCtorycccceeeeeeeeeeeieeeiennnnnnns 104
3.6 PBORCA_DIRENTRY SITUCIUIEuvvviiiiiiiiiiiiiiiiieeee e 105
3.7 Callback function for PBORCA_ObjectQueryHierarchy 105
3.8 PBORCA_HIERARCHY SIIUCIUIE ...cieiiiiiiiiiiiiiiiieeeeeeee e e 106
3.9 Callback function for PBORCA_ObjectQueryReferenceccccceeeennnn. 106
3.10 PBORCA_REFERENCE SIrUCIUIEcuuviiiiiiiiiiiiiiiiiiiieieeeee e eee e 107
3.11 Callback function for PBORCA_ExecutableCreateccccccvvvvveeennnn. 107
3.12 PBORCA_LINKERR StIUCLUIEccoiiiiieieeeiiii ittt 108
3.13 Callback function for PBORCA_SccSetTargetcccoovvvvvvveveevviniennnn. 108

3.14 PBORCA_SCCSETTARGET StrUCIUIecvvviiiiiiiiiieiciiiiieeeein 109

Using ORCA Appeon PowerBuilder® 2017 R3

1 Using ORCA

About this chapter
This chapter describes the Appeon Open Library APl (ORCA).

It explains the correspondence between tasks a PowerBuilder developer can performin the
Library painter and tasks you want to do programmatically with ORCA for a PowerBuilder
library.

It al'so explains the constraints involved in developing ORCA programs and who should and
should not use ORCA, aswell as the functions available in ORCA and how to conduct an
ORCA session in your program.

1.1 What is ORCA?

ORCA is software for accessing the PowerBuilder Library Manager functions that
PowerBuilder usesin the Library painter. A program (very often a C program) can use
ORCA to do the same kinds of object and library management tasks that the Library painter
interface provides.

History of ORCA

ORCA was created for CASE tool vendors as part of the CODE (Client/Server Open
Development Environment) program. CA SE tools needed programmatic access to
PowerBuilder libraries to create and modify PowerBuilder objects based on an application
design.

Typical ORCA programs
Applications use ORCA to manipulate PowerBuilder objects. They might:

» Write object source code and then use ORCA functions to place that object sourcein a
PBL

» Extract objects from libraries using ORCA functions, modify the object source, and use
ORCA again to put the objects back in the libraries

Sample ORCA applications
ORCA has been used for many types of tools that work with PowerBuilder, such as:

» OrcaScript utility

» CASEtools

* Classlibraries

» Documentation tools

» Application management tools

 Utilities that might, for example, search for text and replace it throughout alibrary or
display atree view of objectsin alibrary

* Interfaces for source control systems that PowerBuilder does not support directly

ORCA Guide Page 1

Using ORCA Appeon PowerBuilder® 2017 R3

« Ultilitiesto rebuild PowerBuilder targets from source-controlled objects

1.1.1 What can ORCA do?

ORCA lets your application do programmatically the same library and object management
tasks that a developer performs in the PowerBuilder development environment. ORCA
covers most of the functionality of the Library painter, and some of that of the Application
and Project painters.

Y ou can:
» Copy, delete, move, rename, and export objectsin a PBL
* Import and compile objects

» Create an executable or a PowerBuilder Dynamic Library (PBD or DLL) with all of the
options available in the Project painter

» Look at the ancestor hierarchy of an object or see which objectsit references
» Create an entire application in anew library (called bootstrapping an application)

» Open PowerBuilder targets from source control and perform diverse source control
operations on target objects

1.1.2 Who can develop programs that call ORCA?

ORCA as a development tool is designed for vendors who want to provide tools for
PowerBuilder developers. Tool vendors must be aware of the constraints described in this
section.

ORCA as adevelopment tool is not meant for awider audience of PowerBuilder devel opers.
If you are a PowerBuilder developer, you should not develop programs that call ORCA
unless you understand and observe the constraints described next.

Constraints when using ORCA

Both PowerBuilder and ORCA make use of the PowerBuilder compiler. However, the
compiler is not reentrant, and multiple programs cannot use it simultaneously. Therefore,
PowerBuilder cannot be running when your programs call ORCA.

Tool providers who use ORCA must code their programs carefully so that when a
PowerBuilder developer calls their ORCA-based modules, their tool:

1. Exits PowerBuilder.
2. Performsthe requested ORCA function.

3. Restarts PowerBuilder.

Caution

If the PowerBuilder development environment is not shut down while ORCA is
running, your PowerBuilder libraries can become corrupted. For this reason, casual
use of ORCA is not recommended.

ORCA Guide Page 2

Using ORCA Appeon PowerBuilder® 2017 R3

1.2 Installing ORCA

ORCA isavailable to code partners, tool vendors, and customers who devel op companion
products and tools that manipulate and manage objects in PowerBuilder libraries for use with
PowerBuilder.

Torun ORCA programs

To run programs that use ORCA, you need the ORCA DLL (called PBORC170.DLL in
PowerBuilder 2017 R3). When you install PowerBuilder, thisDLL isinstalled in the same
directory as other PowerBuilder DLLs.

To develop ORCA programs
To develop C programs that use ORCA, you need several items, available from the Appeon
Developers Network Web site:
* C development files
PBORCA.H
PBORCA.LIB

* This documentation, available in PDF format

1.3 ORCA and the Library painter

A PowerBuilder library (PBL) isabinary file. It stores objects you define in the
PowerBuilder paintersin two forms. source and compiled. The source for an object is text.
The compiled form is binary and is not readable by humans.

The Library painter lets the PowerBuilder developer view and maintain the contents of a
PBL. The painter lists the objectsin a PBL with their properties, such as modification date
and comments.

In the Library painter, the PowerBuilder developer can delete, move, compile, export,
and import objects, and can use source control systems and create PowerBuilder dynamic
librariesand DLLs.

From the Library painter, you can open objects in their own painters and view and modify the
objects graphically.

1.3.1 Objects in a PowerBuilder library

When you open an object in a painter, PowerBuilder interprets the library entries and displays
the object in agraphical format. The painter does not display the source code. If you change
the object graphically and saveit again in the PBL, PowerBuilder rewrites the source code to
incorporate the changes and recompiles the object.

1.3.2 Object source code

The Library painter lets you export source code, study and even modify it in any text editor,
and import it back into the library. PowerBuilder compiles the imported object to check that
the source code isvalid. It will not import objects that fail to compile.

Source code exported to afile has two header lines before the source code:

ORCA Guide Page 3

Using ORCA Appeon PowerBuilder® 2017 R3

$PBExpor t Header $w_about . srw
$PBExport Corment s$Tel | us about the application |evel

ORCA functions ignore these header lines and use the |pszEntryName and |pszComments
arguments passed to the function.

Y ou can view the exported source code in the PowerBuilder file editor:

g File Editor - w_about_srw Mi=] E3

PBExportHeader$w about.sru -
PBExportComments3Tell us about the application level
forward

global type w about from Window

end type

type st 2 from statictext within w_about |
end type

type p_orca from picture within w_about

end type

type st 1 from statictext within w_about

end type

type cb_ok from commandbutton within w_about

end type

end forward

global type w _about from Window
int X=563

int Y=289

int Width=1271

int Height=981

boolean TitleBar=true

string Title=""About"

long BackColor=12632256

boolean ControlMenu=true
WHndnwTiune WHindnwTnne=resnnnse?

0| AW

L ear ning sour ce code syntax

The syntax for object source code is not documented. The only way to learn what belongsin
source code is by exporting objects and studying their source.

ORCA and sour ce code

ORCA has an export function so it can examine and modify existing objects. With
PowerBuilder 10 and higher, a developer can configure the ORCA session to export source
either to amemory buffer or to afile. The developer can also specify which of the four source
encoding formats to use, whether or not to export the two export header lines, and whether or
not to include the binary component of an object.

1.3.3 PowerBuilder commands and ORCA functions

Most ORCA functions have a counterpart in the Library painter, the Application painter, the
Project painter, or the commands that start and stop a PowerBuilder session.

ORCA Guide Page 4

Using ORCA Appeon PowerBuilder® 2017 R3

The next section identifies the ORCA functions, their purpose, and what they correspond to
in the PowerBuilder development environment.

1.4 About ORCA functions

All ORCA functions are external C functions that use the WINAPI macro to specify the
calling convention of the function. On the Windows platform, WINAPI is defined as
__stdcall.

About the code examplesin this book

All ORCA functions may be called from either an ANSI client program or a Unicode
client program. The code examples in this book use macros that are defined in the
tchar.h file that is installed with PowerBuilder in the Shared/Appeon/PowerBuilder/
cgen/h directory. If the/D _UNICODE compiler directive is set, these macros accept
Unicode string arguments. If _UNICODE is not defined, these macros accept ANSI
string arguments. This coding technique allows you to create ORCA programs that
run successfully as either ANSI or Unicode clients.

ORCA functions can be divided into seven groups with the following functions:

* Managing the ORCA session

Managing PowerBuilder libraries

Compiling PowerBuilder objects

Querying PowerBuilder objects

Creating executables and dynamic libraries

Managing source control operations involving PowerBuilder objects

1.4.1 Functions for managing the ORCA session

Just as you begin a session in the PowerBuilder development environment by running
PowerBuilder and end the session by exiting PowerBuilder, you need to open a session when
using ORCA and close the session when finished.

Library list and current application

In the PowerBuilder development environment, you must first have a current application.
Y ou also set the library list search path if you plan to view or modify objects or create
executables. ORCA has the same requirements, but in reverse order. In ORCA, you set the
library list and then set the current application.

ORCA functions that do not involve compiling objects or building applications do not
require alibrary list and current application. These are the library management functions. For
source control functions, PBORCA _SccSetTarget implicitly setsthe library list and current
application.

Session management

ORCA Guide Page 5

Using ORCA Appeon PowerBuilder® 2017 R3

Listed here are the session management functions (which all have the prefix PBORCA), the
purpose of each, and their equivalents in the PowerBuilder development environment:

Table 1.1:
Function (prefix Purpose Equivalent in Power Builder
PBORCA)
ConfigureSession Sets session properties Options
that affect the behavior of
subsequent ORCA commands
SessionOpen Opens an ORCA session and | Starting PowerBuilder
returns the session handle
SessionClose Closes an ORCA session Exiting PowerBuilder
SessionSetLibraryList Specifiesthe librariesfor the |File>Library List
session
SessionSetCurrentAppl Specifies the Application File>Select Application
object for the session
SessionGetError Providesinformation about | No correspondence
an error

1.4.2 Functions for managing PowerBuilder libraries

The library management functions are similar to commands in the Library painter. These
functions alow you to create and delete libraries, modify library comments, and see the list
of objects located within alibrary. They aso allow you to examine objects within libraries,
export their syntax; and copy, move, and delete entries.

These functions can be called outside the context of alibrary list and current application.

Listed here are the library management functions (which all have the prefix PBORCA), the
purpose of each, and their equivalentsin the PowerBuilder Library painter:

Table 1.2

Function (prefix Purpose Equivalent in Power Builder

PBORCA)

LibraryCommentM odify Modify the commentsfor a | Library>Properties
library

LibraryCreate Create anew library file Library>Create

LibraryDelete Delete alibrary file Library>Delete

LibraryDirectory Get the library comments and | List view
alist of its objects

LibraryEntryCopy Copy an object from one Entry>Copy
library to another

LibraryEntryDelete Delete an object from a Entry>Delete
library

ORCA Guide Page 6

Using ORCA Appeon PowerBuilder® 2017 R3

Function (prefix Purpose Equivalent in Power Builder
PBORCA)
LibraryEntryExport Get the source code for an Entry>Export
object
LibraryEntryExportEx Get the source code for an Entry>Export
object
LibraryEntrylnformation Get details about an object List view
LibraryEntryMove Move an object from one Entry>Move
library to another

1.4.3 Functions for importing and compiling PowerBuilder objects

These functions allow you to import new objectsinto alibrary from atext listing of their
source code and to compile entries that already exist in alibrary.

Entriesin alibrary have both a source code representation and a compiled version. When you
import a new object, PowerBuilder compilesit. If there are errors, it is not imported.

You must set the library list and current application before calling these functions.

Listed here are the compilation functions (which all have the prefix PBORCA), the purpose
of each, and their equivalents in the PowerBuilder Library painter:

Table1.3:
Function (prefix Equivalent in Library
PBORCA) painter
CompileEntrylmport Imports an object and Entry>Import
compilesit
CompileEntrylmportList Importsalist of objectsand | No correspondence
compiles them
CompileEntryRegenerate Compiles an object Entry>Regenerate
ApplicationRebuild Compilesall the objectsin all | Design>Incremental Rebuild
the libraries associated with | or Design>Full Rebuild
an application

Compilation functions are not the functions that create an executable from alibrary. See
Functions for creating executables and dynamic libraries.

1.4.4 Functions for querying PowerBuilder objects

The object query functions get information about an object's ancestors and the objects it
references.

Y ou must set the library list and current application before calling these functions.

Listed here are the object query functions (which al have the prefix PBORCA). There are
no direct correspondences to PowerBuilder commands:

ORCA Guide Page 7

Using ORCA Appeon PowerBuilder® 2017 R3

Table 1.4:
Function (prefix PBORCA) Purpose
ObjectQueryHierarchy Getsalist of an object's ancestors
ObjectQueryReference Getsalist of the objects an object refersto

1.4.5 Functions for creating executables and dynamic libraries

These functions allow you to create executables and PowerBuilder Dynamic Libraries (PBDs
and DLLSs). You can specify the same options for Pcode and machine code and tracing that
you can specify in the Project painter.

Using ORCA, PBDs or DLLs must be created in a separate step before creating the
executable.
You must set the library list and current application before calling these functions.

Listed here are the functions for creating executables and libraries (which all have the prefix
PBORCA), the purpose of each, and their equivalents in the PowerBuilder development
environment:

Table 1.5:
Function (prefix Purpose Equivalent in painter

PBORCA)

ExecutableCreate Creates an executable Project painter
application using ORCA's
library list and current
Application object

DynamicLibraryCreate Creates a PowerBuilder Project painter or Library
dynamic library fromaPBL | painter: Library>Build
Runtime Library

SetExelnfo Sets additional file properties | Project painter
associated with the EXE and
DLLsthat are created

1.4.6 Functions for deploying components to EAServer (Obsolete)

These functions are obsol ete because EA Server is no longer supported since PowerBuilder
2017. An obsolete feature is no longer eligible for technical support and will no longer be
enhanced, although it is still available.

These functions deploy an EA Server component using, or overwriting, specifications of the
project object:

Table 1.6:
Function (prefix PBORCA)

BuildProject Deploys component according to the project
object specifications

ORCA Guide Page 8

Using ORCA Appeon PowerBuilder® 2017 R3

Function (prefix PBORCA)

BuildProjectEx Overrides server name and port number when
deploying component

1.4.7 Functions for managing source control operations

These functions allow you to perform source control operations involving PowerBuilder
targets and objects:

Table 1.7

Function (prefix PBORCA) Purpose

SccClose Closes the active SCC Project

SccConnect Initializes source control and opens a project

SccConnectOffline Simulates a connection to source control

SccExcludeLibraryList Namesthe librariesin the target library list
that you do not want to be synchronized
in the next PBORCA _SccRefreshTarget
operation

SccGetConnectProperties Returns the SCC connection properties
associated with a PowerBuilder workspace

SccGetlL atestVersion Copiesthe latest version of objects from the
SCC repository to the local project path

SccRefreshTarget Refreshes the source for each of the objects
intarget libraries

SccSetPassword Sets the password property prior to
SccConnect

SccSetTarget Retrieves the target file from source control,
passes the application object name to ORCA,
and sets the ORCA session library list

1.5 About ORCA callback functions

Several ORCA functions require you to code a callback function. A callback function
provides away for the called program (the ORCA DLL or the Library Manager) to execute
code in the calling program (the ORCA program executable).

How ORCA uses callbacks

ORCA uses callback functions when an unknown number of items needs to be processed.
The purpose of the callback function is to process each of the returned items, and in most
cases return the information to the user.

Optional or required

Some callbacks handle errors that occur when the main work is being done -- for example,
when compiling objects or building executables. For handling errors, the callback function is
optional. Other callbacks handle the information you wanted when you called the function --
such as each item in adirectory listing. Callbacks for information functions are required.

ORCA Guide Page 9

Using ORCA Appeon PowerBuilder® 2017 R3

L anguage requirement

ORCA functions that require the use of callback functions can be used only by programs
written in languages that use pointers, such as C and C++.

When you create anew ORCA callback function, use the CALLBACK macro to specify the
calling convention of the function. On the Windows platform, CALLBACK is defined as
__stdcall.

1.5.1 ORCA functions that use callbacks
These functions (which all have the prefix PBORCA) use a callback function:

Table1.8:

BuildProjectEx Called once for each deployment error
BuildProject

CompileEntrylmport Called once for each compile error

CompileEntrylmportList
CompileEntryRegenerate

ExecutableCreate Called once for each link error

LibraryDirectory Called once for each library entry name

ObjectQueryHierarchy Called once for every ancestor name

ObjectQueryReference Called once for every object referenced in the
entry

SccSetTarget Called once for each library in thelibrary list

1.5.2 How a callback works
ORCA callsacalback function like this:

1. The calling program allocates a buffer to hold data (the UserData buffer).

2. The caling program calls an ORCA function, passing it pointers to the callback function
and the UserData buffer.

3. When the ORCA function needs to report information, it calls the callback function. It
passes pointers to the structure holding the information and the UserData buffer.

4. The callback function reads the information in the structure and formatsit in the UserData
buffer.

Steps 3 and 4 repeat for each piece of information ORCA needs to report. An ORCA
function might call the callback once, several times, or not at all, depending on whether
errors occur or information needs to be reported.

5. The ORCA function completes and returns control to the calling program, which reads the
information in the UserData buffer.

ORCA Guide Page 10

Using ORCA Appeon PowerBuilder® 2017 R3

Calling program :
g preg Passes pointers to

B Function callback function and
{ 1)Allocates buffer rr,fuf’i@a_tﬂaﬁ;{fer
= C T (27

/ UserData “‘;

buffer ,
- g ORCA function
{ 5) Reads data in ,
" UserData buffer / Information ¢

structure

l ._Callback function
i 4 !Formats information < fé e
= 13y

from structure in . .

Passes pointers to
UserData buffer information structure and
UserData buffer

1.5.3 Content of a callback function

The processing that occursin the callback function is entirely up to you. This section
illustrates a simple way of handling it.

User Data buffer

In this example, the UserData buffer is a structure with a field whose value points to the
actual message buffer. Other fields keep track of the message buffer's contents asit is filled:

typedef struct ORCA UserDatal nfo {
LPBYTE | pszBuf f er; /1 Buffer to store data
DWORD dwCal | Count ; /1 # of nessages in buffer
DWORD dwBuf f er Si ze; [l size of buffer
DWORD dwBuf ferOffset; // current offset in buffer
} ORCA _USERDATAI NFO, FAR * PORCA USERDATAI NFQ,

Calling program
In the calling program, the UserDatalnfo structure isinitialized.

The calling program does not know how much room will be required for messages, so
it allocates 60000 bytes (an arbitrary size). If you are gathering link errors, it's probably
enough. It might not be enough if you wanted directory information for alarge library:

ORCA_USERDATAI NFO User Dat aBuf f er ;
PORCA_USERDATAI NFO | pUser Dat aBuf f er ;

| pUser Dat aBuf f er = &User Dat aBuf f er ;
| pUser Dat aBuf f er - >dwCal | Count = O;
| pUser Dat aBuf f er - >dwBuf f er Of f set = O;
| pUser Dat aBuf f er - >dwBuf f er Si ze = 60000;
| pUser Dat aBuf f er - >l pszBuf fer =
(LPTSTR) mal | oc((si ze_t) | pUser Dat aBuf f er - >
dwBuf f er Si ze) ;

ORCA Guide Page 11

Using ORCA Appeon PowerBuilder® 2017 R3

nmenset (| pUser Dat aBuf f er - >l pszBuf f er,
0x00, (si ze_t) | pUser Dat aBuf f er - >dwBuf f er Si ze) ;

Define function pointer

The calling program defines a function pointer to the callback function that it passes to the
ORCA function:

PBORCA LI NKPROC f pLi nkPr oc;
f pLi nkProc = (PBORCA LI NKPROC) Li nkErrors;

Cal ORCA

The calling program calls the ORCA function, passing the callback function pointer and the
UserData buffer pointer. This example calls PBORCA _ExecutableCreate, whose callback
typeis PBORCA_LNKPROC:

rtn = PBORCA Execut abl eCreate(..., (PBORCA_LNKPRCC)
f pLi nkProc, | pUser Dat aBuffer);

Process results

Finally, the calling program can process or display information that the callback function
stored in the UserData buffer.

Free allocated memory
If your UserData structure allocates memory, free the allocated memory:

free(| pUserDataBuffer->l pszBuffer)

Callback program

The callback program receives a structure with the current error or information and stores
the information in the message buffer pointed to by |pszBuffer in the UserData buffer. It also
manages the pointers stored in the UserData buffer.

Simple callback
A simple callback might do the following:

» Keep count of the number of timesit is called
» Store messages and reallocate buffer if it overflows

This code implements a callback called LinkErrors for PBORCA_ExecutableCreate:

voi d CALLBACK Li nkErrors(PPBORCA_LI NKERR | pLi nkError,
LPVO D | pUser Dat a)
{
PORCA_USERDATAI NFO | pDat a;
LPBYTE | pCurr Byt e;
LPTSTR | pCurrent Ptr;
int i NeededSi ze;
| pDat a = (PORCA_USERDATAI NFO) | pUser Dat a;

/1l Keep track of nunber of link errors
| pDat a- >dwCal | Count ++;

[/ 1s buffer already full?
i f (1 pData->dwBuffer O fset==I pDat a- >dwBuf f er Si ze)
return;

ORCA Guide Page 12

Using ORCA Appeon PowerBuilder® 2017 R3

// How |l ong i s the new nessage?
/1l Message |ength plus carriage rtn and new i ne
i NeededSi ze =
(_tcslen(l pLi nkError->l pszMessageText) + 2)*
si zeof (TCHAR) ;
/! Reallocate buffer if necessary
if ((lpData->dwBufferCffset + i NeededSi ze) >
| pDat a- >dwBuf f er Si ze)
{

LPVA D | pNewBl ock;

DWORD dwNewsSi ze;

dwNewSi ze = | pDat a- >dwBuf fer Si ze * 2;

| pNewBl ock = real |l oc(l pDat a- >l pszBuffer,
(size_t)dwNewsSi ze) ;

i f (I pNewBl ock)

{
| pDat a- >l pszBuffer = (LPTSTR) | pNewBl ock;
| pDat a- >dwBuf f er Si ze = dwNewsSi ze;

}

el se
return;

}

/1 Set pointer for copying message to buffer
| pCurrent Ptr = | pDat a- >l pszBuffer
+ | pDat a- >dwBuf f er O f set ;
I pCurrString = (LPTSTR) | pCurr Byt e;
[/l Copy link error message, CR and LF to buffer.
_tcscpy(l pCurrentPtr, |pLinkError->l pszMessageText) ;
tcscat (I pCurrentPtr, _TEXT("\r\n"));

I_pDat a- >dwBuf f er Of f set += i NeededSi ze;
return;

1.6 Writing ORCA programs

This section outlines the skeleton of an ORCA program, beginning with opening a session. It
also describes how to build an application from scratch without having to start with alibrary
containing an Application object.

1.6.1 Outline of an ORCA program
To use the ORCA interface, your calling program will:
1. Open an ORCA session.

2. (Optional, depending on which ORCA functions you want to call.)
Set the library list and the current Application object.

3. Cadll other ORCA functions as needed.

4. Closethe ORCA session.

1.6.1.1 First step: open a session

Before calling any other ORCA functions, you need to open asession. The
PBORCA _SessionOpen function returns a handle that ORCA uses to manage this program's

ORCA Guide Page 13

Using ORCA Appeon PowerBuilder® 2017 R3

ORCA session. The handle type HPBORCA is defined as LPVOID, meaning that it can be
apointer to any type of data. Thisis because within ORCA it is mapped to a structure not
available to the calling program.

Sample code
This sample C function opens an ORCA session:

HPBORCA W NAPI Sessi onQpen()

{
HPBORCA hORCASessi on;

hORCASessi on = PBORCA_Sessi onOpen() ;
return hORCASessi on;

}

1.6.1.2 Optional step: set the library list and current application

The next step in writing an ORCA program depends on the intent of the program. The
choices are:

* If the program only manages libraries, moves entries among libraries, or looks at the
source for entries, there are no other required calls. Y ou can continue with your ORCA
session.

* If the program calls other ORCA functions, you must set the library list and then set the
current application.

Comparison to Power Builder

Thisis similar to the requirements of the PowerBuilder development environment. In the
Library painter, you can copy entries from one PBL to another, even if they are outside the
current application or library list. Y ou can export the syntax of alibrary entry that isnot in
the library list. However, you can only import entriesinto libraries in the current application's
library list.

In the PowerBuilder development environment, you select an Application object in the
Application painter and then set the library search path on the Application object's property
sheet. With ORCA, you set the library list first and then set the Application object.

Set once per session

Y ou can set the library list and current application only once in an ORCA session. To use
another library list and application, close the ORCA session and open a new session.

Sample code
This sample C function sets the library list and the current application:

int WNAPI Set UpSessi on(HPBORCA hORCASessi on)
{
TCHAR szAppl Nare[36] ;
i nt nRet ur nCode;
LPTSTR | pLi braryNames[2] =
{_TEXT("c:\\pbfil es\\deno\\ mast er. pbl "),
_TEXT("c:\\pbfil es\\demo\\work. pbl")};

/] Call the ORCA function

nRet ur nCode = PBORCA_Sessi onSet Li braryLi st (
hORCASessi on, | pLi braryNanes, 2);

if (nReturnCode != 0)

ORCA Guide Page 14

Using ORCA Appeon PowerBuilder® 2017 R3

return nReturnCode; // return if it failed

/] Set up the string containing the appl nane
_tcscpy(szAppl Name, _TEXT("dem"));

/1 The appl object is in the first library
nRet ur nCode = PBORCA_Sessi onSet Current Appl (
hORCASessi on, | pLibraryNanme[0], szAppl Nane))
return nRet urnCode;
}

1.6.1.3 Next steps: continuing with the ORCA session

After the library list and application are set, you can call any ORCA function using the
handle returned by the PBORCA _SessionOpen function. Most of the function calls are fairly
straightforward. Others, like those requiring callbacks, are a bit more complicated.

For information about callback functions, see About ORCA callback functions.

1.6.1.4 Final step: close the session

Thelast step in an ORCA program is to close the session. This alowsthe Library Manager to
clean up and free all resources associated with the session.

This sample C function closes the session:

voi d W NAP| Sessi onCl ose(hORCASessi on)

{
PBORCA_Sessi onCl ose(hORCASessi on) ;

return;

}

1.6.2 Bootstrapping a new application

Beginning with PowerBuilder 5.0, you can use ORCA to create the libraries for an entire
application from object source code. Y ou don't need to start with an existing PBL.

To import an object, ordinarily you need alibrary with an Application object that already
exists. When you set the Application object to aNULL value during the bootstrap process,
ORCA uses atemporary Application object so that you can import your own Application
object. But your Application object doesn't become the current application until you close the
session, start a new session, and set the current application.

To bootstrap a new application:
1. Start an ORCA session using PBORCA _SessionOpen.
2. Createthe new library using PBORCA _LibraryCreate.

3. Setthelibrary list for the session to the new library using
PBORCA_SessionSetLibraryList.

4. PassNULL variables asthe library name and application name with
PBORCA _SessionSetCurrentAppl.

5. Import the Application object into the new library using
PBORCA_CompileEntrylmportList.

ORCA Guide Page 15

Using ORCA Appeon PowerBuilder® 2017 R3

Do not import other objects now

Why you should import only the Application object

Although you can import additional objectsinto thelibrary, it isnot agood idea.

In the bootstrap session, the default Application object is the current application. If
the objects have any dependencies on your Application object (for example, if they
reference global variables), they will cause errors and fail to be imported.

6. Closethe session.

Finishing the bootstrapped application

The bootstrap process gets you started with the new application. To complete the process,
you need to import the rest of the objects into one or more libraries.

Y ou can only set the library list and current application once in a session, so you need to start
anew ORCA session to finish the process. Since you now have alibrary with the Application
object you want to use, the processis the same as any other ORCA session that imports
objects.

Tofinish the bootstrapped application:
1. Open another ORCA session.
2. Create any additional libraries you'll need for the application.

3. Setthelibrary list to the library created in the bootstrap procedure plus the empty
librariesjust created.

4. Set the current application to the Application object imported in the bootstrap procedure.

5. Import objectsinto each of the libraries as needed.

When to createthelibraries

Y ou can create the additional libraries during the first bootstrap procedure. However,
you should not import objects until the second procedure, when the correct
Application object is current.

1.7 Removing deprecated ORCA functions

PowerBuilder 8 introduced a new way of accessing source control using the SCC API. The
ORCA functions for working with source control were deprecated, but were not removed
from the ORCA 8 API.

Starting with PowerBuilder 9, new ORCA source control functions have been added and old
ORCA source control functions have been removed from the ORCA API. Therefore, you
must remove all calls to the following functions from your existing ORCA applications:

* PBORCA _CheckOutEntry

ORCA Guide Page 16

Using ORCA Appeon PowerBuilder® 2017 R3

* PBORCA _ChecklnEntry
* PBORCA _ListCheckOutEntries

New ORCA functions are documented in ORCA Functions.

ORCA Guide Page 17

ORCA Functions Appeon PowerBuilder® 2017 R3

2 ORCA Functions

About this chapter
This chapter documents the ORCA functions.

2.1 About the examples

The examplesin this chapter assume that a structure was set up to store information about the
ORCA session when the session was opened. In the examples, the variable IpPORCA _Infoisa
pointer to an instance of this structure:

typedef struct ORCA Info {

LPTSTR | pszError Message; // Ptr to nessage text

HPBORCA hORCASessi on; // ORCA session handl e

DWORD dwkr ror BufferLen; // Length of error buffer

| ong | ReturnCode; // Return code

HI NSTANCE hLi brary; // Handle to ORCA library

PPBORCA _CONFI G_SESSI ON pConfig; // ConfigureSession
} ORCA_INFO FAR *PORCA | NFO

2.2 ORCA return codes
The header file PBORCA .H defines these return codes:

Table2.1:
0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list
-2 PBORCA_DUPOPERATION Duplicate operation
-3 PBORCA_OBJNOTFOUND Object not found
-4 PBORCA_BADLIBRARY Bad library name
-5 PBORCA_LIBLISTNOTSET Library list not set
-6 PBORCA_LIBNOTINLIST Library not in library list
-7 PBORCA_LIBIOERROR Library 1/O error
-8 PBORCA_OBUJEXISTS Object exists
-9 PBORCA_INVALIDNAME Invalid name
-10 PBORCA_BUFFERTOOSMALL Buffer sizeistoo small
-11 PBORCA_COMPERROR Compile error
-12 PBORCA_LINKERROR Link error
-13 PBORCA_CURRAPPLNOTSET Current application not set
-14 PBORCA_OBJHASNOANCS Object has no ancestors
-15 PBORCA_OBJHASNOREFS Object has no references
-16 PBORCA_PBDCOUNTERROR Invalid # of PBDs
-17 PBORCA_PBDCREATERROR PBD create error

ORCA Guide Page 18

ORCA Functions Appeon PowerBuilder® 2017 R3

Return code Description

-18 PBORCA_CHECKOUTERROR Source Management error (obsolete)

-19 PBORCA_CBCREATEERROR Could not instantiate ComponentBuilder
class

-20 PBORCA_CBINITERROR Component builder Init method failed

-21 PBORCA_CBBUILDERROR Component builder BuildProject method
failed

-22 PBORCA_SCCFAILURE Could not connect to source control

-23 PBORCA_REGREADERROR Could not read registry

-24 PBORCA_SCCLOADDLLFAILED |Could not load DLL

-25 PBORCA_SCCINITFAILED Could not initialize SCC connection

-26 PBORCA_OPENPROJFAILED Could not open SCC project

-27 PBORCA_TARGETNOTFOUND Target File not found

-28 PBORCA_TARGETREADERR Unableto read Target File

-29 PBORCA_GETINTERFACEERROR | Unable to access SCC interface

-30 PBORCA_IMPORTONLY_REQ Scc connect offline requires IMPORTONLY
refresh option

-31 PBORCA_GETCONNECT_REQ SCC connect offline requires
GetConnectProperties with
Exclude_Checkout

-32 PBORCA_PBCFILE_REQ SCC connect offline with Exclude_Checkout
requires PBC file

2.3 PBORCA_ApplicationRebuild
Description

Compiles al the objectsin the librariesincluded on the library list. If necessary, the
compilation is done in multiple passes to resolve circular dependencies.

Syntax

I NT PBORCA Applicati onRebuild (HPBORCA hORCASessi on,
PBORCA_REBLD_TYPE eRebl dType,
PBORCA ERRPRCC pConpEr r Proc,
LPVO D pUserData);

Table2.2:
hORCA Session Handle to previously established ORCA
session.
eRebldType A value of the PBORCA_REBLD_TYPE

enumerated data type specifying the type of
rebuild. Values are:

PBORCA_FULL_REBUILD

ORCA Guide Page 19

ORCA Functions

Appeon PowerBuilder® 2017 R3

Argument

Description
PBORCA_INCREMENTAL_REBUILD

PBORCA_MIGRATE
PBORCA_3PASS

pCompErrorProc

Pointer to the PBORCA _ApplicationRebuild
callback function. The callback function is
called for each error that occurs as the objects
are compiled.

The information ORCA passes to the
callback function is error level, message
number, message text, line number, and
column number, stored in a structure of type
PBORCA_COMPERR. The object name and
script name are part of the message text.

If you do not want to use a callback function,
set pCompErrorProc to 0.

pUserData

Pointer to user datato be passed to the
PBORCA _CompileEntrylmport callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback
function stores the error information as well
as information about the size of the buffer.

If you are not using a callback function, set
pUserDatato O.

Return value

INT. Typical return codes are:

Table2.3:

Return code Description

0 PBORCA_OK

Operation successful

-1 PBORCA_INVALIDPARMS

Invalid parameter list

-13 PBORCA_CURRAPPLNOTSET

Current application not set

Usage

Y ou must set the library list and current application before calling this function.

If you use the compile functions, errors can occur because of the order in which the
objects are compiled. If two objects refer to each other, then simple compilation will
fail. Use PBORCA_ApplicationRebuild to resolve errors due to object dependencies.

ORCA Guide

Page 20

ORCA Functions Appeon PowerBuilder® 2017 R3

PBORCA_ApplicationRebuild resolves circular dependencies with multiple passes through
the compilation process.

The rebuild types specify how objects are affected. Choices are:
Incremental rebuild

Updates all the objects and libraries referenced by any objects that have been changed since
the last time you built the application.

Full rebuild
Updates all the objects and libraries in your application.
Migrate

Updates all the objects and libraries in your application to the current version. Only
applicable when the objects were built in an earlier version.

Examples
This example recompiles all the objectsin the libraries on the current library list.

Each time an error occurs, PBORCA _ApplicationRebuild calls the callback
CompileEntryErrors. In the code you write for CompileEntryErrors, you store the error
messages in the buffer pointed to by IpUserData:

PBORCA_ERRPRCC f pError;
i nt nRet urnCode;

fpError = (PBORCA_ERRPROC) Error Proc;
nRet ur nCode = PBORCA_Appl i cati onRebui | d(
| pORCA_I nf 0- >hORCASessi on,
PBORCA_FULL_REBUI LD,
fpError, | pUserData);

For more information about setting up the data buffer for the callback, see Content of a
callback function and the example for PBORCA _LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

Seealso
PBORCA_CompileEntryRegenerate
PBORCA _CompileEntrylmport
PBORCA _CompileEntrylmportL ist

2.4 PBORCA_BuildProject

Description

This function is obsolete because EA Server is no longer supported since PowerBuilder 2017.
Deploys an EA Server component according to the specifications of the project object.
Syntax

| NT PBORCA Bui | dProject (HPBORCA hORCASessi on,

ORCA Guide Page 21

ORCA Functions Appeon PowerBuilder® 2017 R3

LPTSTR | pszLi br ar yNane,
LPTSTR | pszPr oj ect Nane,
PBORCA_BLDPROC pBui | dErr Pr oc,
LPVO D pUserData);

Table 2.4
Argument Description
hORCA Session Handle to previously established ORCA
session.
IpszLibraryName File name of the library containing project
entry.
|pszProjectName Project object containing deployment
information.
pBuildErrProc Pointer to the PBORCA_BuildProject error

callback function.

If you don't want to use a callback function,
set pBuildErrProc to NULL.

pUserData Pointer to user data to be passed to the
callback function.

Return value

INT. Typical return codes are:

Table 2.5:
0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list
-19 PBORCA_CBCREATEERROR Component Builder class not created
-20 PBORCA_CBINITERROR Initialization of EA Server connection failed
-21 PBORCA_CBBUILDERROR Deployment failed with errors
Usage

How error information is returned

PBORCA_BuildProject error callback function stores information about an entry in the
following structure. Y ou pass a pointer to the structure in the pBuildErrProc argument:

typedef struct PBORCA bl derr

{
LPTSTR | pszMessageText; // Pointer to nessage text

} PBORCA BLDERR, FAR * PPBORCA_ BLDERR;

Prototype for callback function

The callback function has the following signature:

ORCA Guide Page 22

ORCA Functions Appeon PowerBuilder® 2017 R3

typedef PBCALLBACK (void, *PPBORCA BLDPROC) (PBORCA BLDERR LPVO D);

See also
PBORCA_BuildProjectEx

2.5 PBORCA_BuildProjectEx
Description
This function is obsol ete because EA Server is no longer supported since PowerBuilder 2017.

Deploys an EA Server component according to the specifications of the project object,
but overrides server and port propertiesin the project object with the argument values
you specify. However, it does not override these propertiesif they are set in the
server profile. To override properties in the server profile and the project object, use
PBORCA_BuildProjectWithOverrides.

Syntax

I NT PBORCA Bui | dProj ect Ex (HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszPr oj ect Nane,
PBORCA_BLDPRCC pBui | dEr r Proc,
LPTSTR | pszSer ver Nane,
I NT i Port,
LPVO D pUserData);

Table 2.6:
Argument Description
hORCA Session Handle to previously established ORCA
session.
IpszLibraryName File name of the library containing project
entry.
|pszProjectName Project object containing deployment
information.
pBuildErrProc Pointer to the PBORCA_BuildProject error

callback function.

If you don't want to use a callback function,
set pBuildErrProc to NULL.

|pszServerName Server name for EAServer deployment. This
value overrides the server property in the
project object.

iPort Port number for EAServer deployment. This
value overrides the server property in the
project object.

pUserData Pointer to user data to be passed to the
callback function.

Return value

ORCA Guide Page 23

ORCA Functions Appeon PowerBuilder® 2017 R3

INT. Typical return codes are:

Table2.7:
0 PBORCA_OK Operation successful.
-1 PBORCA_INVALIDPARMS Invalid parameter list.
-19 PBORCA_CBCREATEERROR Component Builder class not created.
-20 PBORCA _CBINITERROR Initialization of EAServer connection failed.
-21 PBORCA_CBBUILDERROR Deployment failed with errors.
Seealso

PBORCA _BuildProject
PBORCA_BuildProjectWithOverrides

2.6 PBORCA_BuildProjectWithOverrides
Description
This function is obsol ete because EA Server is no longer supported since PowerBuilder 2017.

Deploys an EA Server component according to the specifications of the project object,

but forces overrides based on argument values you specify. This method is similar to
PBORCA_BuildProjectEx, however, it requires additional input values for the server login
ID and password, and it uses these values to override any values set in the server profile or
the project object.

Syntax

I NT PBORCA Bui | dProj ect Wt hOverri des (HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszPr oj ect Nane,
PBORCA_BLDPRCC pBui | dEr r Proc,
LPTSTR | pszSer ver Nane,
I NT i Port,
LPTSTR | pszUseri d,
LPTSTR | pszPasswor d,
LPVO D pUserData);

Table2.8:
Argument Description
hORCA Session Handle to previously established ORCA
session.
|pszLibraryName File name of the library containing project
entry.
|pszProjectName Project object containing deployment
information.

ORCA Guide Page 24

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

pBuildErrProc Pointer to the PBORCA_BuildProject error
callback function.

If you don't want to use a callback function,
set pBuildErrProc to NULL.

|pszServerName Server name for EAServer deployment. This
value overrides the server property in the
project object.

iPort Port number for EAServer deployment. This
value overrides the server property in the
project object.

|pszUserid Login ID for the server. This value overrides
thelogin ID in the project object.

|pszPassword Password for the server. This value overrides
the login password in the project object.
pUserData Pointer to user data to be passed to the

callback function.

Return value

INT. Typical return codes are:

Table 2.9:
0 PBORCA_OK Operation successful.
-1 PBORCA_INVALIDPARMS Invalid parameter list.
-19 PBORCA_CBCREATEERROR Component Builder class not created.
-20 PBORCA_CBINITERROR Initialization of EAServer connection failed.
-21 PBORCA_CBBUILDERROR Deployment failed with errors.
Seealso

PBORCA _BuildProject
PBORCA _BuildProjectEx

2.7 PBORCA_CompileEntrylmport
Description
Imports the source code for a PowerBuilder object into alibrary and compilesit.
Syntax
I NT PBORCA_Conpi | eEntryl mport (HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,

LPTSTR | pszEnt r yName,
PBORCA_TYPE ot Ent ryType,

ORCA Guide Page 25

ORCA Functions

Appeon PowerBuilder® 2017 R3

| pszConment s,

LPTSTR | pszEnt r ySynt ax,

LONG | Ent r ySynt axBuf f Si ze,
PBORCA_ERRPRCC pConpError Proc,
LPVO D pUserData);

Table 2.10:

Argument Description

hORCA Session

Handle to previously established ORCA
session.

|pszLibraryName

Pointer to a string whose value isthe file
name of the library into which you want to
import the object.

|pszEntryName

Pointer to a string whose value is the name of
the object being imported.

otEntryType

A value of the PBORCA_TY PE enumerated
data type specifying the object type of the
entry being imported. Values are:

PBORCA_APPLICATION
PBORCA_BINARY
PBORCA_DATAWINDOW
PBORCA_FUNCTION
PBORCA_MENU
PBORCA_PIPELINE
PBORCA_PROJECT
PBORCA_PROXYOBJECT
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW

|pszComments

Pointer to a string whose value is the
comments you are providing for the object.

|pszEntry Syntax

Pointer to a buffer whose value is source
code for the object to be imported. If

an export header exists in the source
code it isignored. The source encoding
for IpszEntrySyntax is specified by

the elmportEncoding property in the
PBORCA_CONFIG_SESSION structure.

|EntrySyntaxBuffSize

Length of the IpszEntrySyntax buffer. This
length is specified in bytes regardless of the
source encoding.

ORCA Guide

Page 26

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

pCompErrorProc Pointer to the
PBORCA_CompileEntrylmport callback
function. The callback function is called for
each error that occurs as the imported object
is compiled.

The information ORCA passes to the
callback function is error level, message
number, message text, line number, and
column number, stored in a structure of type
PBORCA_COMPERR. The object name and
script name are part of the message text.

If you don't want to use a callback function,
set pCompErrorProc to 0.

pUserData Pointer to user data to be passed to the
PBORCA_CompileEntrylmport callback
function.

The user data typically includes the buffer or
apointer to the buffer in which the callback
function stores the error information as well
as information about the size of the buffer.

If you are not using a callback function, set

pUserDatato O.

Return value

INT. Typical return codes are:

Table2.11:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Bad library name, library not found, or object
could not be saved in the library

-6 PBORCA_LIBNOTINLIST Library notin list

-8 PBORCA_COMPERROR Compile error

-9 PBORCA_INVALIDNAME Name does not follow PowerBuilder naming
rules

-13 PBORCA_CURRAPPLNOTSET The current application has not been set

Usage

Y ou must set the library list and current Application object before calling this function.

ORCA Guide Page 27

ORCA Functions Appeon PowerBuilder® 2017 R3

Power Builder

In PowerBuilder 10 and higher, you must specify the source encoding for the

objects to be imported. Y ou do this by setting the elmportEncoding property in the
PBORCA_CONFIG_SESSION structure and calling PBORCA _ConfigureSession.
For ANSI clients the default source encoding is ANSI/DBCS,; for Unicode clients the
default source encoding is Unicode.

Importing objects with embedded binary information

Two separate calls to PBORCA_CompileEntrylmport are required to import objects
containing embedded binary data such as OLE objects. Thefirst call imports the source
component. The second call imports the binary component using an otEntryType argument
set to PBORCA_BINARY and an IpszEntrySyntax argument pointing to the start of the
binary header record.

When errors occur

When errors occur during importing, the object is brought into the library but might need
editing. An object with minor errors can be opened in its painter for editing. If the errors
are severe enough, the object can fail to open in the painter and you will have to export the
object, fix the source code, and import it again. If errors are due to the order in which the
objects are compiled, you can call the PBORCA_ApplicationRebuild function after all the
objects are imported.

Caution

When you import an entry with the same name as an existing entry, the old entry is
deleted before the import takes place. If an import fails, the old object will aready be
deleted.

For information about callback processing for errors, see
PBORCA_CompileEntrylmportList.

Examples

This example imports a DatawWindow called d_labelsinto the library DWOBJECTS.PBL.
The source code is stored in a buffer called szEntrySource.

Each time an error occurs, PBORCA_CompileEntrylmport calls the callback
CompileEntryErrors. In the code you write for CompileEntryErrors, you store the error
messages in the buffer pointed to by IpUserData:

PBORCA ERRPRCC f pError;
i nt nRet ur nCode;

fpError = (PBORCA _ERRPROC) ErrorProc;

nRet ur nCode = PBORCA_Conpi | eEnt ryl npor t (
| pORCA | nf 0- >hORCASessi on,
_TEXT("c:\\app\\dwobj ects. pbl)",
TEXT("d| abel s"), PBORCA DATAW NDOW
(LPTSTR) szEntrySource, 60000,
fpError, | pUserData);

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

ORCA Guide Page 28

ORCA Functions Appeon PowerBuilder® 2017 R3

This example reads a source file, determines the encoding format of the source file, and
importsit into a PBL. If the file contains an embedded binary object, thisis also imported
using a second call to PBORCA _CompileEntrylmport.

/1 Headers, Defines, Typdefs
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <wi ndows. h>

#i ncl ude <tchar. h>

extern "C' {

#i ncl ude "pborca. h"

}

[/ d obal Vari abl es

HPBORCA hPbOr ca;
PBORCA_ERRPROC fpError;
[/ Functi on Decl arations

voi d CALLBACK Error Proc(PBORCA_COWPERR *| pConpErr,
LPVO D | pUser Dat a) ;

/1 NAME: I mpbi n. cpp

/'l Synopsi s: I mport w_edit_connect.srw (which contains
/1 an enbedded OLE object) into a work PBL.

/1 Thi s exanpl e can be conpiled as an ANSI client

/1 or a Unicode client. To conpile as Unicode

/1 use / DUNI CODE / D_UNI CODE conpi |l er directives.

#i f defined (UNI CODE)

INT wrain (int argc, wchar_t *argv[])

#el se

INT main (int argc, char *argv[])

#endi f

{
LPTSTR pszLi br aryNane[5] ;
LPTSTR pszl nportFil e;
HANDLE hQpenFil e = NULL;
| NT i Err Code;
BOOL rc;
wchar _t chMar ker ;
unsi gnedchar chMar ker 3;
DWORD dByt esRead;
DWORD dFi | eSi ze;
PBORCA_CONFI G_SESSI ON Confi g;
LPBYTE pReadBuf fer = NULL;
LPBYTE pEndBuf f er;
I NT i Sour ceSi ze;
I NT i Bi narySi ze;

pszLi brar yNane[0]
pszLi braryNane[1]
\'shar ed_obj . pbl ") ;
pszLi braryNane|[2]

_TEXT("c:\\pbl2. 5\\ mai n\\ pbl s\\ qadb\ \ gadbt est\\ gadbt est . pbl ") ;
_TEXT("c:\\pbl2. 5\\ mai n\\ pbl s\\ gadb\ \ shar ed_obj \

_TEXT("c:\\pbl2. 5\\ nai n\\ pbl s\\ qadb\ \ dat at ypes\ \ dat at ype. pbl ") ;
pszLi braryNane|[3] _TEXT("c:\\pbl2. 5\\ nmai n\\ pbl s\\ qadb\\ chgr eqs\ \ chgregs. pbl ") ;
pszLi braryNane[4] _TEXT("c:\\pbl2. 5\\ nmai n\\ orca\\testexport\\work. pbl");
pszlnportFile = _TEXT("c:\\pbl12.5\\ nai n\\ pbl s\ \ gadb\\ gadbt est\
\w_edit_connect.srw');
nmenset (&Confi g, 0x00, sizeof (PBORCA CONFI G _SESSI ON)) ;
PbOrca = PBORCA_Sessi onOpen() ;
/!l Delete and re-create work. pbl
i Err Code = PBORCA Li braryDel et e(hPbOrca, pszLi braryName[4]);
i Err Code = PBORCA _Li braryCreat e(hPbOr ca,
pszLi braryNanme[4], _TEXT("work pbl"));
i Err Code = PBORCA _Sessi onSet Li braryLi st (hPbOrca,
pszLi braryNanme, 5);

if (iErrCode != PBORCA OK)

ORCA Guide Page 29

ORCA Functions Appeon PowerBuilder® 2017 R3

goto TestExit;
i Err Code = PBORCA_Sessi onSet Current Appl (hPbOrca,
pszLi braryNanme[0], _TEXT("qgadbtest"));
if (i ErrCode != PBORCA OK)
goto TestExit;
/1 PBORCA _Conpil eEntryl nport ignores export headers,
/1l so the ORCA application nust progrnmatically
/1 determ ne the source encoding of the inmport file.
[/ This is done by reading the first two or three
/1l bytes of the file.
hQpenFil e = CreateFil e(pszl nportFile, GENERI C_READ, O,
NULL, OPEN_EXI STI NG FI LE_ATTRI BUTE_NORVAL, NULL);
if(hOpenFile == | NVALI D_ HANDLE VALUE)
goto TestExit;
rc = ReadFile(hOQpenFile, (LPVO D) &hMarker,
si zeof (wchar _t), &dBytesRead, NULL);
if(rc)
{
if (chMarker == Oxfeff)
Confi g. el mport Encodi ng = PBORCA_UNI CODE;
else if (chMarker == Oxbbef)
{
rc = ReadFil e(hOpenFile, (LPVO D)&chMarker 3,
si zeof (CHAR) , &dByt esRead, NULL);
i f (chMarker3 == 0xbf)
Confi g. el nport Encodi ng = PBORCA_UTFS;

}

else if (nmencnp((LPBYTE) &chMarker, "HA", 2) == 0)
Confi g. el mport Encodi ng = PBORCA_HEXASCI | ;

el se
Confi g. el mport Encodi ng = PBORCA_ANSI _DBCS;

/1 Now allocate nmenory for a source buffer and read
/1l entire file
Set Fi | ePoi nter(hOpenFile, 0, NULL, FI LE_ BEG N) ;
dFil eSi ze = GetFil eSi ze(hOpenFi |l e, NULL) ;
pReadBuffer = (LPBYTE) mal |l oc((size_t) dFileSize + 2);
rc = ReadFil e(hOpenFile, pReadBuffer, dFileSize,
&dByt esRead, NULL);

/1 Append a null terminator to enable strstr() call
pEndBuf f er = pReadBuffer + dFileSi ze;
nmenset (pEndBuf fer, 0x00, 2); // unicode EOF nmarker
if (!rc)

goto TestExit;
/Il Determine if the object includes a binary conponent.
/[l 1f it does, then nake two separate calls to
/1 PBORCA _Conpil eEntryl nport.
if (Config.elnportEncodi ng == PBORCA_UNI CODE)
{

LPWSTR

pszUni Bi nHeader ;

LPWSTR

pUni Bi nSt art ;

pszUni Bi nHeader = "Start of PowerBuil der Binary

Data Section";
pUni BinStart = wcsstr((const wchar_t *)
pReadBuf f er, pszUni Bi nHeader) ;

if (pUniBinStart)

{

pEndBuffer = (LPBYTE) pUniBinStart;

i Sour ceSi ze (I'NT) (pEndBuffer - pReadBuffer);
i Bi narySi ze (I'NT) (dFileSize - iSourceSize);
}

ORCA Guide Page 30

ORCA Functions Appeon PowerBuilder® 2017 R3

el se
{
i SourceSize = (INT) dFileSize;
i BinarySi ze = 0;
}
}
el se
{
LPSTR pszAnsi Bi nHeader ;
LPSTR pAnsi BinStart;
pszAnsi Bi nHeader = "Start of PowerBuil der Binary
Data Section";
pAnsi BinStart = (LPSTR) strstr((const char *)
pReadBuffer, (const char *) pszAnsi Bi nHeader) ;
if (pAnsiBinStart)
pEndBuf fer = (LPBYTE) pAnsiBinStart;
i SourceSi ze = (INT) (pEndBuffer - pReadBuffer);
i BinarySi ze = (INT) (dFileSize - iSourceSize);
}
el se
{
i SourceSize = (INT) dFileSize;
i Bi narySi ze = 0;
}
}

/1 Configure ORCA session to read appropriate source
/1 encoding
i Err Code = PBORCA _Confi gureSessi on(hPbOrca, &Confi g);

/1 Now inport the source for the entry

fpError = (PBORCA_ERRPROC) Error Proc;

i Err Code = PBORCA_Conpi | eEntryl nport (
hPbOr ca,
pszLi braryNane[4],
_TEXT("w_edit_connect"), PBORCA W NDOW
_TEXT("t est enbedded OLE object"),
(LPTSTR) pReadBuffer, i SourceSi ze,

fpError, NULL);

if (i ErrCode != PBORCA OK)
goto TestExit;

if (iBinarySize > 0)

{
i Err Code = PBORCA_Conpi | eEnt ryl nport (
hPbOr ca,
pszLi braryNane[4],
_TEXT("w_edit_connect"), PBORCA Bl NARY,
NULL,
(LPTSTR) pEndBuffer, iBinarySize,
fpError, NULL);
}
}
Test Exit:
if (hOpenFile != | NVALI D_HANDLE VALUE)

Cl oseHandl e(hOpenFi | e) ;
i f (pReadBuffer)
free(pReadBuffer);
PBORCA_Sessi ond ose(hPbOrca);
return i Err Code;

/1 Callback error procedure used by the call to conpile
/1 an object. In this exanple it is supplied by the

[/l program and is not a nethod of the ORCA cl ass.

voi d CALLBACK Error Proc(PBORCA_COVWPERR *| pConpErr,

ORCA Guide Page 31

ORCA Functions Appeon PowerBuilder® 2017 R3

LPVA D | pUser Dat a)
{

_tprintf(_TEXT("% \n"), |pConpErr->l pszMessageText);
Seealso
PBORCA _LibraryEntryExport
PBORCA_CompileEntrylmportL ist
PBORCA _CompileEntryRegenerate
PBORCA_ApplicationRebuild

2.8 PBORCA_CompileEntrylmportList
Description

Imports the source code for alist of PowerBuilder objectsinto libraries and compiles them.
The name of each object to be imported is held in an array. Other arrays hold the destination
library, object type, comments, and source code. The arrays must have an element for every
object.

Syntax

I NT PBORCA_Conpi | eEntryl nmportLi st (PBORCA hORCASessi on,
LPTSTR far *pLi braryNanes,
LPTSTR far *pEntryNanes,
PBORCA_TYPE far *ot EntryTypes,
LPTSTR far *pConments,
LPTSTR far *pEntrySynt axBuffers,
LONG far *pEntrySyntaxBuffSizes,
I NT i Nunber Of Entri es,
PBORCA_ERRPROC pConpEr r or Pr oc,
LPVO D pUserData);

Table2.12:

Argument Description

hORCA Session Handle to previously established ORCA
session.

*pLibraryNames Pointer to an array of strings whose values
are the file names of librariesinto which you
want to import the corresponding objects.

*pEntryNames Pointer to an array of strings whose values
are the names of objects to be imported into
the corresponding libraries.

*otEntry Types Pointer to an array whose values are the

object types of the library entries, expressed
as enumerated datatype PBORCA_TYPE.
Values are:

PBORCA_APPLICATION
PBORCA_DATAWINDOW
PBORCA_FUNCTION

ORCA Guide Page 32

ORCA Functions

Appeon PowerBuilder® 2017 R3

Argument Description

PBORCA_MENU
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW
PBORCA_PIPELINE
PBORCA_PROJECT
PBORCA_PROXYOBJECT
PBORCA_BINARY

*pComments

Pointer to an array of strings whose values
are the comments for the corresponding
objects.

* pEntrySyntaxBuffers

Pointer to an array of strings whose values
are the source code for the corresponding
objects.

* pEntry SyntaxBuffSizes

Pointer to an array of longs whose values
are the lengths of the strings pointed to by
* pEntrySyntaxBuffers

iNumberOfEntries

Number of entries to be imported, whichis
the same as the array length of all the array
arguments.

pCompErrorProc

Pointer to the
PBORCA_CompileEntrylmportList callback
function. The callback function is called for
each error that occurs when imported objects
are compiled.

The information ORCA passes to the
callback function is error level, message
number, message text, line number, and
column number, stored in a structure of type
PBORCA_COMPERR. The object name and
script name are part of the message text.

If you don't want to use a callback function,
set pCompErrorProc to 0.

pUserData

Pointer to user datato be passed to the
PBORCA _CompileEntrylmportList callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback

ORCA Guide

Page 33

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

function formats the error information as well
as information about the size of the buffer.

If you are not using a callback function, set

pUserDatato O.

Return value

INT. Typical return codes are:

Table2.13:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Bad library name, library not found, or object
couldn't be saved in the library

-6 PBORCA_LIBNOTINLIST Library notinlist

-7 PBORCA_LIBIOERROR Library 1/O error

-8 PBORCA_COMPERROR Compile error

-9 PBORCA_INVALIDNAME Name does not follow PowerBuilder naming
rules

-13 PBORCA_CURRAPPLNOTSET The current application has not been set

Usage
Y ou must set the library list and current Application object before calling this function.

PBORCA_CompileEntrylmportList is useful for importing several interrelated objects -- for
example, awindow, its menu, and perhaps a user object that it uses.

How imported objects are processed

ORCA imports all the objectsin the list, compiling each object type definition. If no errors
occur, then ORCA compiles all the objectsin all the listed libraries.

Object dependencies

In the list of objects to be imported, put ancestor objects before their descendant
objects so that the ancestors are imported first.

In the list of objects, put a user object before objects that refer to that user object so that the
referenced object isimported first.

If objects refer to each other, call PBORCA _ApplicationRebuild to get an error-free
compilation.

Popul ating the information arrays for imported objects

ORCA Guide Page 34

ORCA Functions Appeon PowerBuilder® 2017 R3

The information for each imported object is contained in several parallel arrays. For example,
if a Datawindow named d_labelsisthe third element in the object name array (subscript 2),
then a pointer to the name of its destination library isthe third element in the library name
array; its object type is the third element in the object type array; and the pointer to its source
code buffer isthe third element in the syntax buffer array.

Using PBORCA_BINARY to specify entry type

This value of the PBORCA_TY PE enumerated data type should be used when importing
or exporting entries that contain embedded binary information such as OLE objects. The
binary information isimported from a buffer previoudly filled on export with the hexascii
representation of the binary data

For sample code demonstrating using PBORCA_BINARY on import, see Examples [35].
When errors occur

When errors occur during importing, the object is brought into the library but may need
editing. An object with minor errors can be opened in its painter for editing. If the errors
are severe enough, the object can fail to open in the painter, and you will have to export the
object, fix the source code, and import it again. If errors are due to the order in which the
objects are compiled, you can call the PBORCA_ApplicationRebuild function after all the
objects are imported.

Caution

When you import an entry with the same name as an existing entry, the old entry is
deleted before the import takes place. If an import fails, the old object will already
have been deleted.

Processing errorsin the callback function

For each error that occurs during compiling, ORCA calls the callback function pointed

to in pCompErrorProc. How that error information is returned to your calling program
depends on the processing you provide in the callback function. ORCA passes information

to the callback function about an error in the structure PBORCA_COMPERR. The callback
function can examine that structure and store any information it wants in the buffer pointed to
by pUserData.

Because you do not know how many errorswill occur, it is hard to predict the size of the
pUserData buffer. It is up to your callback function to keep track of the available space in the
buffer.

Examples

This example builds the arrays required to import three objects into two libraries (the
example assumes that source code for the objects has already been set up in the variables
szWindowl, szWindow?2, and szMenul) and imports the objects.

Each time an error occurs, PBORCA _CompileEntrylmportList calls the callback
CompileEntryErrors. In the code you write for CompileEntryErrors, you store the error
messages in the buffer pointed to by IpUserData. In the example, the IpUserData buffer has
aready been set up:

LPTSTR | pLi braryNanes|[3] ;

ORCA Guide Page 35

ORCA Functions

Appeon PowerBuilder® 2017 R3

LPTSTR | pCbj ect Nanes|[3] ;
PBORCA _TYPE nj ect Types|[3] ;
LPTSTR | pCbj Conment s[3] ;
LPTSTR | pSour ceBuf fers[3] ;

| ong BuffSizes[3];
PBORCA_ERRPRCC f pError;

i nt nRet ur nCode;

fpError = (PBORCA_ERRPROC) Error Proc;
/1 1ndicate Unicode source encoding
| pORCA_| nf 0- >pConfi g- >el nport Encodi ng = PBORCA UNI CCODE;
PBORCA_Conf i gur eSessi on(| pORCA | nf o- >hORCASessi on,
| pORCA I nf 0- >pConfi g);

/1 specify the library nanes
| pLi braryNanmes[0] =

_TEXT("c:\\appeon\\ pb2017\\ deno\ \ wi ndows. pbl ") ;
| pLi braryNanes[1] =

_TEXT("c:\\appeon\\ pb2017\\ deno\ \ wi ndows. pbl ") ;
| pLi braryNanes[2] =

_TEXT("c:\\appeon\\ pb2017\\ deno\ \ menus. pbl ") ;

/1 specify the object nanes

| pObj ect Nanmes[0] _TEXT("w_ancestor");

| pObj ect Nanmes[1] _TEXT("w_descendant ") ;
| pObj ect Nanmes| 2] _TEXT("m_ acti onnmenu") ;

/1 set up object type array

oj ect Types|[0] PBORCA_W NDOW
oj ect Types|[1] PBORCA_W NDOW
oj ect Types| 2] PBORCA_MENU;

/'l specify object comments

| pObj Comrent s[0] _TEXT(" Ancest or w ndow');

| pObj Commrent s[1] _TEXT("descendant wi ndow');
| pObj Commrent s[2] _TEXT("Action nenu");

/'l set pointers to source code

| pSour ceBuf f er s[0] (LPTSTR) szW ndowd;
| pSour ceBuf f er s[1] (LPTSTR) szW ndow2;
| pSour ceBuf f er s[2] (LPTSTR) szMenul,;

/1 Set up source code |engths array

Buf f Si zes[0] = _tcsl en(szW ndowl) *2;
/1 Uni code source buffer

Buf f Si zes[1] = _tcsl en(szW ndow2) *2;
/1Size is always in bytes

Buf f Si zes[2] = _tcslen(szMenul)*2;

nRet ur nCode = PBORCA_Conpi | eEntryl nport Li st (
| pORCA_I nf 0- >hORCASessi on,
| pLi braryNames, | pObj ect Nanes, Obj ect Types,
| pObj Conment s, | pSourceBuf fers, BuffSizes, 3,
fpError, |pUserData);

For more information about setting up the data buffer for the callback, see Content of a

callback function and the example for PBORCA _LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shownin

About the examples.
See also
PBORCA LibraryEntryExport

ORCA Guide

Page 36

ORCA Functions Appeon PowerBuilder® 2017 R3

PBORCA _CompileEntrylmport
PBORCA _CompileEntryRegenerate
PBORCA _ApplicationRebuild

2.9 PBORCA_CompileEntryRegenerate
Description
Compiles an object in a PowerBuilder library.

Syntax

I NT PBORCA_Conpi | eEnt r yRegenerate (PBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszEnt r yNamne,
PBORCA_TYPE ot Ent ryType,
PBORCA_ERRPRCC pConpError Proc,
LPVO D pUserData);

Table2.14:
Argument Description
hORCA Session Handle to previously established ORCA
session.
|pszLibraryName Pointer to a string whose valueisthefile
name of the library containing the object to
be compiled.
|pszEntryName Pointer to a string whose value is the name of
the object to be compiled.
otEntryType A value of the PBORCA_TY PE enumerated

data type specifying the object type of the
entry being compiled. Values are:

PBORCA_APPLICATION
PBORCA_DATAWINDOW
PBORCA_FUNCTION
PBORCA_MENU
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW
PBORCA_PIPELINE
PBORCA_PROJECT

PBORCA_PROXYOBJECT

pCompErrorProc Pointer to the
PBORCA_CompileEntryRegenerate callback

ORCA Guide Page 37

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

function. The callback function is called
for each error that occurs as the object is
compiled.

The information ORCA passes to the
callback function is error level, message
number, message text, line number, and
column number, stored in a structure of type
PBORCA_COMPERR. The object name and
script name are part of the message text.

If you don't want to use a callback function,
set pCompErrorProc to 0.

pUserData Pointer to user data to be passed to the
PBORCA_CompileEntryRegenerate callback
function.

The user data typically includes the buffer or
apointer to the buffer in which the callback
function stores the error information as well
as information about the size of the buffer.

If you are not using a callback function, set

pUserDatato O.

Return value

INT. Typical return codes are:
Table 2.15:

0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list
-3 PBORCA_OBJINOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-5 PBORCA_LIBLISTNOTSET Library list not set

-6 PBORCA_LIBNOTINLIST Library not in library list
-7 PBORCA_LIBIOERROR Library 1/O error

-11 PBORCA_COMPERROR Compile error

Usage

Y ou must set the library list and current Application object before calling this function.
When errors occur

In order to fix errors that occur during the regeneration, you need to export the source code,
fix the errors, and import the object, repeating the process until it compiles correctly.

ORCA Guide Page 38

ORCA Functions Appeon PowerBuilder® 2017 R3

Sometimes you can open objects with minor errorsin a PowerBuilder painter and fix them,
but an object with major errors must be exported and fixed.

For information about callback processing for errors, see
PBORCA_CompileEntrylmportList.

Examples
This example compiles a Datawindow called d_labelsin the library DWOBJECTS.PBL.

Each time an error occurs, PBORCA _CompileEntryRegenerate calls the callback
CompileEntryErrors. In the code you write for CompileEntryErrors, you store the error
messages in the buffer pointed to by IpUserData. In the example, the IpUserData buffer has
aready been set up:

PBORCA f pError;

i nt nRet urnCode;

fpError = (PBORCA_ERRPROC) Error Proc;

nRet ur nCode = PBORCA_Conpi | eEnt r yRegener at e(
| pORCA_I nf 0- >hORCASessi on,
_TEXT("c:\\app\\dwobj ects. pbl "),
_TEXT("d_I abel s"), PBORCA_DATAW NDOW
fpError, |pUserData);

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

Seealso

PBORCA _LibraryEntryExport
PBORCA _CompileEntrylmport
PBORCA_CompileEntrylmportL ist
PBORCA _ApplicationRebuild

2.10 PBORCA_ConfigureSession
Description

PBORCA_ConfigureSession facilitates backward compatibility with PowerBuilder 10. It
increases the flexibility of the APl and minimizes the changes necessary to other ORCA
function signatures.

Syntax

I NT PBORCA_Conf i gur eSessi on (PBORCA hORCASessi on, PPBORCA CONFI G_SESSI ON
pSessi onConfig);

Table 2.16:
Argument Description
hORCA Session Handle to previously established ORCA
session.
pSessionConfig Structure that lets the ORCA client
specify the behavior of subsequent
requests. Settings remain in effect for the

ORCA Guide Page 39

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description
duration of the session or until you call
PBORCA_ConfigureSession again. Be sure
to specify all of the settings each time you
call PBORCA _ConfigureSession.

Return value
INT. Typical return codes are:

Table2.17:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Session not open or null pConfig pointer
Usage

Create an instance of a PBORCA_CONFIG_SESSION structure and populate it with
your configuration settings. Then call PBORCA _ConfigureSession immediately after
SessionOpen. You can aso call this function anytime thereafter to reset configuration
properties.

t ypedef enum pbor ca_cl obber
{
PBORCA _NOCLOBBER,
PBORCA CLOBBER,
PBORCA_CLOBBER_ALWAYS
PBORCA CLOBBER _DECI DED BY_SYSTEM
} PBORCA_ENUM FI LEWRI TE_OPTI ON;

t ypedef enum pborca_type
{
PBORCA_UNI CODE,
PBORCA _UTF8,
PBORCA HEXASCI | ,
PBORCA _ANSI _DBCS
} PBORCA _ENCODI NG

t ypedef struct pborca_confi gsession
{
PBORCA_ENUM FI LEWRI TE_OPTI ON
eCl obber; // overwite existing file?
PBORCA_ENCODI NG eExport Encodi ng;
/] Encodi ng of exported source

BOCL bExport Header s;

/1 Format source with export header
BOCL bExport | ncl udeBi nary; /1 Include the binary
BOCL bExport Creat eFi | e; /1 Export source to a file
LPTSTR pExportDi rectory;

[/l Directory for exported files
PBORCA _ENCODI NG el nport Encodi ng;
/] Encoding of inported source

BOCL bDebug; /1 Debug conpiler directive
PvO D filler2;// Reserved for future use

PVO D filler3;

PvVO D fillerd4;

ORCA Guide Page 40

ORCA Functions

Appeon PowerBuilder® 2017 R3

} PBORCA_CONFI G_SESSI ON,

Table2.18:

FAR * PPBORCA_CONFI G_SESSI ON;

Member variable Description

eClobber

Specifies when to overwrite existing files on
the file system. This property is used by:

PBORCA _LibraryEntryExport

PBORCA _LibraryEntryExportEx
PBORCA_DynamicLibraryCreate
PBORCA _ExecutableCreate
PBORCA_LibraryDelete

Y ou can set any of the following

eClobber values for a configuration session:
* PBORCA_NOCLOBBER

never overwrites an existing file

« PBORCA_CLOBBER

overwrites existing files that are not write-
protected

« PBORCA_CLOBBER_ALWAYS

overwrites existing files that are write-
protected

« PBORCA_CLOBBER_DECIDED BY_SY

causes the functions mentioned above to
behave as they did in prior ORCA releases

eExportEncoding

Specifies the source encoding used by
PBORCA_LibraryEntryExport:

« PBORCA_UNICODE
default for Unicode ORCA clients

« PBORCA_ANSI DBCS
default for ANSI ORCA clients

« PBORCA_UTF8

« PBORCA_HEXASCII

bExportHeaders If you set this variable to TRUE,
PBORCA _LibraryEntryExport generates
export headers. The default value is FALSE
for backward compatibility.
ORCA Guide Page 41

STEM

ORCA Functions Appeon PowerBuilder® 2017 R3

Member variable Description

bExportIncludeBinary If you set this variableto TRUE,

PBORCA _LibraryEntryExport generates the
binary component of an object in addition to
the source component. The default valueis
FALSE for backward compatibility.

bExportCreateFile If you set this variableto TRUE,

PBORCA _LibraryEntryExport exports
source to afile. The generated file nameis
the PowerBuilder object entry name with
a.sr?file extension. The default valueis

FALSE.
pExportDirectory Directory where you export PowerBuilder
objectsif bExportCreateFile is TRUE.
elmportEncoding Source encoding. Subsequent callsto

PBORCA_CompileEntrylmport and
PBORCA_CompileEntrylmportList expect
the IpszEntrySyntax argument to contain this
information.

bDebug If you set thisvalue to FALSE, the DEBUG
conditional compiler directive isturned off.
All subsequent methods that invoke the
PowerScript compiler will use this setting
when evaluating script inside DEBUG
conditional compilation blocks. This setting
is not used in Windows Forms targets, since
PBORCA_DeployWinFormProject uses a
setting in the Project object of these targets
to determine whether to enable or disable the
DEBUG directive.

Examples

This example populates the PBORCA_CONFIG_SESSION structure with configuration
settings:

I NT Confi gur eSessi on(LPTSTR sEncodi ng)
{
| NT i Err Code = -1;
| pORCA I nf 0- >pConfi g = (PPBORCA_CONFI G_SESSI ON)
mal | oc(si zeof (PBORCA_CONFI G_SESSI ON)) ;
menset (| pORCA_I nf o- >pConfig, O,
si zeof (PBORCA_CONFI G_SESSI ON)) ;

if (!_tcscnp(sEncoding, _TEXT("ANSI")))

{
| pORCA_I nf 0- >pConfi g- >eExport Encodi ng
| pORCA_I nf 0- >pConfi g- >el npor t Encodi ng

PBORCA_ANS| _DBCS;
PBORCA_ANS| _DBCS;

else if (! _tcscnp(sEncoding, _TEXT("UTF8")))
{

ORCA Guide Page 42

ORCA Functions Appeon PowerBuilder® 2017 R3

ORCA_I nf 0- >pConf i g- >eExpor t Encodi ng
ORCA_I nf 0- >pConf i g- >el npor t Encodi ng

PBORCA_UTFS;
PBORCA_UTFS;

I'p

I'p

}

else if (! _tcscnp(sEncoding, _TEXT("HEXASCII1")))
{

| pORCA_I nf 0- >pConfi g- >eExpor t Encodi ng
| pORCA_I nf 0- >pConfi g- >el npor t Encodi ng

PBORCA_HEXASCI | ;
PBORCA_HEXASCI | ;

}

el se
{
| pORCA_I| nf 0- >pConf i g- >eExport Encodi ng = PBORCA_UNI CODE;
| pORCA_| nf 0- >pConfi g- >el nport Encodi ng = PBORCA_UNI CCODE;

pORCA_I nf 0- >pConf i g- >eCl obber = PBORCA_CLOBBER
pORCA_I nf 0- >pConf i g- >bExpor t Headers = TRUE;
pORCA_I nf 0- >pConf i g- >bExport | ncl udeBi nary = FALSE;
pORCA_I nf o- >pConf i g- >bExport Creat eFi | e = FALSE;

| pORCA_I nf 0- >pConfi g- >pExport Di rectory = NULL;

| pORCA_I nf 0- >pConfi g- >bDebug = FALSE;

i Err Code = PBORCA _Confi gur eSessi on(

| pORCA_I nf 0- >hORCASessi on,

| pORCA | nf 0- >pConfi g);

return i ErrCode;

t
[
[
[
[

}

See also

PBORCA _ApplicationRebuild
PBORCA_CompileEntrylmportL ist
PBORCA_SetDebug

2.11 PBORCA_DeployWinFormProject
Description

Generates and compiles Windows Forms project and deploys the assemblies according to the
specifications contained in the project objects.

Syntax

I NT PBORCA Depl oyW nFor nPr oj ect (
HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszProj ect Nane,
LPTSTR | pszl conFi | eNane,
PBORCA_DOTNETPROC pDot Net Pr oc
LPVO D pUserData);

Table 2.19:
Argument Description
hORCA Session Handle to previously established ORCA
session.
|pszLibraryName Pointer to a string whose value isthe file
name containing the project entry.
|pszProjectName Project object containing deployment
information.
|pszlconFileName Name of the application icon file,

ORCA Guide Page 43

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

pDotNetProc Pointer to the PBORCA_DOTNETPROC
callback function. The callback functionis
called for each message that is generated.
All ORCA_ERROR_MESSAGE
messages are returned first, followed by

al PBORCA_WARNING_MESSAGE
messages, and then, by all
PBORCA_UNSUPPORTED _FEATURE

messages.

pUserData Pointer to user data to be passed to the
PBORCA_DOTNETPROC callback
function.

Return value

INT. Thetypical return codes are:

Table 2.20:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Load library for necessary DLL failed

-5 PBORCA_LIBLISTNOTSET SessionSetLibraryList is prerequisite

-13 PBORCA_CURRAPPLNOTSET SessionSetCurrentAppl is prerequisite

-19 PBORCA_CBCREATEERROR Component builder create error

-20 PBORCA_CBINITERROR Component builder initialization error

-21 PBORCA_CBBUILDERROR Component builder build error

Usage

Error information is returned by first creating a callback function associated with
PBORCA_DeployWinFormProject that uses the following function signature:

void MyDot Net MessageProc (
PPBORCA_DOTNET_MESSAGE pMsg,
LPVA D
pMyUser Dat a)

The pMsg argument is a pointer to the following structure:

typedef struct pborca_dotnetnsg {
PBROCA DOTNET _MSGTYPE
eMessageType;
LPTSTR | pszMessageText;
}

PBORCA_DOTNET_MESSAGE FAR * PPBORCA_DOTNET_MESSAGE;
The eMessageType argument uses the following enumeration:

typedef enum pbor ca_dot net _nsgt ype

ORCA Guide Page 44

ORCA Functions Appeon PowerBuilder® 2017 R3

{

PBORCA_ERROR_MESSAGE,
PBORCA_WARNI NG_MESSAGE,
PBORCA_UNSUPPORTED_FEATURE
} PBORCA_DOTNET_MSGTYPE;

Messages are returned to the caller one at atime in the following order:
PBORCA_ERROR_MESSAGE messages, PBORCA_WARNING_MESSAGE messages,
and PBORCA_UNSUPPORTED_FEATURE messages.

2.12 PBORCA_DynamicLibraryCreate

Description

Creates a PowerBuilder dynamic library (PBD) or PowerBuilder DLL.
Syntax

I NT PBORCA Dynami cLi braryCreate (
HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszPBRNane,
LONG | Fl ags,
LPVO D pbcPara = NULL);

Table 2.21:

Argument Description

hORCA Session Handle to previously established ORCA
session.

IpszLibraryName Pointer to a string whose valueisthefile
name of the library to be built into a PBD or
DLL.

|pszPBRName Pointer to a string whose value is the name of
a PowerBuilder resource file whose objects
you want to includein the PBD or DLL. If
the application has no resource file, specify 0
for the pointer.

IFlags A long value that indicates which code
generation options to apply when building
thelibrary.

Setting IFlags to 0 generates a native Pcode
executable.

For information about setting
machine code generation options, see
PBORCA _ExecutableCreate

pbcPara Reserved for internal use. Always set
pbcParato NULL.

Return value

INT. Thetypical return codes are:

ORCA Guide Page 45

ORCA Functions Appeon PowerBuilder® 2017 R3

Table 2.22:
0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list
-4 PBORCA_BADLIBRARY Bad library name
-17 PBORCA_PBDCREATERROR PBD create error
Usage

Before calling this function, you must have previously set the library list and current
application.

If you plan to build an executable in which some of the libraries are dynamic libraries, you
must build those dynamic libraries before building the executable.
L ocation and name of file

The resulting PBD or DLL will be created in the same directory using the same file name as
the PBL. Only the extension changes. For example, for alibrary C:\DIR1\DIR2\PROG.PBL:

» The output for Pcode is C:\DIR1\DIR2\PROG.PBD
» The output for machine code is C:\DIR1\DIR2\PROG.DL L

eClobber settings

If the PBD or DLL already exists in the file system, the current setting of the eClobber
property in the ORCA configuration block (that you set with a PBORCA _ConfigureSession
call) determines whether PBORCA _DynamicLibraryCreate succeeds or fails.

Table 2.23:

Current eClobber setting PBORCA_DynamicLibraryCreate

PBORCA_NOCLOBBER Fails when an executable file already exists
in the file system, regardless of thefile
attribute settings

PBORCA_CLOBBER or Succeeds when the existing executable file
PBORCA_CLOBBER _DECIDED_BY_SY STE3M read-write attributes; fails when the
executable file has read-only attributes

PBORCA_CLOBBER_ALWAYS Succeeds regardless of the file attribute
settings of an existing executable file

Examples

This example builds a machine code DLL from the library PROCESS.PBL. It is optimized
for speed with trace and error context information:

LPTSTR pszLi bFi | e;

LPTSTR pszResour ceFi | e;

I ong | Bui |l dOpti ons;

int rtn;

/1 copy file names

pszLibFile = _TEXT("c:\\app\\process. pbl");
pszResourceFile = _TEXT("c:\\app\\process. pbr");

ORCA Guide Page 46

ORCA Functions Appeon PowerBuilder® 2017 R3

| Bui | dOpt i ons = PBORCA MACHI NE_CODE_NATI VE |
PBORCA_MACHI NE_CODE_OPT_SPEED |
PBORCA_TRACE_| NFO | PBORCA ERROR CONTEXT;

[/l create DLL fromlibrary
rtn = PBORCA Dynami cLi braryCreat e(
| pORCA_I nf 0- >hORCASessi on,
pszLi bFil e, pszResourceFile, |BuildOptions, NULL);

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

See also
PBORCA ConfigureSession
PBORCA _ExecutableCreate

2.13 PBORCA_ExecutableCreate
Description

Creates a PowerBuilder executable with Pcode or machine code. For a machine code
executable, you can request several debugging and optimization options.

The ORCA library list is used to create the application. Y ou can specify which of the libraries
have already been built as PBDs or DLLs and which will be built into the executablefile.

Syntax

I NT PBORCA _Execut abl eCreate (HPBORCA hORCASessi on,
LPTSTR | pszExeNane,
LPTSTR | pszl conNane,
LPTSTR | pszPBRNane,
PBORCA_LNKPROC pLi nkErr Proc,
LPVA D pUser Dat a,
I NT FAR *i PBDFI ags,
I NT i Nunber OF PBDFI ags,

LONG | FI ags,
LPVO D pbcPara = NULL);
Table 2.24.
Argument Description
hORCA Session Handle to previously established ORCA
session.
|pszExeName Pointer to a string whose value is the name of
the executable file to be created.
|pszlconName Pointer to a string whose value is the name of
anicon file. Theicon file must already exist.
|pszPBRName Pointer to a string whose value is the name
of a PowerBuilder resource file. The resource
file you name must already exist. If the
application has no resource file, specify 0 for
the pointer.
pLinkErrProc Pointer to the PBORCA _ExecutableCreate
callback function. The callback function is
called for each link error that occurs.

ORCA Guide Page 47

ORCA Functions

Appeon PowerBuilder® 2017 R3

Argument

Description

The information ORCA passes to the
callback function is the message text, stored
in astructure of type PBORCA_LINKERR.

If you don't want to use a callback function,
set pLinkErrProc to 0.

pUserData

Pointer to user data to be passed to the
PBORCA _ExecutableCreate callback
function.

The user data typically includes the buffer or
apointer to the buffer in which the callback
function formats the directory information
aswell asinformation about the size of the
buffer.

If you are not using a callback function, set
pUserDatato O.

iPBDFlags

Pointer to an array of integers that indicate
which libraries on the ORCA session's
library list should be built into PowerBuilder
dynamic libraries (PBDs). Each array
element corresponds to alibrary in the library
list. Flag values are:

e 0-- Includethelibrary's objectsin the
executablefile

e 1--Thelibrary isalready a PBD or
PowerBuilder DLL and its objects should
not be included in the executable

iNumberOf PBDFlags

The number of elementsin the array
iPBDFlags, which should be the same as the
number of librarieson ORCA'slibrary list.

IFlags

A long value whose value indicates which
code generation options to apply when
building the executable.

Setting IFlags to 0 generates a native Pcode
executable. Additional settings for machine
code are described in Usage below.

Setting IFlagsto PBORCA _X64 generates a
64-bit executable.

pbcPara

Reserved for internal use. Always set
pbcParato NULL.

Return value

ORCA Guide

Page 48

ORCA Functions

Appeon PowerBuilder® 2017 R3

INT. Typical return codes are:

Table 2.25:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-5 PBORCA _LIBLISTNOTSET Library list not set

-12 PBORCA_LINKERROR Link error

-13 PBORCA_CURRAPPLNOTSET Current application not set
Usage

Y ou must set the library list and current Application object before calling this function.

For more information about various options for
User's Guide.

Libraries used in the executable

building executables, see the PowerBuilder

The executable being built incorporates the objectsin the libraries on ORCA's library list.
Thelibrary list must be set by calling PBORCA _SessionSetLibraryList before creating an

executable.

The iPBDFlags argument lets you specify which libraries are PBDs and which will be built
into the executablefile. In the iPBDFlags array, each integer is associated with alibrary on
ORCA'slibrary list. When you set an integer to 1, the objects in the corresponding library are
already built into a PBD file (if you are generating Pcode) or a PowerBuilder DLL (if you are
generating machine code). Objectsin libraries whose integer flag is set to O will be built into

the main executablefile.

Before you call PBORCA _ExecutableCreate, you must call

PBORCA_DynamicLibraryCreate to create the
iPBDFlags array.

Setting code generation options

PBDsor DLLsthat you identify in the

In the IFlags argument, you can set various machine code generation options by setting
individual bits. The following table shows what each defined bit meansin the long value
and what constants to use in a bitwise OR expression to set the option. Bits not listed are

reserved.

Table 2.26:

Value and meaning

Constant toincludein

ORed expression

. NATIVE

0 0 = Pcode To get machine code, use
1 = Machine code PBORCA_MACHINE_CODE
or
PBORCA_MACHINE_CODE
1 0 = Native code To get 16-bit
1 = 16-hit code machine code, use
PBORCA_MACHINE_CODE
ORCA Guide Page 49

ORCA Functions Appeon PowerBuilder® 2017 R3

Value and meaning Constant toincludein

ORed expression
and
PBORCA_MACHINE_CODE_16

To get 16-bit Pcode, use
PBORCA_P_CODE_16

Not supported after
PowerBuilder 7

PowerBuilder no longer
supports the Windows 3.x 16-
bit platform.

2 0 = No Open Server To build an Open
_ Server executable, use
1= Open Server PBORCA_OPEN_SERVER

Not supported after
PowerBuilder 5

The OpenClientServer driver
was no longer supported after
PowerBuilder 5. Therefore,
the Open Server executable
option is no longer supported.

4 0 = No trace information To get trace information, use
PBORCA_TRACE_INFO

1= Traceinformation

5 0 = No error context To get error context
information, use
PBORCA_ERROR_CONTEXT

Error context provides the
script name and line number

1 = Error context

of an error.
8 0 = No optimization SeeBit 9
1 = Optimization
9 0 = Optimize for speed To optimize the

executable for speed, use
PBORCA_MACHINE _CODE_OPT
or
PBORCA_MACHINE_CODE_OPT_SPEED

To optimize the

executable for space, use
PBORCA_MACHINE _CODE_OPT
and
PBORCA_MACHINE _CODE_OPT_SPACE

10 0=0ld stylevisual controls | PBORCA_NEW_VISUAL_STYLE_CONTF

1 = Optimize for space

ORCA Guide Page 50

ORCA Functions Appeon PowerBuilder® 2017 R3

Value and meaning Constant toincludein

ORed expression

1 = New style visual controls
(XP)
12 1 = PocketBuilder desktop PBORCA_PK_DESKTOP
(Obsolete)
13 1 = PocketBuilder ARM PBORCA_PK_PPCARM
(Obsolete)
14 1 = PocketBuilder EM 86 PBORCA_PK_PPCEM86
(Obsolete)
15 1 = PocketBuilder X86 PBORCA_PK_PPCX86
(Obsolete)
16 1 = PocketBuilder PBORCA_PK_SPHONEARM
Smartphone ARM (Obsolete)
17 1 = PocketBuilder PBORCA_PK_SPHONEX86
Smartphone X86 (Obsolete)

To generate Pcode, IFlags must be 0. The other bits are not relevant:
| Fl ags = PBORCA _P_CODE;

To set the IFlags argument for various machine-code options, the bit flag constants are ORed
together to get the combination you want:

| Fl ags = PBORCA MACHI NE_CODE |

PBORCA MACHI NE_CODE_OPT |
PBORCA_MACHI NE_CODE_OPT_SPACE;

Constants are defined in PBORCA.H for typical option combinations. They are:
PBORCA_MACHINE_DEFAULT

M eaning native machine code optimized for speed

Equivalent to:

PBORCA_MACHI NE_CCDE |
PBORCA_MACHI NE_CODE_OPT_SPEED

PBORCA_MACHINE_DEBUG
M eaning native machine code with trace information and error context information
Equivalent to:

PBORCA_MACHI NE_CODE | PBORCA_TRACE_| NFO |
PBORCA_ERROR_CONTEXT

eClobber setting

If the executable file already existsin the file system, the current setting of the eClobber
property in the ORCA configuration block (that you set with a PBORCA _ConfigureSession
call) determines whether PBORCA _Executabl eCreate succeeds or fails.

ORCA Guide Page 51

ORCA Functions Appeon PowerBuilder® 2017 R3

Table 2.27:
Current eClobber setting PBORCA _ExecutableCreate
PBORCA_NOCLOBBER or Fails when an executable file already exists

PBORCA_CLOBBER _DECIDED_BY _SY STiENhe file system, regardless of thefile
attribute settings

PBORCA_CLOBBER Succeeds when the existing executable file
has read-write attributes; fails when the
executabl e file has read-only attributes

PBORCA_CLOBBER_ALWAYS Succeeds regardless of the file attribute
settings of an existing executable file

Examples

This exampl e builds a native machine code executable optimized for speed using ORCA's
library list and current application. Suppose that the current ORCA session has alibrary list
with four entries. The example generates DLLs for the last two libraries.

The callback function is called LinkErrors, and |pUserData points to an empty buffer to be
populated by the callback function:

LPTSTR pszExecFi | e;
LPTSTR pszl conFi | e;
LPTSTR pszResour ceFi | e;
int i PBDFl ags[4] ;

I ong I Bui |l dOpti ons;

int rtn;

f pLi nkProc = (PBORCA_LNKPROC) Li nkProc;

/1 specify file nanes

pszExecFile = _TEXT("c:\\app\\process. exe");
pszlconFile = _TEXT("c:\\app\\process.ico");
pszResourceFile = _TEXT("c:\\app\\process. pbr");

i PBDFIl ags
i PBDFIl ags
i PBDFIl ags
i PBDFIl ags

0]
1]
2]
3]

PRe®

| Bui | dOpt i ons = PBORCA MACHI NE_CODE_NATI VE |
PBORCA_MACHI NE_CODE_OPT_SPEED;

/| create executabl e
rtn = PBORCA Execut abl eCr eat e(
| pORCA_I nf 0- >hORCASessi on,
pszExecFil e, pszlconFile, pszResourceFile,
f pLi nkProc, | pUser Dat a,
(I'NT FAR *) i PBDFl ags, 4, |BuildOptions, NULL);

For more information about setting up the data buffer for the callback, see Content of a
callback function and the example for PBORCA _LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

See also
PBORCA ConfigureSession

ORCA Guide Page 52

ORCA Functions Appeon PowerBuilder® 2017 R3

PBORCA DynamicLibraryCreate

2.14 PBORCA_LibraryCommentModify
Description
Modifies the comment for a PowerBuilder library.

Syntax

I NT PBORCA Li braryComrent Modi fy (HPBORCA hORCASessi on,
LPTSTR | pszLi bNane,
LPTSTR | pszLi bCorments);

Table 2.28:
Argument Description
hORCA Session Handle to previously established ORCA
session
IpszLibName Pointer to a string whose value is the name
of the library whose comments you want to
change
|pszLibComments Pointer to a string whose value is the new
library comments
Return value

INT. Typical return codes are:

Table 2.29:

0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list
-3 PBORCA_OBJINOTFOUND Library not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error
Usage

Y ou don't need to set the library list or current application before calling this function.
Examples
This example changes the comments for the library MASTER.PBL.:

LPTSTR pszLi brar yNare;

LPTSTR pszLi br ar yConment s;

/1 Specify library nane and conment string

pszLi braryNane =
_TEXT("c:\\appeon\\ pb2017\\ demo\ \ nast er. pbl ") ;

pszLi braryComments =
_TEXT("PBL contains ancestor objects for XYZ app.");

/1 Insert comments into library

ORCA Guide Page 53

ORCA Functions Appeon PowerBuilder® 2017 R3

| pORCA_I nf 0- > Ret ur nCode =
PBORCA_Li br ar yConmment Modi f y(
| pORCA_I nf 0- >hORCASessi on,
pszLi braryNane, pszLi braryConments);

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

See also
PBORCA _LibraryCreate

2.15 PBORCA LibraryCreate

Description

Creates a new PowerBuilder library.

Syntax

I NT PBORCA Li braryCreate (HPBORCA hORCASessi on,

LPTSTR | pszLi br ar yNane,
LPTSTR | pszLi braryComments);

Table 2.30:
Argument Description
hORCA Session Handle to previously established ORCA
session
IpszLibraryName Pointer to a string whose valueisthefile
name of the library to be created
|pszLibraryComments Pointer to a string whose value is a comment
documenting the new library
Return value

INT. Typical return codes are:

Table 2.31:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library 1/O error

-8 PBORCA_OBJEXISTS Object aready exists

-9 PBORCA_INVALIDNAME Library nameis not valid
Usage

Y ou do not need to set the library list or current application before calling this function.
Adding objects

ORCA Guide Page 54

ORCA Functions Appeon PowerBuilder® 2017 R3

PBORCA _LibraryCreate creates an empty library file on disk. Y ou can add objects
to the library from other libraries with functions like PBORCA _LibraryEntryCopy

and PBORCA_CheckOutEntry. If you set the library list so that it includes the new
library and then set the current application, you can import object source code with

PBORCA_CompileEntrylmport and PBORCA_CompileEntrylmportList.

Examples
This example creates alibrary called NEWLIB.PBL and provides a descriptive comment:

LPTSTR pszLi br ar yNane;
LPTSTR pszLi br ar yComrent s;
/1 Specify library nane and commrent string
pszLi braryNane =
_TEXT("c:\\appeon\\ pb2017\\ denmo\\ newl i b. pbl ") ;
pszLi braryComents =
_TEXT("PBL contains ancestor objects for XYZ app.");
I/l Create the library
| pORCA_| nf 0- > Ret ur nCode =
PBORCA_Li br aryCr eat e(| pORCA_I nf 0- >ShnORCASessi on,
pszLi braryName, pszLi braryConments);

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

Seealso
PBORCA _LibraryDelete

2.16 PBORCA LibraryDelete

Description

Deletes a PowerBuilder library file from disk.
Syntax

I NT PBORCA Li braryDel ete (HPBORCA hORCASessi on,

LPTSTR
| pszLi braryNane);

Table 2.32:
Argument Description
hORCA Session Handle to previously established ORCA
session
|pszLibraryName Pointer to a string whose valueisthefile
name of the library to be deleted
Return value

INT. Typical return codes are:

Table 2.33:
0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list

ORCA Guide Page 55

ORCA Functions Appeon PowerBuilder® 2017 R3

Return code Description

-4 PBORCA_BADLIBRARY Bad library name
-7 PBORCA_LIBIOERROR Library 1/O error
Usage

Y ou do not need to set the library list or current application before calling this function. You
must set the eClobber configuration property to PBORCA_CLOBBER_ALWAYSif you
want to delete a PowerBuilder library that has a read-only attribute.

Examples
This example deletes alibrary called EXTRA.PBL:

LPTSTR pszLi br ar yNamne;
/1 Specify library nane
pszLi braryNane =
_TEXT("c:\\appeon\\ pb2017\\ deno\ \ extra. pbl ");

/Il Delete the Library

| pORCA_I| nf 0- >| Ret ur nCode =
PBORCA_Li braryDel et e(| pORCA_I nf 0- >ShORCASessi on,
pszLi br aryNane) ;

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

Seealso
PBORCA ConfigureSession
PBORCA LibraryCreate

2.17 PBORCA _LibraryDirectory
Description

Reports information about the directory of a PowerBuilder library, including the list of
objectsin the directory.

Syntax

I NT PBORCA LibraryDirectory (HPBORCA hORCASessi on,
LPTSTR | pszLi bNane,
LPTSTR | pszLi bComment s,
I NT i Cmt sBuff Len,
PBORCA LI STPROC pLi st Proc,
LPVO D pUserData);

Table 2.34:
hORCA Session Handle to previoudly established ORCA
session.
|pszLibName Pointer to a string whose valueisthefile

name of the library for which you want
directory information.

ORCA Guide Page 56

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

|pszLibComments Pointer to a buffer in which ORCA will put
comments stored with the library.
iICmntsBuffLen Length of the buffer (specified in

TCHARYS) pointed to by IpszLibComments.
The recommended length is
PBORCA_MAXCOMMENTS + 1.

pListProc Pointer to the PBORCA _L ibraryDirectory
callback function. The callback function is
caled for each entry in the library.

The information ORCA passes to the
callback function is entry name, comments,
size of entry, and modification time, stored in
astructure of type PBORCA_DIRENTRY.

pUserData Pointer to user data to be passed to the
PBORCA _LibraryDirectory callback
function.

The user data typically includes the buffer or
a pointer to the buffer in which the callback
function formats the directory information
aswell asinformation about the size of the

buffer.

Return value

INT. Typical return codes are:
Table 2.35:

Return code Description

0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list
-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library 1/0O error
Usage

Y ou do not need to set the library list or current application before calling this function.
Comments for the library

PBORCA_LibraryDirectory puts the library comments in the string pointed to by
IpszLibComments. The callback function can store comments for individual objectsin the
UserData buffer.

Information about library entries

The information you get back about the individual entriesin the library depends on the
processing you provide in the callback function. ORCA passes information to the callback
function about alibrary entry in the structure PBORCA_DIRENTRY . The callback function

ORCA Guide Page 57

ORCA Functions Appeon PowerBuilder® 2017 R3

can examine that structure and store any information it wants in the buffer pointed to by
pUserData.

When you call PBORCA _LibraryDirectory, you do not know how many entriesthere arein
the library. There are two approaches you can take:

 Allocate areasonably sized block of memory and reallocate the buffer if it overflows
(illustrated in About ORCA callback functions).

» Let IpUserDataBuffer point to the head of alinked list. For each PBORCA_DIRENTRY
returned, dynamically allocate anew list entry to capture the required information
(illustrated in the example that follows).

Examples
This example defines alinked list header:

typedef struct |ibinfo_head

{
TCHAR szLi bName[PBORCA_SCC_PATH_LEN] ;
TCHAR szComent s[PBORCA NMAXCOMMVENT+1] ;
I NT i NunEntri es;
PLI Bl NFO_ENTRY pEnt r yAnchor ;
PLI Bl NFO_ENTRY pLast ;

} LI BI NFO HEAD, FAR *PLI Bl NFO_HEAD;

Each invocation of the DirectoryProc callback function allocates anew linked list entry,
defined as follows:

typedef struct libinfo_entry
{

TCHAR szEntryNane[41] ;
LONG | EntrySize;

LONG | Qbj ect Si ze;

LONG | Sour ceSi ze;
PBORCA_TYPE ot EntryType;

libinfo_entry * pNext ;
} LI BI NFO_ENTRY, FAR *PLI Bl NFO_ENTRY;

PBORCA LI STPROC f pDi rectoryProc;
PLI BI NFO_HEAD pHead;
fpDirectoryProc = (PBORCA LI STPROC) DirectoryProc;

pHead = new LI Bl NFO_HEAD;
_tcscpy(pHead- >szLi bName, _TEXT("c:\\myapp\test.pbl");
nmenset (pHead- >szConment s, 0x00,
si zeof (pHead- >szComment s)) ;
pHead- >i NunEntries = 0;
pHead- >pEnt r yAnchor = NULL;
pHead- >pLast = NULL;
| pORCA_| nf 0- >l Ret ur nCode = PBORCA Li braryDirectory(
| pORCA_I nf 0- >hORCASessi on,
pHead- >szLi bNane,
pHead- >szConment s,
(PBORCA_MAXCOMVENT+1), // specify length in TCHARsS
fpDirectoryProc,
pHead) ;
/| See PBORCA _LibraryEntryl nformati on exanpl e
if (I pORCA_Info->l ReturnCode == PBORCA_OK)
Get Ent ryl nf o(pHead) ;
Cl eanUp(pHead) ;
/Il CdeanUp - Release allocated nenory
I NT Cl eanUp(PLI Bl NFO HEAD pHead)

ORCA Guide Page 58

ORCA Functions

Appeon PowerBuilder® 2017 R3

I NT i Err Code = PBORCA_CX;
PLI Bl NFO_ENTRY pCurrEntry;
PLI Bl NFO_ENTRY pNext ;

I NT i dx;

for (idx = 0, pCurrEntry = pHead->pEntryAnchor;
(i dx < pHead->i NunEntries) && pCurrEntry; idx++)

{
pNext = pCurrEntry->pNext
del ete pCurrEntry;
i f (pNext)
pCurrEntry = pNext;
el se pCurrEntry = NULL;
}
del et e pHead;

return i Err Code;

}
/1 Call back procedure used by PBORCA LibraryDirectory

void __stdcall DirectoryProc(PBORCA DI RENTRY

{

*pDirEntry, LPVAO D | pUser Dat a)

PLI Bl NFO_HEAD pHead;
PLI Bl NFO_ENTRY pNewEnt ry;
PLI Bl NFO_ENTRY pTenp;

pHead = (PLIBI NFO_HEAD) | pUser Dat a;

pNewEntry = (PLI BI NFO_ENT
menset (pNeweEntry, 0x00, s
i f (pHead->i NunEntries ==
{

pHead- >pEnt r yAnchor =

pHead- >pLast = pNewEnt
}
el se
{

pTenp = pHead->pLast;
pTenp- >pNext pNewEnt
pHead- >plLast pNewEnt

}
pHead- >i NunEntri es++;

RY) new LI Bl NFO_ENTRY;
i zeof (LI BI NFO_ENTRY)) ;
0)

pNewEnt ry;
ry;

ry;
ry;

_tcscpy(pNewEnt ry->szEnt r yNane,

pDi rEntry- >l pszEntryNa
pNewEntry- >l EntrySi ze = p
pNewEnt ry->ot EntryType =

ne) ;
DirEntry->l EntrySi ze;
pDi r Ent ry- >ot Ent r yType;

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

See also
PBORCA _LibraryEntrylnformation

2.18 PBORCA LibraryEntryCopy
Description

Copies a PowerBuilder library entry from one library to another.

Syntax

I NT PBORCA _Li braryEntryCopy (HPBORCA hORCASessi on,

LPTSTR | pszSour ceLi bNane,
LPTSTR | pszDest Li bNane,
LPTSTR | pszEnt r yName,

ORCA Guide

Page 59

ORCA Functions Appeon PowerBuilder® 2017 R3

PBORCA TYPE ot EntryType);

Table 2.36:

Argument Description

hORCA Session Handle to previously established ORCA
session.

|pszSourcel.ibName Pointer to a string whose valueisthefile

name of the source library containing the
object.

IpszDestLibName Pointer to a string whose value isthe file
name of the destination library to which you
want to copy the object.

|pszEntryName Pointer to a string whose value is the name of
the object being copied.

otEntryType A value of the PBORCA_TY PE enumerated
data type specifying the object type of the
entry being copied. Values are:

PBORCA_APPLICATION
PBORCA_DATAWINDOW
PBORCA_FUNCTION
PBORCA_MENU
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW
PBORCA_PIPELINE
PBORCA_PROJECT
PBORCA_PROXYOBJECT

Return value

INT. Typical return codes are:

Table 2.37:

0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list
-3 PBORCA_OBJINOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error
Usage

ORCA Guide Page 60

ORCA Functions Appeon PowerBuilder® 2017 R3

Y ou do not need to set the library list or current application before calling this function.

Unlike PBORCA_CompileEntrylmport, which requires two separate API calls,
PBORCA _LibraryEntryCopy automatically copies the source component and then copies the
binary component of an object if it is present.

Examples

This example copies a Datawindow named d_labels from the library SOURCE.PBL to
DESTIN.PBL:

| pORCA | nf 0- >l Ret ur nCode = PBORCA_Li brar yEnt ryCopy(
| pORCA | nf 0- >hORCASessi on,
_TEXT("c:\\app\\source.pbl"),
_TEXT("c:\\app\\destin.pbl"),
TEXT("d| abel s"), PBORCA DATAW NDOW ;

This example assumes that the pointers for |pszSourcel.ibraryName,
IpszDestinationLibraryName, and |pszEntryName point to valid library and object names and
that otEntryType isavalid object type:

| pORCA | nf 0- >l Ret ur nCode = PBORCA Li braryEnt r yCopy/(
| pORCA | nf 0- >hORCASessi on,
| pszSour ceLi br ar yNarne,
| pszDesti nati onLi br ar yNane,
| pszEntryName, otEntryType);

Seealso
PBORCA_LibraryDelete
PBORCA_LibraryEntryMove

2.19 PBORCA _LibraryEntryDelete

Description

Deletes a PowerBuilder library entry.

Syntax

I NT PBORCA _Li braryEntryDel ete (HPBORCA hORCASessi on,
LPTSTR | pszLi bNane,

LPTSTR | pszEnt r yName,
PBORCA TYPE ot EntryType);

Table 2.38:

Argument Description

hORCA Session Handle to previously established ORCA
session.

IpszLibName Pointer to a string whose value isthe file
name of the library containing the object.

|pszEntryName Pointer to a string whose value is the name of
the object being deleted.

otEntryType A value of the PBORCA_TY PE enumerated
data type specifying the object type of the
entry being deleted. Values are:

ORCA Guide Page 61

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description
PBORCA_APPLICATION

PBORCA_DATAWINDOW
PBORCA_FUNCTION
PBORCA_MENU
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW
PBORCA_PIPELINE
PBORCA_PROJECT
PBORCA_PROXYOBJECT

Return value

INT. Typical return codes are:

Table 2.39:

0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list
-3 PBORCA_OBJINOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library 1/O error
Usage

Y ou do not need to set the library list or current application before calling this function.
Examples
This example deletes a DataWindow named d_|abels from the library SOURCE.PBL.:

Irtn = PBORCA LibraryEntryDel ete(
| pORCA | nf 0- >hORCASessi on,
_TEXT("c:\\app\\source. pbl"),
TEXT("d| abel s"), PBORCA DATAW NDOW ;

This example assumes that the pointers IpszLibraryName and |pszEntryName point to valid
library and object names and that otEntryTypeis avalid object type:

| pORCA_I nf 0- >l Ret ur nCode = PBORCA_Li braryEnt ryDel et e(
| pORCA | nf 0- >hORCASessi on,
| pszLi br ar yNane,
| pszEnt r yNane,
ot EntryType);

See also

ORCA Guide Page 62

ORCA Functions

Appeon PowerBuilder® 2017 R3

PBORCA LibraryEntryCopy

PBORCA_LibraryEntryMove

2.20 PBORCA _LibraryEntryExport

Description

Exports the source code for a PowerBuilder library entry to a source buffer or file.

Syntax

I NT PBORCA _Li braryEntryExport (HPBORCA hCRCASessi on,

LPTSTR | pszLi br ar yNane,
LPTSTR | pszEnt r yNamne,
PBORCA_TYPE ot Ent ryType,
LPTSTR | pszExport Buf f er,
LONG | Export BufferSi ze);

Table 2.40:

Argument Description

hORCA Session

Handle to previously established ORCA
session.

|pszLibraryName

Pointer to a string whose value isthe file
name of the library containing the object you
want to export.

|pszEntryName

Pointer to a string whose value is the name of
the object being exported.

otEntryType

A value of the PBORCA_TY PE enumerated
data type specifying the object type of the
entry being exported. Values are:

PBORCA_APPLICATION
PBORCA_BINARY
PBORCA_DATAWINDOW
PBORCA_FUNCTION
PBORCA_MENU
PBORCA_PIPELINE
PBORCA_PROJECT
PBORCA_PROXYOBJECT
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW

|pszExportBuffer

Pointer to the data buffer in which ORCA
stores the code for the exported source when

ORCA Guide

Page 63

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

the PBORCA_CONFIG_SESSION property
bExportCreateFile is FALSE. This argument
can be NULL if bExportCreateFileis TRUE.

|ExportBufferSize Sizein bytes of |pszExportBuffer.

This argument is not required if the
PBORCA_CONFIG_SESSION property
bExportCreateFileis TRUE.

Return value

INT. Typical return codes are:

Table 2.41:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library 1/0O error

-10 PBORCA_BUFFERTOOSMALL Buffer sizeistoo small

-33 PBORCA_DBCSERROR L ocale setting error when converting
Unicodeto ANSI_DBCS

Usage

Y ou do not need to set the library list or current application before calling this function.

Changesfor PowerBuilder 10 and higher

In PowerBuilder 10 and higher, you can customize behavior of this function using
PBORCA_CONFIG_SESSION variables. However, for backward compatibility, the
default behavior has not changed.

How the source codeis returned

If pConfigSession->bExportCreateFileis FAL SE, the object’'s source code is returned in the
export buffer. If the bExportCreateFile property is TRUE, the source iswritten to afilein the
directory pointed to by pConfigSession->pExportDirectory.

If pConfigSession->bExportHeadersis TRUE, ORCA writes the two export header linesto
the beginning of the export buffer or file. The exported source code includes carriage return
(hex OD) and new line (hex OA) characters at the end of each display line.

Source code encoding

PowerBuilder exports source in four different encoding formats. By default, ANSI/DBCS
clients export source in PBORCA_ANSI_DBCS format; Unicode clients export sourcein

ORCA Guide Page 64

ORCA Functions Appeon PowerBuilder® 2017 R3

PBORCA_UNICODE format. Y ou can explicitly request an encoding format by setting
pConfigSession->eExportEncoding.

Binary component

In PowerBuilder, you can explicitly request that the binary component of an object
be included automatically in the export buffer or file by setting pConfigSession-
>eExportincludeBinary = TRUE.

Thisis the recommended setting for new development. Because previous releases of ORCA
did not support this feature, the old technique is still supported.

Denigrated technique

Asin previous versions, after each PBORCA _LibraryEntryExport request,

you can call PBORCA _LibraryEntrylnformation with an otEntryType of
PBORCA_BINARY. Thisfunction returns PBORCA_OK when binary data
exists and you could make a second PBORCA _LibraryEntryExport call with
otEntryType set to PBORCA_BINARY. For backward compatibility, setting
otEntryType to PBORCA_BINARY causes the following configuration properties
to be ignored: pConfigSession->bExportHeaders =TRUE and pConfigSession-
>bExportincludeBinary = TRUE.

Size of source code

To find out the size of the source for an object before calling the export function, call the
PBORCA _LibraryEntrylnformation function first and use the pEntrylnfo->|SourceSize
information to cal culate an appropriate |IExportBufferSize value. |IExportBufferSize isthe size
of IpszExportBuffer represented in bytes.

ORCA export processing performs all necessary data conversions before determining
whether the allocated buffer is large enough to contain the export source. If not, it returns a
PBORCA_BUFFERTOOSMALL return code. If IExportBufferSizeis exactly the required
length, PBORCA _LibraryEntryExport succeeds, but does not append a null terminator to the
exported source. If IExportBufferSize is sufficiently large, ORCA appends a null terminator.
Appeon recommends allocating a buffer sufficiently large to accommodate data conversions
and anull terminator. |ExportBufferSize isignored if pConfigSession->bExportCreateFile =
TRUE.

Determining the source size after data conversion and export

If you need to know the size of the actual buffer or file returned, you can call
PBORCA_LibraryEntryExportEx instead of PBORCA _LibraryEntryExport. These
functions behave exactly alike except that the PBORCA _LibraryEntryExportEx function
signature includes an additiona * plReturnSize argument.

Overwriting existing export files

The value of pConfigSession->eClobber determines whether existing export files are
overwritten. If the export files do not exist, PBORCA _LibraryEntryExport returns
PBORCA_OK regardiess of the eClobber setting. The following table shows how the
eClobber setting changes the action of PBORCA _LibraryEntryExport when export files
already exist. A return value of PBORCA_OBJEXISTS means that the existing files were not
overwritten.

ORCA Guide Page 65

ORCA Functions Appeon PowerBuilder® 2017 R3

Table 2.42:
PConfigSession->eClobber | Return valueif read/write Return valueif read-only
setting file exists file exists
PBORCA NOCLOBBER PBORCA_OBJEXISTS PBORCA_ OBJEXISTS
PBORCA_CLOBBER PBORCA_OK PBORCA_OBJEXISTS
PBORCA_CLOBBER_ALWAREBORCA_OK PBORCA_OK
PBORCA_CLOBBER_DECIDPFBORYASOBIENISTS PBORCA_OBJEXISTS

Examples

This example exports a Datawindow named d_labels from the library SOURCE.PBL. It
puts the PBORCA_UTF8 source code in abuffer called szEntrySource. Export headers are
included:

TCHAR szEnt r ySour ce[60000] ;
/1 I'ndicate UTF8 source encodi ng
| pORCA | nf 0- >pConf i g- >eExport Encodi ng = PBORCA _UTFS8;
/'l Request export headers
| pORCA | nf 0- >pConfi g- >bExport Headers = TRUE;
/'l Wite output to nmenory buffer
| pORCA | nf 0- >pConfi g- >bExport Creat eFi | e = FALSE;
/1 COverride existing session configuration
PBORCA_Conf i gur eSessi on(| pORCA | nf 0- >hORCASessi on,
| pORCA | nf 0- >pConfi g);
| pORCA | nf 0- > Ret ur nCode = PBORCA_Li braryEnt r yExport (
| pORCA | nf 0- >hORCASessi on,
_TEXT("c:\\app\\source. pbl"),
_TEXT("d_I abel s"), PBORCA_DATAW NDOW
(LPTSTR) szEntrySource, 60000);

This example exports a DataWindow named d_labels from the library SOURCE.PBL. It
writes the PBORCA_UNICODE source code to c:\app\d_|abels.srd. Export headers are
included:

/1 Indicate UNI CODE source encodi ng
| pORCA | nf 0- >pConfi g- >eExport Encodi ng = PBORCA_UNI CODE;
/I Wite to file
| pORCA | nf 0- >pConfi g- >bExport CreateFi | e = TRUE;
/1 Specify output directory
| pORCA | nf 0- >pConfi g- >pExportDirectory = _TEXT("c:\\app");
/'l Request export headers
| pORCA | nf 0- >pConfi g- >bExport Headers = TRUE;
/1 Override existing session configuration
PBORCA _Conf i gur eSessi on(| pORCA | nf o- >hORCASessi on,
| pORCA | nf 0- >pConfi g);
[/l Performthe actual export
| pORCA | nf 0- >l Ret ur nCode = PBORCA Li braryEntryExport (
| pORCA I nf 0- >hORCASessi on,
_TEXT("c:\\app\\source. pbl"),
TEXT("d| abel s"), PBORCA DATAW NDOW
NULL, 0);

This example exports a Window named w_connect from the library SOURCE.PBL.

It contains an embedded OL E object. Both the source code and the binary object are
exported to c:\app\w_connect.srw. Export headers are included and the source is written in
PBORCA_ANSI_DBCS format:

/'l 1ndicate ANSI _DBCS source encodi ng

ORCA Guide Page 66

ORCA Functions Appeon PowerBuilder® 2017 R3

| pORCA_I| nf 0- >pConf i g- >eExport Encodi ng = PBORCA_ANSI _DBCS;
/1l Export to a file
| pORCA_I nf 0- >pConfi g- >bExport Creat eFi | e = TRUE;
/1 Specify output directory
| pORCA_I nf 0- >pConfi g- >pExportDi rectory = _TEXT("c:\\app");
/1l Request export headers
| pORCA_I| nf 0- >pConf i g- >bExport Headers = TRUE;
/1 1nclude binary conponent
| pORCA_I nf 0- >pConfi g- >bExport | ncl udeBi nary = TRUE;
/1 Override existing session configuration
PBORCA_Conf i gur eSessi on(| pORCA | nf o- >hORCASessi on,
| pORCA | nf 0- >pConfi g);
[/l Performthe actual export
| pORCA_| nf 0- > Ret ur nCode = PBORCA _Li braryEntryExport (
| pORCA_I nf 0- >hORCASessi on,
_TEXT("c:\\app\\source. pbl"),
_TEXT("w_connect"), PBORCA W NDOW
NULL, 0);

See also
PBORCA_ConfigureSession
PBORCA _CompileEntrylmport
PBORCA _LibraryEntryExportEx

2.21 PBORCA _LibraryEntryExportEx
Description
Exports the source code for a PowerBuilder library entry to atext buffer.

Syntax

I NT PBORCA _Li braryEntryExport Ex (HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszEnt r yNane,
PBORCA_TYPE ot Ent ryType,
LPTSTR | pszExport Buf f er,
LONG | Export Buf ferSi ze
LONG *pl Ret urnSi ze) ;

Table 2.43:

Argument Description

hORCA Session Handle to previously established ORCA
session.

IpszLibraryName Pointer to a string whose valueisthefile
name of the library containing the object you
want to export.

|pszEntryName Pointer to a string whose value is the name of
the object being exported.

otEntryType A value of the PBORCA_TY PE enumerated
data type specifying the object type of the
entry being exported. Values are:
PBORCA_APPLICATION

ORCA Guide Page 67

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

PBORCA_BINARY
PBORCA_DATAWINDOW
PBORCA_FUNCTION
PBORCA_MENU
PBORCA_PIPELINE
PBORCA_PROJECT
PBORCA_PROXYOBJECT
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT

PBORCA_WINDOW

|pszExportBuffer Pointer to the data buffer in which ORCA

stores the code for the exported source when
the PBORCA_CONFIG_SESSION property
bExportCreateFile is FALSE. This argument
can be NULL if bExportCreateFileis TRUE.

|ExportBufferSize Sizein bytes of |pszExportBuffer.
Thisargument is not required if the
PBORCA_CONFIG_SESSION property
bExportCreateFileis TRUE.

*plReturnSize Thesize, in BYTES, of the exported source
buffer or file.

Return value

INT. Typical return codes are:

Table 2.44:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library I/O error

-10 PBORCA_BUFFERTOOSMALL Buffer sizeistoo small

-33 PBORCA_DBCSERROR Locale setting error when converting

Unicodeto ANSI_DBCS
Usage

ORCA Guide Page 68

ORCA Functions Appeon PowerBuilder® 2017 R3

This function behaves exactly like PBORCA _LibraryEntryExport, except that with
PBORCA _LibraryEntryExportEx, the size of the exported source is returned to the caller in
the additional * plReturnSize argument.

Seealso
PBORCA_ConfigureSession
PBORCA _CompileEntrylmport
PBORCA_LibraryEntryExport

2.22 PBORCA _LibraryEntryIinformation
Description

Returns information about an object in a PowerBuilder library. Information includes
comments, size of source, size of object, and modification time.

Syntax

I NT PBORCA _Li braryEntryl nfornati on (HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszEnt r yNane,
PBORCA_TYPE ot EntryType,
PPBORCA_ENTRYI NFO pEnt ryl nf or mat i onBl ock);

Table 2.45:

Argument Description

hORCA Session Handle to previously established ORCA
session.

IpszLibraryName Pointer to a string whose valueisthefile
name of the library containing the object for
which you want information.

|pszEntryName Pointer to a string whose value is the name of
the object for which you want information.

otEntryType A value of the PBORCA_TY PE enumerated

data type specifying the object type of the
entry. Vaues are:

PBORCA_APPLICATION
PBORCA_DATAWINDOW
PBORCA_FUNCTION
PBORCA_MENU
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW
PBORCA_PIPELINE

ORCA Guide Page 69

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description
PBORCA_PROJECT

PBORCA_PROXYOBJECT

PBORCA_BINARY

pEnNtrylnformationBlock Pointer to PBORCA_ENTRYINFO structure
in which ORCA will store the requested
information (see Usage below).

Return value

INT. Typical return codes are:

Table 2.46:

0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list
-3 PBORCA_OBJINOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-7 PBORCA_LIBIOERROR Library 1/0O error
Usage

Y ou do not need to set the library list or current application before calling this function.
How entry information is returned

PBORCA _LibraryEntrylnformation stores information about an entry in the following
structure. Y ou pass a pointer to the structure in the pEntrylnformationBlock argument:

typedef struct PBORCA Entryl nfo
{
TCHAR szComent s[PBORCA MAXCOMVENT + 1];
LONG | CreateTine; // time of entry create-nod
LONG | Obj ect Si ze; // size of object in bytes
LONG | SourceSi ze; // size of source in bytes
} PBORCA _ENTRYI NFO, FAR * PPBORCA ENTRYI NFG;

Use for the source code size

PBORCA_LibraryEntrylnformation is often used to estimate the size in bytes of the source
buffer needed to obtain the export source of an object. The size of the exported source
varies depending on the ConfigureSession settings in effect. The following table shows
how ConfigureSession variables affect the |SourceSize value that LibraryEntrylnformation
returns:

Table 2.47:
ConfigureSession variable Effect on | SourceSize
ANSI/DBCS ORCA client No effect. User should calculate required
buffer size based on the usage tips that follow
thistable.

ORCA Guide Page 70

ORCA Functions Appeon PowerBuilder® 2017 R3

ConfigureSession variable Effect on | Sour ceSize

eExportEncoding No effect.

PBORCA _LibraryEntrylnformation always
returns the number of bytes required for
Unicode source.

bExportHeaders=TRUE If otEntryTypeis not PBORCA_BINARY,
|SourceSize will be increased by the number
of bytes needed to generate Unicode export
headers.

bExportlncludeBinary=TRUE If otEntryType isnot PBORCA_BINARY,
|SourceSize will be increased by the number
of bytes needed to generate the Unicode
representation of the binary object.

Calculating buffer size needed for non-Unicode encodings

The size of the buffer required for non-Unicode export encodings cannot be calculated in
advance without actually performing the data transformation. Developers should make their
own estimate to arrive at areasonable buffer size to allocate. For example, if the source for an
entry isentirely ANSI, simply divide the |SourceSize value by 2 and add 1 byte if you want a
null terminator. For Unicode source, add 2 bytes for the null terminator.

Using PBORCA_BINARY for entry type

In previous releases of ORCA, it was necessary to call PBORCA _LibraryEntrylnformation
a second time with an otEntryType of PBORCA_BINARY to determineif an entry
contained embedded OLE controls. This call determined the size of the buffer needed to
hold the representation of the binary datato be exported. Although PowerBuilder still
supports this feature for backward compatibility, it is more efficient to set pConfigSession-
>bExportincludBinary = TRUE to obtain a buffer size sufficient for both the source and
binary components of an entry.

Examples

This example obtains information about each object in aPBL. It is an extension of the
example for PBORCA _LibraryDirectory.

I NT Entryl nfo(PLI Bl NFO HEAD pHead)
{

| NT i Err Code;

I NT i dx;

PLI Bl NFO_ENTRY pCurrEntry;
PBORCA_ENTRYI NFO | nf 0Bl ock;

| NT i Err Count = O;

for (idx = 0, pCurrEntry = pHead->pEntryAnchor;
(i dx < pHead->i NunEntries) && pCurrEntry;
i dx++, pCurrEntry = pCurrEntry->pNext)
{
i Err Code = PBORCA _Li braryEntryl nfornmation(
| pORCA_I| nf 0- >hORCASessi on pHead- >szLi bNane,
pCurr Entry->szEntryNane,
pCurrEntry->ot EntryType, &I nfoBl ock);

if (iErrCode == PBORCA OK)

ORCA Guide Page 71

ORCA Functions Appeon PowerBuilder® 2017 R3

{
pCurr Entry- >l SourceSi ze

pCurrEntry->| Cbj ect Si ze
}

el se

| nf oBl ock. | Sour ceSi ze;
I nf oBl ock. | Obj ect Si ze;

Error Msg();
i Err Count ++;

}

}

if (iErrCount)

i Err Code = -1;

return i ErrCode;
}
See also
PBORCA_LibraryDirectory

PBORCA _LibraryEntryExport

2.23 PBORCA _LibraryEntryMove
Description
Moves a PowerBuilder library entry from one library to another.

Syntax

I NT PBORCA Li braryEntryMve (PBORCA hORCASessi on,
LPTSTR | pszSour ceLi bNane,
LPTSTR | pszDest Li bNane,
LPTSTR | pszEnt r yNamne,
PBORCA TYPE ot EntryType);

Table 2.48:
Argument Description
hORCA Session Handle to previously established ORCA
session.
|pszSourceLibName Pointer to a string whose valueisthefile
name of the source library containing the
object.
|pszDestLibName Pointer to a string whose value isthe file
name of the destination library to which you
want to move the object.
|pszEntryName Pointer to a string whose value is the name of
the object being moved.
otEntryType A value of the PBORCA_TY PE enumerated
data type specifying the object type of the
entry being moved. Values are:
PBORCA_APPLICATION
PBORCA_DATAWINDOW
PBORCA_FUNCTION

ORCA Guide Page 72

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

PBORCA_MENU
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW
PBORCA_PIPELINE
PBORCA_PROJECT
PBORCA_PROXYOBJECT

Return value

INT. Typical return codes are:

Table 2.49:

Return code Description

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS

Invalid parameter list

-3 PBORCA_OBJINOTFOUND

Object not found

-4 PBORCA_BADLIBRARY

Bad library name

-7 PBORCA_LIBIOERROR

Library 1/O error

Usage
Y ou do not need to set the library list or current application before calling this function.

Like PBORCA _LibraryEntryCopy, one call to PBORCA _LibraryEntryMove automatically
moves the source component and then moves the binary component of an object if itis
present.

Examples

This example moves a DataWindow named d_labels from the library SOURCE.PBL to
DESTIN.PBL:

| pORCA I nf 0- > Ret ur nCode = PBORCA_Li braryEnt ryMove(
| pORCA_I nf 0- >hORCASessi on,
_TEXT("c:\\app\\source. pbl "),
_TEXT ("c:\\app\\destin.pbl"),
_TEXT ("d_I abel s"), PBORCA_DATAW NDOW ;

This example assumes that the pointers for IpszSourcelibraryName,
IpszDestinationLibraryName, and IpszEntryName point to valid library and object names and
that otEntryTypeisavalid object type:

| pORCA_| nf 0- >l Ret ur nCode = PBORCA Li braryEntryMve(
| pORCA_I nf 0- >hORCASessi on,
| pszSour ceLi braryName, | pszDesti nati onLi braryNane,
| pszEntryName, otEntryType);

ORCA Guide Page 73

ORCA Functions Appeon PowerBuilder® 2017 R3

See also
PBORCA_LibraryEntryCopy
PBORCA _LibraryEntryDelete

2.24 PBORCA_ObjectQueryHierarchy
Description

Queries aPowerBuilder object to get alist of the objects in its ancestor hierarchy. Only
windows, menus, and user objects have an ancestor hierarchy that can be queried.

Syntax

I NT PBORCA_(hj ect Quer yHi erarchy (HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszEnt r yNane,
PBORCA_TYPE ot EntryType,
PBORCA_HI ERPROC pHi er ar chyPr oc,
LPVAO D pUserData);

Table 2.50:
Argument Description
hORCA Session Handle to previously established ORCA
session.
|pszLibraryName Pointer to a string whose value isthe file
name of the library containing the object
being queried.
|pszEntryName Pointer to a string whose value is the name of
the object being queried.
otEntryType A value of the PBORCA_TY PE enumerated

data type specifying the object type of the
entry being queried. The only values alowed
are:

PBORCA_WINDOW
PBORCA_MENU

PBORCA_USEROBJECT

pHierarchyProc Pointer to the
PBORCA_ObjectQueryHierarchy callback
function. The callback functionis called for
each ancestor object.

The information ORCA passes to the
callback function is the ancestor object
name, stored in a structure of type
PBORCA_HIERARCHY.

pUserData Pointer to user data to be passed to the
PBORCA_ObjectQueryHierarchy callback
function.

ORCA Guide Page 74

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

The user data typically includes the buffer or
apointer to the buffer in which the callback
function stores the ancestor names as well as
information about the size of the buffer.

Return value

INT. The return codes are:

Table 2.51:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJINOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-5 PBORCA_LIBLISTNOTSET Library list not set

-6 PBORCA_LIBNOTINLIST Library notin library list
-7 PBORCA_LIBIOERROR Library 1/O error

-9 PBORCA_INVALIDNAME Name does not follow PowerBuilder naming

rules
Usage

Y ou must set the library list and current Application object before calling this function.
Examples

This example queries the window object w_processdatain the library WINDOWS.PBL to
get alist of its ancestors. The IpUserData buffer was previously set up to point to space for
storing the list of names.

For each ancestor in the object's hierarchy, PBORCA _ObjectQueryHierarchy callsthe
callback ObjectQueryHierarchy. In the code you write for ObjectQueryHierarchy, you store
the ancestor name in the buffer pointed to by IpUserData. In the example, the IpUserData
buffer has already been set up:

PBORCA_HI ERPRCC f pHi er ar chyPr oc;

f pHi erarchyProc = (PBORCA HI ERPROC) Get Hi er ar chy;

| pORCA I nf 0- >l Ret ur nCode = PBORCA_Obj ect Quer yHi erar chy(
_TEXT("c:\\app\\w ndows. pbl "),
_TEXT("w_processdata"),
PBORCA W NDOW
f pHi erarchyProc,
| pUserData);

For more information about setting up the data buffer for the callback, see Content of a
callback function and the example for PBORCA _LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

ORCA Guide Page 75

ORCA Functions Appeon PowerBuilder® 2017 R3

See also
PBORCA _ObjectQueryReference

2.25 PBORCA_ObjectQueryReference

Description

Queries aPowerBuilder object to get alist of its references to other objects.
Syntax

I NT PBORCA_Obj ect Quer yRef erence (HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszEnt r yNare,
PBORCA_TYPE ot EntryType,
PBORCA_REFPRCC pRef Proc,
LPVO D pUserData);

Table 2.52:

Argument Description

hORCA Session Handle to previously established ORCA
session.

IpszLibraryName Pointer to a string whose valueisthefile
name of the library containing the object
being queried.

|pszEntryName Pointer to a string whose value is the name of
the object being queried.

otEntryType A value of the PBORCA_TY PE enumerated

data type specifying the object type of the
entry being queried. Vaues are:

PBORCA_APPLICATION
PBORCA_DATAWINDOW
PBORCA_FUNCTION
PBORCA_MENU
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW
PBORCA_PIPELINE
PBORCA_PROJECT

PBORCA_PROXYOBJECT

pRefProc Pointer to the
PBORCA_ObjectQueryReference callback
function. The callback function is called for
each referenced object.

ORCA Guide Page 76

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

The information ORCA passes to the
callback function is the referenced object
name, its library, and its object type, stored in
astructure of type PBORCA_REFERENCE.

pUserData Pointer to user data to be passed to the
PBORCA _ObjectQueryReference callback
function.

The user data typically includes the buffer or
apointer to the buffer in which the callback
function stores the object information as well
as information about the size of the buffer.

Return value

INT. Typical return codes are:

Table 2.53:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-3 PBORCA_OBJNOTFOUND Object not found

-4 PBORCA_BADLIBRARY Bad library name

-5 PBORCA_LIBLISTNOTSET Library list not set

-6 PBORCA_LIBNOTINLIST Library notin library list

-9 PBORCA_INVALIDNAME Name does not follow PowerBuilder naming

rules
Usage

Y ou must set the library list and current Application object before calling this function.
Examples

This example queries the window object w_processdata in the library WINDOWS.PBL

to get alist of its referenced objects. For each object that w_processdata references,
PBORCA_ObjectQueryReference calls the callback ObjectQueryReference. In the code
you write for ObjectQueryReference, you store the object name in the buffer pointed to by
IpUserData. In the example, the IpUserData buffer has already been set up:

PBORCA_REFPROC f pRef Pr oc;

f pRef Proc = (PBORCA_REFPROC) GCet Ref er ences;

| pORCA_| nf 0- >l Ret ur nCode = PBORCA_(bj ect Quer yRef er ence(
| pORCA_I nf 0- >hORCASessi on,
_TEXT("c:\\app\\w ndows. pbl "),
_TEXT("w_processdata"),

PBORCA_W NDOW

f pRef Proc,

| pUserData);

ORCA Guide Page 77

ORCA Functions Appeon PowerBuilder® 2017 R3

For more information about setting up the data buffer for the callback, see Content of a
callback function and the example for PBORCA _LibraryDirectory.

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

See also
PBORCA _ObjectQueryHierarchy

2.26 PBORCA _SccClose

Description

Closes the active SCC project.

Syntax

I NT PBORCA Sccd ose (HPBORCA hORCASessi on);

Table 2.54:

Argument Description

hORCA Session Handle to previousy established ORCA
session

Return value

INT.

Usage

This method calls SCCUninitialize to disconnect from the source control provider. Call
PBORCA _SccClose before calling PBORCA _SessionClose.

See also
PBORCA _SccConnect

2.27 PBORCA_SccConnect
Description
Initializes source control and opens a project.

Syntax

I NT PBORCA_SccConnect (HPBORCA hORCASessi on, PBORCA _SCC *pConfig);

Table 2.55:
Argument Description
hORCA Session Handle to previously established ORCA
session
*pConfig Pointer to a preallocated structure typically
initialized to zeros

ORCA Guide Page 78

ORCA Functions Appeon PowerBuilder® 2017 R3

Return value

INT. Typical return codes are:

Table 2.56:

0 PBORCA_OK Operation successful
-22 PBORCA_SCCFAILURE Could not connect to source control
-23 PBORCA_REGREADERROR Could not read registry

-24 PBORCA_LOADDLLFAILED Could not load DLL

-25 PBORCA_SCCINITFAILED Could not initialize SCC connection
-26 PBORCA_OPENPROJFAILED Could not open project

Usage

This method initializes a source control session based on the connection information supplied
in the PBORCA _SCC structure. The PBORCA _SCC structure is defined as follows:

typedef struct pborca_scc

{
HWAD hwid;

TCHAR szProvi der Nane [PBORCA _SCC NAME_LEN + 1];
LONG *pl Capabilities;
TCHAR szUser | D [PBORCA_SCC USER LEN + 1];
TCHAR szProj ect [PBORCA_SCC PATH LEN + 1];
TCHAR szlocal Proj Pat h [PBORCA_SCC_PATH LEN + 1];
TCHAR szAuxPat h [PBORCA_SCC PATH LEN + 1];
TCHAR szLogFi | e [PBORCA_SCC PATH LEN + 1];
LPTEXTOUTPROC pMsgHandl er ;
LONG * pConment Len;
LONG | Append;
LPVA D pCommBI k;

} PBORCA_SCC,

Y ou can either populate the structure manually or else call
PBORCA _SccGetConnectProperties to obtain the connection information associated with a
specific workspace file. This function:

» Opens the requested source control project
» Createsa CPB_OrcaSourceControl class that implements the PBORCA_SCC methods
» Defines aruntime environment that persists until PBORCA_SccCloseis called

The runtime environment has four subsystems: runtime engine (rt), object manager (ob),
Power Script compiler (cm), and storage manager (stg). The runtime environment is used
to process the target identified by a subsequent PBORCA _SccSetTarget call. To process
multiple targets, you must close the SCC connection, close the ORCA session, and open a
new ORCA session.

Examples

The following example connects to PBNative source control:

ORCA Guide Page 79

ORCA Functions Appeon PowerBuilder® 2017 R3

PBORCA_SCC sccConfi g;

nenset (&sccConfi g, 0x00, sizeof (PBORCA _SCC));

/1 Manually set up connection properties to PBNative
_tcscpy(sccConfig. szProvi der Name, _TEXT("PB Native"));
_tcscpy(sccConfig. szProj ect,

_TEXT("c:\\PBNati ve_Archive\\gadb"));
_tcscpy(sccConfig.szUserI D, _TEXT("Joe"));
_tcscpy(sccConfig.szLogFile, _TEXT("c:\\gadb\\orcascc.log"));
_tcscpy(sccConfig.szLocal Proj Path, _TEXT("c:\\qgadb"));
sccConfig. | Append = O;
| pORCA_I| nf 0- > Ret ur nCode = PBORCA_SccConnect (

| pORCA_I nf 0- >hORCASessi on,
&sccConfi g);

See also

PBORCA _SccClose

PBORCA _SccConnectOffline
PBORCA _SccGetConnectProperties
PBORCA _SccSetTarget

2.28 PBORCA_SccConnectOffline

Description

Opens a source-controlled project for refreshing and rebuilding offline.
Syntax

I NT PBORCA_SccConnect O fl i ne (HPBORCA hORCASessi on,
PBORCA_SCC *pConfig);

Table 2.57:
Argument Description
hORCA Session Handle to previously established ORCA
session
*pConfig Pointer to a preallocated structure typically
initialized to zeros
Return value

INT. Typical return codes are:

Table 2.58:

0 PBORCA_OK Operation successful

-22 PBORCA_SCCFAILURE Could not connect to source control
-23 PBORCA_REGREADERROR Could not read registry

-24 PBORCA_LOADDLLFAILED Could not load DLL

-25 PBORCA_SCCINITFAILED Could not initialize SCC connection

ORCA Guide Page 80

ORCA Functions Appeon PowerBuilder® 2017 R3

Return code Description
-26 PBORCA_OPENPROJFAILED Could not open project
Usage

Thisfunction is applicable only when PBORCA_SCC _IMPRORTONLY is specified on the
subsequent PBORCA _SccSetTarget command.

Import-only processing assumes that all of the objects necessary to refresh

a source-controlled target already exist on the local project path. Therefore,

PBORCA _SccConnectOffline instantiates the ORCA source control class but does not
actually connect to an SCC provider.

Thisfunction is particularly useful for developers who use laptop computers. While
connected to the network, they can refresh their SCC client view. Then, during off hours,
they can perform the time-consuming process of refreshing and rebuilding their application
without the need for a network connection.

Examples

This example populates the PBORCA_SCC structure with connection information from the
PocketBuilder gadb.pkw workspace file located in the current working directory. It then
connects in offline mode and refreshes the qadbtest.pbt target that is located in the gadbtest
subdirectory under the current working directory. Only objects that are out of sync will be
refreshed. Objects checked out by the current user will not be overwritten:

PBORCA_SCC sccConfi g;

TCHAR szWor kSpace[PBORCA_SCC_PATH_LEN] ;
TCHAR szTar get [PBORCA_SCC_PATH_LEN] ;
LONG | Fl ags;

nmenset (&sccConfi g, 0x00, sizeof (PBORCA _SCC));
_tcscpy(szWor kSpace, _TEXT("qadb. pkw'));
| pORCA_I| nf 0- > Ret ur nCode =
PBORCA_SccGet Connect Properti es(
| pORCA_I nf 0- >hORCASessi on,
szWr kspace,
&sccConfig);
if (I pORCA_I nfo->l ReturnCode == PBORCA_OK)
{
/1 Specify a different log file for the build operation
_tcscpy(sccConfig.szLogFile, _TEXT("bldgadb.log"));
sccConfig. | Append = O;
| pORCA_I nf 0- > Ret ur nCode = PBORCA_SccConnect O f | i ne(
| pORCA | nf 0- >hORCASessi on, &sccConfi g);
i f (I pORCA_Info->l ReturnCode == PBORCA_OK)
{
_tcscpy(szTarget, _TEXT("qgadbtest\\qadbtest.pkt"));
| Fl ags = PBORCA_SCC | MPORTONLY |
PBORCA_SCC_QUTOFDATE |
PBORCA_SCC_EXCLUDE_CHECKQUT;
| pORCA | nf 0- > Ret ur nCode = PBORCA_SccSet Tar get (
| pORCA_I| nf 0- >hORCASessi on,
szTar get ,
| Fl ags,
NULL,
NULL) ;
i f (1 pORCA_I nfo->l ReturnCode == PBORCA_OK)
{
| pORCA_| nf 0- >l Ret ur nCode = PBORCA _SccRefreshTar get (
| pORCA | nf 0- >hORCASessi on, PBORCA FULL_REBUI LD);

ORCA Guide Page 81

ORCA Functions Appeon PowerBuilder® 2017 R3

}
}
}
Seealso
PBORCA _SccClose
PBORCA _SccConnect
PBORCA _SccGetConnectProperties

PBORCA _SccSetTarget

2.29 PBORCA_SccExcludeLibraryList
Description

Names the libraries in the target library list that should not be synchronized in the next
PBORCA_SccRefreshTarget operation.

Syntax
I NT PBORCA_SccExcl udeLi braryLi st (HPBORCA hORCASessi on,

LPTSTR *pLi bNanes,
I NT i Nunber of Li bs);

Table 2.59:

hORCA Session Handle to previously established ORCA

session

*pLibNames Names of the libraries not to be refreshed
iNumberofLibs Number of libraries not to be refreshed
Return value

INT.

Usage

This method is useful if PBLs are shared among multiple targets and you are certain that the
libraries you list have been successfully refreshed by a previous PBORCA _SccRefreshTarget
operation. The refresh target operation will not refresh the libraries that are excluded;
however, the excluded libraries will still be used in the full rebuild of the application.

Examples

A previous PBORCA _SccRefreshTarget operation has successfully refreshed three of the
four PocketBuilder librariesin thistarget library list.

LPTSTR pExcl udeArray[3] ;

I NT | Excl udeCount = 3;

TCHAR szTar get [PBORCA_SCC PATH LEN];
LONG | Fl ags;

pExcl udeArray[0] = new TCHAR[PBORCA SCC PATH LEN];
pExcl udeArray[1] new TCHAR] PBORCA_SCC PATH LEN] ;
pExcl udeArray[2] new TCHAR] PBORCA SCC_PATH_LEN ;
_tcscpy(pExcl udeArray[0],
_TEXT("..\\shared_obj\\shared_obj.pkl"));

ORCA Guide Page 82

ORCA Functions Appeon PowerBuilder® 2017 R3

_tcscpy(pExcl udeArray[1],

_TEXT("..\\dat at ypes\\ dat at ypes. pkl ")) ;

_tcscpy(pExcl udeArray[2],

_TEXT("..\\chgreqs\\chgregs. pkl"));

/1l Open ORCA Session, connect to SCC

I --

_tcscpy(szTarget, _TEXT("dbauto\\dbauto. pkt"));

| Fl ags = PBORCA _SCC | MPORTONLY | PBORCA _SCC _QUTCFDATE |
PBORCA_SCC_EXCLUDE_CHECKQOUT;

| pORCA_| nf 0- > Ret ur nCode = PBORCA _SccSet Tar get (

| pORCA_| nf 0- >hORCASessi on, szTarget, |Flags, NULL, NULL);

if (1 pORCA_Info->l ReturnCode == PBORCA_OK)
{
| pORCA | nf 0- >l Ret ur nCode = PBORCA_SccExcl udeLi braryLi st (
| pORCA | nf 0- >hORCASessi on, pExcl udeArr ay,
| Excl udeCount) ;

if (1 pORCA_Info->l ReturnCode == PBORCA_OK)
{
| pORCA | nf 0- >l Ret ur nCode = PBORCA _SccRefreshTar get (
| pORCA I nf 0- >hORCASessi on, PBORCA FULL_REBUI LD);
}
}

for (int i =0; i < |EBExcludeCount; i++)
delete [] pExcludeArrary[i];
See also

PBORCA _SccRefreshTarget
PBORCA _SccSetTarget

2.30 PBORCA_SccGetConnectProperties

Description

Returns the SCC connection properties associated with a PowerBuilder workspace.
Syntax

| NT PBORCA SccGet Connect Properties (HPBORCA hORCASessi on,

LPTSTR pWor kspacekFi | e,
PBORCA_SCC *pConfig);

Table 2.60:
Argument Description
hORCA Session Handle to previously established ORCA
session
pWorkspaceFile Fully qualified or relative file name of the
PowerBuilder workspace file (PBW)
*pConfig Pointer to a preallocated structure typically
initialized to zeros
Return value

INT. Typical return codes are:

ORCA Guide Page 83

ORCA Functions Appeon PowerBuilder® 2017 R3

Table 2.61:

Return code Description

0 PBORCA_OK Operation successful

-3 PBORCA_OBJINOTFOUND Could not find workspace file
Usage

This method simplifies the SCC connection process. Property values returned from the
workspace you include as an argument in the PBORCA _SccGetConnectProperties call

are stored in a preallocated structure, PBORCA _SCC. These properties allow a successful
connection to a given SCC provider and project, but you can override any of these properties.

The PBORCA _SCC structure is defined as follows:

typedef struct pborca_scc {
HWAD hWhd;
TCHAR szProvi der Nane [PBORCA_SCC NAME LEN + 1];
LONG *pl Capabilities;
TCHAR szUser | D [PBORCA SCC USER LEN + 1];
TCHAR szProj ect [PBORCA SCC PATH LEN + 1];
TCHAR szLocal Proj Pat h [PBORCA_SCC PATH LEN + 1];
TCHAR szAuxPat h [PBORCA SCC PATH LEN + 1];
TCHAR szLogFil e [PBORCA SCC PATH LEN + 1];
LPTEXTOUTPROC pMsgHandl er;
LONG *pConmment Len;
LONG | Append;
LPVO D pComBl k;

} PBORCA_SCC,

The variablesin the PBORCA _SCC structure are described in the following table:

Table 2.62:

Member Description

hwnd Parent window handle whose valueis
typically NULL.

szProviderName Name of the SCC provider.

*plCapabilities Pointer to value returned by
PBORCA _SccConnect. Used internally to
determine what features the SCC provider
supports.

szUserlD User ID for the source control project.

szProject Name of the source control project.

szL ocal ProjPath Local root directory for the project.

szAuxPath The Auxiliary Project Path has different
meaning for every SCC vendor. It can
contain any string that the SCC provider
wants to associate with the project.
PBORCA _SccGetConnectProperties returns
this value to enable a silent connection
(without opening a dialog box from the SCC
provider).

ORCA Guide Page 84

ORCA Functions Appeon PowerBuilder® 2017 R3

Member Description

szLogFile Name of the log file for the SCC connection.

pMsgHandler Callback function for SCC messages.

*pCommentLen Pointer to value returned by
PBORCA _SccConnect. Length of comments
accepted by the SCC provider.

|Append Determines whether to append to
(IAppend=1) or overwrite (IAppend=0) the
SCC logfile.

pCommBIlk Reserved for internal use.

The property values added to the PBORCA _SCC structure after calling the
PBORCA _SccGetConnectProperties function are szProviderName, szUserID,
szProject, szL ocal ProjPath, szAuxPath, szL ogFile, and |Append. If you manually
add these values to the PBORCA _SCC structure, you do not need to call the
PBORCA _SccGetConnectProperties to connect to source control.

Seealso
PBORCA _SccConnect
PBORCA _SccSetTarget

2.31 PBORCA_SccGetLatestVersion
Description
Retrieves the latest version of files from the SCC provider.

Syntax

I NT PBORCA _SccGet Lat est Ver (HPBORCA hORCASessi on,
Long nFil es,
LPTSTR *ppFi | eNanes) ;

Table 2.63:

hORCA Session Handle to previously established ORCA

session

nFiles Number of filesto be retrieved
*ppFileNames Names of filesto beretrieved

Return value

INT. Typical return codes are:
Table 2.64:

Return code Description

0 PBORCA_OK Operation successful

ORCA Guide Page 85

ORCA Functions Appeon PowerBuilder® 2017 R3

Return code Description
-22 PBORCA_SCCFAILURE Operation failure
Usage

Call this method to retrieve files from source control. Typically, these are objects that exist
outside of a PowerBuilder library but nevertheless belong to an application. Examples
include BMP, JPG, ICO, DOC, HLP, HTM, JSP, and PBR files.

Examples

The following example:

LPTSTR pQherFil es[3];

pQ her Fi | es[0] _TEXT("c:\\gadb\\ gadbt est\\ gadbt est . hl p");

pQ herFi | es[1] _TEXT("c:\\gadb\\ dat at ypes\ \ dat at ypes. pbr");
pQ her Fi | es[2] _TEXT("c:\\gadb\\ gadbt est . bmp") ;

| pORCA_| nf 0- >l Ret ur nCode = PBORCA SccCet Lat est Ver
(1 pORCA_I nf 0- >hORCASessi on, 3, pQherFil es);

See also
PBORCA _SccConnect
PBORCA _SccSetTarget

2.32 PBORCA_SccRefreshTarget

Description

Calls SccGetL atestVersion to refresh the source for each of the objectsin the target libraries.
Syntax

I NT PBORCA_SccRefreshTarget (HPBORCA hORCASessi on, PBORCA REBLD TYPE eRebl dType);

Table 2.65:
hORCA Session Handle to previously established ORCA
session
eRebldType Allows you to specify how the application is
rebuilt (see Usage section below)
Return value
INT.
Usage

Call this method to get the latest version of objectsin target libraries from source control.
The refresh operation also causes the objects to be imported and compiled in their respective
PowerBuilder libraries.

Objectsin target libraries that you name in a PBORCA _SccExcludeLibraryList call are not
included in the refresh operation.

ORCA Guide Page 86

ORCA Functions Appeon PowerBuilder® 2017 R3

The PBORCA_REBLD_TY PE argument determines how the application is rebuilt when you
call PBORCA_SccRefreshTarget:

Table 2.66:
PBORCA REBLD TYPE Description
PBORCA FULL_REBUILD Performs afull rebuild of the application
PBORCA_INCREMENTAL_REBUILD Performs an incremental rebuild of the
application
PBORCA_MIGRATE Migrates the application and performs full
rebuild
Seealso

PBORCA _SccClose

PBORCA _SccConnect

PBORCA _SccExcludel ibraryList
PBORCA _SccSetTarget

2.33 PBORCA_SccResetRevisionNumber
Description

Call thisfunction to reset the revision number for an object. This function is useful only in
applications using SCC providers that implement the SccQuerylnfoEx extension to the SCC
API.

Syntax

I NT PBORCA_SccReset Revi si onNunber (HPBORCA hORCASessi on,
LPTSTR | pszLi br ar yNane,
LPTSTR | pszEnt r yNamne,
PBORCA _TYPE ot EntryType,
LPTSTR | pszRevi si onNum) ;

Table 2.67:

Argument Description

hORCA Session Handle to previously established ORCA
session.

IpszLibraryName Absolute or relative path specification for the
PBL file containing the object for which you
want to reset the revision number.

|pszEntryName Pointer to a string whose value is the name of
the object without its .sr? extension.

otEntryType A value of the PBORCA_TY PE enumerated
data type specifying the object type of the
entry being imported. Values are:
PBORCA_APPLICATION

ORCA Guide Page 87

ORCA Functions Appeon PowerBuilder® 2017 R3

Argument Description

PBORCA_BINARY
PBORCA_DATAWINDOW
PBORCA_FUNCTION
PBORCA_MENU
PBORCA_PIPELINE
PBORCA_PROJECT
PBORCA_PROXYOBJECT
PBORCA_QUERY
PBORCA_STRUCTURE
PBORCA_USEROBJECT
PBORCA_WINDOW

|pszRevisionNum A string value or NULL. NULL causes the
current revision number in the PBL to be
deleted.

Return value

INT. Typical return codes are:

Table 2.68:
0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list (if |pszLibraryName or
IpszEntryName is null)
-7 PBORCA_LIBIOERROR Unable to open PBL for read/write access
Usage

Y ou can call this function whether or not you are connected to source control.

The PBORCA _SccResetRevisionNumber function changes the object revision

number that is stored as metadata in the PowerBuilder library that you assign in the
IpszLibraryName argument. The revision number is changed in the object source on the
desktop machine, not in the source control repository. The library where the object resides
does not have to be in the current library list.

Typicaly you would call PBORCA _SccResetRevisionNumber if your ORCA program
externally modifies the object source in the PBL and one of the following is also true:

» The ORCA program has imported a specific revision of an object into the PBL
through a PBORCA _CompileEntrylmport call. If the ORCA program knows the exact
revision number that was imported, that revision number should be specified in the
IpszRevisionNum argument. If the exact revision number is unknown, the ORCA program
should still call PBORCA _SccResetRevisionNum and set IpszRevisionNum to NULL.

ORCA Guide Page 88

ORCA Functions Appeon PowerBuilder® 2017 R3

» The ORCA program is externally performing the equivalent of an SCC check-in by
exporting existing object source from the PBL through a PBORCA _LibraryEntryExport
call and checking the object source into the SCC repository itself. To complete the job, the
ORCA program must obtain the new revision number from the SCC repository and call
PBORCA _SccResetRevisionNumber. After you do this, the object source residing in the
PBL is associated with the correct revision number in the SCC repository.

See also
PBORCA _CompileEntrylmport
PBORCA_LibraryEntryExport

2.34 PBORCA_SccSetTarget
Description

Retrieves the target file from source control, passes the application object name to ORCA,
and sets the ORCA session library list.

Syntax

I NT PBORCA_SccSet Target (HPBORCA hORCASessi on,
LPTSTR pTargetFil e,
LONG | Fl ags,
PBORCA_SETTGTPROC pSet Tgt Pr oc,
LPVO D pUserData);

Table 2.69:
hORCA Session Handle to previously established ORCA
session
pTargetFile Target file name
IFlags Allows you to control the behavior of the
target operation (see Usage section below)
pSetTgtProc Pointer to the user-defined callback function
pUserData Pointer to a preallocated data buffer
Return value
INT.
Usage

This method takes the place of PBORCA_SetLibraryList and PBORCA_SetCurrentAppl ina
traditional ORCA application.

In addition to retrieving the target file from source control and setting the application object
and library list, PBORCA_SccSetTarget calls a user-defined callback function one time for
each library inthelibrary list. Thislets you know which libraries will be refreshed by default
and gives you an opportunity to call PBORCA _SccExcludeLibraryList if you think that
specific shared libraries have aready been refreshed by a previous task.

ORCA Guide Page 89

ORCA Functions

Appeon PowerBuilder® 2017 R3

Y ou assign the IFlags argument to set the refresh behavior on target libraries you retrieve

from source control:

Table 2.70:

Flag Description

PBORCA_SCC_OUTOFDATE

Performs comparisons to determine

if objectsresiding in the PBL

are out of sync. When used with
PBORCA_SCC IMPORTONLY, only
objects that differ from the source residing
on the local project path are refreshed.
When PBORCA_SCC_IMPORTONLY
is not set, only objects that are out of date
with the SCC repository are refreshed.
PBORCA_SCC _OUTOFDATE and
PBORCA_SCC REFRESH ALL are
mutually exclusive.

PBORCA_SCC_REFRESH_ALL

Target libraries are completely

refreshed. When used with
PBORCA_SCC_IMPORTONLY,

source code isimported directly

from the local project path. When
PBORCA_SCC_IMPORTONLY isnot set,
then the latest version of all objectsisfirst
obtained from the SCC provider and then
imported to the target libraries.

PBORCA_SCC_IMPORTONLY

Indicates that all the necessary objects to
rebuild the target application already exist
on the local project path. Set thisflag if
you have previously refreshed the local
path using the SCC vendor's administration
tool. PBORCA_SCC_IMPORTONLY
isrequired if you previously called
PBORCA _SccConnectOffline

during this ORCA session.
PBORCA_SCC_IMPORTONLY is
particularly useful to rebuild a target from
a specific SCC version label or promotion

group.

PBORCA_SCC_EXCLUDE_CHECKOUT

Provides a mechanism to refresh local
targets through a batch job that does
not require user intervention. Prevents
objects that are currently checked out
from being overwritten. When used
along with PBORCA _SccConnect, the
checkout statusis obtained directly
from the SCC provider. When used

ORCA Guide

Page 90

ORCA Functions Appeon PowerBuilder® 2017 R3

Flag Description

with PBORCA _SccConnectOffline,

the checkout statusis obtained from

the workspace name.PBC file. For
offline processing, the workspace name
is obtained from a previous cal to
PBORCA _SccGetConnectProperties.

If target libraries and directories do not exist in the local project path specified by
PBORCA _SccConnect, then these directories and PBL files are created dynamically by the
PBORCA_SccSetTarget call.

SccSetTarget does an implicit PBORCA _SessionSetLibraryList and

PBORCA _SessionSetCurrentAppl. After you call PBORCA _SccSetTarget (and presumably
PBORCA _SccRefreshTarget), you can do other work that requires a current application and
an initialized library list, such as creating PBDs and EXEs. Thisis more efficient than calling
PBORCA _SccClose, then reinitializing the library list and current application to create the
PBDs and EXEs.

See also

PBORCA _SccConnect

PBORCA _SccConnectOffline

PBORCA _SccGetConnectProperties
PBORCA _SccRefreshTarget

2.35 PBORCA_SessionClose
Description

Terminates an ORCA session.

Syntax

voi d PBORCA_Sessi onCl ose (HPBORCA hORCASessi on);

Table2.71:
Argument Description
hORCA Session Handle to previously established ORCA
session
Return value
None.
Usage

PBORCA _SessionClose frees any currently allocated resources related to the ORCA session.
If you do not close the session, memory allocated by PowerBuilder DLLs is not freed,
resulting in amemory leak. Failing to close the session does not affect data (since an ORCA
session has no connection to anything).

ORCA Guide Page 91

ORCA Functions Appeon PowerBuilder® 2017 R3

Examples
This example closes the ORCA session:

PBORCA_Sessi onCl ose(| pORCA I nf o- >hORCASessi on) ;
| pORCA | nf 0- >hORCASessi on = 0;

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

See also
PBORCA SessionOpen

2.36 PBORCA_SessionGetError
Description

Getsthe current error for an ORCA session.
Syntax

voi d PBORCA Sessi onGet Error (HPBORCA hORCASessi on, LPTSTR | pszErrorBuffer, |NT
i ErrorBufferSize);

Table2.72:
Argument Description
hORCA Session Handle to previously established ORCA
session.
|pszErrorBuffer Pointer to a buffer in which ORCA will put
the current error string.
iErrorBufferSize Size of the buffer pointed to by
IpszErrorBuffer. The constant
PBORCA_MSGBUFFER provides a
suggested buffer size of 256. It isdefined in
the ORCA header file PBORCA.H
Return value
None.
Usage

Y ou can call PBORCA_SessionGetError anytime another ORCA function call resultsin an

error. When an error occurs, functions always return some useful error code. The complete

list of codesis shown in ORCA return codes. However, you can get ORCA's compl ete error
message by calling PBORCA _SessionGetError.

If thereis no current error, the function puts an empty string ("") into the error buffer.

Examples

This example stores the current error message in the string buffer pointed to by
IpszErrorMessage. The size of the buffer was set previously and stored in dwErrorBufferLen:

PBORCA_Sessi onCet Er r or (| pORCA_I nf 0- >hORCASessi on,

ORCA Guide Page 92

ORCA Functions Appeon PowerBuilder® 2017 R3

| pORCA_I nf 0- >| pszErr or Message,
(int) | pORCA_I nfo->dwErrorBufferLen);

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

2.37 PBORCA_SessionOpen

Description

Establishes an ORCA session and returns a handle that you use for subsequent ORCA calls.
Syntax

HPBORCA PBORCA _Sessi onOpen (void);

Return value

HPBORCA. Returns a handle to the ORCA session if it succeeds and returns O if it fails.
Opening a session fails only if no memory is available.

Usage
Y ou must open a session before making any other ORCA function calls.

There is no overhead or resource issue related to keeping an ORCA session open; therefore,
once it is established, you can leave the session open aslong asiit is needed.

For some ORCA tasks, such asimporting and querying objects or building executables, you
must call PBORCA_SessionSetLibraryList and PBORCA _SessionSetCurrentAppl to provide
an application context after opening the session.

Likewise, PBORCA _SccSetTarget provides an implicit application context for SCC
operations. Do not call PBORCA _SessionSetLibraryList and PBORCA _SetCurrentAppl if
you intend to call PBORCA _SccSetTarget.

Examples
This example opens an ORCA session:
| pORCA | nf 0- >hORCASessi on = PBORCA_Sessi onOpen() ;

if (1 pORCA_I nfo->hORCASessi on = NULL)

{
| pORCA | nf 0- >l Ret ur nCode = 999;

_tcscpy(l pORCA I nf o->| pszErr or Message,
_TEXT(" Open session failed"));

}

See also

PBORCA_SessionClose
PBORCA _SessionSetLibraryL ist
PBORCA _SessionSetCurrentAppl

2.38 PBORCA_SessionSetCurrentAppl
Description
Establishes the current Application object for an ORCA session.

ORCA Guide Page 93

ORCA Functions Appeon PowerBuilder® 2017 R3

Syntax

I NT PBORCA_Sessi onSet Current Appl (HPBORCA hORCASessi on,
LPTSTR | pszAppl Li bNane, LPTSTR | pszAppl Nane);

Table2.73:
Argument Description
hORCA Session Handle to previously established ORCA
session
IpszApplLibName Pointer to a string whose value is the name of
the application library
|pszApplName Pointer to a string whose value is the name of
the Application object
Return value

INT. Typical return codes are:

Table 2.74:

0 PBORCA_OK Operation successful

-1 PBORCA_INVALIDPARMS Invalid parameter list

-2 PBORCA_DUPOPERATION Current application is already set

-3 PBORCA_OBJNOTFOUND Referenced library does not exist

-4 PBORCA_BADLIBRARY Bad library name

-5 PBORCA_LIBLISTNOTSET Library list not set

-6 PBORCA_LIBNOTINLIST Referenced library not in library list
Usage

Y ou must set the library list before setting the current application.

You must call PBORCA_SessionSetLibraryList and then PBORCA _SessionSetCurrentAppl
before calling any ORCA function that compiles or queries objects. The library name should
include the full path for the file wherever possible.

Changing the application

Y ou can set the library list and current application only once in asession. If you need to
change the current application after it has been set, close the session and open a new session.
New applications

To create a new application starting with an empty library, set the pointers to the application
library name and the application name to NULL. ORCA will set up an internal default
application.

For more information about creating a new application, see Bootstrapping a new application.

Examples

ORCA Guide Page 94

ORCA Functions Appeon PowerBuilder® 2017 R3

This exampl e sets the current Application object to the object named demo in the library
MASTER.PBL.:

LPTSTR pszLi br ar yNare;

LPTSTR pszAppl Nane;

/1 specify library nane

pszLi braryName = TEXT("c:\\app\\master. pbl");

/1 specify application nane

pszAppl Nane = TEXT("dem");

/] set the current Application object

| pORCA- >| Ret ur nCode = PBORCA_Sessi onSet Cur r ent Appl (
| pORCA_I nf 0- >hORCASessi on,
pszLi braryName, pszAppl Nane) ;

In these examples, session information is saved in the data structure ORCA_Info, shownin
About the examples.

Seealso
PBORCA _SessionSetLibraryL ist

2.39 PBORCA_SessionSetLibraryList
Description

Establishes thelist of libraries for an ORCA session. ORCA searches the librariesin the list
to resolve object references.

Syntax

I NT PBORCA Sessi onSet Li braryLi st (HPBORCA hORCASessi on,
LPTSTR *pLi bNanes,
I NT i Nunber O Li bs) ;

Table 2.75:

Argument Description

hORCA Session Handle to previously established ORCA
session.

*pLibNames Pointer to an array of pointersto strings.
The values of the strings are file names of
libraries. Include the full path for each library
where possible.

iNumberOfLibs Number of library name pointersin the array
pLibNames points to.

Return value

INT. Typical return codes are:

Table 2.76:
0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list

ORCA Guide Page 95

ORCA Functions Appeon PowerBuilder® 2017 R3

Return code Description

-4 PBORCA_BADLIBRARY Bad library name or alibrary on the list does
not exist

Usage

Y ou must call PBORCA_SessionSetLibraryList and PBORCA _SessionSetCurrentAppl
before calling any ORCA function that compiles or queries objects.

Library names should be fully qualified wherever possible.
Changing the library list

Y ou can set the current application and library list only once in asession. If you need to
change either the library list or current application after it has been set, close the session and
open a new session.

How ORCA usesthelibrary list

ORCA uses the search path to find referenced objects when you regenerate or query objects
during an ORCA session. Just like PowerBuilder, ORCA looks through the librariesin the
order in which they are specified in the library search path until it finds a referenced object.

Functions that don't need alibrary list

Y ou can call the following library management functions and source control functions
without setting the library list:

PBORCA_LibraryCommentModify
PBORCA_LibraryCreate
PBORCA_LibraryDelete
PBORCA_LibraryDirectory
PBORCA _LibraryEntryCopy
PBORCA_LibraryEntryDelete
PBORCA_LibraryEntryExport
PBORCA_LibraryEntrylnformation
PBORCA_LibraryEntryMove
Examples

This example builds an array of library file names for PocketBuilder and sets the session's
library list:

LPTSTR | pLi br aryNanes[4] ;

/'l specify the library nanes

| pLi braryNanmes[0] =
_TEXT("c:\\gadb\\ gadbt est\\ gadbt est . pkl ") ;

| pLi braryNanes[1] =
_TEXT("c:\\ gadb\\shared_obj\\shared_obj . pkl");

| pLi braryNanes[2] =
_TEXT("c:\\ gadb\\chgreqgs\\ chgregs. pkl");

| pLi braryNanes[3] =
_TEXT("c:\\gadb\\ dat at ypes\\ dat at ypes. pkl ") ;

| pORCA | nf 0- >l Ret ur nCode = PBORCA _Sessi onSet Li braryLi st (

ORCA Guide Page 96

ORCA Functions Appeon PowerBuilder® 2017 R3

| pORCA_I nf 0- >hORCASessi on, | pLi braryNanes, 4);

In these examples, session information is saved in the data structure ORCA _Info, shown in
About the examples.

Seealso
PBORCA _SessionSetCurrentAppl

2.40 PBORCA_SetDebug
Description

Allows you to reset the bDebug property for the ORCA session after a
PBORCA _ConfigureSession has been issued. Methods that invoke the PowerScript compiler
use the bDebug setting to evaluate conditional compilation logic.

Syntax

I NT PBORCA_Set Debug (HPBORCA hORCASessi on,
BOCOL bDebug);

Table2.77:
Argument Description
hORCA Session Handle to previously established ORCA
session
bDebug Setting for the DEBUG conditional compiler
directive
Return value
INT. Typical return codes are:
Table 2.78:
Return code Description
0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS hORCA Session is not valid
Usage

Allows the bDebug value to be reset during an ORCA session. In typical ORCA applications,
bDebug is set in the PBORCA _ConfigureSession method that is called immediately after
opening an ORCA session. If you set bDebug with the PBORCA _ConfigureSession

method, thereistypically no need to call PBORCA _SetDebug later on. If you do not call
PBORCA_ConfigureSession or PBORCA _SetDebug, the bDebug value defaults to TRUE.

The PowerScript compiler uses the bDebug value to determine whether to enable or disable
DEBUG conditional compilation directives when building or regenerating objects in standard
PowerBuilder targets. The bDebug value is not used in Windows Forms targets, since the
PBORCA _DeployWinFormProject method uses a setting in the Project object of these targets
to determine whether to enable or disable the DEBUG directive.

The following ORCA methods invoke the PowerScript compiler:

ORCA Guide Page 97

ORCA Functions Appeon PowerBuilder® 2017 R3

PBORCA ApplicationRebuild

PBORCA _CompileEntrylmport

PBORCA_CompileEntrylmportL ist

PBORCA _CompileEntryRegenerate

PBORCA _SccGetlL atestVersion

» PBORCA _SccRefreshTarget

Although PBORCA _LibraryEntryCopy and PBORCA _LibraryEntryMove can add or
replace objectsin a PBL, they do not invoke the PowerScript compiler and do not change
the compiled PCODE for the added or replaced objects. If you use these methods to copy
or move objectsto a destination PBL, the DEBUG conditional compilation setting for these
objects should be considered as unknown.

If you are uncertain as to whether the PCODE component of an object matches the current
bDebug setting, you can call PBORCA _CompileEntryRegenerate to regenerate it with the
current setting.

PBORCA _SetDebug can be called any time after PBORCA _SessionOpen. The
PBORCA_SetDebug method does not mark an object as needing recompilation. Although
the PBORCA _ApplicationRebuild method invokes the Power Script compiler, if you use it
with the PBORCA_INCREMENTAL_REBUILD option, it will not rebuild an object if the
only change would be in the status of its DEBUG directive. Therefore, you should not use the
PBORCA_INCREMENTAL_REBUILD option for targets that contain DEBUG conditional
compilation logic.

Similarly, you should not use the PBORCA_INCREMENTAL_REBUILD option with the
PBORCA _SccRefreshTarget method. If the only difference between the original object and
arefreshed object isin its DEBUG conditional compilation status, the object will not refresh
when this option is used.

Examples

This example is used by the OrcaScript interpreter to implement the set debug command in
OrcaScript:

I nt ParserActions::set Debug(HPBORCA hORCA, Bool bDebug)
{
int orcaResult = PBORCA OK;
orcaResult = PBORCA_Set Debug(hORCA, bDebug);
if(orcaResult != PBORCA XK)

orcaError (PBTEXT("set debug "), orcaResult);
return (orcaResult == PBORCA X);

}
See also
PBORCA_ConfigureSession

2.41 PBORCA_SetExelnfo

Description

ORCA Guide Page 98

ORCA Functions Appeon PowerBuilder® 2017 R3

Sets the property fields with user-specified values prior to calling
PBORCA _ExecutableCreate.

Syntax

I NT PBORCA_Set Exel nfo (HPBORCA hORCASessi on, PBORCA _EXElI NFO *pExel nfo);

Table 2.79:
hORCA Session Handle to previously established ORCA
session
*pExelnfo Pointer to a structure containing executable
properties
Return value
INT. Typical return codes are:
Table 2.80:
0 PBORCA_OK Operation successful
-1 PBORCA_INVALIDPARMS Invalid parameter list (when pExelnfo or
hORCASessionisNULL)
Usage

Call thisfunction prior to calling PBORCA_ExecutableCreate.

For PowerBuilder, PBORCA _SetExelnfo also sets properties for dynamic librariesif
machine code compilation is requested.

The PBORCA _EXEINFO structure is defined as follows:

typedef struct pborca_exeinfo

{

LPTSTR | pszConpanyNane;
LPTSTR | pszPr oduct Nane;
LPTSTR | pszDescri pti on;
LPTSTR | pszCopyri ght;

LPTSTR | pszFi | eVer si on;
LPTSTR | pszFi | eVer si onNum
LPTSTR | pszPr oduct Ver si on;
LPTSTR | pszProduct Ver si onNum

} PBORCA_EXElI NFO

The user must have already issued PBORCA _SessionOpen,
PBORCA _SessionSetCurrentAppl, and PBORCA _SetLibraryList before calling
PBORCA_SetExelnfo.

Information in the PBORCA_EXEINFO structure is copied to an internal ORCA control
structure so that the caller can free this memory immediately upon completion of the
PBORCA _SetExelnfo call.

The executable version information is deleted during PBORCA _SessionClose processing.
Thus, if an ORCA program creates numerous ORCA sessions, each individual session must

ORCA Guide Page 99

ORCA Functions Appeon PowerBuilder® 2017 R3

call PBORCA_SetExelnfo and reassign al of the elements in the PBORCA_EXEINFO
structure.

The FileVersionNum and ProductV ersionNum strings must consist of four integer values
representing the major version number, minor version number, fix version number, and build
number, with each integer value separated by a comma. For example, "12,0,0,0001".

Examples
This exampl e sets the executable information for a PowerBuilder application:

menset (&Exel nf o, 0x00, sizeof (PBORCA_EXEI NFO)) ;

Exel nf 0. | pszConpanyNane = _TEXT(" Appeon"));

Exel nf o. | pszProduct Nane = _TEXT(" Power Bui | der 2017 DBAut 0"));
Exel nfo. | pszDescription = _TEXT("Batch Autonmation for QADB Test Suite"));
Exel nf o. | pszCopyri ght = _TEXT("2011"));

Exel nfo. | pszFil eVersion = _TEXT("12.5.0.001");

Exel nfo. | pszFi | eVersi onNum = _TEXT("12, 5, 0, 001") ;

Exel nf o. | pszProduct Version = _TEXT("12.5.0.001");

Exel nf o. | pszPr oduct Ver si onNum = _TEXT("12, 5, 0, 001");

LpORCA I nf 0- >| Ret ur nCode = PBORCA_Set Exel nf o(

| pORCA | nf 0- >hORCASessi on, &Exelnfo);

| pORCA | nf 0- >hORCASessi on, | pLi braryNanes, 2);

See also
PBORCA DynamicLibraryCreate
PBORCA ExecutableCreate

ORCA Guide Page 100

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

3 ORCA Callback Functions and Structures

About this chapter

This chapter documents the prototypes for the callback functions used for several ORCA
functions as well as the structures passed to those functions. These prototypes are declared in
PBORCA .H.

3.1 Callback function for compiling objects
Description

Called for each error that occurs when objectsin alibrary are compiled so that the errors can
be stored for later display.

Functions that use this callback format are:
PBORCA_ApplicationRebuild

PBORCA _CompileEntrylmport
PBORCA_CompileEntrylmportList
PBORCA_CompileEntryRegenerate
Syntax

typedef void (CALLBACK *PBORCA ERRPROC) (PPBORCA COMPERR, LPVOID);

Table3.1:
PPBORCA_COMPERR Pointer to the structure
PBORCA_COMPERR (described next)
LPVOID Long pointer to user data
Return value
None.
Usage

Y ou provide the code for the callback function. The callback function generally reads the
error information passed in the PBORCA_COMPERR structure, extracts whatever is wanted,
and formatsit in the user data buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the errors and an array or text block in which
you format information about all the errors.

For information and examples of coding a callback function, see About ORCA callback
functions.

3.2 PBORCA_COMPERR structure

Description

ORCA Guide Page 101

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

Reports information about an error that occurred when you tried to import and compile
objectsin alibrary.

The following functions pass the PBORCA_COMPERR structure to their callback functions:
PBORCA_CompileEntrylmport

PBORCA_CompileEntrylmportList

PBORCA_CompileEntryRegenerate

Syntax

typedef struct pborca_conperr {
int ilLevel;
LPTSTR | pszMessageNunber ;
LPTSTR | pszMessageText ;
U NT i Col ummNunber ;
Ul NT i Li neNunber ;
} PBORCA_COWPERR, FAR * PPBORCA COVPERR;

Table 3.2

Member Description

iLevel Number identifying the severity of the error.
Vaues are:
0 -- Context information, such as object or
script name
1-- CM_INFORMATION_LEVEL
2--CM_OBSOLETE _LEVEL
3--CM_WARNING_LEVEL
4 --CM_ERROR_LEVEL
5--CM_FATAL_LEVEL
6 -- CM_DBWARNING_LEVEL

| pszM essageNumber Pointer to a string whose value is the
message number

|pszM essageT ext Pointer to a string whose value is the text of
the error message

iColumnNumber Number of the character in the line of source
code where the error occurred

iLineNumber Number of the line of source code where the
error occurred

Usage

A single error might trigger several callsto the callback function. The first messages report
the object and script in which the error occurred. Then one or more messages report the
actual error.

For example, an IF-THEN-EL SE block missing an END |F generates these messages:

ORCA Guide Page 102

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

Table 3.3:
Lvl Num M essage text Col Line
0 null Object: 0 0
f boolean to char
0 null Function Source |0 0
4 null (0002): Error 0 2
C0031: Syntax
error
4 null (0016): Error 0 16
CO0031: Syntax
error
4 null (0017): Error 0 17
C0031: Syntax
error

3.3 Callback function for deploying components to EAServer
(Obsolete)

Description

This function is obsolete because EA Server is no longer supported since PowerBuilder 2017.
An obsolete feature is no longer eligible for technical support and will no longer be enhanced,
athough it isstill available.

Called for each error that occurs when objects are deployed to EA Server so that the errors can
be stored for later display.

Functions that use this callback format are:
PBORCA_BuildProject
PBORCA_BuildProjectEx

Syntax

typedef PSCALLBACK (void, *PPBORCA BLDPROC) (PBORCA BLDERR LPVOD);

Table 3.4:
PPBORCA_ BLDERR Pointer to the structure PBORCA_BLDERR
(described next)
LPVOID Long pointer to user data
Return value
None.
Usage

For information and examples of coding a callback function, see About ORCA callback
functions.

ORCA Guide Page 103

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

3.4 PBORCA_BLDERR structure
Description
This function is obsol ete because EA Server is no longer supported since PowerBuilder 2017.

Reports information about an error that occurred when you tried to deploy objectsto
EAServer.

The following functions pass the PBORCA_BLDERR structure to their callback functions:
PBORCA_BuildProject

PBORCA _BuildProjectEx

Syntax

typedef struct pborca_blderr { LPTSTR | pszMessageText; } PBORCA BLDERR, FAR
* PPBORCA_BLDERR;

Table3.5:

Description

|pszM essageT ext Pointer to a string whose value is the text of
the error message

3.5 Callback function for PBORCA_LibraryDirectory
Description

Called for each entry in the library so that information about the entry can be stored for later
display.
Syntax

typedef void (CALLBACK *PBORCA LI STPROC) (PPBORCA DI RENTRY, LPVO D);

Table 3.6:
PPBORCA_DIRENTRY Pointer to the structure
PBORCA_DIRENTRY (described next)
LPVOID Long pointer to user data
Return value
None.
Usage

Y ou provide the code for the callback function. The callback function generally reads the
information about the library entry passed in the PBORCA_DIRENTRY structure, extracts
whatever is wanted, and formats it in the user data buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the entries and an array or text block in which
you format information about all the entries.

For information and examples of coding a callback function, see About ORCA callback
functions.

ORCA Guide Page 104

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

3.6 PBORCA_DIRENTRY structure
Description
Reports information about an entry in alibrary.

The PBORCA_LibraryDirectory function passes the PBORCA_DIRENTRY structure to its
callback function.

Syntax

typedef struct pborca_direntry {
TCHAR szConment s| PBORCA_VAXCOMMENT + 1] ;
LONG | Cr eat eTi ne;
LONG | EntrySi ze;
LPTSTR | pszEnt r yName;
PBORCA_TYPE ot EntryType;
} PBORCA_DI RENTRY, FAR * PPBORCA Dl RENTRY;

Table 3.7:

Member Description

szComments Comments stored in the library for the object

|CreateTime The time the object was created

|EntrySize The size of the object, including its source
code and the compiled object

|pszEntryName The name of the object for which information
is being returned

otEntryType A value of the enumerated data type
PBORCA_TY PE specifying the data type of
the object

3.7 Callback function for PBORCA_ObjectQueryHierarchy
Description

Called for each ancestor object in the hierarchy of the object being examined. In the callback
function, you can save the ancestor name for later display.

Syntax

typedef void (CALLBACK * PBORCA H ERPROC)
(PPBORCA HI ERARCHY, LPVOD);

Table 3.8:
PPBORCA_HIERARCHY Pointer to the PBORCA_HIERARCHY
structure (described next)
LPVOID Long pointer to user data
Return value
None.

ORCA Guide Page 105

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

Usage

Y ou provide the code for the callback function. The callback function generally reads the
ancestor name passed in the PBORCA_HIERARCHY structure and savesit in the user data
buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the number of ancestors and an array or text
block in which you store the names.

For information and examples of coding a callback function, see About ORCA callback
functions.

3.8 PBORCA_HIERARCHY structure
Description
Reports the name of an ancestor object for the object being queried.

The PBORCA _ObjectQueryHierarchy function passes the PBORCA_HIERARCHY
structure to its callback function.

Syntax

typedef struct pborca_hierarchy {
LPTSTR | pszAncest or Nane;
} PBORCA_H ERARCHY, FAR * PPBORCA Hl ERARCHY;

Table 3.9:
Member Description
IpszAncestorName Pointer to name of ancestor object

3.9 Callback function for PBORCA_ObjectQueryReference
Description

Called for each referenced object in the object being examined. In the callback function, you
can save the name of the referenced object for later display.

Syntax

typedef void (CALLBACK * PBORCA REFPROC)
(PPBORCA REFERENCE, LPVOD);

Table 3.10:
PPBORCA_REFERENCE Pointer to the PBORCA_REFERENCE
structure (described next)
LPVOID Long pointer to user data
Return value
None.
Usage

ORCA Guide Page 106

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

Y ou provide the code for the callback function. The callback function generally reads the
name of the referenced object passed in the PBORCA_REFERENCE structure and savesit in
the user data buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the number of referenced objects and an array or
text block in which you store the names.

For information and examples of coding a callback function, see About ORCA callback
functions.

3.10 PBORCA_REFERENCE structure
Description
Reports the name of an object that the object being queried refers to.

The PBORCA _ObjectQueryReference function passes the PBORCA_REFERENCE
structure to its callback function.

Syntax

typedef struct pborca_reference {
LPTSTR | pszLi br ar yNane;
LPTSTR | pszEnt r yNamne;
PBORCA_TYPE ot Ent ryType;
} PBORCA _REFERENCE, FAR * PPBORCA REFERENCE;

Table 3.11:

Member Description

|pszLibraryName Pointer to a string whose value isthe file
name of the library containing the referenced
object

|pszEntryName Pointer to a string whose value is the name of
the referenced object

otEntryType A value of the enumerated data type
PBORCA_TY PE specifying the type of the
referenced object

3.11 Callback function for PBORCA_ExecutableCreate
Description

Called for each link error that occurs while you are building an executable.
Syntax

typedef void (CALLBACK * PBORCA LNKPROC)
(PPBORCA LINKERR, LPVOID);

Table 3.12:
Argument Description

PPBORCA LINKERR Pointer to the PBORCA_LINKERR
structure (described next)

ORCA Guide Page 107

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

Argument Description

LPVOID Long pointer to user data
Return value

None.

Usage

Y ou provide the code for the callback function. The callback function generally reads the
error information passed in the PBORCA_LINKERR structure and formats the message text
in the user data buffer pointed to by LPVOID.

The user data buffer is allocated in the calling program and can be structured any way you
want. It might include a structure that counts the errors and an array or text block in which
you format the message text.

For information and examples of coding a callback function, see About ORCA callback
functions.

3.12 PBORCA_LINKERR structure
Description
Reports the message text for alink error that has occurred when you build an executable.

The PBORCA _ExecutableCreate function passes the PBORCA_LINKERR structureto its
callback function.

Syntax

typedef struct pborca_linkerr {
LPTSTR | pszMessageText ;
} PBORCA LI NKERR, FAR *PPBORCA LI NKERR;

Table 3.13:
Member Description
|pszM essageT ext Pointer to the text of the error message

3.13 Callback function for PBORCA_SccSetTarget
Description

Called once for each library in the target library list.

Syntax

t ypedef PBCALLBACK (void, *PBORCA SETTGTPROC)
(PPBORCA SETTARGET, LPVOD);

Table 3.14:
PPBORCA_SETTARGET Pointer to the PBORCA_SCCSETTARGET
structure
LPVOID Long pointer to user data

ORCA Guide Page 108

ORCA Callback Functions and Structures Appeon PowerBuilder® 2017 R3

Return value
None.
Usage

This callback function allows you to know which libraries are going to be refreshed by
default and gives you the opportunity to call PBORCA _SccExcludeLibraryList when you are
certain that specific shared libraries have already been refreshed by a previous task.

3.14 PBORCA_SCCSETTARGET structure
Description

Reports the fully qualified name of alibrary in the target library list.
Syntax

typedef struct pborca_sccsettarget {
LPTSTR | pszLi br ar yNane;
} PBORCA _SETTARGET, FAR *PPBORCA SETTARGET;

Table 3.15:
Description
|pszLibraryName Pointer to the name of alibrary in the target
library list

ORCA Guide Page 109

	ORCA Guide
	Contents
	1 Using ORCA
	1.1 What is ORCA?
	1.1.1 What can ORCA do?
	1.1.2 Who can develop programs that call ORCA?

	1.2 Installing ORCA
	1.3 ORCA and the Library painter
	1.3.1 Objects in a PowerBuilder library
	1.3.2 Object source code
	1.3.3 PowerBuilder commands and ORCA functions

	1.4 About ORCA functions
	1.4.1 Functions for managing the ORCA session
	1.4.2 Functions for managing PowerBuilder libraries
	1.4.3 Functions for importing and compiling PowerBuilder objects
	1.4.4 Functions for querying PowerBuilder objects
	1.4.5 Functions for creating executables and dynamic libraries
	1.4.6 Functions for deploying components to EAServer (Obsolete)
	1.4.7 Functions for managing source control operations

	1.5 About ORCA callback functions
	1.5.1 ORCA functions that use callbacks
	1.5.2 How a callback works
	1.5.3 Content of a callback function

	1.6 Writing ORCA programs
	1.6.1 Outline of an ORCA program
	1.6.1.1 First step: open a session
	1.6.1.2 Optional step: set the library list and current application
	1.6.1.3 Next steps: continuing with the ORCA session
	1.6.1.4 Final step: close the session

	1.6.2 Bootstrapping a new application

	1.7 Removing deprecated ORCA functions

	2 ORCA Functions
	2.1 About the examples
	2.2 ORCA return codes
	2.3 PBORCA_ApplicationRebuild
	2.4 PBORCA_BuildProject
	2.5 PBORCA_BuildProjectEx
	2.6 PBORCA_BuildProjectWithOverrides
	2.7 PBORCA_CompileEntryImport
	2.8 PBORCA_CompileEntryImportList
	2.9 PBORCA_CompileEntryRegenerate
	2.10 PBORCA_ConfigureSession
	2.11 PBORCA_DeployWinFormProject
	2.12 PBORCA_DynamicLibraryCreate
	2.13 PBORCA_ExecutableCreate
	2.14 PBORCA_LibraryCommentModify
	2.15 PBORCA_LibraryCreate
	2.16 PBORCA_LibraryDelete
	2.17 PBORCA_LibraryDirectory
	2.18 PBORCA_LibraryEntryCopy
	2.19 PBORCA_LibraryEntryDelete
	2.20 PBORCA_LibraryEntryExport
	2.21 PBORCA_LibraryEntryExportEx
	2.22 PBORCA_LibraryEntryInformation
	2.23 PBORCA_LibraryEntryMove
	2.24 PBORCA_ObjectQueryHierarchy
	2.25 PBORCA_ObjectQueryReference
	2.26 PBORCA_SccClose
	2.27 PBORCA_SccConnect
	2.28 PBORCA_SccConnectOffline
	2.29 PBORCA_SccExcludeLibraryList
	2.30 PBORCA_SccGetConnectProperties
	2.31 PBORCA_SccGetLatestVersion
	2.32 PBORCA_SccRefreshTarget
	2.33 PBORCA_SccResetRevisionNumber
	2.34 PBORCA_SccSetTarget
	2.35 PBORCA_SessionClose
	2.36 PBORCA_SessionGetError
	2.37 PBORCA_SessionOpen
	2.38 PBORCA_SessionSetCurrentAppl
	2.39 PBORCA_SessionSetLibraryList
	2.40 PBORCA_SetDebug
	2.41 PBORCA_SetExeInfo

	3 ORCA Callback Functions and Structures
	3.1 Callback function for compiling objects
	3.2 PBORCA_COMPERR structure
	3.3 Callback function for deploying components to EAServer (Obsolete)
	3.4 PBORCA_BLDERR structure
	3.5 Callback function for PBORCA_LibraryDirectory
	3.6 PBORCA_DIRENTRY structure
	3.7 Callback function for PBORCA_ObjectQueryHierarchy
	3.8 PBORCA_HIERARCHY structure
	3.9 Callback function for PBORCA_ObjectQueryReference
	3.10 PBORCA_REFERENCE structure
	3.11 Callback function for PBORCA_ExecutableCreate
	3.12 PBORCA_LINKERR structure
	3.13 Callback function for PBORCA_SccSetTarget
	3.14 PBORCA_SCCSETTARGET structure

