DataWindow Programmers Guide
Appeon PowerBuilder® 2021

Contents

1 DataWindow and DataStore DASICSevviiiriiiiiiiiiieeeeeieieie i 5
1.1 About DataWindow Technologycoevveriiiiiiiiiiii e 5
1.1.1 About DataWindow objects, controls, and components 5
1.1.1.1 Presentation styles and data SOUICesccccevvvvvvvnnnnnnnnnnn. 6
1.1.1.2 BASIC PrOCESS ...ceevveeeeeririnnniiiaaaaeeeeeeeaseeeesesnssnnnnnnaaeaeaaaaaaaseeeens 7
1.1.2 Choosing a DataWindow technologycccccvvimriiiiiiiiciiiiii e, 7
1.1.2.1 Solutions for client/server and distributed applications 8
1.1.3 PowerBuilder DataWindow CONIOlccvvviiieeiiiiiiiiiiiiiiiie 8
1.2 Using DataWindow ODBJECLScccevviiiiiiiiiiii e e e e 10
1.2.1 About using DataWindow ODJECESceiiiiiiiieeeiieeeeeeee e 10
1.2.2 Putting a DataWindow object into a controlcccccceeeiiiiiieeeeennn. 10
1.2.2.1 Names for DataWindow controls and DataWindow
OB ECLS e e ———————————— 11
1.2.2.2 Working with the DataWindow control in PowerBuilder 12
1.2.2.3 Specifying the DataWindow object during execution 13
1.2.3 Accessing the databaseceeiiiiiiiiie e 14
1.2.3.1 Setting the transaction object for the DataWindow
(o0 11 {0 I PP PP 15
1.2.3.2 Retrieving and updating datacccceevveviiiiiiiiiiiee e, 18
1.2.4 Accessing a Web service data source (Obsolete)cccceeeeveeeeeennn. 20
1.2.5 Importing data from an external SOUrCecccccvvvvvviiiiiiieeeeeeeeeee, 20
1.2.6 Manipulating data in a DataWindow controlcccccceevvvvviinnnnnns 20
1.2.6.1 How a DataWindow control manages datacccccccuennnn. 20
1.2.6.2 Accessing the text in the edit controlccoeeevvviveveinnnns 23
1.2.6.3 Manipulating the text in the edit controlccccceeeivveeeeeen.n. 23
1.2.6.4 Coding the ItemChanged eventccccceeeeiiiiiiieeeiiveeeeeieenns 23
1.2.6.5 Coding the HeEMEITOr @VeNtccceeeeeeeeieeiieeeeee e 24
1.2.6.6 Accessing the items in a DataWindowccccceeevvvvevennnnnns 24
1.2.6.7 Using other DataWindow methodsccccccceeeiiiiiiieeeeennee, 25
1.2.7 Accessing the properties of a DataWindow objectcccccceennnn. 26
1.2.8 Handling DataWindOW ©ITOISuuuiiiiiiieeeeeeeieeeeeeesiiiisan e e e e eeeeaes 27
1.2.8.1 Retrieve and Update errors and the DBError event 27
1.2.8.2 Errors in property and data expressions and the Error
Y] 0 PP 29
1.2.9 Updating the databaseccccccceiiiiiiiiiiiiiiiieeeee e 31
1.2.9.1 How the DataWindow control updates the database 31
1.2.9.2 Changing row or column status programmatically 33
1.2.10 Creating rEPOISccvvveruieiiiieiee e e e e e e e e eeeeeeeeaeerrs s e e e e e e e eeeeeeeeeeeennnnnns 34
1.2.10.1 Planning and building the DataWindow object 34
1.2.10.2 Printing the reportcccceeiiiiiie e 35
7 B L U 1 [To I g o TS (=0 [€= oo £ 35
1.2.12 USING CroSStaDSccoiiiiiiieiicceeeeeer e e 37
1.2.12.1 Viewing the underlying dataccccooeeeeeeeeiiiiiiieeiiin, 37
1.2.12.2 Letting users redefine the crosstabccccceeviiiiiiiiinnnnns 38
1.2.12.3 Modifying the crosstab's properties during execution 39

1.2.13 Generating HTMLccooiiiiiiii e 40

1.2.13.1 Controlling displaycccovviiiimiiiiiiiiiciie e 42

1.2.13.2 Calling the SaveAs methodovvviiiiiiiiiiiiieeeeeeeeee, 44
1.2.13.3 Displaying DataWindow objects as HTML forms 45

1.3 Dynamically Changing DataWindow ObjJectsccccvvvriiiiiiiiiiiiieee e, 48
1.3.1 About dynamic DataWindow pProcessingcccceeeeeeeeeeeeeeeereeeennnnnnns 48
1.3.2 Modifying a DataWindow ObJeCtccceeiiiiiiieiiiiiiiieee e 49
1.3.3 Creating a DataWindow 0Dbjectooovvviiiiiiiiiiii e, 50
1.3.4 Providing query ability t0 USErSccooiiiiiiiiiiiiciie e, 52
1.3.4.1 How query mode WOIKSccoovviiiiiiiiiiiiiiiieee e e e e eeee e eeeeeeneanns 52
1.3.4.2 USING QUENY MOUEcoevviiiiiiiiiiee e eeee et e e e 54
1.3.5 Providing Help BULtONSovvviiiiiiiiieeccceccee e 57
1.3.6 Reusing a DataWindow objectccccovriiiiiiiiciciiie e, 57
1.3.7 USING DWSYNIAX ..evvviiiiiiiiiieeeeeeee et e e e e e e e e e e e e eae s 57
1.3.7.1 DESCIIDEuviiiiiiiiiiiiiiiieee e 58
1.3.7.2 MOGITY oo 58
1.3.7.3 CrEALE ..o 58
1.3.7.4 DESITOY .oeviiiiiiiiieeiti ettt 58
1.3.7.5 SyntaxFromSQLcoouiiiiiiiiii 59
1.3.7.6 Tips on the syntax generated by DWSyntaxcccccceeeenn... 59

1.4 Using DataStore ODJECESciiiiiiiiieeiciieeeeeeee e 59
1.4.1 ADOUL DAtaStOrEScccceuiiiiiiiiiiiiiiiieieeeeeeeae e e e e e e e e e e e e e s e s s ssneeeeeeeneees 60
1.4.2 Working with a DataStorecccooovviiiiiiiiiiiiciie e 61
1.4.3 Using a custom DataStore Objectccccceeeiviieieiiiiiieieeeen, 62
1.4.4 Accessing and manipulating data in a DataStore 63
1.4.5 Sharing informationcccoooiiiiiiiiiiiic e 65
1.4.5.1 Example: printing data from a DataStoreccccceeeeeeen.. 66
1.4.5.2 Example: using two DataStores to process data 67

1.5 Manipulating Graphisccccooiii oo 69
1.5.1 USING Qraphseeeiiiiii et 70
1.5.2 Modifying graph propertiescccceeveieiiieeiiiiiieeeeees e 70
1.5.2.1 How parts of a graph are representedccoevvvvvvvvnnnnnnnn. 71
1.5.2.2 Referencing parts of a graphcccceeeiiiiiiiiiieiiieei 72
1.5.3 Accessing data PropertieSccooviviveiieiiiiiiiieee e 72
1.5.3.1 Getting information about the dataccccccceeeiieeiiiieennnn, 72
1.5.3.2 Saving graph datacccceeeiiiiiiieeiieeeeeee e 73
1.5.3.3 Modifying colors, fill patterns, and other data 74
1.5.3.4 Using graph methodsooviiiiiiiiiiiieee e, 74
1.5.4 Using point and ClCKccooiiiiiiiiiiiiciie e 76
1.6 DataWindow Export/Import Templateccccceeeeiiiieeeeiiiiiicieeceee e 78
1.6.1 The Export Template view for XHTMLccccooeveiiiiiiiiiiiiiiiiinn, 78
1.6.2 The default XHTML export templatecccoeeeeeeeieiiiiiiiiieiiin, 78
1.6.2.1 How tree view items are representedccccccvvvvvvvvneenennn. 79
1.6.3 Managing templatesooooviriiiiiiiiiiiiei e 80
1.6.3.1 Creating and saving templatescccccevvrvrirriiiiiicceeeneenn. 81
1.6.3.2 Selecting the template t0 USEcccoevveieiiiiiiiiiiieeceee 83
1.6.4 Template SIrUCLUIEccoeiiiiieeeeec e 84
1.6.4.1 Header SECHONccoeveiiiiiiiiiiiiiiiiii et 84

1.6.4.2 Detail SECLION ...coeneeeeeee e 85

1.6.5 Editing XHTML export templatescccceeeeiiiieieeeeiiieeeeeeean, 86

1.6.5.1 ROOt €IEMENT ... 87
1.6.5.2 DataWindOw CONMIOIScccoiiuiiiiiiiiiiiiiiiiiieeeeee e e 87
1.6.5.3 DataWindow eXPreSSIiONSueveeiiiiieeeeeeeeeeeeeeeeenvinaiene e 88
1.6.5.4 Element attribULEScoovveeieiiiiiiiiccciieeeeeeeee e 89
1.6.5.5 Style declarationsooevvviiiiiiiiiiee e 89
1.6.5.6 JavaScript event handlerscccceeeeiiiiiiiiicc e, 90
1.6.5.7 CDATA SECLONSuuiiiiiiiiiiiiiiiiiiiiiieaaaaeeaeeaaas s s s s s ssseneeeeeenees 90
1.6.5.8 Element ContexXt MENUSeveiiiiiiiiiieeeeeieeieeeeeeeeiieeiee 91
1.6.6 Selecting XHTML export templates at runtimecc....ovvvvvinnnn. 92
1.6.7 Exporting the DataWindow in XML or XHTMLooovvviiiiiiiennnnn. 92
1.6.7.1 EXporting in XMLccooiiiiiiiiciee e 92
1.6.7.2 Exporting in XHTMLoooiriiiiiiiceee e 92

DataWindow and DataStore basics

1 DatawWindow and DataStore basics

This part describes how to create and use DataWindow and DataStore objects.

Additional information about these objects and about the DataWindow control is available
in the Part VI, “Working with Datawindows’ in Users Guide and in Chapter 4, Data
Access Techniques in Application Techniques. Reference information is availablein the
Datawindow Reference.

1.1 About DataWindow Technology
About this chapter

This chapter describes what DataWindow objects are and the ways you can use them in
various application architectures and programming environments.

1.1.1 About DataWindow objects, controls, and components
DatawWindow technology isimplemented in two parts:

» A DataWindow object
The Datawindow object defines the data source and presentation style for the data.

» A DataWindow control or component

The control or component is a container for the DatawWindow object in the application. You
write code that calls methods of the container to manipulate the Datawindow object.

Datawindow controls and components

The Datawindow was invented for use in PowerBuilder to provide powerful dataretrieval,
manipulation, and update capabilities for client/server applications.

Y ou can aso use DataStore objects as containers for a DataWindow object. DataStores
provide Datawindow functionality for retrieving and manipulating data without the on-screen
display. Uses for DataStores include specifying layouts for printing and managing data in the
server component of a distributed application.

What DataWindow objectsare

A Datawindow object is an object that you use to retrieve, present, and manipulate data from
arelational database or other data source (such as an Excel worksheet or dBASE file). You
can specify whether the DatawWindow object supports updating of data.

DatawWindow objects have knowledge about the data they are retrieving. Y ou can specify
display formats, presentation styles, and other data properties to make the data meaningful to
users.

In the DataWindow painter, you can also make Powersoft report (PSR) files, which you
can use in DataWindow controls or components. A PSR file contains a report definition --
essentially a nonupdatable DatawWindow object -- as well as the data contained in the report
when the PSR file was created. It does not retrieve data.

Whereto define Datawindow objects

Page 5

DataWindow and DataStore basics

Y ou define DataWindow objects in the PowerBuilder DatawWindow painter. Y ou can also
define nonupdatable DataWindow objects in the InfoM aker Report painter.

1.1.1.1 Presentation styles and data sources
When you define a Datawindow object, you choose a presentation style and a data source.
Presentation styles

A presentation style defines atypical style of report and handles how rows are grouped on
the page. Y ou can customize the way the datais displayed in each presentation style. The
presentation styles include:

Table 1.1: Datawindow presentation styles

Presentation Description
style

Tabular Data columns across the page and headers above each column. Several rows
are viewable at once.

Freeform Data columns going down the page with labels next to each column. One row

displayed at atime.

Grid Row-and-column format like a spreadsheet with grid lines. Users can move
borders and columns.

Label Several labels per page with one row for each label. Used for mailing and
other labels.

N-Up Two or more rows of data next to each other across the page. Useful for
periodic data, such as data for each day of the week or each month in the
quarter.

Group A tabular style with rows grouped under headings. Each group can have

summary fields with computed statistics.

TreeView | A tabular stylethat groups data hierarchically and displays the datain a way
that is collapsible and expandable.

Composite | Several DatawWindow objects grouped into a single presentation.

Graph Graphical presentation of data.
Crosstab Data summary in arow-and-column format.
RichText Paragraphs of text with embedded data columns.

OLE An OLE object linked or embedded in the DataWindow and associated with
the retrieved data.

For examples of the presentation styles, see Section 18.2, “ Choosing a presentation style” in
Users Guide.

Data sour ces

The data source specifies where the data in the DataWindow comes from and what data items
are displayed. Data can come from tables in a database, a Web service, afile with data that
you can import, or code that specifies the data. For databases, the data specification is saved
in a SQL statement. In all cases, the DataWindow object saves the names of the dataitemsto
display, aswell as their datatypes.

Page 6

DataWindow and DataStore basics

Table 1.2: Data sourcesyou can use for a DataWindow

Data source Description

Quick Select | The datais coming from one or more tables in a SQL database. The tables

must be related through aforeign key. Y ou need to choose only columns,
selection criteria, and sorting.

SQL Select |You want more control over the select statement that is generated for the data

source. Y ou can specify grouping, computed columns, and so on.

Query The data has already been selected and the SQL statement is saved in aquery

object that you have defined in the Query painter. When you define the
DataWindow object, the query object isincorporated into the DataWindow
and does not need to be present when you run the application.

External The datais not stored in a database, but is imported from afile (such as atab-

separated or dBA SE file) or populated from code.

Stored The datais defined in a database stored procedure.
Procedure

Web Service | The datais defined in aWeb service. Support for a Web service data sourceis

not available for the Composite, RichText, and OLE presentation styles.

1.1.1.2 Basic process

Using a Datawindow involves two main steps:

1.

Use the DataWindow painter to create or edit a DataWindow object.

In the painter, you define the data source, presentation style, and all other properties of the
object, such as display formats, validation rules, sorting and filtering criteria, and graphs.

In your devel opment environment, put a Datawindow control in awindow, visual user
object, or form or a Datawindow container in a Web page and associate a DatawWindow
object with the control or container.

It is through the control or container that your application communicates with the
Datawindow object you created in the DatawWindow painter. Y ou write code to

mani pul ate the DataWindow control or container and the DataWindow object it contains.
Typically, your code retrieves and updates data, changes the appearance of the data,
handles errors, and shares data between DataWindow controls.

1.1.2 Choosing a DataWindow technology

Since Datawindow technology can be used in different environments, it might not be
obvious what approach you should take to implement your data-enabled application.
This section describes the DataWindow technologies available for the basic application
architectures and the requirements for each Datawindow solution.

The basic architectures are:

Client/server

A program running on a client workstation accesses a database running on a server. The
user interface and business logic reside together on the client computer.

Page 7

DataWindow and DataStore basics

* Distributed application

The user interface on the client computer calls components on a middle-tier server, which
execute business logic and access the database server.

* Web application

A client Web browser sends requests for HTML or JSP documents to a Web server. The
Web server passes control to a page or application server, where server-side scripts can
access components on a transaction server that can connect to databases on a database
server.

1.1.2.1 Solutions for client/server and distributed applications
The PowerBuilder Datawindow was initially developed for usein client/server applications.

Y ou can implement the PowerBuilder Datawindow as a control that displays a Datawindow
object or as a DataStore that supports data retrieval and update without displaying the data.
A complete set of events and methods programmed in PowerScript provides control over all
aspects of the Datawindow, including data retrieval, display, validation, and update.

Y ou can also deploy the PowerBuilder DataWindow as a component for use in distributed
applications.

For more information, see PowerBuilder DatawWindow control.

1.1.3 PowerBuilder DataWindow control
Features

The PowerBuilder DatawWindow control is a container for DataWindow objectsin a
PowerBuilder application. You can useit in awindow to present an interactive display of
data. The user can view and change data and send changes to the database.

In addition to the Datawindow control, the DataStore object provides a nonvisual container
for server applications and other situations where on-screen viewing is not necessary.

The Datawindow supports data retrieval with retrieval arguments and data update. Y ou can
use edit styles, display formats, and validation rules for consistent data entry and display. The
Datawindow provides many methods for manipulating the Datawindow, including Modify
for changing DataWindow object properties. Y ou can share aresult set between several
DatawWindow controls and you can synchronize data between a client and server.

Development environment

Y ou can develop both parts of your DataWindow implementation in PowerBuilder. Y ou use:
» The DataWindow painter to define DataWindow objects.

» The Window or User Object painters to add Datawindow controls to windows or visual
user objects. The Datawindow control is on the drop-down palette of controls for these
painters.

In the Window or User Object painters, you can write scripts that control the DataWindow's
behavior and manipulate the data it retrieves. Y our scripts can also instantiate DataStore
objects.

Page 8

DataWindow and DataStore basics

In the PowerBuilder Browser you can examine the properties, events, and methods of
DatawWindow controls and DataStore objects on the System tab page. If you have alibrary
open that contains DatawWindow objects, you can examine the internal properties of the
DatawWindow object on the Browser's DataWindow tab page.

DataWindow objects

The Datawindow control or DataStore object uses a DatawWindow object defined with any
presentation style. The DatawWindow object determines what datais retrieved and how it
isdisplayed. The control can also display Powersoft reports (PSRs), which do not need to
retrieve data.

Database connections

The PowerBuilder Datawindow can use ODBC, JDBC, and native database drivers for
database connectivity. Users can connect to a data source on any server to which they have
access, including databases and middle-tier servers on the Internet.

To make a connection, you can use the internal Transaction object of the Datawindow, or
you can make the connection with a separate PowerBuilder transaction object.

A PowerBuilder application provides a default Transaction object, SQLCA. Y ou can define
additional Transaction objects if you need to make additional connections. When you connect
with a separate Transaction object, you can control when SQL COMMIT and ROLLBACK
statements occur, and you can use the same connection for multiple controls.

For more information about using a Transaction object with a DataWindow, see Using
DataWindow Objects.

For more information about PowerBuilder Transaction objects, see Section 4.1, “Using
Transaction Objects’ in Application Techniques.

Coding

Y ou write scripts in the Window or User Object painter to connect to the database, retrieve
data, process user input, and update data.

In PowerBuilder, you can take advantage of object inheritance by defining a user object
inherited from a Datawindow control and adding your own custom functionality. Y ou can
reuse the customized Datawindow control throughout your applications.

Y ou create DataStore objects, the nonvisual version of a DataWindow control, by creating
them in a script and calling methods for the object. Y ou can also define a user object that
isinherited from a DataStore and customize it. For more information, see Using DataStore

Objects.
Librariesand applications

Y ou store DataWindow objects in PowerBuilder libraries (PBLS) during development. When
you build your application, you can include the DataWindow objects in the application
executable or in PowerBuilder dynamic libraries (PBDS).

For more information about designing DataWindow objects and building a PowerBuilder
application, see Chapter 18, Defining DataWindow Objects in Users Guide and Part I,
“Application Techniques’.

Page 9

DataWindow and DataStore basics

1.2 Using DataWindow Objects

About this chapter

This chapter describes how to use DataWindow objects in an application.
Before you begin

This chapter assumes that you know how to build DataWindow objects in the Datawindow
painter, as described in Chapter 18, Defining DataWindow Objects in Users Guide.

1.2.1 About using DataWindow objects
Building Datawindow objects

Before you can use a DatawWindow object in an application, you need to build it.
PowerBuilder has separate painters for database management, DatawWindow definition, and
library management.

Y ou define and edit a Datawindow object in the DatawWindow painter. Y ou specify its data
source and presentation style, then enhance the object by specifying display formats, edit
styles, and more.

The DatawWindow painter is also where you make Powersoft report (PSR) files, which you
might also want to use in applications. A PSR file contains areport definition -- essentially a
nonupdatable DataWindow object -- as well as the data contained in that report when the PSR
file was created.

Report objectsonly in InfoM aker

Older versions of PowerBuilder had a Report painter as well as a Datawindow
painter. A report object could retrieve but not update data; it was essentially a
nonupdatable DataWindow object. The Report painter is now available only in
InfoM aker.

Managing DataWindow objects

Several painterslet you manage and package your DataWindow objects for usein
applications.

In particular, you can maintain DataWindow objects in one or more libraries (PBL files).
When you are ready to use your DataWindow objects in applications, you can package them
in more compact runtime libraries (PBD files).

For further details on how to build and organize DatawWindow objects, see Chapter 18,
Defining DataWindow Objectsin Users Guide.

Using DataWindow objects

After you build a Datawindow object (or PSR file) in the DataWindow painter, you can
use it to display and process information from the appropriate data source. The sections that
follow explore the details of how to do this.

1.2.2 Putting a DataWindow object into a control

The Datawindow control is a container for DatawWindow objects in an application. It provides
properties, methods, and events for manipulating the data and appearance of the DataWindow
object. The Datawindow control is part of the user interface of your application.

Page 10

DataWindow and DataStore basics

Y ou also use DataWindow objects in the nonvisual DataStore and in child Datawindows,
such as drop-down Datawindows and composite presentation styles. For more information
about DataStores, see Using DatawWindow Objects. For more information about drop-down
DataWindows and composite DataWindows, see Part VI, “Working with Datawindows’ in
Users Guide.

To use the DataWindow object in an application, you add a Datawindow control to a
window or form, then associate that control with the DataWindow object, asillustrated in the
following figure:

Figure 2-1: Putting a Datawindow object into a Datawindow control

DataWindow painter Form designer

DataWindow object

DataWindow object DataWindow control

Farm

DataWindow cbject

This section has information about:

» Names for DataWindow controls and DataWWindow objects

» Proceduresfor inserting a control and assigning a DataWindow object to the control

» Specifying the DataWindow object during execution

1.2.2.1 Names for DataWindow controls and DataWindow objects

There are two names to be aware of when you are working with a DataWindow:
» The name of the Datawindow control
» The name of the Datawindow object associated with the control

The Datawindow control name

When you place a DatawWindow control in awindow or form, it gets a default name. Y ou
should change the name to be something meaningful for your application.

In PowerBuilder, the name of the control has traditionally had a prefix of dw_. Thisis
auseful convention to observe in any development environment. For example, if the
DatawWindow control lists customers, you might want to name it dw_customer.

Page 11

DataWindow and DataStore basics

Using the name

In code, always refer to a DataWindow by the name of the control (such as
dw_customer). Do not refer to the Datawindow object that isin the control.

The DatawWindow object name

To avoid confusion, you should use different prefixes for DataWindow objects and

DatawWindow controls. The prefix d_is commonly used for Datawindow objects. For
example, if the name of the Datawindow control is dw_customer, you might want to name
the corresponding DataWindow object d_customer.

1.2.2.2 Working with the DataWindow control in PowerBuilder

To place a Datawindow control in awindow:

1. Open the window that will contain the DataWindow control.
2. Select Insert>Control>DatawWindow from the menu bar.
3. Click where you want the control to display.
PowerBuilder places an empty Datawindow control in the window:

4.

(Optional) Resize the DatawWindow control by selecting it and dragging one of the
handles.

Specifying a DatawWindow obj ect

After placing the DataWindow control, you associate a DataWindow object with the control.

Page 12

DataWindow and DataStore basics

To associate a Datawindow abject with the control:

1. Inthe DataWindow Properties view, click the Browse button for the DataObject
property.

2. Select the Datawindow object that you want to place in the control and click OK.

The name of the Datawindow object displaysin the DataObject box in the DatawWindow
Properties view.

3. (Optional) Change the properties of the DataWindow control as needed.

Allowing usersto move DataWindow controls

If you want users to be able to move a Datawindow control during execution, give
it atitle and select the Title Bar check box. Then users can move the control by
dragging the title bar.

1.2.2.2.1 Defining reusable DataWindow controls

Y ou might want all the DatawWindow controls in your application to have similar appearance
and behavior. For example, you might want al of them to do the same error handling.

To be able to define these behaviors once and reuse them in each window, you should create
a standard user object based on the DataWindow control: define the user object's properties
and write scripts that perform the generic processing you want, such as error handling.

Then place the user object (instead of a new Datawindow control) in the window. The
DataWindow user object has all the desired functionality predefined. Y ou do not need to

respecify it.
For more information about creating and using user objects, see Chapter 15, Working with
User Objectsin Users Guide.

1.2.2.2.2 Editing the DataWindow object in the control
Once you have associated a Datawindow object with a Datawindow control in awindow,
you can go directly to the DataWindow painter to edit the associated DataWindow object.

To edit an associated DataWindow obj ect:

» Select Modify Datawindow from the DataWindow control's pop-up menu.
PowerBuilder opens the associated DataWindow object in the DataWindow painter.

1.2.2.3 Specifying the DataWindow object during execution
Changing the Datawindow obj ect

In PowerBuilder, set the DataObject property to one of the DatawWindow objects built into the
application.

Setting the transaction object when you change the DataWindow obj ect

When you change the Datawindow object during execution, you might need to call setTrans
or setTransObject again.

Page 13

DataWindow and DataStore basics

For more information, see Setting the transaction object for the DataWWindow control.

Dynamically creating a DataWindow object

Y ou can also create a new DatawWindow object during execution and associate it with a
control.

For more information, see Dynamically Changing DataWindow Objects.

1.2.2.3.1 Changing the Datawindow in PowerBuilder

When you associate a DatawWindow object with a control in the window, you are setting the
initial value of the Datawindow control's DataObject property.

During execution, thistells your application to create an instance of the DatawWindow object
specified in the control's DataObject property and useit in the control.

Setting the DataObject property in code

In addition to specifying the Datawindow object in the Window painter, you can switch the
object that displaysin the control during execution by changing the value of the DataObject
property in code.

For example: to display the DatawWindow object d_emp_hist from the library emp.pbl in the
DatawWindow control dw_emp, you can code:

dw_enp. Dat aCbj ect = "d_enp_hi st"

The Datawindow object d_emp_hist was created in the DatawWindow painter and stored in a
library on the application search path. The control dw_emp is contained in the window and is
saved as part of the window definition.

Preventing redrawing

Y ou can use the SetRedraw method to turn off redrawing in order to avoid flicker and
reduce redrawing time when you are making several changes to the properties of an
object or control. Dynamically changing the DataWindow object at execution time
implicitly turns redrawing on. To turn redrawing off again, call the SetRedraw method
every time you change the Datawindow object:

dw_enp. Dat aCbj ect = "d_enp_hist™"
dw_enp. Set Redr aw(FALSE)

Using PSR files

To put aPSR file into a Datawindow control at execution time, change the control's
DataObject property to specify that PSR file name.

1.2.3 Accessing the database

Before you can display datain a Datawindow control, you must get the data stored in the
data source into that control. The most common way to get the data is to access a database.

An application goes through several stepsin accessing a database:
1. Set the appropriate values for the transaction object.

2. Connect to the database.

Page 14

DataWindow and DataStore basics

3. Set the transaction object for the Datawindow control.
4. Retrieve and update data.
5. Disconnect from the database.

This section provides instructions for setting the transaction object for a Datawindow control
and for using the DataWindow object to retrieve and update data.

To learn more about setting values for the transaction object, connecting to the database, and
disconnecting from the database, see:

* PowerBuilder

Section 4.1, “Using Transaction Objects’ in Application Techniques.

1.2.3.1 Setting the transaction object for the DataWindow control

There are two ways to handle database connections and transactions for the Datawindow
control. Y ou can use:

* Internal transaction management
A separate transaction object

The two methods provide different levels of control over database transactions.

If you aredisplaying a PSR filein the control

Y ou do not need to use a transaction object or make a database connection if you are
displaying a PSR file in the DataWindow control.

If you change the DataWindow obj ect

If you change the Datawindow object associated with a DatawWindow control during
execution, you might need to call the SetTrans or SetTransObject method again.

Power Builder
Y ou always need to call one of the methods to set the transaction object.

1.2.3.1.1 Internal transaction management
What it does

When the DataWindow control uses internal transaction management, it handles connecting,
disconnecting, commits, and rollbacks. It automatically performs connects and disconnects as
needed; any errors that occur cause an automatic rollback.

Whenever the DataWindow needs to access the database (such as when a Retrieve or Update
method is executed), the Datawindow issues an internal CONNECT statement, does the
appropriate data access, then issues an internal DISCONNECT.

Whether to useit
When not to use it

Page 15

DataWindow and DataStore basics

Do not use internal transaction management when:

* Your application requires the best possible performance

Internal transaction management is slow and uses considerable system resources because it
must connect and disconnect for every database access.

* You want control over when atransaction is committed or rolled back

Because internal transaction management must disconnect after a database access, any
changes are always committed immediately.

When to useit

If the number of available connections at your site is limited, you might want to use internal
transaction management because connections are not held open.

Internal transaction management is appropriate in simple situations when you are doing pure
retrievals (such as in reporting) and do not need to hold database locks -- when application
control over committing or rolling back transactionsis not an issue.

How it works
Power Builder

To use internal transaction management, you specify connection values for a transaction
object, which could be the automatically instantiated SQLCA. Then you call the SetTrans
method, which copies the values from a specified transaction object to the DataWindow
control'sinternal transaction object.

SQ.CA. DBMS = ProfileString("nyapp.ini", &
"dat abase", "DBMB', " ")

... I/ Set nore connection paraneters
dw_enpl oyee. Set Tr ans(SQLCA)

dw_enpl oyee. Retri eve()

Connecting to the database

When you use SetTrans, you do not need to explicitly code a CONNECT or
DISCONNECT statement in ascript. CONNECT and DISCONNECT statements are
automatically issued when needed.

For more information about PowerBuilder transaction objects, see Section 4.1, “Using
Transaction Objects’ in Application Techniques.

1.2.3.1.2 Transaction management with a separate transaction object
How it works

When you use a separate transaction object, you control the duration of the database
transaction. Y our scripts explicitly connect to and disconnect from the database. If the
transaction object's AutoCommit property is set to false, you also program when an update is
committed or rolled back.

Typically, ascript for dataretrieval or update involves these statements:

Connect
SetTransObject

Page 16

DataWindow and DataStore basics

Retrieve or Update
Commit or Rollback
Disconnect

In PowerBuilder, you use embedded SQL for connecting and committing.

The transaction object also stores error messages returned from the database in its properties.
Y ou can use the error information to determine whether to commit or roll back database
changes.

When to useit

When the DataWindow control uses a separate transaction object, you have more control of
the database processing and are responsible for managing the database transaction.

There are several reasons to use a separate transaction object:

* You have several DataWindow controls that connect to the same database and you want to
make one database connection for all of them, saving the overhead of multiple connections

* You want to control transaction processing
* You require the improved performance provided by keeping database connections open

How it works
Power Builder

The SetTransObject method associates a transaction object with the Datawindow control.
PowerBuilder has a default transaction object called SQLCA that is automatically
instantiated. Y ou can set its connection properties, connect, and assign it to the DatawWindow
control.

The following statement uses SetTransObject to associate the Datawindow control dw_emp
with the default transaction object (SQLCA):

/1 Set connection paraneters in the transaction object
SQLCA. DBMVS = . ..

SQLCA. dat abase = ...

CONNECT USI NG SQLCA;

dw_enp. Set Tr ansObj ect (SQLCA)

dw_enp. Retrieve()

Instead of or in addition to using the predefined SQL CA transaction object, you can define
your own transaction object in a script. Thisis necessary if your application needs to connect
to more than one database at the same time.

The following statement uses SetTransObject to associate dw_customer with a programmer-
created transaction object (trans_customer):

transacti on trans_cust oner

trans_cust oner = CREATE transaction

/] Set connection paraneters in the transaction object
trans_customer.DBMS = ...

trans_cust oner. dat abase = ...

CONNECT USI NG trans_cust oner;

dw_cust oner . Set Tr ansObj ect (t rans_cust oner)

dw_cust omer . Retri eve()

For moreinformation

Page 17

DataWindow and DataStore basics

For more information about database transaction processing:

» PowerBuilder
See Section 4.1, “Using Transaction Objects’ in Application Techniques
For more information about SetTrans and SetTransObject methods, see Section 9.196,

“SetTrans’ in DataWindow Reference and Section 9.197, “ SetTransObject” in DataWindow
Reference.

1.2.3.2 Retrieving and updating data
You call the following two methods to access a database through a Datawindow control:

Retrieve
Update

1.2.3.2.1 Basic data retrieval

After you have set the transaction object for your DataWindow control, you can use the
Retrieve method to retrieve data from the database into that control:

dw_enp. Retrieve()

1.2.3.2.2 Using retrieval arguments
About retrieval arguments

Retrieval arguments qualify the SELECT statement associated with the Datawindow
object, reducing the rows retrieved according to some criteria. For example, in the following
SELECT statement, Salary isaretrieval argument defined in the Datawindow painter:

SELECT Nane, enp.sal FROM Enpl oyee
WHERE enp.sal > :Salary

When you call the Retrieve method, you supply avalue for Salary. In PowerBuilder, the code
looks like this:

dw_enp. Retri eve(50000)

Specia considerations are explained below.

When coding Retrieve with arguments, specify them in the order in which they are defined in
the DataWindow object. Y our Retrieve method can provide more arguments than a particular
DataWindow object expects. Any extra arguments are ignored. This allows you to write a
generic Retrieve that works with several different DataWindow objects.

Omitting retrieval arguments

If your Datawindow object takes retrieval arguments but you do not pass them in the
Retrieve method, the DataWindow control prompts the user for them when Retrieveis called.

Morethan 16 arguments
The Retrieve method is limited to 16 arguments in some environments.
Power Builder

Y ou can specify any number of retrieval arguments.

Page 18

DataWindow and DataStore basics

1.2.3.2.3 Updating data

After users have made changes to datain a Datawindow control, you can use the Update
method to save those changes in the database.

In PowerBuilder, the code looks like this;
dw_enp. Updat e()

Update sends to the database all inserts, changes, and del etions made in the DataWindow
control since the last Update method. When you are using an external transaction object,
you can then commit (or roll back) those database updates. In PowerBuilder, you use SQL
statements.

For more specifics on how a Datawindow control updates the database (that is, which SQL
statements are sent in which situations), see Updating the database.

Examples

The following example shows code that connects, retrieves, updates, commits or rolls back,
and disconnects from the database.

Although the example shows all database operations in asingle script or function, most
applications separate these operations. I1n a PowerBuilder application, for example, an
application could connect to the database in the application Open event, retrieve and update
data in one or more window scripts, and disconnect from the database in the application
Close event.

Power Builder

The following statements retrieve and update data using the transaction object EmpSQL and
the DataWindow control dw_emp:

/'l Connect to the database specified in the
/] transaction object EnpSQL
CONNECT USI NG EnpSQL;

/1 Set EnpSQ. as the transaction object for dw enp
dw_enp. Set Tr ansQhj ect (EmpSQL)

/'l Retrieve data fromthe database specified in
/1 EmpSQL into dw_enp
dw_enp. Retrieve()

/! Make changes to the data...

/'l Update the database
I F dw_enp. Update() > 0 THEN
COMM T USI NG EnpSQL;
ELSE
ROLLBACK USI NG EnpSQL;
END | F

// Disconnect fromthe database
DI SCONNECT USI NG EnpSQL;

Handling retrieval or updateerrors

A production application should include error tests after each database operation. For more
about checking for errors, see Handling DataWWindow errors.

Page 19

DataWindow and DataStore basics

1.2.4 Accessing a Web service data source (Obsolete)

Y ou do not use a transaction object to access data from a Web service data source. However,
some Web services support or require auser 1D and password, and other session-related
properties like firewall settings. The WSConnection object can provide thisinformation for
your Datawindow connections.

Y ou use an instance of the WSConnection object to connect to a Web service by calling the
SetWSObject method.

For more information about setting properties for a Web service connection, see
WSConnection and SetWSObject in Section 2.152, “WSConnection object (Obsolete)”
in Objects and Controls and Section 9.201, “ SetWSObject (Obsolete)” in DataWindow
Reference.

1.2.5 Importing data from an external source
Power Builder

If the datafor a DataWindow is not coming from a database or a Web service data source
(that is, the data source was defined as External in the DataWindow wizard), you can use
these methods to import data into the Datawindow control:

ImportClipboard
ImportFile
ImportString

Y ou can also get data into the DataWindow by using the Setltem method or by using a
Datawindow expression.

For more information on the Setltem method and Datawindow expressions, see
Manipulating datain a DataWindow control.

1.2.6 Manipulating data in a DataWindow control

To handle user requests to add, modify, and delete data in a DatawWindow, you can write code
to process that data, but first you need to understand how DataWindow controls manage data.

1.2.6.1 How a DataWindow control manages data

As users add or change data, the dataisfirst handled astext in an edit control. If the datais
accepted, it isthen stored as an item in a buffer.

About the DataWindow buffers
A DataWindow uses three buffers to store data:

Table 1.3: DataWindow buffers

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows that are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or through code

Page 20

DataWindow and DataStore basics

About the edit control

Asthe user moves around the DataWindow control, the Datawindow places an edit control
over the current cell (row and column):

"~ Maintain Customers
Customer First Hame Last Hame Company Hame ﬂ
1}
1m Michaels Devlin The Power Group
Beth Feizer AkdF Corp.
Erin Miedringhauz Darling Azsociates
Meghan Mazon P.5.C.
105 Laura b zCarthy Amo & Song
106 Paul Phillipz Ralston Inc.
107 Kelly Colburn The Home Club ;I
Customer ID: 1 Da Address: |'I 990 "Windzar Street I
First Name: city: [Fact |
Last Name: [Niedringhaus | State:
Company Name: D arling Associates I Zip Code: [15301-
Phone Number: |[215] 555-E513

About text

The contents of the edit control are called text. Text is data that has not yet been accepted by
the DataWindow control. Data entered in the edit control is not in a Datawindow buffer yet;
itissimply text in the edit control.

About items

When the user changes the contents of the edit control and presses Enter or |eaves the cell (by
tabbing, using the mouse, or pressing up arrow or down arrow), the DataWindow processes
the data and either accepts or rejectsit, depending on whether it meets the requirements
specified for the column. If the data is accepted, the text is moved to the current row and
column in the DatawWindow Primary buffer. The datain the Primary buffer for a particular
column isreferred to as an item.

Eventsfor changing text and items

When data is changed in the edit control, several events occur.

Table 1.4: Event namesin PowerBuilder

Event Description

EditChanged (not Occursfor each keystroke the user typesin the edit control
available on client

control)

I[temChanged Occurs when a cell has been modified and loses focus

Page 21

DataWindow and DataStore basics

Event Description

[temError Occurs when new data fails the validation rules for the column
ItemFocusChanged Occurs when the current item in the control changes

How text is processed in the edit control

When the datain a column in a Datawindow has been changed and the column loses focus
(for example, because the user tabs to the next column), the following sequence of events
OCCurs:

1. The DataWindow control converts the text into the correct datatype for the column. For
example, if the user isin a numeric column, the Datawindow control converts the string
that was entered into a number. If the data cannot be converted, the ItemError event is
triggered.

2. If the data converts successfully to the correct type, the DataWindow control applies any
validation rule used by the column. If the data fails validation, the ItemError event is
triggered.

3. If the data passes validation, then the ItemChanged event is triggered. If you set an action/
return code of 1 in the ItemChanged event, the Datawindow control rejects the data and
does not allow the focus to change. In this case, the ItemError event is triggered.

4. If the ItemChanged event accepts the data, the ItemFocusChanged event is triggered next
and the data is stored as an item in a buffer.

Figure 2-2: How text is processed in edit controls

User enters data

Data converted

Data validated » [temError triggered

ltemChanged triggered

ltemFoousChanged triggered

Action/return codesfor events

Page 22

DataWindow and DataStore basics

Y ou can affect the outcome of events by specifying numeric values in the event's program
code. For example, step 3 above describes how you can force data to be rejected with a code
of 1in the IltemChanged event.

To specify action/return codes.

* PowerBuilder
Use aRETURN statement

For information about codes for individual events, see DataWindow Reference.

1.2.6.2 Accessing the text in the edit control
Using methods
The following methods allow you to access the text in the edit control:

» GetText - Obtains the text in the edit control
e SetText - Sets the text in the edit control

In event code

In addition to these methods, the following events provide access to the text in the edit
control:

EditChanged
ItemChanged
[temError

Use the Data parameter, which is passed into the event, to access the text of the edit control.
In your code for these events, you can test the text value and perform specia processing
depending on that value.

For an example, see Coding the ItemChanged event.

1.2.6.3 Manipulating the text in the edit control

When you want to further manipulate the contents of the edit control within your
DatawWindow control, you can use any of these methods:

CanUndo Scroll

Clear SelectedL ength
Copy SelectedLine
Cut SelectedStart
LineCount SelectedText
Paste SelectText
Position TextLine
ReplaceText Undo

For more information about these methods, see DataWindow Reference.

1.2.6.4 Coding the ItemChanged event

If data passes conversion and validation, the ItemChanged event is triggered. By defaullt,
the ItemChanged event accepts the data value and allows focus to change. Y ou can write

Page 23

DataWindow and DataStore basics

code for the ItemChanged event to do some additional processing. For example, you could
perform some tests, set a code to reject the data, have the column regain focus, and trigger the
ItemError event.

Example

The following sample code for the ItemChanged event for a DataWindow control called
dw_Employee sets the return code in dw_Employee to reject datathat is less than the
employee's age, which is specified in a SingleLineEdit text box control in the window.

Thisisthe PowerBuilder version of the code:

int a, age
age = Integer(sle_age.text)
a = | nteger(data)

/1 Set the return code to 1 in the ItemChanged
/1 event to tell PowerBuilder to reject the data
/! and not change the focus.

IF a < age THEN RETURN 1

1.2.6.5 Coding the ItemError event

The ItemError event istriggered if there is a problem with the data. By default, it rejects the
data value and displays a message box. Y ou can write code for the ItemError event to do
some other processing. For example, you can set a code to accept the data value, or reject the
data value but allow focus to change.

For more information about the events of the Datawindow control, see DataWWindow
Reference.

1.2.6.6 Accessing the items in a DataWindow

Y ou can access data values in a DataWindow by using methods or Datawindow data
expressions. Both methods allow you to access data in any buffer and to get original or
current values.

The method you use depends on how much data you are accessing and whether you know the
names of the DatawWindow columns when the script is compiled.

For guidelines on deciding which method to use, see Chapter 4, Accessing Data in Codein
DataWindow Reference.

Using methods
There are several methods for manipulating datain a Datawindow control.

These methods obtain the data in a specified row and column in a specified buffer:

* PowerBuilder

GetltemDate, GetltemDateTime, GetltemDecimal, GetltemNumber, GetltemString,
GetltemTime

This method sets the value of a specified row and column:

* PowerBuilder
Setltem

Page 24

DataWindow and DataStore basics

For example, the following statement, using PowerBuilder syntax, assigns the value from the
empname column of the first row to the variable Is Name in the Primary buffer:

Is Nanme = dw_ 1. GetltenString (1, "enpnane")

This PowerBuilder statement sets the value of the empname column in the first row to the
string Waters:

dw 1. Setltem(1l, "enmpnane", "Waters")

Uses

Y ou call the Getltem methods to obtain the data that has been accepted into a specific row
and column. Y ou can also use them to check the datain a specific buffer before you update
the database. Y ou must use the method appropriate for the column's datatype.

For more information about the methods listed above, see Chapter 9, Methods for the
DataWindow Control in DataWindow Reference.

Using expressions

Datawindow data expressions refer to single items, columns, blocks of data, selected data, or
the whole DataWindow.

In PowerBuilder, you construct data expressions using dot notation.
Expressionsin Power Builder

The Object property of the DataWindow control lets you specify expressions that refer
directly to the data of the Datawindow object in the control. This direct data manipulation
allows you to access small and large amounts of data in a single statement, without calling
methods:

dw 1. Object.jobtitle[3] = "Programer"

The next statement sets the value of the first column in the first row in the Datawindow to
Smith;

dw 1. Object.Data[1,1] = "Snmith"

For complete instructions on how to construct DataWindow data expressions, see Chapter 4,
Accessing Data in Code in DataWindow Reference.

1.2.6.7 Using other DataWindow methods
There are many more methods you can use to perform activities in DatawWindow controls.
Here are some of the more common ones:

Table 1.5: Common methods in DataWindow controls

Method Purpose

AcceptText Applies the contents of the edit control to the current item in the
Datawindow control

DeleteRow Removes the specified row from the Datawindow control, placing it in the
Delete buffer; does not delete the row from the database

Filter Displays rowsin the Datawindow control based on the current filter
GetRow Returns the current row number

Page 25

DataWindow and DataStore basics

Method Purpose

InsertRow Inserts anew row
Reset Clears al rows in the DatawWindow control
Retrieve Retrieves rows from the database

RowsCopy, Copies or moves rows from one DataWindow control to another
RowsMove

ScrollToRow | Scrollsto the specified row

SelectRow Highlights a specified row
ShareData Shares data among different DataWindow controls.

Update Sends to the database all inserts, changes, and deletions that have been
made in the Datawindow control

For complete information on DataWindow methods, see Chapter 9, Methods for the
DataWindow Control in DatawWindow Reference.

1.2.7 Accessing the properties of a Datawindow object
About DataWindow object properties

DataWindow object properties store the information that controls the behavior of a
DataWindow object. They are not properties of the Datawindow control, but of the
DatawWindow object displayed in the control. The Datawindow object isitself made up of
individual controls -- column, text, graph, and drawing controls -- that have Datawindow
object properties.

Y ou establish initial values for DataWindow object properties in the DataWindow painter.
Y ou can also get and set property values during execution in your code.

Y ou can access the properties of a DatawWindow object by using the Describe and Modify
methods or DatawWindow property expressions. Which you use depends on the type of error
checking you want to provide and on whether you know the names of the controls within the
DataWindow object and properties you want to access when the script is compiled.

For guidelines on deciding which method to use and for lists and descriptions of
DataWindow object properties, see Chapter 4, Accessing Data in Code in DataWindow
Reference.

Using methods to access object properties
Y ou can use the following methods to work with the properties of a DataWindow object:

» Describe - Reports the values of properties of a DataWindow object and controls within the
DatawWindow object

» Modify - Modifies a Datawindow object by specifying alist of instructions that change the
Datawindow object's definition
Power Builder

For example, the following statements assign the value of the Border property for the
empname column to a string variable:

Page 26

DataWindow and DataStore basics

string | s_border
| s_border = dw_1. Descri be("enpnane. Border")

The following statement changes the value of the Border property for the empname column
to 1

dw_enp. Modi f y(" enpnane. Bor der =1")

About dynamic DataWindow objects

Using Describe and Modify, you can provide an interface through which application
users can alter the Datawindow object during execution. For example, you can
change the appearance of a Datawindow object or allow an application user to create
ad hoc reports. For more information, see Dynamically Changing DataWindow

Objects

Using expressions

DataWindow property expressions provide access to properties with fewer nested strings. In
PowerBuilder, you can handle problems with incorrect object and property namesin the Error
event:

Power Builder
Use the Object property and dot notation. For example:

integer |i _border
Ii _border = Integer(dw_1.bject. enpnane. Border)
dw_1. Obj ect . enpnane. Border = 1

For reference materia on the available variations for property expressions, see the
Section 5.3, “PowerBuilder: Datawindow property expressions’ in DataWindow Reference.

1.2.8 Handling DataWindow errors
There are several types of errors that can occur during DatawWindow processing:

» Dataitemsthat areinvalid (discussed in Manipulating datain a DataWindow control)

 Failures when retrieving or updating data
» Attemptsto accessinvalid or nonexistent properties or data

This section explains how to handle the last two types of errors.

1.2.8.1 Retrieve and Update errors and the DBError event
Retrieve and updatetesting

When using the Retrieve or Update method in a DataWindow control, you should test the
method's return code to see whether the activity succeeded.

Do not test the SQL Code attribute

After issuing a SQL statement (such as CONNECT, COMMIT, or DISCONNECT)
or the equivalent method of the transaction object, you should always test the
success/failure code (the SQL Code attribute in the transaction object). However, you

Page 27

DataWindow and DataStore basics

should not use this type of error checking following aretrieval or update madein a
Datawindow.

For more information about error handling after a SQL statement, see Section 4.1,
“Using Transaction Objects’ in Application Techniques.

Table 1.6: Return codesfor the Retrieve and Update methods

Method Return code Meaning
Retrieve >=1 Retrieval succeeded; returns
the number of rows retrieved.
-1 Retrieval failed; DBError
event triggered.
No data retrieved.
Update 1 Update succeeded.
-1 Update failed; DBError event
triggered.
Example

Power Builder
If you want to commit changes to the database only if an update succeeds, you can code:

I F dw_enp. Update() > O THEN
COW T USI NG EnmpSQL;
ELSE
ROLLBACK USI NG EnpSQL;
END | F

Using the DBError event

The DatawWindow control triggers its DBError event whenever thereis an error following a
retrieval or update; that is, if the Retrieve or Update methods return -1. For example, if you
try to insert arow that does not have values for all columns that have been defined as not
allowing NULL, the DBMS rejects the row and the DBError event istriggered.

By default, the Datawindow control displays a message box describing the error message
from the DBMS, as shown here:

D atawindow Error
SHLSTATE = 23000 -
[Sybaze][ODEC Driver]lntegrity constraint violation: column Thame' in
table ‘custorner’ cannot be MULL
Mo changes made to databage. ll

_____________________ 6

Page 28

DataWindow and DataStore basics

In many cases you might want to code your own processing in the DBError event and
suppress the default message box. Here are some tips for doing this:

Table 1.7: Tipsfor processing messages from DBError event

To Do this

Get the DBMS's error code Use the SQL DBCode argument of the
DBError event.

Get the DBM S's message text Use the SQLErrText argument of the

DBError event.

Suppress the default message box Specify an action/return code of 1.

About DataWindow action/retur n codes

Some events for DataWindow controls have codes that you can set to override the
default action that occurs when the event is triggered. The codes and their meaning
depend on the event. In PowerBuilder, you set the code with a RETURN statement.

Example
Power Builder
Hereis a sample script for the DBError event:

/| Database error -195 neans that sone of the
/1 required val ues are m ssing
I F sqgl dbcode = -195 THEN
MessageBox("M ssing I nformation", &
"You have not supplied values for all " &
+"the required fields.")
END | F
/'l Return code suppresses default nmessage box
RETURN 1

During execution, the user would see the following message box after the error:

Miszing Information

@ Tou have not supplied values for all the required fieldz.

1.2.8.2 Errors in property and data expressions and the Error event

A Datawindow control's Error event is triggered whenever an error occursin adata or
property expression at execution time. These expressions that refer to data and properties of a
Datawindow object might be valid under some execution-time conditions but not others. The
Error event allows you to respond with error recovery logic when an expression is not valid.

Power Builder syntax checking

Page 29

DataWindow and DataStore basics

In PowerBuilder, when you use a data or property expression, the PowerScript compiler
checks the syntax only as far as the Object property. Everything following the Object
property is evaluated at execution time. For example, in the following expression, the column
name emp_name and the property Visible are not checked until execution time:

dw_1. Obj ect.enp_nane. Visible = "0"

If the emp_name column did not exist in the DataWindow, or if you had misspelled the
property name, the compiler would not detect the error. However, at execution time,
PowerBuilder would trigger the Datawindow control's Error event.

Using a Try-Catch block

The Error event istriggered even if you have surrounded an error-producing data or property
expression in a Try-Catch block. The catch statement is executed after the Error event is
triggered, but only if you do not code the Error event or do not change the default Error event
action from ExceptionFail!. The following example shows a property expressionin a Try-
Catch block:

TRY

dw_1. Obj ect. enp_nane. Visible = "0"
CATCH (dw unti meerror dw_e)

MessageBox ("DWRuntineError", dw_e.text)
END TRY

Deter mining the cause of theerror

The Error event has several arguments that provide information about the error condition.

Y ou can check the values of the arguments to determine the cause of the error. For example,
you can obtain the internal error number and error text, the name of the object whose script
caused the error, and the full text of the script where the error occurred. The information
provided by the Error event's arguments can be helpful in debugging expressions that are not
checked by the compiler.

If you catch a DWRuntimeError error, you can use the properties of that class instead of the
Error event arguments to provide information about the error condition. The following table
displays the correspondences between the Error event arguments and the DWRuntimeError

properties.

Table 1.8: Correspondence between Error event arguments and DWRuntimeError properties

Error event argument DWRuntimeError property

errornumber number
errorline line
errortext text
errorwindowmenu objectname
errorobject class
errorscript routinename

Controlling the outcome of the event

When the Error event istriggered, you can have the application ignore the error and
continue processing, substitute a different return value, or escalate the error by triggering

Page 30

DataWindow and DataStore basics

the SystemError event. In the Error event, you can set two arguments passed by reference to
control the outcome of the event.

Table 1.9: Setting argumentsin the Error event

Argument Description

Action A value you specify to control the application's course of action as aresult of
the error. Values are:

Exceptionlignore!
ExceptionSubstituteReturnV al ue!

ExceptionFail! (default action)

ReturnValue| A value whose datatype matches the expected value that the Datawindow
would have returned. Thisvalue is used when the value of actionis
ExceptionSubstituteReturnValue! .

For a complete description of the arguments of the Error event, see Section 8.21, “Error” in
DataWindow Reference.

When to substitute areturn value

The ExceptionSubstituteReturnValue! action alows you to substitute a return

value when the last element of an expression causes an error. Do not use
ExceptionSubstituteReturnValue! to substitute a return value when an element in the
middle of an expression causes an efror.

The ExceptionSubstituteReturnValue! action is most useful for handling errorsin data
expressions.

1.2.9 Updating the database

After users have made changes to datain a Datawindow control, you can use the Update
method to save the changes in the database. Update sends to the database all inserts, changes,
and deletions made in the DataWindow since the last Update or Retrieve method was
executed.

1.2.9.1 How the DataWindow control updates the database

When updating the database, the DataWindow control determines the type of SQL statements
to generate by looking at the status of each of the rowsin the Datawindow buffers.

There are four DataWindow item statuses, two of which apply only to rows:

Table 1.10: DataWindow item status for rows and columns

Status Appliesto

Power Builder name Numeric value
New! 2 Rows
NewM odified! 3 Rows

Page 31

DataWindow and DataStore basics

Status Appliesto

NotModified! 0 Rows and columns
DataM odified! 1 Rows and columns
Note

The named values are values of the enumerated datatype dwltemStatus. Y ou must use
the named values, which end in an exclamation point.

How statuses ar e set
When data isretrieved

When datais retrieved into a Datawindow, all rows and columnsinitially have a status of
NotModified!.

After data has changed in acolumn in a particular row, either because the user changed the
data or the data was changed programmatically, such as through the Setltem method, the
column status for that column changes to DataM odified!. Once the status for any columnin a
retrieved row changesto DataM odified!, the row status also changes to DataM odified!.

When rows are inserted

When arow isinserted into a Datawindow, it initially has arow status of New!, and all
columnsin that row initially have a column status of NotModified!. After data has changed

in acolumn in the row, either because the user changed the data or the data was changed
programmatically, such as through the Setltem method, the column status changesto
DataModified!. Once the status for any column in the inserted row changes to DataM odified!,
the row status changes to NewModified!.

When a Datawindow column has a default value, the column's status does not change to
DataModified! until the user makes at least one actual change to a column in that row.

When Updateiscalled
For rowsin the Primary and Filter buffers

When the Update method is called, the DataWindow control generates SQL INSERT and
UPDATE statements for rows in the Primary and/or Filter buffers based upon the following
row statuses:

Table 1.11: Row status after INSERT and UPDATE statements

Row status SQL statement generated

NewM odified! INSERT
DataM odified! UPDATE

A columnisincluded in an UPDATE statement only if the following two conditions are met:

* The column is on the updatable column list maintained by the DataWindow object

For more information about setting the update characteristics of the DataWindow object,
see Chapter 21, Controlling Updates in DataWindow objects in Users Guide.

Page 32

DataWindow and DataStore basics

» The column has a column status of DataM odified!

The DatawWindow control includes all columnsin INSERT statementsit generates. If a
column has no value, the DataWindow attemptsto insert aNULL. This causes a database
error if the database does not allow NULLsin that column.

For rowsin the Delete buffer

The Datawindow control generates SQL DELETE statements for any rows that were moved
into the Delete buffer using the DeleteRow method. (But if arow has arow status of New! or
NewModified! before DeleteRow is called, no DELETE statement is issued for that row.)

1.2.9.2 Changing row or column status programmatically

Y ou might need to change the status of arow or column programmatically. Typically, you
do thisto prevent the default behavior from taking place. For example, you might copy arow
from one DatawWindow to another; and after the user modifies the row, you might want to
issue an UPDATE statement instead of an INSERT statement.

Y ou use the SetltemStatus method to programmatically change a DataWindow's row or
column status information. Use the GetltemStatus method to determine the status of a
specific row or column.

Changing column status

Y ou use SetltemStatus to change the column status from DataM odified! to NotModified!, or
thereverse.

Change column status when you change row status

Changing the row status changes the status of all columnsin that row to
NotModified!, so if the Update method is called, no SQL update is produced. Y ou
must change the status of columns to be updated after you change the row status.

Changing row status

Changing row statusis alittle more complicated. The following table illustrates the effect of
changing from one row status to another:

Table 1.12: Effects of changing from onerow statusto another
Original status Specified status

New! NewModified! DataModified! NotM odified!
New! - Yes Yes No
NewModified! |No - Yes New!
DataModified! NewModified! |Yes - Yes
NotModified! Yes Yes Yes -

In the preceding table, Y es means the changeis valid. For example, issuing SetltemStatus on
arow that has the status NotModified! to change the status to New! does change the status to
New!. No means that the change is not valid and the status is not changed.

Page 33

DataWindow and DataStore basics

I ssuing SetltemStatus to change arow status from NewModified! to NotModified! actually
changes the status to New!. Issuing SetltemStatus to change arow status from DataM odified!
to New! actually changes the status to NewModified!.

Changing arow's status to NotModified! or New! causes all columnsin that row to be
assigned a column status of NotModified!. Change the column's status to DataM odified! to
ensure that an update results in a SQL Update.

Changing statusindirectly

When you cannot change to the desired status directly, you can usualy do it
indirectly. For example, change New! to DataM odified! to NotModified!.

1.2.10 Creating reports

Y ou can use Datawindow objects to create standard business reports such as financia
statements, sales order reports, employee lists, or inventory reports.

To create a production report, you:

» Determine the type of report you want to produce

» Build a Datawindow object to display datafor the report

» Place the DataWindow object in a DataWindow control on awindow or form

» Write code to perform the processing required to popul ate the DatawWindow control and
print the contents as a report

Calling InfoM aker from an application

If your users have installed InfoMaker (the Appeon reporting product), you can
invoke InfoMaker from an application. Thisway you can let your users create
and save their own reports. To do thisin PowerBuilder, use the Run function. For
information about invoking InfoM aker, see the InfoMaker Users Guide.

1.2.10.1 Planning and building the DataWindow object

To design the report, you create a DataWWindow object. Y ou select the data source and
presentation style and then:

* Sort the data

» Create groups in the DataWindow object to organize the data in the report and force page
breaks when the group values change

» Enhance the DataWindow object to look like areport (for example, you might want to add
atitle, column headers, and a computed field to number the pages)

Using fonts

Printer fonts are usually shorter and fatter than screen fonts, so text might not print
in the report exactly asit displays in the DataWindow painter. Y ou can pad the text

Page 34

DataWindow and DataStore basics

fields to compensate for this discrepancy. Y ou should test the report format with a
small amount of data before you print alarge report.

1.2.10.2 Printing the report

After you build the DatawWindow object and fill in print specifications, you can placeitina
DataWindow control on awindow or form, as described in Putting a Datawindow object into
acontrol.

To allow usersto print the report, your application needs code that performs the printing
logic. For example, you can place a button on the window or form, then write code that is run
when the user clicks the button.

To print the contents of a single Datawindow control or DataStore, call the Print method. For
example, this PowerBuilder statement prints the report in the DataWindow control dw_Sales:

dw_Sal es. Pri nt (TRUE)

For information about the Print method, see the DataWindow Reference. For information
about using nested reports to print multiple DataWindows, see Using nested reports.

Separate DataWindow controlsin asingle print job
For PowerBuilder applicationsonly

If the window has multiple Datawindow controls, you can use multiple PrintDataWindow
method callsin a script to print the contents of all the DataWindow controls in one print job.

These statements print the contents of three DataWindow controlsin asingle print job:

int job

job = Print Qpen("Enpl oyee Reports")

/| Each DataW ndow starts printing on a new page.
Pri nt Dat aW ndow(j ob, dw_EnpHeader)

Pri nt Dat aW ndow(j ob, dw_EnpDetai |)

Pri nt Dat aW ndow(j ob, dw_EnpDpt Sum)

Print C ose(j ob)

For information about PowerBuilder system functions for printing, see Chapter 10,
Power Script Functions in Power Script Reference.

1.2.11 Using nested reports

When designing a Datawindow object for areport, you can choose to nest other reports
(which are also Datawindow objects) within it. The basic steps for using nested reportsin an
application are the same ones you follow for the other report types. There are, however, some
additional topics concerning nested reports that you should know about.

To learn about designing nested reports, see Chapter 25, Using Nested Reportsin Users
Guide.

Printing multiple updatable DatawWindows on a page

An advantage of composite reportsis that you can print multiple reports on a page. A
limitation of composite reportsis that they are not updatable, so you cannot directly print
several updatable DatawWindows on one page. However, there is an indirect way to do that, as
follows.

Page 35

DataWindow and DataStore basics

Y ou can use the GetChild method on named nested reports in a composite report to get a
reference to a nested report. After getting the reference to the nested report, you can address
the nested report during execution like other Datawindows.

Using this technique, you can call the ShareData method to share data between multiple
updatable Datawindow controls and the nested reports in your composite report. This allows
you to print multiple updatable DataWindows on a page through the composite report.

To print multiple Datawindows on a page using a composite DataWindow:

1. Build awindow or form that contains DatawWindow controls with the updatable
DataWindow objects.

2. Define acomposite report that has reports corresponding to each of the DataWindowsin
the window or form that you want to print. Be sure to name each of the nested reportsin
the composite report.

Naming the nested report

To use GetChild on a nested report, the nested report must have a name. To name a
nested report in the DataWindow painter, double-click it in the workspace and enter a
name in the Name box on the General property page.

3. Add the composite report to the window or form (it can be hidden).
4. Inyour application, do the following:
1. Retrieve datainto the updatable DataWindow controls.
2. Use GetChild to get areference to the nested reports in the composite report.

3. Use ShareData to share data between the updatable DatawWindow objects and the
nested reports.

4. When appropriate, print the composite report.

The report contains the information from the updatable Datawindow objects.

Re-retrieving data

Each time you retrieve data into the composite report, all references (handles) to
nested reports become invalid, and data sharing with the nested reports is terminated.
Therefore, be sure to call GetChild and ShareData each time after retrieving data.

Creating and destroying nested reports during execution

Y ou can create and destroy nested reports in a Datawindow object dynamically during
execution using the same technique you use to create and destroy other controlsin a
Datawindow object.

Creating nested reports

Page 36

DataWindow and DataStore basics

To create a nested report, use the CREATE keyword with the Modify method. Supply the
appropriate values for the nested report's properties.

Viewing syntax for creating a nested report

The easiest way to see the syntax for creating a nested report dynamically isto export
the syntax of an existing DataWindow object that contains a nested report. The export
file contains the syntax you need.

For more information about exporting syntax in the Library painter, see Users Guide.

When creating a nested report, you need to re-retrieve data to see the report. In a composite
report, you can either retrieve data for the whole report or use GetChild to get areference to
the new nested report and retrieve its data directly. For nested reports in other reports, you
need to retrieve data for the base report.

Destroying nested reports

To destroy a nested report, use the DESTROY keyword with the Modify method. The nested
report disappears immediately.

For more about creating and destroying controlsin a DataWindow object or report, see
Dynamically Changing DatawWindow Objects.

For alist of properties of nested reports, see Section 3.2.13, “Properties for Report controlsin
Datawindow objects’ in DataWindow Reference.

1.2.12 Using crosstabs

To perform certain kinds of data analysis, you might want to design DataWindow objects in
the Crosstab presentation style. The basic steps for using crosstabs in an application are the
same ones you follow for the other DatawWindow types, but there are some additional topics
concerning crosstabs that you should know about.

To learn about designing crosstabs, see Chapter 27, Working with Crosstabsin Users Guide.

1.2.12.1 Viewing the underlying data

If you want users to be able to see the raw data as well as the cross-tabulated data, you can do
one of two things:

* Place two Datawindow controls on the window or form: one that is associated with the
crosstab and one that is associated with a DataWindow object that displays the retrieved
rows.

» Create acomposite Datawindow object that contains two reports: one that shows the raw
data and one that shows the crosstab.

Do not share data between the two DataWindow objectsor reports
They have the same SQL SELECT data definition, but they have different result sets.

For more about composite DataWindows, see Users Guide.

Page 37

DataWindow and DataStore basics

1.2.12.2 Letting users redefine the crosstab

With the CrosstabDial og method, you can allow users to redefine which columnsin the
retrieved data are associated with the crosstab's columns, rows, and values during execution.

The CrossTabDialog method displays the Crosstab Definition dialog box for the user to
define the data for the crosstab's columns, rows, and values (using the same techniques
you use in the DatawWindow painter). When the user clicks OK in the dialog box, the
Datawindow control rebuilds the crosstab with the new specifications.

Displaying infor mational messages

Y ou can display informational messages when a crosstab is rebuilt during execution as a
result of the call to CrosstabDialog. (The messages are the same ones you see when building
acrosstab in the DataWindow painter, such as Retrieving data and Building crosstab.) Y ou
might want to do thisif you are working with a very large number of rows and rebuilding the
crosstab could take along time.

Power Builder

In PowerBuilder, you use a user event to display the crosstab's informational messages.

Todisplay informational messages when a crosstab is rebuilt:

1. Defineauser event for the DatawWindow control containing the crosstab. Associate it
with the event ID pbm_dwnmessagetext.

2. Inthescript for the user event, get the value of the text argument (which holds
the message that PowerBuilder would display when building the crosstab in the
Datawindow painter) and display it to the user.

Examples

Power Builder

In the example, code for the DataWindow control's user event for pbm_dwnmessagetext
displays informational messages in a static text control in the window containing the
crosstab:

st _nessage. Text = text

With that script in place, after CrosstabDialog has been called and the user has redefined
the crosstab, as the crosstab is being rebuilt, your application dynamically displays the
informational messages in the static text control st message. (Y ou might want to reset
st_message.Text to be the empty string in the line following the CrosstabDialog call.)

In this example, code in the user event for pbm_dwnmessagetext displays informational
messages as MicroHelp in an MDI application (w_crosstab isan MDI frame window):

w_crosst ab. Set M croHel p(text)

The informational messages are displayed in the MDI application's MicroHelp as the crosstab
isrebuilt.

For moreinformation

Page 38

DataWindow and DataStore basics

For more about user events in PowerBuilder, see Chapter 8, Working with User Eventsin
Users Guide.

For more about the CrosstabDialog method and MessageText event, see Section 9.16,
“CrosstabDialog” in DataWindow Reference and Section 8.32, “MessageText” in
DataWindow Reference.

1.2.12.3 Modifying the crosstab's properties during execution

Aswith other DataWindow objects, you can modify the properties of a crosstab during
execution using the Modify method. Some changes require the DataWindow control to
dynamically rebuild the crosstab; others do not. (If the original crosstab was static, it becomes
adynamic crosstab when it isrebuilt.)

Changesthat do not forcea rebuild

Y ou can change the following properties without forcing the Datawindow control to rebuild
the crosstab:

Table 1.13: Propertiesyou can change on a crosstab DataWindow without forcing a rebuild

Properties Objects

Alignment Column, Compute, Text

Background Column, Compute, Line, Oval, Rectangle,
RoundRectangle, Text

Border Column, Compute, Text

Brush Line, Oval, Rectangle, RoundRectangle

Color Column, Compute, Text

Edit styles (dddw, ddib, checkbox, edit, Column

editmask, radiobutton, richtext)

Font Column, Compute, Text

Format Column, Compute

Pen Line, Oval, Rectangle, RoundRectangle

Pointer Column, Compute, Line, Oval, Rectangle,
RoundRectangle, Text

Changesthat force arebuild

If you change any other properties, the Datawindow control rebuilds the structure of the
crosstab when Modify is called. Y ou should combine all needed expressions into one Modify
call so that the Datawindow control has to rebuild the crosstab only once.

Default valuesfor properties

For computations derived from existing columns, the Datawindow control by default uses
the properties from the existing columns. For completely new columns, properties (such as
font, color, and so on) default to the first column of the preexisting crosstab. Properties for
text in headers default to the properties of the first text control in the preexisting crosstab's
first header line.

Page 39

DataWindow and DataStore basics

For more about the Modify method, see Dynamically Changing DataWindow Objects. For
details on the Datawindow object properties, see Chapter 3, DataWindow Object Properties
in DataWwindow Reference.

1.2.13 Generating HTML

Y ou can use the datain a Datawindow object to create HyperText Markup Language
(HTML) syntax. Once the HTML has been created, you can display it in aWeb browser.

Techniquesyou can use
Y ou can use any of several techniquesto generate HTML from a Datawindow object.
In a painter

In both the DataWindow painter and the Output view in the Database painter, you can save
retrieved datain HTML format. To do thisin the Datawindow painter, select File>Save
Rows As from the menu. In the Database painter, open the Output view, then select
Rows>Save Rows As from the menu. In both painters, specify HTML Table as the format for
thefile.

In your application code

Y ou can obtain an HTML string of the DataWindow presentation and data from the
DataHTML Table property. Y ou can save the string in a variable and modify the HTML
with string manipulation operations. In PowerBuilder, you can also use the FileOpen and
FileWrite functionsto save the HTML to afile.

The HTMLTable property has its own properties which you can set to control the HTML
attributes and style sheet associated with the Table HTML element.

Power Builder only
In PowerBuilder, there are two more techniques available to you. Y ou can:

 Call the SaveAs method to save the contents of a DataWindow directly to afileon disk. To
save the datain HTML format, you need to specify HTML Table as the file type when you
call SaveAs.

* Call the GenerateHTML Form method to create an HTML form from data contained in
a DatawWindow control or DataStore whose Datawindow object uses the Freeform or
Tabular presentation style.

Choosing presentation styles

Some DataWindow presentation styles translate better into HTML than others. The following
presentation styles produce good results:

Tabular

Group

TreeView

Freeform

Crosstab

Grid

The Composite, Graph, RichText, and OLE 2.0 presentation styles produce HTML output
that is based on the result only, and not on the presentation style. DataWindows that have

Page 40

DataWindow and DataStore basics

overlapping controls might not produce the expected results. Nested reports are ignored; they
are not included in the generated HTML.

Example
This example illustrates how you might use DataWindow-generated HTML in an application.

The key line of code getsthe HTML from the DataWindow by referring to its HTML Table
property. In PowerBuilder, you can use the Describe method or a property expression.

Power Builder
Is_htm string = dw_1. Obj ect . Dat aW ndow. Dat a. HTM.Tabl e
The complete example that follows isimplemented in PowerBuilder.

The window below displays customer datain atabular DatawWindow object. By pressing the
Browse button, the user can trand ate the contents of the DataWindow object into HTML
format and invoke a Web browser to view the HTML output. By pressing the Select Browser
button, the user can tell the application which Web browser to use:

+.- Cugtomer Form =10] =]
Customer First Name Last Name Company Name i’ Salect Browsat
1D
1m Michaels Drevlin The Power Group S
102 Beth Reizer AkF Corp.
103 Efin Y Datawindow - d_custlist - Netscape
104 Meghar File Edit View Go Window Help
105 Laura =

Back Forward Reload Home Search Guide Print Security

106 Paul { @T \a .ﬁ = ‘ﬁ d E
' =]

th Bookmark.z \,j{. Lu:u:atiu:un:Ifile:.-".-".-"DI.-"temp.-"u:I_u:ustIist.htm
Internet |’_‘|'r Lookup |’_‘|'r M et Coal

Customer ID First Name Last Name Company Name :’
1m Michaels Drevlin The Power Group
102 Beth Reizer AkF Corp.
103 Erin Miedrnghaus Darling Aszociates
104 eghian b azon F5.C.
105 Laura b cCarthy Amo & Sons
1NE Dl Dillire O 2lobown Lo LI
IF| |D|:u:ument: Done o

Script for the Select Browser button

The script for the Select Browser button displays a dialog box where the user can select an
executable file for aWeb browser. The path to the executable is stored in is_Browser, which
is an instance variable defined on the window:

String | s_Browser Nane
Integer |i_Result

/l Open the dialog to select a browser.

li _Result = GetFil eOpenNanme("Sel ect Browser", &
i s_Browser, |s_BrowserNanme, &
"exe", "Executable Files (*.EXE), *. EXE")

Page 41

DataWindow and DataStore basics

IF li_Result = -1 THEN
MessageBox("No Browser", "No Browser sel ected")
END | F

Script for the Browse button

The script for the Browse button creates an HTML string from the data in the DataWindow
by assigning the Dataa HTML Table property to a string variable. After constructing the
HTML string, the script adds a header to the HTML string. Then the script savesthe HTML
to afile and runs the Web browser to display the output.

String | s_HTM., |s_FileNanme, |s_BrowserPath
Integer |i_FileNunmber, |i_Bytes,
Integer |i_RunResult, |i_Result

/] Cenerate the HTM.

Is_HTML = dw_1. Qbj ect . Dat aW ndow. Dat a. HTM.Tabl e

IF IsNull (I's_HTM.) O Len(ls_HTM.) <= 1 THEN
MessageBox ("Error", "Error generating HTM.I")

Ret ur n
ELSE
I s_HTM. ="<H1>HTM. Cenerated From a Dat aW ndow'&
+ "</ H1><P>" + |s_HTM.
END | F

/[l Create the file.

Is_FileNane = "custlist. htni

I'i _FileNunmber = FileOpen(ls_FileNane, StreanmVbde!, &
Wite!, LockReadWite!, Replace!)

IF (li_FileNumber >= 0) THEN
li_Bytes = FileWite(li_FileNunber, |s_HTM)
Fil eCl ose(li _Fil eNunber)
IF Ii_Bytes = Len(ls_HTM.) THEN
// Run Browser with the HTM. file.
I F Not FileExists(is_Browser) THEN
cb_sel browser. Trigger Event Cicked()
I F NOT Fil eExists(is_Browser) THEN
MessageBox(" Sel ect Browser", "Could &
not find the browser.")

RETURN

END | F
END | F
i _RunResult = Run(is_Browser + " file:///"+&

I s_Fi |l eNane)
IF Ii _RunResult = -1 THEN

MessageBox("Error", "Error running browser!")
END | F

ELSE
MessageBox ("Wite Error", &
"File Wite Unsuccessful")
END | F
ELSE
MessageBox ("File Error", "Could not open file")
END | F

1.2.13.1 Controlling display

Y ou control table display and style sheet usage through the HTML Table.GenerateCSS
property. The HTML Table.GenerateCSS property controls the downward compatibility
of the HTML found in the HTMLTable property. If HTML Table.GenerateCSS is FAL SE,

Page 42

DataWindow and DataStore basics

formatting (style sheet references) is not referenced in the HTMLTable property; if itis
TRUE, the HTML Table property includes elements that reference the cascading style sheet
saved in HTML.StyleSheet.

This screen shows an HTML table in a browser using custom display features:

Ei C:ATEMPAHTHMLT emp.htm [local] - Microsoft Internet Explorer

File Edit “iew Go Favontes Help

: = = ¥ =
S *, @ - A B E
Back Forward Stop Refregsh Home Search Fawvortez Prink Faont b il Ei
J_| Linksz @ Best af the Web @ Today'z Links @ YWieb Galleny @ Froduct Hews @ bicrozoft
JJ Addrezs IE:"-.TEMF"\HTMLT emp.htm
Depatment Employes First
o o Last Mame Name Status
100 102 | Whitney Fran Active
100 105 | Cobb b atthew Active
100 160 | Breault Robert Active
100 243 | Shighow MHatazha Active
100 247 | Driscal Kurt mn
eave
100 249 | Guewvara Rodrigo Achive
I I I I I ll
|D-:|r‘|e |@ i

HTMLTable.GenerateCSSis TRUE

If the HTML Table.GenerateCSS property is TRUE, the HTML Table element in the
HTMLTable property uses additional properties to customize table display. For example,
suppose you specify the following properties:

HTM_Tabl e. NoW ap=Yes
HTM.Tabl e. Bor der =5
HTM.Tabl e. W dt h=5
HTM_Tabl e. Cel | Paddi ng=2
HTM_Tabl e. Cel | Spaci ng=2

Describe, Modify, and dot notation

Y ou can access these properties by using the Modify and Describe PowerScript
methods or by using dot notation.

The HTML syntax in the HTMLTable property includes table formatting information and
class references for use with the style sheet:

<t abl e cel | spaci ng=2 cel | paddi ng=2 border=5 wi dt h=5>
<tr>

Page 43

DataWindow and DataStore basics

<td CLASS=0 AL| G\=cent er >Enpl oyee | D
<td CLASS=0 ALI G\=center>First Nanme
<td CLASS=0 ALI G\=cent er>Last Nane
<tr>
<td CLASS=6 ALl G\=ri ght >102
<td CLASS=7>Fr an
<td CLASS=7>Wit ney

</t abl e>

HTMLTable.GenerateCSSis FAL SE

If HTMLTable.GenerateCSS is FAL SE, the Datawindow does not use HTML Table
properties to create the Table element. For example, if GenerateCSSis FALSE, the HTML
syntax for the HTMLTable property might look like this:

<t abl e>
<tr>
<th ALl G\=cent er >Enpl oyee | D
<th ALI G\=cent er >Fi rst Nane
<th ALI G\=cent er >Last Nane
<tr>
<td ALl GN=ri ght >102
<t d>Fr an
<t d>Whi t ney

</t abl e>

Merging HTML Table with the style sheet

The HTML syntax contained in the HTML Table property isincomplete: it is not wrapped
in <HTML></HTML> elements and does not contain the style sheet. Y ou can write codein
your application to build a string representing a complete HTML page.

Power Builder example

This exampl e sets Datawindow properties, creates an HTML string, and returnsit to the
browser:

String Is_htm
ds_1.Modify &
(" dat awi ndow. HTM_Tabl e. Gener at eCSS="' yes' ")
ds_1. Modi f y(" dat awi ndow. HTM_Tabl e. NoW ap='yes' ")
ds_1. Modi f y(" dat awi ndow. HTM_Tabl e. wi dt h=5")
ds_1. Modi f y(" dat awi ndow. HTM_Tabl e. bor der =5")
ds_1. Modi f y(" dat awi ndow. HTM_Tabl e. Cel | Spaci ng=2")
ds_1. Modi f y(" dat awi ndow. HTM_Tabl e. Cel | Paddi ng=2")
Is_html = "<HTM.>"
Is html += &
ds_1. Obj ect . dat awi ndow. HTM_Tabl e. St yl eSheet
Is_html += "<BODY>"
I s_html += "<H1>Dat aW ndow wi th Styl eSheet </ H1>"
Is_html += ds_1. Qbj ect. Dat aW ndow. dat a. HTM.Tabl e
Is_html += "</ BODY>"
Is_html += "</ HTM.>"
return | s_htni

This technique provides control over HTML page content. Use this technique as an
aternative to calling the SaveAs method with the HTML Table! Enumeration.

1.2.13.2 Calling the SaveAs method

As an aternative to creating HTML pages dynamically, you can call the SaveAs method with
the HTMLTable! Enumeration:

Page 44

DataWindow and DataStore basics

ds_1. SaveAs &
("C\TEMP\ HTM.Tenp. ht nf*, HTM.Tabl e!, TRUE)

This creates an HTML file with the proper elements, including the style sheet:

<STYLE TYPE="t ext/css">
<l--

.2 { COLOR #000000; BACKGROUND: #f f f f f f ; FONT- STYLE: nor nal ; FONT- V\EI GHT: nor mal ; FONT: 9pt
"Arial", sans-serif; TEXT- DECORATI ON: none}

. 3{ COLOR: #000000; BACKGROUND: #f f f f f f ; FONT- STYLE: nor mal ; FONT- VEI GHT: nor mal ; FONT: 8pt
"M5 Sans Serif", sans-serif; TEXT- DECORATI ON: none}

. 3{ COLOR: #000000; BACKGROUND: #f f f f f f ; FONT- STYLE: nor mal ; FONT- VEI GHT: nor mal ; FONT: 8pt
"M5 Sans Serif", sans-serif; TEXT- DECORATI ON: none}

ca D

</ STYLE>

<TABLE now ap cel | spaci ng=2 cel | paddi ng=2 bor der=5 w dt h=5>
<tr>
<td CLASS=2 AL| G\=ri ght >Enpl oyee |D:
<td CLASS=3 ALI| G\=ri ght >501
<tr>
<td CLASS=2 AL| G\=ri ght>Last Nane:
<td CLASS=3>Scot t
<tr>
<td CLASS=2 AL| G\=ri ght >First Name:
<td CLASS=3>David
<tr>
<td CLASS=2 AL| G\=ri ght >St at us:
<td CLASS=3>Active
</ TABLE>

1.2.13.3 Displaying DataWindow objects as HTML forms

The GenerateHTML Form method creates HTML form syntax for DataWindow objects.
Y ou can create an HTML form that displays a specified number of columns for a specified
number of rows. Note the following:

* You create HTML form syntax by calling the GenerateHTMLForm method for the
Datawindow control or DataStore

* The GenerateHTML Form method creates HTML form syntax for the detail band only
» Embedded nested DatawWindows are ignored; they are omitted from the generated HTML

Presentation styles

Although the GenerateHTM L Form method generates syntax for all presentation styles, the
only stylesthat create usable forms are Freeform and Tabular.

The following HTML page shows a freeform DataWindow object converted into aform
using syntax generated by the GenerateHTML Form method:

Page 45

DataWindow and DataStore basics

E CATEMPAformtemp_htm [local] - Microsoft Internet Explorer
File Edt “iew GGo Favortes Help

@ 0 [w @ G & A B B

Back Stop Refresh Home Search Favaortez Print Fant bd il Ed
Links Best af the 'web Today's Links YWwieb Gallery Froduct Hews bicrozoft

Addrezs |E: WTEMP S formternp. btm ﬂ

=

Ermployes IIZil:|5':I1

Last Mame:|Seatt

First Name{David

Status; ™ Active

" Teminated

" On Leave

Subriit

Dane | #]

Edit style conversion

The GenerateHTM L Form method converts column edit styles into the appropriate HTML
elements:

Table 1.14: HTML elements generated for column edit styles

Column edit style HTML element

CheckBox Input element specifying
TYPE=CHECKBOX

DropDownDatawindow Select element with a single Option element

DropDownListBox Select element with one Option element for
each item in the DropDownListBox

Edit Input element specifying TY PE=ETEXT

RadioButton Input element specifying TY PE=RADIO

Generating syntax
To generate HTML form syntax, you call the GenerateHTM L Form method:

i nst ancenane. Gener at eHTMLForm (syntax, style, action { , startrow, endrow,
startcol um, endcolum { , buffer } })

The method places the Form element syntax into the syntax argument and the HTML style
sheet into the style argument, both of which are passed by reference.

Page 46

DataWindow and DataStore basics

Static textsin freeform DataWindow objects

All static texts in the detail band are passed through to the generated HTML form
syntax. If you limit the number of columns to be converted using the startcolumn and
endcolumn arguments, remove the headers from the detail band for the columns you
eliminate.

Hereis an example of the GenerateHTM L Form method:

String | s_syntax, Is_style, |Is_action
String I's_htn
Integer |i_return
Is_action = &

"/ cgi - bi n/ pbcgi 60. exe/ myapp/ uo_webtest/f_enplist"
li_return = ds_1. GenerateHTMLForm &

(I's_syntax, |s_style, |Is_action)
IFli _return = -1 THEN

MessageBox("HTM.", "Generat eHTM_.Form fai | ed")

ELSE
/1 of MakeHTM_Page is an object nethod,
/] described in the next section.
Is_ html = this.of MakeHTM.Page &
(I's_syntax, |s_style)
END | F

After calling the GenerateHTMLForm method, the Is_syntax variable contains a Form
element. Hereis an example:

<FORM ACTI ON=
"/ cgi - bi n/ pbcgi 60. exe/ myapp/ uo_webt est/f_enplist"
METHOD=POST>
<pP>
<P>Enpl oyee | D: </ FONT>
<I NPUT TYPE=TEXT NAME="enp_id_1" VALUE="501">

<P>Last Nane: </ FONT>
<I NPUT TYPE=TEXT NAME="enp_| nane_1" MAXLENGTH=20 VALUE="Scott">

<P>Fi rst Nane: </ FONT>
<I NPUT TYPE=TEXT NAME="enp_fnane_1" MAXLENGTH=20 VALUE="Davi d">

<P>St at us: </ FONT>
<I NPUT TYPE="RADI O' NAME="status_1" CHECKED CLASS=5 >Active

<p>
<I NPUT TYPE="RADI O' NAME="status_1" CLASS=5 >
Ter ni nat ed

<p>

<I NPUT TYPE="RADI O' NAME="status_1" CLASS=5 >
On Leave

<p>

<p>

<| NPUT TYPE=SUBM T NAME=SAMPLE VALUE="">

</ FORM>

Thels_stylesheet variable from the previous example contains a Style element, an example of
which is shown below:

<STYLE TYPE="t ext/css">
<l--

Page 47

DataWindow and DataStore basics

. 2{ COLOR: #000000; BACKGROUND: #f f f f f f ; FONT- STYLE: nor mal ; FONT- VEI GHT: nor mal ; FONT: 9pt
"Arial", sans-serif; TEXT- DECORATI ON: none}

. 3{ COLOR: #000000; BACKGROUND: #f f f f f f ; FONT- STYLE: nor mal ; FONT- VEI GHT: nor mal ; FONT: 8pt
"MS Sans Serif", sans-serif; TEXT- DECORATI ON: none}

. 5{ COLOR: #000000; BACKGROUND: #f f f f f f ; FONT- STYLE: nor mal ; FONT- VEI GHT: nor mal ; FONT: 8pt
"MS Sans Serif", sans-serif; TEXT- DECORATI ON: none}

= B

</ STYLE>

Unique element names

The GenerateHTML Form method creates unique names for al elementsin the form
(even when displaying multiple rows in one form) by adding a_nextsequential number
suffix.

Creatingan HTML page

To use the syntax and style sheet returned by the GenerateHTM L Form method, you must
write code to merge them into an HTML page. A complete HTML page requires <HTML>
and <BODY > elements to contain the style sheet and syntax.

One way to do thisisto create aglobal or object function that returns a complete
HTML page, taking as arguments the Form and Style elements generated by the
GenerateHTMLForm method. Such a function might contain the following code:

/] Function Nanme: of_MakeHTM.Page
/1 Argunents: String as_syntax, String as_style
/] Returns: String

//***********************************

String I's_htm

|F as_syntax = "" THEN
RETURN "*"

END | F

IF as_style = "" THEN
RETURN "*"

END | F

I's_html = "<HTM.>"

Is_html += as_style

I's_html += "<BODY>"

I's_html += "<H1>Enpl oyee | nformati on</ H1>"
Is_html += as_synt ax

I's_html += "</ BODY></ HTM_>"

RETURN | 's_ht mi

1.3 Dynamically Changing DataWindow Objects
About this chapter
This chapter describes how to modify and create DatawWindow objects during execution.

1.3.1 About dynamic DataWindow processing

Basics

DataWindow objects and al entitiesin them (such as columns, text, graphs, and pictures)
each have a set of properties. Y ou can look at and change the values of these properties

Page 48

DataWindow and DataStore basics

during execution using DatawWindow methods or property expressions. Y ou can aso create
DataWindow objects during execution.

A Datawindow object that is modified or created during execution is called a dynamic
DataWindow object.

What you can do

Using this dynamic capability, you can alow users to change the appearance of the
DatawWindow object (for example, change the color and font of the text) or create ad hoc
queries by redefining the data source. After you create a dynamic DataWindow object and
the user is satisfied with the way it looks and the data that is displayed, the user can print the
contents as a report.

1.3.2 Modifying a DataWindow object

During execution, you can modify the appearance and behavior of a Datawindow object by
doing one of the following:

» Changing the values of its properties

» Adding or deleting controls from the DatawWindow object

Changing property values

Y ou can use the Modify method or a property expression to set property values. This lets you
change settings that you ordinarily specify during development in the DataWindow painter.

Before changing a property, you might want to get the current value and saveit in avariable
so that you can restore the original value later. To obtain information about the current
properties of a DataWindow object or a control in a DatawWindow object, use the Describe
method or a property expression.

Using expressionsin property values

With some DataWindow properties, you can assign a value through an expression that the
Datawindow evaluates during execution, instead of having to assign avalue directly. For
example, the following statement displays asalary in red if it isless than $12,000, and in
black otherwise:

dw_1. Modi fy("sal ary. Col or &
='0 ~t if(salary <12000, 255,0)"' ")

For moreinformation

The syntax is different for expressions in code versus expressions specified in the
Datawindow painter. For the correct syntax and information about which properties can be
assigned expressions, see the Section 5.1.4, “Using DataWindow expressions as property
values’ in DataWindow Reference.

For more information about property expressions and DataWindow object properties and
examples of using Describe and Modify methods, see the Section 5.2, “PowerBuilder:
Modify and Describe methods for properties’ in DataWindow Reference.

Adding and deleting controls within the Datawindow object
Y ou can aso use the Modify method to:

Page 49

DataWindow and DataStore basics

» Create new objectsin a DataWindow object

Thislets you add Datawindow controls (such as text, bitmaps, and graphic controls)
dynamically to the Datawindow object.

For how to get a good idea of the correct Create syntax, see Specifying the DatawWindow
object syntax.

» Destroy controlsin a DataWindow object
Thislets you dynamically remove controls you no longer need.

Power Builder tool for easier coding of DataWindow syntax
Power Builder only

Included with PowerBuilder is DW Syntax, atool that makes it easy to build the correct
syntax for property expressions, Describe, Modify, and SyntaxFromSQL statements. Y ou
click buttons to specify which properties of a DataWindow you want to use, and DW
Syntax automatically builds the appropriate syntax, which you can copy and paste into your
application code.

See Using DWSyntax for more information.

Viewing DataWindow object propertiesin Power Builder
Power Builder only

Y ou can use the PowerBuilder Browser to get alist of DataWindow properties: on the
DataWindow tab, select a DataWindow object in the left pane and Propertiesin the
right pane. To see the properties for a control in a DataWindow object, double-click the
DatawWindow object name, then select the control.

1.3.3 Creating a DataWindow object

This section describes how to create a DataWindow object by calling the Create method in an
application.

Datawindow painter

Y ou should use the techniques described here for creating a Datawindow from syntax
only if you cannot accomplish what you need to in the DataWindow painter. The
usual way of creating Datawindow objectsis to use the Datawindow painter.

To learn about creating DatawWindow objects in the Datawindow painter, see the
Section 18.3, “Building a DataWindow object” in Users Guide.

Y ou use the Create method to create a DataWindow object dynamically during execution.
Create generates a DataWindow object using source code that you specify. It replaces
the Datawindow object currently in the specified DataWindow control with the new
Datawindow object.

Resetting the transaction object

The Create method destroys the association between the Datawindow control and the
transaction object. As aresult, you need to reset the control's transaction object by
calling the SetTransObject or SetTrans method after you call Create.

Page 50

DataWindow and DataStore basics

To learn how to associate a Datawindow control with a transaction object, see Using
DataWindow Objects.

Specifying the DataWindow object syntax
There are several ways to specify or generate the syntax required for the Create method.

In PowerBuilder, you can:
» Usethe SyntaxFromSQL method of the transaction object
» Usethe LibraryExport PowerScript function

Using SyntaxFromSQL

You are likely to use SyntaxFromSQL to create the syntax for most dynamic Datawindow
objects. If you use SyntaxFromSQL, all you haveto do is provide the SELECT statement and
the presentation style.

In PowerBuilder, SyntaxFromSQL is a method of the transaction object. The transaction
object must be connected when you call the method.

Setting USERID for nativedrivers

In PowerBuilder, table names are automatically qualified with the owner's name if
you are using a native driver. To obtain the same results in an application, you must
set the USERID property in the transaction object so that the table name is properly
qualified and extended attributes can be looked up.

SyntaxFromSQL has three required arguments:

* A string containing the SELECT statement for the DatawWindow object

A string identifying the presentation style and other settings

» The name of astring you want to fill with any error messages that might result

SyntaxFromSQL returns the complete syntax for a DataWindow object that is built using the
specified SELECT statement.

Using SyntaxFromSQL with Adaptive Server Enterprise

If your DBMS is Adaptive Server Enterprise and you call SyntaxFromSQL,
PowerBuilder must determine whether the tables are updatable through a unique
index. Thisis possible only if you set AutoCommit to TRUE before calling
SyntaxFromSQL, as shown below:

sql ca. aut oconmi t =TRUE
sql ca. synt axfronsqgl (sqlstnt, presentation, err)
sql ca. aut oconmi t =FALSE

Using LibraryExport in Power Builder

Page 51

DataWindow and DataStore basics

Y ou can use the LibraryExport PowerScript function to export the syntax for a Datawindow
object and store the syntax in a string.

Y ou can then use the exported syntax (or a modification of the syntax) in Create to create a
DataWindow object.

Using the DataWindow.Syntax property

Y ou can obtain the source code of an existing Datawindow object to use as amodel or for
making minor changes to the syntax. Many values in the source code syntax correspond to
properties of the Datawindow object.

This JavaScript example gets the syntax of the DataWindow object in the Datawindow
control, dw_1, and displaysit in the text box control, textb_dw_syntax:

var dwSynt ax;
dwSynt ax = dw_1. Descri be("dat awi ndow. synt ax") ;
text b_dw_synt ax. val ue = dwSynt ax;

Creating the syntax your self

Y ou need to create the syntax yourself to use some of the advanced dynamic DataWindow
features, such as creating a group break.

The Datawindow source code syntax that you need to supply to the Create method can be
very complex. To see examples of Datawindow object syntax, go to the Library painter and
export a Datawindow object to atext file, then view the file in atext editor.

For more information on Create and Describe methods as well as DataWindow object
properties and syntax, see Section 5.2, “PowerBuilder: Modify and Describe methods for
properties’ in DataWindow Reference.

1.3.4 Providing query ability to users

When you call the Retrieve method for a DataWindow control, the rows specified in the
DataWindow object's SELECT statement are retrieved. Y ou can give usersthe ability to
further specify which rows are retrieved during execution by putting the DataWindow into
guery mode. To do that, you use the Modify method or a property expression (the examples
here use Modify).

Limitations

Y ou cannot use query mode in a Datawindow object that contains the UNION
keyword or nested SELECT statements.

1.3.4.1 How query mode works

Once the Datawindow isin query mode, users can specify selection criteriausing query by
example -- just as you do when you use Quick Select to define a data source. When criteria
have been defined, they are added to the WHERE clause of the SELECT statement the next
time datais retrieved.

The following three figures show what happens when query mode is used.
First, dataisretrieved into the Datawindow. There are 36 rows:

Page 52

DataWindow and DataStore basics

Rep
SIMpson
Janes
Ferez
SIMpson
Jones
Ferez

SIMpson

Quarter

(1
(21
(11
(11
(11
(1
(1

Product

=tellar
otellar
otellar
Cosmic
Cosmic
Cosmic

Salactic

Units

12
15
14
a3

5
26

B

How count: 3B

Next, query mode is turned on. The retrieved data disappears and users are presented with
empty rows where they can specify selection criteria. Here the user wantsto retrieve rows
where Quarter = Q1 and Units > 15:

Rep

Quarter

(11

Product

Units
=15

Fow count: 3k

Next, Retrieveis called and query mode is turned off. The Datawindow control adds the
criteriato the SELECT statement, retrieves the three rows that meet the criteria, and displays

them to the user:

Page 53

DataWindow and DataStore basics

Jdones 21 otellar 18
Simpsan (11 Cosmic 33
Perez 1 Cosmic 2h

Rep Quarter Product Units

Fow count: 3

Y ou can turn query mode back on, allow the user to revise the selection criteria, and retrieve
again.

1.3.4.2 Using query mode

To provide query mode to users during execution:

1.

Turn query mode on by coding.
In PowerBuilder:
dw_1. Modi fy("dat awi ndow. quer ynode=yes")

In JavaScript:

dw_1. Modi fy("dat awi ndow. quer ynode=yes") ;

All data displayed in the DataWindow is blanked out, though it is still in the
Datawindow control's Primary buffer, and the user can enter selection criteria where the
data had been.

The user specifies selection criteriain the DataWindow, just as you do when using
Quick Select to define a DataWindow object's data source.

Criteria entered in one row are ANDed together; criteriain different rows are ORed.
Valid operatorsare =, <>, <, >, <=, >=, LIKE, IN, AND, and OR.

For more information about Quick Select, see Section 18.5, “Using Quick Select” in
Users Guide.

Call AcceptText and Retrieve, then turn off query mode to display the newly retrieved
rows.

In PowerBuilder:

dw_1. Accept Text ()
dw_1. Modi f y(" dat awi ndow. quer ynode=no")

Page 54

DataWindow and DataStore basics

dw_ 1. Retrieve()
In JavaScript:
dw_1. Accept Text () ;

dw_1. Modi f y("dat awi ndow. quer ynode=no") ;
dw 1. Retrieve();

The Datawindow control adds the newly defined selection criteriato the WHERE
clause of the SELECT statement, then retrieves and displays the specified rows.

Revised SELECT statement

Y ou can look at the revised SELECT statement that is sent to the DBM S when data
isretrieved with criteria. To do so, look at the sglsyntax argument in the SQL Preview
event of the DataWindow control.

How thecriteria affect the SELECT statement

Criteria specified by the user are added to the SELECT statement that originally defined the
DataWindow object.

For example, if the original SELECT statement was:

SELECT printer.rep, printer.quarter, printer.product, printer.units

FROM pri nt er

VWHERE printer.units < 70

and the following criteria are specified:

Rep Quarter Product Units

21 Stellar
22

Fow count; 12

the new SELECT statement is:

SELECT printer.rep, printer.quarter, printer.product, printer.units
FROM pri nt er

WHERE printer.units < 70

AND (printer.quarter = "'QL'

AND printer.product = 'Stellar’

OR printer.quarter ="'@")

Page 55

DataWindow and DataStore basics

Clearing selection criteria

To clear the selection criteria, Use the QueryClear property.
In PowerBuilder:

dw_1. Modi fy("dat awi ndow. quer ycl ear =yes")

In JavaScript:

dw_1. Modi fy("dat awi ndow. quer ycl ear=yes") ;

Sorting in query mode

Y ou can alow usersto sort rows in a DataWindow while specifying criteriain query
mode using the QuerySort property. The following statement makes the first row in the
Datawindow dedicated to sort criteria (just asin Quick Select in the DataWindow wizard).

In PowerBuilder:

dw_1. Modi fy("dat awi ndow. quer ysort =yes")
In JavaScript:

dw_1. Modi fy("dat awi ndow. quer ysort =yes");

Overriding column propertiesduring query mode

By default, query mode uses edit styles and other definitions of the column (such as the
number of alowable characters). If you want to override these properties during query mode
and provide a standard edit control for the column, use the Criteria.Override_Edit property
for each column.

In PowerBuilder:

dw_1. Modi fy("mycolum. criteria.override_edit=yes")

In JavaScript:

dw_1. Modi fy("mycolum. criteria.override_edit=yes");

Y ou can also specify thisin the DatawWindow painter by checking Override Edit on the
General property page for the column. With properties overridden for criteria, users can
specify any number of charactersin acell (they are not constrained by the number of
characters allowed in the column in the database).

Forcing usersto specify criteriafor a column

Y ou can force users to specify criteriafor a column during query mode by coding the
following:

In PowerBuilder:

dw_1. Modi fy("mycolum. criteria.required=yes")
In JavaScript:

dw_1. Modi fy("mycolum. criteria.required=yes");

Y ou can a'so specify thisin the DatawWindow painter by checking Equality Required on the
General property page for the column. Doing this ensures that the user specifies criteriafor

Page 56

DataWindow and DataStore basics

the column and that the criteria for the column use = rather than other operators, such as < or
>=,

1.3.5 Providing Help buttons

A DatawWindow object has properties related to online Help. By initializing the
Datawindow.Help.File property to the name of a Help file, you can display Help command
buttons on dialog boxes that display for a DataWindow during execution.

For complete information on the Help-related DataWindow object properties, see
DataWindow Reference.

1.3.6 Reusing a DataWindow object

Y ou can reuse a DataWindow object by retrieving its syntax from the library it is stored in,
then using the syntax to create a DatawWindow object dynamically in a Datawindow control.

Hereisatypical way to accomplish thisin an application. Use:

» TheLibraryDirectory function to obtain alist of DataWindow objects and other library
entriesin the current library

* A DropDownListBox to list the Datawindow objects in the library and then allow the user
to select a Datawindow from the list

» The LibraryExport function to export the selected DataWindow object syntax into a string
variable

» The Create method to use the DatawWindow syntax to create the DatawWindow object in the
specified Datawindow control
» The Describe method to get the current DataWindow object syntax, for example:

string dwSynt ax
dwSynt ax = dw_1. Descri be("dat awi ndow. synt ax")

» The Modify method to allow the user to modify the Datawindow object
» The Librarylmport function to save the user-modified DataWindow object in alibrary

For information about the PowerScript functions, see Chapter 10, Power Script Functionsin
Power Script Reference. For information about the DatawWindow methods Create, Describe,
and Modify, see Chapter 9, Methods for the DataWindow Control in DataWindow Reference.

1.3.7 Using DWSyntax

The DWSyntax tool, available on the Tool tab in the New dialog box, makesit easy to
specify dot notation, Describe, Modify, and SyntaxFromSQL statements.

To access DWSyntax, select File>New and select the Tool tab. Select the type of statement
you want to create from the Syntax menu:

o Describe

Page 57

DataWindow and DataStore basics

Select an object type from the Object dropdown listbox. In the Attributes listbox, select
the property you want to describe. The bottom of the window displays Describe and dot
notation statements.
* Modify
* Attributes
Select an object type and the property you want to modify. The bottom of the window
displays Modify and dot notation statements.
* Create

Select the object type that you want to create. The bottom of the window displays a
Modify statement.

* Destroy

Select the object type that you want to destroy. The bottom of the window displays a
Modify statement.

» SyntaxFromSQL

On each tab, select the properties you want to include in the arguments for the
SyntaxFromSQL function. Notice that you can select multiple tabs and multiple properties
per object for SyntaxFromSQL. When you have finished selecting properties, click Build
Syntax to display the SyntaxFromSQL function at the bottom of the window.

» Tips on the syntax generated by DWSyntax

1.3.7.1 Describe

Reports the values of properties of a DataWindow object and objects within the DatawWindow
object. Each column and graphic object in the Datawindow has a set of properties. You
specify one or more properties as a string and Describe returns the values of the properties.

1.3.7.2 Modify

Modifies a DataWindow object by applying specifications, specified as alist of instructions,
that change the Datawindow object's definition. Y ou can change appearance, behavior, and
database information for the DatawWindow object by changing the values of properties. Y ou
can add and remove objects from the Datawindow object by providing specifications for the
objects.

1.3.7.3 Create

Creates a DatawWindow object using DataWindow source code and puts that object in the
specified Datawindow control. This "dynamic" DataWindow object does not become a
permanent part of the application source library.

1.3.7.4 Destroy

Deletes a Datawindow object. This dynamic DataWindow object change does not become a
permanent part of the application source library.

Page 58

DataWindow and DataStore basics

1.3.7.5 SyntaxFromSQL

Generates DatawWindow source code based on a SQL SELECT statement and Style. A full
presentation string has the format:

"Styl e(Type= val ue property=val ue ...) DataW ndow(property = value...)
Col um(property = value...)
Group(groupby_col 1 groupby_col2 ... property...)
Text (property = val ue...)
Title('titlestring')"

1.3.7.6 Tips on the syntax generated by DWSyntax

» Anything surrounded by <> indicates that areal value must be substituted (without
surrounding <>). All other syntax is correct asisincluding single quotes.

* Internal to PowerBuilder, all DataWindow object properties are stored in strings. These can
represent strings, numbers, or boolean (1/0, yes/no).

Where appropriate the compiler allows for the assigning of numbers or booleans and converts
them to strings automatically. When these same property values are read they are returned as
astring for the Describe syntax and as an Any variable for dot notation syntax.

Examples
The Datawindow readonly property is stored as'yes or 'no'.
Each of the following syntax statements sets the property to 'yes.

dw_1. Modi fy(" Dat aW ndow. ReadOnl y=Yes")

dw_1. Modi fy(" Dat aW ndow. ReadOnl y=Tr ue")
dw_1. Obj ect . Dat aW ndow. ReadOnly = ' Yes'
dw_1. Obj ect . Dat aW ndow. ReadOnly = True

Theresult of dw_1.Describe("DataWindow.ReadOnly") is a string containing either 'yes or
'no’.

Theresult of dw_1.0bject.DataWindow.ReadOnly is an Any containing either 'yes or 'no'.
The Column.Border property is stored as ‘0’ through '6'.

Each of the following syntax statements sets the property to '5'.

dw_1. Modi fy(" Col um. Border = 5 ")
dw_1. Modi fy(" Col um. Border = '5"' ")
dw_1. Qbj ect. Col unm. Border = 5
dw_1. Qbj ect . Col uim. Border = '5'

Theresult of dw_1.Describe(" Column.Border") is always a string.
Theresult of dw_1.0bject.Column.Border is an Any always containing a string.

1.4 Using DataStore Objects

About this chapter

This chapter describes how to use DataStore objects in an application.
Before you begin

This chapter assumes you know how to build Datawindow objects in the Datawindow
painter, as described in the Part VI, “Working with Datawindows’ in Users Guide.

Page 59

DataWindow and DataStore basics

1.4.1 About DataStores

A DataStore is anonvisual DataWindow control. DataStores act just like DatawWindow
controls except that they do not have many of the visual characteristics associated with
DatawWindow controls. Like a DataWindow control, a DataStore has a DataWindow object
associated withit.

When to use a DataStore

DataStores are useful when you need to access data but do not need the visual presentation of
a Datawindow control. DataStores allow you to:

» Perform background processing against the database without having to hide Datawindow
controlsin awindow

Suppose that the DatawWindow object displayed in a DatawWindow control is suitable for
online display but not for printing. In this case, you could define a second DataWindow
object for printing that has the same result set description and assign this object to a
DataStore. Y ou could then share data between the DataStore and the DataWindow control.
Whenever the user asked to print the datain the window, you could print the contents of
the DataStore.

» Hold data used to show multiple views of the same information

When awindow shows multiple views of the same information, you can use a DataStore
to hold the result set. By sharing data between a DataStore and one or more DatawWindow
controls, you can provide different views of the same information without retrieving the
data more than once.

» Manipulate table rows without using embedded SQL statements

In places where an application calls for row manipulation without the need for display,
you can use DataStores to handle the database processing instead of embedded SQL
statements. DataStores typically perform faster at execution time than embedded SQL
statements. Also, because the SQL is stored with the Datawindow object when you use a
DataStore, you can easily reuse the SQL.

» Perform database access on an application server

In amultitier application, the objectsin aremote server can use DataStores to interact with
the database. DataStores | et you take advantage of the computer resources provided by a
server machine, removing the need to perform database operations on each client.

DataStore methods

Most of the methods and events available for Datawindows are also available for DataStores.
However, some of the methods that handle online interaction with the user are not available.
For example, DataStores support the Retrieve, Update, InsertRow, and DeleteRow methods,
but not GetClickedRow and SetRowFocusl ndicator.

Prompting for information

When you are working with DataStores, you cannot use functionality that causes a dialog
box to display to prompt the user for more information. Here are some examples of waysto
overcome this restriction:

Page 60

DataWindow and DataStore basics

SetSort and SetFilter

Y ou can use the SetSort and SetFilter methods to specify sort and filter criteriafor a
DataStore object, just as you would with a Datawindow control. However, when you are
working with a Datawindow control, if you passa NULL value to either SetSort or SetFilter,
the DataWindow prompts the user to enter information. When you are working with a
DataStore, you must supply avalid format when you call the method. Moreover, you must
supply avalid format when you share data between a DataStore and a Datawindow control;
you cannot pass the NULL value to the DataWindow control rather than the DataStore.

Prompt for Criteria

Y ou can define your DataWindow objects so that the user is prompted for retrieval criteria
before the Datawindow retrieves data. This feature works with DataWindow controls only. It
is not supported with DataStores.

SaveAs

When you use the SaveAs method with a DatawWindow object, you can pass an empty string
for the filename argument so that the user is prompted for afile name to saveto. If you are
working with a DataStore, you must supply the filename argument.

Prompt for Printing

For DataWindow controls, you can specify that a print setup dialog box display at execution
time, either by checking the Prompt Before Printing check box on the DataWindow object's
Print Specifications property page, or by setting the Datawindow object's Print.Prompt
property in ascript. Thisis not supported with DataStores.

Retrieval arguments

If you call the Retrieve method for a Datawindow control that has a DataWindow object that
expects an argument, but do not specify the argument in the method call, the Datawindow
prompts the user for aretrieval argument. This behavior is not supported with DataStores.

DataStor es have some visual methods

Many of the methods and events that pertain to the visual presentation of the datain a
DatawWindow do not apply to DataStores. However, because you can print the contents

of a DataStore and aso import datainto a DataStore, DataStores have some visually

oriented events and methods. For example, DataStores support the SetBorderStyle and
SetSeriesStyle methods so that you can control the presentation of the data at print time.
Similarly, DataStores support the ItemError event, because data imported from a string or file
that does not pass the validation rules for a column triggers this event.

For acomplete list of the methods and events for the DataStore object and information about
each method, see the DataWindow Reference.

DataStoresrequire no visual overhead

Unlike Datawindow controls, DataStores do not require any visual overhead in awindow.
Using a DataStore is therefore more efficient than hiding a DataWindow control in awindow.

1.4.2 Working with a DataStore

To use a DataStore, you first need to create an instance of the DataStore object in a script and
assign the Datawindow object to the DataStore. Then, if the DataStore is intended to retrieve

Page 61

DataWindow and DataStore basics

data, you need to set the transaction object for the DataStore. Once these setup steps have
been performed, you can retrieve data into the DataStore, share data with another DataStore
or Datawindow control, or perform other processing.

Examples

The following script uses a DataStore to retrieve data from the database. First it instantiates
the DataStore object and assigns a DataWindow object to the DataStore. Then it setsthe

transaction object and retrieves data into the DataStore:
datastore | ds_dat astore

| ds_dat ast ore = CREATE dat astore

| ds_dat ast ore. Dat aCbj ect = "d_cust _list"

| ds_dat ast or e. Set Transbj ect (SQLCA)

| ds_dat astore. Retri eve()
/* Perform some processing on the data... */

1.4.3 Using a custom DataStore object

This section describes how to extend a DataStore in PowerBuilder by creating a user object.

Y ou might want to use a custom version of the DataStore object that performs specialized
processing. To define a custom DataStore, you use the User Object painter. There you specify
the DataWindow object for the DataStore, and you can optionally write scripts for events or
define your own methods, user events, and instance variables.

Using a custom DataStore involves two procedures:

1. Inthe User Object painter, define and save a standard class user object inherited from the
built-in DataStore object.

2. Use the custom DataStore in your PowerBuilder application.

Once you have defined a custom DataStore in the User Object painter, you can write code
that uses the user object to perform the processing you want.

For instructions on using the User Object painter in PowerBuilder, see Section 15.2, “ About
the User Object painter” in Users Guide.

To define the standard class user object:
1. Select Standard Class User Object on the PBODbjects tab in the New dialog box.

2. Select datastore as the built-in system type that you want your user object to inherit
from, and click OK.

The User Object painter workspace displays so that you can define the custom object.

3. Specify the name of the Datawindow object in the DataObject box in the Properties
view and click OK.

4. Customize the DataStore by scripting the events for the object, or by defining methods,
user events, and instance variables.

5. Savethe object.

Page 62

DataWindow and DataStore basics

Tousethe user abject in your application:
1. Select the object or control for which you want to write a script.
2. Open the Script view and select the event for which you want to write the script.

3. Write code that uses the user object to do the necessary processing.

Here is a simple code example that shows how to use a custom DataStore to retrieve
data from the database. First it instantiates the custom DataStore object, then it setsthe
transaction object and retrieves data into the DataStore:

uo_cust dstore | ds _cust dstore
| ds_cust dstore = CREATE uo_cust _dstore
| ds_cust _dstore. Set TransObj ect (SQLCA)
| ds_cust _dstore. Retrieve()
/* Perform sonme processing on the data... */

Notice that this script does not assign the DataWindow object to the DataStore. Thisis
because the DataWindow object is specified in the user object definition.

Changing the DataWindow object at execution time

When you associate a Datawindow object with a DataStore in the User Object

painter, you are setting the initial value of the DataStore's DataObject property.
During execution, you can change the DatawWindow object for the DataStore by
changing the value of the DataObject property.

4. Compile the script and save your changes.

1.4.4 Accessing and manipulating data in a DataStore

To access data using a DataStore, you need to read the data from the data source into the
DataStore.

If the data sourceis a database

If the data for the DataStore is coming from a database (that is, the data source was defined
as anything but External in the DataWindow painter), you need to communicate with the
database to get the data. The steps you perform to communicate with the database are the
same steps you use for a DataWindow control.

For more information about communicating with the database, see Accessing the database.

If the data sourceisnot a database

If the data for the DatawWindow object is not coming from a database (that is, the data source
was defined as External in the DataWindow painter), you can use the following methods to
import data into the DataStore:

ImportClipboard
ImportFile
ImportString

Y ou can also get data into the DataStore by using a DataWindow data expression, or by using
the Setltem method.

Page 63

DataWindow and DataStore basics

For more information on accessing data in a DataStore, see Chapter 4, Accessing Data in
Code in DataWindow Reference.

About the DataStor e buffers
Like a Datawindow control, a DataStore uses three buffers to manage data:

Table 1.15;: DataStor e buffers

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows that are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or in a script

About the Edit control

The DataStore object has an Edit control. However, the Edit control for a DataStore behaves
in aslightly different manner from the Edit control for a DataWindow. The Edit control for a
DataWindow keeps track of text entered by the user in the current cell (row and column); the
Edit control for a DataStore is used to manage data imported from an external source, such as
the clipboard or afile. The text in the Edit control for a DataStore cannot be changed directly
by the user. It must be manipulated programmatically.

Programming with DataStor es

There are many methods for manipulating DataStore objects. These are some of the more
commonly used:

Table 1.16: Common methodsin DataStor e objects

Method Purpose

DeleteRow Deletes the specified row from the DataStore.

Filter Filters rows in the DataStore based on the current filter criteria

InsertRow Inserts a new row.

Print Sends the contents of the DataStore to the current printer.

Reset Clears al rowsin the DataStore.

Retrieve Retrieves rows from the database.

RowsCopy Copies rows from one DataStore to another DataStore or DataWindow
control.

RowsMove Moves rows from one DataStore to another DataStore or DataWindow
control.

ShareData Shares data among different DataStores or Datawindow controls. See
Sharing information.

Sort Sorts the rows of the DataStore based on the current sort criteria

Update Sends to the database all inserts, changes, and deletions that have been
made since the last Update.

For information about DataStore methods, see Chapter 9, Methods for the DataWindow
Control in DataWwindow Reference.

Page 64

DataWindow and DataStore basics

Dynamic DataWindow objects

The methods in the table above manipulate data in the DataStore but do not change the
definition of the underlying Datawindow object. In addition, you can use the Modify and
Describe methods to access and manipulate the definition of a DataWindow object. Using
these methods, you can change the DataWindow object during execution. For example, you
can change the appearance of a Datawindow or allow your user to create ad hoc reports.

For more information, see Dynamically Changing DataWindow Objects.

Property and data expressions

Y ou can use the same property and data expressions as for the Datawindow control. For
information, see DataWindow Reference.

Using DataStor e properties and events

This chapter mentions only afew of the properties and events that you can use to manipulate
DataStores. For more information about DataStore properties and events, see Datawindow
Reference.

1.4.5 Sharing information

The ShareData method allows you to share aresult set among two different DataStores or
DatawWindow controls. When you share information, you remove the need to retrieve the
same data multiple times.

The ShareData method shares data retrieved by one Datawindow control or DataStore (called
the primary DataWindow) with another DataWindow control or DataStore (the secondary
Datawindow).

Result set descriptions must match

When you share data, the result set descriptions for the DataWindow objects must be the
same. However, the SELECT statements can be different. For example, you could use the
ShareData method to share data between DataWindow objects that have the following
SELECT statements (because the result set descriptions are the same):

SELECT dept _id from dept

SELECT dept _id from dept where dept_id = 200
SELECT dept _id from enpl oyee

Y ou can a'so share data between two DataWindow objects where the source of oneisa
database and the source of the other is external. Aslong as the lists of columns and their
datatypes match, you can share the data.

What is shared?
When you use the ShareData method, the following information is shared:

Primary buffer
Delete buffer
Filter buffer
Sort order

ShareData does not share the formatting characteristics of the DatawWindow objects. That
means you can use ShareData to apply different presentations to the same result set.

When you alter theresult set

Page 65

DataWindow and DataStore basics

If you perform an operation that affects the result set for either the primary or the secondary
DatawWindow, the change affects both of the objects sharing the data. Operations that alter
the buffers or the sort order of the secondary DataWindows are rerouted to the primary
DatawWindow. For example, if you call the Update method for the secondary Datawindow,
the update operation is applied to the primary DataWindow also.

Turning off sharing data

To turn off the sharing of data, you use the ShareDataOff method. When you call
ShareDataOff for a primary DataWindow, any secondary DatawWindows are disassociated
and no longer contain data. When you call ShareDataOff for a secondary DatawWindow, that
DataWindow no longer contains data, but the primary DataWindow and other secondary
Datawindows are not affected.

In most cases you do not need to turn off sharing, because the sharing of datais turned
off automatically when awindow is closed and any DataWindow controls (or DataStores)
associated with the window are destroyed.

Crosstabs
Y ou cannot share data with a DataWindow object that has the Crosstab presentation style.

1.4.5.1 Example: printing data from a DataStore

Suppose you have awindow called w_employees that allows usersto retrieve, update, and
print employee data retrieved from the database:

+ Employee Information =] E3
Employee First Hame Last Hame ﬂ
[[1]
i Fran wihitney Update
105 b atthew Cobb
129 Philip Chir Print
148 Jullie Jordan
160 Raobert Breault
134 Melizza Ezpincza
191 Jeannette Bertrand
195 Marc Crill
207 Jane Franciz
<] | _'*I_I

The Datawindow object displayed in the Datawindow control is suitable for online display
but not for printing. In this case, you could define a second Datawindow object for printing
that has the same result set description as the object used for display and assign the second

Page 66

DataWindow and DataStore basics

object to a DataStore. Y ou could then share data between the DataStore and the Datawindow
control. Whenever the user asked to print the data in the window, you could print the contents
of the DataStore.

When the window or form opens

The code you write begins by establishing the hand pointer as the current row indicator

for the dw_employees DataWindow control. Then the script sets the transaction object for
dw_employees and issues a Retrieve method to retrieve some data. After retrieving data,
the script creates a DataStore using the instance variable or data member ids_datastore, and
assigns the DatawWindow object d_employees to the DataStore. The final statement of the
script shares the result set for the dw_employees Datawindow control with the DataStore.

This codeis for the window's Open event:

dw_enpl oyees. Set RowFocusl ndi cat or (Hand!)
dw_enpl oyees. Set Tr ansObj ect (SQLCA)
dw_enpl oyees. Retri eve()

i ds_dat ast ore = CREATE dat astore
i ds_dat ast or e. Dat aObj ect = "d_enpl oyees"
dw_enpl oyees. Shar eDat a(i ds_dat ast or e)

Codefor the Update button

Code for the cb_update button applies the update operation to the dw_employees
Datawindow control.

This codeis for the Update button's Clicked event:

I F dw_enpl oyees. Update() = 1 THEN
COW T usi ng SQLCA;
MessageBox (" Save", " Save succeeded")
ELSE
ROLLBACK usi ng SQLCA;
MessageBox (" Save", "Save fail ed")
END | F

Codefor the Print button

The Clicked event of the cb_print button prints the contents of ids_datastore. Because
the DataWindow object for the DataStore is d_employees, the printed output uses the
presentation specified for this object.

This codeisfor the Print button's Clicked event:

i ds_datastore.Print()

When the window or form closes

When the window closes, the DataStore gets destroyed.
This codeisfor the window's Close event:

destroy ids_datastore

1.4.5.2 Example: using two DataStores to process data

Suppose you have awindow called w_multi_view that shows multiple views of the same
result set. When the Employee List radio button is selected, the window shows a list of
employees retrieved from the database:

Page 67

DataWindow and DataStore basics

+ Employee Information

@H&D

R&D
RE&D
RE&D
R&D
R&D
R&D
R&D
R&D
R&D

Departmennt Hame

Fran

I atthew
Robert
Matasha
Kourt
Fodngo
Ram
Temy
Lyrin

K.im

W hitrey
Cobb
Ereault
Shishoe
Drizcoll
Guevara
Gowda
Melkisetian
Paztar

Lull

Salary
$45,700.00

$62.000.00
$57.490.00
$72.995.00
$48.023.69
$42.933.00
$59.540.00
$48.500.00
$74.500.00
$57.300.00

=] B3

Options
% Employee list

= Employes salary information

When the Employee Salary Information radio button is selected, the window displays a graph
that shows employee salary information by department:

+ Employee Information

600004

50000+

40000+

30000+

20000+

10000+

Average Salary by Department

=] E3

Options
™ Employee list

" Employee salany informatiord

Finance

Marketing

Sales

Shipping

Thiswindow has one DataWindow control called dw_display. It uses two DataStores to
process data retrieved from the database. The first DataStore (ids_emp_list) sharesits result
set with the second DataStore (ids_emp_graph). The Datawindow objects associated with the

two DataStores have the same result set description.
When the window or form opens

When the window or form opens, the application sets the mouse pointer to the hourglass
shape. Then the code creates the two DataStores and sets the DataWindow objects for the
DataStores. Next the code sets the transaction object for ids_emp_list and issues a Retrieve
method to retrieve some data.

Page 68

DataWindow and DataStore basics

After retrieving data, the code shares the result set for ids_emp_list with ids_emp_graph. The
final statement triggers the Clicked event for the Employee List radio button.

This codeis for the window's Open event:

Set Poi nt er (Hour G ass!)
ids_enp_list = Create DataStore
i ds_enp_graph = Create DataStore

ids_enp_list.DataCbject = "d_enp_list”
i ds_enp_gr aph. Dat aCbj ect = "d_enp_graph"

i ds_enp_list. Set TransObj ect (sql ca)
ids_enp_list.Retrieve()

i ds_enp_list. ShareDat a(i ds_enp_gr aph)
rb_enmp_list. EVENT Clicked()

Codefor the Employee List radio button

The code for the Employee List radio button (called rb_emp_list) sets the Datawindow
object for the Datawindow control to be the same as the DataWindow object for
ids_emp_list. Then the script displays the data by sharing the result set for theids_emp list
DataStore with the Datawindow control.

This codeis for the Employee List radio button's Clicked event:

dw_di spl ay. Dat aCbj ect = ids_enp_list. Dat aObj ect
i ds_enp_l i st. Shar eDat a(dw_di spl ay)

Codefor the Employee Salary Information radio button

The code for the Employee Salary Information radio button (called rb_graph) is similar to
the code for the List radio button. It sets the Datawindow object for the DatawWindow control
to be the same as the DataWindow object for ids_emp_graph. Then it displays the data by
sharing the result set for the ids_emp_graph DataStore with the Datawindow control.

This codeis for the Employee Salary Information radio button's Clicked event:

dw _di spl ay. Dat aCbj ect = i ds_enp_gr aph. Dat albj ect
i ds_enp_gr aph. Shar eDat a(dw_di spl ay)

When the window or form closes
When the window closes, the DataStores get destroyed.
This codeis for the window's Close event:

Destroy ids_enp_li st
Destroy i ds_enp_graph

Use garbage collection

Do not destroy the objectsif they might still be in use by another process -- rely on
garbage collection instead.

1.5 Manipulating Graphs
About this chapter

This chapter describes how to write code that allows you to access and change a graph in
your application at execution time.

Page 69

DataWindow and DataStore basics

1.5.1 Using graphs

Supported environment
PowerBuilder

Graphs are supported. Because you can print DataStores, PowerBuilder provides
some events and functions for DataStores that pertain to the visual presentation of
the data. However, graph functions such as CategoryCount, CategoryName, GetData,
SeriesCount, and so forth depend on the visual graph control, which is not created for
a DataStore. These functions return an error value or an empty string when used with
DataStore objects.

It iscommon for developers to design DataWindow objects that include one or more graphs.
When users need to quickly understand and analyze data, a bar, line, or pie graph can often be
the most effective format to display.

To learn about designing graphs, see Chapter 26, Working with Graphsin Users Guide.
Working with graphsin your code

The following sections describe how you can access (and optionally modify) a graph by
addressing its properties in code at execution time. There are two kinds of graph properties:
* Properties of the graph definition itself

These properties are initially set in the DataWindow painter when you create a graph. They
include agraph's type, title, axislabels, whether axes have major divisions, and so on.

For 3D graphs, thisincludes the Render 3D property that uses transparency rather than
overlays to enhance a graph's appearance and give it a more sophisticated |ook.

* Properties of the data

These properties are relevant only at execution time, when data has been loaded into the
graph. They include the number of seriesin a graph (series are created at execution time),
colors of bars or columns for a series, whether the seriesis an overlay, text that identifies
the categories (categories are created at execution time), and so on.

Using graphsin other Power Builder controls

Although you will probably use graphs most often in DataWindow objects, you can
also add graph controls to windows, and additional PowerScript functions and events
are available for use with graph controls.

For more information, see Section 4.4.1, “Using graphs’ in Application Techniques.

1.5.2 Modifying graph properties

When you define a graph in the Datawindow painter, you specify its behavior and
appearance. For example, you might define a graph as a column graph with a certain title,
divide its Value axis into four major divisions, and so on. Each of these entries corresponds
to a property of agraph. For example, al graphs have a property GraphType, which specifies
the type of graph.

Page 70

DataWindow and DataStore basics

When dynamically changing the graph type

If you change the graph type, be sure also to change the other properties as needed to
properly define the new graph.

Y ou can change these graph properties at execution time by assigning values to the graph's
propertiesin code.

Property expressions
Power Builder

Y ou can modify properties using property expressions. For example, to change the type of the
graph gr_emp to Column, you could code:

dw_enpi nf o. Cbj ect. gr _enp. G aphType = Col G aph!

To change thetitle of the graph at execution time, you could code:
dw_enpi nfo. Cbject.gr_enp.Title = "New title"

M odify method

Y ou can use the Modify method to reference parts of a graph.
Examplefor PowerBuilder

For example, to change thetitle of graph gr_emp in Datawindow control dw_empinfo, you
could code:

dw_enpi nfo. Modi fy("gr_enp. Title = "New title'")

For acomplete list of graph properties, see Section 3.2.5, “ Properties for Graph controlsin
Datawindow objects’ in DataWindow Reference.

1.5.2.1 How parts of a graph are represented

Graphs consist of parts: atitle, alegend, and axes. Each of these parts has a set of display
properties. These display properties are themselves stored as properties in a subobject
(structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies the text for the title. Graphs
also have a property TitleDispAttr, of type grDispAttr, which itself contains properties
that specify all the characteristics of the title text, such asthe font, size, whether the text is
italicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These properties are
stored in a subobject (structure) of Graph called grAxis. For example, graphs have a property
Values, of type grAxis, which specifies the properties of the Value axis, such as whether to
use autoscaling of values, the number of major and minor divisions, the axis label, and so on.

Hereis arepresentation of the properties of agraph:

G aph
i nt Hei ght
int Depth
gr GraphType G aphType
bool ean Bor der
string Title

grDi spAttr TitleDi spAttr, LegendDi spAttr, PieD spAttr

Page 71

DataWindow and DataStore basics

string FaceNane
int TextSize
boolean Italic

gr Axi s Val ues, Category, Series
bool ean Aut oScal e
int Maj orDivisions
i nt M norDi vi sions
string Label

1.5.2.2 Referencing parts of a graph

Y ou use dot notation or the Describe and Modify methods to reference the display properties
of the various parts of a graph. For example, one of the properties of a graph'stitle is whether
thetext isitalicized or not. That information is stored in the boolean Italic property in the
TitleDispAttr property of the graph.

This example changes the label text for the Value axis of graph gr_emp in the Datawindow
control dw_empinfo:

dw_enpi nf 0. Cbj ect. gr _enp. Val ues. Label =" New | abel "

For acomplete list of graph properties, see Section 3.2.5, “Properties for Graph controlsin
Datawindow objects’ in DataWindow Reference.

Y ou can use the PowerBuilder Browser to examine the properties of a Datawindow object
that contains a graph. For more information, see the Users Guide.

1.5.3 Accessing data properties

To access properties related to a graph's data during execution, you use DataWindow
methods for graphs. There are three categories of these methods related to data:

» Methods that provide information about a graph's data

* Methods that save data from a graph

» Methods that change the color, fill patterns, and other visual properties of data

How to use the methods
To call the methods for a graph in a DataWindow control, use the following syntax:

Dat aW ndowNane. net hodNanme ("graphNane", ot her Argunents...)

For example, there is a method CategoryCount, which returns the number of categoriesin
agraph. So to get the category count in the graph gr_printer (which isin the Datawindow
control dw_sales), write:

Ccount = dw_sal es. Cat egoryCount ("gr_printer")

1.5.3.1 Getting information about the data

There are quite afew methods for getting information about data in a graph in a Datawindow
control at execution time. For all methods, you provide the name of the graph within the
DataWindow as the first argument. Y ou can provide your own name for graph controls when
you insert them in the DataWindow painter. If the presentation style is Graph, you do not
need to name the graph.

Page 72

DataWindow and DataStore basics

Power Builder

These methods get information about the data and its display. For several of them, an
argument is passed by reference to hold the requested information:

Table 1.17: Common methodsfor graph DataWindows in Power Builder

Method Infor mation provided

CategoryCount The number of categoriesin agraph

CategoryName The name of a category, given its number

DataCount The number of data pointsin a series

FindCategory The number of a category, given its name

FindSeries The number of a series, given its name

GetData The value of adata point, given its series and position
(superseded by GetDataV aue, which is more flexible)

GetDatal_abelling The display setting for the datalabel at a given datapointina
DirectX 3D graph

GetDataPieExplode The percentage at which apie dliceis exploded

GetDataStyle The color, fill pattern, or other visual property of a specified data
point

GetDataTransparency The transparency percentage of a data point in a DirectX 3D
graph

GetDataValue The value of adata point, given its series and position

GetSeriesLabelling The display setting for the series |abel for agiven seriesin a
DirectX 3D graph

GetSeriesStyle The color, fill pattern, or other visual property of a specified
series

GetSeriesTransparency | The transparency percentage of a seriesin aDirectX 3D graph

ObjectAtPointer The graph element the mouse was positioned over when it was
clicked

SeriesCount The number of seriesin agraph

SeriesName The name of a series, given its number

1.5.3.2 Saving graph data
Power Builder

The following methods allow you to save data from the graph:

Table 1.18: PowerBuilder methods for saving data from a graph

M ethod Action

Clipboard

Copies a bitmap image of the specified graph to the clipboard

SaveAs

Saves the data in the underlying graph to the clipboard or to afilein
one of anumber of formats

Page 73

DataWindow and DataStore basics

1.5.3.3 Modifying colors, fill patterns, and other data
Power Builder
The following methods allow you to modify the appearance of datain a graph:

Table 1.19: PowerBuilder methods for modifying the appear ance of data
ResetDataColors | Resets the color for a specific data point
SetDatal_abelling | Specifiesthe display setting for adatalabel in a DirectX 3D graph

SetDataStyle Setsthe color, fill pattern, or other visual property for a specific data
point

SetDataT ransparencySets the transparency percentage for adata point in a DirectX 3D graph
SetSeriesLabelling | Specifies the display setting for a series label in aDirectX 3D graph
SetSeriesStyle Setsthe color, fill pattern, or other visual property for a series
SetSeriesT ransparen$ets the transparency percentage of aseriesin aDirectX 3D graph

1.5.3.4 Using graph methods

Y ou call the data-access methods after a graph has been created and populated with data.
Some graphs, such as graphs that display data for a page or group of data, are destroyed and
re-created internally as the user pages through the data. Any changes you made to the display
of agraph, such as changing the color of aseries, are lost when the graph is re-created.

Event for graph creation

To be assured that data-access methods are called whenever a graph has been created and
populated with data, you can call the methods in the code for an event that is triggered when
agraph iscreated. Theevent is:

» PowerBuilder
Event ID pbm_dwngraphcreate, which you can assign to a user event for a DataWindow

control (described below)

The graph-creation event istriggered by the DataWindow control after it has created a graph
and populated it with data, but before it has displayed the graph. By accessing the datain the
graph in this event, you are assured that you are accessing the current data and that the data
displays the way you want it.

Setting up the Power Builder user event

PowerBuilder provides an event ID, pbm_dwngraphcreate, that you can assign to a user event

for a DataWindow control.

To access data properties of agraph in a Datawindow control:

1. Placethe Datawindow control in awindow or user object and associate it with the
DataWindow object containing the graph.

Next you create a user event for the DataWindow control that is triggered whenever a
graph in the control is created or changed.

Page 74

DataWindow and DataStore basics

2. Sdect Insert>Event from the menu bar.

The Script view displays and includes prototype fields for adding a new event.

3. Select the DatawWindow control in the first drop-down list of the prototype window.

If the second drop-down list also changes to display an existing Datawindow event
prototype, scroll to the top of thelist to select New Event or select Insert>Event once
again from the menu bar.

|| |r|I|I||-l|j|

dwa_1 | | [Mew Event) | = @

Arccess Return Type Event Mame

| ~[fore |

Pazz By Argurment Type Argument Mame
| walue j |integer j |

T hrows; |

[External Ewent ID |[Nnne] ﬂ

i

RiigN

 Layout, [Untitled) {Ement Lizth Function Listy Declare Instance Variables £

4. Namethe user event you are creating.
For example, you might call it GraphCreate.

5. Select pbm_dwngraphcreate for the event ID.

@ Script - dw_1Ffor graphereate returns long

Aocess Return Type Event Mame J
| J | J |GraphEreate

[External Ewent 1D

i | o

6. Click OK to save the new user event.

7. Write ascript for the new GraphCreate event that accesses the datain the graph.

Calling data access methods in the GraphCreate event assures you that the data access
happens each time the graph has been created or changed in the DataWindow.

Examples

Page 75

DataWindow and DataStore basics

Power Builder

The following statement sets to black the foreground (fill) color of the Q1 seriesin the
graph gr_quarter, which isin the DataWindow control dw_report. The statement isin
the GraphCreate event, which is associated with the event ID pbm_dwngraphcreate in
PowerBuilder:

dw_report. Set SeriesStyle("gr_quarter”, "Ql", &
foreground!, 0)

The following statement changes the foreground (fill) color to red of the second data point in
the Stellar seriesin the graph gr_sale in awindow. The statement can be in a script for any
event:
int SeriesNum

/] Get the nunber of the series.

SeriesNum = gr_sal e. FindSeries("Stellar")

/] Change col or of second data point to red
gr_sal e. Set Dat aStyl e(Seri esNum 2, foreground!, 255)

For moreinformation

For complete information about the data-access graph methods, see Chapter 10, Methods for
Graphs in the Datawindow Control in DataWindow Reference.

For more about PowerBuilder user events, see Chapter 8, Working with User Eventsin Users
Guide.

1.5.4 Using point and click

Users can click graphs during execution. The DatawWindow control provides a method called
ObjectAtPointer that stores information about what was clicked. Y ou can use this method

in anumber of ways in mouse events. For example, with the ObjectAtPointer information,
you can call other graph methods to report to the user the value of the clicked data point. This
section shows you how.

Mouse events and graphs

To cause actions when a user clicks agraph, you might:

» PowerBuilder
Write a Clicked script for the Datawindow control

Y ou should call ObjectAtPointer in the first statement of the event's code.
Using ObjectAtPointer

ObjectAtPointer works differently in PowerBuilder.

Power Builder

ObjectAtPointer has this syntax:

Dat aW ndowNane. Obj ect At Poi nter ("graphNanme", seriesNunber, dataNunber)

ObjectAtPointer does these things:

* Returnsthe kind of object the user clicked

Page 76

DataWindow and DataStore basics

The object isidentified by a grObjectType enumerated value. For example, if the user
clicks on a data point, ObjectAtPointer returns TypeDatal. If the user clicks on the graph's
title, ObjectAtPointer returns TypeTitle!.

For alist of object values, see Chapter 6, DataWindow Constants in DataWindow
Reference. In PowerBuilder, you can also open the Browser and click the Enumerated tab.

 Stores the number of the series the pointer was over in the variable seriesNumber, which is
an argument passed by reference

o Storesthe number of the data point in the variable dataNumber, also an argument passed
by reference

Example

Assume thereis agraph named gr_salesin the Datawindow control dw_sales. The following
code for the control's MouseDown event displays a message box:

 If theuser clickson aseries (that is, if ObjectAtPointer returns 1), the message box shows
the name of the series clicked on. The example uses the method GetSeriesName to get the
series name, given the series number stored by ObjectAtPointer.

* If the user clicks on adata point (that is, if ObjectAtPointer returns 2), the message box
lists the name of the series and the value clicked on. The example uses GetDataNumber to
get the data's value, given the data's series and data point number.

Power Builder
This codeisfor the Clicked event:

int SeriesNum DataNum

doubl e Val ue

gr Obj ect Type Obj ect Type

string SeriesNane, ValueAsString
string G aphName

G aphName = "gr_sal e"

/1 The follow ng method stores the series nunber
/1 clicked on in SeriesNum and stores the nunber
/1 of the data point clicked on as DataNum
oj ect Type = &
dw_printer. Cbject At Poi nter (G aphName, &
Seri esNum Dat aNum)

I F Obj ect Type = TypeSeries! THEN
Seri esName = &
dw printer. Seri esNane (G aphNane, SeriesNum
MessageBox(" Graph”, &
"You clicked on the series " + SeriesNane)

ELSElI F Obj ect Type = TypeData! THEN
Value = dw printer. GetData (G aphNane, &
Seri esNum Dat aNum)
Val ueAsString = String(Val ue)
MessageBox(" Graph”, &
dw printer. Seri esNanme (G aphNane, &
SeriesNum) + " value is " + Val ueAsString)
END | F

Page 77

DataWindow and DataStore basics

1.6 DataWindow Export/Import Template
About this chapter

The row datain a DataWindow can be exported and imported in the Extensible Markup
Language (XML or XHTML). This chapter describes how to create and use templates that
control the export and import of datain XML/XHTML format.

1.6.1 The Export Template view for XHTML

Each Datawindow object that you create has a default XHTML export template associated
with it. You can see the default template in the DataWindow painter's Export Template view
for XHTML.

Displaying the XHTML export template

The Export Template view for XHTML coexists with the Export Template view
for XML, each on its own tab page with XML on the top by default. To display the
view for XHTML, click the XHTML tab. If you have any problems displaying the
view, select View>Export/Import Template>XHTML from the menu bar or select
View>Layouts>Default and then click the XHTML tab.

The XHTML export template is a single-instance document of the <form> element. It stores
only the structural layout and any changes that you make to the elements, attributes, and style
declarations. When XHTML is generated, these changes are incorporated into the <form>
element and the CSS stylesheet used to render the DatawWindow in the browser. More than
one export template can be created for a DataWindow.

Default style rules and most default attributes are not stored in the template. Any changes to
style declarations are stored in the template, but at runtime they are removed and applied to
the separately generated CSS stylesheet.

In the Export Template view for XHTML, you can reference DataWindow column, computed
field, and text controls, and DataWindow expressions for each row in the XHTML, wherever
character datais allowed. At runtime, these are replaced with text.

1.6.2 The default XHTML export template

In the default XHTML export template, export XHTML entities (markup and character data)
are displayed as single tree view items that denote the type of entity. The default template has
one element for each column in the DataWindow object:

Page 78

DataWindow and DataStore basics

E::-::|:u:|r't Template - XHTML - t_exportl
= $2] Form name="webD'W_dataForm" s
=-¢3| div class="webDW_detail_0" '
=l @ div class="webDW _emp_jd_t"
A emp_id
£»| inpuk name="webDW _emp_id" tvpe="text" value=emp_id
=l @ div class="webD'W _manager_jd_t"
A manager_id _t
=-<| select name="webCMW_manager_id"
[=- ¥ option walue=manager_id
£2% manager_id
=l {:E] div class="webCMW' _emp_Frame_t"
A emp_fname_t
£»| inpuk name="webDW _emp_Ffname" bype="rext" value=emp_fname
=l {:E] div class="webDW' emp_lname_t"
A emp_Iname_t
£»| inpuk name="webDW _emp_Iname" type="text" value=emp_Iname
=43 div class="webCW _dept_id_t"
A dept_id_t
=-%| select name="webD\W_dept_id"
[=)-#»| option walue=dept_id o

4 >
ML - funkitled) W XHTML - £_exportl f

Y ou can create multiple templates and save them by name with the DataWindow object.
Each template is uniquely associated with the DatawWindow object open in the painter. For
information, see "Managing templates’.

1.6.2.1 How tree view items are represented

Each item in the XHTML export template displays as asingle tree view item with an image
and font color that denotes its type. Elements are represented by a yellow icon that resembles
aluggage tag. The end tags of elements and the markup delimiters (angle brackets) used in an
XHTML document do not display.

The following table shows the icons used in the Export Template view for XHTML.

Table 1.20: Iconsused in the Export Template view for XHTML

Icon Description
@ Root or child element
o Group header element

=z DataWindow column reference

Page 79

DataWindow and DataStore basics

A Static text control reference
?{;“ Computed field or DataWindow expression reference
o= Literal text
m CDATA section
Nested report

1.6.3 Managing templates

From the pop-up menu for the default XHTML export template (with no items selected), you
can create multiple templates and save them by name with the DatawWindow object open in
the painter. You also can edit existing templates associated with the current DatawWindow
object and, when you associate more than one template with the Datawindow, delete the
current template:

Jd

E] div class="d_custormer_id_t" Open...
L A id_t

£»| inpuk name="d_customer_jd" kype: Dave

E] div class="d_cuskomer_Fname_t" oave fs.,,
oA fname_t Delete

E] div class="d_cuskomer _address_t"

1
div class="d_customer_detail_0" New Default

£»| input name="d_customer_Fname" type="text" value=fnames

E] div class="d_cuskomer_Iname_t"

..... A Iname_t
£»| input name="d_customer_|name" type="text" value=Iname

E] div class="d_cuskomer_company_name_t"

L A company_name_t
£»| input name="d_customer_company_name" type="text" value=com

@ div class="d_customer_skake _E"

L A state_t

l}iML - {untitled}lﬁHTML - (untitled)

The pop-up menu has these options for managing templates:

Page 80

DataWindow and DataStore basics

Table1.21:

Menu item

Description

New Default | Define anew default XHTML export template based on the current

DatawWindow layout

for the current DataWindow object)

Open Open a saved template

Save Save the current template; if the template has no name, name it

Save As Save the current template with a new name

Delete Delete the current template (enabled only if more than one template exists

1.6.3.1 Creating and saving templates

1.6.3.1.1 Creating a new default template

To create anew default XHTML export template, select New Default from the pop-up menu
in the Export Template view for XHTML.

Jd

: ~§2| div class="d_customer_jd_t" CIpen. ..

%] div dass="d_customer_Friame_t" Save As...

E] div class="d_cuskomer _address_t"

Mew Defaulk

- [+ -

£»| input name="d_customer_id" type= 3ave

A fname_t Delete
<3| input name="d_customer_Fname" type="text" valle=name

E] div class="d_cuskomer_Iname_t"

£»| input name="d_customer_|name" type="text" value=Iname

E] div class="d_cuskomer_company_name_t"

. company_name_t
£»| input name="d_customer_company_name" type="text" value=com

@ div class="d_customer_skake _E"

L A state_t

i}iML - mytemplatelﬁHTML - mykemplate

A new default XHTML export template has the following elements:

Page 81

DataWindow and DataStore basics

Table 1.22:

Elements Name defaultsto

Root <form> DataWindow name_dataForm
Header <div> DataWindow name_band1l

Detail <div> Datawindow name_bandn
Summary <div> Datawindow name_bandn

Footer <div> DataWindow name_bandn

Child elements of the Header, Detail, Name of each Datawindow control.
Summary, and Footer elements

1.6.3.1.2 Saving the template

To save anew default template, select Save from the pop-up menu in the Export Template
view for XHTML, name the template, and provide a comment that identifies its use.

cave Template - XHTML |
Templates:
k. I
emp_address
emp_salary Cancel
Help
Zomments:
Emploves address book ﬂ
=

The template is stored inside the DataWindow object in the PBL. After saving atemplate
with a Datawindow object, you can see its definition in the Source editor for the
Datawindow object. For example, thisis part of the source for a Datawindow that has two
templates. The templates have required elements only:

export.xhtm (usetenplate = "t_phone"

tenplate = (nane = "t_address"
comment = "Enpl oyee Address Book" xhtm = "<...>")
tenplate = (nane = "t_phone"
comment = "Enpl oyee Phone Book" xhtm = "<...>"))
Note

Defining multiple templates Y ou can define multiple templates for asingle
DataWindow object. One reason you might do thisisto vary the edit styles generated
for the same Datawindow edit control.

Page 82

DataWindow and DataStore basics

1.6.3.2 Selecting the template to use

1.6.3.2.1 Using the Export. XHTML.UseTemplate property

The Data Export page in the Properties view lets you set properties for exporting datain
XHTML. The names of al templates that you create and save for the current DataWindow
object display in the Use Template drop-down list.

In addition to the properties that you can set on this page, you can use the

Export. XHTML.TemplateCount and Export. XHTML.Template]].Name propertiesto let the
user of an application select an export template at runtime. See " Selecting XHTML export
templates at runtime”.

Y ou can specify the template you want to apply to the default XML Web

Datawindow or XHTML Web DataWindow generation at runtime by setting the

Export. XHTML.UseTemplate property. Y ou set the property using the Data Export tab in the
Datawindow painter's Properties view by selecting XHTML as the format and then selecting
the XHTML export template's name from the Use Template drop-down list box.

[Froperties - Datawindow
Javascript Generation Data Export |Data Irnpart | ai

Format to configure

SHTML |

IUse Template

mykemplate j EI

Y ou can a'so set the Export. XHTML .UseTemplate DataWindow property in script. For
information, see "Selecting XHTML export templates at runtime”.

Incorrect setting of the UseTemplate property

If you set the Export. XHTML.UseTemplate property at runtime to the name of a
template that does not exist, the built-in default Template is used on an export.

1.6.3.2.2 Properties related to XHTML export templates
The following table shows properties related to XHTML export templ ates.

Table 1.23: Propertiesfor XHTML export templates

Property User interfacefields Description

Page 83

DataWindow and DataStore basics

list box in the Data Export
tab in the DatawWindow

painter's Properties view.

Export. XHTML.TentpateQalyniso no user The number of XHTML export templates
interface field. associated with a Datawindow object
Export. XHTM L. Tentpatmiyn]shl ameser The name of an XHTML export
interface field. template associated with a Datawindow
object returned by index value that
ranges from 1 to the value of the
Export. XHTML.TemplateCount property
Export. XHTML .UseSerepl attemplate from the | The name of an XHTML export template
Use Template drop—down | (previously saved in the DatawWindow

painter) that optionally controls the logical
structure of the XHTML generated by a
DatawWindow object

For detailed information about DatawWindow properties, see DataWindow Reference.

1.6.4 Template structure

An XHTML export template has a Header section and a Detail section separated graphically
by aline across the tree view. Other DataWindow bands are incorporated into these sections.

|¥] Pxml wersion="1.0" encoding="UTF-16LE" standalone="no" ¥
=-42| d_dept_list

=l--¢3| d_dept_lisk_row

—|--<¥| dept_id
222 dept_id
dept_narne
225 dept_name
dept_head_id
z2Z dept_head_id

5-B)

=g

The Detail Start element

A line across the Export/Import Template view separates the Header section from the Detail
section. The first element after thisline, d_dept_list_row in the previous screen shot, is called
the Detail Start element.

There can be only one Detail Start element, and it must be inside the document's root
element. Each band of the DataWindow is wrapped by a <div> element. When the
DatawWindow is exported in XHTML, this element and all children and/or siblings after it are
generated iteratively for each row.

1.6.4.1 Header section

The Header section can contain the items listed in the following table. Only the root XHTML
<form> element is required:

Page 84

DataWindow and DataStore basics

Table 1.24: Items permitted in the Header section of an XHTML document

[tem Details

Root <form> element (start tag) The XHTML <form> element is the root
element of the XHTML template. See "Root
element”.

XHTML elements Additional elements below the root element.

DataWindow control references Text. See "DataWindow controls”.

DataWindow expressions Text. See "DataWindow expressions'.

Literal text Text that does not correspond to aDW
control.

Attributes Can be assigned to all elements. See
"Element attributes”.

CDATA sections See "CDATA sections'.

Child elements Child elements in the Header section
cannot be iterative except for the Group
DataWindow.

Detail section in root element

The root element displaysin the Header section, but the entire content of the Detail
section is contained in the root element.

The items in the Header section are generated only once at runtime (when the Datawindow
is exported to XHTML), unless the DataWindow is a Group Datawindow. For Group
Datawindows, the corresponding XHTML fragment in the Header section is repeated so that
it iteratively heads each group detail—the group of XHTML rows corresponding to the group
specified in the DataWindow.

The Header section contains the rendering of the DataWindow header band and any group
header bands. Bands are generated within <div> elements. The controls rendered in the
Header section (such as computed titles and text control column headings) are typically also
generated within <div> elements, with referenced content.

These entities are generated only once and are not iterated for each row. However, for
DataWindows with group headers, the corresponding XHTML fragment in the Header
section is repeated, iteratively heading each group of XHTML rows corresponding to the
group specified in the DatawWindow.

1.6.4.2 Detail section

The Detail section contains the rendering of the DataWindow Detail band, delimited by

the first <div> element. The <div> element's contents represent a single row instance to be
generated iteratively. Any group trailers, summary band, and footer band are al so appended
and enclosed by <div> elements. The controls rendered in the Detail section (for example,
column, computed field, DropDownDataWindow, DropDownL istBox, checkbox, and
button controls) are usually also generated within <div>, <input>, or <select> elements with
referenced content.

Page 85

DataWindow and DataStore basics

The Detail section can contain the items listed in the following table.

Table 1.25: Items permitted in the Detail section

of an XHTML document

Item

Details

First <div> element

The contents of the <div> element represent
asingle row instance to be generated
iteratively.

XHTML elements

Additiona elements below the root element.

Datawindow control references

Text. See "DataWindow controls".

DataWindow expressions

Text. See "DataWindow expressions".

Literal text Text that does not correspond to a DW
control.
Attributes Can be assigned to all elements. See

"Element attributes".

CDATA sections

See"CDATA sections'.

Child e ements

Child e ementsin the Header section cannot
be iterative except in the case of group
Datawindows.

1.6.5 Editing XHTML export templates

Every item in the Export Template view for XHTML has a pop-up menu for modifying
the structural layout of the XHTML document that will be generated at runtime. Using the
pop-up menu, you can perform actions appropriate to that item, such as editing or deleting
the item, adding or editing attributes, adding child elements or other items, and inserting
elements, CDATA sections, and so forth, before the current item.

E‘jE::-::p-:-rt Template - ¥HTML - customer_list
EI:@ Form name="-:|_n:ustIist_-:IaI:aFl:urm'_'_

EEFIR i class="d_custlist_band e
E@ div class="d_custlist_fnar g4 apribires.
----- A fame t Edit Styles...
[—]@ div class="d_rcustlist_Inan Edit Events. ..
...... A Iname_t
=-4#] div class="d_custlist_com Add child r
A company_name_t [T Element

EI@ div class="d_custlist_id_t
A id_t

Deleke

Daka‘window Control Reference
Datawindow Expression...

I';'I---:-:{ﬂ divv class="d_rustlist_detail 0"

<»| input name="d_custlist_fnams" tvpe="text" valus
<»| input name="d_custlist_|name" bvpe="text" valus
<»| input name="d_custlist_compary_name" bype="text" value=company_names

2#| input name="d_custlist_ijd" type="text" value=id

Text
CDATA Section

T T

Page 86

DataWindow and DataStore basics

If an element has no attributes, you can edit itstag in the Export Template view for XHTML
by selecting it and left-clicking the tag or pressing F2. Literal text nodes can be edited in the
same way. Y ou can delete items (and their children) by pressing the Delete key.

1.6.5.1 Root element

The root element of the XHTML export template isthe XHTML <form> element. Y ou can
change the name of the root element and add attributes and children.

Edit attributes. ..

EI@ div class="d_custlist_fnam Edit Styles. ..
LA Fname b Edit Events...

Add Child 2

[—]@ div class="d_custlist_compary_name_t"
‘. A company_name_t
=-4#] div class="d_custlist_id_t"
. L id_t
=-4¢2| div class="d_custlist_detail_0"
----- 2#| input name="d_custlist_fname" type="text" value=fname
----- <»| input name="d_custlist_Iname" tvpe="text" value=Inams
----- 2#| input name="d_custlist_company_name" type="text" value=company_name
- input name="d_custlist_id" kype="text" value=id

R G T, - custore.izt AT

Changing the name of the root element changes the name of its start and end tags. Y ou can
change the name using the Edit Attributes menu item to display the Element Attributes dialog
box. For information about editing attributes, see "Element attributes’.

Y ou can add the following kinds of children to the root element:

Elements

* Text

Datawindow control references

Datawindow expressions (including column references)

CDATA sections

1.6.5.2 DataWindow controls

Adding a DataWindow control reference opens a dialog box containing alist of the columns,
computed fields, report controls, and text controls in the document.

Page 87

DataWindow and DataStore basics

- customer_lisk

custlist_dataForm'

e Edit Attributes, ..
_custlist_band_0"

EI@ dive class="

=-£5] div class="d_custlist_frar Ed!t kyles...
= Edit Events. ..
------ A fmame_t
=& div class="d_custlist_Inam Elerment
A Iname_t D Datavwindow Control Reference. ..
Elgcﬂ div class="d_custlist_company_name_t" Datavindow Expression. .
- A company_name_t Text
I'_—'Igﬂ div class="d_custlisk_jd_t" CDATA Section. ..
ey id_t

=-¢2| div class="d_custlist_detail_0"

----- 5 input name="d_custlist_frame" kype="text" value=Fname

----- £ input name="d_custlist_Iname" type="text" value=Iname

----- ¥ input name="d_custlist_company_name" type="text" value=company_name
- input name="d_custlist_id" tvpe="text" value=id

LGt - custoner st A |

Control references can aso be added to empty attribute values or element contents using drag
and drop from the Control List view. Column references can also be added using drag-and-
drop from the Column Specifications view.

Drag-and-drop cannot replace

Y ou cannot drag-and-drop an item on top of another item to replace it. For example,
if you want to replace one control reference with another control reference, or with
a DataWindow expression, you first need to delete the control reference you want to
replace.

1.6.5.3 DataWindow expressions

Adding a Datawindow expression using the Add Child>Datawindow Control Reference
menu item opens the Modify Expression dialog box. This enables you to create references to
columns from the data source of the DataWindow object. It also enables the calling of global
functions. One use of this feature isto return afragment of XHTML to embed, providing
another level of dynamic XHTML generation.

1.6.5.3.1 Using Date and DateTime with strings

If you use a control reference or a DataWindow expression that does not include a string to
represent Date and DateTime columns in atemplate, the XHTML output conformsto SO
8601 date and time formats. For example, consider adate that displaysas12/ 27/ 2002 in
the DataWindow, using the display format mi dd/ yyyy. If the export template does not use
an expression that includes a string, the date is exported to XHTML as2002- 12- 27.

However, if the export template uses an expression that combines a column with a Date or
DateTime datatype with a string, the entire expression is exported as a string and the regional
settings in the Windows registry are used to format the date and time.

Page 88

DataWindow and DataStore basics

Using the previous example, if the short date format in the registry ismmi1 dd/ yy, and the
DataWindow expressionis."Start Date is " + start_date,the XHTML output
isStart Date is 12/27/02.

1.6.5.4 Element attributes

Select Edit Attributes from the pop-up menu for elements to edit an existing attribute or add a
new one. The attributes that display include all the default attributes for the elements with any
template changes applied. The name attribute (and in some cases the class attribute) used to
identify the element is omitted and cannot be changed.

Element Attributes x|

Element Cancel |
|
Help

— Aktributes

Marng Yalue: Control Reference -0t~ Text &

Isize _ I j . I“ E

rype =| j " ':ext " E

I:Iass =| j " I:I _prodlist_name " E

Ivalue = Iname j I ., E

':abindex _ I j . F? =i
Add Delete | ;I

Y ou can change or delete the default attribute values or add new ones. Controls or
expressions can also be referenced for element attribute values.

For each attribute specified, you can select a control reference from the drop—down list or
enter aliteral text value. A literal text value takes precedence over a control reference. You
can also use the expression button to the right of the Text box to enter an expression.

The expression button and entry operates similarly to DataWindow object propertiesin the
Properties view. The button shows a green equals sign if an expression has been entered,
and ared not-equals sign if not. A control reference or text value specified in addition to the
expression is treated as a default value. In the template, this combination is stored with the
control reference or text value, followed by atab, preceding the expression. For example:

attri bute_nane=~"t ext _val ~~t dw_expr essi on~"

When you finish modifying element attributes and you click OK, only changes are stored in
the template. Default attributes that are deleted are added in the template and marked with an
empty value.

1.6.5.5 Style declarations

If you right-click an element and select Edit Styles from the pop-up menu, the Style
Declarations dialog box displays the read-only set of default style declarations for the
element on the left:

Page 89

DataWindow and DataStore basics

Style Declarations

—Default Skyle Declarations —Custon Skyle Declarations oK

Fackgrnund-color:transparent; Cancel

daik

Icolor:#uuuuuu; Help

ront: 10pk "Arial", sans-serif;

rnnt—style:normalj

rnnt—weight:nnrmal ;

rext-decoration:none;

rext—align:left ;

Fnrder-style:none;

Add | Delete |

For clarity, style declarations are omitted from the XHTML export template. Y ou can add
new style declarations or override the existing ones by declaring them on the right side, or
remove them by adding them with an empty value.

1.6.5.6 JavaScript event handlers

If you right-click an element and select Edit Events from the pop-up menu, the JavaScript
Event Handlers dialog box displays aread-only set of event handlers for the element on the
left:

JavaScript Event Handlers

—Diefault Javascripk Event Handlers —izustom Jawascripk Event Handlers o

Fnblur= 4d_prodlist.itemLoseFocus {this); ' Cancel

duig

Fnclick="{var ret; ret= d_prodiist itemClicked({. . /@raw+ Help

anocus="-{d}rod|ist.itemGainFocus(-{..,l'@row+D}-,2Jthis,

Fnchange="{this.bChanged = trug; "

Fnkeypress="return D'y _EditkeyPressed(event, this, -17;

Add | Delete |

This dialog displays the current JavaScript event handlers, if any. You can add new event
handlers or override the existing ones by declaring them on the right side, or remove them by
adding them with an empty value.

1.6.5.7 CDATA sections

Everything inside a CDATA section isignored by the parser. If text contains characters
such as less than or greater than signs (< or >) or ampersands (&) that are significant to the

Page 90

DataWindow and DataStore basics

parser, it should be defined asa CDATA section. A CDATA section starts with <! [CDATA[
and endswith]] >. CDATA sections cannot be nested, and there can be no white space
charactersinside the]] > delimiter—for example, you cannot put a space between the two
sguare brackets.

Example

<! [CDATA]
do not parse ne

11>

1.6.5.8 Element Context Menus

The tree view in the Export Template view for XHTML represents areal-time DOM tree.
Each XHTML element of the tree in the Header and Detail sections has a pop-up menu. The
pop-up menu items perform DOM-based actions for modifying the structural layout of the
XHTML document that will be generated. The menu optionsinclude:

Table 1.26:
Menu item DOM -based action
Edit DOMNode::SetNodeName
Add Child DOMNode::AppendChild
Insert Before DOMNode::InsertBefore
Delete DOMNode::RemoveChild

1.6.5.8.1 DOM-based actions

Edit allows changing the label of the tree view item representing the XHTML element

name. All element items that display no attributes, as well as literal text nodes selected in

the tree view, can also be edited with a single mouse—click or with the shortcut key F2.

Add Child allows appending an entity as alast child. The submenu option Datawindow
Control Reference invokes adialog containing afiltered list box of Column, Computed

Field, and Text controls for user selection. Control references can aso be added to empty
attribute values or element contents using drag-and-drop from the existing Control List View.
DataWindow Expressions can also be added using the existing dialog. DataWindow column
references (in the form of expressions) can aso be added using drag-and-drop from the
Column Specification View. Tree view items, except the <form> element, can also be deleted
with the Delete key.

1.6.5.8.2 Presentation and function

The remaining context menu items invoke dialogs that allow overriding presentational and
functional specifications of each element. These include:

» Style declarations
» Element attributes
» JavaScript event handlers

The dialogsfirst display these specifications as they would be generated at runtime by
default. The painter gets these from the XML Web Generator in DWE in real-time, read-

Page 91

DataWindow and DataStore basics

only display on one half of the dialog. Within input field(s) on the other half of the dialog,
the developer can override these specifications at the atomic declaration or attribute level.
This includes resetting included declarationg/attributes, setting declarations/attributes not
included, or removing declarationg/attributes. These change specifications will then persist
inthe XHTML export template, and be applied to the default presentation generated by the
XML Web Generator at runtime.

1.6.6 Selecting XHTML export templates at runtime

Two Datawindow properties, Export. XHTML.TemplateCount and
Export. XHTML.Template]].Name, enable you to provide alist of templates from which the
user of the application can select at runtime.

The TemplateCount property gets the number of templates associated with a Datawindow
object. Y ou can use this number as the upper limit in a FOR loop that populates a drop-down
list with the template names. The FOR loop uses the Template]].Name property.

string |s_tenplate_count, |s_tenpl ate_nane
long i

I s_tenplate_count = dw_1. Descri be ("DataW ndow. Export. XHTM.. Tenpl at eCount ")

for i=1 to Long (ls_tenpl ate_count)
| s_tenpl ate_name = dw_1. Obj ect. Dat aW ndow. Export. XHTM.. Tenpl ate[i] . Nane
ddl b_1. Addltem (I s_t enpl at e_nan®)

next

Before generating the XHTML, set the export template using the text in the drop—down list
box:

dw_1. Obj ect . Dat aW ndow. Export . XHTM.. UseTenpl at e= ddl b_1. t ext
1.6.7 Exporting the DatawWindow in XML or XHTML

1.6.7.1 Exporting in XML

Y ou can export the DataWindow or DataStore object in XML using PowerScript dot notation
or the Describe method:

Is_xmstring = dw_1. Cbj ect . Dat aW ndow. Dat a. XM-
I's xmstring = dw_1. Descri be(" Dat aW ndow. Dat a. XM_")

When you export the DataWindow or DataStore object, PowerBuilder uses an export
template to specify the content of the generated XML.

Default export format

If you did not create or assign an export template, PowerBuilder uses the default
XSLT export format, which is the same format used when you create a new default
export template. See "Creating and saving templates’.

1.6.7.2 Exporting in XHTML

Y ou can export the DataWindow or DataStore object in XHTML using PowerScript dot
notation or the Describe method:

Page 92

DataWindow and DataStore basics

dw_1. Obj ect . Dat aW ndow. Dat a. XHTM_
dw_1. Descri be(" Dat aW ndow. Dat a. XHTM.")

I s_xm string
I s_xm string

When you export the DatawWindow or DataStore object, PowerBuilder uses an export
template to specify the content of the generated XHTML and CSS style sheet.

Default export format

If you have not created or assigned an export template, PowerBuilder uses the default
XHTML export format. Thisis the same format used when you create a new default
export template. See " Creating and saving templates’.

Page 93

Index

Index
C
Create (DWSyntax), 58
D
dataretrieval, 18
data sources, 6
data update, 19
DataStore
about, 60
access and manipulate data, 63
ShareData, 65
use a custom object, 62
work with, 61

Datawindow control, 8
access text in the edit control, 23
access the database, 14
accesstheitems, 24
access Web service data source, 20
change row or column status
programmatically, 33
code the ItemChanged event, 23
code the ItemError event, 24
define reusable control, 13
import data from an external source, 20
manage data, 20
manipul ate the text in the edit control, 23
name, 11
retrieve and update data, 18
set the transaction object, 15
updates the database, 31
use other Datawindow methods, 25
work in PowerBuilder, 12
DatawWindow errors
handle, 27
DatawWindow Export/Import Template, 78
DatawWindow methods, 25
DatawWindow object
access the properties, 26
create by calling the Create method, 50
create reports
plan and build, 34
print the report, 35
edit in the control, 13
generate HTML
call SaveAs method, 44
control display, 42

display asHTML forms, 45

modify appearance and behavior during

execution, 49

name, 11

nested reports, 35

provide help buttons, 57

put into a control, 10

guery mode, 52

reuse, 57

specify during execution, 13
use crosstabs

modify crosstab's properties during

execution, 39
redefine the crosstab, 38
view the underlying data, 37
use DWSyntax, 57
DataWindow object properties, 26
DatawWindow technology, 5
DBError event, 27
Describe (DWSyntax), 58
Destroy (DWSyntax), 58
DWSyntax
Create, 58
Describe, 58
Destroy, 58
Modify, 58
syntax generated by, 59
SyntaxFromSQL, 59

E
Error event, 29
errors
in property and data expressions, 29
retrieve and update, 27
external source
import data from, 20

G
graph
access data properties, 72
get info about data, 72
modify appearance of data, 74
save data, 73
use methods, 74
modify properties, 70
use, 70
use point and click, 76

Page 94

Index

I
ItemChanged event, 23
[temError event, 24

M
Modify (DWSyntax), 58

P
presentation styles, 6

Q
guery mode, 52

R
retrieval arguments, 18

S
SyntaxFromSQL (DWSyntax), 59

T
transaction management, 15

w
Web service data source

access, 20

Page 95

	DataWindow Programmers Guide
	Contents
	1 DataWindow and DataStore basics
	1.1 About DataWindow Technology
	1.1.1 About DataWindow objects, controls, and components
	1.1.1.1 Presentation styles and data sources
	1.1.1.2 Basic process

	1.1.2 Choosing a DataWindow technology
	1.1.2.1 Solutions for client/server and distributed applications

	1.1.3 PowerBuilder DataWindow control

	1.2 Using DataWindow Objects
	1.2.1 About using DataWindow objects
	1.2.2 Putting a DataWindow object into a control
	1.2.2.1 Names for DataWindow controls and DataWindow objects
	1.2.2.2 Working with the DataWindow control in PowerBuilder
	1.2.2.2.1 Defining reusable DataWindow controls
	1.2.2.2.2 Editing the DataWindow object in the control

	1.2.2.3 Specifying the DataWindow object during execution
	1.2.2.3.1 Changing the DataWindow in PowerBuilder

	1.2.3 Accessing the database
	1.2.3.1 Setting the transaction object for the DataWindow control
	1.2.3.1.1 Internal transaction management
	1.2.3.1.2 Transaction management with a separate transaction object

	1.2.3.2 Retrieving and updating data
	1.2.3.2.1 Basic data retrieval
	1.2.3.2.2 Using retrieval arguments
	1.2.3.2.3 Updating data

	1.2.4 Accessing a Web service data source (Obsolete)
	1.2.5 Importing data from an external source
	1.2.6 Manipulating data in a DataWindow control
	1.2.6.1 How a DataWindow control manages data
	1.2.6.2 Accessing the text in the edit control
	1.2.6.3 Manipulating the text in the edit control
	1.2.6.4 Coding the ItemChanged event
	1.2.6.5 Coding the ItemError event
	1.2.6.6 Accessing the items in a DataWindow
	1.2.6.7 Using other DataWindow methods

	1.2.7 Accessing the properties of a DataWindow object
	1.2.8 Handling DataWindow errors
	1.2.8.1 Retrieve and Update errors and the DBError event
	1.2.8.2 Errors in property and data expressions and the Error event

	1.2.9 Updating the database
	1.2.9.1 How the DataWindow control updates the database
	1.2.9.2 Changing row or column status programmatically

	1.2.10 Creating reports
	1.2.10.1 Planning and building the DataWindow object
	1.2.10.2 Printing the report

	1.2.11 Using nested reports
	1.2.12 Using crosstabs
	1.2.12.1 Viewing the underlying data
	1.2.12.2 Letting users redefine the crosstab
	1.2.12.3 Modifying the crosstab's properties during execution

	1.2.13 Generating HTML
	1.2.13.1 Controlling display
	1.2.13.2 Calling the SaveAs method
	1.2.13.3 Displaying DataWindow objects as HTML forms

	1.3 Dynamically Changing DataWindow Objects
	1.3.1 About dynamic DataWindow processing
	1.3.2 Modifying a DataWindow object
	1.3.3 Creating a DataWindow object
	1.3.4 Providing query ability to users
	1.3.4.1 How query mode works
	1.3.4.2 Using query mode

	1.3.5 Providing Help buttons
	1.3.6 Reusing a DataWindow object
	1.3.7 Using DWSyntax
	1.3.7.1 Describe
	1.3.7.2 Modify
	1.3.7.3 Create
	1.3.7.4 Destroy
	1.3.7.5 SyntaxFromSQL
	1.3.7.6 Tips on the syntax generated by DWSyntax

	1.4 Using DataStore Objects
	1.4.1 About DataStores
	1.4.2 Working with a DataStore
	1.4.3 Using a custom DataStore object
	1.4.4 Accessing and manipulating data in a DataStore
	1.4.5 Sharing information
	1.4.5.1 Example: printing data from a DataStore
	1.4.5.2 Example: using two DataStores to process data

	1.5 Manipulating Graphs
	1.5.1 Using graphs
	1.5.2 Modifying graph properties
	1.5.2.1 How parts of a graph are represented
	1.5.2.2 Referencing parts of a graph

	1.5.3 Accessing data properties
	1.5.3.1 Getting information about the data
	1.5.3.2 Saving graph data
	1.5.3.3 Modifying colors, fill patterns, and other data
	1.5.3.4 Using graph methods

	1.5.4 Using point and click

	1.6 DataWindow Export/Import Template
	1.6.1 The Export Template view for XHTML
	1.6.2 The default XHTML export template
	1.6.2.1 How tree view items are represented

	1.6.3 Managing templates
	1.6.3.1 Creating and saving templates
	1.6.3.1.1 Creating a new default template
	1.6.3.1.2 Saving the template

	1.6.3.2 Selecting the template to use
	1.6.3.2.1 Using the Export.XHTML.UseTemplate property
	1.6.3.2.2 Properties related to XHTML export templates

	1.6.4 Template structure
	1.6.4.1 Header section
	1.6.4.2 Detail section

	1.6.5 Editing XHTML export templates
	1.6.5.1 Root element
	1.6.5.2 DataWindow controls
	1.6.5.3 DataWindow expressions
	1.6.5.3.1 Using Date and DateTime with strings

	1.6.5.4 Element attributes
	1.6.5.5 Style declarations
	1.6.5.6 JavaScript event handlers
	1.6.5.7 CDATA sections
	1.6.5.8 Element Context Menus
	1.6.5.8.1 DOM-based actions
	1.6.5.8.2 Presentation and function

	1.6.6 Selecting XHTML export templates at runtime
	1.6.7 Exporting the DataWindow in XML or XHTML
	1.6.7.1 Exporting in XML
	1.6.7.2 Exporting in XHTML

	Index

