
DataWindow Programmers Guide

Appeon PowerBuilder® 2019 R2

FOR WINDOWS

DOCUMENT ID: DC37775-01-1900-01

LAST REVISED: March 24, 2020

Copyright © 2019 Appeon. All rights reserved.

This publication pertains to Appeon software and to any subsequent release until otherwise
indicated in new editions or technical notes. Information in this document is subject to
change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this
publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Appeon Inc.

Appeon and other Appeon products and services mentioned herein as well as their respective
logos are trademarks or registered trademarks of Appeon Inc.

SAP and other SAP products and services mentioned herein as well as their respective logos
are trademarks or registered trademarks of SAP and SAP affiliate company.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its
affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective
companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth
in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR
52.227-19(a)-(d) for civilian agencies.

Appeon Inc., 1/F, Shell Industrial Building, 12 Lee Chung Street, Chai Wan District, Hong
Kong.

Contents
I DataWindow and DataStore basics .. 1

1 About DataWindow Technology ... 2
1.1 About DataWindow objects, controls, and components 2

1.1.1 Presentation styles and data sources .. 2
1.1.2 Basic process ... 4

1.2 Choosing a DataWindow technology .. 4
1.2.1 Solutions for client/server and distributed applications 5

1.3 PowerBuilder DataWindow control ... 5
2 Using DataWindow Objects .. 7

2.1 About using DataWindow objects ... 7
2.2 Putting a DataWindow object into a control ... 8

2.2.1 Names for DataWindow controls and DataWindow objects 8
2.2.2 Working with the DataWindow control in PowerBuilder 9

2.2.2.1 Defining reusable DataWindow controls 10
2.2.2.2 Editing the DataWindow object in the control 10

2.2.3 Specifying the DataWindow object during execution 10
2.2.3.1 Changing the DataWindow in PowerBuilder 11

2.3 Accessing the database ... 11
2.3.1 Setting the transaction object for the DataWindow control 12

2.3.1.1 Internal transaction management 12
2.3.1.2 Transaction management with a separate transaction
object .. 13

2.3.2 Retrieving and updating data ... 15
2.3.2.1 Basic data retrieval ... 15
2.3.2.2 Using retrieval arguments .. 15
2.3.2.3 Updating data ... 16

2.4 Accessing a Web service data source (Obsolete) 17
2.5 Importing data from an external source ... 17
2.6 Manipulating data in a DataWindow control 17

2.6.1 How a DataWindow control manages data 17
2.6.2 Accessing the text in the edit control 20
2.6.3 Manipulating the text in the edit control 20
2.6.4 Coding the ItemChanged event .. 20
2.6.5 Coding the ItemError event .. 21
2.6.6 Accessing the items in a DataWindow 21
2.6.7 Using other DataWindow methods ... 22

2.7 Accessing the properties of a DataWindow object 23
2.8 Handling DataWindow errors .. 24

2.8.1 Retrieve and Update errors and the DBError event 24
2.8.2 Errors in property and data expressions and the Error
event .. 26

2.9 Updating the database ... 28
2.9.1 How the DataWindow control updates the database 28
2.9.2 Changing row or column status programmatically 30

2.10 Creating reports .. 31
2.10.1 Planning and building the DataWindow object 31

2.10.2 Printing the report ... 32
2.11 Using nested reports .. 32
2.12 Using crosstabs .. 34

2.12.1 Viewing the underlying data ... 34
2.12.2 Letting users redefine the crosstab .. 35
2.12.3 Modifying the crosstab's properties during execution 36

2.13 Generating HTML ... 37
2.13.1 Controlling display .. 40
2.13.2 Calling the SaveAs method .. 42
2.13.3 Displaying DataWindow objects as HTML forms 42

3 Dynamically Changing DataWindow Objects ... 46
3.1 About dynamic DataWindow processing .. 46
3.2 Modifying a DataWindow object ... 46
3.3 Creating a DataWindow object ... 47
3.4 Providing query ability to users .. 49

3.4.1 How query mode works .. 50
3.4.2 Using query mode .. 51

3.5 Providing Help buttons ... 54
3.6 Reusing a DataWindow object ... 54
3.7 Using DWSyntax .. 54

3.7.1 Describe .. 55
3.7.2 Modify ... 55
3.7.3 Create ... 55
3.7.4 Destroy ... 56
3.7.5 SyntaxFromSQL ... 56
3.7.6 Tips on the syntax generated by DWSyntax 56

4 Using DataStore Objects .. 57
4.1 About DataStores ... 57
4.2 Working with a DataStore .. 59
4.3 Using a custom DataStore object ... 59
4.4 Accessing and manipulating data in a DataStore 60
4.5 Sharing information ... 62

4.5.1 Example: printing data from a DataStore 63
4.5.2 Example: using two DataStores to process data 65

5 Manipulating Graphs ... 68
5.1 Using graphs .. 68
5.2 Modifying graph properties ... 69

5.2.1 How parts of a graph are represented 69
5.2.2 Referencing parts of a graph ... 70

5.3 Accessing data properties .. 70
5.3.1 Getting information about the data ... 71
5.3.2 Saving graph data .. 71
5.3.3 Modifying colors, fill patterns, and other data 72
5.3.4 Using graph methods ... 72

5.4 Using point and click .. 74
6 DataWindow Export/Import Template ... 77

6.1 The Export Template view for XHTML ... 77
6.2 The default XHTML export template .. 77

6.2.1 How tree view items are represented 78
6.3 Managing templates ... 79

6.3.1 Creating and saving templates ... 80
6.3.1.1 Creating a new default template 80
6.3.1.2 Saving the template ... 81

6.3.2 Selecting the template to use ... 82
6.3.2.1 Using the Export.XHTML.UseTemplate property 82
6.3.2.2 Properties related to XHTML export templates 82

6.4 Template structure .. 83
6.4.1 Header section ... 83
6.4.2 Detail section .. 84

6.5 Editing XHTML export templates .. 85
6.5.1 Root element .. 85
6.5.2 DataWindow controls .. 86
6.5.3 DataWindow expressions ... 87

6.5.3.1 Using Date and DateTime with strings 87
6.5.4 Element attributes ... 88
6.5.5 Style declarations ... 88
6.5.6 JavaScript event handlers .. 89
6.5.7 CDATA sections ... 89
6.5.8 Element Context Menus ... 89

6.5.8.1 DOM-based actions .. 90
6.5.8.2 Presentation and function ... 90

6.6 Selecting XHTML export templates at runtime 90
6.7 Exporting the DataWindow in XML or XHTML 91

6.7.1 Exporting in XML .. 91
6.7.2 Exporting in XHTML ... 91

Index .. 92

Part I. DataWindow
and DataStore basics

This part describes how to create and use DataWindow and DataStore objects.

Additional information about these objects and about the DataWindow control is available
in the Part VI, “Working with DataWindows” in Users Guide and in Part IV, “Data
Access Techniques” in Application Techniques. Reference information is available in the
DataWindow Reference.

About DataWindow Technology Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 2

1 About DataWindow Technology
About this chapter

This chapter describes what DataWindow objects are and the ways you can use them in
various application architectures and programming environments.

1.1 About DataWindow objects, controls, and components

DataWindow technology is implemented in two parts:

• A DataWindow object

The DataWindow object defines the data source and presentation style for the data.

• A DataWindow control or component

The control or component is a container for the DataWindow object in the application. You
write code that calls methods of the container to manipulate the DataWindow object.

DataWindow controls and components

The DataWindow was invented for use in PowerBuilder to provide powerful data retrieval,
manipulation, and update capabilities for client/server applications.

You can also use DataStore objects as containers for a DataWindow object. DataStores
provide DataWindow functionality for retrieving and manipulating data without the on-screen
display. Uses for DataStores include specifying layouts for printing and managing data in the
server component of a distributed application.

What DataWindow objects are

A DataWindow object is an object that you use to retrieve, present, and manipulate data from
a relational database or other data source (such as an Excel worksheet or dBASE file). You
can specify whether the DataWindow object supports updating of data.

DataWindow objects have knowledge about the data they are retrieving. You can specify
display formats, presentation styles, and other data properties to make the data meaningful to
users.

In the DataWindow painter, you can also make Powersoft report (PSR) files, which you
can use in DataWindow controls or components. A PSR file contains a report definition --
essentially a nonupdatable DataWindow object -- as well as the data contained in the report
when the PSR file was created. It does not retrieve data.

Where to define DataWindow objects

You define DataWindow objects in the PowerBuilder DataWindow painter. You can also
define nonupdatable DataWindow objects in the InfoMaker Report painter.

1.1.1 Presentation styles and data sources

When you define a DataWindow object, you choose a presentation style and a data source.

Presentation styles

About DataWindow Technology Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 3

A presentation style defines a typical style of report and handles how rows are grouped on
the page. You can customize the way the data is displayed in each presentation style. The
presentation styles include:

Table 1.1: DataWindow presentation styles

Presentation
style

Description

Tabular Data columns across the page and headers above each column. Several rows
are viewable at once.

Freeform Data columns going down the page with labels next to each column. One row
displayed at a time.

Grid Row-and-column format like a spreadsheet with grid lines. Users can move
borders and columns.

Label Several labels per page with one row for each label. Used for mailing and
other labels.

N-Up Two or more rows of data next to each other across the page. Useful for
periodic data, such as data for each day of the week or each month in the
quarter.

Group A tabular style with rows grouped under headings. Each group can have
summary fields with computed statistics.

TreeView A tabular style that groups data hierarchically and displays the data in a way
that is collapsible and expandable.

Composite Several DataWindow objects grouped into a single presentation.

Graph Graphical presentation of data.

Crosstab Data summary in a row-and-column format.

RichText Paragraphs of text with embedded data columns.

OLE An OLE object linked or embedded in the DataWindow and associated with
the retrieved data.

For examples of the presentation styles, see Section 18.2, “Choosing a presentation style” in
Users Guide.

Data sources

The data source specifies where the data in the DataWindow comes from and what data items
are displayed. Data can come from tables in a database, a Web service, a file with data that
you can import, or code that specifies the data. For databases, the data specification is saved
in a SQL statement. In all cases, the DataWindow object saves the names of the data items to
display, as well as their datatypes.

Table 1.2: Data sources you can use for a DataWindow

Data source Description

Quick Select The data is coming from one or more tables in a SQL database. The tables
must be related through a foreign key. You need to choose only columns,
selection criteria, and sorting.

About DataWindow Technology Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 4

Data source Description

SQL Select You want more control over the select statement that is generated for the data
source. You can specify grouping, computed columns, and so on.

Query The data has already been selected and the SQL statement is saved in a query
object that you have defined in the Query painter. When you define the
DataWindow object, the query object is incorporated into the DataWindow
and does not need to be present when you run the application.

External The data is not stored in a database, but is imported from a file (such as a tab-
separated or dBASE file) or populated from code.

Stored
Procedure

The data is defined in a database stored procedure.

Web Service The data is defined in a Web service. Support for a Web service data source is
not available for the Composite, RichText, and OLE presentation styles.

1.1.2 Basic process

Using a DataWindow involves two main steps:

1. Use the DataWindow painter to create or edit a DataWindow object.

In the painter, you define the data source, presentation style, and all other properties of the
object, such as display formats, validation rules, sorting and filtering criteria, and graphs.

2. In your development environment, put a DataWindow control in a window, visual user
object, or form or a DataWindow container in a Web page and associate a DataWindow
object with the control or container.

It is through the control or container that your application communicates with the
DataWindow object you created in the DataWindow painter. You write code to
manipulate the DataWindow control or container and the DataWindow object it contains.
Typically, your code retrieves and updates data, changes the appearance of the data,
handles errors, and shares data between DataWindow controls.

1.2 Choosing a DataWindow technology
Since DataWindow technology can be used in different environments, it might not be
obvious what approach you should take to implement your data-enabled application.
This section describes the DataWindow technologies available for the basic application
architectures and the requirements for each DataWindow solution.

The basic architectures are:

• Client/server

A program running on a client workstation accesses a database running on a server. The
user interface and business logic reside together on the client computer.

• Distributed application

The user interface on the client computer calls components on a middle-tier server, which
execute business logic and access the database server.

About DataWindow Technology Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 5

• Web application

A client Web browser sends requests for HTML or JSP documents to a Web server. The
Web server passes control to a page or application server, where server-side scripts can
access components on a transaction server that can connect to databases on a database
server.

1.2.1 Solutions for client/server and distributed applications

The PowerBuilder DataWindow was initially developed for use in client/server applications.

You can implement the PowerBuilder DataWindow as a control that displays a DataWindow
object or as a DataStore that supports data retrieval and update without displaying the data.
A complete set of events and methods programmed in PowerScript provides control over all
aspects of the DataWindow, including data retrieval, display, validation, and update.

You can also deploy the PowerBuilder DataWindow as a component for use in distributed
applications.

For more information, see PowerBuilder DataWindow control.

1.3 PowerBuilder DataWindow control
Features

The PowerBuilder DataWindow control is a container for DataWindow objects in a
PowerBuilder application. You can use it in a window to present an interactive display of
data. The user can view and change data and send changes to the database.

In addition to the DataWindow control, the DataStore object provides a nonvisual container
for server applications and other situations where on-screen viewing is not necessary.

The DataWindow supports data retrieval with retrieval arguments and data update. You can
use edit styles, display formats, and validation rules for consistent data entry and display. The
DataWindow provides many methods for manipulating the DataWindow, including Modify
for changing DataWindow object properties. You can share a result set between several
DataWindow controls and you can synchronize data between a client and server.

Development environment

You can develop both parts of your DataWindow implementation in PowerBuilder. You use:

• The DataWindow painter to define DataWindow objects.

• The Window or User Object painters to add DataWindow controls to windows or visual
user objects. The DataWindow control is on the drop-down palette of controls for these
painters.

In the Window or User Object painters, you can write scripts that control the DataWindow's
behavior and manipulate the data it retrieves. Your scripts can also instantiate DataStore
objects.

In the PowerBuilder Browser you can examine the properties, events, and methods of
DataWindow controls and DataStore objects on the System tab page. If you have a library
open that contains DataWindow objects, you can examine the internal properties of the
DataWindow object on the Browser's DataWindow tab page.

About DataWindow Technology Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 6

DataWindow objects

The DataWindow control or DataStore object uses a DataWindow object defined with any
presentation style. The DataWindow object determines what data is retrieved and how it
is displayed. The control can also display Powersoft reports (PSRs), which do not need to
retrieve data.

Database connections

The PowerBuilder DataWindow can use ODBC, JDBC, and native database drivers for
database connectivity. Users can connect to a data source on any server to which they have
access, including databases and middle-tier servers on the Internet.

To make a connection, you can use the internal Transaction object of the DataWindow, or
you can make the connection with a separate PowerBuilder transaction object.

A PowerBuilder application provides a default Transaction object, SQLCA. You can define
additional Transaction objects if you need to make additional connections. When you connect
with a separate Transaction object, you can control when SQL COMMIT and ROLLBACK
statements occur, and you can use the same connection for multiple controls.

For more information about using a Transaction object with a DataWindow, see Using
DataWindow Objects.

For more information about PowerBuilder Transaction objects, see Chapter 12, Using
Transaction Objects in Application Techniques.

Coding

You write scripts in the Window or User Object painter to connect to the database, retrieve
data, process user input, and update data.

In PowerBuilder, you can take advantage of object inheritance by defining a user object
inherited from a DataWindow control and adding your own custom functionality. You can
reuse the customized DataWindow control throughout your applications.

You create DataStore objects, the nonvisual version of a DataWindow control, by creating
them in a script and calling methods for the object. You can also define a user object that
is inherited from a DataStore and customize it. For more information, see Using DataStore
Objects.

Libraries and applications

You store DataWindow objects in PowerBuilder libraries (PBLs) during development. When
you build your application, you can include the DataWindow objects in the application
executable or in PowerBuilder dynamic libraries (PBDs).

For more information about designing DataWindow objects and building a PowerBuilder
application, see Chapter 18, Defining DataWindow Objects in Users Guide and Application
Techniques.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 7

2 Using DataWindow Objects
About this chapter

This chapter describes how to use DataWindow objects in an application.

Before you begin

This chapter assumes that you know how to build DataWindow objects in the DataWindow
painter, as described in Chapter 18, Defining DataWindow Objects in Users Guide.

2.1 About using DataWindow objects

Building DataWindow objects

Before you can use a DataWindow object in an application, you need to build it.
PowerBuilder has separate painters for database management, DataWindow definition, and
library management.

You define and edit a DataWindow object in the DataWindow painter. You specify its data
source and presentation style, then enhance the object by specifying display formats, edit
styles, and more.

The DataWindow painter is also where you make Powersoft report (PSR) files, which you
might also want to use in applications. A PSR file contains a report definition -- essentially a
nonupdatable DataWindow object -- as well as the data contained in that report when the PSR
file was created.

Report objects only in InfoMaker

Older versions of PowerBuilder had a Report painter as well as a DataWindow
painter. A report object could retrieve but not update data; it was essentially a
nonupdatable DataWindow object. The Report painter is now available only in
InfoMaker.

Managing DataWindow objects

Several painters let you manage and package your DataWindow objects for use in
applications.

In particular, you can maintain DataWindow objects in one or more libraries (PBL files).
When you are ready to use your DataWindow objects in applications, you can package them
in more compact runtime libraries (PBD files).

For further details on how to build and organize DataWindow objects, see Chapter 18,
Defining DataWindow Objects in Users Guide.

Using DataWindow objects

After you build a DataWindow object (or PSR file) in the DataWindow painter, you can
use it to display and process information from the appropriate data source. The sections that
follow explore the details of how to do this.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 8

2.2 Putting a DataWindow object into a control

The DataWindow control is a container for DataWindow objects in an application. It provides
properties, methods, and events for manipulating the data and appearance of the DataWindow
object. The DataWindow control is part of the user interface of your application.

You also use DataWindow objects in the nonvisual DataStore and in child DataWindows,
such as drop-down DataWindows and composite presentation styles. For more information
about DataStores, see Using DataWindow Objects. For more information about drop-down
DataWindows and composite DataWindows, see Part VI, “Working with DataWindows” in
Users Guide.

To use the DataWindow object in an application, you add a DataWindow control to a
window or form, then associate that control with the DataWindow object, as illustrated in the
following figure:

Figure 2-1: Putting a DataWindow object into a DataWindow control

This section has information about:

• Names for DataWindow controls and DataWindow objects

• Procedures for inserting a control and assigning a DataWindow object to the control

• Specifying the DataWindow object during execution

2.2.1 Names for DataWindow controls and DataWindow objects

There are two names to be aware of when you are working with a DataWindow:

• The name of the DataWindow control

• The name of the DataWindow object associated with the control

The DataWindow control name

When you place a DataWindow control in a window or form, it gets a default name. You
should change the name to be something meaningful for your application.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 9

In PowerBuilder, the name of the control has traditionally had a prefix of dw_. This is
a useful convention to observe in any development environment. For example, if the
DataWindow control lists customers, you might want to name it dw_customer.

Using the name

In code, always refer to a DataWindow by the name of the control (such as
dw_customer). Do not refer to the DataWindow object that is in the control.

The DataWindow object name

To avoid confusion, you should use different prefixes for DataWindow objects and
DataWindow controls. The prefix d_ is commonly used for DataWindow objects. For
example, if the name of the DataWindow control is dw_customer, you might want to name
the corresponding DataWindow object d_customer.

2.2.2 Working with the DataWindow control in PowerBuilder

To place a DataWindow control in a window:

1. Open the window that will contain the DataWindow control.

2. Select Insert>Control>DataWindow from the menu bar.

3. Click where you want the control to display.

PowerBuilder places an empty DataWindow control in the window:

4. (Optional) Resize the DataWindow control by selecting it and dragging one of the
handles.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 10

Specifying a DataWindow object

After placing the DataWindow control, you associate a DataWindow object with the control.

To associate a DataWindow object with the control:

1. In the DataWindow Properties view, click the Browse button for the DataObject
property.

2. Select the DataWindow object that you want to place in the control and click OK.

The name of the DataWindow object displays in the DataObject box in the DataWindow
Properties view.

3. (Optional) Change the properties of the DataWindow control as needed.

Allowing users to move DataWindow controls

If you want users to be able to move a DataWindow control during execution, give
it a title and select the Title Bar check box. Then users can move the control by
dragging the title bar.

2.2.2.1 Defining reusable DataWindow controls

You might want all the DataWindow controls in your application to have similar appearance
and behavior. For example, you might want all of them to do the same error handling.

To be able to define these behaviors once and reuse them in each window, you should create
a standard user object based on the DataWindow control: define the user object's properties
and write scripts that perform the generic processing you want, such as error handling.
Then place the user object (instead of a new DataWindow control) in the window. The
DataWindow user object has all the desired functionality predefined. You do not need to
respecify it.

For more information about creating and using user objects, see Chapter 15, Working with
User Objects in Users Guide.

2.2.2.2 Editing the DataWindow object in the control

Once you have associated a DataWindow object with a DataWindow control in a window,
you can go directly to the DataWindow painter to edit the associated DataWindow object.

To edit an associated DataWindow object:

• Select Modify DataWindow from the DataWindow control's pop-up menu.

PowerBuilder opens the associated DataWindow object in the DataWindow painter.

2.2.3 Specifying the DataWindow object during execution

Changing the DataWindow object

In PowerBuilder, set the DataObject property to one of the DataWindow objects built into the
application.

Setting the transaction object when you change the DataWindow object

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 11

When you change the DataWindow object during execution, you might need to call setTrans
or setTransObject again.

For more information, see Setting the transaction object for the DataWindow control.

Dynamically creating a DataWindow object

You can also create a new DataWindow object during execution and associate it with a
control.

For more information, see Dynamically Changing DataWindow Objects.

2.2.3.1 Changing the DataWindow in PowerBuilder

When you associate a DataWindow object with a control in the window, you are setting the
initial value of the DataWindow control's DataObject property.

During execution, this tells your application to create an instance of the DataWindow object
specified in the control's DataObject property and use it in the control.

Setting the DataObject property in code

In addition to specifying the DataWindow object in the Window painter, you can switch the
object that displays in the control during execution by changing the value of the DataObject
property in code.

For example: to display the DataWindow object d_emp_hist from the library emp.pbl in the
DataWindow control dw_emp, you can code:

dw_emp.DataObject = "d_emp_hist"

The DataWindow object d_emp_hist was created in the DataWindow painter and stored in a
library on the application search path. The control dw_emp is contained in the window and is
saved as part of the window definition.

Preventing redrawing

You can use the SetRedraw method to turn off redrawing in order to avoid flicker and
reduce redrawing time when you are making several changes to the properties of an
object or control. Dynamically changing the DataWindow object at execution time
implicitly turns redrawing on. To turn redrawing off again, call the SetRedraw method
every time you change the DataWindow object:

dw_emp.DataObject = "d_emp_hist"
dw_emp.SetRedraw(FALSE)

Using PSR files

To put a PSR file into a DataWindow control at execution time, change the control's
DataObject property to specify that PSR file name.

2.3 Accessing the database
Before you can display data in a DataWindow control, you must get the data stored in the
data source into that control. The most common way to get the data is to access a database.

An application goes through several steps in accessing a database:

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 12

1. Set the appropriate values for the transaction object.

2. Connect to the database.

3. Set the transaction object for the DataWindow control.

4. Retrieve and update data.

5. Disconnect from the database.

This section provides instructions for setting the transaction object for a DataWindow control
and for using the DataWindow object to retrieve and update data.

To learn more about setting values for the transaction object, connecting to the database, and
disconnecting from the database, see:

• PowerBuilder

Chapter 12, Using Transaction Objects in Application Techniques.

2.3.1 Setting the transaction object for the DataWindow control

There are two ways to handle database connections and transactions for the DataWindow
control. You can use:

• Internal transaction management

• A separate transaction object

The two methods provide different levels of control over database transactions.

If you are displaying a PSR file in the control

You do not need to use a transaction object or make a database connection if you are
displaying a PSR file in the DataWindow control.

If you change the DataWindow object

If you change the DataWindow object associated with a DataWindow control during
execution, you might need to call the SetTrans or SetTransObject method again.

PowerBuilder

You always need to call one of the methods to set the transaction object.

2.3.1.1 Internal transaction management

What it does

When the DataWindow control uses internal transaction management, it handles connecting,
disconnecting, commits, and rollbacks. It automatically performs connects and disconnects as
needed; any errors that occur cause an automatic rollback.

Whenever the DataWindow needs to access the database (such as when a Retrieve or Update
method is executed), the DataWindow issues an internal CONNECT statement, does the
appropriate data access, then issues an internal DISCONNECT.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 13

Whether to use it

When not to use it

Do not use internal transaction management when:

• Your application requires the best possible performance

Internal transaction management is slow and uses considerable system resources because it
must connect and disconnect for every database access.

• You want control over when a transaction is committed or rolled back

Because internal transaction management must disconnect after a database access, any
changes are always committed immediately.

When to use it

If the number of available connections at your site is limited, you might want to use internal
transaction management because connections are not held open.

Internal transaction management is appropriate in simple situations when you are doing pure
retrievals (such as in reporting) and do not need to hold database locks -- when application
control over committing or rolling back transactions is not an issue.

How it works

PowerBuilder

To use internal transaction management, you specify connection values for a transaction
object, which could be the automatically instantiated SQLCA. Then you call the SetTrans
method, which copies the values from a specified transaction object to the DataWindow
control's internal transaction object.

SQLCA.DBMS = ProfileString("myapp.ini", &
"database", "DBMS", " ")
... // Set more connection parameters
dw_employee.SetTrans(SQLCA)
dw_employee.Retrieve()

Connecting to the database

When you use SetTrans, you do not need to explicitly code a CONNECT or
DISCONNECT statement in a script. CONNECT and DISCONNECT statements are
automatically issued when needed.

For more information about PowerBuilder transaction objects, see Chapter 12, Using
Transaction Objects in Application Techniques.

2.3.1.2 Transaction management with a separate transaction object

How it works

When you use a separate transaction object, you control the duration of the database
transaction. Your scripts explicitly connect to and disconnect from the database. If the
transaction object's AutoCommit property is set to false, you also program when an update is
committed or rolled back.

Typically, a script for data retrieval or update involves these statements:

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 14

Connect
SetTransObject
Retrieve or Update
Commit or Rollback
Disconnect

In PowerBuilder, you use embedded SQL for connecting and committing.

The transaction object also stores error messages returned from the database in its properties.
You can use the error information to determine whether to commit or roll back database
changes.

When to use it

When the DataWindow control uses a separate transaction object, you have more control of
the database processing and are responsible for managing the database transaction.

There are several reasons to use a separate transaction object:

• You have several DataWindow controls that connect to the same database and you want to
make one database connection for all of them, saving the overhead of multiple connections

• You want to control transaction processing

• You require the improved performance provided by keeping database connections open

How it works

PowerBuilder

The SetTransObject method associates a transaction object with the DataWindow control.
PowerBuilder has a default transaction object called SQLCA that is automatically
instantiated. You can set its connection properties, connect, and assign it to the DataWindow
control.

The following statement uses SetTransObject to associate the DataWindow control dw_emp
with the default transaction object (SQLCA):

// Set connection parameters in the transaction object
SQLCA.DBMS = ...
SQLCA.database = ...
CONNECT USING SQLCA;
dw_emp.SetTransObject(SQLCA)
dw_emp.Retrieve()

Instead of or in addition to using the predefined SQLCA transaction object, you can define
your own transaction object in a script. This is necessary if your application needs to connect
to more than one database at the same time.

The following statement uses SetTransObject to associate dw_customer with a programmer-
created transaction object (trans_customer):

transaction trans_customer
trans_customer = CREATE transaction
// Set connection parameters in the transaction object
trans_customer.DBMS = ...
trans_customer.database = ...
CONNECT USING trans_customer;
dw_customer.SetTransObject(trans_customer)
dw_customer.Retrieve()

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 15

For more information

For more information about database transaction processing:

• PowerBuilder

See Chapter 12, Using Transaction Objects in Application Techniques

For more information about SetTrans and SetTransObject methods, see Section 9.196,
“SetTrans” in DataWindow Reference and Section 9.197, “SetTransObject” in DataWindow
Reference.

2.3.2 Retrieving and updating data

You call the following two methods to access a database through a DataWindow control:

Retrieve
Update

2.3.2.1 Basic data retrieval

After you have set the transaction object for your DataWindow control, you can use the
Retrieve method to retrieve data from the database into that control:

dw_emp.Retrieve()

2.3.2.2 Using retrieval arguments

About retrieval arguments

Retrieval arguments qualify the SELECT statement associated with the DataWindow
object, reducing the rows retrieved according to some criteria. For example, in the following
SELECT statement, Salary is a retrieval argument defined in the DataWindow painter:

SELECT Name, emp.sal FROM Employee
WHERE emp.sal > :Salary

When you call the Retrieve method, you supply a value for Salary. In PowerBuilder, the code
looks like this:

dw_emp.Retrieve(50000)

Special considerations are explained below.

When coding Retrieve with arguments, specify them in the order in which they are defined in
the DataWindow object. Your Retrieve method can provide more arguments than a particular
DataWindow object expects. Any extra arguments are ignored. This allows you to write a
generic Retrieve that works with several different DataWindow objects.

Omitting retrieval arguments

If your DataWindow object takes retrieval arguments but you do not pass them in the
Retrieve method, the DataWindow control prompts the user for them when Retrieve is called.

More than 16 arguments

The Retrieve method is limited to 16 arguments in some environments.

PowerBuilder

You can specify any number of retrieval arguments.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 16

2.3.2.3 Updating data

After users have made changes to data in a DataWindow control, you can use the Update
method to save those changes in the database.

In PowerBuilder, the code looks like this:

dw_emp.Update()

Update sends to the database all inserts, changes, and deletions made in the DataWindow
control since the last Update method. When you are using an external transaction object,
you can then commit (or roll back) those database updates. In PowerBuilder, you use SQL
statements.

For more specifics on how a DataWindow control updates the database (that is, which SQL
statements are sent in which situations), see Updating the database.

Examples

The following example shows code that connects, retrieves, updates, commits or rolls back,
and disconnects from the database.

Although the example shows all database operations in a single script or function, most
applications separate these operations. In a PowerBuilder application, for example, an
application could connect to the database in the application Open event, retrieve and update
data in one or more window scripts, and disconnect from the database in the application
Close event.

PowerBuilder

The following statements retrieve and update data using the transaction object EmpSQL and
the DataWindow control dw_emp:

// Connect to the database specified in the
// transaction object EmpSQL
CONNECT USING EmpSQL;

// Set EmpSQL as the transaction object for dw_emp
dw_emp.SetTransObject(EmpSQL)

// Retrieve data from the database specified in
// EmpSQL into dw_emp
dw_emp.Retrieve()

// Make changes to the data...
...

// Update the database
IF dw_emp.Update() > 0 THEN
 COMMIT USING EmpSQL;
ELSE
 ROLLBACK USING EmpSQL;
END IF

// Disconnect from the database
DISCONNECT USING EmpSQL;

Handling retrieval or update errors

A production application should include error tests after each database operation. For more
about checking for errors, see Handling DataWindow errors.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 17

2.4 Accessing a Web service data source (Obsolete)

You do not use a transaction object to access data from a Web service data source. However,
some Web services support or require a user ID and password, and other session-related
properties like firewall settings. The WSConnection object can provide this information for
your DataWindow connections.

You use an instance of the WSConnection object to connect to a Web service by calling the
SetWSObject method.

For more information about setting properties for a Web service connection, see
WSConnection and SetWSObject in Section 2.152, “WSConnection object (Obsolete)”
in Objects and Controls and Section 9.201, “SetWSObject (Obsolete)” in DataWindow
Reference.

2.5 Importing data from an external source

PowerBuilder

If the data for a DataWindow is not coming from a database or a Web service data source
(that is, the data source was defined as External in the DataWindow wizard), you can use
these methods to import data into the DataWindow control:

ImportClipboard
ImportFile
ImportString

You can also get data into the DataWindow by using the SetItem method or by using a
DataWindow expression.

For more information on the SetItem method and DataWindow expressions, see
Manipulating data in a DataWindow control.

2.6 Manipulating data in a DataWindow control

To handle user requests to add, modify, and delete data in a DataWindow, you can write code
to process that data, but first you need to understand how DataWindow controls manage data.

2.6.1 How a DataWindow control manages data

As users add or change data, the data is first handled as text in an edit control. If the data is
accepted, it is then stored as an item in a buffer.

About the DataWindow buffers

A DataWindow uses three buffers to store data:

Table 2.1: DataWindow buffers

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows that are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or through code

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 18

About the edit control

As the user moves around the DataWindow control, the DataWindow places an edit control
over the current cell (row and column):

About text

The contents of the edit control are called text. Text is data that has not yet been accepted by
the DataWindow control. Data entered in the edit control is not in a DataWindow buffer yet;
it is simply text in the edit control.

About items

When the user changes the contents of the edit control and presses Enter or leaves the cell (by
tabbing, using the mouse, or pressing up arrow or down arrow), the DataWindow processes
the data and either accepts or rejects it, depending on whether it meets the requirements
specified for the column. If the data is accepted, the text is moved to the current row and
column in the DataWindow Primary buffer. The data in the Primary buffer for a particular
column is referred to as an item.

Events for changing text and items

When data is changed in the edit control, several events occur.

Table 2.2: Event names in PowerBuilder

Event Description

EditChanged (not
available on client
control)

Occurs for each keystroke the user types in the edit control

ItemChanged Occurs when a cell has been modified and loses focus

ItemError Occurs when new data fails the validation rules for the column

ItemFocusChanged Occurs when the current item in the control changes

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 19

How text is processed in the edit control

When the data in a column in a DataWindow has been changed and the column loses focus
(for example, because the user tabs to the next column), the following sequence of events
occurs:

1. The DataWindow control converts the text into the correct datatype for the column. For
example, if the user is in a numeric column, the DataWindow control converts the string
that was entered into a number. If the data cannot be converted, the ItemError event is
triggered.

2. If the data converts successfully to the correct type, the DataWindow control applies any
validation rule used by the column. If the data fails validation, the ItemError event is
triggered.

3. If the data passes validation, then the ItemChanged event is triggered. If you set an action/
return code of 1 in the ItemChanged event, the DataWindow control rejects the data and
does not allow the focus to change. In this case, the ItemError event is triggered.

4. If the ItemChanged event accepts the data, the ItemFocusChanged event is triggered next
and the data is stored as an item in a buffer.

Figure 2-2: How text is processed in edit controls

Action/return codes for events

You can affect the outcome of events by specifying numeric values in the event's program
code. For example, step 3 above describes how you can force data to be rejected with a code
of 1 in the ItemChanged event.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 20

To specify action/return codes:

• PowerBuilder

Use a RETURN statement

For information about codes for individual events, see DataWindow Reference.

2.6.2 Accessing the text in the edit control

Using methods

The following methods allow you to access the text in the edit control:

• GetText - Obtains the text in the edit control

• SetText - Sets the text in the edit control

In event code

In addition to these methods, the following events provide access to the text in the edit
control:

EditChanged
ItemChanged
ItemError

Use the Data parameter, which is passed into the event, to access the text of the edit control.
In your code for these events, you can test the text value and perform special processing
depending on that value.

For an example, see Coding the ItemChanged event.

2.6.3 Manipulating the text in the edit control

When you want to further manipulate the contents of the edit control within your
DataWindow control, you can use any of these methods:

CanUndo Scroll
Clear SelectedLength
Copy SelectedLine
Cut SelectedStart
LineCount SelectedText
Paste SelectText
Position TextLine
ReplaceText Undo

For more information about these methods, see DataWindow Reference.

2.6.4 Coding the ItemChanged event

If data passes conversion and validation, the ItemChanged event is triggered. By default,
the ItemChanged event accepts the data value and allows focus to change. You can write
code for the ItemChanged event to do some additional processing. For example, you could

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 21

perform some tests, set a code to reject the data, have the column regain focus, and trigger the
ItemError event.

Example

The following sample code for the ItemChanged event for a DataWindow control called
dw_Employee sets the return code in dw_Employee to reject data that is less than the
employee's age, which is specified in a SingleLineEdit text box control in the window.

This is the PowerBuilder version of the code:

int a, age
age = Integer(sle_age.text)
a = Integer(data)

// Set the return code to 1 in the ItemChanged
// event to tell PowerBuilder to reject the data
// and not change the focus.
IF a < age THEN RETURN 1

2.6.5 Coding the ItemError event

The ItemError event is triggered if there is a problem with the data. By default, it rejects the
data value and displays a message box. You can write code for the ItemError event to do
some other processing. For example, you can set a code to accept the data value, or reject the
data value but allow focus to change.

For more information about the events of the DataWindow control, see DataWindow
Reference.

2.6.6 Accessing the items in a DataWindow

You can access data values in a DataWindow by using methods or DataWindow data
expressions. Both methods allow you to access data in any buffer and to get original or
current values.

The method you use depends on how much data you are accessing and whether you know the
names of the DataWindow columns when the script is compiled.

For guidelines on deciding which method to use, see Chapter 4, Accessing Data in Code in
DataWindow Reference.

Using methods

There are several methods for manipulating data in a DataWindow control.

These methods obtain the data in a specified row and column in a specified buffer:

• PowerBuilder

GetItemDate, GetItemDateTime, GetItemDecimal, GetItemNumber, GetItemString,
GetItemTime

This method sets the value of a specified row and column:

• PowerBuilder

SetItem

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 22

For example, the following statement, using PowerBuilder syntax, assigns the value from the
empname column of the first row to the variable ls_Name in the Primary buffer:

ls_Name = dw_1.GetItemString (1, "empname")

This PowerBuilder statement sets the value of the empname column in the first row to the
string Waters:

dw_1.SetItem(1, "empname", "Waters")

Uses

You call the GetItem methods to obtain the data that has been accepted into a specific row
and column. You can also use them to check the data in a specific buffer before you update
the database. You must use the method appropriate for the column's datatype.

For more information about the methods listed above, see Chapter 9, Methods for the
DataWindow Control in DataWindow Reference.

Using expressions

DataWindow data expressions refer to single items, columns, blocks of data, selected data, or
the whole DataWindow.

In PowerBuilder, you construct data expressions using dot notation.

Expressions in PowerBuilder

The Object property of the DataWindow control lets you specify expressions that refer
directly to the data of the DataWindow object in the control. This direct data manipulation
allows you to access small and large amounts of data in a single statement, without calling
methods:

dw_1.Object.jobtitle[3] = "Programmer"

The next statement sets the value of the first column in the first row in the DataWindow to
Smith:

dw_1.Object.Data[1,1] = "Smith"

For complete instructions on how to construct DataWindow data expressions, see Chapter 4,
Accessing Data in Code in DataWindow Reference.

2.6.7 Using other DataWindow methods

There are many more methods you can use to perform activities in DataWindow controls.
Here are some of the more common ones:

Table 2.3: Common methods in DataWindow controls

Method Purpose

AcceptText Applies the contents of the edit control to the current item in the
DataWindow control

DeleteRow Removes the specified row from the DataWindow control, placing it in the
Delete buffer; does not delete the row from the database

Filter Displays rows in the DataWindow control based on the current filter

GetRow Returns the current row number

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 23

Method Purpose

InsertRow Inserts a new row

Reset Clears all rows in the DataWindow control

Retrieve Retrieves rows from the database

RowsCopy,
RowsMove

Copies or moves rows from one DataWindow control to another

ScrollToRow Scrolls to the specified row

SelectRow Highlights a specified row

ShareData Shares data among different DataWindow controls.

Update Sends to the database all inserts, changes, and deletions that have been
made in the DataWindow control

For complete information on DataWindow methods, see Chapter 9, Methods for the
DataWindow Control in DataWindow Reference.

2.7 Accessing the properties of a DataWindow object
About DataWindow object properties

DataWindow object properties store the information that controls the behavior of a
DataWindow object. They are not properties of the DataWindow control, but of the
DataWindow object displayed in the control. The DataWindow object is itself made up of
individual controls -- column, text, graph, and drawing controls -- that have DataWindow
object properties.

You establish initial values for DataWindow object properties in the DataWindow painter.
You can also get and set property values during execution in your code.

You can access the properties of a DataWindow object by using the Describe and Modify
methods or DataWindow property expressions. Which you use depends on the type of error
checking you want to provide and on whether you know the names of the controls within the
DataWindow object and properties you want to access when the script is compiled.

For guidelines on deciding which method to use and for lists and descriptions of
DataWindow object properties, see Chapter 4, Accessing Data in Code in DataWindow
Reference.

Using methods to access object properties

You can use the following methods to work with the properties of a DataWindow object:

• Describe - Reports the values of properties of a DataWindow object and controls within the
DataWindow object

• Modify - Modifies a DataWindow object by specifying a list of instructions that change the
DataWindow object's definition

PowerBuilder

For example, the following statements assign the value of the Border property for the
empname column to a string variable:

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 24

string ls_border
ls_border = dw_1.Describe("empname.Border")

The following statement changes the value of the Border property for the empname column
to 1:

dw_emp.Modify("empname.Border=1")

About dynamic DataWindow objects

Using Describe and Modify, you can provide an interface through which application
users can alter the DataWindow object during execution. For example, you can
change the appearance of a DataWindow object or allow an application user to create
ad hoc reports. For more information, see Dynamically Changing DataWindow
Objects

Using expressions

DataWindow property expressions provide access to properties with fewer nested strings. In
PowerBuilder, you can handle problems with incorrect object and property names in the Error
event:

PowerBuilder

Use the Object property and dot notation. For example:

integer li_border
li_border = Integer(dw_1.Object.empname.Border)
dw_1.Object.empname.Border = 1

For reference material on the available variations for property expressions, see the
Section 5.3, “PowerBuilder: DataWindow property expressions” in DataWindow Reference.

2.8 Handling DataWindow errors
There are several types of errors that can occur during DataWindow processing:

• Data items that are invalid (discussed in Manipulating data in a DataWindow control)

• Failures when retrieving or updating data

• Attempts to access invalid or nonexistent properties or data

This section explains how to handle the last two types of errors.

2.8.1 Retrieve and Update errors and the DBError event

Retrieve and update testing

When using the Retrieve or Update method in a DataWindow control, you should test the
method's return code to see whether the activity succeeded.

Do not test the SQLCode attribute

After issuing a SQL statement (such as CONNECT, COMMIT, or DISCONNECT)
or the equivalent method of the transaction object, you should always test the
success/failure code (the SQLCode attribute in the transaction object). However, you

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 25

should not use this type of error checking following a retrieval or update made in a
DataWindow.

For more information about error handling after a SQL statement, see Chapter 12,
Using Transaction Objects in Application Techniques.

Table 2.4: Return codes for the Retrieve and Update methods

Method Return code Meaning

>=1 Retrieval succeeded; returns
the number of rows retrieved.

-1 Retrieval failed; DBError
event triggered.

Retrieve

0 No data retrieved.

1 Update succeeded.Update

-1 Update failed; DBError event
triggered.

Example

PowerBuilder

If you want to commit changes to the database only if an update succeeds, you can code:

IF dw_emp.Update() > 0 THEN
 COMMIT USING EmpSQL;
ELSE
 ROLLBACK USING EmpSQL;
END IF

Using the DBError event

The DataWindow control triggers its DBError event whenever there is an error following a
retrieval or update; that is, if the Retrieve or Update methods return -1. For example, if you
try to insert a row that does not have values for all columns that have been defined as not
allowing NULL, the DBMS rejects the row and the DBError event is triggered.

By default, the DataWindow control displays a message box describing the error message
from the DBMS, as shown here:

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 26

In many cases you might want to code your own processing in the DBError event and
suppress the default message box. Here are some tips for doing this:

Table 2.5: Tips for processing messages from DBError event

To Do this

Get the DBMS's error code Use the SQLDBCode argument of the
DBError event.

Get the DBMS's message text Use the SQLErrText argument of the
DBError event.

Suppress the default message box Specify an action/return code of 1.

About DataWindow action/return codes

Some events for DataWindow controls have codes that you can set to override the
default action that occurs when the event is triggered. The codes and their meaning
depend on the event. In PowerBuilder, you set the code with a RETURN statement.

Example

PowerBuilder

Here is a sample script for the DBError event:

// Database error -195 means that some of the
// required values are missing
IF sqldbcode = -195 THEN
 MessageBox("Missing Information", &
 "You have not supplied values for all " &
 +"the required fields.")
END IF
// Return code suppresses default message box
RETURN 1

During execution, the user would see the following message box after the error:

2.8.2 Errors in property and data expressions and the Error event

A DataWindow control's Error event is triggered whenever an error occurs in a data or
property expression at execution time. These expressions that refer to data and properties of a
DataWindow object might be valid under some execution-time conditions but not others. The
Error event allows you to respond with error recovery logic when an expression is not valid.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 27

PowerBuilder syntax checking

In PowerBuilder, when you use a data or property expression, the PowerScript compiler
checks the syntax only as far as the Object property. Everything following the Object
property is evaluated at execution time. For example, in the following expression, the column
name emp_name and the property Visible are not checked until execution time:

dw_1.Object.emp_name.Visible = "0"

If the emp_name column did not exist in the DataWindow, or if you had misspelled the
property name, the compiler would not detect the error. However, at execution time,
PowerBuilder would trigger the DataWindow control's Error event.

Using a Try-Catch block

The Error event is triggered even if you have surrounded an error-producing data or property
expression in a Try-Catch block. The catch statement is executed after the Error event is
triggered, but only if you do not code the Error event or do not change the default Error event
action from ExceptionFail!. The following example shows a property expression in a Try-
Catch block:

TRY
 dw_1.Object.emp_name.Visible = "0"
CATCH (dwruntimeerror dw_e)
 MessageBox ("DWRuntimeError", dw_e.text)
END TRY

Determining the cause of the error

The Error event has several arguments that provide information about the error condition.
You can check the values of the arguments to determine the cause of the error. For example,
you can obtain the internal error number and error text, the name of the object whose script
caused the error, and the full text of the script where the error occurred. The information
provided by the Error event's arguments can be helpful in debugging expressions that are not
checked by the compiler.

If you catch a DWRuntimeError error, you can use the properties of that class instead of the
Error event arguments to provide information about the error condition. The following table
displays the correspondences between the Error event arguments and the DWRuntimeError
properties.

Table 2.6: Correspondence between Error event arguments and DWRuntimeError properties

Error event argument DWRuntimeError property

errornumber number

errorline line

errortext text

errorwindowmenu objectname

errorobject class

errorscript routinename

Controlling the outcome of the event

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 28

When the Error event is triggered, you can have the application ignore the error and
continue processing, substitute a different return value, or escalate the error by triggering
the SystemError event. In the Error event, you can set two arguments passed by reference to
control the outcome of the event.

Table 2.7: Setting arguments in the Error event

Argument Description

Action A value you specify to control the application's course of action as a result of
the error. Values are:

ExceptionIgnore!

ExceptionSubstituteReturnValue!

ExceptionFail! (default action)

ReturnValue A value whose datatype matches the expected value that the DataWindow
would have returned. This value is used when the value of action is
ExceptionSubstituteReturnValue!.

For a complete description of the arguments of the Error event, see Section 8.21, “Error” in
DataWindow Reference.

When to substitute a return value

The ExceptionSubstituteReturnValue! action allows you to substitute a return
value when the last element of an expression causes an error. Do not use
ExceptionSubstituteReturnValue! to substitute a return value when an element in the
middle of an expression causes an error.

The ExceptionSubstituteReturnValue! action is most useful for handling errors in data
expressions.

2.9 Updating the database

After users have made changes to data in a DataWindow control, you can use the Update
method to save the changes in the database. Update sends to the database all inserts, changes,
and deletions made in the DataWindow since the last Update or Retrieve method was
executed.

2.9.1 How the DataWindow control updates the database

When updating the database, the DataWindow control determines the type of SQL statements
to generate by looking at the status of each of the rows in the DataWindow buffers.

There are four DataWindow item statuses, two of which apply only to rows:

Table 2.8: DataWindow item status for rows and columns

Status Applies to

PowerBuilder name Numeric value

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 29

Status Applies to

New! 2 Rows

NewModified! 3 Rows

NotModified! 0 Rows and columns

DataModified! 1 Rows and columns

Note

The named values are values of the enumerated datatype dwItemStatus. You must use
the named values, which end in an exclamation point.

How statuses are set

When data is retrieved

When data is retrieved into a DataWindow, all rows and columns initially have a status of
NotModified!.

After data has changed in a column in a particular row, either because the user changed the
data or the data was changed programmatically, such as through the SetItem method, the
column status for that column changes to DataModified!. Once the status for any column in a
retrieved row changes to DataModified!, the row status also changes to DataModified!.

When rows are inserted

When a row is inserted into a DataWindow, it initially has a row status of New!, and all
columns in that row initially have a column status of NotModified!. After data has changed
in a column in the row, either because the user changed the data or the data was changed
programmatically, such as through the SetItem method, the column status changes to
DataModified!. Once the status for any column in the inserted row changes to DataModified!,
the row status changes to NewModified!.

When a DataWindow column has a default value, the column's status does not change to
DataModified! until the user makes at least one actual change to a column in that row.

When Update is called

For rows in the Primary and Filter buffers

When the Update method is called, the DataWindow control generates SQL INSERT and
UPDATE statements for rows in the Primary and/or Filter buffers based upon the following
row statuses:

Table 2.9: Row status after INSERT and UPDATE statements

Row status SQL statement generated

NewModified! INSERT

DataModified! UPDATE

A column is included in an UPDATE statement only if the following two conditions are met:

• The column is on the updatable column list maintained by the DataWindow object

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 30

For more information about setting the update characteristics of the DataWindow object,
see Chapter 21, Controlling Updates in DataWindow objects in Users Guide.

• The column has a column status of DataModified!

The DataWindow control includes all columns in INSERT statements it generates. If a
column has no value, the DataWindow attempts to insert a NULL. This causes a database
error if the database does not allow NULLs in that column.

For rows in the Delete buffer

The DataWindow control generates SQL DELETE statements for any rows that were moved
into the Delete buffer using the DeleteRow method. (But if a row has a row status of New! or
NewModified! before DeleteRow is called, no DELETE statement is issued for that row.)

2.9.2 Changing row or column status programmatically

You might need to change the status of a row or column programmatically. Typically, you
do this to prevent the default behavior from taking place. For example, you might copy a row
from one DataWindow to another; and after the user modifies the row, you might want to
issue an UPDATE statement instead of an INSERT statement.

You use the SetItemStatus method to programmatically change a DataWindow's row or
column status information. Use the GetItemStatus method to determine the status of a
specific row or column.

Changing column status

You use SetItemStatus to change the column status from DataModified! to NotModified!, or
the reverse.

Change column status when you change row status

Changing the row status changes the status of all columns in that row to
NotModified!, so if the Update method is called, no SQL update is produced. You
must change the status of columns to be updated after you change the row status.

Changing row status

Changing row status is a little more complicated. The following table illustrates the effect of
changing from one row status to another:

Table 2.10: Effects of changing from one row status to another

Specified statusOriginal status

New! NewModified! DataModified! NotModified!

New! - Yes Yes No

NewModified! No - Yes New!

DataModified! NewModified! Yes - Yes

NotModified! Yes Yes Yes -

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 31

In the preceding table, Yes means the change is valid. For example, issuing SetItemStatus on
a row that has the status NotModified! to change the status to New! does change the status to
New!. No means that the change is not valid and the status is not changed.

Issuing SetItemStatus to change a row status from NewModified! to NotModified! actually
changes the status to New!. Issuing SetItemStatus to change a row status from DataModified!
to New! actually changes the status to NewModified!.

Changing a row's status to NotModified! or New! causes all columns in that row to be
assigned a column status of NotModified!. Change the column's status to DataModified! to
ensure that an update results in a SQL Update.

Changing status indirectly

When you cannot change to the desired status directly, you can usually do it
indirectly. For example, change New! to DataModified! to NotModified!.

2.10 Creating reports
You can use DataWindow objects to create standard business reports such as financial
statements, sales order reports, employee lists, or inventory reports.

To create a production report, you:

• Determine the type of report you want to produce

• Build a DataWindow object to display data for the report

• Place the DataWindow object in a DataWindow control on a window or form

• Write code to perform the processing required to populate the DataWindow control and
print the contents as a report

Calling InfoMaker from an application

If your users have installed InfoMaker (the Appeon reporting product), you can
invoke InfoMaker from an application. This way you can let your users create
and save their own reports. To do this in PowerBuilder, use the Run function. For
information about invoking InfoMaker, see the InfoMaker Users Guide.

2.10.1 Planning and building the DataWindow object

To design the report, you create a DataWindow object. You select the data source and
presentation style and then:

• Sort the data

• Create groups in the DataWindow object to organize the data in the report and force page
breaks when the group values change

• Enhance the DataWindow object to look like a report (for example, you might want to add
a title, column headers, and a computed field to number the pages)

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 32

Using fonts

Printer fonts are usually shorter and fatter than screen fonts, so text might not print
in the report exactly as it displays in the DataWindow painter. You can pad the text
fields to compensate for this discrepancy. You should test the report format with a
small amount of data before you print a large report.

2.10.2 Printing the report

After you build the DataWindow object and fill in print specifications, you can place it in a
DataWindow control on a window or form, as described in Putting a DataWindow object into
a control.

To allow users to print the report, your application needs code that performs the printing
logic. For example, you can place a button on the window or form, then write code that is run
when the user clicks the button.

To print the contents of a single DataWindow control or DataStore, call the Print method. For
example, this PowerBuilder statement prints the report in the DataWindow control dw_Sales:

dw_Sales.Print(TRUE)

For information about the Print method, see the DataWindow Reference. For information
about using nested reports to print multiple DataWindows, see Using nested reports.

Separate DataWindow controls in a single print job

For PowerBuilder applications only

If the window has multiple DataWindow controls, you can use multiple PrintDataWindow
method calls in a script to print the contents of all the DataWindow controls in one print job.

These statements print the contents of three DataWindow controls in a single print job:

int job
job = PrintOpen("Employee Reports")
// Each DataWindow starts printing on a new page.
PrintDataWindow(job, dw_EmpHeader)
PrintDataWindow(job, dw_EmpDetail)
PrintDataWindow(job, dw_EmpDptSum)
PrintClose(job)

For information about PowerBuilder system functions for printing, see Chapter 10,
PowerScript Functions in PowerScript Reference.

2.11 Using nested reports

When designing a DataWindow object for a report, you can choose to nest other reports
(which are also DataWindow objects) within it. The basic steps for using nested reports in an
application are the same ones you follow for the other report types. There are, however, some
additional topics concerning nested reports that you should know about.

To learn about designing nested reports, see Chapter 25, Using Nested Reports in Users
Guide.

Printing multiple updatable DataWindows on a page

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 33

An advantage of composite reports is that you can print multiple reports on a page. A
limitation of composite reports is that they are not updatable, so you cannot directly print
several updatable DataWindows on one page. However, there is an indirect way to do that, as
follows.

You can use the GetChild method on named nested reports in a composite report to get a
reference to a nested report. After getting the reference to the nested report, you can address
the nested report during execution like other DataWindows.

Using this technique, you can call the ShareData method to share data between multiple
updatable DataWindow controls and the nested reports in your composite report. This allows
you to print multiple updatable DataWindows on a page through the composite report.

To print multiple DataWindows on a page using a composite DataWindow:

1. Build a window or form that contains DataWindow controls with the updatable
DataWindow objects.

2. Define a composite report that has reports corresponding to each of the DataWindows in
the window or form that you want to print. Be sure to name each of the nested reports in
the composite report.

Naming the nested report

To use GetChild on a nested report, the nested report must have a name. To name a
nested report in the DataWindow painter, double-click it in the workspace and enter a
name in the Name box on the General property page.

3. Add the composite report to the window or form (it can be hidden).

4. In your application, do the following:

1. Retrieve data into the updatable DataWindow controls.

2. Use GetChild to get a reference to the nested reports in the composite report.

3. Use ShareData to share data between the updatable DataWindow objects and the
nested reports.

4. When appropriate, print the composite report.

The report contains the information from the updatable DataWindow objects.

Re-retrieving data

Each time you retrieve data into the composite report, all references (handles) to
nested reports become invalid, and data sharing with the nested reports is terminated.
Therefore, be sure to call GetChild and ShareData each time after retrieving data.

Creating and destroying nested reports during execution

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 34

You can create and destroy nested reports in a DataWindow object dynamically during
execution using the same technique you use to create and destroy other controls in a
DataWindow object.

Creating nested reports

To create a nested report, use the CREATE keyword with the Modify method. Supply the
appropriate values for the nested report's properties.

Viewing syntax for creating a nested report

The easiest way to see the syntax for creating a nested report dynamically is to export
the syntax of an existing DataWindow object that contains a nested report. The export
file contains the syntax you need.

For more information about exporting syntax in the Library painter, see Users Guide.

When creating a nested report, you need to re-retrieve data to see the report. In a composite
report, you can either retrieve data for the whole report or use GetChild to get a reference to
the new nested report and retrieve its data directly. For nested reports in other reports, you
need to retrieve data for the base report.

Destroying nested reports

To destroy a nested report, use the DESTROY keyword with the Modify method. The nested
report disappears immediately.

For more about creating and destroying controls in a DataWindow object or report, see
Dynamically Changing DataWindow Objects.

For a list of properties of nested reports, see Section 3.2.13, “Properties for Report controls in
DataWindow objects” in DataWindow Reference.

2.12 Using crosstabs

To perform certain kinds of data analysis, you might want to design DataWindow objects in
the Crosstab presentation style. The basic steps for using crosstabs in an application are the
same ones you follow for the other DataWindow types, but there are some additional topics
concerning crosstabs that you should know about.

To learn about designing crosstabs, see Chapter 27, Working with Crosstabs in Users Guide.

2.12.1 Viewing the underlying data

If you want users to be able to see the raw data as well as the cross-tabulated data, you can do
one of two things:

• Place two DataWindow controls on the window or form: one that is associated with the
crosstab and one that is associated with a DataWindow object that displays the retrieved
rows.

• Create a composite DataWindow object that contains two reports: one that shows the raw
data and one that shows the crosstab.

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 35

Do not share data between the two DataWindow objects or reports

They have the same SQL SELECT data definition, but they have different result sets.

For more about composite DataWindows, see Users Guide.

2.12.2 Letting users redefine the crosstab

With the CrosstabDialog method, you can allow users to redefine which columns in the
retrieved data are associated with the crosstab's columns, rows, and values during execution.

The CrossTabDialog method displays the Crosstab Definition dialog box for the user to
define the data for the crosstab's columns, rows, and values (using the same techniques
you use in the DataWindow painter). When the user clicks OK in the dialog box, the
DataWindow control rebuilds the crosstab with the new specifications.

Displaying informational messages

You can display informational messages when a crosstab is rebuilt during execution as a
result of the call to CrosstabDialog. (The messages are the same ones you see when building
a crosstab in the DataWindow painter, such as Retrieving data and Building crosstab.) You
might want to do this if you are working with a very large number of rows and rebuilding the
crosstab could take a long time.

PowerBuilder

In PowerBuilder, you use a user event to display the crosstab's informational messages.

To display informational messages when a crosstab is rebuilt:

1. Define a user event for the DataWindow control containing the crosstab. Associate it
with the event ID pbm_dwnmessagetext.

2. In the script for the user event, get the value of the text argument (which holds
the message that PowerBuilder would display when building the crosstab in the
DataWindow painter) and display it to the user.

Examples

PowerBuilder

In the example, code for the DataWindow control's user event for pbm_dwnmessagetext
displays informational messages in a static text control in the window containing the
crosstab:

st_message.Text = text

With that script in place, after CrosstabDialog has been called and the user has redefined
the crosstab, as the crosstab is being rebuilt, your application dynamically displays the
informational messages in the static text control st_message. (You might want to reset
st_message.Text to be the empty string in the line following the CrosstabDialog call.)

In this example, code in the user event for pbm_dwnmessagetext displays informational
messages as MicroHelp in an MDI application (w_crosstab is an MDI frame window):

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 36

w_crosstab.SetMicroHelp(text)

The informational messages are displayed in the MDI application's MicroHelp as the crosstab
is rebuilt.

For more information

For more about user events in PowerBuilder, see Chapter 8, Working with User Events in
Users Guide.

For more about the CrosstabDialog method and MessageText event, see Section 9.16,
“CrosstabDialog” in DataWindow Reference and Section 8.32, “MessageText” in
DataWindow Reference.

2.12.3 Modifying the crosstab's properties during execution

As with other DataWindow objects, you can modify the properties of a crosstab during
execution using the Modify method. Some changes require the DataWindow control to
dynamically rebuild the crosstab; others do not. (If the original crosstab was static, it becomes
a dynamic crosstab when it is rebuilt.)

Changes that do not force a rebuild

You can change the following properties without forcing the DataWindow control to rebuild
the crosstab:

Table 2.11: Properties you can change on a crosstab DataWindow without forcing a rebuild

Properties Objects

Alignment Column, Compute, Text

Background Column, Compute, Line, Oval, Rectangle,
RoundRectangle, Text

Border Column, Compute, Text

Brush Line, Oval, Rectangle, RoundRectangle

Color Column, Compute, Text

Edit styles (dddw, ddlb, checkbox, edit,
editmask, radiobutton, richtext)

Column

Font Column, Compute, Text

Format Column, Compute

Pen Line, Oval, Rectangle, RoundRectangle

Pointer Column, Compute, Line, Oval, Rectangle,
RoundRectangle, Text

Changes that force a rebuild

If you change any other properties, the DataWindow control rebuilds the structure of the
crosstab when Modify is called. You should combine all needed expressions into one Modify
call so that the DataWindow control has to rebuild the crosstab only once.

Default values for properties

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 37

For computations derived from existing columns, the DataWindow control by default uses
the properties from the existing columns. For completely new columns, properties (such as
font, color, and so on) default to the first column of the preexisting crosstab. Properties for
text in headers default to the properties of the first text control in the preexisting crosstab's
first header line.

For more about the Modify method, see Dynamically Changing DataWindow Objects. For
details on the DataWindow object properties, see Chapter 3, DataWindow Object Properties
in DataWindow Reference.

2.13 Generating HTML

You can use the data in a DataWindow object to create HyperText Markup Language
(HTML) syntax. Once the HTML has been created, you can display it in a Web browser.

Techniques you can use

You can use any of several techniques to generate HTML from a DataWindow object.

In a painter

In both the DataWindow painter and the Output view in the Database painter, you can save
retrieved data in HTML format. To do this in the DataWindow painter, select File>Save
Rows As from the menu. In the Database painter, open the Output view, then select
Rows>Save Rows As from the menu. In both painters, specify HTML Table as the format for
the file.

In your application code

You can obtain an HTML string of the DataWindow presentation and data from the
Data.HTMLTable property. You can save the string in a variable and modify the HTML
with string manipulation operations. In PowerBuilder, you can also use the FileOpen and
FileWrite functions to save the HTML to a file.

The HTMLTable property has its own properties which you can set to control the HTML
attributes and style sheet associated with the Table HTML element.

PowerBuilder only

In PowerBuilder, there are two more techniques available to you. You can:

• Call the SaveAs method to save the contents of a DataWindow directly to a file on disk. To
save the data in HTML format, you need to specify HTMLTable as the file type when you
call SaveAs.

• Call the GenerateHTMLForm method to create an HTML form from data contained in
a DataWindow control or DataStore whose DataWindow object uses the Freeform or
Tabular presentation style.

Choosing presentation styles

Some DataWindow presentation styles translate better into HTML than others. The following
presentation styles produce good results:

Tabular

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 38

Group
TreeView
Freeform
Crosstab
Grid

The Composite, Graph, RichText, and OLE 2.0 presentation styles produce HTML output
that is based on the result only, and not on the presentation style. DataWindows that have
overlapping controls might not produce the expected results. Nested reports are ignored; they
are not included in the generated HTML.

Example

This example illustrates how you might use DataWindow-generated HTML in an application.

The key line of code gets the HTML from the DataWindow by referring to its HTMLTable
property. In PowerBuilder, you can use the Describe method or a property expression.

PowerBuilder

ls_htmlstring = dw_1.Object.DataWindow.Data.HTMLTable

The complete example that follows is implemented in PowerBuilder.

The window below displays customer data in a tabular DataWindow object. By pressing the
Browse button, the user can translate the contents of the DataWindow object into HTML
format and invoke a Web browser to view the HTML output. By pressing the Select Browser
button, the user can tell the application which Web browser to use:

Script for the Select Browser button

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 39

The script for the Select Browser button displays a dialog box where the user can select an
executable file for a Web browser. The path to the executable is stored in is_Browser, which
is an instance variable defined on the window:

String ls_BrowserName
Integer li_Result

// Open the dialog to select a browser.
li_Result = GetFileOpenName("Select Browser", &
 is_Browser, ls_BrowserName, &
 "exe", "Executable Files (*.EXE),*.EXE")

IF li_Result = -1 THEN
 MessageBox("No Browser", "No Browser selected")
END IF

Script for the Browse button

The script for the Browse button creates an HTML string from the data in the DataWindow
by assigning the Data.HTMLTable property to a string variable. After constructing the
HTML string, the script adds a header to the HTML string. Then the script saves the HTML
to a file and runs the Web browser to display the output.

String ls_HTML, ls_FileName, ls_BrowserPath
Integer li_FileNumber, li_Bytes,
Integer li_RunResult, li_Result

// Generate the HTML.
ls_HTML = dw_1.Object.DataWindow.Data.HTMLTable
IF IsNull(ls_HTML) Or Len(ls_HTML) <= 1 THEN
 MessageBox ("Error", "Error generating HTML!")
 Return
ELSE
 ls_HTML ="<H1>HTML Generated From a DataWindow"&
 + "</H1><P>" + ls_HTML
END IF

//Create the file.
ls_FileName = "custlist.htm"
li_FileNumber = FileOpen(ls_FileName, StreamMode!, &
 Write!, LockReadWrite!, Replace!)

IF (li_FileNumber >= 0) THEN
 li_Bytes = FileWrite(li_FileNumber, ls_HTML)
 FileClose(li_FileNumber)
 IF li_Bytes = Len(ls_HTML) THEN
 // Run Browser with the HTML file.
 IF Not FileExists(is_Browser) THEN
 cb_selbrowser.Trigger Event Clicked()
 IF NOT FileExists(is_Browser) THEN
 MessageBox("Select Browser", "Could &
 not find the browser.")
 RETURN
 END IF
 END IF
 li_RunResult = Run(is_Browser + " file:///"+&
 ls_FileName)
 IF li_RunResult = -1 THEN
 MessageBox("Error", "Error running browser!")
 END IF
 ELSE
 MessageBox ("Write Error", &
 "File Write Unsuccessful")

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 40

 END IF
ELSE
 MessageBox ("File Error", "Could not open file")
END IF

2.13.1 Controlling display

You control table display and style sheet usage through the HTMLTable.GenerateCSS
property. The HTMLTable.GenerateCSS property controls the downward compatibility
of the HTML found in the HTMLTable property. If HTMLTable.GenerateCSS is FALSE,
formatting (style sheet references) is not referenced in the HTMLTable property; if it is
TRUE, the HTMLTable property includes elements that reference the cascading style sheet
saved in HTML.StyleSheet.

This screen shows an HTML table in a browser using custom display features:

HTMLTable.GenerateCSS is TRUE

If the HTMLTable.GenerateCSS property is TRUE, the HTMLTable element in the
HTMLTable property uses additional properties to customize table display. For example,
suppose you specify the following properties:

HTMLTable.NoWrap=Yes
HTMLTable.Border=5
HTMLTable.Width=5
HTMLTable.CellPadding=2
HTMLTable.CellSpacing=2

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 41

Describe, Modify, and dot notation

You can access these properties by using the Modify and Describe PowerScript
methods or by using dot notation.

The HTML syntax in the HTMLTable property includes table formatting information and
class references for use with the style sheet:

<table cellspacing=2 cellpadding=2 border=5 width=5>
 <tr>
 <td CLASS=0 ALIGN=center>Employee ID
 <td CLASS=0 ALIGN=center>First Name
 <td CLASS=0 ALIGN=center>Last Name
 <tr>
 <td CLASS=6 ALIGN=right>102
 <td CLASS=7>Fran
 <td CLASS=7>Whitney
</table>

HTMLTable.GenerateCSS is FALSE

If HTMLTable.GenerateCSS is FALSE, the DataWindow does not use HTMLTable
properties to create the Table element. For example, if GenerateCSS is FALSE, the HTML
syntax for the HTMLTable property might look like this:

<table>
 <tr>
 <th ALIGN=center>Employee ID
 <th ALIGN=center>First Name
 <th ALIGN=center>Last Name
 <tr>
 <td ALIGN=right>102
 <td>Fran
 <td>Whitney
</table>

Merging HTMLTable with the style sheet

The HTML syntax contained in the HTMLTable property is incomplete: it is not wrapped
in <HTML></HTML> elements and does not contain the style sheet. You can write code in
your application to build a string representing a complete HTML page.

PowerBuilder example

This example sets DataWindow properties, creates an HTML string, and returns it to the
browser:

String ls_html
 ds_1.Modify &
 ("datawindow.HTMLTable.GenerateCSS='yes'")
 ds_1.Modify("datawindow.HTMLTable.NoWrap='yes'")
 ds_1.Modify("datawindow.HTMLTable.width=5")
 ds_1.Modify("datawindow.HTMLTable.border=5")
 ds_1.Modify("datawindow.HTMLTable.CellSpacing=2")
 ds_1.Modify("datawindow.HTMLTable.CellPadding=2")
 ls_html = "<HTML>"
 ls_html += &
 ds_1.Object.datawindow.HTMLTable.StyleSheet
 ls_html += "<BODY>"
 ls_html += "<H1>DataWindow with StyleSheet</H1>"
 ls_html += ds_1.Object.DataWindow.data.HTMLTable

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 42

 ls_html += "</BODY>"
 ls_html += "</HTML>"
 return ls_html

This technique provides control over HTML page content. Use this technique as an
alternative to calling the SaveAs method with the HTMLTable! Enumeration.

2.13.2 Calling the SaveAs method

As an alternative to creating HTML pages dynamically, you can call the SaveAs method with
the HTMLTable! Enumeration:

ds_1.SaveAs &
 ("C:\TEMP\HTMLTemp.htm", HTMLTable!, TRUE)

This creates an HTML file with the proper elements, including the style sheet:

<STYLE TYPE="text/css">
 <!--
 .2 {COLOR:#000000;BACKGROUND:#ffffff;FONT-STYLE:normal;FONT-WEIGHT:normal;FONT:9pt
 "Arial", sans-serif;TEXT-DECORATION:none}

 .3{COLOR:#000000;BACKGROUND:#ffffff;FONT-STYLE:normal;FONT-WEIGHT:normal;FONT:8pt
 "MS Sans Serif", sans-serif;TEXT-DECORATION:none}

 .3{COLOR:#000000;BACKGROUND:#ffffff;FONT-STYLE:normal;FONT-WEIGHT:normal;FONT:8pt
 "MS Sans Serif", sans-serif;TEXT-DECORATION:none}
 -->
 </STYLE>

 <TABLE nowrap cellspacing=2 cellpadding=2 border=5 width=5>
 <tr>
 <td CLASS=2 ALIGN=right>Employee ID:
 <td CLASS=3 ALIGN=right>501
 <tr>
 <td CLASS=2 ALIGN=right>Last Name:
 <td CLASS=3>Scott
 <tr>
 <td CLASS=2 ALIGN=right>First Name:
 <td CLASS=3>David
 <tr>
 <td CLASS=2 ALIGN=right>Status:
 <td CLASS=3>Active
 </TABLE>

2.13.3 Displaying DataWindow objects as HTML forms

The GenerateHTMLForm method creates HTML form syntax for DataWindow objects.
You can create an HTML form that displays a specified number of columns for a specified
number of rows. Note the following:

• You create HTML form syntax by calling the GenerateHTMLForm method for the
DataWindow control or DataStore

• The GenerateHTMLForm method creates HTML form syntax for the detail band only

• Embedded nested DataWindows are ignored; they are omitted from the generated HTML

Presentation styles

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 43

Although the GenerateHTMLForm method generates syntax for all presentation styles, the
only styles that create usable forms are Freeform and Tabular.

The following HTML page shows a freeform DataWindow object converted into a form
using syntax generated by the GenerateHTMLForm method:

Edit style conversion

The GenerateHTMLForm method converts column edit styles into the appropriate HTML
elements:

Table 2.12: HTML elements generated for column edit styles

Column edit style HTML element

CheckBox Input element specifying
TYPE=CHECKBOX

DropDownDataWindow Select element with a single Option element

DropDownListBox Select element with one Option element for
each item in the DropDownListBox

Edit Input element specifying TYPE=TEXT

RadioButton Input element specifying TYPE=RADIO

Generating syntax

To generate HTML form syntax, you call the GenerateHTMLForm method:

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 44

instancename.GenerateHTMLForm (syntax, style, action { , startrow, endrow,
 startcolumn, endcolumn { , buffer } })

The method places the Form element syntax into the syntax argument and the HTML style
sheet into the style argument, both of which are passed by reference.

Static texts in freeform DataWindow objects

All static texts in the detail band are passed through to the generated HTML form
syntax. If you limit the number of columns to be converted using the startcolumn and
endcolumn arguments, remove the headers from the detail band for the columns you
eliminate.

Here is an example of the GenerateHTMLForm method:

String ls_syntax, ls_style, ls_action
 String ls_html
 Integer li_return
 ls_action = &
 "/cgi-bin/pbcgi60.exe/myapp/uo_webtest/f_emplist"
 li_return = ds_1.GenerateHTMLForm &
 (ls_syntax, ls_style, ls_action)
 IF li_return = -1 THEN
 MessageBox("HTML", "GenerateHTMLForm failed")
 ELSE
 // of_MakeHTMLPage is an object method,
 // described in the next section.
 ls_html = this.of_MakeHTMLPage &
 (ls_syntax, ls_style)
 END IF

After calling the GenerateHTMLForm method, the ls_syntax variable contains a Form
element. Here is an example:

<FORM ACTION=
 "/cgi-bin/pbcgi60.exe/myapp/uo_webtest/f_emplist"
 METHOD=POST>
 <P>
 <P>Employee ID:
 <INPUT TYPE=TEXT NAME="emp_id_1" VALUE="501">

 <P>Last Name:
 <INPUT TYPE=TEXT NAME="emp_lname_1" MAXLENGTH=20 VALUE="Scott">

 <P>First Name:
 <INPUT TYPE=TEXT NAME="emp_fname_1" MAXLENGTH=20 VALUE="David">

 <P>Status:
 <INPUT TYPE="RADIO" NAME="status_1" CHECKED CLASS=5 >Active

 <P>
 <INPUT TYPE="RADIO" NAME="status_1" CLASS=5 >
 Terminated

 <P>
 <INPUT TYPE="RADIO" NAME="status_1" CLASS=5 >
 On Leave
 <P>
 <P>

 <INPUT TYPE=SUBMIT NAME=SAMPLE VALUE="OK">
 </FORM>

Using DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 45

The ls_stylesheet variable from the previous example contains a Style element, an example of
which is shown below:

<STYLE TYPE="text/css">
 <!--
 .2{COLOR:#000000;BACKGROUND:#ffffff;FONT-STYLE:normal;FONT-WEIGHT:normal;FONT:9pt
 "Arial", sans-serif;TEXT-DECORATION:none}

 .3{COLOR:#000000;BACKGROUND:#ffffff;FONT-STYLE:normal;FONT-WEIGHT:normal;FONT:8pt
 "MS Sans Serif", sans-serif;TEXT-DECORATION:none}

 .5{COLOR:#000000;BACKGROUND:#ffffff;FONT-STYLE:normal;FONT-WEIGHT:normal;FONT:8pt
 "MS Sans Serif", sans-serif;TEXT-DECORATION:none}
 -->
 </STYLE>

Unique element names

The GenerateHTMLForm method creates unique names for all elements in the form
(even when displaying multiple rows in one form) by adding a _nextsequentialnumber
suffix.

Creating an HTML page

To use the syntax and style sheet returned by the GenerateHTMLForm method, you must
write code to merge them into an HTML page. A complete HTML page requires <HTML>
and <BODY> elements to contain the style sheet and syntax.

One way to do this is to create a global or object function that returns a complete
HTML page, taking as arguments the Form and Style elements generated by the
GenerateHTMLForm method. Such a function might contain the following code:

 // Function Name: of_MakeHTMLPage
 // Arguments: String as_syntax, String as_style
 // Returns: String
 //***********************************
 String ls_html
 IF as_syntax = "" THEN
 RETURN ""
 END IF

 IF as_style = "" THEN
 RETURN ""
 END IF

 ls_html = "<HTML>"
 ls_html += as_style
 ls_html += "<BODY>"
 ls_html += "<H1>Employee Information</H1>"
 ls_html += as_syntax
 ls_html += "</BODY></HTML>"
 RETURN ls_html

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 46

3 Dynamically Changing DataWindow Objects
About this chapter

This chapter describes how to modify and create DataWindow objects during execution.

3.1 About dynamic DataWindow processing
Basics

DataWindow objects and all entities in them (such as columns, text, graphs, and pictures)
each have a set of properties. You can look at and change the values of these properties
during execution using DataWindow methods or property expressions. You can also create
DataWindow objects during execution.

A DataWindow object that is modified or created during execution is called a dynamic
DataWindow object.

What you can do

Using this dynamic capability, you can allow users to change the appearance of the
DataWindow object (for example, change the color and font of the text) or create ad hoc
queries by redefining the data source. After you create a dynamic DataWindow object and
the user is satisfied with the way it looks and the data that is displayed, the user can print the
contents as a report.

3.2 Modifying a DataWindow object
During execution, you can modify the appearance and behavior of a DataWindow object by
doing one of the following:

• Changing the values of its properties

• Adding or deleting controls from the DataWindow object

Changing property values

You can use the Modify method or a property expression to set property values. This lets you
change settings that you ordinarily specify during development in the DataWindow painter.

Before changing a property, you might want to get the current value and save it in a variable
so that you can restore the original value later. To obtain information about the current
properties of a DataWindow object or a control in a DataWindow object, use the Describe
method or a property expression.

Using expressions in property values

With some DataWindow properties, you can assign a value through an expression that the
DataWindow evaluates during execution, instead of having to assign a value directly. For
example, the following statement displays a salary in red if it is less than $12,000, and in
black otherwise:

dw_1.Modify("salary.Color &
 = '0 ~t if(salary <12000,255,0)' ")

For more information

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 47

The syntax is different for expressions in code versus expressions specified in the
DataWindow painter. For the correct syntax and information about which properties can be
assigned expressions, see the Section 5.1.4, “Using DataWindow expressions as property
values” in DataWindow Reference.

For more information about property expressions and DataWindow object properties and
examples of using Describe and Modify methods, see the Section 5.2, “PowerBuilder:
Modify and Describe methods for properties” in DataWindow Reference.

Adding and deleting controls within the DataWindow object

You can also use the Modify method to:

• Create new objects in a DataWindow object

This lets you add DataWindow controls (such as text, bitmaps, and graphic controls)
dynamically to the DataWindow object.

For how to get a good idea of the correct Create syntax, see Specifying the DataWindow
object syntax.

• Destroy controls in a DataWindow object

This lets you dynamically remove controls you no longer need.

PowerBuilder tool for easier coding of DataWindow syntax

PowerBuilder only

Included with PowerBuilder is DW Syntax, a tool that makes it easy to build the correct
syntax for property expressions, Describe, Modify, and SyntaxFromSQL statements. You
click buttons to specify which properties of a DataWindow you want to use, and DW
Syntax automatically builds the appropriate syntax, which you can copy and paste into your
application code.

See Using DWSyntax for more information.

Viewing DataWindow object properties in PowerBuilder

PowerBuilder only

You can use the PowerBuilder Browser to get a list of DataWindow properties: on the
DataWindow tab, select a DataWindow object in the left pane and Properties in the
right pane. To see the properties for a control in a DataWindow object, double-click the
DataWindow object name, then select the control.

3.3 Creating a DataWindow object

This section describes how to create a DataWindow object by calling the Create method in an
application.

DataWindow painter

You should use the techniques described here for creating a DataWindow from syntax
only if you cannot accomplish what you need to in the DataWindow painter. The
usual way of creating DataWindow objects is to use the DataWindow painter.

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 48

To learn about creating DataWindow objects in the DataWindow painter, see the
Section 18.3, “Building a DataWindow object” in Users Guide.

You use the Create method to create a DataWindow object dynamically during execution.
Create generates a DataWindow object using source code that you specify. It replaces
the DataWindow object currently in the specified DataWindow control with the new
DataWindow object.

Resetting the transaction object

The Create method destroys the association between the DataWindow control and the
transaction object. As a result, you need to reset the control's transaction object by
calling the SetTransObject or SetTrans method after you call Create.

To learn how to associate a DataWindow control with a transaction object, see Using
DataWindow Objects.

Specifying the DataWindow object syntax

There are several ways to specify or generate the syntax required for the Create method.

In PowerBuilder, you can:

• Use the SyntaxFromSQL method of the transaction object

• Use the LibraryExport PowerScript function

Using SyntaxFromSQL

You are likely to use SyntaxFromSQL to create the syntax for most dynamic DataWindow
objects. If you use SyntaxFromSQL, all you have to do is provide the SELECT statement and
the presentation style.

In PowerBuilder, SyntaxFromSQL is a method of the transaction object. The transaction
object must be connected when you call the method.

Setting USERID for native drivers

In PowerBuilder, table names are automatically qualified with the owner's name if
you are using a native driver. To obtain the same results in an application, you must
set the USERID property in the transaction object so that the table name is properly
qualified and extended attributes can be looked up.

SyntaxFromSQL has three required arguments:

• A string containing the SELECT statement for the DataWindow object

• A string identifying the presentation style and other settings

• The name of a string you want to fill with any error messages that might result

SyntaxFromSQL returns the complete syntax for a DataWindow object that is built using the
specified SELECT statement.

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 49

Using SyntaxFromSQL with Adaptive Server Enterprise

If your DBMS is Adaptive Server Enterprise and you call SyntaxFromSQL,
PowerBuilder must determine whether the tables are updatable through a unique
index. This is possible only if you set AutoCommit to TRUE before calling
SyntaxFromSQL, as shown below:

sqlca.autocommit=TRUE
sqlca.syntaxfromsql (sqlstmt, presentation, err)
sqlca.autocommit=FALSE

Using LibraryExport in PowerBuilder

You can use the LibraryExport PowerScript function to export the syntax for a DataWindow
object and store the syntax in a string.

You can then use the exported syntax (or a modification of the syntax) in Create to create a
DataWindow object.

Using the DataWindow.Syntax property

You can obtain the source code of an existing DataWindow object to use as a model or for
making minor changes to the syntax. Many values in the source code syntax correspond to
properties of the DataWindow object.

This JavaScript example gets the syntax of the DataWindow object in the DataWindow
control, dw_1, and displays it in the text box control, textb_dw_syntax:

var dwSyntax;
dwSyntax = dw_1.Describe("datawindow.syntax");
textb_dw_syntax.value = dwSyntax;

Creating the syntax yourself

You need to create the syntax yourself to use some of the advanced dynamic DataWindow
features, such as creating a group break.

The DataWindow source code syntax that you need to supply to the Create method can be
very complex. To see examples of DataWindow object syntax, go to the Library painter and
export a DataWindow object to a text file, then view the file in a text editor.

For more information on Create and Describe methods as well as DataWindow object
properties and syntax, see Section 5.2, “PowerBuilder: Modify and Describe methods for
properties” in DataWindow Reference.

3.4 Providing query ability to users
When you call the Retrieve method for a DataWindow control, the rows specified in the
DataWindow object's SELECT statement are retrieved. You can give users the ability to
further specify which rows are retrieved during execution by putting the DataWindow into
query mode. To do that, you use the Modify method or a property expression (the examples
here use Modify).

Limitations

You cannot use query mode in a DataWindow object that contains the UNION
keyword or nested SELECT statements.

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 50

3.4.1 How query mode works

Once the DataWindow is in query mode, users can specify selection criteria using query by
example -- just as you do when you use Quick Select to define a data source. When criteria
have been defined, they are added to the WHERE clause of the SELECT statement the next
time data is retrieved.

The following three figures show what happens when query mode is used.

First, data is retrieved into the DataWindow. There are 36 rows:

Next, query mode is turned on. The retrieved data disappears and users are presented with
empty rows where they can specify selection criteria. Here the user wants to retrieve rows
where Quarter = Q1 and Units > 15:

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 51

Next, Retrieve is called and query mode is turned off. The DataWindow control adds the
criteria to the SELECT statement, retrieves the three rows that meet the criteria, and displays
them to the user:

You can turn query mode back on, allow the user to revise the selection criteria, and retrieve
again.

3.4.2 Using query mode

To provide query mode to users during execution:

1. Turn query mode on by coding.

In PowerBuilder:

dw_1.Modify("datawindow.querymode=yes")

In JavaScript:

dw_1.Modify("datawindow.querymode=yes");

All data displayed in the DataWindow is blanked out, though it is still in the
DataWindow control's Primary buffer, and the user can enter selection criteria where the
data had been.

2. The user specifies selection criteria in the DataWindow, just as you do when using
Quick Select to define a DataWindow object's data source.

Criteria entered in one row are ANDed together; criteria in different rows are ORed.
Valid operators are =, <>, <, >, <=, >=, LIKE, IN, AND, and OR.

For more information about Quick Select, see Section 18.5, “Using Quick Select” in
Users Guide.

3. Call AcceptText and Retrieve, then turn off query mode to display the newly retrieved
rows.

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 52

In PowerBuilder:

dw_1.AcceptText()
dw_1.Modify("datawindow.querymode=no")
dw_1.Retrieve()

In JavaScript:

dw_1.AcceptText();
dw_1.Modify("datawindow.querymode=no");
dw_1.Retrieve();

The DataWindow control adds the newly defined selection criteria to the WHERE
clause of the SELECT statement, then retrieves and displays the specified rows.

Revised SELECT statement

You can look at the revised SELECT statement that is sent to the DBMS when data
is retrieved with criteria. To do so, look at the sqlsyntax argument in the SQLPreview
event of the DataWindow control.

How the criteria affect the SELECT statement

Criteria specified by the user are added to the SELECT statement that originally defined the
DataWindow object.

For example, if the original SELECT statement was:

SELECT printer.rep, printer.quarter, printer.product, printer.units
FROM printer
WHERE printer.units < 70

and the following criteria are specified:

the new SELECT statement is:

SELECT printer.rep, printer.quarter, printer.product, printer.units

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 53

FROM printer
WHERE printer.units < 70
AND (printer.quarter = 'Q1'
AND printer.product = 'Stellar'
OR printer.quarter = 'Q2')

Clearing selection criteria

To clear the selection criteria, Use the QueryClear property.

In PowerBuilder:

dw_1.Modify("datawindow.queryclear=yes")

In JavaScript:

dw_1.Modify("datawindow.queryclear=yes");

Sorting in query mode

You can allow users to sort rows in a DataWindow while specifying criteria in query
mode using the QuerySort property. The following statement makes the first row in the
DataWindow dedicated to sort criteria (just as in Quick Select in the DataWindow wizard).

In PowerBuilder:

dw_1.Modify("datawindow.querysort=yes")

In JavaScript:

dw_1.Modify("datawindow.querysort=yes");

Overriding column properties during query mode

By default, query mode uses edit styles and other definitions of the column (such as the
number of allowable characters). If you want to override these properties during query mode
and provide a standard edit control for the column, use the Criteria.Override_Edit property
for each column.

In PowerBuilder:

dw_1.Modify("mycolumn.criteria.override_edit=yes")

In JavaScript:

dw_1.Modify("mycolumn.criteria.override_edit=yes");

You can also specify this in the DataWindow painter by checking Override Edit on the
General property page for the column. With properties overridden for criteria, users can
specify any number of characters in a cell (they are not constrained by the number of
characters allowed in the column in the database).

Forcing users to specify criteria for a column

You can force users to specify criteria for a column during query mode by coding the
following:

In PowerBuilder:

dw_1.Modify("mycolumn.criteria.required=yes")

In JavaScript:

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 54

dw_1.Modify("mycolumn.criteria.required=yes");

You can also specify this in the DataWindow painter by checking Equality Required on the
General property page for the column. Doing this ensures that the user specifies criteria for
the column and that the criteria for the column use = rather than other operators, such as < or
>=.

3.5 Providing Help buttons

A DataWindow object has properties related to online Help. By initializing the
DataWindow.Help.File property to the name of a Help file, you can display Help command
buttons on dialog boxes that display for a DataWindow during execution.

For complete information on the Help-related DataWindow object properties, see
DataWindow Reference.

3.6 Reusing a DataWindow object

You can reuse a DataWindow object by retrieving its syntax from the library it is stored in,
then using the syntax to create a DataWindow object dynamically in a DataWindow control.

Here is a typical way to accomplish this in an application. Use:

• The LibraryDirectory function to obtain a list of DataWindow objects and other library
entries in the current library

• A DropDownListBox to list the DataWindow objects in the library and then allow the user
to select a DataWindow from the list

• The LibraryExport function to export the selected DataWindow object syntax into a string
variable

• The Create method to use the DataWindow syntax to create the DataWindow object in the
specified DataWindow control

• The Describe method to get the current DataWindow object syntax, for example:

string dwSyntax
dwSyntax = dw_1.Describe("datawindow.syntax")

• The Modify method to allow the user to modify the DataWindow object

• The LibraryImport function to save the user-modified DataWindow object in a library

For information about the PowerScript functions, see Chapter 10, PowerScript Functions in
PowerScript Reference. For information about the DataWindow methods Create, Describe,
and Modify, see Chapter 9, Methods for the DataWindow Control in DataWindow Reference.

3.7 Using DWSyntax

The DWSyntax tool, available on the Tool tab in the New dialog box, makes it easy to
specify dot notation, Describe, Modify, and SyntaxFromSQL statements.

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 55

To access DWSyntax, select File>New and select the Tool tab. Select the type of statement
you want to create from the Syntax menu:

• Describe

Select an object type from the Object dropdown listbox. In the Attributes listbox, select
the property you want to describe. The bottom of the window displays Describe and dot
notation statements.

• Modify

• Attributes

Select an object type and the property you want to modify. The bottom of the window
displays Modify and dot notation statements.

• Create

Select the object type that you want to create. The bottom of the window displays a
Modify statement.

• Destroy

Select the object type that you want to destroy. The bottom of the window displays a
Modify statement.

• SyntaxFromSQL

On each tab, select the properties you want to include in the arguments for the
SyntaxFromSQL function. Notice that you can select multiple tabs and multiple properties
per object for SyntaxFromSQL. When you have finished selecting properties, click Build
Syntax to display the SyntaxFromSQL function at the bottom of the window.

• Tips on the syntax generated by DWSyntax

3.7.1 Describe

Reports the values of properties of a DataWindow object and objects within the DataWindow
object. Each column and graphic object in the DataWindow has a set of properties. You
specify one or more properties as a string and Describe returns the values of the properties.

3.7.2 Modify

Modifies a DataWindow object by applying specifications, specified as a list of instructions,
that change the DataWindow object's definition. You can change appearance, behavior, and
database information for the DataWindow object by changing the values of properties. You
can add and remove objects from the DataWindow object by providing specifications for the
objects.

3.7.3 Create

Creates a DataWindow object using DataWindow source code and puts that object in the
specified DataWindow control. This "dynamic" DataWindow object does not become a
permanent part of the application source library.

Dynamically Changing DataWindow Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 56

3.7.4 Destroy

Deletes a DataWindow object. This dynamic DataWindow object change does not become a
permanent part of the application source library.

3.7.5 SyntaxFromSQL

Generates DataWindow source code based on a SQL SELECT statement and Style. A full
presentation string has the format:

"Style(Type= value property=value ...) DataWindow(property = value...)
 Column(property = value...)
 Group(groupby_col1 groupby_col2 ... property...)
 Text(property = value...)
 Title('titlestring')"

3.7.6 Tips on the syntax generated by DWSyntax

• Anything surrounded by <> indicates that a real value must be substituted (without
surrounding <>). All other syntax is correct as is including single quotes.

• Internal to PowerBuilder, all DataWindow object properties are stored in strings. These can
represent strings, numbers, or boolean (1/0, yes/no).

Where appropriate the compiler allows for the assigning of numbers or booleans and converts
them to strings automatically. When these same property values are read they are returned as
a string for the Describe syntax and as an Any variable for dot notation syntax.

Examples

The DataWindow readonly property is stored as 'yes' or 'no'.

Each of the following syntax statements sets the property to 'yes'.

dw_1.Modify("DataWindow.ReadOnly=Yes")
dw_1.Modify("DataWindow.ReadOnly=True")
dw_1.Object.DataWindow.ReadOnly = 'Yes'
dw_1.Object.DataWindow.ReadOnly = True

The result of dw_1.Describe("DataWindow.ReadOnly") is a string containing either 'yes' or
'no'.

The result of dw_1.Object.DataWindow.ReadOnly is an Any containing either 'yes' or 'no'.

The Column.Border property is stored as '0' through '6'.

Each of the following syntax statements sets the property to '5'.

dw_1.Modify("Column.Border = 5 ")
dw_1.Modify("Column.Border = '5' ")
dw_1.Object.Column.Border = 5
dw_1.Object.Column.Border = '5'

The result of dw_1.Describe("Column.Border") is always a string.

The result of dw_1.Object.Column.Border is an Any always containing a string.

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 57

4 Using DataStore Objects
About this chapter

This chapter describes how to use DataStore objects in an application.

Before you begin

This chapter assumes you know how to build DataWindow objects in the DataWindow
painter, as described in the Part VI, “Working with DataWindows” in Users Guide.

4.1 About DataStores
A DataStore is a nonvisual DataWindow control. DataStores act just like DataWindow
controls except that they do not have many of the visual characteristics associated with
DataWindow controls. Like a DataWindow control, a DataStore has a DataWindow object
associated with it.

When to use a DataStore

DataStores are useful when you need to access data but do not need the visual presentation of
a DataWindow control. DataStores allow you to:

• Perform background processing against the database without having to hide DataWindow
controls in a window

Suppose that the DataWindow object displayed in a DataWindow control is suitable for
online display but not for printing. In this case, you could define a second DataWindow
object for printing that has the same result set description and assign this object to a
DataStore. You could then share data between the DataStore and the DataWindow control.
Whenever the user asked to print the data in the window, you could print the contents of
the DataStore.

• Hold data used to show multiple views of the same information

When a window shows multiple views of the same information, you can use a DataStore
to hold the result set. By sharing data between a DataStore and one or more DataWindow
controls, you can provide different views of the same information without retrieving the
data more than once.

• Manipulate table rows without using embedded SQL statements

In places where an application calls for row manipulation without the need for display,
you can use DataStores to handle the database processing instead of embedded SQL
statements. DataStores typically perform faster at execution time than embedded SQL
statements. Also, because the SQL is stored with the DataWindow object when you use a
DataStore, you can easily reuse the SQL.

• Perform database access on an application server

In a multitier application, the objects in a remote server can use DataStores to interact with
the database. DataStores let you take advantage of the computer resources provided by a
server machine, removing the need to perform database operations on each client.

DataStore methods

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 58

Most of the methods and events available for DataWindows are also available for DataStores.
However, some of the methods that handle online interaction with the user are not available.
For example, DataStores support the Retrieve, Update, InsertRow, and DeleteRow methods,
but not GetClickedRow and SetRowFocusIndicator.

Prompting for information

When you are working with DataStores, you cannot use functionality that causes a dialog
box to display to prompt the user for more information. Here are some examples of ways to
overcome this restriction:

SetSort and SetFilter

You can use the SetSort and SetFilter methods to specify sort and filter criteria for a
DataStore object, just as you would with a DataWindow control. However, when you are
working with a DataWindow control, if you pass a NULL value to either SetSort or SetFilter,
the DataWindow prompts the user to enter information. When you are working with a
DataStore, you must supply a valid format when you call the method. Moreover, you must
supply a valid format when you share data between a DataStore and a DataWindow control;
you cannot pass the NULL value to the DataWindow control rather than the DataStore.

Prompt for Criteria

You can define your DataWindow objects so that the user is prompted for retrieval criteria
before the DataWindow retrieves data. This feature works with DataWindow controls only. It
is not supported with DataStores.

SaveAs

When you use the SaveAs method with a DataWindow object, you can pass an empty string
for the filename argument so that the user is prompted for a file name to save to. If you are
working with a DataStore, you must supply the filename argument.

Prompt for Printing

For DataWindow controls, you can specify that a print setup dialog box display at execution
time, either by checking the Prompt Before Printing check box on the DataWindow object's
Print Specifications property page, or by setting the DataWindow object's Print.Prompt
property in a script. This is not supported with DataStores.

Retrieval arguments

If you call the Retrieve method for a DataWindow control that has a DataWindow object that
expects an argument, but do not specify the argument in the method call, the DataWindow
prompts the user for a retrieval argument. This behavior is not supported with DataStores.

DataStores have some visual methods

Many of the methods and events that pertain to the visual presentation of the data in a
DataWindow do not apply to DataStores. However, because you can print the contents
of a DataStore and also import data into a DataStore, DataStores have some visually
oriented events and methods. For example, DataStores support the SetBorderStyle and
SetSeriesStyle methods so that you can control the presentation of the data at print time.
Similarly, DataStores support the ItemError event, because data imported from a string or file
that does not pass the validation rules for a column triggers this event.

For a complete list of the methods and events for the DataStore object and information about
each method, see the DataWindow Reference.

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 59

DataStores require no visual overhead

Unlike DataWindow controls, DataStores do not require any visual overhead in a window.
Using a DataStore is therefore more efficient than hiding a DataWindow control in a window.

4.2 Working with a DataStore

To use a DataStore, you first need to create an instance of the DataStore object in a script and
assign the DataWindow object to the DataStore. Then, if the DataStore is intended to retrieve
data, you need to set the transaction object for the DataStore. Once these setup steps have
been performed, you can retrieve data into the DataStore, share data with another DataStore
or DataWindow control, or perform other processing.

Examples

The following script uses a DataStore to retrieve data from the database. First it instantiates
the DataStore object and assigns a DataWindow object to the DataStore. Then it sets the
transaction object and retrieves data into the DataStore:

datastore lds_datastore
lds_datastore = CREATE datastore
lds_datastore.DataObject = "d_cust_list"
lds_datastore.SetTransObject (SQLCA)
lds_datastore.Retrieve()
/* Perform some processing on the data... */

4.3 Using a custom DataStore object

This section describes how to extend a DataStore in PowerBuilder by creating a user object.

You might want to use a custom version of the DataStore object that performs specialized
processing. To define a custom DataStore, you use the User Object painter. There you specify
the DataWindow object for the DataStore, and you can optionally write scripts for events or
define your own methods, user events, and instance variables.

Using a custom DataStore involves two procedures:

1. In the User Object painter, define and save a standard class user object inherited from the
built-in DataStore object.

2. Use the custom DataStore in your PowerBuilder application.

Once you have defined a custom DataStore in the User Object painter, you can write code
that uses the user object to perform the processing you want.

For instructions on using the User Object painter in PowerBuilder, see Section 15.2, “About
the User Object painter” in Users Guide.

To define the standard class user object:

1. Select Standard Class User Object on the PBObjects tab in the New dialog box.

2. Select datastore as the built-in system type that you want your user object to inherit
from, and click OK.

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 60

The User Object painter workspace displays so that you can define the custom object.

3. Specify the name of the DataWindow object in the DataObject box in the Properties
view and click OK.

4. Customize the DataStore by scripting the events for the object, or by defining methods,
user events, and instance variables.

5. Save the object.

To use the user object in your application:

1. Select the object or control for which you want to write a script.

2. Open the Script view and select the event for which you want to write the script.

3. Write code that uses the user object to do the necessary processing.

Here is a simple code example that shows how to use a custom DataStore to retrieve
data from the database. First it instantiates the custom DataStore object, then it sets the
transaction object and retrieves data into the DataStore:

uo_cust_dstore lds_cust_dstore
 lds_cust_dstore = CREATE uo_cust_dstore
 lds_cust_dstore.SetTransObject (SQLCA)
 lds_cust_dstore.Retrieve()
 /* Perform some processing on the data... */

Notice that this script does not assign the DataWindow object to the DataStore. This is
because the DataWindow object is specified in the user object definition.

Changing the DataWindow object at execution time

When you associate a DataWindow object with a DataStore in the User Object
painter, you are setting the initial value of the DataStore's DataObject property.
During execution, you can change the DataWindow object for the DataStore by
changing the value of the DataObject property.

4. Compile the script and save your changes.

4.4 Accessing and manipulating data in a DataStore

To access data using a DataStore, you need to read the data from the data source into the
DataStore.

If the data source is a database

If the data for the DataStore is coming from a database (that is, the data source was defined
as anything but External in the DataWindow painter), you need to communicate with the
database to get the data. The steps you perform to communicate with the database are the
same steps you use for a DataWindow control.

For more information about communicating with the database, see Accessing the database.

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 61

If the data source is not a database

If the data for the DataWindow object is not coming from a database (that is, the data source
was defined as External in the DataWindow painter), you can use the following methods to
import data into the DataStore:

ImportClipboard
ImportFile
ImportString

You can also get data into the DataStore by using a DataWindow data expression, or by using
the SetItem method.

For more information on accessing data in a DataStore, see Chapter 4, Accessing Data in
Code in DataWindow Reference.

About the DataStore buffers

Like a DataWindow control, a DataStore uses three buffers to manage data:

Table 4.1: DataStore buffers

Buffer Contents

Primary Data that has not been deleted or filtered out (that is, the rows that are
viewable)

Filter Data that was filtered out

Delete Data that was deleted by the user or in a script

About the Edit control

The DataStore object has an Edit control. However, the Edit control for a DataStore behaves
in a slightly different manner from the Edit control for a DataWindow. The Edit control for a
DataWindow keeps track of text entered by the user in the current cell (row and column); the
Edit control for a DataStore is used to manage data imported from an external source, such as
the clipboard or a file. The text in the Edit control for a DataStore cannot be changed directly
by the user. It must be manipulated programmatically.

Programming with DataStores

There are many methods for manipulating DataStore objects. These are some of the more
commonly used:

Table 4.2: Common methods in DataStore objects

Method Purpose

DeleteRow Deletes the specified row from the DataStore.

Filter Filters rows in the DataStore based on the current filter criteria.

InsertRow Inserts a new row.

Print Sends the contents of the DataStore to the current printer.

Reset Clears all rows in the DataStore.

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 62

Method Purpose

Retrieve Retrieves rows from the database.

RowsCopy Copies rows from one DataStore to another DataStore or DataWindow
control.

RowsMove Moves rows from one DataStore to another DataStore or DataWindow
control.

ShareData Shares data among different DataStores or DataWindow controls. See
Sharing information.

Sort Sorts the rows of the DataStore based on the current sort criteria.

Update Sends to the database all inserts, changes, and deletions that have been
made since the last Update.

For information about DataStore methods, see Chapter 9, Methods for the DataWindow
Control in DataWindow Reference.

Dynamic DataWindow objects

The methods in the table above manipulate data in the DataStore but do not change the
definition of the underlying DataWindow object. In addition, you can use the Modify and
Describe methods to access and manipulate the definition of a DataWindow object. Using
these methods, you can change the DataWindow object during execution. For example, you
can change the appearance of a DataWindow or allow your user to create ad hoc reports.

For more information, see Dynamically Changing DataWindow Objects.

Property and data expressions

You can use the same property and data expressions as for the DataWindow control. For
information, see DataWindow Reference.

Using DataStore properties and events

This chapter mentions only a few of the properties and events that you can use to manipulate
DataStores. For more information about DataStore properties and events, see DataWindow
Reference.

4.5 Sharing information

The ShareData method allows you to share a result set among two different DataStores or
DataWindow controls. When you share information, you remove the need to retrieve the
same data multiple times.

The ShareData method shares data retrieved by one DataWindow control or DataStore (called
the primary DataWindow) with another DataWindow control or DataStore (the secondary
DataWindow).

Result set descriptions must match

When you share data, the result set descriptions for the DataWindow objects must be the
same. However, the SELECT statements can be different. For example, you could use the
ShareData method to share data between DataWindow objects that have the following
SELECT statements (because the result set descriptions are the same):

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 63

SELECT dept_id from dept
SELECT dept_id from dept where dept_id = 200
SELECT dept_id from employee

You can also share data between two DataWindow objects where the source of one is a
database and the source of the other is external. As long as the lists of columns and their
datatypes match, you can share the data.

What is shared?

When you use the ShareData method, the following information is shared:

Primary buffer
Delete buffer
Filter buffer
Sort order

ShareData does not share the formatting characteristics of the DataWindow objects. That
means you can use ShareData to apply different presentations to the same result set.

When you alter the result set

If you perform an operation that affects the result set for either the primary or the secondary
DataWindow, the change affects both of the objects sharing the data. Operations that alter
the buffers or the sort order of the secondary DataWindows are rerouted to the primary
DataWindow. For example, if you call the Update method for the secondary DataWindow,
the update operation is applied to the primary DataWindow also.

Turning off sharing data

To turn off the sharing of data, you use the ShareDataOff method. When you call
ShareDataOff for a primary DataWindow, any secondary DataWindows are disassociated
and no longer contain data. When you call ShareDataOff for a secondary DataWindow, that
DataWindow no longer contains data, but the primary DataWindow and other secondary
DataWindows are not affected.

In most cases you do not need to turn off sharing, because the sharing of data is turned
off automatically when a window is closed and any DataWindow controls (or DataStores)
associated with the window are destroyed.

Crosstabs

You cannot share data with a DataWindow object that has the Crosstab presentation style.

4.5.1 Example: printing data from a DataStore

Suppose you have a window called w_employees that allows users to retrieve, update, and
print employee data retrieved from the database:

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 64

The DataWindow object displayed in the DataWindow control is suitable for online display
but not for printing. In this case, you could define a second DataWindow object for printing
that has the same result set description as the object used for display and assign the second
object to a DataStore. You could then share data between the DataStore and the DataWindow
control. Whenever the user asked to print the data in the window, you could print the contents
of the DataStore.

When the window or form opens

The code you write begins by establishing the hand pointer as the current row indicator
for the dw_employees DataWindow control. Then the script sets the transaction object for
dw_employees and issues a Retrieve method to retrieve some data. After retrieving data,
the script creates a DataStore using the instance variable or data member ids_datastore, and
assigns the DataWindow object d_employees to the DataStore. The final statement of the
script shares the result set for the dw_employees DataWindow control with the DataStore.

This code is for the window's Open event:

dw_employees.SetRowFocusIndicator(Hand!)
 dw_employees.SetTransObject(SQLCA)
 dw_employees.Retrieve()

 ids_datastore = CREATE datastore
 ids_datastore.DataObject = "d_employees"
 dw_employees.ShareData(ids_datastore)

Code for the Update button

Code for the cb_update button applies the update operation to the dw_employees
DataWindow control.

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 65

This code is for the Update button's Clicked event:

IF dw_employees.Update() = 1 THEN
 COMMIT using SQLCA;
 MessageBox("Save","Save succeeded")
 ELSE
 ROLLBACK using SQLCA;
 MessageBox("Save","Save failed")
 END IF

Code for the Print button

The Clicked event of the cb_print button prints the contents of ids_datastore. Because
the DataWindow object for the DataStore is d_employees, the printed output uses the
presentation specified for this object.

This code is for the Print button's Clicked event:

ids_datastore.Print()

When the window or form closes

When the window closes, the DataStore gets destroyed.

This code is for the window's Close event:

destroy ids_datastore

4.5.2 Example: using two DataStores to process data

Suppose you have a window called w_multi_view that shows multiple views of the same
result set. When the Employee List radio button is selected, the window shows a list of
employees retrieved from the database:

When the Employee Salary Information radio button is selected, the window displays a graph
that shows employee salary information by department:

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 66

This window has one DataWindow control called dw_display. It uses two DataStores to
process data retrieved from the database. The first DataStore (ids_emp_list) shares its result
set with the second DataStore (ids_emp_graph). The DataWindow objects associated with the
two DataStores have the same result set description.

When the window or form opens

When the window or form opens, the application sets the mouse pointer to the hourglass
shape. Then the code creates the two DataStores and sets the DataWindow objects for the
DataStores. Next the code sets the transaction object for ids_emp_list and issues a Retrieve
method to retrieve some data.

After retrieving data, the code shares the result set for ids_emp_list with ids_emp_graph. The
final statement triggers the Clicked event for the Employee List radio button.

This code is for the window's Open event:

SetPointer(HourGlass!)
 ids_emp_list = Create DataStore
 ids_emp_graph = Create DataStore

 ids_emp_list.DataObject = "d_emp_list"
 ids_emp_graph.DataObject = "d_emp_graph"

 ids_emp_list.SetTransObject(sqlca)
 ids_emp_list.Retrieve()
 ids_emp_list.ShareData(ids_emp_graph)
 rb_emp_list.EVENT Clicked()

Code for the Employee List radio button

The code for the Employee List radio button (called rb_emp_list) sets the DataWindow
object for the DataWindow control to be the same as the DataWindow object for
ids_emp_list. Then the script displays the data by sharing the result set for the ids_emp_list
DataStore with the DataWindow control.

This code is for the Employee List radio button's Clicked event:

Using DataStore Objects Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 67

dw_display.DataObject = ids_emp_list.DataObject
ids_emp_list.ShareData(dw_display)

Code for the Employee Salary Information radio button

The code for the Employee Salary Information radio button (called rb_graph) is similar to
the code for the List radio button. It sets the DataWindow object for the DataWindow control
to be the same as the DataWindow object for ids_emp_graph. Then it displays the data by
sharing the result set for the ids_emp_graph DataStore with the DataWindow control.

This code is for the Employee Salary Information radio button's Clicked event:

dw_display.DataObject = ids_emp_graph.DataObject
ids_emp_graph.ShareData(dw_display)

When the window or form closes

When the window closes, the DataStores get destroyed.

This code is for the window's Close event:

Destroy ids_emp_list
Destroy ids_emp_graph

Use garbage collection

Do not destroy the objects if they might still be in use by another process -- rely on
garbage collection instead.

Manipulating Graphs Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 68

5 Manipulating Graphs
About this chapter

This chapter describes how to write code that allows you to access and change a graph in
your application at execution time.

5.1 Using graphs

Supported environment

PowerBuilder

Graphs are supported. Because you can print DataStores, PowerBuilder provides
some events and functions for DataStores that pertain to the visual presentation of
the data. However, graph functions such as CategoryCount, CategoryName, GetData,
SeriesCount, and so forth depend on the visual graph control, which is not created for
a DataStore. These functions return an error value or an empty string when used with
DataStore objects.

It is common for developers to design DataWindow objects that include one or more graphs.
When users need to quickly understand and analyze data, a bar, line, or pie graph can often be
the most effective format to display.

To learn about designing graphs, see Chapter 26, Working with Graphs in Users Guide.

Working with graphs in your code

The following sections describe how you can access (and optionally modify) a graph by
addressing its properties in code at execution time. There are two kinds of graph properties:

• Properties of the graph definition itself

These properties are initially set in the DataWindow painter when you create a graph. They
include a graph's type, title, axis labels, whether axes have major divisions, and so on.
For 3D graphs, this includes the Render 3D property that uses transparency rather than
overlays to enhance a graph's appearance and give it a more sophisticated look.

• Properties of the data

These properties are relevant only at execution time, when data has been loaded into the
graph. They include the number of series in a graph (series are created at execution time),
colors of bars or columns for a series, whether the series is an overlay, text that identifies
the categories (categories are created at execution time), and so on.

Using graphs in other PowerBuilder controls

Although you will probably use graphs most often in DataWindow objects, you can
also add graph controls to windows, and additional PowerScript functions and events
are available for use with graph controls.

For more information, see Section 15.1, “Using graphs” in Application Techniques.

Manipulating Graphs Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 69

5.2 Modifying graph properties
When you define a graph in the DataWindow painter, you specify its behavior and
appearance. For example, you might define a graph as a column graph with a certain title,
divide its Value axis into four major divisions, and so on. Each of these entries corresponds
to a property of a graph. For example, all graphs have a property GraphType, which specifies
the type of graph.

When dynamically changing the graph type

If you change the graph type, be sure also to change the other properties as needed to
properly define the new graph.

You can change these graph properties at execution time by assigning values to the graph's
properties in code.

Property expressions

PowerBuilder

You can modify properties using property expressions. For example, to change the type of the
graph gr_emp to Column, you could code:

dw_empinfo.Object.gr_emp.GraphType = ColGraph!

To change the title of the graph at execution time, you could code:

dw_empinfo.Object.gr_emp.Title = "New title"

Modify method

You can use the Modify method to reference parts of a graph.

Example for PowerBuilder

For example, to change the title of graph gr_emp in DataWindow control dw_empinfo, you
could code:

dw_empinfo.Modify("gr_emp.Title = 'New title'")

For a complete list of graph properties, see Section 3.2.5, “Properties for Graph controls in
DataWindow objects” in DataWindow Reference.

5.2.1 How parts of a graph are represented

Graphs consist of parts: a title, a legend, and axes. Each of these parts has a set of display
properties. These display properties are themselves stored as properties in a subobject
(structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies the text for the title. Graphs
also have a property TitleDispAttr, of type grDispAttr, which itself contains properties
that specify all the characteristics of the title text, such as the font, size, whether the text is
italicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These properties are
stored in a subobject (structure) of Graph called grAxis. For example, graphs have a property
Values, of type grAxis, which specifies the properties of the Value axis, such as whether to
use autoscaling of values, the number of major and minor divisions, the axis label, and so on.

Here is a representation of the properties of a graph:

Manipulating Graphs Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 70

Graph
 int Height
 int Depth
 grGraphType GraphType
 boolean Border
 string Title
 ...
 grDispAttr TitleDispAttr, LegendDispAttr, PieDispAttr
 string FaceName
 int TextSize
 boolean Italic
 ...
 grAxis Values, Category, Series
 boolean AutoScale
 int MajorDivisions
 int MinorDivisions
 string Label
 ...

5.2.2 Referencing parts of a graph

You use dot notation or the Describe and Modify methods to reference the display properties
of the various parts of a graph. For example, one of the properties of a graph's title is whether
the text is italicized or not. That information is stored in the boolean Italic property in the
TitleDispAttr property of the graph.

This example changes the label text for the Value axis of graph gr_emp in the DataWindow
control dw_empinfo:

dw_empinfo.Object.gr_emp.Values.Label="New label"

For a complete list of graph properties, see Section 3.2.5, “Properties for Graph controls in
DataWindow objects” in DataWindow Reference.

You can use the PowerBuilder Browser to examine the properties of a DataWindow object
that contains a graph. For more information, see the Users Guide.

5.3 Accessing data properties
To access properties related to a graph's data during execution, you use DataWindow
methods for graphs. There are three categories of these methods related to data:

• Methods that provide information about a graph's data

• Methods that save data from a graph

• Methods that change the color, fill patterns, and other visual properties of data

How to use the methods

To call the methods for a graph in a DataWindow control, use the following syntax:

DataWindowName.methodName ("graphName", otherArguments...)

For example, there is a method CategoryCount, which returns the number of categories in
a graph. So to get the category count in the graph gr_printer (which is in the DataWindow
control dw_sales), write:

Ccount = dw_sales.CategoryCount("gr_printer")

Manipulating Graphs Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 71

5.3.1 Getting information about the data

There are quite a few methods for getting information about data in a graph in a DataWindow
control at execution time. For all methods, you provide the name of the graph within the
DataWindow as the first argument. You can provide your own name for graph controls when
you insert them in the DataWindow painter. If the presentation style is Graph, you do not
need to name the graph.

PowerBuilder

These methods get information about the data and its display. For several of them, an
argument is passed by reference to hold the requested information:

Table 5.1: Common methods for graph DataWindows in PowerBuilder

Method Information provided

CategoryCount The number of categories in a graph

CategoryName The name of a category, given its number

DataCount The number of data points in a series

FindCategory The number of a category, given its name

FindSeries The number of a series, given its name

GetData The value of a data point, given its series and position
(superseded by GetDataValue, which is more flexible)

GetDataLabelling The display setting for the data label at a given data point in a
DirectX 3D graph

GetDataPieExplode The percentage at which a pie slice is exploded

GetDataStyle The color, fill pattern, or other visual property of a specified data
point

GetDataTransparency The transparency percentage of a data point in a DirectX 3D
graph

GetDataValue The value of a data point, given its series and position

GetSeriesLabelling The display setting for the series label for a given series in a
DirectX 3D graph

GetSeriesStyle The color, fill pattern, or other visual property of a specified
series

GetSeriesTransparency The transparency percentage of a series in a DirectX 3D graph

ObjectAtPointer The graph element the mouse was positioned over when it was
clicked

SeriesCount The number of series in a graph

SeriesName The name of a series, given its number

5.3.2 Saving graph data

PowerBuilder

The following methods allow you to save data from the graph:

Manipulating Graphs Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 72

Table 5.2: PowerBuilder methods for saving data from a graph

Method Action

Clipboard Copies a bitmap image of the specified graph to the clipboard

SaveAs Saves the data in the underlying graph to the clipboard or to a file in
one of a number of formats

5.3.3 Modifying colors, fill patterns, and other data

PowerBuilder

The following methods allow you to modify the appearance of data in a graph:

Table 5.3: PowerBuilder methods for modifying the appearance of data

Method Action

ResetDataColors Resets the color for a specific data point

SetDataLabelling Specifies the display setting for a data label in a DirectX 3D graph

SetDataStyle Sets the color, fill pattern, or other visual property for a specific data
point

SetDataTransparencySets the transparency percentage for a data point in a DirectX 3D graph

SetSeriesLabelling Specifies the display setting for a series label in a DirectX 3D graph

SetSeriesStyle Sets the color, fill pattern, or other visual property for a series

SetSeriesTransparencySets the transparency percentage of a series in a DirectX 3D graph

5.3.4 Using graph methods

You call the data-access methods after a graph has been created and populated with data.
Some graphs, such as graphs that display data for a page or group of data, are destroyed and
re-created internally as the user pages through the data. Any changes you made to the display
of a graph, such as changing the color of a series, are lost when the graph is re-created.

Event for graph creation

To be assured that data-access methods are called whenever a graph has been created and
populated with data, you can call the methods in the code for an event that is triggered when
a graph is created. The event is:

• PowerBuilder

Event ID pbm_dwngraphcreate, which you can assign to a user event for a DataWindow
control (described below)

The graph-creation event is triggered by the DataWindow control after it has created a graph
and populated it with data, but before it has displayed the graph. By accessing the data in the
graph in this event, you are assured that you are accessing the current data and that the data
displays the way you want it.

Setting up the PowerBuilder user event

PowerBuilder provides an event ID, pbm_dwngraphcreate, that you can assign to a user event
for a DataWindow control.

Manipulating Graphs Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 73

To access data properties of a graph in a DataWindow control:

1. Place the DataWindow control in a window or user object and associate it with the
DataWindow object containing the graph.

Next you create a user event for the DataWindow control that is triggered whenever a
graph in the control is created or changed.

2. Select Insert>Event from the menu bar.

The Script view displays and includes prototype fields for adding a new event.

3. Select the DataWindow control in the first drop-down list of the prototype window.

If the second drop-down list also changes to display an existing DataWindow event
prototype, scroll to the top of the list to select New Event or select Insert>Event once
again from the menu bar.

4. Name the user event you are creating.

For example, you might call it GraphCreate.

5. Select pbm_dwngraphcreate for the event ID.

6. Click OK to save the new user event.

Manipulating Graphs Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 74

7. Write a script for the new GraphCreate event that accesses the data in the graph.

Calling data access methods in the GraphCreate event assures you that the data access
happens each time the graph has been created or changed in the DataWindow.

Examples

PowerBuilder

The following statement sets to black the foreground (fill) color of the Q1 series in the
graph gr_quarter, which is in the DataWindow control dw_report. The statement is in
the GraphCreate event, which is associated with the event ID pbm_dwngraphcreate in
PowerBuilder:

dw_report.SetSeriesStyle("gr_quarter", "Q1", &
 foreground!, 0)

The following statement changes the foreground (fill) color to red of the second data point in
the Stellar series in the graph gr_sale in a window. The statement can be in a script for any
event:

int SeriesNum
 // Get the number of the series.
 SeriesNum = gr_sale.FindSeries("Stellar")

 // Change color of second data point to red
 gr_sale.SetDataStyle(SeriesNum, 2, foreground!, 255)

For more information

For complete information about the data-access graph methods, see Chapter 10, Methods for
Graphs in the DataWindow Control in DataWindow Reference.

For more about PowerBuilder user events, see Chapter 8, Working with User Events in Users
Guide.

5.4 Using point and click

Users can click graphs during execution. The DataWindow control provides a method called
ObjectAtPointer that stores information about what was clicked. You can use this method
in a number of ways in mouse events. For example, with the ObjectAtPointer information,
you can call other graph methods to report to the user the value of the clicked data point. This
section shows you how.

Mouse events and graphs

To cause actions when a user clicks a graph, you might:

• PowerBuilder

Write a Clicked script for the DataWindow control

You should call ObjectAtPointer in the first statement of the event's code.

Using ObjectAtPointer

ObjectAtPointer works differently in PowerBuilder.

PowerBuilder

Manipulating Graphs Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 75

ObjectAtPointer has this syntax:

DataWindowName.ObjectAtPointer ("graphName", seriesNumber, dataNumber)

ObjectAtPointer does these things:

• Returns the kind of object the user clicked

The object is identified by a grObjectType enumerated value. For example, if the user
clicks on a data point, ObjectAtPointer returns TypeData!. If the user clicks on the graph's
title, ObjectAtPointer returns TypeTitle!.

For a list of object values, see Chapter 6, DataWindow Constants in DataWindow
Reference. In PowerBuilder, you can also open the Browser and click the Enumerated tab.

• Stores the number of the series the pointer was over in the variable seriesNumber, which is
an argument passed by reference

• Stores the number of the data point in the variable dataNumber, also an argument passed
by reference

Example

Assume there is a graph named gr_sales in the DataWindow control dw_sales. The following
code for the control's MouseDown event displays a message box:

• If the user clicks on a series (that is, if ObjectAtPointer returns 1), the message box shows
the name of the series clicked on. The example uses the method GetSeriesName to get the
series name, given the series number stored by ObjectAtPointer.

• If the user clicks on a data point (that is, if ObjectAtPointer returns 2), the message box
lists the name of the series and the value clicked on. The example uses GetDataNumber to
get the data's value, given the data's series and data point number.

PowerBuilder

This code is for the Clicked event:

int SeriesNum, DataNum
double Value
grObjectType ObjectType
string SeriesName, ValueAsString
string GraphName
GraphName = "gr_sale"

// The following method stores the series number
// clicked on in SeriesNum and stores the number
// of the data point clicked on as DataNum.
ObjectType = &
 dw_printer.ObjectAtPointer (GraphName, &
 SeriesNum, DataNum)

IF ObjectType = TypeSeries! THEN
 SeriesName = &
 dw_printer.SeriesName (GraphName, SeriesNum)
 MessageBox("Graph", &
 "You clicked on the series " + SeriesName)

Manipulating Graphs Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 76

ELSEIF ObjectType = TypeData! THEN
 Value = dw_printer.GetData (GraphName, &
 SeriesNum, DataNum)
 ValueAsString = String(Value)
 MessageBox("Graph", &
 dw_printer.SeriesName (GraphName, &
 SeriesNum) + " value is " + ValueAsString)
END IF

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 77

6 DataWindow Export/Import Template
About this chapter

The row data in a DataWindow can be exported and imported in the Extensible Markup
Language (XML or XHTML). This chapter describes how to create and use templates that
control the export and import of data in XML/XHTML format.

6.1 The Export Template view for XHTML

Each DataWindow object that you create has a default XHTML export template associated
with it. You can see the default template in the DataWindow painter's Export Template view
for XHTML.

Displaying the XHTML export template

The Export Template view for XHTML coexists with the Export Template view
for XML, each on its own tab page with XML on the top by default. To display the
view for XHTML, click the XHTML tab. If you have any problems displaying the
view, select View>Export/Import Template>XHTML from the menu bar or select
View>Layouts>Default and then click the XHTML tab.

The XHTML export template is a single-instance document of the <form> element. It stores
only the structural layout and any changes that you make to the elements, attributes, and style
declarations. When XHTML is generated, these changes are incorporated into the <form>
element and the CSS stylesheet used to render the DataWindow in the browser. More than
one export template can be created for a DataWindow.

Default style rules and most default attributes are not stored in the template. Any changes to
style declarations are stored in the template, but at runtime they are removed and applied to
the separately generated CSS stylesheet.

In the Export Template view for XHTML, you can reference DataWindow column, computed
field, and text controls, and DataWindow expressions for each row in the XHTML, wherever
character data is allowed. At runtime, these are replaced with text.

6.2 The default XHTML export template

In the default XHTML export template, export XHTML entities (markup and character data)
are displayed as single tree view items that denote the type of entity. The default template has
one element for each column in the DataWindow object:

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 78

You can create multiple templates and save them by name with the DataWindow object.
Each template is uniquely associated with the DataWindow object open in the painter. For
information, see "Managing templates".

6.2.1 How tree view items are represented

Each item in the XHTML export template displays as a single tree view item with an image
and font color that denotes its type. Elements are represented by a yellow icon that resembles
a luggage tag. The end tags of elements and the markup delimiters (angle brackets) used in an
XHTML document do not display.

The following table shows the icons used in the Export Template view for XHTML.

Table 6.1: Icons used in the Export Template view for XHTML

Icon Description

Root or child element

Group header element

DataWindow column reference

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 79

Static text control reference

Computed field or DataWindow expression reference

Literal text

CDATA section

Nested report

6.3 Managing templates
From the pop-up menu for the default XHTML export template (with no items selected), you
can create multiple templates and save them by name with the DataWindow object open in
the painter. You also can edit existing templates associated with the current DataWindow
object and, when you associate more than one template with the DataWindow, delete the
current template:

The pop-up menu has these options for managing templates:

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 80

Table 6.2:

Menu item Description

New Default Define a new default XHTML export template based on the current
DataWindow layout

Open Open a saved template

Save Save the current template; if the template has no name, name it

Save As Save the current template with a new name

Delete Delete the current template (enabled only if more than one template exists
for the current DataWindow object)

6.3.1 Creating and saving templates

6.3.1.1 Creating a new default template

To create a new default XHTML export template, select New Default from the pop-up menu
in the Export Template view for XHTML.

A new default XHTML export template has the following elements:

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 81

Table 6.3:

Elements Name defaults to

Root <form> DataWindow name_dataForm

Header <div> DataWindow name_band1

Detail <div> DataWindow name_bandn

Summary <div> DataWindow name_bandn

Footer <div> DataWindow name_bandn

Child elements of the Header, Detail,
Summary, and Footer elements

Name of each DataWindow control.

6.3.1.2 Saving the template

To save a new default template, select Save from the pop-up menu in the Export Template
view for XHTML, name the template, and provide a comment that identifies its use.

The template is stored inside the DataWindow object in the PBL. After saving a template
with a DataWindow object, you can see its definition in the Source editor for the
DataWindow object. For example, this is part of the source for a DataWindow that has two
templates. The templates have required elements only:

export.xhtml(usetemplate = "t_phone"
template = (name = "t_address"
 comment = "Employee Address Book" xhtml = "<...>")
template = (name = "t_phone"
 comment = "Employee Phone Book" xhtml = "<...>"))

Note

Defining multiple templates You can define multiple templates for a single
DataWindow object. One reason you might do this is to vary the edit styles generated
for the same DataWindow edit control.

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 82

6.3.2 Selecting the template to use

6.3.2.1 Using the Export.XHTML.UseTemplate property

The Data Export page in the Properties view lets you set properties for exporting data in
XHTML. The names of all templates that you create and save for the current DataWindow
object display in the Use Template drop-down list.

In addition to the properties that you can set on this page, you can use the
Export.XHTML.TemplateCount and Export.XHTML.Template[].Name properties to let the
user of an application select an export template at runtime. See "Selecting XHTML export
templates at runtime".

You can specify the template you want to apply to the default XML Web
DataWindow or XHTML Web DataWindow generation at runtime by setting the
Export.XHTML.UseTemplate property. You set the property using the Data Export tab in the
DataWindow painter's Properties view by selecting XHTML as the format and then selecting
the XHTML export template's name from the Use Template drop-down list box.

You can also set the Export.XHTML.UseTemplate DataWindow property in script. For
information, see "Selecting XHTML export templates at runtime".

Incorrect setting of the UseTemplate property

If you set the Export.XHTML.UseTemplate property at runtime to the name of a
template that does not exist, the built-in default Template is used on an export.

6.3.2.2 Properties related to XHTML export templates

The following table shows properties related to XHTML export templates.

Table 6.4: Properties for XHTML export templates

Property User interface fields Description

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 83

Export.XHTML.TemplateCountRead only, so no user
interface field.

The number of XHTML export templates
associated with a DataWindow object

Export.XHTML.Template[num].NameRead only, so no user
interface field.

The name of an XHTML export
template associated with a DataWindow
object returned by index value that
ranges from 1 to the value of the
Export.XHTML.TemplateCount property

Export.XHTML.UseTemplateSelect a template from the
Use Template drop–down
list box in the Data Export
tab in the DataWindow
painter's Properties view.

The name of an XHTML export template
(previously saved in the DataWindow
painter) that optionally controls the logical
structure of the XHTML generated by a
DataWindow object

For detailed information about DataWindow properties, see DataWindow Reference.

6.4 Template structure

An XHTML export template has a Header section and a Detail section separated graphically
by a line across the tree view. Other DataWindow bands are incorporated into these sections.

The Detail Start element

A line across the Export/Import Template view separates the Header section from the Detail
section. The first element after this line, d_dept_list_row in the previous screen shot, is called
the Detail Start element.

There can be only one Detail Start element, and it must be inside the document's root
element. Each band of the DataWindow is wrapped by a <div> element. When the
DataWindow is exported in XHTML, this element and all children and/or siblings after it are
generated iteratively for each row.

6.4.1 Header section

The Header section can contain the items listed in the following table. Only the root XHTML
<form> element is required:

Table 6.5: Items permitted in the Header section of an XHTML document

Item Details

Root <form> element (start tag) The XHTML <form> element is the root
element of the XHTML template. See "Root
element".

XHTML elements Additional elements below the root element.

DataWindow control references Text. See "DataWindow controls".

DataWindow expressions Text. See "DataWindow expressions".

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 84

Literal text Text that does not correspond to a DW
control.

Attributes Can be assigned to all elements. See
"Element attributes".

CDATA sections See "CDATA sections".

Child elements Child elements in the Header section
cannot be iterative except for the Group
DataWindow.

Detail section in root element

The root element displays in the Header section, but the entire content of the Detail
section is contained in the root element.

The items in the Header section are generated only once at runtime (when the DataWindow
is exported to XHTML), unless the DataWindow is a Group DataWindow. For Group
DataWindows, the corresponding XHTML fragment in the Header section is repeated so that
it iteratively heads each group detail—the group of XHTML rows corresponding to the group
specified in the DataWindow.

The Header section contains the rendering of the DataWindow header band and any group
header bands. Bands are generated within <div> elements. The controls rendered in the
Header section (such as computed titles and text control column headings) are typically also
generated within <div> elements, with referenced content.

These entities are generated only once and are not iterated for each row. However, for
DataWindows with group headers, the corresponding XHTML fragment in the Header
section is repeated, iteratively heading each group of XHTML rows corresponding to the
group specified in the DataWindow.

6.4.2 Detail section

The Detail section contains the rendering of the DataWindow Detail band, delimited by
the first <div> element. The <div> element's contents represent a single row instance to be
generated iteratively. Any group trailers, summary band, and footer band are also appended
and enclosed by <div> elements. The controls rendered in the Detail section (for example,
column, computed field, DropDownDataWindow, DropDownListBox, checkbox, and
button controls) are usually also generated within <div>, <input>, or <select> elements with
referenced content.

The Detail section can contain the items listed in the following table.

Table 6.6: Items permitted in the Detail section of an XHTML document

Item Details

First <div> element The contents of the <div> element represent
a single row instance to be generated
iteratively.

XHTML elements Additional elements below the root element.

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 85

DataWindow control references Text. See "DataWindow controls".

DataWindow expressions Text. See "DataWindow expressions".

Literal text Text that does not correspond to a DW
control.

Attributes Can be assigned to all elements. See
"Element attributes".

CDATA sections See "CDATA sections".

Child elements Child elements in the Header section cannot
be iterative except in the case of group
DataWindows.

6.5 Editing XHTML export templates

Every item in the Export Template view for XHTML has a pop-up menu for modifying
the structural layout of the XHTML document that will be generated at runtime. Using the
pop-up menu, you can perform actions appropriate to that item, such as editing or deleting
the item, adding or editing attributes, adding child elements or other items, and inserting
elements, CDATA sections, and so forth, before the current item.

If an element has no attributes, you can edit its tag in the Export Template view for XHTML
by selecting it and left-clicking the tag or pressing F2. Literal text nodes can be edited in the
same way. You can delete items (and their children) by pressing the Delete key.

6.5.1 Root element

The root element of the XHTML export template is the XHTML <form> element. You can
change the name of the root element and add attributes and children.

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 86

Changing the name of the root element changes the name of its start and end tags. You can
change the name using the Edit Attributes menu item to display the Element Attributes dialog
box. For information about editing attributes, see "Element attributes".

You can add the following kinds of children to the root element:

• Elements

• Text

• DataWindow control references

• DataWindow expressions (including column references)

• CDATA sections

6.5.2 DataWindow controls

Adding a DataWindow control reference opens a dialog box containing a list of the columns,
computed fields, report controls, and text controls in the document.

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 87

Control references can also be added to empty attribute values or element contents using drag
and drop from the Control List view. Column references can also be added using drag-and-
drop from the Column Specifications view.

Drag-and-drop cannot replace

You cannot drag-and-drop an item on top of another item to replace it. For example,
if you want to replace one control reference with another control reference, or with
a DataWindow expression, you first need to delete the control reference you want to
replace.

6.5.3 DataWindow expressions

Adding a DataWindow expression using the Add Child>DataWindow Control Reference
menu item opens the Modify Expression dialog box. This enables you to create references to
columns from the data source of the DataWindow object. It also enables the calling of global
functions. One use of this feature is to return a fragment of XHTML to embed, providing
another level of dynamic XHTML generation.

6.5.3.1 Using Date and DateTime with strings

If you use a control reference or a DataWindow expression that does not include a string to
represent Date and DateTime columns in a template, the XHTML output conforms to ISO
8601 date and time formats. For example, consider a date that displays as 12/27/2002 in
the DataWindow, using the display format mm/dd/yyyy. If the export template does not use
an expression that includes a string, the date is exported to XHTML as 2002-12-27.

However, if the export template uses an expression that combines a column with a Date or
DateTime datatype with a string, the entire expression is exported as a string and the regional
settings in the Windows registry are used to format the date and time.

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 88

Using the previous example, if the short date format in the registry is mm/dd/yy, and the
DataWindow expression is: "Start Date is " + start_date, the XHTML output
is Start Date is 12/27/02.

6.5.4 Element attributes

Select Edit Attributes from the pop-up menu for elements to edit an existing attribute or add a
new one. The attributes that display include all the default attributes for the elements with any
template changes applied. The name attribute (and in some cases the class attribute) used to
identify the element is omitted and cannot be changed.

You can change or delete the default attribute values or add new ones. Controls or
expressions can also be referenced for element attribute values.

For each attribute specified, you can select a control reference from the drop–down list or
enter a literal text value. A literal text value takes precedence over a control reference. You
can also use the expression button to the right of the Text box to enter an expression.

The expression button and entry operates similarly to DataWindow object properties in the
Properties view. The button shows a green equals sign if an expression has been entered,
and a red not-equals sign if not. A control reference or text value specified in addition to the
expression is treated as a default value. In the template, this combination is stored with the
control reference or text value, followed by a tab, preceding the expression. For example:

attribute_name=~"text_val~~tdw_expression~"

When you finish modifying element attributes and you click OK, only changes are stored in
the template. Default attributes that are deleted are added in the template and marked with an
empty value.

6.5.5 Style declarations

If you right-click an element and select Edit Styles from the pop-up menu, the Style
Declarations dialog box displays the read-only set of default style declarations for the
element on the left:

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 89

For clarity, style declarations are omitted from the XHTML export template. You can add
new style declarations or override the existing ones by declaring them on the right side, or
remove them by adding them with an empty value.

6.5.6 JavaScript event handlers

If you right-click an element and select Edit Events from the pop-up menu, the JavaScript
Event Handlers dialog box displays a read-only set of event handlers for the element on the
left:

This dialog displays the current JavaScript event handlers, if any. You can add new event
handlers or override the existing ones by declaring them on the right side, or remove them by
adding them with an empty value.

6.5.7 CDATA sections

Everything inside a CDATA section is ignored by the parser. If text contains characters
such as less than or greater than signs (< or >) or ampersands (&) that are significant to the
parser, it should be defined as a CDATA section. A CDATA section starts with <![CDATA[
and ends with]]>. CDATA sections cannot be nested, and there can be no white space
characters inside the]]> delimiter—for example, you cannot put a space between the two
square brackets.

Example

<![CDATA[
 do not parse me
]]>

6.5.8 Element Context Menus

The tree view in the Export Template view for XHTML represents a real-time DOM tree.
Each XHTML element of the tree in the Header and Detail sections has a pop-up menu. The
pop-up menu items perform DOM-based actions for modifying the structural layout of the
XHTML document that will be generated. The menu options include:

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 90

Table 6.7:

Menu item DOM-based action

Edit DOMNode::SetNodeName

Add Child DOMNode::AppendChild

Insert Before DOMNode::InsertBefore

Delete DOMNode::RemoveChild

6.5.8.1 DOM-based actions

Edit allows changing the label of the tree view item representing the XHTML element
name. All element items that display no attributes, as well as literal text nodes selected in
the tree view, can also be edited with a single mouse–click or with the shortcut key F2.
Add Child allows appending an entity as a last child. The submenu option DataWindow
Control Reference invokes a dialog containing a filtered list box of Column, Computed
Field, and Text controls for user selection. Control references can also be added to empty
attribute values or element contents using drag-and-drop from the existing Control List View.
DataWindow Expressions can also be added using the existing dialog. DataWindow column
references (in the form of expressions) can also be added using drag-and-drop from the
Column Specification View. Tree view items, except the <form> element, can also be deleted
with the Delete key.

6.5.8.2 Presentation and function

The remaining context menu items invoke dialogs that allow overriding presentational and
functional specifications of each element. These include:

• Style declarations

• Element attributes

• JavaScript event handlers

The dialogs first display these specifications as they would be generated at runtime by
default. The painter gets these from the XML Web Generator in DWE in real-time, read-
only display on one half of the dialog. Within input field(s) on the other half of the dialog,
the developer can override these specifications at the atomic declaration or attribute level.
This includes resetting included declarations/attributes, setting declarations/attributes not
included, or removing declarations/attributes. These change specifications will then persist
in the XHTML export template, and be applied to the default presentation generated by the
XML Web Generator at runtime.

6.6 Selecting XHTML export templates at runtime
Two DataWindow properties, Export.XHTML.TemplateCount and
Export.XHTML.Template[].Name, enable you to provide a list of templates from which the
user of the application can select at runtime.

The TemplateCount property gets the number of templates associated with a DataWindow
object. You can use this number as the upper limit in a FOR loop that populates a drop-down
list with the template names. The FOR loop uses the Template[].Name property.

DataWindow Export/Import Template Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 91

string ls_template_count, ls_template_name
long i

ls_template_count = dw_1.Describe ("DataWindow.Export.XHTML.TemplateCount")

for i=1 to Long (ls_template_count)
 ls_template_name = dw_1.Object.DataWindow.Export.XHTML.Template[i].Name
 ddlb_1.AddItem (ls_template_name)
next

Before generating the XHTML, set the export template using the text in the drop–down list
box:

dw_1.Object.DataWindow.Export.XHTML.UseTemplate= ddlb_1.text

6.7 Exporting the DataWindow in XML or XHTML

6.7.1 Exporting in XML

You can export the DataWindow or DataStore object in XML using PowerScript dot notation
or the Describe method:

ls_xmlstring = dw_1.Object.DataWindow.Data.XML
ls_xmlstring = dw_1.Describe("DataWindow.Data.XML")

When you export the DataWindow or DataStore object, PowerBuilder uses an export
template to specify the content of the generated XML.

Default export format

If you did not create or assign an export template, PowerBuilder uses the default
XSLT export format, which is the same format used when you create a new default
export template. See "Creating and saving templates".

6.7.2 Exporting in XHTML

You can export the DataWindow or DataStore object in XHTML using PowerScript dot
notation or the Describe method:

ls_xmlstring = dw_1.Object.DataWindow.Data.XHTML
ls_xmlstring = dw_1.Describe("DataWindow.Data.XHTML")

When you export the DataWindow or DataStore object, PowerBuilder uses an export
template to specify the content of the generated XHTML and CSS style sheet.

Default export format

If you have not created or assigned an export template, PowerBuilder uses the default
XHTML export format. This is the same format used when you create a new default
export template. See "Creating and saving templates".

Index Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 92

Index

C
Create (DWSyntax), 55

D
data retrieval, 15
data sources, 2
data update, 16
DataStore

about, 57
access and manipulate data, 60
ShareData, 62
use a custom object, 59
work with, 59

DataWindow control, 5
access text in the edit control, 20
access the database, 11
access the items, 21
access Web service data source, 17
change row or column status
programmatically, 30
code the ItemChanged event, 20
code the ItemError event, 21
define reusable control, 10
import data from an external source, 17
manage data, 17
manipulate the text in the edit control, 20
name, 8
retrieve and update data, 15
set the transaction object, 12
updates the database, 28
use other DataWindow methods, 22
work in PowerBuilder, 9

DataWindow errors
handle, 24

DataWindow Export/Import Template, 77
DataWindow methods, 22
DataWindow object

access the properties, 23
create by calling the Create method, 47
create reports

plan and build, 31
print the report, 32

edit in the control, 10
generate HTML

call SaveAs method, 42
control display, 40

display as HTML forms, 42
modify appearance and behavior during
execution, 46
name, 8
nested reports, 32
provide help buttons, 54
put into a control, 8
query mode, 49
reuse, 54
specify during execution, 10
use crosstabs

modify crosstab's properties during
execution, 36
redefine the crosstab, 35
view the underlying data, 34

use DWSyntax, 54
DataWindow object properties, 23
DataWindow technology, 2
DBError event, 24
Describe (DWSyntax), 55
Destroy (DWSyntax), 56
DWSyntax

Create, 55
Describe, 55
Destroy, 56
Modify, 55
syntax generated by, 56
SyntaxFromSQL, 56

E
Error event, 26
errors

in property and data expressions, 26
retrieve and update, 24

external source
import data from, 17

G
graph

access data properties, 70
get info about data, 71
modify appearance of data, 72
save data, 71
use methods, 72

modify properties, 69
use, 68
use point and click, 74

Index Appeon PowerBuilder® 2019 R2

DataWindow Programmers Guide Page 93

I
ItemChanged event, 20
ItemError event, 21

M
Modify (DWSyntax), 55

P
presentation styles, 2

Q
query mode, 50

R
retrieval arguments, 15

S
SyntaxFromSQL (DWSyntax), 56

T
transaction management, 12

W
Web service data source

access, 17

	DataWindow Programmers Guide
	Contents
	Part I. DataWindow and DataStore basics
	1 About DataWindow Technology
	1.1 About DataWindow objects, controls, and components
	1.1.1 Presentation styles and data sources
	1.1.2 Basic process

	1.2 Choosing a DataWindow technology
	1.2.1 Solutions for client/server and distributed applications

	1.3 PowerBuilder DataWindow control

	2 Using DataWindow Objects
	2.1 About using DataWindow objects
	2.2 Putting a DataWindow object into a control
	2.2.1 Names for DataWindow controls and DataWindow objects
	2.2.2 Working with the DataWindow control in PowerBuilder
	2.2.2.1 Defining reusable DataWindow controls
	2.2.2.2 Editing the DataWindow object in the control

	2.2.3 Specifying the DataWindow object during execution
	2.2.3.1 Changing the DataWindow in PowerBuilder

	2.3 Accessing the database
	2.3.1 Setting the transaction object for the DataWindow control
	2.3.1.1 Internal transaction management
	2.3.1.2 Transaction management with a separate transaction object

	2.3.2 Retrieving and updating data
	2.3.2.1 Basic data retrieval
	2.3.2.2 Using retrieval arguments
	2.3.2.3 Updating data

	2.4 Accessing a Web service data source (Obsolete)
	2.5 Importing data from an external source
	2.6 Manipulating data in a DataWindow control
	2.6.1 How a DataWindow control manages data
	2.6.2 Accessing the text in the edit control
	2.6.3 Manipulating the text in the edit control
	2.6.4 Coding the ItemChanged event
	2.6.5 Coding the ItemError event
	2.6.6 Accessing the items in a DataWindow
	2.6.7 Using other DataWindow methods

	2.7 Accessing the properties of a DataWindow object
	2.8 Handling DataWindow errors
	2.8.1 Retrieve and Update errors and the DBError event
	2.8.2 Errors in property and data expressions and the Error event

	2.9 Updating the database
	2.9.1 How the DataWindow control updates the database
	2.9.2 Changing row or column status programmatically

	2.10 Creating reports
	2.10.1 Planning and building the DataWindow object
	2.10.2 Printing the report

	2.11 Using nested reports
	2.12 Using crosstabs
	2.12.1 Viewing the underlying data
	2.12.2 Letting users redefine the crosstab
	2.12.3 Modifying the crosstab's properties during execution

	2.13 Generating HTML
	2.13.1 Controlling display
	2.13.2 Calling the SaveAs method
	2.13.3 Displaying DataWindow objects as HTML forms

	3 Dynamically Changing DataWindow Objects
	3.1 About dynamic DataWindow processing
	3.2 Modifying a DataWindow object
	3.3 Creating a DataWindow object
	3.4 Providing query ability to users
	3.4.1 How query mode works
	3.4.2 Using query mode

	3.5 Providing Help buttons
	3.6 Reusing a DataWindow object
	3.7 Using DWSyntax
	3.7.1 Describe
	3.7.2 Modify
	3.7.3 Create
	3.7.4 Destroy
	3.7.5 SyntaxFromSQL
	3.7.6 Tips on the syntax generated by DWSyntax

	4 Using DataStore Objects
	4.1 About DataStores
	4.2 Working with a DataStore
	4.3 Using a custom DataStore object
	4.4 Accessing and manipulating data in a DataStore
	4.5 Sharing information
	4.5.1 Example: printing data from a DataStore
	4.5.2 Example: using two DataStores to process data

	5 Manipulating Graphs
	5.1 Using graphs
	5.2 Modifying graph properties
	5.2.1 How parts of a graph are represented
	5.2.2 Referencing parts of a graph

	5.3 Accessing data properties
	5.3.1 Getting information about the data
	5.3.2 Saving graph data
	5.3.3 Modifying colors, fill patterns, and other data
	5.3.4 Using graph methods

	5.4 Using point and click

	6 DataWindow Export/Import Template
	6.1 The Export Template view for XHTML
	6.2 The default XHTML export template
	6.2.1 How tree view items are represented

	6.3 Managing templates
	6.3.1 Creating and saving templates
	6.3.1.1 Creating a new default template
	6.3.1.2 Saving the template

	6.3.2 Selecting the template to use
	6.3.2.1 Using the Export.XHTML.UseTemplate property
	6.3.2.2 Properties related to XHTML export templates

	6.4 Template structure
	6.4.1 Header section
	6.4.2 Detail section

	6.5 Editing XHTML export templates
	6.5.1 Root element
	6.5.2 DataWindow controls
	6.5.3 DataWindow expressions
	6.5.3.1 Using Date and DateTime with strings

	6.5.4 Element attributes
	6.5.5 Style declarations
	6.5.6 JavaScript event handlers
	6.5.7 CDATA sections
	6.5.8 Element Context Menus
	6.5.8.1 DOM-based actions
	6.5.8.2 Presentation and function

	6.6 Selecting XHTML export templates at runtime
	6.7 Exporting the DataWindow in XML or XHTML
	6.7.1 Exporting in XML
	6.7.2 Exporting in XHTML

	Index

