
Mobile UI Design & Development Guide

PowerServer Mobile® 2020

FOR WINDOWS

DOCUMENT ID: ADC50003-01-2020-01

LAST REVISED: March 25, 2020

Copyright © 2020 Appeon. All rights reserved.

This publication pertains to Appeon software and to any subsequent release until otherwise
indicated in new editions or technical notes. Information in this document is subject to
change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Appeon Inc.

Appeon, the Appeon logo, Appeon PowerBuilder, Appeon PowerServer, PowerServer,
PowerServer Toolkit, AEM, and PowerServer Web Component are trademarks of Appeon
Inc.

SAP, Sybase, Adaptive Server Anywhere, SQL Anywhere, Adaptive Server Enterprise,
iAnywhere, Sybase Central, and Sybase jConnect for JDBC are trademarks or registered
trademarks of SAP and SAP affiliate company.

Java and JDBC are trademarks or registered trademarks of Sun Microsystems, Inc.

All other company and product names used herein may be trademarks or registered
trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth
in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR
52.227-19(a)-(d) for civilian agencies.

Appeon Inc., 1/F, Shell Industrial Building, 12 Lee Chung Street, Chai Wan District, Hong
Kong.

Contents
1 Audience .. 1
2 Best Practices .. 2

2.1 Mobile apps vs. PB desktop apps ... 2
2.2 Event-handling model .. 4

2.2.1 Message mechanism ... 5
2.3 Enhanced Mobile Controls and Functions ... 5
2.4 Mobile UI Design ... 10

2.4.1 Mobile UI design guidelines .. 10
2.4.2 Appeon Resize APIs ... 11
2.4.3 AEM Mobile UI Resizing tool ... 11

2.5 Window for iOS Screens ... 12
2.5.1 Unit conversion .. 12
2.5.2 Window Size .. 14
2.5.3 Window for iPad & iPhone .. 16
2.5.4 Window orientation change ... 17

2.6 Control .. 18
2.6.1 Control Size ... 18
2.6.2 Row Height .. 18
2.6.3 Spacing .. 19

2.7 DataWindow presentation styles ... 19
2.8 Unsupported PB Properties ... 19
2.9 Font .. 19
2.10 Image & Icon ... 21

Index .. 24

Audience PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 1

1 Audience
This book is written for PowerBuilder developers who want to develop native iOS and
Android applications in PowerBuilder IDE. It recommends the best practices that a
PowerBuilder developer should follow when utilizing the PowerBuilder UI components to
design a great user interface and user experience for the native mobile application.

It is strongly recommended that the user carefully reads through and fully understands iOS
Human Interface Guidelines and Android Design, especially the UI Design Basics and the
Design Strategies parts of iOS Human Interface Guidelines, which describe the guidelines
and principles that help the user design a superlative user interface and user experience for
the mobile application.

This book, though summarizing some of the key design principles from that guidelines, will
mainly focus on the best practices of PB development which when followed consistently,
will make sure the application looks and feels like it was designed expressly for a particular
mobile device.

https://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/
https://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/
http://developer.android.com/design/index.html
https://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 2

2 Best Practices

2.1 Mobile apps vs. PB desktop apps
There are many differences between a mobile application and a PB desktop application.
It is highly recommended that you read through iOS Human Interface Guidelines and
Android Design, especially the UI Design Basics part of iOS Human Interface Guidelines,
to get familiar with the basics of the mobile UI design. What are listed below are the most
important differences that you must keep in mind when designing the user interface and user
experience for the mobile application in the PowerBuilder IDE.

2.1.1 Fingers vs. Mouse

Mobile devices mainly use the human finger for input; desktop computers mainly use a
mouse for input. Designing a user interface for interaction with the finger is very different
than designing for mouse.

• First of all, you would need to design larger UI controls for a finger than you would for a
mouse pointer in the desktop environment. For example, iOS recommends the comfortable
minimum size of a tappable target is 44 x 44 points, which is approximately 176 x 176
PBUs.

• Secondly, a mouse can have a hover state, so tool tips and other roll-over effects can be
used in the desktop application. Besides that, a mouse can have a right mouse button, so
right-click popup menu can be easily supported. However, these design elements are less
natural on a mobile application.

2.1.2 Virtual keyboard vs. real keyboard

A desktop application can take advantage of a real keyboard to help people type fast and
correctly, and enable shortcut key functionalities, while a mobile application mainly uses
a virtual keyboard which takes up the precious screen space, and is typo-prone, therefore,
you should avoid using the virtual keyboard whenever possible, and try to design the user
interface for selection rather than for typing, for example, use a ListBox, TrackBar, or spin
control to replace a text field.

2.1.3 Screen Size

Compared to desktop applications, mobile applications are running on a more compact
screen, therefore, their window size must be smaller, while the UI controls must be large
enough to be easily tapped. This means that only the primary functionalities can be displayed
at the screen at a time, the secondary functionalities should be hidden. This requires you to
carefully design the application structure, the user interface, and the window navigation,
especially for smartphones such as iPhone.

2.1.4 Memory management

Memory is more tightly constrained for the mobile device than it is for desktop computers,
therefore, it is very important to build the application as memory efficient as possible. Here
are some advices for PB developers to make their application more memory efficient:

https://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/
http://developer.android.com/design/index.html
https://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 3

• Do not retrieve (or cache) any more data in DataWindows or DataStores than is absolutely
necessary. The more data is retrieved into DataWindow and DataStores the more memory
is consumed. More data means more rows and/or columns.

• Use SDI instead of MDI. Then the user cannot have multiple windows open. The more
windows open the more memory is consumed. If necessary, use the API to check the
memory in use, and prompt or close some windows to release memory.

• Use stored procedures as much as possible. Then heavy calculations and data processing
are not happening on the mobile device.

• Minimize use of global functions, global objects, global structures, etc. except when truly
necessary. Global things are always resident in memory so it consumes memory.

• Whenever possible, release objects directly (by calling the PowerBuilder DESTROY
statement) rather than auto-release them, because iOS does not support garbage collection.

2.1.5 Intermittent vs. reliable connectivity

By contrast to desktop PC which mainly uses wired networks, mobile devices use wireless
networks exclusively due to its "mobile" nature, while wireless networks tend to be unstable
or even not available when the device is travelling. Therefore, when you are designing for
the mobile application, you may need to take the network connectivity into consideration,
you can develop the mobile application with offline capabilities so that it can run against
the local database if no network connection and then synchronize data with the server-
side consolidated database when network is available, or even develop an offline mobile
application which can run on the local device without needing network connections at all.

2.1.6 Orientation Change

Device orientation can change in the mobile device and people often expect to use their
mobile devices in any orientation, therefore, you will need to consider how to support
orientation change when you design the application.

2.1.7 Font

Fonts that are available in the mobile platform and the PC platform may not be exactly the
same, because fonts are largely dependent on the platform manufacturers. You can choose
from the fonts that commonly exist in both the mobile platform and the PC platform, such as
Arial (recommended font), Courier New, Euphemia, Georgia, Trebuchet MS, Verdana, Times
New Roman, etc.

Arial is the most recommended font to use in the PB application, because it looks very
similar to Helvetica (the iOS default font) and Roboto (the Android default font). If you
choose a font that is available in the PC platform but not available in the mobile platform, the
font will be mapped to the default font (Helvetica in iOS or Roboto in Android) automatically
at runtime. For the mapping rules, please see Font.

2.1.8 Color

The RGB color used in the PB application will be displayed as the exact same RGB color
in the mobile application at runtime. But the system colors may not, because the Windows

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 4

system colors (such as ButtonFace) are different from the mobile system colors. If you have
used or intend to use the system colors in the application, you may notice there are minor
differences.

2.2 Event-handling model

The mobile OS event-handling model is significantly different from the one in PowerBuilder.
Instead of delivering mouse and keyboard events, mobile OS delivers touch and gesture
events. Therefore, the PB mouse and keyboard events will be mapped to the mobile touch
and gesture events automatically at runtime, for example, the click event in PB is interpreted
as the tap event in mobile OS, the double-click event in PB is interpreted as the tap-twice
event in mobile OS. But not all of the PB mouse and keyboard events can be directly mapped
to a mobile event, for example, the MouseMove event and the keyboard events (KeyDown
and KeyUp) have no counterpart mobile events, you will need to understand how these
events will be supported by PowerServer Mobile first, if you want to take advantage of these
PB events to achieve what you want on the mobile device.

Some events such as right-click etc. are less natural in the mobile device and some events
such as LButtonDown for the Drag event conflict with scrolling, therefore, these events
should not be used. However, to keep compatible with the existing application logic, if these
events are used, they will be preserved and triggered by using a special tool provided by
PowerServer Mobile called Assistive Touch Bar, as shown below.

By default, the Assistive Touch Bar is hidden on the titlebar. To display it on the titlebar,
you can call the of_setassistivetouchbtnvisible API. For details, please see the section called
“of_setassistivetouchbtnvisible” in Workarounds & APIs Guide.

Figure 2.1: Assistive Touch Bar

The Assistive Touch Bar contains three modes (only one can be turned on, by default Left-
Click mode is turned on):

• When Left-Click mode is turned on, if the finger touches down and moves within 500
milliseconds, scrolling takes place; if the finger touches down and then moves after 500
milliseconds, then either dragging takes place if drag(begin!) is called, or scrolling takes
place; if the finger touches down and then lifts up without moving, the normal event
sequence will be triggered. If you want dragging to take place without needing to hold for
500 milliseconds, you can turn on the Drag mode.

• When Right-Click mode is turned on, events will be triggered in the following order:
when the finger touches down, RButtonDown is triggered, when the finger touches down
and then moves, MouseMove is triggered, when the finger lifts up, RButtonUp is triggered.

• When Drag mode is turned on, dragging takes place immediately when the finger touches
down a control and moves. Unlike the Left-Click mode, you do not need to hold for 500
milliseconds for dragging to take effect.

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 5

2.2.1 Message mechanism

PowerServer Mobile and PowerBuilder uses different message mechanisms which have
different message queue. The message mechanism that PowerServer Mobile uses is mostly
the mobile OS' mechanism which has the following differences from PowerBuilder's:

• The operation and event handling is concurrent.

Suppose the Click event of a CommandButton executes a complex loop. The user clicks
this button and then during the execution of the first click event, the user clicks the other
controls in the window. In PowerBuilder, the other clicks will not be triggered even though
the first click event is finished, while in PowerServer Mobile, the other clicks will be
handled after the first click event is ended.

• The event handling is blocking.

For example, the Click event of a CommandButton pops up a message box or executes a
complex loop, the other events such as UI refresh (if StaticText is updated by the loop, it
will not be refreshed immediately), Timer events etc. will not be handled.

• The event handling is asynchronous.

Suppose the user right clicks a control or a window to display the PopMenu, and then
operates on the menu item. In PowerBuilder, the sequence is pop up the menu, execute the
menu item events, and then execute the remaining scripts in the RightClick event. While in
PowerServer Mobile, the sequence is pop up the menu, execute the remaining scripts in the
RightClick event, and then execute the menu item events.

2.3 Enhanced Mobile Controls and Functions
PowerServer Mobile generates the native mobile app with an intuitive, user-friendly, and
modern user interface. The user interface is automatically adapted to the look and feel of the
target device. This section lists the controls, objects, and functions that are enhanced or added
by PowerServer Mobile to achieve the typical mobile-style user interface. The enhanced
controls and objects include Window, Menu, Toolbar, TreeView, etc.

In addition, though not described in detail below, due to the difference between desktop
computer and mobile device, most PB controls are adjusted slightly to be used easily on the
mobile device, for example, the row height of TreeView, DropDownListBox, ListView, etc.,
the tiny triangle icon for DatePicker, DropDownListBox, EditMask, etc., and the checkbox of
TreeView, ListView etc. are automatically adjusted with tappable size.

2.3.1 Window title bar, menu, & toolbar

The PB desktop application usually has a title bar which displays the window title, the
Max, Min and Close icons, and other adornments; while the mobile application calls this a
navigation bar, as it usually contains navigation buttons such as the Back icon, the Next icon.
PowerServer Mobile combines the title bar and the navigation bar into one (and calls it title
bar in all of user guides), by placing the window title in the middle and the icons on two ends.

Some of the icons such as the Window List icon, Close App icon, Full Screen icon can be
shown or hidden by calling the PowerServer Mobile API. For details, refer to Section 1.4,
“Mobile Device API” in Workarounds & APIs Guide.

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 6

Figure 2.2: Window title bar

1. The Menu icon will display the menu items in a treeview hierarchical structure. Notice
that the treeview layout is automatically handled by PowerServer Mobile.

2. The Toolbar icon will display the toolbars by row(s). Considering the limited space, only
icons will be shown, text will not.

3. The window title will be displayed at the center of the title bar and in the font size of
22 points by default. If the title text cannot display completely, the font size will be
automatically reduced, until it goes down to the minimum font size 14 points; if the text
still cannot fit into the title bar, then the text will be truncated.

4. The Window List icon will list the opened window(s) with the Max, Min and Close icons.
You can navigate to any active window in any order, or close, minimize or maximize any
window.

5. The Close App icon will exit the app from the background.

6. The Home icon will return you to the Appeon Workspace home page, and the app will run
in the background.

7. The Full Screen icon will hide the title bar, to allow more space for the window.

Window menu and toolbar are not usual in mobile apps as is in PB apps, probably because
they take up the precious screen space and are tiny and placed closed in the original layout
therefore cannot be easily manipulated by a finger. However, they are very handy when
navigating between windows, especially in the MDI window. Therefore, if any menu or
toolbar is used in the PB application, they will be preserved on the PowerServer mobile
application, and will be laid out differently in order to make them easy to use by fingers.

Window menu and toolbar on an iPad:

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 7

Figure 2.3: Menu & toolbar on iPad

2.3.2 TreeView

The TreeView control is automatically adjusted to be easily tapped by fingers in the mobile
device. The plus and minus signs to expand and collapse the tree are automatically replaced
with larger icons that are easy to touch by fingers. The height of the treeview item is also
automatically increased to be 44 points.

PB-style TreeView (left) VS. mobile-style TreeView (right):

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 8

Figure 2.4: PB-style TreeView VS. mobile-style TreeView

2.3.3 Mobile-style Picker

To get a date/time picker exactly like the native mobile Date and Time Picker, you can set the
EditMask control to a date/datetime/time mask and then enable its Spin property.

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 9

Figure 2.5: Date picker

2.3.4 Speedy scrollbar

Speedy scrollbar is a tool added by PowerServer Mobile to help scroll quickly through a
long list of data records. In the DataWindow control, the user can use the speedy scroll bar to
scroll through a large amount of data page by page, instead of row by row. The speedy scroll
bar automatically appears when the user swipes up or down in a DataWindow with more than
10 pages of data. The speedy scroll bar will disappear if it is not used for 2 seconds.

Figure 2.6: Speedy scrollbar

2.3.5 HScrollBar and VScrollBar properties

The horizontal scrollbar and vertical scrollbar for controls will be automatically replaced with
the mobile-style scrollbar, instead of the Windows-style scrollbar.

2.3.6 SetPointer function

There is no mouse pointer in the mobile device like the desktop computers, therefore most
of the pointer shapes that can be displayed in the desktop computer will not be displayed in
the mobile device, except for "HourGlass". When it is set to "HourGlass", the mobile-style
activity indicator will display in the mobile device to indicate the busy state. The activity
indicator will also automatically appear every time when the client calls the server, you can
set to empty string SetPointer("") to not automatically display the activity indicator.

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 10

Figure 2.7: Activity indicator

2.3.7 Mobile APIs

In addition to controls, PowerServer Mobile also added a bunch of functions to call the
mobile native APIs, such as functions to call camera, device, GPS, bar code, etc. For details,
refer to Section 1.4, “Mobile Device API” in Workarounds & APIs Guide.

2.3.8 Android Back button

To support the Back button that the Android device provides, a user event named
"appeon_android_back" is added to the Application object. This event will be triggered
when the Back button on the Android device is pressed. For details, refer to Section 3.3.1.1,
“Application” in Supported PB Features for PowerServer Mobile.

2.4 Mobile UI Design

When you take the first step in developing a mobile application in PowerBuilder or start
to adjust an existing PowerBuilder application for mobile deployment, the first question
you will probably ask is: how should I design the UI layout so it can automatically fit with
various mobile devices. This section will give high-level guidelines to design the UI for the
mobile screen, and introduce the UI resizing tools to automatically adjust the layout to fit
with the mobile screen.

2.4.1 Mobile UI design guidelines

Below are guidelines for designing a mobile-friendly UI for a compact screen:

• Maximize the window size

Mobile applications are usually displayed in full screen, so as to efficiently use the
valuable space of the mobile screen. The simplest way to make a PoweBuilder window
display in full screen in various mobile devices is to set the WindowState of the window
from the normal (default) to maximized. However, the controls in the window will remain
in the same location and size. You will need to adjust the location and size of a control
using the mobile UI resizing tools provided by PowerServer.

• Change the window background to white

Normally the background of a mobile application is white or some other colors, but rarely
gray. Therefore, it is recommended you change the background color of the PowerBuilder
window from gray (default) to white or other mobile-friendly color.

• Fill with appropriate number of controls

Consider carefully for what to include on the window, so as not to crowd the window or
leave valuable space unused.

• Use font size between 12 and 17 points

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 11

The default font size in PowerBuilder is 9 or 10 points which is way too small on a mobile
screen. You'd better use a font size between 12 and 17 points.

• Set the touchable target to 176 * 176 PBU (which is 44 * 44 points)

Fingers rather than mouse are used to operate the application on a mobile device.
Therefore, it is important to design the target large enough to be easily touched by fingers.
Touchable targets include buttons, text boxes, radio buttons, check boxes, list boxes, row
header and footer, data rows, etc. Set the height of these targets to 44 points (or 32 points
by minimum).

• Take advantage of the mobile UI resizing tools provided by Appeon.

Appeon PowerServer provides two mobile UI resizing tools to automatically resize and
move the controls to fit with the mobile screen: the Appeon Resize APIs (recommended)
and the AEM | Mobile UI Resizing tool. The Appeon Resize APIs enable the controls
(including those in the DataWindow object) within the user object, window, and tab to
have the auto-resizing feature with only a few lines of script.

The AEM Mobile UI Resizing tool automatically scales the window as well as its controls
and font according to the predefined rules for all different kinds of screen sizes. The AEM
Mobile UI Resizing tool does not support resizing controls in DataWindow objects.

2.4.2 Appeon Resize APIs

PowerBuilder uses absolute layouts, which means, the controls within the window will not
change its position and size when the screen size changes. This may create UI problems when
a window is displayed on different screen sizes, especially on mobile screens which are much
smaller than PC screens. One window that looks perfect on the tablet may be too large to
display completely on the smartphone. Even for smartphones which have slightly different
screen size, it is difficult to design a window that fit perfectly with all these different sizes.

Using the Resize PowerScript function or the PFC resize service may be a way out, however,
it would be some work to write code to control the size and location of each individual
control within the window. Considering this, Appeon extends the functionality of Resize
PowerScript function and the PFC resize service to greatly simplify coding and automate
most of the tasks.

The extended functions is packaged into an object called eon_appeon_resize in the Appeon
Workarounds PBL under the PowerServer installation directory (for example, C:\inetpub
\wwwroot\appeon\developTempFile\appeon_workarounds\appeon_workarounds.pbl). The
eon_appeon_resize object provides you the greatest control and flexibility on the resizing of
the window, controls, user objects, and font; it also allows you to dynamically change the
resize behavior for a particular window/user object/control at runtime.

For more information about the eon_appeon_resize object, refer to Section 1.3.12, “Appeon
Resize Object” in Workarounds & APIs Guide.

2.4.3 AEM Mobile UI Resizing tool

AEM Mobile UI Resizing tool allows the user to specify the screen size of different mobile
devices and define the resizing rules accordingly. Once set, it enables the window and all

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 12

controls (except for controls in DataWindow objects) as well as fonts within the window
to proportionally scale up or down to fit with the mobile screen. For detailed instructions,
refer to Section 4.5, “Mobile UI Resizing” in PowerServer Configuration Guide for .NET or
PowerServer Configuration Guide for J2EE.

Below is comparison of Appeon Resize APIs (recommended) and AEM | Mobile UI Resizing
tool:

• UI effect

AEM Mobile UI Resizing tool resizes all controls despite the actual needs. Some controls
may look ugly after resized. Appeon Resize APIs divides the controls into resizable
controls and unresizable controls, according to some advanced UI layout tools such as Java
Swing, so it produces better UI effect.

• Control and font resize

AEM Mobile UI Resizing tool will resize all controls (except for controls in DataWindow
objects) as well as fonts. Appeon Resize APIs will resize the resizable controls only. The
unresizable controls will not change the size. Fonts will not be resized either.

• Code change

AEM Mobile UI Resizing tool requires no code change. Appeon Resize APIs requires
users to write a few lines of script in the target window. If there are many windows and the
window is not inherited, then you would need to write scripts in every window.

• Configuration

AEM Mobile UI Resizing tool requires the user to specify the screen size of each mobile
device and define the resizing rules accordingly, while Appeon Resize APIs does not.

• Performance

For windows with many controls, AEM Mobile UI Resizing tool delivers better
performance than Appeon Resize APIs.

2.5 Window for iOS Screens

2.5.1 Unit conversion

PowerBuilder and iOS use different measurement systems to produce a consistent size of
output that is device independent. In PowerBuilder, size is measured in PowerBuilder Units
(PBUs), while in iOS, the measurement unit is Points (Notice that Point and Dot are used
interchangeably in both Appeon documentation and product UI).

It is important for users to understand the concept of Point and how many Points in the width
and height of each device type. Compared to Point, people are more familiar with Pixel, the
measurement of the display resolution. In the iOS coordinate system, there is a mapping
relationship between Pixel and Point, which is one Point equals to one Pixel on a standard-
resolution screen, while one Point equals to two Pixels on a high-resolution screen (such as
Retina Display). For details, please read the relevant page at Drawing and Printing Guide for

http://developer.apple.com/library/ios/documentation/2ddrawing/conceptual/drawingprintingios/GraphicsDrawingOverview/GraphicsDrawingOverview.html#//apple_ref/doc/uid/TP40010156-CH14-SW7

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 13

iOS. Now understanding the relationship between Point and Pixel, you can easily figure out
how many Points in the width and height of each device screen, as shown in the table below.

Table 2.1: Device screen size

Device Display Resolution
(in Pixels)

Screen Size (in Points)

iPad 2 1024 x 768 pixels 1024 x 768 points

iPad 3/4 2048 x 1536 pixels 1024 x 768 points

iPad mini 1024 x 768 pixels 1024 x 768 points

iPhone 4/4S or iPod Touch 4 640 x 960 pixels 320 x 480 points

iPhone 5/5C/5S or iPod
Touch 5

640 x 1136 pixels 320 x 568 points

iPhone 6 750 x 1334 pixels 375 x 667 points

iPhone 6 Plus 1080 x 1920 pixels 414 x 736 points

Now that you understand how many Points in each device type, you can use the following
formula to convert from Point to PBU:

Point-to-PBU conversion:

In the English environment:

In the X axis: PBUnit = (PointX x 6144 + 96 x 7) / (96 x 14)

In the Y axis: PBUnit = (PointY x 768 + 96) / (96 x 2)

In the Japanese environment:

In the X axis: PBUnit = (PointX x 6144 + 96 x 8) / (96 x 16)

In the Y axis: PBUnit = (PointY x 2048 + 96 x 3) / (96 x 6)

Notes:

PointX indicates the number of Point in the X axis.

PointY indicates the number of Point in the Y axis.

See also

Pixel-to-PBU conversion:

Since you can also easily get the display resolution (in Pixels) and PPI from the device
specification, you may use the formula to convert from Pixel to PBU:

In the X axis: PBUnit = (PixelX x 6144 + PPI x 7) / (PPI x 14)

In the Y axis: PBUnit = (PixelY x 768 + PPI) / (PPI x 2)

Notes:

PixelX indicates the number of pixels in the X axis.

PixelY indicates the number of pixels in the Y axis.

http://developer.apple.com/library/ios/documentation/2ddrawing/conceptual/drawingprintingios/GraphicsDrawingOverview/GraphicsDrawingOverview.html#//apple_ref/doc/uid/TP40010156-CH14-SW7

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 14

PPI stands for Pixel Per Inch, which is 132 for iPad 2, 264 for iPad 3/4 and iPad mini, 326
for iPhone 4/4S/5/5C/5S/6 and iPod Touch 4/5, and 401 for iPhone 6 Plus.

2.5.2 Window Size

Let's now have a close look at the layout of an iOS-based device screen (taking iPad 2 as
example). It will help us calculate the available screen space for the application window.

In Landscape orientation:

Figure 2.8: Landscape view of an iOS-based screen

From the above graph, we understand that window size is not equal to the screen size. The
application cannot use the entire screen space, because iOS adds a status bar (20 points in
height) and Appeon Workspace adds a title bar (38 points in height), a top border (1 point
in height), a left border (1 point in width), and a right border (1 point in width) around the
application. Therefore, in Landscape orientation, the space available for the application on
iPad 2 is 1022 * 709 (points).

Now let's use the formula to convert it to PBUs, which is 4672 * 2836 (PBUs). This means, if
you set the window size to 4672 * 2836 PBUs and then set the window state to Maximized,
the window will exactly fill up the available screen space in landscape orientation on iPad 2.

In Portrait orientation:

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 15

Figure 2.9: Portrait view of an iOS-based screen

From the above graph, the available screen space for an application window in Portrait
orientation is 766 * 965 (points). When using the formula to convert it to PBUs, we get 3502
* 3860 PBUs.

Now that we understand the available screen space for application window, we can calculate
the window size for the other iOS-based devices. The following table lists the window size
(in full screen view) on iPad, iPhone, & iPod touch, measured in both PBUs and Points.

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 16

Table 2.2: Window size on iPad, iPhone & iPod touch

Landscape PortraitDevice Width
to

deduct

Height
to deduct Width

(pt)
Height
(pt)

Width
(PBU)

Height
(PBU)

Width
(pt)

Height
(pt)

Width
(PBU)

Height
(PBU)

iPad 2 -(1+1) -
(20+38+1)

1022 709 4672 2836 766 965 3502 3860

iPad 3
or 4

-(1+1) -
(20+38+1)

1022 709 4672 2836 766 965 3502 3860

iPad
mini

-(1+1) -
(20+38+1)

1022 709 4672 2836 766 965 3502 3860

iPhone
4 or 4S

-(1+1) -
(20+38+1)

478 261 2185 1044 318 421 1454 1684

iPhone
5

-(1+1) -
(20+38+1)

566 261 2587 1044 318 509 1454 2036

iPod
touch 4

-(1+1) -
(20+38+1)

478 261 2185 1044 318 421 1454 1684

iPod
touch 5

-(1+1) -
(20+38+1)

566 261 2587 1044 318 509 1454 2036

Notes:

• Width to deduct: - (Left Border + Right Border)

• Height to deduct: - (iOS Status Bar + Title Bar + Top Border [+ MicroHelp Status Bar])

MicroHelp Status Bar exists in the MDI frame only when the window type is set to
MDIHelp. The height of MicroHelp Status Bar is 20 points.

• By setting the window to the above width and height and setting the window state to
Maximized in the PB IDE, the window will exactly fill up the available screen space on
the target device at runtime. By setting the window state to Maximized, the window title
bar will merge into the Appeon Workspace title bar at runtime, otherwise it will display
under the Appeon Workspace title bar, in such case you will need to deduct both the
Appeon Workspace title bar (38 points) and the window title bar (38 points) in the height
direction when calculating the window size.

2.5.2.1 Auto-fit to Screen

Except for setting the window size to fixed values which will exactly fill up the screen space,
you can also take advantages of the UI resizing tools to enable the window to automatically
fit with the screen. These UI resizing tools are described in Mobile UI Design.

2.5.3 Window for iPad & iPhone

Generally speaking, you can create different sets of windows specific to iPad and iPhone, or
create one set of windows for both iPad and iPhone. Our recommendation is creating two sets
of windows: one for iPad, and the other for iPhone, though the window number doubles, it is
easier to control for developers.

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 17

2.5.3.1 Different sets of windows

As iPad and iPhone have very different screen sizes, our recommendation is designing
windows for iPad and iPhone respectively. For example, you can design a window w_iPhone
for iPhone, and a window w_iPad for iPad, and open the window according to the device
type; you can call the interface of_getDeviceType to get the device type at runtime.

Even for the same device type, as screen size changes greatly when orientation changes,
we recommend designing windows for Landscape and Portrait respectively. For example,
you can design several windows such as w_iPhone_Landscape, w_iPhone_Portrait,
w_iPad_Landscape, and w_iPad_Portrait, and you can call the interface of_getOrientation to
get the device orientation at runtime.

2.5.3.2 Same set of windows

Instead of designing two sets of windows and opening the window according to the device
type at runtime, you may want to create just one set of windows for all devices and adjust the
window and control size at runtime via the Resize event. However, this would be complicated
in some cases and would require you to consider every single situation that causes window to
resize, including:

1. Resize caused by the user manually resizing or maximizing a window at runtime if the
window is set to support resize;

2. Resize triggered by script. For example, in business logic, there may be situations when a
condition is met, the window size needs to change accordingly.

3. Resize occurred when window is created. This happens only one time. Unlike PC where
window size is fixed, there could be different window sizes on mobile devices, even if it is
the same PowerBuilder window. Different height and width could be passed to the resize
event, because the device to run the application may be an iPhone, or an iPad, in landscape
or portrait mode.

4. Resize triggered by orientation changes. Unlike PC, mobile devices support orientation
changes between landscape and portrait, and the size differs greatly.

All these different situations add up the complexity of UI adjustment. Take a simple example
here, you may have a request that the window should not respond to the Resize event or the
layout of controls should not change whenever the user resizes a window, but the window
should support orientation changes between landscape and portrait. But apparently, there
is no way to exactly figure out under what situation the Resize event is triggered and then
process the event accordingly.

To try to reduce the complexity somewhat, we provide the interface of_getOrientation to
determine whether the current device is in landscape or portrait view; and we also provide the
orientation change event which will be triggered when the device orientation changes.

2.5.4 Window orientation change

There are several ways to support orientation change, such as using the PowerBuilder Resize
event, or calling the PowerServer Mobile APIs. For detailed usages about the APIs, refer to
Section 1.4, “Mobile Device API” in Workarounds & APIs Guide.

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 18

2.6 Control

Most of the existing PowerBuilder controls can be used and deployed to the mobile
device, except for RichTextEdit, Animation, InkEdit, InkPicture, and OLE. You can use
the PowerBuilder controls in the mobile application, just like how you use them in the
PowerBuilder application, but keep in mind to set proper size for them and leave spacing
between them. Apple recommends the target area to be average finger-tip size which is
44*44 points (approximately 176 * 176 PBUs). This is the ideal size we should strive for, but
definitely this is no iron rule. You may find other practical rules for the real situations, such
as set the control size to 44 points high or wide and reduce the other dimension to no smaller
than 30 points (approximately 87 PBUs) if space is really limited, or leave space or padding
between controls to make the target area closed to this size.

2.6.1 Control Size

Most PowerBuilder controls such as RadioButton, CheckBox, SingleLineEdit, StaticText,
whose default sizes are appropriate for finger tapping on the mobile device, therefore, you
can directly use them at the default size, but remember to leave enough Spacing between
them.

For some controls such as CommandButton, DatePicker, and EditMask, whose default sizes
are too small to be easily tapped by the finger, it is very important to remember to set proper
size for them. The following table lists these small controls and recommends the minimum
height. The recommended minimum height mainly comes from the default height of the
Cocoa Touch controls, for example, a Rounded Rectangle Button is 37 points high by default.

Table 2.3: Small controls and recommended minimum heights

PB Controls Height (in Points) Height (in PBUs)

CommandButton

DatePicker

EditMask

37 148

A general rule of thumb is for controls whose size can be set in PowerBuilder IDE, you
should set proper size for them (44 points = 176 PBUs is recommended), for controls whose
size cannot be set in PowerBuilder IDE, PowerServer Mobile will take care of this for you by
automatically setting proper size for them at runtime.

2.6.1.1 Control width for text display

The same font may be displayed at different width under different platforms, therefore, it is
recommended that you leave extra space (for example, 20 to 30 PBUs in width) in the control
for the text to display properly, otherwise, the text may go over the control border or display
in the new line.

2.6.2 Row Height

The default DataWindow row height is fine for a mouse clicking, but is way too tiny to be
tappable for a finger, therefore, you should always remember to manually set proper row
height in PowerBuilder IDE if you want to allow users to manipulate data easily in your

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 19

application on the mobile device. The minimum height of a Table View cell of Cocoa Touch
is 44 points, and a Table View header or footer is 22 points.

Table 2.4: The minimum height of a Table View cell of Cocoa Touch

PB Controls Height (in Points) Height (in PBUs)

DataWindow: Header height
& Footer height

22 88

DataWindow: Row height 44 176

The same problem exists for the row height of the items in a ListBox, DropDownListBox,
ListView, or TreeView, but unlike DataWindow row height, they cannot be set in
PowerBuilder, therefore, PowerServer Mobile will address this problem and will set the row
height to 32 points (approximately 128 PBUs) or above automatically at runtime.

2.6.3 Spacing

It is important to leave spacing between UI controls, especially if the control is smaller than
the recommended size. Leaving enough spacing between controls ensures they can be easily
tapped. If you create smaller control or place controls too close together, people must aim
carefully before they tap and they are more likely to tap the wrong control.

A general rule of thumb is the closer you place buttons together, the larger those buttons
should be.

2.7 DataWindow presentation styles
Almost all of the DataWindow presentation styles are supported: CrossTab, Composite,
Freeform, Graph, Grid, Group, Label, N-Up, Tabular, TreeView, and RichText, except for
OLE.

2.8 Unsupported PB Properties
Some PB properties cannot be supported or are not necessary to support. For example, mobile
devices usually do not have a real keyboard, so cannot take advantage of the keyboard to
speed up or facilitate user operations, therefore, the PB properties related with keyboard keys
including arrow keys, shortcut keys etc. will not be supported in the mobile application. Such
PB properties include TabOrder, TabStop, Default, Cancel, DeleteItem, ExtendedSelect etc.

For a complete list of unsupported features, please refer to Supported PB Features for
PowerServer Mobile.

2.9 Font
Below are guidelines for using font in the mobile UI:

• Font size -- Letters in the same font size will be displayed smaller on the mobile device
screen than on a desktop computer, because the physical screen size of a mobile device is
smaller than on the desktop computer. You must use a larger font to ensure legibility. In
general, 14 - 17 point is the recommended font size, and 12 point is the smallest font size
that can be easily read.

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 20

• Font style -- Font styles such as Bold, Italic, Underline (scarcely used) etc. may be
supported depending on the mobile OS fonts.

• Font color -- The mobile OS default font color is Black.

• Font types -- There are a bunch of fonts commonly supported by both iOS and
PowerBuilder, such as Arial (recommended font), Courier New, Euphemia, Georgia,
Trebuchet MS, Verdana, Times New Roman etc. The iOS default font Helvetica is not
available in PowerBuilder, we recommend you use Arial which exists in both iOS and
PowerBuilder and looks very similar to Helvetica. If you use a font that is not available in
iOS, it will be displayed as Helvetica in iOS.

Android is an open platform and the available fonts in Android are mostly dependent on
the device manufacturers, so the fonts may vary on different devices. The default font in
Android is Roboto which looks very similar to Arial and Helvetica. If you use a font that is
not available in Android, it will be displayed as Roboto in Android.

For the mapping rules between Windows fonts and iOS fonts, please see the table below:

Table 2.5: Font Mapping Rules

Windows Font iOS Font

ArialMT

Arial-BoldMT

Arial-ItalicMT

Arial

Arial-BoldItalicMT

Baskerville

Baskerville-Bold

Baskerville-Italic

Baskerville Old Face

Baskerville-BoldItalic

CourierNewPSMT

CourierNewPS-BoldMT

CourierNewPS-ItalicMT

Courier New

CourierNewPS-BoldItalicMT

Courier

Courier-Bold

Courier-Oblique

Courier

Courier-BoldOblique

EuphemiaUCAS

EuphemiaUCAS-Bold

Euphemia

EuphemiaUCAS-Italic

Georgia

Georgia-Bold

Georgia

Georgia-Italic

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 21

Windows Font iOS Font

Georgia-BoldItalic

Palatino-Roman

Palatino-Bold

Palatino Linotype

Palatino-Italic

TimesNewRomanPSMT

TimesNewRomanPS-BoldMT

TimesNewRomanPS-ItalicMT

Times New Roman

TimesNewRomanPS-BoldItalicMT

TrebuchetMS

TrebuchetMS-Bold

TrebuchetMS-Italic

Trebuchet MS

Trebuchet-BoldItalic

Verdana

Verdana-Bold

Verdana-Italic

Verdana

Verdana-BoldItalic

Any Other Fonts Helvetica

2.10 Image & Icon

2.10.1 Supported Image Format

PowerBuilder, iOS, Android, and PowerServer Mobile supports different types of image
files. PNG and JPG are the recommended image types for PowerServer Mobile. Though
BMP and ICO are supported by PowerServer Mobile, they are not recommended to use
because they are Windows-platform specific and may have problems to display in iOS or
Android.

Table 2.6: Image Types

Format File
Extension

PB iOS Android PowerServer
Mobile

Portable
Networks
Graphics

.PNG Supported Supported Supported Supported &
Recommended

Joint
Photographic
Experts Group

.JPEG
or .JPG

Supported Supported Supported Supported &
Recommended

Static Graphic
Interchange
Format

.GIF Supported Supported Supported Supported

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 22

Format File
Extension

PB iOS Android PowerServer
Mobile

Animated GIF
files

.GIF Supported Supported Supported Not Supported

Windows
Bitmap Format

.BMP
or .BMPF

Supported Supported Supported Supported

Windows
Bitmap Format

.RLE Supported Not Supported Not Supported Not Supported

Windows Icon
Format

.ICO Not Supported Supported Not Supported Supported

Windows
metafiles

.WMF Supported Not Supported Not Supported Not Supported

Tagged Image
File Format

.TIFF
or .TIF

Not Supported Supported Not Supported Not Supported

Windows
Cursor

.CUR Not Supported Supported Not Supported Not Supported

XWindow
bitmap

.XBM Not Supported Supported Not Supported Not Supported

2.10.2 Image & Icon Size

You can use images or icons in various areas such as menu, toolbar, tab bar, ListView,
TreeView etc. Make sure you prepare the images and icons in the recommended size so they
look good and perform well in the mobile device.

Table 2.7: Image & Icon size for iOS and Android devices

Icon Size for iPad (in
Pixels)

Size for iPhone
& iPod Touch (in
Pixels)

Size for Android
Screen* (in Pixels)

App icon on the
mobile device

72 x 72 (144 x 144
for retina display)

57 x 57 (114 x 114
for retina display)

48 x 48

App icon for display
in Apple App Store or
Google Play

512 x 512 512 x 512 512 x 512

App icon for display
in Appeon Workspace

86 x 86 (172 x 172
for retina display)

86 x 86 (172 x 172
for retina display)

86 x 86

Menu icon 20 x 20 (40 x 40 for
retina display)

20 x 20 (40 x 40 for
retina display)

20 x 20

Toolbar icon 20 x 20 (40 x 40 for
retina display)

20 x 20 (40 x 40 for
retina display)

20 x 20

Tab bar icon 20 x 20 (40 x 40 for
retina display)

20 x 20 (40 x 40 for
retina display)

20 x 20

ListView icon 30 x 30 (60 x 60 for
retina display)

30 x 30 (60 x 60 for
retina display)

20 x 20

Best Practices PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 23

Icon Size for iPad (in
Pixels)

Size for iPhone
& iPod Touch (in
Pixels)

Size for Android
Screen* (in Pixels)

TreeView icon 20 x 20 (40 x 40 for
retina display)

20 x 20 (40 x 40 for
retina display)

20 x 20

PictureListBox 20 x 20 (40 x 40 for
retina display)

20 x 20 (40 x 40 for
retina display)

20 x 20

DropDownPictureListBox20 x 20 (40 x 40 for
retina display)

20 x 20 (40 x 40 for
retina display)

20 x 20

* For Android devices, to create an icon for different densities, you should follow the
2:3:4:6:8 scaling ratio between the five primary densities (MDPI, HDPI, XHDPI, XXHDPI,
and XXXHDPI respectively). For example, consider that the size for an app icon is specified
to be 48x48 px. This means the baseline (MDPI) asset is 48x48 px, and the high density
(HDPI) asset should be 1.5x the baseline at 72x72 px, and the x-high density (XHDPI) asset
should be 2x the baseline at 96x96 px, and so on.

2.10.3 Guidelines for designing Images & Icons

Beautiful, compelling icons and images are a fundamental part of the user experience. Please
follow Icon and Image Design in iOS Human Interface Guidelines and Iconography in
Android Design to design good-looking images and icons.

https://developer.apple.com/library/safari/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
http://developer.android.com/design/style/iconography.html

Index PowerServer Mobile® 2020

Mobile UI Design & Development Guide Page 24

Index
A

Android Back button, 10

B
Best Practices

enhanced mobile controls & functions, 5
Event-handling model, 4
mobile apps vs. PB apps, 2

C
Color, 3
Control

Control Size, 18
Row Height, 18
Spacing, 19

Control Size, 18

E
Event-handling model, 4

F
Fingers vs. Mouse, 2
Font, 3

G
Guidelines for designing Images & Icons, 23

I
Image & Icon

Guidelines for designing Images & Icons,
23
Image & Icon Size, 22

Image & Icon Size, 22
intermittent vs. reliable connectivity, 3

M
Memory management, 2
mobile APIs, 10
mobile apps vs. PB desktop apps

Color, 3
Fingers vs. Mouse, 2
Font, 3
intermittent vs. reliable connectivity, 3
Memory management, 2
Orientation Change, 3
Screen size, 2
Virtual keyboard vs. real keyboard, 2

Mobile-style picker, 8

O
Orientation Change, 3

R
Row Height, 18

S
Screen size, 2
scrollbar properties, 9
SetPointer function, 9
Spacing, 19
speedy scrollbar, 9

T
TreeView, 7

U
Unit conversion, 12

V
Virtual keyboard vs. real keyboard, 2

W
Window

Unit conversion, 12
Window for iPad & iPhone, 16
Window orientation change, 17
Window Size, 14
Window title bar, menu, & toolbar, 5

Window for iPad & iPhone, 16
Window orientation change, 17
Window Size, 14
Window title bar, menu, & toolbar, 5

	Mobile UI Design & Development Guide
	Contents
	1 Audience
	2 Best Practices
	2.1 Mobile apps vs. PB desktop apps
	2.2 Event-handling model
	2.2.1 Message mechanism

	2.3 Enhanced Mobile Controls and Functions
	2.4 Mobile UI Design
	2.4.1 Mobile UI design guidelines
	2.4.2 Appeon Resize APIs
	2.4.3 AEM Mobile UI Resizing tool

	2.5 Window for iOS Screens
	2.5.1 Unit conversion
	2.5.2 Window Size
	2.5.3 Window for iPad & iPhone
	2.5.4 Window orientation change

	2.6 Control
	2.6.1 Control Size
	2.6.2 Row Height
	2.6.3 Spacing

	2.7 DataWindow presentation styles
	2.8 Unsupported PB Properties
	2.9 Font
	2.10 Image & Icon

	Index

