Connecting to Your Database
Appeon PowerBuilder® 2019 R3



Contents

1 Introduction to Database CONNECLIONS ........ccouiiiieeiiiiiiiiiiiiir e 11
1.1 Understanding Data CONNECLIONS .....cccoiiiieeeiieiiieieeiiiiceee s e e e e e e e e e eeeaaneeens 11
1.1.1 How to find the information you need ...........ccccceeeeeiiiiiiieiiiiieeeeeiinns 11
1.1.2 Accessing data in PowerBuilder ............oooovviiiiiiiiiiiee e 12
1.1.3 Accessing the Demo Database ..........cccccceeeviiiiiiiiiiiiiiicc, 14
1.1.4 Using database profiles .........ccccoeeeiiiiiiiiiiicecis e 14
1.1.4.1 About creating database profiles .........cccceeevviiieiiiiiiiiiiiiiiiinnn, 14

1.1.4.2 Creating a database profile .........cccccceeviiiiiiiiiiiiiiii e, 17

1.1.5 What t0 00 NEXE ..eeeiiiiiiiiiiiiiieiee et 18

2 Working with Standard Database Interfaces .........ccccceeviiiiieeiiiiiiiieeiiceee e 19
2.1 Using the ODBC INtEIACE ......ccovviieeeiiiiiicie e 19
2.1.1 About the ODBC iNterfaCe ...........eeeeieiiiiiiiiiiiieieeieeeeeeeieeee 19
2.1.1.1 What iS ODBC? ...ttt 19

2.1.1.2 Using ODBC in PowerBUilder ............ccccovvviiviiiiiiiiiiiieeee e 20

2.1.1.3 Components of an ODBC connection ............cccceevvvvveevvvnnnnnns 20

2.1.1.4 Types Of ODBC driVEIS ......uciiiiiieieeeeeeeeeeeeeeeevre e e e 22

2.1.1.5 Ensuring the proper ODBC driver conformance levels .......... 24

2.1.1.6 Obtaining ODBC driVEIS ......ciiiiieeeeeeeeeeeeeeeeitrr e e e e e 26

2.1.1.7 Using ODBC drivers with PowerBuilder ..............ccccccvvvvvnnnnns 26

2.1.1.8 Getting help with ODBC driVErS ......ccccoeeeeeviiiiieeveiiiiiieee e 26

2.1.2 Preparing ODBC data SOUICES .........euvruuuiiiiiiieeeeeeeeeeeeeeeerinnnnnnnns 27
2.1.3 Defining ODBC data SOUICES ........ccuvvrviriiiiiiieeeeeeeeeeeeeeeeensannnnnens 27
2.1.3.1 How PowerBuilder accesses the data source ....................... 27

2.1.3.2 Defining multiple data sources for the same data ................. 30

2.1.3.3 Displaying Help for ODBC driVers .........cccccevvvvvveeviiiiiiiieeeenn 30

2.1.3.4 Selecting an ODBC translator .........cccccvvvevviiiiiiiiiieeeee e, 31

2.1.4 Defining the ODBC interface .........ccccvvvvvviiiiiiiiiiiiee e 31
2.1.5 SAP SQL ANYWHEIE ....ovviiiiiiiiee e ettt e e e e e e e e e e eeeenannees 31
2.1.5.1 Supported versions for SQL Anywhere .........ccccceevveeeeeeeeennnn. 31

2.1.5.2 Basic software components for SQL Anywhere .................... 32

2.1.5.3 Preparing to use the SQL Anywhere data source ................. 32

2.1.5.4 Defining the SQL Anywhere data source ............cccceevveevvnnnne 33

2.1.5.5 Support for Transact-SQL special timestamp columns .......... 35

2.1.5.6 What t0 dO NEXE ..eeviiiiiiiiiiieeeei et 36

2.1.6 POSIGre@SQL ..o 36
2.1.6.1 Limited support for stored procedure ...........cccceeeiieeeeeeeeeennnnn. 37

2.1.6.2 Support for auto-increment column ...........ccccccvieiiiiiieeeeeeeee, 37

2.2 Using the JDBC INtErface ........coovvveiiiiiiiiiiii e e e 37
2.2.1 About the JDBC iNtEIfAaCE ..........eeuiiiiiiiiiiiiiiiiieee e 37
2.2.1.1 What iS IDBC? ..ottt 37

2.2.1.2 Using the JDBC interface ........cccccccevviiiiiieeiiiiiiiisi e 38

2.2.1.3 Components of a JDBC connNection ..........cccevvvvvvvvvvnniinneeeenn. 38

2.2.1.4 JDBC regiStry €NtrieS .......ccceveeieeeeeeiiiiiiiiisee e e e e e e e e e eeeeeeeeaannnnns 40

2.2.1.5 Supported versions for IDBC ...........cevvvviiiiiiiiieeeeeeeereeeeeiiinnns 40

2.2.1.6 Supported JDBC datatypes .......cccceeeeieeiieeeeeeeeeeeeeeviiiiiinnens 40

2.2.2 Preparing to use the JDBC interface .........cccccceeeeivieeeeeeiiiiiieeiiiinnnnns 41



2.2.3 Defining the JDBC interface ..........ccccovvvviiiiiiiiiiiii e 42

2.3 Using the OLE DB INterface ...........uuuvuiiiiiiiiiieeceeieeeeeeiire e 43
2.3.1 About the OLE DB interface ........cccccccciiiiiieiiiiiiiiiieicieiiiieivineeee 43
2.3.1.1 What iS OLE DB? ..cooiieiieieieeeeeeectiieeetreeer et 44
2.3.1.2 Components of an OLE DB connection ..............ccceeeeeeeeeeeee. 45
2.3.1.3 Obtaining OLE DB data providers ..........cccccovvvvvrivvvveniiineeeennn. 46
2.3.1.4 Supported versions for OLE DB ...........ccoovvvviviviiiiiiiiieeeeeeee, 46
2.3.2 Preparing to use the OLE DB interface ..........cccccvvvvvviiiiiicicceeeneennn. 46
2.3.3 Defining the OLE DB interface ..........ccccvvvvviiiiiiiiiiii e, 48
2.4 Using the ADO.NET INterface .......cccccoeeieiiiiiiiiiieeeciieee e, 49
2.4.1 ADOUL ADOLNET ooiiiiiiiiiieee et 49
2.4.2 About the PowerBuilder ADO.NET database interface .................... 50
2.4.2.1 Components of an ADO.NET connection ...........cccccceeeeeeeennnn. 50
2.4.2.2 OLE DB data proViders .......cccccceeeeeiiiiiiieieieeee e 52
2.4.3 Preparing to use the ADO.NET interface ..........cccccevvvivvriiiiviccenennn. 53
2.4.4 Defining the ADO.NET interface ........cccccceeeeiiiiiiiieiiiicine e 54
2.4.4.1 Getting identity column values ..........ccccceeeeiieeeieeeeieeeeeeeiiiienns 55
2.4.5 Sharing ADO.NET Database Connections .........cccceeeveeeeeeiiveiieennnnnn, 57
2.4.5.1 Importing an ADO.NET Connection from a Third-
Party .NET ASSEMDIY .....ovuiiiiiiiiiie e e e e 58
2.4.5.2 Exporting an ADO.NET Connection to a Third-Party .NET
ASSEMDBIY . ————— 59
2.5 Using the OData Interface (ObSOIete) ........ccccceeeiiiiiiieiiiii 60
3 Working with Native Database INnterfaces .........ccccvveieeiiiiiiiiiiiiiccceeee e 61
3.1 Using Native Database INterfaces ...........ccccceviiiiiiiiiiiiiiiiiiie e, 61
3.1.1 About native database interfaces ............ccococciiiiiiiiiiiiiiiiieeeen 61
3.1.2 Components of a database interface connection ............................ 61
3.1.3 Using a native database interface ...........cccceeeeeeeiiiiiiiiiiiiciin, 62
3.2 Using Adaptive Server ENterpriSe .......ccocceeiiieeiieeeiieeeeeeeeie e 63
3.2.1 Supported versions for Adaptive Server ..........ccccvvveeviiiiiiiiiiieeeeenn. 64
3.2.2 Supported Adaptive Server datatypes .......ccccceeeeeeieieviveeiiiiiieeeenn 64
3.2.3 Basic software components for Adaptive Server ............ccccevvvevnnnnns 66
3.2.4 Preparing to use the Adaptive Server database ..............ccccceeeeen..n. 67
3.2.5 Defining the Adaptive Server database interface ............................ 69
3.2.6 Using Open Client SECUTtY SEIVICES ........ccevvvrvuuiiiiiiiiieeeeeeaeeeeeeeaaannns 69
3.2.6.1 What are Open Client security SErvices? .........cccccevvvvvvvvvnnnnns 69
3.2.6.2 Requirements for using Open Client security services .......... 69
3.2.6.3 Security services DBParm parameters ............cccceevvvvvvvvnvnnnnns 70
3.2.7 Using Open Client direCtory SErVICES .......ccceeeevieeeeeeeiieieeeiiiiviiienn 71
3.2.7.1 What are Open Client directory Services? .......ccccccvvvvvvreeennn. 71
3.2.7.2 Requirements for using Open Client directory services ......... 71
3.2.7.3 Specifying the server name with Open Client directory
SEIVICES etttieiiiiiieite e e e e e e e e e et e ettt bbbttt e et ea e e e e e e e e e eaa e e e e e e e e anaeaarereees 72
3.2.7.4 Directory services DBParm parameters .............ccceeevvvvveennnns 73
3.2.8 Using PRINT statements in Adaptive Server stored procedures ..... 73
3.2.9 Creating a DataWindow object based on a cross-database join ...... 73
3.2.10 Installing stored procedures in Adaptive Server databases ........... 74

3.2.10.1 What are the PowerBuilder stored procedure scripts? ........ 74



3.2.10.2 HOw to run the SCrPLS ..ccooeeeeeeiiieeeeeeeeceee e, 77

3.3 USING INFOIMIX oeiiiiiiiiiiiee e e e e e e e 79
3.3.1 Supported versions for INfOrmiX ........cccccceeeiiiiiiiiiiiccee e, 79
3.3.2 Supported Informix datatypes .........cccovvrirreiiiiiiiiiiiiiieee e e 79

3.3.2.1 Informix DateTime datatype ............evvvviiiiiiiieeeeeeeeeeeeeeeeiiiiins 80
3.3.2.2 Informix Time datatype ..........ccceeviiiiiiiiiiiiiiiie e 80
3.3.2.3 Informix Interval datatype .........cccovveiiiiiiiiiiiii e, 80
3.3.3 Features supported by the 110 interface ........ccccceeeeeevieieiiiiiiiieeiiinnn, 80
3.3.3.1 Accessing Unicode data ..........cceeeeeeiviiiiiiiiiiiicieine e 81
3.3.3.2 Assigning an owner to the PowerBuilder catalog tables ........ 82
3.3.3.3 Support for long object NamMes ..........ccoovvveviiiiiiiiiie e 82
3.3.3.4 Renaming an iNAEX ........ccoeevuruiuiiiiiiiieie e e eeeeeee e 82
3.3.3.5 SQL statement caching ..........ccouvveiiiiiiiiiiieeeeeeeeeeeen 82
3.3.3.6 Creating and dropping indexes without locking ..................... 82
3.3.3.7 Column-level encryption ..........ccccoovvvvviiiiiiiiiiiie e 83
3.3.3.8 Using multiple OUT parameters in user-defined routines ...... 83
3.3.4 Basic software components for Informix .........cccccceeeeeeiiiiiiiiiiiiiinnnn. 83
3.3.5 Preparing to use the Informix database .............cccccoeeeieiiie, 84
3.3.6 Defining the Informix database interface ...........cccocceeeiiiiiiiiiiiiiinnnnn, 86
3.3.6.1 Specifying the Server Name .............cccceeeiiiiieiiieeeeeeeeeeeeeeiiiennns 86
3.3.7 Accessing serial values in a PowerBuilder script ............ccccceeeeeennnn. 86

3.4 Using Microsoft SQL SEIVEN .......cccooiiiiiiieeecee e 87
3.4.1 Supported versions for SQL SErver .........ccccovvvvvviiiiiiiiii e 87
3.4.2 Supported SQL Server datatypes .......ccccceeeeiieeeeeeeeieeieeeeeee e 88
3.4.3 Basic software components for Microsoft SQL Server .................... 89
3.4.4 Preparing to use the SQL Server database ...........cccccceeeeeiieeeennnnn. 90
3.4.5 Defining the SQL Server database interface ..............cccccevvvvvinnnnnns 92
3.4.6 Migrating from the MSS or OLE DB database interfaces ................ 92
3.4.7 SQL Server 2008 fEAtUIES .......c.ieiiiiiieiiiiieeeeieeeeee e 95

3.4.7.1 New database parameters ..........cccceeeeviiieeeeeeiiieeeeeee, 95
3.4.7.2 Support for new datatypes in SQL Server 2008 .................... 96
3.4.7.3 T-SQL enhanCemeNnts .........cccuvveiiiiiiiiiiiiieeeeeiie e, 99
3.4.7.4 Unsupported SQL Server 2008 features .........cccccccvvvvvnnnnnnn. 101
3.4.8 Notes on using the MSOLEDBSQL and SNC interfaces ............... 101

3.5 USING OFACIE ..ottt e e e e e e 102
3.5.1 Supported versions for Oracle ...........cccccovvvviiiiiiiiiiiee e, 102
3.5.2 Supported Oracle datatypes ..........eeeiiiiiieiieeeeeeeeeeeee 103

3.5.2.1 Datatype CONVEISION ......uuuiiiiiiieeeeeeeeieieeeeaiiiiiesa s e e e e eeeaaaeeees 104
3.5.3 Basic software components for Oracle ..........ccccoovviiiiiiiiieee, 105
3.5.4 Preparing to use the Oracle database ...........cccccceeevvvvviviiiiiiiinnnnnnn. 105
3.5.5 Defining the Oracle database interface ............cccccovvviiiiiicceenennn. 109

3.5.5.1 Specifying the Oracle server connect descriptor ................. 109
3.5.6 Using Oracle stored procedures as a data source ........................ 110

3.5.6.1 What is an Oracle stored procedure? .........cccccevvvvvvvncienennnn. 110

3.5.6.2 What you can do with Oracle stored procedures ................. 110

3.5.6.3 Using Oracle stored procedures with result sets ................. 111

3.5.6.4 Using a large-object output parameter ...........cccccvvvvvceennnnn. 113

3.5.6.5 RPC calls to stored procedures with array parameters ....... 114



3.5.7 Using Oracle user-defined types ......ccccceeeeeeiiiiieeeiiiiiiiee e 114

3.5.8 Support for HA event notification ............ccccceeeeeiiiiiiiiciiicccceeen 115
3.5.9 ORA driver support for Oracle 11g features ...........cccceeeevvvrrvrvnnnnns 116
3.6 USING DIr€CICONNECT .....ovviiiiiiiii it e e e e s 117
3.6.1 Using the DirectConnect interface ..........ccccceeeeeiivieiiiiiiiiiiccicee e 117
3.6.1.1 Connecting through the DirectConnect middleware
0] £ o L1 T SR PPRPPRSRRP 118
3.6.1.2 Connecting through the Open ServerConnect middleware
0] £ o L1 T U PPPPPRSURP 118
3.6.1.3 Selecting the type of connection ..............ccceeeeviviiiiiiiiinnnnnn, 118
3.6.2 Supported versions for the DirectConnect interface ...................... 119
3.6.3 Supported DirectConnect interface datatypes .........cccccccvvvvveeennn. 119
3.6.4 Basic software components for the DirectConnect interface ......... 120
3.6.5 Preparing to use the database with DirectConnect ..............c........ 121
3.6.6 Defining the DirectConnect interface ..........cccoeeevvieieeieiiiiiiieieiiininn, 124
3.6.7 Creating the extended attribute system tables in DB2
AtADASES ....viiiiiiiiiiii 124
3.6.7.1 Creating the extended attribute system tables .................... 124
3.6.7.2 Using the DB2SYSPB.SQL SCript ....cccooeeeviiiiiiiieee, 125
4 Working with Database CONNECLIONS ............oovvviiiiiiiiiiiiie e 127
4.1 Managing Database COnNECiONS ..........ccocoviiiiiiiiiiiiiiie e 127
4.1.1 About database CONNECHIONS .........cccccivviiiiiiiiiiiiiiiiee e 127
4.1.1.1 When database connections OCCUF ..............uvveeeeeeeeiiirnnennn 127
4.1.1.2 Using database profiles ........cccccceviiiiiiiiiiiiciiiieeee e 128
4.1.2 Connecting to a database ...........ocevvviiiiviiiiiiiiee e 128
4.1.2.1 Selecting a database profile ..........cccccoeiiiiiiiiiicic 128
4.1.2.2 What happens when you CONNECt .............eevviiiiieeeeeeeeeenennn, 129
4.1.2.3 Specifying passwords in database profiles ..............ccc........ 130
4.1.2.4 Using the Preview tab to connect in a PowerBuilder
APPICALION oeiiiice e 130
4.1.3 Maintaining database profiles ..o 131
4.1.4 Sharing database profiles ........cccoccceeiiiiiiiiii e 131
4.1.4.1 About shared database profiles .........ccccccvrrriiiiiiiiiiiceenee. 131
4.1.4.2 Setting up shared database profiles ..........ccccceeeeiiiiieeinnnnnnn. 131
4.1.4.3 Using shared database profiles to connect ........................ 133
4.1.4.4 Making local changes to shared database profiles .............. 134
4.1.4.5 Maintaining shared database profiles ..........ccccceevveiiiiennnnnn. 134
4.1.5 Importing and exporting database profiles ..........ccccccviiiiiieennnn. 134
4.1.6 About the PowerBuilder extended attribute system tables ............. 135
4.1.6.1 Logging in to your database for the first time ..................... 136
4.1.6.2 Displaying the PowerBuilder extended attribute system
TS e ———————————————————————————— 136
4.1.6.3 Contents of the extended attribute system tables ................ 139
4.1.6.4 Controlling system table access ........cccccvvvvvviciiiieeeeeeeeeee, 139
4.2 Setting Additional Connection Parameters ...........ccccoevvvvviiiciiiiieeeeeeeeee, 141
4.2.1 Basic steps for setting connection parameters .............cccceeeevvvvnnns 141
4.2.2 About the Database Profile Setup dialog boX .........cccceeeiiiiieeneeen.n. 142

4.2.3 Setting database parameters ........cccceeeeeiiieiieeeiiiic e 143



4.2.3.1 Setting database parameters in the development

ENVIFONIMENT ..ot e e e e e e e e e e e e e s reeeeeeees 143
4.2.3.2 Setting database parameters in a PowerBuilder application
Yo 1] o) U SPPPPURRR 143
4.2.4 Setting database preferences ..........ccceevvviiiiiiiii e, 145
4.2.4.1 Setting database preferences in the development
ENVIFONIMENT ..ot e e e e e e e e e e e e e s reeeeeeees 146
4.2.4.2 Setting AutoCommit and Lock in a PowerBuilder
=T o] ][0z U1 To] =T ] | A 149
5 Troubleshooting Your CONNECLION ...........coovviiiiiiiiiiiieee e 154
5.1 Troubleshooting Your CONNECLION ...........ccoovviieiiiiiiiiiiiiee e ee e eeeeeaiaanns 154
5.1.1 Overview of troubleshooting tooISs ............ccceeviiiiiiciiiii e 154
5.1.2 Using the Database Trace tool ..........ccccovvviiiiiiiiiiiieee e, 154
5.1.2.1 About the Database Trace tool ..........ccccceveiiiiieeiiiiiiiiiiinnn, 154
5.1.2.2 Starting the Database Trace tool ............ccccvvrriiiiiiieennnnn. 158
5.1.2.3 Stopping the Database Trace tool ..........ccccccvvvviiiiiiieeeeeeenn, 161
5.1.2.4 Using the Database Trace 10g .......ccccoceeeeeeeeiiiiiieiiiiiicceenn, 162
5.1.2.5 Sample Database Trace OUtpuLl .........cccceeevieeeeeeiiiiiiiiiiiiiinnns 164
5.1.3 Using the SQL statement trace Utility ...........ccceeeeeeiieeeeieeeiiiiiiinnnnn, 165
5.1.4 Using the ODBC Driver Manager Trace tool ...........ccccccccceeieeeennnn. 166
5.1.4.1 About ODBC Driver Manager Trace .........ccccceeeeeeeeeeeeerennnnnns 166
5.1.4.2 Starting ODBC Driver Manager TracCe .........ccccceeeeeeieeeeeeeennn. 167
5.1.4.3 Stopping ODBC Driver Manager Trace ...........cccceevvvvvvvvnnnnne 171
5.1.4.4 Viewing the ODBC Driver Manager Trace log ..................... 172
5.1.4.5 Sample ODBC Driver Manager Trace output ...................... 173
5.1.5 Using the JDBC Driver Manager Trace tool ..........ccccceeeeeeeeieeeeen.n. 173
5.1.5.1 About JDBC Driver Manager Trace ..........cccceeeeevvvevreeennnnnnnns 173
5.1.5.2 Starting JDBC Driver Manager TracCe ........cccccceeeeeeeeeeeeeeennn. 174
5.1.5.3 Stopping JDBC Driver Manager Trace .........cccceeeeeevveeveennnns 177
5.1.5.4 Viewing the JDBC Driver Manager Trace l0g ...........ccccceun... 178
6 Using Embedded SQL ......coiiiiiii i 179
6.1 Using Embedded SQL with ODBC .........ccoooviiiiiiiiicicieeee e 179
6.1.1 ODBC SQL SUPPOI .coeeiieiiiiiiiiiiiiiiiiiiiee et e e e e e e e e e e e e e e e e e s e nnnes 179
6.1.2 ODBC Name qualification .............ccccovviiiiriiiiiiiiicee e, 180
6.1.3 ODBC SQL fUNCHONS ....uuiiiiiiiiiiieeeeeeec e 180
6.1.3.1 DBHANAIE ...ccovviiiiiiieeeiiieeeeeti et 180
6.1.4 ODBC USIiNg €SCAPe ClAUSES ......ceiiieeiieeeiieeeeeeeitiie e e e 181
6.1.5 ODBC Transaction management statements ...............cccceevvvvvnnne 182
6.1.6 ODBC Using CONNECT, DISCONNECT, COMMIT, and
ROLLBACK .ttt r e e e e e e e e aaeaaaeaaeanaas 182
6.1.7 ODBC Performance and 10cking .............ccccovvrriiiiiiciiiieee e 182
6.1.8 ODBC NON-CUrsor StatemMentsS ..........ccoeuvviiiieeiieiiieeeeeeeeie e 185
6.1.9 ODBC DELETE, INSERT, and UPDATE .....cccccccciiiiiiiiiiiiiiiies 185
6.1.10 ODBC SELECT ..ottt 185
6.1.11 ODBC CuUursor StatemeNntS ........coooviiiiiiieeeeeeii e 187
6.1.12 ODBC Retrieval USINg CUISOIS .........ccvvviiiuiiiiiiiieeeeeeeeeeeeeeeeeeennnnnnns 188
6.1.13 ODBC FETCH NEXT ..cooiiiiiiiiiiiiiiiiiee e 189

6.1.14 ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST ......... 190



6.1.15 ODBC UPAALE .....ccooiiiiiiiiiiiiiiiieeeeeee ettt
6.1.16 ODBC Database stored procedures ..........cccceeeeveeeeeeeeeeeeeeeeeennnnnns
6.1.17 ODBC REtrEVAl ....cuvviiiiiiiiiiiiiiieeee e
6.1.18 ODBC DECLARE and EXECUTE ......cccccccceiiiiiiiiiiiiiiiii
6.1.19 ODBC DECLARE and EXECUTE with PBNewSPInvocation ......
6.1.20 ODBC FETCH ..cooiiiiiiiiiiiiiiitiriee ettt
6.1.21 ODBC CLOSE .....ottiiiiiiiiiiiiiiiiieee e
6.1.22 ODBC EXECUTE .....uiiiiiiiiiiiiiiiiiiiccect e
6.1.23 ODBC Using database stored procedures in DataWindow
OB ECES e
6.2 Using Embedded SQL with JDBC ...........oooiiiiiiiiiiiiieee e
6.2.1 JDBC DECLARE and EXECUTE ........ccccciiiiiiiiiiiiiiiieeeeeeeeeeeeeeeens
6.3 Using Embedded SQL with OLE DB ..........cccoiiiiiiiiicciee e
6.3.1 OLE DB SQL SUPPOIT ..euuiieiiieeiiiieeeiiie e evtn et eaa s enans
6.3.2 OLE DB Name qualification ..............cccoovvviiiiiiiiiiiiiie e,
6.3.3 OLE DB SQL fUNCLIONS .....coivviiiiieeiieeiee e
6.3.4 OLE DB Using ODBC escape SEQUENCES .....cccceeeeeeeeeeeeerreeeennnnnnns
6.3.5 OLE DB Transaction management statements ............cccceeeeeeeenn.
6.3.6 OLE DB Using CONNECT, DISCONNECT, COMMIT, and
ROLLBACK .ttt e e e e e e e e aaeaaaeaaaeaaans
6.3.7 OLE DB Performance and locking ............cccceovviiiiiiiiiiiiicccceeenn.
6.3.8 OLE DB NON-CUISOr Statements ..........cccuuiiieeiieiiiieeeeeeeiineeeeeeeeenns
6.3.9 OLE DB DELETE, INSERT, and UPDATE ..........ccooiiiiiiiiiiiiieee
6.3.10 OLE DB SELECT ..ooiiiiiiiiiii ittt ettt
6.3.11 OLE DB Cursor Statements ..........cccuuiiiieiimiiiiiieeeeeiiie e
6.3.12 OLE DB Retrieval USINg CUISOIS .........cccvvvvivuuiiiiiiiieeeeeeeeeeeeeeennnnns
6.3.13 OLE DB FETCH NEXT ..cciiiiiiiiiiiiiiiriiiee et
6.3.14 OLE DB Database stored procedures .........ccccccvvvvvvciiiiiieeeeeeenn.
6.3.15 OLE DB REtreVal .......cccuuvuiiiiiiiiiiiiiiiiiieieeeee e
6.3.16 OLE DB DECLARE and EXECUTE .........ccccoiiiiiiiiiiiie
6.3.17 OLE DB FETCH ..oiiiiiiiiiieeeiiiie ettt
6.3.18 OLE DB CLOSE ...ttt
6.3.19 OLE DB EXECUTE ....cooiiiiiiiiiiiiiiiieeeeeeee et
6.3.20 OLE DB Using database stored procedures in DataWindow
(0] o] [T RSP
6.4 Using Embedded SQL with ADO.NET ......oviiiiiiiiiieeieeeecee e
6.4.1 ADO.NET DECLARE and EXECUTE ........cccccviiiiiiiiiiiiiiiiieeee e,
6.5 Using Embedded SQL with SAP Adaptive Server Enterprise ..................
6.5.1 SAP Adaptive Server Enterprise Name qualification .....................
6.5.2 SAP Adaptive Server Enterprise SQL functions ..........ccccceeeeeeeenn.
6.5.3 SAP Adaptive Server Enterprise Transaction management
S €= 1010 0= ] ST PPPPPPPRPPUPPRPRRR
6.5.4 SAP Adaptive Server Enterprise Using CONNECT, COMMIT,
DISCONNECT, and ROLLBACK .....ouuiiiiiiiiiiieeeeeeeeeeeeeeeieeeeee
6.5.5 SAP Adaptive Server Enterprise Using AutoCommit .....................
6.5.6 SAP Adaptive Server Enterprise Performance and locking ...........
6.5.7 SAP Adaptive Server Enterprise Non-cursor statements ...............



6.5.8 SAP Adaptive Server Enterprise DELETE, INSERT, and

UP D ATE oottt e e e e e e e ettt a e e e e 222
6.5.9 SAP Adaptive Server Enterprise SELECT ...........ceeeevviiiiiieiiinnnnn. 223
6.5.10 SAP Adaptive Server Enterprise Cursor statements ................... 225
6.5.11 SAP Adaptive Server Enterprise Retrieval Using Cursors ........... 226
6.5.12 SAP Adaptive Server Enterprise Closing the Cursor ................... 228
6.5.13 SAP Adaptive Server Enterprise Database stored procedures .... 229
6.5.14 SAP Adaptive Server Enterprise Retrieval ............cccccvvvieeennnnn. 230
6.5.15 SAP Adaptive Server Enterprise DECLARE and EXECUTE ....... 230
6.5.16 SAP Adaptive Server Enterprise FETCH .............ccoooiviiiiiiiiinnnnnn. 231
6.5.17 SAP Adaptive Server Enterprise CLOSE .........ccccccceeiiieieieeeenennn. 232
6.5.18 SAP Adaptive Server Enterprise Update ............ccceeeeeeeerviieinnnnnns 233
6.5.19 SAP Adaptive Server Enterprise Return values and output
(0= 1= 1 LT T T 234
6.5.20 SAP Adaptive Server Enterprise Temporary tables ..................... 236
6.5.21 SAP Adaptive Server Enterprise System stored procedures ....... 236
6.5.22 SAP Adaptive Server Enterprise Using database stored
procedures in DataWindow ODJECES .........cceeiiiiiiiiiiiiieeeeeee e, 236
6.6 Using Embedded SQL with InformixX ..........ccooovmmiiiiiiiiii i, 237
6.6.1 Informix name qualification .............ccooovviiiiiiiii s 238
6.6.2 Informix transaction management statements ............cccceeeeeeeeeennn. 239
6.6.3 Informix using CONNECT, COMMIT, DISCONNECT, and
ROLLBACK .ttt r e e e e e e e e e e e aaeaaaenaas 239
6.6.4 Informix performance and locking .............cccccoiiiiiiiiiccccciee . 239
6.6.5 Informix NON-CUrsSOr StateMEeNES ............evvviiiiiiiiiiiiiieeeeeeeee e 242
6.6.6 Informix DELETE, INSERT, and UPDATE ........ccccccoeiiiiiiiiiiiiine 242
6.6.7 INfOrmixX SELECT ...ooooiiiiiii it 243
6.6.8 INfOrmix CUrsOr StatemMents .........ccccuvvviiiiiiiiiiiiiiieiee e e 245
6.6.9 Informix retrieval USING CUISOIS ..........uvvuiiiiiiiiieeeeeeeeeeeeei 245
6.6.10 Informix nonupdatable Cursors ............ccccvvriiiiiiiiiiicicee e 246
6.6.11 Informix updatable Cursors ..........ccccoovvviiiiiiii e 247
6.6.12 Informix FETCH Statements ........cccccciiiieeiiiiiiieciivviiieeee 247
6.6.13 Informix FETCH NEXT ....cooiiiiiiiiiiiiieeieeeeee e 247
6.6.14 Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST ....... 248
6.6.15 Informix CLOSE fOI CUISOIS ......coooiiiiiiiiiiiiiiiiiteeeeeeee e 249
6.6.16 Informix database stored procedures ...........ccccceevvvvvveeeeivvnnnnnnnnnn. 249
6.6.17 Informix retrieval using database stored procedures ................... 249
6.6.18 Informix DECLARE and EXECUTE .........ccccooeeiiiiiiiiiiiiiiiie 250
6.6.19 INformix FETCH ....oooiiiiiiiii e 251
6.6.20 INfOrmMIX CLOSE .......ouiiiiiiiiiiiiiiiiiiiice e 252
6.6.21 Informix update using database stored procedures ..................... 252
6.6.22 Informix using database stored procedures in DataWindow
OB LS e 253
6.6.23 Informix database stored procedure summary ............cccceeeeeennnn. 254
6.7 Using Embedded SQL with Microsoft SQL Server ..........ccccceevvvvvvvveinnnnnns 254
6.7.1 Microsoft SQL Server Name qualification ..............ccccceeeiiiiineeeennn. 255
6.7.2 Microsoft SQL Server FUNCLIONS ..........covveeiieiiiiiiiieeeeeeeieee e, 255

6.7.3 Microsoft SQL Server Transaction management statements ........ 256



6.7.4 Microsoft SQL Server Using CONNECT, COMMIT,

DISCONNECT, and ROLLBACK .....cuuiiiiiiiiiiiieeeeeeeeeeeeceieeeeee 257
6.7.5 Microsoft SQL Server Using AutoCommit ...........cccceeeviiiiieeeeeennnnnn. 257
6.7.6 Microsoft SQL Server Performance and locking ............ccc.ccceeeee. 258
6.7.7 Microsoft SQL Server Non-cursor statements .........ccceeeeeevvivnnnnnnee. 260
6.7.8 Microsoft SQL Server DELETE, INSERT, and UPDATE ............... 261
6.7.9 Microsoft SQL Server SELECT ... 261
6.7.10 Microsoft SQL Server Cursor statements .........ccceeeeeeeevviieeeeeeennns 263
6.7.11 Microsoft SQL Server Fetching rows ...........ccccceviiiiiiiiicccceeeenn, 264
6.7.12 Microsoft SQL Server FETCH NEXT ....oooiiiiiiiiiiiieeeeeeieeee e, 265
6.7.13 Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and
FETCH LAST oottt ettt e e e e e e 265
6.7.14 Microsoft SQL Server Closing the Cursor .........cccccceeeeveevvevveinnnnn, 266
6.7.15 Microsoft SQL Server Database stored procedures .................... 267
6.7.16 Microsoft SQL Server Retrieval ...........cccoeeeeeeiiiiiiiieeeeceiee e 268
6.7.17 Microsoft SQL Server DECLARE and EXECUTE ..............cc....... 268
6.7.18 Microsoft SQL Server FETCH .......cccoiiiiiiiiiiieeeeceeeee 269
6.7.19 Microsoft SQL Server CLOSE ......ooooovviiiiieeeeeieeeeeeeeviee e, 270
6.7.20 Microsoft SQL Server Update .........cccceeeeieeiiiieeeeeiieeeeeeieen 271
6.7.21 Microsoft SQL Server Temporary tables ...........ccccoeeeiviiieieennnn. 273
6.7.22 Microsoft SQL Server Using database stored procedures in
DataWindow ODJECLS ......oevveeiiiiiiiiiiee e e e e e e eeaaneans 273
6.7.23 Microsoft SQL Server Database stored procedures summary ..... 274
6.8 Using Embedded SQL with Oracle ... 274
6.8.1 Oracle Name qualification ............cccceeeiiiiiiiieeiiiiiee e 275
6.8.2 Oracle SQL fUNCLIONS .......oiiiiiiiiiiee e 275
6.8.3 Oracle Transaction management statements ..........cccccoeeeeeeeeeeennnn. 277
6.8.4 Oracle Using CONNECT, DISCONNECT, COMMIT, and
ROLLBACK .ttt e e e e e e e e aaeaaaeaaaeaaans 277
6.8.5 Oracle Performance and loCKiNg .........ccccceeeeiiiieieiiiiiiiieeen, 277
6.8.6 Oracle NON-Cursor Statements ...........ooovvviiiiiiiiiiiiiiiiereee e 280
6.8.7 Oracle DELETE, INSERT, and UPDATE ..........cooiiiiiiiiiiiiiiieeee, 280
6.8.8 Oracle SELECT ...ttt e e 280
6.8.9 Oracle Cursor StatemMENTS .........cceuvuviiiiiiiiiiiiiiiieeee e e 282
6.8.10 Oracle Retrieval ..o 283
6.8.11 Oracle UPdate ......ccccoeeiiieiiiiieeeeeeecie e 284
6.8.12 Oracle Cursor SUPPOrt SUMMANY ......ueeeieeeeeeeeeereeeeeeeeiiininaneeeenns 286
6.8.13 Oracle Database stored procedures ...........cccovvvvvvvvviiiiiiiieeeeeeeeenn, 286
6.8.14 Supported features when using Oracle stored procedures .......... 287
6.8.15 Using DECLARE, EXECUTE, FETCH, and CLOSE with Oracle
StOred PrOCEAUIES .....ooeeeeiiiieiiee e et e et e e e e e e e e e e e e e eeeeeeeeannnn 288
6.8.16 Oracle DECLARE and EXECUTE .........cccoooiiviiiiiiiiiieiieieeeeee e 288
6.8.17 Oracle FETCH ... 290
6.8.18 Oracle CLOSE ......coooiiiiiiiiii ettt e 290
AN 0 1= Lo [ SRR 291
A.1 APPENDIX Adding Functions to the PBODB.ini Initialization File ........... 291
A.1.1 About the PBODB.INI file .....ccoooiiiiiiiiiiieeeeee e 291

A.1.1.1 Adding functions to PBODB.INI ..........cccvvviiiiiiiiiiiiieeeeeeeeee, 291






Introduction to Database Connections

1 Introduction to Database Connections

This part introduces data connections in PowerBuilder. It helps you understand how to
connect to a database in the PowerBuilder devel opment environment.

1.1 Understanding Data Connections

About this chapter

This chapter gives an overview of the concepts and procedures for connecting to a database
in the PowerBuilder development environment.

1.1.1 How to find the information you need

When you work with PowerBuilder, you can connect to a database in the devel opment
environment or in an application script.

This book describes how to connect to your database in the PowerBuilder development

environment.

For information about connecting to a database in a PowerBuilder application script, see
Part I, “Application Techniques’.

Basic connection procedure

The following table gives an overview of the connection procedure and indicates where you
can find detailed information about each step.

Table 1.1: Basic connection procedure

Step Action

1 (Optional) Get
an introduction
to database
connectionsin
PowerBuilder

BIEETS

If necessary, learn more
about how PowerBuilder
connects to a database

in the devel opment
environment

See
Chapter 1 (this chapter)

2 Prepare to use

the data source or
database before
connecting to it
for thefirst timein
PowerBuilder

Outside PowerBuilder,
install the required
network, database
server, and database
client software and
verify that you can
connect to the database

For ODBC data sources: Using the
ODBC Interface

For JDBC data sources: Using the
JDBC Interface

For OLE DB data sources. Using the
OLE DB Interface

For ADO.NET data sources: Using
the ADO.NET Interface

For native database interfaces. Using
Native Database Interfaces

3 Install the ODBC
driver, OLE DB
data provider,

Install the driver,
database provider, or
native database interface

For alist of what is supported
on your platform: Section 2.1,
“Database preferences and supported

Page 11



Introduction to Database Connections

Step Action

ADO.NET data
provider, or native
database interface

BIEETIS

required to access your
data

See

database interfaces’” in Connection
Reference and Section 1.1, “ Database
parameters and supported database
interfaces” in Connection Reference

4 Define the data Create the required For ODBC data sources: Using the
source (ODBC configuration for adata | ODBC Interface
connections and source accessed through
some OLE DB ODBC
drivers)

5 Define the database | Create the database For ODBC data sources: Using the
interface profile ODBC Interface

For JDBC data sources: Using the
JDBC Interface

For OLE DB data sources. Using the
OLE DB Interface

For ADO.NET data sources. Using
the ADO.NET Interface

For native database interfaces. Using
Native Database Interfaces

7 Connect to the data
source or database

Accessthedatain
PowerBuilder

M anaging Database Connections

8 (Optional) If necessary, set For procedures: Setting Additional
Set additional DBParm parameters and | Connection Parameters
connection o!atabase preferencesto For DBParm descriptions: Chapter 1,
parameters f netun_e your database Database Parametersin Connection
connection and take Reference
advantage of DBMS-
specific features that For database preference descriptions:
your interface supports | Chapter 2, Database Preferencesin
Connection Reference
9 (Optional) If necessary, use Troubleshooting Y our Connection
Troubleshoot the | the trace tools to

data connection

troubleshoot problems
with your connection

1.1.2 Accessing data in PowerBuilder
There are several ways to access data in the PowerBuilder development environment:

» Through one of the standard database interfaces such as ODBC, JDBC,ADO.NET, or OLE
DB

» Through one of the native database interfaces

Standard database inter faces

Page 12



Introduction to Database Connections

A standard database interface communicates with a database through a standard-compliant
driver (in the case of ODBC and JDBC) or data provider (in the case of OLE DB and
ADO.NET). The standard-compliant driver or data provider trans ates the abstract function
calls defined by the standard's API into calls that are understood by a specific database. To
use a standard interface, you need to install the standard's API and a suitable driver or data
provider. Then, run the PowerBuilder installer to install the standard database interface you
want to use to access your DBMS.

PowerBuilder currently supports the following standard interfaces:
» Open Database Connectivity (ODBC)

» Java Database Connectivity (JDBC)

* Microsoft's Universal Data Access Component OLE DB

* Microsoft's ADO.NET

Native database inter faces

A native database interface communicates with a database through a direct connection. It
communicates to a database using that database's native API.

To access data through one of the native database interfaces, you must first install the
appropriate database software on the server and client workstations at your site. Then, run the
PowerBuilder Installer to install the native database interface that accesses your DBMS.

For example, if you have the appropriate SAP Adaptive Server Enterprise server and client
software installed, you can access the database by installing the Adaptive Server Enterprise
database interface.

L oading database interface libraries

PowerBuilder loads the libraries used by a database interface when it connects to the
database. PowerBuilder does not automatically free the database interface libraries when it
disconnects.

Although memory use is somewhat increased by this technique (since the loaded database
interface libraries continue to be held in memory), the technique improves performance
and eliminates problems associated with the freeing and subsequent reloading of libraries
experienced by some database connections.

If you want PowerBuilder to free database interface libraries on disconnecting from the
database (asit did prior to PowerBuilder 8), you can change its default behavior:

Table1.2:

Tochangethedefault Dothis

behavior for

Connectionsin Select the Free Database Driver Libraries On Disconnect check
the development box on the General tab of the System Options dialog box
environment

Runtime connections Set the FreeDBLibraries property of the Application object
to TRUE on the General tab of the Properties view in the
Application painter or in a script

Page 13



Introduction to Database Connections

1.1.3 Accessing the Demo Database

PowerBuilder includes a standalone SQL Anywhere database called the Demo Database
which isinstalled automatically when you run the PowerBuilder setup program. Y ou access
tables in the Demo Database when you use the PowerBuilder tutorial.

A SQL Anywhere database is considered an ODBC data source, because you access it with
the SQL Anywhere ODBC driver.

1.1.4 Using database profiles
What is a database profile?

A database profile is a named set of parameters stored in your system registry that defines a
connection to a particular database in the PowerBuilder devel opment environment. Y ou must
create a database profile for each data connection.

What you can do

Using database profilesis the easiest way to manage data connections in the PowerBuilder
development environment. For example, you can:

Select a database profile to connect to or switch between databases

Edit a database profile to customize a connection

Delete a database profile if you no longer need to access that data

Import and export database profiles to share connection parameters quickly

For moreinformation

For instructions on using database profiles, see Managing Database Connections.

1.1.4.1 About creating database profiles

Y ou work with two dialog boxes when you create a database profile in PowerBuilder: the
Database Profiles dialog box and the interface-specific Database Profile Setup dialog box.

Using the Database painter to create database profiles

Y ou can a'so create database profiles from the Database painter's Objects view.

Database Profiles dialog box

The Database Profiles dialog box uses an easy-to-navigate tree control format to display your
installed database interfaces and defined database profiles. Y ou can create, edit, and delete
database profiles from this dialog box.

Page 14



Introduction to Database Connections

Database Profiles @

%g Installed Database Interfaces - Connect
-3 ADO Microsoft ADO .NET
=-E3 ASE SAP ASE 15.x]16.x | Close |
-7 Utilities
-4 DIR Direct Connect [ Mew... ]
-4 110 Informix w10.x[v12.x .
-4 IN9 Informix v9.x
-f4 DB JDBC Dele
-4 010 Orade 10g
-7 Utilities | Help |
-4 090 Orade 9i
-7 Utilities
-H
-f4 ODT OData
-4 OLE Microsoft OLE DB

e B 1

m
21

When you run the PowerBuilder setup program, it updates the Vendorsllist in the
PowerBuilder section inthe HKEY _LOCAL_MACHINE registry key with the interfaces
you install. The Database Profiles dialog box displays the same interfaces that appear in the
Vendorslist.

WheretheVendorslist is stored

The Sybase\PowerBuilder\19.0\Vendors key in HKEY_LOCAL_MACHINE
\SOFTWARE isused for InNfoMaker aswell as PowerBuilder.

For detailed instructions on using the Database Profiles dialog box to connect to a database
and manage your profiles, see Managing Database Connections.

Database Profile Setup dialog box

Each database interface has its own Database Profile Setup dialog box where you can set
interface-specific connection parameters. For example, if you install the Adaptive Server
Enterprise ASE interface and then select it and click New in the Database Profiles dialog
box, the Database Profile Setup - Adaptive Server Enterprise dialog box displays, containing
settings for the connection options that apply to thisinterface.

Page 15



Introduction to Database Connections

Database Profile Setup - Adaptive Server Enterprise

]

Metwork Security Directory Services

Preview

Connection | Regional Settings | System | Transaction | Syntax

Profile Name: |

Connect Information

SErVEr:
Login ID:
Password:

Database:

Releasze: | 15

v |

Other

Izalation Lewvel: |Read Committed

T |

7] AutoCommit Mode || Prompt for Database
Commit on Disconnect |:| Generate Trace

|| Display Runtime Dialog When Password Expires

Information

(814 ] | Cancel Apply

| Help

The Database Profile Setup dialog box groups similar connection parameters on the same
tab page and lets you easily set their values by using check boxes, drop-down lists, and text
boxes. Basic (required) connection parameters are on the Connection tab page, and additional
connection options (DBParm parameters and SQLCA properties) are on the other tab pages.

Asyou complete the Database Profile Setup dialog box in PowerBuilder, the correct

Power Script connection syntax for each selected option is generated on the Preview tab. Y ou
can copy the syntax you want from the Preview tab into a PowerBuilder application script.

Supplying sufficient information in the Database Profile Setup dialog box

For some database interfaces, you might not need to supply values for al boxesin
the Database Profile Setup dialog box. If you supply the profile name and click OK,

Page 16



Introduction to Database Connections

PowerBuilder displays a series of dialog boxes to prompt you for additional information
when you connect to the database.

This information can include:

User ID or login ID
Password or login password
Database name

Server name

For some databases, supplying only the profile name does not give PowerBuilder enough
information to prompt you for additional connection values. For these interfaces, you must
supply values for all applicable boxes in the Database Profile Setup dialog box.

For information about the values you should supply for your connection, click Help in the
Database Profile Setup dialog box for your interface.

1.1.4.2 Creating a database profile
To create a new database profile for a database interface, you must complete the Database
Profile Setup dialog box for the interface you are using to access the database.

To create a database profile for a database interface:

1. Click the Database Profile button in the PowerBar.

The Database Profiles dialog box displays, listing your installed database interfaces. To
see alist of database profiles defined for a particular interface, click the plus sign to the
left of the interface name or double-click the interface name to expand the list.

2. Highlight an interface name and click New.

The Database Profile Setup dialog box for the selected interface displays. For example,
if you select the SY C interface, the Database Profile Setup - Adaptive Server Enterprise
dialog box displays.

Client softwar e and interface must beinstalled

To display the Database Profile Setup dialog box for your interface, the required
client software and native database interface must be properly installed and
configured. For specific instructions for your database interface, see the chapter on
using the interface.

3. Onthe Connection tab page, type the profile name and supply values for any other basic
parameters your interface requires to connect.

For information about the basic connection parameters for your interface and the values
you should supply, click Help.

About the DBM Sidentifier

Y ou do not need to specify the DBMS identifier in a database profile. When you
create anew profile for any installed database interface, PowerBuilder generates the
correct DBM S connection syntax for you.

Page 17



Introduction to Database Connections

4. (Optional) On the other tab pages, supply values for any additional connection options
(DBParm parameters and SQL CA properties) to take advantage of DBM S-specific
features that your interface supports.

For information about the additional connection parameters for your interface and the
values you should supply, click Help.

5.  (Optional) Click the Preview tab if you want to see the PowerScript connection syntax
that PowerBuilder generates for each selected option.

Y ou can copy the PowerScript connection syntax from the Preview tab directly into a
PowerBuilder application script.

For instructions on using the Preview tab to help you connect in a PowerBuilder
application, see Section 4.1, “Using Transaction Objects’ in Application Techniques.

6. Click OK to save your changes and close the Database Profile Setup dialog box. (To
save your changes on a particular tab page without closing the dialog box, click Apply.)

The Database Profiles dialog box displays, with the new profile name highlighted under
the appropriate interface. The database profile values are saved in the system registry

in HKEY_CURRENT _USER\Software\Sybase\PowerBuilder\19.0\DatabaseProfiles
\PowerBuilder.

You can look at the registry entry or export the profile as described in Importing and
exporting database profiles to see the settings you made. The NewL ogic parameter is set
to True by default. This setting specifies that the password is encrypted using Unicode
encoding.

1.1.5 What to do next

For instructions on preparing to use and then defining an ODBC data source, see Using the
ODBC Interface.

For instructions on preparing to use and then defining a JDBC database interface, see Using
the JDBC Interface.

For instructions on preparing to use and then defining an OLE DB data provider, see Using
the OLE DB Interface.

For instructions on preparing to use and then defining an ADO.NET data provider, see Using
the ADO.NET Interface.

For instructions on preparing to use and then defining a native database interface, see Using
Native Database Interfaces.

Page 18



Working with Standard Database Interfaces

2 Working with Standard Database Interfaces

This part describes how to set up and define database connections accessed through one of
the standard database interfaces.

2.1 Using the ODBC Interface
About this chapter

This chapter gives an introduction to the ODBC interface and then describes how to prepare
to use the data source, how to define the data source, and how to define the ODBC database
profile. It also describes how to use the SAP SQL Anywhere ODBC driver.

For moreinformation

This chapter gives general information about preparing to use and defining each ODBC data
source. For more detailed information, use the online Help provided by the driver vendor, as
described in Displaying Help for ODBC drivers. This Help provides important details about
using the data source.

2.1.1 About the ODBC interface

Y ou can access awide variety of ODBC data sources in PowerBuilder. This section describes
what you need to know to use ODBC connections to access your datain PowerBuilder.

2.1.1.1 What is ODBC?
The ODBC API

Open Database Connectivity (ODBC) is a standard application programming interface (API)
developed by Microsoft. It allows a single application to access avariety of data sources

for which ODBC-compliant drivers exist. The application uses Structured Query Language
(SQL) as the standard data access language.

The ODBC API defines the following:

A library of ODBC function calls that connect to the data source, execute SQL statements,
and retrieve results

A standard way to connect and log into aDBMS

SQL syntax based on the X/Open and SQL Access Group (SAG) CAE specification (1992)

A standard representation for datatypes

A standard set of error codes

Accessing ODBC data sources

Applications that provide an ODBC interface, like PowerBuilder, can access data sources for
which an ODBC driver exists. An ODBC data source driver isadynamic link library (DLL)

that implements ODBC function calls. The application invokes the ODBC driver to access a
particular data source.

Accessing Unicode data

Page 19



Working with Standard Database Interfaces

Using the ODBC interface, PowerBuilder can connect, save, and retrieve datain both ANSI/
DBCS and Unicode databases but does not convert data between Unicode and ANSI/DBCS.
When character data or command text is sent to the database, PowerBuilder sends a Unicode
string. The driver must guarantee that the data is saved as Unicode data correctly. When
PowerBuilder retrieves character data, it assumes the data is Unicode.

A Unicode database is a database whose character set is set to a Unicode format, such as
UTF-8, UTF-16, UCS-2, or UCS-4. All data must be in Unicode format, and any data saved
to the database must be converted to Unicode dataimplicitly or explicitly.

A database that uses ANSI (or DBCS) as its character set might use special datatypes to store
Unicode data. Columns with these datatypes can store only Unicode data. Any data saved
into such a column must be converted to Unicode explicitly. This conversion must be handled
by the database server or client.

2.1.1.2 Using ODBC in PowerBuilder

What you can do

The following ODBC connectivity features are available in PowerBuilder:

» Connect to a SQL Anywhere standal one database (including the Demo Database) using the
SQL Anywhere ODBC driver and the ODBC interface

» Create and delete local SQL Anywhere databases
For instructions, see Section 5.1.4, “Creating and deleting a SQL Anywhere database” in
Users Guide.

» Connect to an installed SAP 1Q database client through the ODBC interface.

» UselLeve 1 or later ODBC-compliant drivers obtained from vendors other than SAP to
access your data
See Obtaining ODBC drivers.

* Use Microsoft's ODBC Data Source Administrator to define ODBC data sources
See Defining ODBC data sources.

2.1.1.3 Components of an ODBC connection

How an ODBC connection is made

When you access an ODBC data source in PowerBuilder, your connection goes through
several layers before reaching the data source. It isimportant to understand that each layer
represents a separate component of the connection, and that each component might come
from adifferent vendor.

Because ODBC isastandard API, PowerBuilder uses the same interface to access every
ODBC data source. Aslong as adriver is ODBC compliant, PowerBuilder can accessiit
through the ODBC interface to the ODBC Driver Manager. The development environment
and the ODBC interface work together as the application component.

The following figure shows the general components of an ODBC connection.
Figure: Components of an ODBC connection

Page 20



Working with Standard Database Interfaces

Windows development

environment

ODBC interface
PECDE.DLL

Application ——

CODBC Driver Manager
ODBC32.DLL

Data
source

Data
source

Data
source

Component descriptions

The following table gives the provider and a brief description of each ODBC component
shown in the diagram.

Table 2.1: Provider and function of ODBC connection components
Component Provider What it does

Application |SAP Calls ODBC functions to submit SQL statements, catalog
requests, and retrieve results from a data source.

PowerBuilder uses the same ODBC interface to access all

ODBC data sources.
ODBC Microsoft Installs, loads, and unloads drivers for an application.
Driver
Manager

Page 21



Working with Standard Database Interfaces

Component Provider What it does

Driver Driver vendor | Processes ODBC function calls, submits SQL requeststo a
particular data source, and returns results to an application.

If necessary, tranglates an application's request so that it
conformsto the SQL syntax supported by the back-end
database. See Types of ODBC drivers.

Datasource |DBMSor Stores and manages data for an application. Consists of the
database data to be accessed and its associated DBM S, operating
vendor system, and (if present) network software that accesses the

DBMS.

2.1.1.4 Types of ODBC drivers

When PowerBuilder is connected to an ODBC data source, you might see messages from the
ODBC driver that include the words single-tier or multiple-tier. These terms refer to the two
types of drivers defined by the ODBC standard.

Single-tier driver

A single-tier ODBC driver processes both ODBC functions and SQL statements. In other
words, asingle-tier driver includes the data access software required to manage the data
source file and catal og tables. An example of asingle-tier ODBC driver is the Microsoft
Access driver.

Figure: Single-tier ODBC driver

Page 22



Working with Standard Database Interfaces

Application

ODBC Driver Manager

Single-tier ODBC driver

Data access software

Diata source

Multiple-tier driver

A multiple-tier ODBC driver processes ODBC functions, but sends SQL statements to the
database engine for processing. Unlike the single-tier driver, amultiple-tier driver does not
include the data access software required to manage the data directly.

An example of amultiple-tier ODBC driver isthe SAP SQL Anywhere driver.
Figure: Multi-tier ODBC driver

Page 23



Working with Standard Database Interfaces

Application

ODBC Driver Manager

Multiple-tier ODBC driver

Database engine

Data source

2.1.1.5 Ensuring the proper ODBC driver conformance levels

Y ou can access datain PowerBuilder with ODBC drivers obtained from vendors other than
SAP, such as DBMS vendors.

An ODBC driver obtained from another vendor must meet certain conformance requirements
to ensure that it works properly with PowerBuilder. This section describes how to make sure
your driver meets these requirements.

Page 24



Working with Standard Database Interfaces

2.1.1.5.1 What are ODBC conformance levels?

PowerBuilder can access many data sources for which ODBC-compliant drivers exist.
However, ODBC drivers manufactured by different vendors might vary widely in the
functions they provide.

To ensure a standard level of compliance with the ODBC interface, and to provide a means
by which application vendors can determine whether a specific driver provides the functions
they need, ODBC defines conformance levels for driversin two areas.

« AP
Deals with supported ODBC function calls

* SQL grammar
Deals with supported SQL statements and SQL datatypes

API conformance levels
ODBC defines three API conformance levels, in order of increasing functionality:

e Core

A set of core API functions that corresponds to the functionsin the ISO Call Level
Interface (CLI) and X/Open CLI specification

e Levd 1

Includes all Core API functions and several extended functions usually availablein an
OLTPrelational DBMS

e Leve 2
Includes all Core and Level 1 API functions and additional extended functions

Toensurethe proper ODBC driver API conformance level:

e Appeon recommends that the ODBC drivers you use with PowerBuilder meet Level 1
or higher API conformance requirements. However, PowerBuilder might also work with
drivers that meet Core level APl conformance requirements.

SQL conformance levels

ODBC defines three SQL grammar conformance levels, in order of increasing functionality:
e Minimum
A set of SQL statements and datatypes that meets abasic level of ODBC conformance

e Core

Includes all Minimum SQL grammar and additional statements and datatypes that roughly
correspond to the X/Open and SAG CAE specification (1992)

e Extended

Includes all Minimum and Core SQL grammar and an extended set of statements and
datatypes that support common DBM S extensions to SQL

Page 25



Working with Standard Database Interfaces

Toensurethe proper ODBC driver SQL conformance level:

e Appeon recommends that the ODBC drivers you use with PowerBuilder meet Core or
higher SQL conformance requirements. However, PowerBuilder might also work with
drivers that meet Minimum level SQL conformance requirements.

2.1.1.6 Obtaining ODBC drivers

Y ou can use the ODBC driver for the SQL Anywhere developer edition from SAP,
provided with PowerBuilder, to access data. Other SAP database clients also include ODBC
drivers that you can access through the PowerBuilder ODBC interface. See your database
documentation for details.

PowerBuilder also let you access datawith any Level 1 or higher ODBC-compliant
drivers obtained from a vendor other than SAP. In most cases, these drivers will work with
PowerBuilder.

2.1.1.7 Using ODBC drivers with PowerBuilder
Using existing Microsoft ODBC drivers

If you already have version 2.0 or later of any of the following Microsoft ODBC drivers
installed and properly configured, you can use these drivers with PowerBuilder to connect to
your data source:

Microsoft Access (*.MDB)
Microsoft Btrieve (*.DDF)
Microsoft dBASE (*.DBF)
Microsoft Excel (*.XLYS)
Microsoft FoxPro (*.DBF)
Microsoft Paradox (*.DB)
Microsoft Text (*.CSV, *.TXT)

2.1.1.8 Getting help with ODBC drivers

To ensure that you have up-to-date and accurate information about using your ODBC driver
with PowerBuilder, get help as needed by doing one or more of the following:

Table2.2:

To get help on Do this

Using the ODBC Data Source Administrator | Click the Help button on each tab.
Completing the ODBC setup dialog box for | Click the Help button (if present) in the

your driver ODBC setup dialog box for your driver.
Using SQL Anywhere See the SQL Anywhere documentation.
Using an ODBC driver obtained from a See the vendor's documentation for that
vendor other than SAP driver.

Troubleshooting your ODBC connection Check for atechnical document that
describes how to connect to your ODBC data
source.

Page 26



Working with Standard Database Interfaces

2.1.2 Preparing ODBC data sources

The first step in connecting to an ODBC data source is preparing the data source. This
ensures that you are able to connect to the data source and use your datain PowerBuilder.

Y ou prepare to use a data source outside PowerBuilder before you start the product, define
the data source, and connect to it. The requirements differ for each data source, but in
general, preparing to use a data source involves the following steps.

To prepareto use an ODBC data sour ce with Power Builder:

1. If network software isrequired to access the data source, make sureit is properly
installed and configured at your site and on the client workstation.

2. If database software is required, make sureit is properly installed and configured on
your computer or network server.

3. Make sure the required datafiles are present on your computer or network server.

4. Make sure the names of tables and columns you want to access follow standard SQL
naming conventions.

Avoid using blank spaces or database-specific reserved words in table and column
names. Be aware of the case-sensitivity options of the DBMS. It is safest to use all
uppercase characters when naming tables and columns that you want to accessin
PowerBuilder.

5. If your database requires it, make sure the tables you want to access have unique
indexes.

6. Instal both of the following using the PowerBuilder Setup program:
» The ODBC driver that accesses your data source

» The ODBC interface

2.1.3 Defining ODBC data sources

Each ODBC data source requires a corresponding ODBC driver to access it. When you
define an ODBC data source, you provide information about the data source that the driver
requires in order to connect to it. Defining an ODBC data source is often called configuring
the data source.

After you prepare to use the data source, you must define it using Microsoft's ODBC Data
Source Administrator utility. This utility can be accessed from the Control Panel in Windows
or PowerBuilder's Database painter.

The rest of this section describes what you need to know to define an ODBC data sourcein
order to accessit in the PowerBuilder development environment.

2.1.3.1 How PowerBuilder accesses the data source

When you access an ODBC data source in PowerBuilder, there are severa initialization files
and registry entries on your computer that work with the ODBC interface and driver to make
the connection.

Page 27



Working with Standard Database Interfaces

2.1.3.1.1 PBODB initialization file
Contents

PBODB.ini isinstalled in the %A ppeonl nstall Path%\Common\PowerBuilder\Runtime
[version] or %A ppeoninstall Path%\Common\PowerBuilder\Runtime [version]\x64 directory.
Thefirst time the user opens PowerBuilder, the fileis copied to theinitialization path
(specified in the PowerBuilder IDE: Tools | System Options dialog box) which is by default
AppData\L ocal\A ppeon\PowerBuilder 19.0 in the user's profile folder (for example, under
C:\users\[username]). This copy is used when running PowerBuilder. PowerBuilder uses
PBODB.ini to maintain access to extended functionality in the back-end DBMS, for which
ODBC does not provide an API call. Examples of extended functionality are SQL syntax or
DBM S-specific function calls.

Editing
In most cases, you do not need to edit PBODB.ini. In certain situations, however, you might

need to add functions to PBODB.ini for your back-end DBMS. Be sure to edit the copy in
your user profile folder, not the original copy.

For instructions, see Adding Functions to the PBODB Initialization File

2.1.3.1.2 ODBCINST registry entries

Contents

The ODBCINST initialization information is located in the HKEY _LOCAL_MACHINE
\SOFTWARE\ODBC\ODBCINST.INI registry key. When you install an ODBC-compliant
driver, ODBCINST.INI is automatically updated with a description of the driver.

This description includes:
« The DBMS or data source associated with the driver

» Thedrive and directory of the driver and setup DLLSs (for some data sources, the driver and
setup DLLs are the same)

* Other driver-specific connection parameters

Editing
Y ou do not need to edit the registry key directly to modify connection information. If your
driver uses the information in the ODBCINST.INI registry key, the key is automatically

updated when you install the driver. Thisistrue whether the driver is supplied by SAP or
another vendor.

2.1.3.1.3 ODBC registry entries

Contents

ODBC initiaization information is located in the HKEY CURRENT_USER\SOFTWARE
\ODBC\ODBC.INI registry key. When you define a data source for a particular ODBC
driver, the driver writes the values you specify in the ODBC setup dialog box to the
ODBC.INI registry key.

Page 28



Working with Standard Database Interfaces

The ODBC.INI key contains subkeys named for each defined data source. Each subkey
contains the values specified for that data source in the ODBC setup dialog box. The values
might vary for each data source but generally include the following:

» Database

* Driver

» Optional description

» DBMS-specific connection parameters

Editing

Do not edit the ODBC subkey directly to modify connection information. Instead, use a tool

designed to define ODBC data sources and the ODBC configuration automatically, such as
the ODBC Data Source Administrator.

2.1.3.1.4 Database profiles registry entry
Contents

Database profiles for all data sources are stored in theregistry in HKEY CURRENT_USER
\SOFTWARE\Sybase\PowerBuilder\19.0\DatabaseProfil es.

Editing
Y ou should not need to edit the profiles directly to modify connection information. These

files are updated automatically when PowerBuilder creates the database profile as part of the
ODBC data source definition.

Y ou can also edit the profile in the Database Profile Setup dialog box or complete the
Database Preferences dialog box in PowerBuilder to specify other connection parameters
stored in the registry. (For instructions, see Setting Additional Connection Parameters)

Example

The following example shows a portion of the database profile for an Demo Database data
source:

DBNMS=0DBC
DBPar m=Connect St ri ng=' DSN=PB Denp DB V2019R3 DB; Ul D=dba; P\D=00c61737"
Pr onpt =0
Thisregistry entry example shows the two most important values in a database profile for an
ODBC data source:
« DBMS
The DBMS value (ODBC) indicates that you are using the ODBC interface to connect to
the data source.
 DBParm

The ConnectString DBParm parameter controls your ODBC data source connection. The
connect string must specify the DSN (data source name) value, which tells ODBC which
data source you want to connect to. When you select a database profile to connect to a data

Page 29



Working with Standard Database Interfaces

source, ODBC looks in the ODBC.INI registry key for a subkey that corresponds to the
data source name in your profile. ODBC then uses the information in the subkey to load
the required libraries to connect to the data source. The connect string can also contain the
UID (user ID) and PWD (password) values needed to access the data source.

2.1.3.2 Defining multiple data sources for the same data

When you define an ODBC data source in PowerBuilder, each data source name must be
unique. Y ou can, however, define multiple data sources that access the same data, as long as
the data sources have unique names.

For example, assume that your data source is a SQL Anywhere database located in C:\SQL
Anywhere\SALES.DB. Depending on your application, you might want to specify different
sets of connection parameters for accessing the database, such as different passwords and
user IDs.

To do this, you can define two ODBC data sources named Salesl and Sales2 that specify the
same database (C:\SQL Anywhere\SALES.DB) but use different user IDs and passwords.
When you connect to the data source using a profile created for either of these data sources,
you are using different connection parameters to access the same data.

Figure: Using two data sources to access a database

Data Source Mame: Sales]
User |Dx Smith
Password: oo

Database: CASAVSALES.DB

SALES.DE
Data Source MName: Salessd

User |D: lones

Password: vy

Database: CASAVSALES.DB

2.1.3.3 Displaying Help for ODBC drivers

The online Help for ODBC driversin PowerBuilder is provided by the driver vendors. It
gives help on:

» Completing the ODBC setup dialog box to define the data source

» Using the ODBC driver to access the data source

2.1.3.3.1 Help for any ODBC driver

Use the following procedure to display vendor-supplied Help when you are in the ODBC
setup dialog box for ODBC drivers.

Page 30



Working with Standard Database Interfaces

Todisplay Help for any ODBC driver:

*  Click the Help button in the ODBC setup dialog box for your driver.
A Help window displays, describing features in the setup dialog box.

2.1.3.4 Selecting an ODBC translator
What isan ODBC trandlator ?

Some ODBC drivers alow you to specify atrandator when you define the data source. An
ODBC trandlator isaDLL that trandates data passing between an application and a data
source. Typicaly, trandators are used to translate data from one character set to another.

What you do
Follow these stepsto select atrandator for your ODBC driver.

To select atrandator when using an ODBC driver:

1. Inthe ODBC setup dialog box for your driver, display the Select Translator dialog box.

The way you display the Select Translator dialog box depends on the driver and
Windows platform you are using. Click Help in your driver's setup dialog box for
instructions on displaying the Select Trandator dialog box.

In the Select Trandlator dialog box, the translators listed are determined by the valuesin
your ODBCINST.INI registry key.

2. FromtheInstalled Trandatorslist, select atranslator to use.
If you need help using the Select Trandator dialog box, click Help.

3. Click OK.
The Select Trangdlator dialog box closes and the driver performs the transl ation.

2.1.4 Defining the ODBC interface

To define a connection through the ODBC interface, you must create a database profile by
supplying values for at least the basic connection parameters in the Database Profile Setup -
ODBC diaog box. You can then select this profile at any time to connect to your data source
in the development environment.

For information on how to define a database profile, see Using database profiles.

2.1.5 SAP SQL Anywhere

This section describes how to prepare and define an SAP SQL Anywhere data source in order
to connect to it using the SQL Anywhere ODBC driver.

SQL Anywhere includes two database servers -- a personal database server and a network
database server. For information about using SAP SQL Anywhere, see the SQL Anywhere
documentation.

2.1.5.1 Supported versions for SQL Anywhere

The SQL Anywhere ODBC driver supports connection to local and remote databases created
with the following:

Page 31



Working with Standard Database Interfaces

PowerBuilder running on your computer

SQL Anywhere version 17.x

SQL Anywhere version 16.x

SQL Anywhere version 12.x

2.1.5.2 Basic software components for SQL Anywhere

The following figure shows the basic software components required to connect to a SQL
Anywhere data source in PowerBuilder.

Figure: Components of a SQL Anywhere connection

Windows development
environment

ODEBC interface DLL ——— PBODE.DLL

ODBC Driver - ODRC22.DLL
Manager
Driver ——— DBCDBCH.DLL
Data source — SQL Anywhere

2.1.5.3 Preparing to use the SQL Anywhere data source

Before you define and connect to a SQL Anywhere data source in PowerBuilder, follow these
steps to prepare the data source.

Page 32



Working with Standard Database Interfaces

To preparea SQL Anywhere data source:

1.

Make sure the database file for the SQL Anywhere data source already exists. Y ou can
create a new database by:

 Launching the Create SQL Anywhere Database utility. Y ou can access this utility
from the Utilities folder for the ODBC interface in the Database profile or Database
painter when PowerBuilder is running on your computer.

This method creates alocal SQL Anywhere database on your computer, and also
creates the data source definition and database profile for this connection. (For
instructions, see Section 5.1.4, “Creating and deleting a SQL Anywhere database” in
Users Guide.)

» Creating the database some other way, such as with PowerBuilder running on another
user's computer or by using SQL Anywhere outside PowerBuilder. (For instructions,
see the SQL Anywhere documentation.)

Make sure you have the log file associated with the SQL Anywhere database so that you
can fully recover the database if it becomes corrupted.

If the log file for the SQL Anywhere database does not exist, the SQL Anywhere
database engine creates it. However, if you are copying or moving a database from
another computer or directory, you should copy or move the log file with it.

2.1.5.4 Defining the SQL Anywhere data source

When you create alocal SQL Anywhere database, PowerBuilder automatically creates

the data source definition and database profile for you. Therefore, you need only use the
following procedure to define a SQL Anywhere data source when you want to access a SQL
Anywhere database not created using PowerBuilder on your computer.

To definea SQL Anywher e data sourcefor the SQL Anywheredriver:

1.

Sdlect Create ODBC Data Source from the list of ODBC utilities in the Database
Profiles dialog box or the Database painter.

Sdlect User Data Source and click Next.

On the Create New Data Source page, select the SQL Anywhere driver and click Finish.
The ODBC Configuration for SQL Anywhere dialog box displays.

Page 33



Working with Standard Database Interfaces

ODBC Cenfiguration for 5QL Anywhere I.i‘é]

ODEC | Login | Metwork | Security I Advanced

Data source name:

Description:

lzolation level:

[ Microsoft applications (Keys in SQLStatistics)
[] Delphi applications

[] Suppress fetch wamings

[] Prevent driver not capable emors

[] Delay AutoCommit until statement close

Describe Cursor Behavior

71 Mever i@ K required ) AMlways

| Test Connection |

OK || Cancel || Hep |

4. You must supply the following values:
 Data source name on the ODBC tab page
» User ID and password on the Login tab page
 Database file on the Database tab page
Use the Help button to get information about fields in the dialog box.

5.  (Optional) To select an ODBC trandator to trandate your data from one character set to
another, click the Select button on the ODBC tab.

See Selecting an ODBC trandlator.

6. Click OK to save the data source definition.

Page 34



Working with Standard Database Interfaces

Specifying a Start Line value

When the SQL Anywhere ODBC driver cannot find a running personal or network database
server using the PATH variable and Database Name setting, it uses the commands specified
in the Start Linefield to start the database servers.

Specify one of the following commands in the Start Line field on the Database tab page,
where nisthe version of SQL Anywhere you are using.

Table 2.3:
Specify this To
command
dbengn.exe Start the personal database server and the database specified in the
Database File box
rtengn.exe Start the restricted runtime database server and the database specified
in the Database File box

For information on completing the ODBC Configuration For SQL Anywhere dialog box, see
the SQL Anywhere documentation.

2.1.5.5 Support for Transact-SQL special timestamp columns

When you work with a SQL Anywhere table in the DataWindow, Data Pipeline, or Database
painter, the default behavior isto treat any column named timestamp as a SQL Anywhere
Transact-SQL -- specia timestamp column.

Creating special timestamp columns

Y ou can create a Transact-SQL special timestamp column in a SQL Anywhere table.

Tocreate a Transact-SQL special timestamp column in a SQL Anywheretablein
Power Builder:

1. Givethe name timestamp to any column having atimestamp datatype that you want
treated as a Transact-SQL specia timestamp column. Do thisin one of the following

way’s:

* Inthe painter -- Select timestamp as the column name. (For instructions, see Part |,
“Users Guide’.)

* InaSQL CREATE TABLE statement -- Follow the CREATE TABLE example.

2. Specify timestamp as the default value for the column. Do thisin one of the following
ways:

* Inthe painter -- Select timestamp as the default value for the column. (For
instructions, see Part |, “Users Guide’.)

* InaSQL CREATE TABLE statement -- Follow the CREATE TABLE example.

Page 35



Working with Standard Database Interfaces

3. If you are working with the table in the Data Pipeline painter, select the initial value
exclude for the specia timestamp column from the drop-down list in the Initial Value
column of the workspace.

Y ou must select exclude astheinitial value to exclude the special timestamp column
from INSERT or UPDATE statements.

For instructions, see Section 5.2.3, “Modifying the data pipeline definition” in Users
Guide.

CREATE TABLE example

The following CREATE TABLE statement defines a SQL Anywhere table named timesheet
containing three columns: employee 1D (integer datatype), hours (decimal datatype), and
timestamp (timestamp datatype and timestamp default value):

CREATE TABLE ti mesheet (
enpl oyee_| D | NTEGER,
hours DECI MAL,
ti mestanp TI MESTAMP default tinmestanp )

Not using special timestamp columns

If you want to change the default behavior, you can specify that PowerBuilder not treat SQL
Anywhere columns named timestamp as Transact-SQL specia timestamp columns.

To specify that Power Builder not treat columns named timestamp asa Transact-SQL special
timestamp column:

»  Edit the SAP SQL Anywhere section of the PBODB initialization file to change the
value of SQLSrvrTSName from'Yes to 'No'.

After making changesin the initialization file, you must reconnect to the database to
have them take effect. See Adding Functions to the PBODB Initialization File

2.1.5.6 What to do next
For instructions on connecting to the ODBC data source, see Connecting to a database.

2.1.6 PostgreSQL

PowerBuilder apps can connect with the PostgreSQL 10, 11, or 12 (32-bit and 64-bit) (ANSI
and Unicode) database through the PostgreSQL ODBC driver.

PBODB.ini must be configured first in order for connecting with the PostgreSQL database
through ODBC interface. Search "PostgreSQL" in PBODB.ini to view the parameter

list, related syntax, and functions. For how to configure the PBODB.ini file, see Adding
Functions to the PBODB Initialization File.

Note

When the PostgreSQL database is used in the remote procedure call (RPC), use the
inout keyword to define the stored procedure (using out keyword cannot return data),
and use subroutine (rather than function) to define the RPC function.

Page 36



Working with Standard Database Interfaces

2.1.6.1 Limited support for stored procedure

PostgreSQL stored procedure is not fully supported, for example, PostgreSQL stored
procedure with parameters cannot be used as the data source for Datawindow objects. When
using PostgreSQL stored procedure as the data source for DataWindow objects, make sureto
set the StripParmNames connection parameter to Y es (or select the "strip parameter names”
option in the syntax section of the database profile setup). PostgreSQL stored procedure
syntax cannot be previewed in the Database Painter or the DataWindow data source.

2.1.6.2 Support for auto-increment column

PostgreSQL supports the auto-increment column with the following two methods:
* Method 1: Getldentity="Select currval("GEN_& TableName")'

* Method 2: Getldentity="Select currval ("& TableName. & ColumnName._seq’)'

Method 2 uses the serial to create the auto-increment column.
These methods require that the sequence name follows the name conversions specified by
Getldentity in pbodb.ini, for example, gen_TableName, TableName ColumnName_seq.

If the sequence name is not in the required format, the identity value cannot be obtained
automatically.

These methods also require that the Delimitldentifier property ("Enclose Table and Column
Namesin Quotes' option) set to NO. If it isset to YES, the identity value cannot be returned.

2.2 Using the JDBC Interface
About this chapter

This chapter describes the JDBC interface and explains how to prepare to use thisinterface
and how to define the JDBC database profile.

For moreinformation

For more detailed information about JDBC, go to the Java website at http://java.sun.com/
products/jdbc/overview.html.

2.2.1 About the JDBC interface

Y ou can access awide variety of databases through JDBC in PowerBuilder. This section
describes what you need to know to use JDBC connections to access your datain
PowerBuilder.

2.2.1.1 What is JDBC?
TheJDBC API

Java Database Connectivity (JDBC) is a standard application programming interface
(API) that allows a Java application to access any database that supports Structured Query
Language (SQL) as its standard data access language.

The JDBC AP includes classes for common SQL database activities that allow you to open
connections to databases, execute SQL commands, and process results. Consequently, Java

Page 37



Working with Standard Database Interfaces

programs have the capability to use the familiar SQL programming model of issuing SQL
statements and processing the resulting data. The JDBC classes are included in Java 1.1+ and
Java 2 asthe java.sgl package.

The JDBC API defines the following:

A library of JDBC function calls that connect to a database, execute SQL statements, and
retrieve results

A standard way to connect and loginto aDBMS

SQL syntax based on the X/Open SQL Call Level Interface or X/Open and SQL Access
Group (SAG) CAE specification (1992)

A standard representation for datatypes

A standard set of error codes

How JDBC APIsareimplemented

JDBC API implementations fall into two broad categories. those that communicate with an
existing ODBC driver (aJDBC-ODBC bridge) and those that communicate with a native
database APl (a JDBC driver that converts JDBC calls into the communications protocol
used by the specific database vendor). The PowerBuilder implementation of the JDBC
interface can be used to connect to any database for which a JDBC-compliant driver exists.

The Power Builder JDB interface

A JavaVirtual Machine (JVM) isrequired to interpret and execute the bytecode of a Java
program. The PowerBuilder JDB interface supports the Sun Java Runtime Environment
(JRE) versions 1.6 and | ater.

2.2.1.2 Using the JDBC interface

Y ou can use the JDBC interface to develop the client/server applications. If aclient is
already running aJVM (in arunning Web browser or inside the operating system), the use
of the IDBC interface to access a database does not require the client-side installation and
administration of a database driver, which is required when using ODBC.

2.2.1.3 Components of a JDBC connection
How a JDBC connection ismade

In PowerBuilder when you access a database through the JDBC interface, your connection
goes through several layers before reaching the database. It isimportant to understand that
each layer represents a separate component of the connection, and that each component might
come from a different vendor.

Because JDBC is a standard API, PowerBuilder uses the same interface to access every
JDBC-compliant database driver.

The following figure shows the general components of a JDBC connection.

Figure: Components of a JDBC connection

Page 38



Working with Standard Database Interfaces

Development environment

Database interface

— PBIDB.DLL Supplied by Appecn
DLL
Java Virtual Sun Java Runtime SUpp'l-Ed b}" SAP or
Machine Environment Sun
JDEC dri JDBC driver such as Sybase Supplied by
Vel iConnect database vendor
Database

TheJDBC DLL

PowerBuilder provides the pbjdb.dil. This DLL runs with the Sun Java Runtime Environment
(JRE) versions 1.1 and later.

Power Builder Java package

PowerBuilder includes a small package of Java classes that gives the JDBC interface the
level of error-checking and efficiency (SQL Exception catching) found in other PowerBuilder
interfaces. The package is called pbjdbcl2.jar and is found in %A ppeonl nstall Path%
\Common\PowerBuilder\Runtime [version].

The Java Virtual Machine

The Java Virtual Machine (VM) is a component of Java development software. When you
install PowerBuilder, the Sun Java Development Kit (JDK), including the Java Runtime
Environment (JRE), isinstalled on your system in %A ppeonl nstall Path%\PowerBuilder
[version)\IDE. For PowerBuilder 2019 R3, JDK 1.6 isinstalled. This version of the VM

is started when you use a JDBC connection or any other process that requiresa JVM and is
used throughout the PowerBuilder session.

If you need to use a different VM, see the instructions in Preparing to use the JDBC
interface. For more information about how the JVM is started, see the chapter on deploying
your application in Application Techniques.

Page 39



Working with Standard Database Interfaces

TheJDBC drivers

The JDBC interface can communicate with any JDBC-compliant driver including SAP
jConnect for JDBC (available with SAP ASE, 1Q, and SA database clients) and the Oracle
and IBM Informix JDBC drivers. These drivers are native-protocol, all-Java drivers -- that is,
they convert JDBC callsinto the SQL syntax supported by the databases.

Accessing Unicode data

Using the ODBC interface, PowerBuilder can connect, save, and retrieve datain both ANSI/
DBCS and Unicode databases but does not convert data between Unicode and ANSI/DBCS.
When character data or command text is sent to the database, PowerBuilder sends a Unicode
string. The driver must guarantee that the data is saved as Unicode data correctly. When
PowerBuilder retrieves character data, it assumes the data is Unicode.

A Unicode database is a database whose character set is set to a Unicode format, such as
UTF-8, UTF-16, UCS-2, or UCS-4. All data must be in Unicode format, and any data saved
to the database must be converted to Unicode dataimplicitly or explicitly.

A database that uses ANSI (or DBCYS) as its character set might use specia datatypes to store
Unicode data. Columns with these datatypes can store only Unicode data. Any data saved
into such a column must be converted to Unicode explicitly. This conversion must be handled
by the database server or client.

2.2.1.4 JDBC registry entries

When you access data through the PowerBuilder JDBC interface, PowerBuilder uses an
internal registry to maintain definitions of SQL syntax, DBM S-specific function calls, and
default DBParm parameter settings for the back-end DBMS. Thisinternal registry currently
includes subentries for SQL Anywhere, Adaptive Server Enterprise, and Oracle databases.

In most cases you do not need to modify the JIDBC entries. However, if you do need to
customi ze the existing entries or add new entries, you can make changes to the system
registry by editing the registry directly or executing aregistry file. Changes you introduce in
the system registry override the PowerBuilder internal registry entries. See the egreg.txt file
in %A ppeonl nstall Path%\PowerBuilder [version]\IDE for an example of aregistry file you
could execute to change entry settings.

2.2.1.5 Supported versions for JDBC

The PowerBuilder IDBC interface uses the pbjdb.dll to access a database through a JDBC
driver.

To use the IDBC interface to access the jConnect driver, use jConnect Version 4.2 or higher.
For information on jConnect, see your SAP documentation.

To use the IDBC interface to access the Oracle JDBC driver, use Oracle 8 IDBC driver
Version 8.0.4 or higher. For information on the Oracle JDBC driver, see your Oracle
documentation.

2.2.1.6 Supported JDBC datatypes

Like ODBC, the JDBC interface compiles, sorts, presents, and uses alist of datatypes that
are native to the back-end database to emulate as much as possible the behavior of a native
interface.

Page 40



Working with Standard Database Interfaces

2.2.2 Preparing to use the JDBC interface
Before you define the interface and connect to a database through the JDBC interface, follow
these steps to prepare the database for use:

1. Configure the database server for its JIDBC connection and install its JDBC-compliant
driver and network software.

2. Install the JDBC driver.

3. Set or verify the settingsin the CLASSPATH environment variable and the Javatab of the
System Options dial og box.

Step 1: Configurethe database server

Y ou must configure the database server to make JDBC connections as well asinstall the

JDBC driver and network software.

To configure the database server for its JDBC connection:

1. Make surethe database server is configured to make JDBC connections. For
configuration instructions, see your database vendor's documentation.

2. Make sure the appropriate JDBC driver software isinstalled and running on the database
server.

The driver vendor's documentation should provide the driver name, URL format, and
any driver-specific properties you need to specify in the database profile. For notes
about the jConnect driver, see Configuring the jConnect driver.

3. Make sure the required network software (such as TCP/IP) isinstalled and running on
your computer and is properly configured so that you can connect to the database server
at your site.

Y ou must install the network communication driver that supports the network protocol
and operating system platform you are using.

For installation and configuration instructions, see your network or database
administrator.

Step 2: Install the JDBC driver

If you install PowerBuilder using the PowerBuilder Installer (an online setup program), the
JDBC driver isautomatically installed. If you install PowerBuilder using the downloaded
installation package (an offline setup program), select JDBC Drivers from the list of
components.

Step 3: Verify or set the settingsin the CLASSPATH variable and Java tab

Verify that the settingsin the PATH and CLASSPATH environment variables or the
Classpaths list on the Java tab of the PowerBuilder System Options dialog box point to the
appropriate, fully qualified file names, or set them.

If you are using the JDK installed with PowerBuilder, you do not need to make any changes
to these environment variables.

Page 41



Working with Standard Database Interfaces

If you are using JDK 1.6 or later, you do not need to include any Sun Java VM packagesin
your CLASSPATH variable, but your PATH environment variable must include an entry for
the Sun Java VM library, jvm.dll (for example, path\JDK 16\JRE\bin\client).

Configuring thejConnect driver

If you are using the SAP jConnect driver, make sure to complete the required configuration
steps such as installing the JDBC stored procedures in Adaptive Server databases. Also,
verify that the CLASSPATH environment variable on your computer or the Classpaths list on
the Java tab of the PowerBuilder System Options dialog box includes an entry pointing to the
location of the jConnect driver.

For example, if you are using jConnect 6.05, you should include an entry similar to the
following:

C:\ Program Fi | es\ SAP\ j Connect - 6. 05\ cl asses\j conn3.j ar

For more information about configuring jConnect, see the jConnect for JIDBC documentation.

2.2.3 Defining the JDBC interface
Defining the profile

To define a connection through the JDBC interface, you must create a database profile by
supplying values for at least the basic connection parameters in the Database Profile Setup -
JDBC dialog box. Y ou can then select this profile at any time to connect to your databasein
the development environment.

For information on how to define a database profile, see Using database profiles.

Specifying connection parameters

To provide maximum flexibility (as provided in the JDBC API), the JDBC interface supports
database connections made with different combinations of connection parameters:

» Driver name, URL, and Properties

Y ou should specify values for this combination of connection parametersif you need to
define driver-specific properties. When properties are defined, you must also define the
user ID and password in the properties field.

For example, when connecting to the jConnect driver, enter the following valuesin the
Driver-Specific Propertiesfield:

SQLI NI TSTRI NG=set Text Si ze 32000; user=system password=nanager;

» Driver name, URL, User ID, and Password
Y ou should specify values for this combination of connection parametersif you do not
need to define any driver-specific properties.

Driver Name: com sybase.jdbc3.jdbc. SybDri ver
URL: jdbc: sybase: Tds: | ocal host : 2638

Login I D: dba

Passwor d: sql

e Driver name and URL

Y ou should specify values for this combination of connection parameters when the user 1D
and password are included as part of the URL.

Page 42



Working with Standard Database Interfaces

For example, when connecting to the Oracle JDBC driver, the URL can include the user ID
and password:

jdbc: oracl e: t hi n: useri d/ passwor d@ost : port: dbname

Specifying properties when connecting to jConnect

If you plan to use the blob datatype in PowerBuilder, you should be aware that
jConnect imposes arestriction on blob size. Consequently, before you make your
database connection from PowerBuilder, you might want to reset the blob sizeto a
value greater than the maximum size you plan to use.

To set blob size, define the jConnect property SQLINITSTRING in the Driver-
Specific Properties box on the Connection page. The SQLINITSTRING property
is used to define commands to be passed to the back-end database server:
SQLINITSTRING=set TextSize 32000;

Remember that if you define a property in the Driver-Specific Properties box, you
must also define the user ID and password in this box.

2.3 Using the OLE DB Interface
About this chapter

This chapter describes the OLE DB interface and explains how to prepare to use this interface
and how to define the OLE DB database profile.

For moreinformation
This chapter gives general information about using the OLE DB interface. For more detailed
information:

» Seethe OLE DB Programmer's Guide in the Microsoft MSDN library at http://
msdn.microsoft.com/en-ug/library/ms713643.aspx.

» Usethe online Help provided by the data provider vendor.

» Check to seeif there is atechnical document that describes how to connect to your OLE
DB data provider.

2.3.1 About the OLE DB interface

Y ou can access awide variety of datathrough OLE DB data providersin PowerBuilder. This
section describes what you need to know to use OLE DB connections to access your datain
PowerBuilder.

Supported OLE DB data providers

For acomplete list of the OLE DB data providers supplied with PowerBuilder and
the data they access, see Section 2.1, “ Database preferences and supported database
interfaces” in Connection Reference and Section 1.1, “ Database parameters and
supported database interfaces’ in Connection Reference.

Page 43


http://msdn.microsoft.com/en-us/library/ms713643.aspx
http://msdn.microsoft.com/en-us/library/ms713643.aspx

Working with Standard Database Interfaces

2.3.1.1 What is OLE DB?
OLE DB API

OLE DB isastandard application programming interface (API) developed by Microsoft.

It isacomponent of Microsoft's Data Access Components software. OLE DB allows an
application to access avariety of datafor which OLE DB data providers exist. It provides an
application with uniform access to data stored in diverse formats, such as indexed-sequential
fileslike Btrieve, persona databases like Paradox, productivity tools such as spreadsheets
and electronic mail, and SQL-based DBM Ss.

The OLE DB interface supports direct connections to SQL -based databases.
Accessing data through OLE DB

Applications like PowerBuilder that provide an OLE DB interface can access datafor which
an OLE DB data provider exists. An OLE DB data provider isadynamic link library (DLL)
that implements OLE DB function calls to access a particular data source.

The PowerBuilder OLE DB interface can connect to any OLE DB data provider that supports
the OLE DB object interfaces listed in the following table. An OLE DB data provider must
support these interfaces in order to adhere to the Microsoft OLE DB 2.0 specification.

Table 2.4: Required OLE DB interfaces

| Accessor IDBInitialize
|ColumnsInfo IDBProperties
|Command | OpenRowset

| CommandProperties IRowset
|CommandText IRowsetInfo
IDBCreateCommand DB SchemaRowset
IDBCreateSession | SourcesRowset

In addition to the required OLE DB interfaces, PowerBuilder also usesthe OLE DB
interfaces listed in the following table to provide further functionality.

Table 2.5: Additional OLE DB interfaces

OLE DB Usein Power Builder
interface

| CommandPrepargPreparing commands and retrieving column information.

IDBInfo Querying the data provider for its properties. If thisinterfaceis not
supported, database connections might fail.

| DBCommandWitlkRasaymaterise data provider for parameters.
|Errorinfo Providing error information.

IErrorRecords | Providing error information.

IIndexDefinition | Creating indexes for the extended attribute system tables. Also creating
indexes in the Database painter. If thisinterface is not supported,
PowerBuilder looks for index definition syntax in the pbodb.ini file.

IMultipleResults | Providing information.

Page 44



Working with Standard Database Interfaces

OLE DB Usein Power Builder
interface

IRowsetChange | Populating the extended attribute system tables when they are created.
Also, for updating blobs.

IRowsetUpdate | Creating the extended attribute system tables.
ISQLErrorinfo | Providing error information.

| SupportErrorinfg Providing error information.

I TableDefinition | Creating the extended attribute system tables and also for creating tables
in the Database painter. If thisinterface is not supported, the following
behavior results:

» PowerBuilder looks for table definition syntax in the pbodb.ini file
» PowerBuilder catalog tables cannot be used

» DDL and DML operations, like modifying columns or editing datain
the database painter, do not function properly

I TransactionL ocal Supporting transactions. If this interface is not supported, PowerBuilder
defaults to AutoCommit mode.

Accessing Unicode data

Using the OLE DB interface, PowerBuilder can connect, save, and retrieve datain both
ANSI/DBCS and Unicode databases but does not convert data between Unicode and ANSI/
DBCS. When character data or command text is sent to the database, PowerBuilder sends
aUnicode string. The data provider must guarantee that the data is saved as Unicode data
correctly. When PowerBuilder retrieves character data, it assumes the datais Unicode.

A Unicode database is a database whose character set is set to a Unicode format, such as
UTF-8, UTF-16, UCS-2, or UCS-4. All data must be in Unicode format, and any data saved
to the database must be converted to Unicode data implicitly or explicitly.

A database that uses ANSI (or DBCYS) asits character set might use special datatypes to store
Unicode data. Columns with these datatypes can store only Unicode data. Any data saved
into such a column must be converted to Unicode explicitly. This conversion must be handled
by the database server or client.

2.3.1.2 Components of an OLE DB connection

When you access an OLE DB data provider in PowerBuilder, your connection goes through
several layers before reaching the data provider. It isimportant to understand that each layer
represents a separate component of the connection, and that each component might come
from a different vendor.

Because OLE DB isastandard API, PowerBuilder uses the same interface to access every
OLE DB data provider. Aslong as an OLE DB data provider supports the object interfaces
required by PowerBuilder, PowerBuilder can access it through the OLE DB interface.

The following figure shows the general components of a OLE DB connection.

Figure: Components of an OLE DB connection

Page 45



Working with Standard Database Interfaces

Development environment

Database interface PROLE.DLL
DL

Supplied by Appeon

Supplied by database

Data Provider OLE DB Data Provider
vendor

Database

2.3.1.3 Obtaining OLE DB data providers

PowerBuilder lets you access datawith any OLE DB data provider if that data provider
supports the OLE DB aobject interfaces required by PowerBuilder. In most cases, these
drivers work with PowerBuilder. However, Appeon might not have tested the driversto
verify this.

2.3.1.4 Supported versions for OLE DB

The OLE DB interface usesa DLL named PBOLE.dII to access a database through an OLE
DB data provider.

Required OLE DB version

To use the OLE DB interface to access an OLE DB database, you must connect
through an OLE DB data provider that supports OLE DB version 2.0 or later. For
information on OLE DB specifications, see the Microsoft documentation at http://
msdn.microsoft.com/en-ug/library/default.aspx.

2.3.2 Preparing to use the OLE DB interface
Before you define the interface and connect to a data provider through OLE DB:

Page 46


http://msdn.microsoft.com/en-us/library/default.aspx
http://msdn.microsoft.com/en-us/library/default.aspx

Working with Standard Database Interfaces

1. Install and configure the database server, network, and client software.

2. Install the OLE DB interface and the OLE DB data provider that accesses your data

source.

3. Install Microsoft's Data Access Components software on your machine.

4. If required, define the OLE DB data source.

Step 1: Install and configurethe data server

Y ou must install and configure the database server and install the network software and client
software.

Toinstall and configur e the database server, network, and client software:

1.

Make sure the appropriate database software isinstalled and running on its server.

Y ou must obtain the database server software from your database vendor. For
installation instructions, see your database vendor's documentation.

Make sure the required network software (such as TCP/IP) isinstalled and running on
your computer and is properly configured so that you can connect to the data server at
your site. You must install the network communication driver that supports the network
protocol and operating system platform you are using.

For installation and configuration instructions, see your network or data source
administrator.

If required, install the appropriate client software on each client computer on which
PowerBuilder isinstalled.

Client softwarerequirements

To determine client software requirements, see your database vendor's documentation.

Step 2: Install the OLE DB interface and data provider

If you install PowerBuilder using the PowerBuilder Installer (an online setup program),

the OLE DB provider isautomatically installed. If you install PowerBuilder using the
downloaded installation package (an offline setup program), select OLE DB Driver from the
list of components. Y ou can install the OLE DB data providers shipped with PowerBuilder,
or you can install data providers from another vendor later.

Step 3: Install the Microsoft Data Access Components softwar e

The PowerBuilder OLE DB interface requires the functionality of the Microsoft Data Access
Components (MDAC) version 2.8 or higher software.

To check the version of MDAC on your computer, you can download and run the MDAC
Component Checker utility from the MDAC Downloads page at http://msdn.microsoft.com/
en-us/data/aa937730.aspx.

Page 47


http://msdn.microsoft.com/en-us/data/aa937730.aspx
http://msdn.microsoft.com/en-us/data/aa937730.aspx

Working with Standard Database Interfaces

OLE DB data providersinstalled with MDAC

Several Microsoft OLE DB data providers are automatically installed with MDAC,
including the providers for OLE DB Provider for SQL Server (SQLOLEDB) and
OLE DB Provider for ODBC (MSDASQL).

Step 4: Definethe OLE DB data source

Once the OLE DB data provider isinstalled, you might have to define the OLE DB data
source the data provider will access. How you define the data source depends on the OLE DB
data provider you are using and the vendor who provided it.

If you are connecting to an ODBC data provider (such as Microsoft's OLE DB Provider for
ODBC), you must define the ODBC data source as you would if you were using a direct
ODBC connection. To define an ODBC data source, use Microsoft's ODBC Data Source
Administrator. Y ou can access this utility from the Control Panel in Windows or from the
Database painter or Database Profile Setup dialog box in PowerBuilder.

2.3.3 Defining the OLE DB interface
Using the OLE DB Database Profile Setup

To define a connection through the OLE DB interface, you must create a database profile by
supplying values for at least the basic connection parameters in the Database Profile Setup --
OLE DB dialog box. Y ou can then select this profile anytime to connect to your datain the
development environment.

For information on how to define a database profile, see Using database profiles.

Specifying connection parameters

Y ou must supply values for the Provider and Data Source connection parameters. Select a
data provider from the list of installed data providers in the Provider drop-down list. The Data
Source value varies depending on the type of data source connection you are making. For
example:

* If you are using Microsoft's OLE DB Provider for ODBC to connect to the Demo
Database, you select MSDASQL as the Provider value and enter the actual ODBC data
source name (for example, Demo Database) as the Data Source value.

* If you are using Microsoft's OLE DB Provider for SQL Server, you select SQLOLEDB
as the Provider value and enter the actual server name as the Data Source value. Y ou
must also use the Extended Properties field to provide the database name (for example,
Database=Pubs) since you might have multiple instances of a database.

Note that Microsoft's OLE DB Provider for SQL Server (SQLOLEDB) is not maintained
any more and it is not recommended to use it for new development.

Note

If you are using Microsoft OLE DB Driver for SQL Server (the new generation of
OLE DB provider for SQL Server), you should select the MSOLEDBSQL SQL
Server interface in PowerBuilder; and if you are using SQL Server Native Client, you
should select the SNC SQL Native Client interface in PowerBuilder.

Page 48



Working with Standard Database Interfaces

Using the Data Link API

The Data Link option allows you to access Microsoft's Data Link API, which allows you to
define afile or use an existing file that contains your OLE DB connection information. A
Data Link fileisidentified with the suffix .udl. If you use a Data Link file to connect to your
data source, all other settings you make in the OLE DB Database Profile Setup dialog box are
ignored.

To launch this option, select the File Name check box on the Connection tab and double-
click on the button next to the File Name box. (Y ou can also launch the DataLink APl in the
Database painter by double-clicking on the Manage Data Links utility included with the OLE
DB interface in the list of Installed Database Interfaces.)

For more information on using the Data Link API, see the OLE DB Programmer's Guide in
the Microsoft MSDN library at http://msdn.microsoft.com/en-us/library/ms713643.aspx.

2.4 Using the ADO.NET Interface
About this chapter

This chapter describes the ADO.NET interface and explains how to prepare to use this
interface and how to define an ADO.NET database profile.

For moreinformation

This chapter gives general information about using the ADO.NET interface. For more
detailed information:

» Seethe Data Access and .NET development sections in the Microsoft MSDN library at
http://msdn.microsoft.com/en-us/data/default.aspx.

» Usethe online Help provided by the data provider vendor.

» Check to seeif thereis atechnical document that describes how to connect to your
ADO.NET data provider.

2.4.1 About ADO.NET

ADO.NET isaset of technologies that provides native access to datain the Microsoft .NET
Framework. It is designed to support an n-tier programming environment and to handle a
disconnected data architecture. ADO.NET istightly integrated with XML and uses a common
data representation that can combine data from disparate sources, including XML.

One of the magjor components of ADO.NET isthe .NET Framework data provider, which
connects to a database, executes commands, and retrieves results.

Microsoft provides .NET Framework data providers for SQL Server and OLE DB with
the .NET Framework, and data providers for ODBC and Oracle can be downloaded from the
Microsoft website. Y ou can also obtain .NET Framework data providers from other vendors,
such asthe .NET Framework Data Provider for Adaptive Server Enterprise from SAP.

To connect to a database using the PowerBuilder ADO.NET database interface, you must use
a.NET Framework data provider.

Accessing Unicode data

Page 49


http://msdn.microsoft.com/en-us/library/ms713643.aspx

Working with Standard Database Interfaces

Using the ADO.NET interface, PowerBuilder can connect, save, and retrieve datain both
ANSI/DBCS and Unicode databases but does not convert data between Unicode and ANSI/
DBCS. When character data or command text is sent to the database, PowerBuilder sends
a Unicode string. The data provider must guarantee that the data is saved as Unicode data
correctly. When PowerBuilder retrieves character data, it assumes the data is Unicode.

A Unicode database is a database whose character set is set to a Unicode format, such as
UTF-8, UTF-16, UCS-2, or UCS-4. All data must be in Unicode format, and any data saved
to the database must be converted to Unicode data implicitly or explicitly.

A database that uses ANSI (or DBCYS) asits character set might use special datatypes to store
Unicode data. Columns with these datatypes can store only Unicode data. Any data saved
into such a column must be converted to Unicode explicitly. This conversion must be handled
by the database server or client.

2.4.2 About the PowerBuilder ADO.NET database interface

Y ou can use the PowerBuilder ADO.NET database interface to connect to a data source such
as Adaptive Server Enterprise, Oracle, and Microsoft SQL Server, aswell as to data sources
exposed through OLE DB and XML, in much the same way as you use the PowerBuilder
ODBC and OLE DB database interfaces.

Performance

Y ou might experience better performance if you use a native database interface. The
primary purpose of the ADO.NET interface is to support shared connections with
other database constructs such asthe .NET DataGrid in SAP Datawindow .NET.

2.4.2.1 Components of an ADO.NET connection

When you access a database using ADO.NET in PowerBuilder, your connection goes through
several layers before reaching the database. It isimportant to understand that each layer
represents a separate component of the connection, and that components might come from
different vendors.

The PowerBuilder ADO.NET interface consists of adriver (pbado.dll) and a server
(either Sybase.PowerBuilder.Db.dll or Sybase.PowerBuilder.DbExt.dlIl). The server has
dependencies on afile called pbrth.dil. These DLLs must be deployed with an application
that connects to a database using ADO.NET. For Oracle 10g or Adaptive Server 15 or
later, use Sybase.PowerBuilder.DbEXt.dll. For earlier versions and other DBMSs, use
Sybase.PowerBuilder.Db.dll.

The Datawindow .NET database interface for ADO.NET supportsthe ADO.NET data
providerslisted in the following table.

Table 2.6: Supported ADO.NET data providers

Data Provider Namespace

.NET Framework Data Provider for OLE DB | System.Data.OleDb

.NET Framework Data Provider for SQL System.Data.SqlClient
Server

Oracle Data Provider for .NET (ODP.NET) | Oracle.DataAccess.Client *

Page 50



Working with Standard Database Interfaces

Data Provider

SAP ADO.NET Data Provider for Adaptive | SAP.Data. AseClient
Server Enterprise (ASE)

* Oracle.DataA ccess.Client is unsupported by transaction objects from C#.
Oracle.ManagedDataA ccess.Client is unsupported by transactions objects from PowerBuilder
or C#. These problems exist in PowerBuilder 12.6, 2017, and 2019.

Additional .NET Framework data providers may be supported in future releases. Please see
the release bulletin for the latest information.

The following figure shows the general components of an ADO.NET connection using the
OLE DB .NET Framework data provider.

Figure: Components of an ADO.NET OLE DB connection

Development environment

Databasedriver — PBADO.DLL Supplied by Appeon

Sybase.PowerBuilder.Db.dll
Sybase.PowerBuilder.DbExt.dll

NET Frarnew._rﬂrk — System.Data.CleDb
Data Provider

Databaseserver ——— Supplied by Appeon

Supplied by
—— Microsoft or other
vendor
) MSDACRA, SQLOLEDB, or supplied by
OLE DB der ——— o —
provicer other OLE DB provider database vendor

e i

The following figure shows the general components of an ADO.NET connection using a
native ADO.NET data provider.

Page 51



Working with Standard Database Interfaces

Figure: Components of anative ADO.NET connection

Development environment

Database driver

PBADO.DLL Supplied by Appecn

Sybase.PowerBuilder.Db.dll

Database server Supplied by Appeon

Sybase.PowerBuilder.DbExt.dll

Oracle.Datafccess.Client

. Supplied by SAP,
ADO.NET I:_}ata — Sybase.DataAseClient or — _pp y
Provider - e Microsoft or Orade
System.Data.SqlClient
Database ——

2.4.2.2 OLE DB data providers

When you use the .NET Framework data provider for OLE DB, you connect to a database
through an OLE DB data provider, such as Microsoft's SQLOLEDB or MSDAORA or adata
provider from another vendor.

The .NET Framework Data Provider for OLE DB does not work with the MSDASQL
provider for ODBC, and it does not support OLE DB version 2.5 interfaces.

Y ou can use any OLE DB data provider that supports the OLE DB interfaces listed in the
following table with the OLE DB .NET Framework data provider. For more information
about supported providers, see the topic on .NET Framework data providersin the
Microsoft .NET Framework Developer's Guide.

The PowerBuilder ADO.NET interface supports connection to SQL Anywhere, Adaptive
Server Enterprise, Microsoft SQL Server, Oracle, Informix, and Microsoft Access with the
OLE DB .NET Framework data provider.

After you install the data provider, you might need to define a data source for it.

Page 52



Working with Standard Database Interfaces

Table 2.7: Required interface support for OLE DB data providers

OLE DB object Required interfaces

OLE DB Services

IDatalnitialize

DataSource

IDBInitiaize
IDBCreateSession
IDBProperties

| Persist

Session

| SessionProperties
|OpenRowset

Command

|CommandText

| CommandProperties

MultipleResults

IMultipleResults

RowSet

IRowset
| Accessor
|Columnslinfo

IRowsetInfo (only required if
DBTYPE_HCHAPTER is supported)

Error

|Errorinfo
|ErrorRecords

2.4.3 Preparing to use the ADO.NET interface
Before you define the interface and connect to a database using ADO.NET:

1. Install and configure the database server, network, and client software.

2. Install the ADO.NET interface.

3. Install Microsoft's Data Access Components version 2.6 or higher software on your

machine.

Step 1: Install and configurethe data server

Y ou must install and configure the database server and install the network software and client

software.

Toinstall and configurethe database server, network, and client software:

1. Make surethe appropriate database software isinstalled and running on its server.

Y ou must obtain the database server software from your database vendor. For
installation instructions, see your database vendor's documentation.

2.  Make sure the required network software (such as TCP/IP) isinstalled and running on
your computer and is properly configured so that you can connect to the data server at

Page 53



Working with Standard Database Interfaces

your site. You must install the network communication driver that supports the network
protocol and operating system platform you are using.

For installation and configuration instructions, see your network or data source
administrator.

3. If required, install the appropriate client software on each client computer on which
PowerBuilder isinstalled.

Client softwarerequirements

To determine client software requirements, see your database vendor's documentation.

Step 2: Install the ADO.NET interface

If you install PowerBuilder using the PowerBuilder Installer (an online setup program),

the ADO.NET interface is automatically installed. If you install PowerBuilder using the
downloaded installation package (an offline setup program), select the ADO .NET Database
Driver from the list of components.

Step 3: Install the Microsoft Data Access Components software

The PowerBuilder ADO.NET interface requires the functionality of the Microsoft Data
Access Components (MDAC) version 2.8 or higher software.

To check the version of MDAC on your computer, you can download and run the MDAC
Component Checker utility from the MDAC Downloads page at http://msdn.microsoft.com/
en-us/data/aa937730.aspX.

OLE DB data providersinstalled with MDAC

Several Microsoft OLE DB data providers are automatically installed with MDAC,
including the providers for SQL Server (SQLOLEDB) and ODBC (MSDASQL).

2.4.4 Defining the ADO.NET interface
Using the ADO.NET Database Profile Setup

To define a connection using the ADO.NET interface, you must create a database profile by
supplying values for at least the basic connection parameters in the Database Profile Setup --
ADO.NET dialog box. Y ou can then select this profile at any time to connect to your datain
PowerBuilder.

For information on how to define a database profile, see Using database profiles.

Specifying connection parameters

Y ou must supply avalue for the Namespace and DataSource connection parameters and for
the User ID and Password. When you use the System.Data.OleDb namespace, you must also
select adata provider from the list of installed data providersin the Provider drop-down list.

The Data Source value varies depending on the type of data source connection you are
making. For example, if you are using Microsoft's OLE DB Provider for SQL Server, you
select SQLOLEDB as the Provider value and enter the actual server name as the Data Source
value. In the case of Microsoft SQL Server, you must also use the Extended Propertiesfield

Page 54



Working with Standard Database Interfaces

to provide the database name (for example, Database=Pubs) since you can have multiple
instances of a database.

Using the Data Link APl with OLE DB

The Data Link option allows you to access Microsoft's Data Link API, which allows you to
define afile or use an existing file that contains your OLE DB connection information. A
Data Link fileisidentified with the suffix .udl.

To launch this option, select the File Name check box on the Connection page and double-
click the button next to the File Name box. (Y ou can aso launch the Data Link APl in the
Database painter by double-clicking the Manage Data Links utility included with the OLE
DB interface in the list of Installed Database Interfaces.)

For more information on using the Data Link API, see Microsoft's Universal Data Access
website at http://msdn.microsoft.com/en-us/data/default.aspx.

Using a Data Link file ver sus setting the database parameters

If you use aData Link file to connect to your data source, all other database-specific
settings you make in the ADO.NET Database Profile Setup dialog box are ignored.

2.4.4.1 Getting identity column values

Y ou can use the standard select @@identity syntax to obtain the value of an identity column.
Y ou can also use an aternative syntax, such as select scope identity(), by adding sections to
a.NET configuration file for your application.

Setting up a dbConfiguration section in a configuration file

The following example shows the general structure of a configuration file with a database
configuration section and one custom configuration section:

<confi gurati on>
<confi gSecti ons>
<sectionG oup name="dbConfi guration">
<section nanme="mycust onctonfig"
t ype="Sybase. Power Bui | der . Db. DbConf i gur ati on,
Sybase. Power Bui | der . Db"
/>
</ secti onG oup>
</ confi gSecti ons>

<dbConfi gurati on>
<mycust onconfi g dbPar n="opti onal _val ue"
getl dentity="optional _syntax"
/>
</ dbConfi gur ati on>
</ confi gurati on>

To add a database configuration section to a .NET configuration file:

1. Inthe <configSections> section of the configuration file, add a <sectionGroup> element
with the name "dbConfiguration”. This name is case sensitive.
<configSections> must appear at the beginning of the configuration file, before the
<runtime> section if any.

2. Inthe dbConfiguration <sectionGroup> element, add one of more <section> elements.

Page 55



Working with Standard Database Interfaces

For each section, specify a name of your choice and atype. The type is the strong name
of the assembly used to parse this section of the configuration file.

3. Close the <section> and <configSections> elements and add a <dbConfiguration>
element.

4. For each section you defined in step 2, add a new element to the <dbConfiguration>
element.

For example, if you defined a section called configl, add a configl element. Each
element has two attributes: dbParm and getldentity. Y ou can set either or both of these
attributes.

The dbParm value sets the value of the DBParm parameter of the transaction object.

It has a maximum length of 1000 characters. If you set avalue for a parameter in the
configuration file, any value that you set in code or in the Database Profile Setup dialog
box is overridden.

The getldentity value specifies the syntax used to retrieve the value of an identity
column. It has a maximum length of 100 characters. If you do not specify avalue for
getldentity, the select @@identity syntax is used.

Sample configuration file

This sample configuration file for PowerBuilder 2019 R3 is called pb190.exe.config. It
contains three custom configurations. The <myconfig> element sets both the doParm and
getldentity attributes. <myconfigl> sets getldentity only, and <myconfig2> sets dbParm
only. The <runtime> section is in the configuration file that ships with PowerBuilder but
would not be included in the configuration file that you ship with your application, which
would have the same name as your application with the extension exe.config.

<confi gurati on>
<confi gSecti ons>
<sectionG oup name="dbConfi guration">
<secti on name="myconfi g"
t ype="Sybase. Power Bui | der . Db. DbConf i gur ati on,
Sybase. Power Bui | der . Db"
/>
<secti on nanme="myconfi gl"
t ype="Sybase. Power Bui | der . Db. DbConf i gur ati on,
Sybase. Power Bui | der . Db"
/>
<secti on nanme="myconfi g2"
t ype="Sybase. Power Bui | der . Db. DbConf i gur ati on,
Sybase. Power Bui | der . Db"
/>
</ secti onG oup>
</ confi gSecti ons>

<runti ne>
<assenbl yBi ndi ng xm ns=
"urn: schemas-ni crosoft-comasmvi">
<dependent Assenbl y>

<assenbl yl dentity nane=

" Sybase. Power Bui | der. Db"/ >

<codeBase href="file:///C./ProgramFil es/
Appeon/ Power Bui | der 19. 0/ Dot NET/ bi n/
Sybase. Power Bui | der. Db. dl | "/ >

Page 56



Working with Standard Database Interfaces

</ dependent Assenbl y>
<dependent Assenbl y>
<assenbl yldentity nane=
" Sybase. Power Bui | der . WebSer vi ce. WBDL" / >
<codeBase href="file:///C./ProgramFiles/
Appeon/ Power Bui | der 19. 0/ Dot NET/ bi n/
Sybase. Power Bui | der. WebSer vi ce. WsDL. dI | "/ >
</ dependent Assenbl y>
<dependent Assenbl y>
<assenbl yldentity nane=
" Sybase. Power Bui | der . WebSer vi ce. Runti ne"/ >
<codeBase href="file:///C:./Program Fil es/
Appeon/ Power Bui | der 19. 0/ Dot NET/ bi n/
Sybase. Power Bui | der. WebSer vi ce.
Runtine.dl|"/>
</ dependent Assenbl y>
<probi ng privat ePat h="Dot NET/ bi n" />
</ assenbl yBi ndi ng>
</runti me>
<dbConfi gurati on>
<myconfi g dbParm="di sabl ebi nd=1"

getldentity="sel ect scope_identity()" />
<myconfi gl getldentity="sel ect scope_identity()"
/>

<myconfi g2 dbPar m
"Nanmespace=' Or acl e. Dat aAccess. d i ent',
Dat aSour ce=' or alOgen', Di sabl eBi nd=1,
NChar Bi nd=1, ADORel ease=' 10. 1. 0. 301" " />
</ dbConfi gur ati on>
</ confi guration>

Specifying the custom configuration to be used

On the System tab page in the Database Profile Setup dialog box for ADO.NET or in code,
specify the name of the custom configuration section you want to use as the value of the
DbConfigSection parameter. For example:

Sqgl ca. DBPar n¥" DbConf i gSect i on=' myconfi g'"

If you set any parameters in the profile or in code that are also set in the configuration file,
the value specified in the configuration file takes precedence.

The configuration file must be present in the same directory as the executable file and must
have the same name with the extension .config.

2.4.5 Sharing ADO.NET Database Connections

PowerBuilder applications can share database ADO.NET connections with third-party .NET
assemblies exposed as COM through a connection proxy. The connection proxy isan
instance of type | AdoConnectionProxy.

The |AdoConnectionProxy interface is defined in the
Sybase.PowerBuilder.DataSource.Sharing.dll assembly as follows:

| AdoConnect i onProxy {
obj ect Connection; //accepts System Data. | DbConnecti on
obj ect Transaction; //accepts System Data. | DbTransacti on
event Event Handl er Transacti onChanged;

}

Both the PowerBuilder application and the third-party assembly manage connections and
transactions by referencing the proxy.

Page 57



Working with Standard Database Interfaces

The assembly must be registered as COM by using regasm.exe under the Microsoft. NET
\Framework\v4.0 folder. Please refer to the Microsoft MSDN library for information about
regasm.exe.

The PowerBuilder Transaction object is the standard PowerBuilder nonvisual object used in
database connections. To manage the shared connection, the Transaction object references
the AdoConnectionProxy object using these methods:

* bool SetAdoConnection (oleobject connectionProxy) -- accepts an imported ADO.NET
connection.

* oleobject GetAdoConnection() -- accepts an ADO.NET connection exported from the
Transaction object.

2.4.5.1 Importing an ADO.NET Connection from a Third-Party .NET Assembly

Y ou can import an ADO.NET connection from an external .NET assembly into a
PowerBuilder application, enabling the application and the assembly to share the connection.

Use the SetAdoConnection method:

bool Set AdoConnecti on(ol eobj ect proxy)

where proxy isthe instance of type |AdoConnectionProxy that is passed in by the third-party
assembly.

The imported connection and any transaction are assigned to the | AdoConnectionProxy
instance.

The method returns true if the parameter is available (that is, the parameter is an instance of
| AdoConnectionProxy or null). It returns false if the operation fails.

Start the connection after invoking SetAdoConnection.
Sample Power Script Code

/| Sanpl e Power Scri pt code
SQLCA. DBMS = " ADO. NET"
SQLCA. Aut oCommit = true
SQLCA. DBPar m = " Nanespace=' Syst em Dat a. Odbc' , Dat aSour ce=' SQL Anywhere 11 Denp'"
bool retVal = SQLCA. Set AdoConnecti on( enp. AdoConnect i onPr oxy)
/1l enp is an instance of a type in the 3rd-party .NET assenbly
if (retVal = true) then
connect usi ng SQLCA;
/1 db operations
end if

Sample C# Code
Here is an example of C# code in the third-party assembly:

public class Enp {
private | DbConnection conn;
private | DbTransaction trans;

private | AdoConnecti onProxy proxy;

publ i c obj ect AdoConnecti onProxy {
get {
/1 di sposi ng/ cl ean-up acti ons.
if (null == proxy) {

Page 58



Working with Standard Database Interfaces

proxy = new AdoConnecti onProxy();

}

proxy. Connection = conn;
proxy. Transaction = trans;
return proxy;

set {

/1 di sposi ng/ cl ean-up acti ons.

proxy = val ue as | AdoConnecti onProxy;

if (null !'= proxy) {
if (conn !'= proxy.Connection as |DbConnecti on)
this. Di sconnect () ;
conn = proxy. Connection as |DbConnecti on;
trans = proxy. Transaction as | DbTransacti on;
proxy. Transact i onChanged += new

Event Handl er ( pr oxy_Transact i onChanged) ;
} else {
/1 di sposi ng/ cl ean-up acti ons.
}

2.4.5.2 Exporting an ADO.NET Connection to a Third-Party .NET Assembly

To export an ADO.NET connection from a PowerBuilder application, use the
GetAdoConnection method:

ol eobj ect Get AdoConnecti on()

The method returns an instance of 1AdoConnectionProxy. The proxy's ADO connection
object is assigned to property | AdoConnectionProxy.Connection.

When atransaction starts, the proxy's active Transaction object is assigned to property
| AdoConnectionProxy.Transaction, and AutoCommit is false. When AutoCommit istrue, the
exported | AdoConnectionProxy. Transaction is null..

The method returns null if the connection fails, and false if the operation fails.

To use the shared connection, your third-party assembly must reference the exported
connection proxy and manage the transaction. To be notified when the active transaction is
changed, you can subscribe the | AdoConnection. TransactionChanged event . Remember to
close the connection.

Sample Power Script Code

/| Sanpl e Power Scri pt code

SQLCA. DBMS = " ADO. NET"

SQLCA. AutoCommit = fal se

SQLCA. DBPar m = " Nanespace=' Syst em Dat a. Odbc' , Dat aSour ce=' SQL Anywhere 11 Denp'"
Connect Usi ng SQLCA;

enp. Connect i onProxy = SQLCA. Get AdoConnecti on()

/1 db operations

di sconnect usi ng SQLCA;

Sample C# Code
Here is an example of C# code in the third-party assembly:

/! Manage the transaction

Page 59



Working with Standard Database Interfaces

public class Enp {

| AdoConnect i onProxy proxy;
| DbTransacti on trans;

publ i c obj ect ConnectionProxy {
get { return proxy; }
set {
proxy = val ue as | AdoConnecti onProxy;
proxy. Transact i onChanged += new
Event Handl er ( pr oxy_Tr ansact i onChanged) ;

}
}
voi d proxy_Transacti onChanged(obj ect sender, EventArgs e) {

trans = sender as | DbTransacti on;

2.5 Using the OData Interface (Obsolete)

OData data sources are obsolete. An obsolete feature is no longer eligible for technical

support and will no longer be enhanced, although it is still available.

For users who still want to use OData data sources for DataWindow, refer to this section.

Page 60


https://docs.appeon.com/pb2019r2/connecting_to_your_database/ch06.html

Working with Native Database Interfaces

3 Working with Native Database Interfaces

This part describes how to set up and define database connections accessed through one of
the native database interfaces.

3.1 Using Native Database Interfaces
About this chapter

This chapter describes native database interfaces. The following chapters explain how to
prepare to use the database and define any unique database interface parameters so that you
can access your data.

3.1.1 About native database interfaces

The native database interfaces provide native connections to many databases and DBM Ss.
This chapter describes how the native database interfaces access these databases.

For acomplete list of the supported native database interfaces, see Section 2.1, “Database
preferences and supported database interfaces’ in Connection Reference.

A native database interface is a direct connection to your datain PowerBuilder.

Each native database interface uses its own interface DLL to communicate with a specified
database through a vendor-specific database API. For example, the MSOLEDBSQL SQL
Server interface for Microsoft SQL Server usesa DLL named PBMSOLEDBSQL .dll to
access the database, whereas the Oracle 119 database interface accesses the database through
PBORA.dII.

In contrast, a standard database interface uses a standard API to communicate with the
database. For example, PowerBuilder can use asingle-interface DLL (PBODB.dII) to
communicate with the ODBC Driver Manager and corresponding driver to access any ODBC
data source.

3.1.2 Components of a database interface connection

When you use a native database interface to access a database, your connection goes through
several layers before reaching the data. Each layer is a separate component of the connection
and each component might come from a different vendor.

Figure: Components of a database connection

Page 61



Working with Native Database Interfaces

Development environment

Database interface OLL
or shared library

Database client software

Any supported network

protoool

Gateway software (it any)

Database

Supplied by Appeon

Supplied by Appeon

Supplied by database
vendor

Supplied by network
vendor or database
vendor

Supplied by gateway
vendor

Supplied by database
vendor

For diagrams showing the specific components of your connection, see "Basic software
components" in the chapter for your native database interface.

3.1.3 Using a native database interface
Y ou perform several basic steps to use a native database interface to access a database.

About preparing to use the database

The first step in connecting to a database through a native database interface isto prepare to
use the database. Preparing the database ensures that you will be able to access and use your

data in PowerBuilder.

Y ou must prepare the database outside PowerBuilder before you start the product, then define
the database interface and connect to it. The requirements differ for each database -- but in
general, preparing a database involves four basic steps.

Page 62



Working with Native Database Interfaces

To prepareto useyour database with Power Builder:

1. Make surethe required database server software is properly installed and configured at
your site.

2. If network softwareisrequired, make sureit is properly installed and configured at your
site and on the client computer so that you can connect to the database server.

3.  Make sure the required database client software is properly installed and configured on
the client computer. (Typically, the client computer is the one running PowerBuilder.)

Y ou must obtain the client software from your database vendor and make sure that the
version you install supports all of the following:

The operating system running on the client computer
The version of the database that you want to access
The version of PowerBuilder that you are running

4. Verify that you can connect to the server and database you want to access outside
PowerBuilder.

For specific instructions to use with your database, see "Preparing to use the database” in the
chapter for your native database interface.
About installing native database inter faces

After you prepare to use the database, you must install the native database interface that
accesses the database. See the instructions for each interface for more information.

About defining native database interfaces

Once you are ready to access the database, you start PowerBuilder and define the database
interface. To define a database interface, you must create a database profile by completing the
Database Profile Setup dialog box for that interface.

For general instructions, see About creating database profiles. For instructions about defining
database interface parameters unique to a particular database, see "Preparing to use the
database" in the chapter for your database interface.

For moreinformation

The following chapters give general information about using each native database interface.
For more detailed information:

» Check to seeif thereis atechnical document that describes how to connect to your
database.

» Ask your network or system administrator for assistance when installing and setting up the
database server and client software at your site.

3.2 Using Adaptive Server Enterprise
About this chapter

Page 63



Working with Native Database Interfaces

This section describes how to use the Adaptive Server Enterprise database interfacesin
PowerBuilder.

3.2.1 Supported versions for Adaptive Server

Y ou can access Adaptive Server versions 15.x, and 16.x using the SY C Adaptive Server
database interface. Use of thisinterface to access other Open Server programsis not
supported. The SY C database interface usesa DLL named PBSY C.dIl to access the database
through the Open Client CT-Lib API.

Y ou can also access Adaptive Server version 15.x/16.x using the ASE Adaptive Server
database interface. Use of thisinterface to access other Open Server programsis not
supported. The Adaptive Server database interface uses a DLL named PBASE.dII to access
the database through the Open Client CT-Lib API. To use thisinterface, the Adaptive Server
15/16 client must be installed on the client computer. The ASE interface supports large
identifiers with up to 128 characters.

Client Library API

The Adaptive Server database interfaces use the Open Client CT-Library (CT-Lib)
application programming interface (API) to access the database.

When you connect to an Adaptive Server database, PowerBuilder makes the required
callsto the API. Therefore, you do not need to know anything about CT-Lib to use
the database interface.

3.2.2 Supported Adaptive Server datatypes

The Adaptive Server interface supports the SAP datatypes listed in the following tablein
DataWindow objects and embedded SQL.

Table 3.1: Supported datatypesfor Adaptive Server Enterprise

Binary NV arChar
Bigint (15.x and later) Real

Bit SmallDateTime
Char (see Column-length limits) Smalllnt
DateTime SmallMoney
Decimal Text

Double precision Timestamp
Float Tinylnt

[ dentity UniChar

Image UniText (15.x and later)
Int UniVarChar
Money VarBinary
NChar VarChar
Numeric

Page 64



Working with Native Database Interfaces

In Adaptive Server 15.0 and later, PowerBuilder supports unsigned as well as signed bigint,
int, and smallint datatypes. Y ou can also use the following datatypes as identity columns

in Adaptive Server 15.0 and later: bigint, int, numeric, smallint, tinyint, unsigned bigint,
unsigned int, and unsigned smallint.

Accessing Unicode data

PowerBuilder can connect, save, and retrieve datain both ANSI/DBCS and Unicode
databases. When character data or command text is sent to the database, PowerBuilder sends
aDBCS string if the UTF8 database parameter is set to O (the default). If UTF8isset to 1,
PowerBuilder sends a UTF-8 string. The database server must be configured correctly to
accept UTF-8 strings. See the description of the UTF8 database parameter in Section 1.1.182,
“UTF8” in Connection Reference.

The character set used by an Adaptive Server database server appliesto all databases on that
server. The nchar and nvarchar datatypes can store UTF-8 dataif the server character set is
UTF-8. The Unicode datatypes unichar and univarchar were introduced in Adaptive Server
12.5 to support Unicode data. Columns with these datatypes can store only Unicode data.
Any data saved into such a column must be converted to Unicode explicitly. This conversion
must be handled by the database server or client.

In Adaptive Server 12.5.1 and later, additional support for Unicode data has been added. For
more information, see the documentation for your version of Adaptive Server.

Different display valuesin painters

The unichar and univarchar datatypes support UTF-16 encoding, therefore each unichar or
univarchar character requires two bytes of storage. The following example creates atable
with one unichar column holding 10 Unicode characters:

create table unitbl (unicol unichar(10))

In the Database painter, the column displays as unichar(20)because the column requires 20
bytes of storage. Thisis consistent with the way the column displaysin SAP Central.

However, the mapping between the Type in the Column Specifications view in the
DataWindow painter and the column datatype of atable in the database is not one-to-one.
The Type in the Column Specifications view shows the Datawindow column datatype and
DatawWindow column length. The column length is the number of characters, therefore an
Adaptive Server unichar(20)column displays as char(10) in the Column Specifications view.

Column-length limits

Adaptive Server 12.5 and earlier have a column-length limit of 255 bytes. Adaptive Server
12.5.x and later support wider columns for Char, VarChar, Binary, and VarBinary datatypes,
depending on the logical page size and the locking scheme used by the server.

In PowerBuilder, you can use these wider columns for Char and VarChar datatypes with
Adaptive Server 12.5.x when the following conditions apply:

* The Release database parameter is set to 12.5 or higher.
* You are accessing the database using Open Client 12.5.x or later.

The database must be configured to use alarger page size to take full advantage of the widest
limits.

Page 65



Working with Native Database Interfaces

For more information about the Rel ease database parameter, see " Rel ease database
parameter".

When you retrieve or update columns, PowerBuilder converts data appropriately between
the Adaptive Server datatype and the PowerScript datatype. Similarly or identically named
Adaptive Server and PowerScript datatypes do not necessarily have the same definitions. For
information about the definitions of PowerScript datatypes, see the PowerScript Reference.

Conversion in Power Builder scripts

A double that has no fractional component is converted to a string with one decimal place if
the converted string would cause Adaptive Server to have an overflow error when parsing the
string. For example: the double value 12345678901234 would cause an overflow error, so
PowerBuilder converts the double to the string value 12345678901234.0.

3.2.3 Basic software components for Adaptive Server

You must install the software components in the following figure to access an Adaptive
Server database in PowerBuilder.

Figure: Components of an Adaptive Server Enterprise connection

Development environment

Database interface PESYC.DLL or Supplied by Appeon
DLL PBASE.DLL

. SAP Open Client
Databaseclient Client Library for your
software Windows platform

Supplied by SAP

od « Supplied by
NEMOFPEH}I‘EF — Any suppﬂrt‘t lnehm ———network vendor or
(if any) e database vendor

SAP Adaptive
Server Enterprise

Database

Page 66



Working with Native Database Interfaces

3.2.4 Preparing to use the Adaptive Server database

Before you define the interface and connect to an Adaptive Server database in PowerBuilder,
follow these steps to prepare the database for use:

1. Install and configure the required database server, network, and client software.

2. Install the Adaptive Server database interface.

3. Verify that you can connect to Adaptive Server outside PowerBuilder.

4. Install the required PowerBuilder stored procedures in the sybsystemprocs database.
Preparing an Adaptive Server database for use with PowerBuilder involves these four basic
tasks.

Step 1: Install and configurethe database server

Y ou must install and configure the database server, network, and client software for Adaptive
Server.

Toinstall and configurethe database server, network, and client software:

1. Make surethe Adaptive Server database software isinstalled on the server specified in
your database profile.
Y ou must obtain the database server software from SAP.
For installation instructions, see your Adaptive Server documentation.

2. Make sure the supported network software (for example, TCP/IP) isinstalled and

running on your computer and is properly configured so that you can connect to the
database server at your site.

Y ou must install the network communication driver that supports the network protocol
and operating system platform you are using. The driver isinstalled as part of the Net-
Library client software.

For installation and configuration instructions, see your network or database
administrator.

3. Instal the required Open Client CT-Library (CT-Lib) software on each client computer
on which PowerBuilder isinstalled.

Y ou must obtain the Open Client software from SAP. Make sure the version of Open
Client you install supportsall of the following:

The operating system running on the client computer
The version of Adaptive Server that you want to access
The version of PowerBuilder that you are running

Required client softwar e versions

To use the ASE Adaptive Server interface, you must install Open Client version 15.x
or later. To use the SY C Adaptive Server interface, you must install Open Client
version 11.x or later.

Page 67



Working with Native Database Interfaces

4. Make sure the Open Client softwareis properly configured so that you can connect to
the database at your site.

Installing the Open Client software places the SQL.INI configuration file in the
Adaptive Server directory on your computer.

SQL.INI providesinformation that Adaptive Server needsto find and connect to the
database server at your site. Y ou can enter and modify information in SQL.INI by using
the configuration utility that comes with the Open Client software.

For information about setting up the SQL.INI or other required configuration file, see
your Adaptive Server documentation.

5. If required by your operating system, make sure the directory containing the Open Client
softwareisin your system path.

6. Make sure only one copy of each of the following filesisinstalled on your client
computer:

» Adaptive Server interface DLL

» Network communication DLL (for example, NLWNSCK.DLL for Windows Sockets-
compliant TCP/IP)

» Database vendor DLL (for example, LIBCT.DLL)

Step 2: Ingtall the database interface

If you install PowerBuilder using the PowerBuilder Installer (an online setup program), the
Adaptive Server Enterprise (ASE or SY C) database interface is automatically installed. If you
install PowerBuilder using the downloaded installation package (an offline setup program),
select Native Database I nterfaces | Adaptive Server Enterprise (ASE or SY C) database
interface from the list of components.

Step 3: Verify the connection

Make sure you can connect to the Adaptive Server database server and log in to the database
you want to access from outside PowerBuilder.

Some possible ways to verify the connection are by running the following tools:

» Accessing the database server
Tools such as the Open Client/Open Server Configuration utility (or any Ping utility) check
whether you can reach the database server from your computer.

» Accessing the database

Tools such as ISQL (interactive SQL utility) check whether you can log in to the database
and perform database operations. It is a good idea to specify the same connection
parameters you plan to use in your PowerBuilder database profile to access the database.

Step 4: Install the Power Builder stored procedures

PowerBuilder requires you to install certain stored procedures in the sybsystemprocs database
before you connect to an Adaptive Server database for the first time. PowerBuilder uses

Page 68



Working with Native Database Interfaces

these stored procedures to get information about tables and columns from the DBMS system
catalog.

Run the SQL script or scripts required to install the PowerBuilder stored proceduresin the
sybsystemprocs database.

For instructions, see Installing stored procedures in Adaptive Server databases.

3.2.5 Defining the Adaptive Server database interface

To define a connection through the Adaptive Server interface, you must create a database
profile by supplying values for at least the basic connection parametersin the Database
Profile Setup - Adaptive Server Enterprise dialog box. Y ou can then select this profile
anytime to connect to your database in the development environment.

For information on how to define a database profile, see Using database profiles.

3.2.6 Using Open Client security services

The Adaptive Server interfaces provide several DBParm parameters that support Open Client
11.1.x or later network-based security servicesin your application. If you are using the
required database, security, and PowerBuilder software, you can build applications that take
advantage of Open Client security services.

3.2.6.1 What are Open Client security services?

Open Client 11.1.x or later security services allow you to use a supported third-party security
mechanism (such as CyberSafe Kerberos) to provide login authentication and per-packet
security for your application. Login authentication establishes a secure connection, and per-
packet security protects the data you transmit across the network.

3.2.6.2 Requirements for using Open Client security services

For you to use Open Client security servicesin your application, all of the following must be
true:

* You are accessing an Adaptive Server database server using Open Client Client-Library
(CT-Lib) 11.1.x or later software.

* You have the required network security mechanism and driver.

Y ou have the required SAP-supported network security mechanism and SAP-supplied
security driver properly installed and configured for your environment. Depending on
your operating system platform, examples of supported security mechanisms include:
Distributed Computing Environment (DCE) security servers and clients, CyberSafe
Kerberos, and Windows NT LAN Manager Security Services Provider Interface (SSPI).

For information about the third-party security mechanisms and operating system
platforms that Appeon has tested with Open Client security services, see the Open Client
documentation.

* You can access the secure server outside PowerBuilder.

Y ou must be able to access a secure Adaptive Server server using Open Client 11.1.x or
later software from outside PowerBuilder.

Page 69



Working with Native Database Interfaces

To verify the connection, use atool such asISQL or SQL Advantage to make sure you can
connect to the server and log in to the database with the same connection parameters and
security options you plan to use in your PowerBuilder application.

* You are using a PowerBuilder database interface.

You are using the ASE or SY C Adaptive Server interface to access the database.

» The Release DBParm parameter is set to the appropriate value for your database.

Y ou have set the Release DBParm parameter to 11 or higher to specify that your
application should use the appropriate version of the Open Client CT-Lib software.

For instructions, see Release in Section 1.1.130, “Release’” in Connection Reference.

* Your security mechanism and driver support the requested service.

The security mechanism and driver you are using must support the service requested by the
DBParm parameter.

3.2.6.3 Security services DBParm parameters

If you have met the requirements described in Requirements for using Open Client security
services, you can set the security services DBParm parameters in the Database Profile Setup
dialog box for your connection or in a PowerBuilder application script.

There are two types of DBParm parameters that you can set to support Open Client security
services: login authentication and per-packet security.

L ogin authentication DBParms

The following login authentication DBParm parameters correspond to Open Client 11.1.x or
later connection properties that allow an application to establish a secure connection.

Sec_Channel_Bind
Sec Cred Timeout
Sec_Delegation
Sec Keytab File
Sec_Mechanism
Sec_Mutual _Auth
Sec_Network_Auth
Sec_Server_Principal
Sec_Sess Timeout

For instructions on setting these DBParm parameters, see their descriptionsin Chapter 1,
Database Parameters in Connection Reference.

Per-packet security DBParms

The following per-packet security DBParm parameters correspond to Open Client 11.1.x

or later connection properties that protect each packet of data transmitted across a network.
Using per-packet security services might create extra overhead for communications between
the client and server.

Sec_Confidential
Sec_Data Integrity

Page 70



Working with Native Database Interfaces

Sec Data Origin
Sec_Replay Detection
Sec_Seq Detection

For instructions on setting these DBParm parameters, see their descriptionsin Chapter 1,
Database Parameters in Connection Reference.

3.2.7 Using Open Client directory services

The Adaptive Server interfaces provide several DBParm parameters that support Open Client
11.1.x or later network-based directory servicesin your application. If you are using the
required database, directory services, and PowerBuilder software, you can build applications
that take advantage of Open Client directory services.

3.2.7.1 What are Open Client directory services?

Open Client 11.1.x or later directory services allow you to use a supported third-party
directory services product (such as the Windows Registry) as your directory service provider.
Directory services provide centralized control and administration of the network entities
(such as users, servers, and printers) in your environment.

3.2.7.2 Requirements for using Open Client directory services

For you to use Open Client directory servicesin your application, al of the following must be
true:

* You are accessing an Adaptive Server database server using Open Client Client-Library
(CT-Lib) 11.x or later software

* You havethe required SAP-supported directory service provider software and SAP-
supplied directory driver properly installed and configured for your environment.
Depending on your operating system platform, examples of supported security
mechanisms include the Windows Registry and Distributed Computing Environment Cell
Directory Services (DCE/CDS).

For information about the directory service providers and operating system platforms that
Appeon has tested with Open Client directory services, see the Open Client documentation.

* You must be able to access a secure Adaptive Server server using Open Client 11.1.x or
later software from outside PowerBuilder.

To verify the connection, use atool such asISQL or SQL Advantage to make sure you can
connect to the server and log in to the database with the same connection parameters and
directory service options you plan to use in your PowerBuilder application.

* You are using the ASE or SY C Adaptive Server interface to access the database.

» You must use the correct syntax as required by your directory service provider when
specifying the server name in a database profile or PowerBuilder application script.
Different providers require different syntax based on their format for specifying directory
entry names.

For information and examples for different directory service providers, see Specifying the
server name with Open Client directory services.

Page 71



Working with Native Database Interfaces

* You have set the Release DBParm to 11 or higher to specify that your application should
use the behavior of the appropriate version of the Open Client CT-Lib software.

For instructions, see Release database parameter in Section 1.1.130, “Release” in
Connection Reference.

» Thedirectory service provider and driver you are using must support the service requested
by the DBParm.

3.2.7.3 Specifying the server name with Open Client directory services

When you are using Open Client directory servicesin a PowerBuilder application, you must
use the syntax required by your directory service provider when specifying the server namein
a database profile or PowerBuilder application script to access the database.

Different directory service providers require different syntax based on the format they use for
specifying directory entry names. Directory entry names can be fully qualified or relative to
the default (active) Directory Information Tree base (DIT base) specified in the Open Client/
Server configuration utility.

The DIT base is the starting node for directory searches. Specifying a DI Tbase is analogous
to setting a current working directory for UNIX or MS-DOS file systems. (Y ou can specify a
nondefault DIT base with the DS_DitBase DBParm. For information, see"DS DitBase".)

Windowsregistry server name example

This example shows typical server name syntax if your directory service provider isthe
Windows registry.
Node nane: SALES: softwar e\ sybase\server\ SYS12

DI T base: SALES: softwar e\ sybase\ server
Server nane: SYS12

To specify the server namein a database profile;

*  Typethefollowing in the Server box on the Connection tab in the Database Profile
Setup dialog box. Do not start the server name with a backslash ().

SYS12
To specify the server namein a Power Builder application script:

*  Typethefollowing. Do not start the server name with a backslash (\).

SQ.CA. Server Name = "SYS12"

If you specify avaluein the Server box in your database profile, this syntax displayson
the Preview tab in the Database Profile Setup dialog box. Y ou can copy the syntax from
the Preview tab into your script.

DCE/CDS server name example

This example shows typical server name syntax if your directory service provider is
Distributed Computing Environment Cell Directory Services (DCE/CDS).

Node nane: /.../boston. sal es/dat aservers/sybase/ SYS12

Page 72



Working with Native Database Interfaces

DI T base: /../boston. sal es/ dat aservers
Server nane: sybase/ SYS12

To specify the server namein a database profile:

*  Typethefollowing in the Server box on the Connection tab in the Database Profile
Setup dialog box. Do not start the server name with aslash (/).

sybase/ SYS12

To specify the server namein a Power Builder application script:

*  Typethefollowing. Do not start the server name with CN=.
SQLCA. Server Nane = "SYS12"

If you specify avaluein the Server box in your database profile, this syntax displays on
the Preview tab in the Database Profile Setup dialog box. Y ou can copy the syntax from
the Preview tab into your script.

3.2.7.4 Directory services DBParm parameters

If you have met the requirements described in Requirements for using Open Client
security services, you can set the directory services DBParms in a database profile for your
connection or in a PowerBuilder application script.

The following DBParms correspond to Open Client 11.1.x or later directory services
connection parameters:

DS Alias

DS Copy

DS DitBase

DS Failover

DS Password (Open Client 12.5 or later)
DS Principa

DS Provider

DS TimeLimit

For instructions on setting these DBParms, see their descriptionsin Chapter 1, Database
Parametersin Connection Reference.

3.2.8 Using PRINT statements in Adaptive Server stored procedures

The ASE or SY C Adaptive Server database interface allows you to use PRINT statementsin
your stored procedures for debugging purposes.

This means, for example, that if you turn on Database Trace when accessing the database
through the ASE or SY C interface, PRINT messages appear in the trace log but they do not
return errors or cancel the rest of the stored procedure.

3.2.9 Creating a DataWindow object based on a cross-database join

The ability to create a Datawindow object based on a heterogeneous cross-database join is
available through the use of Adaptive Server's Component Integration Services. Component

Page 73



Working with Native Database Interfaces

Integration Services alow you to connect to multiple remote heterogeneous database servers
and define multiple proxy tables that reference the tables residing on those servers.

For information on how to create proxy tables, see the Adaptive Server documentation.

3.2.10 Installing stored procedures in Adaptive Server databases

This section describes how to install PowerBuilder stored procedures in an Adaptive Server
Enterprise database by running SQL scripts provided for this purpose.

Appeon recommends that you run these scripts outside PowerBuilder before connecting to an
Adaptive Server database for the first time through the Adaptive Server (ASE or SYC DBMS
identifier) native database interface. Although the database interface will work without the
PowerBuilder stored procedures created by these scripts, the stored procedures are required
for full functionality.

3.2.10.1 What are the PowerBuilder stored procedure scripts?
What you do

In order to work with an Adaptive Server database in PowerBuilder, you or your system
administrator should install certain stored procedures in the database before you connect to
Adaptive Server from PowerBuilder for the first time.

Y ou must run the PowerBuilder stored procedure scripts only once per database server, and
not before each PowerBuilder session. If you have already installed the PowerBuilder stored
procedures in your Adaptive Server database before connecting in PowerBuilder on any
supported platform, you need not install the stored procedures again before connecting in
PowerBuilder on a different platform.

Power Builder stored procedures

A stored procedure is agroup of precompiled and preoptimized SQL statements that
performs some database operation. Stored procedures reside on the database server where
they can be accessed as needed.

PowerBuilder uses these stored procedures to get information about tables and columns from
the Adaptive Server system catalog. (The PowerBuilder stored procedures are different from
the stored procedures you might create in your database.)

SQL scripts

PowerBuilder provides SQL script files for installing the required stored proceduresin the
sybsystemprocs database:

Table 3.2:
PBSYC.SQL Adaptive Server databases
PBSY C2.5QL Adaptive Server databases to restrict the
Select Tableslist

Whereto find the scripts

Page 74



Working with Native Database Interfaces

The stored procedure scripts are located in the Server directory on the PowerBuilder
installation package. The Server directory contains server-side installation components that
are not installed with PowerBuilder on your computer.

3.2.10.1.1 PBSYC.SQL script
What it does

The PBSY C.SQL script contains SQL code that overwrites stored procedures that correspond
to the same version of PowerBuilder in the Adaptive Server sybsystemprocs database and
then re-creates them.

The PBSY C.SQL script uses the sybsystemprocs database to hold the PowerBuilder stored
procedures. This database is created when you install Adaptive Server.

When torun it

Before you connect to an Adaptive Server database in PowerBuilder for the first time
using the ASE or SYC DBMS identifier, you or your database administrator must run the
PBSY C.SQL script once per database server into the sybsystemprocs database.

Run PBSY C.SQL if the server at your site will be accessed by anyone using the
PowerBuilder or by deployment machines.

If you or your database administrator have already run the current version of PBSY C.SQL to
install PowerBuilder stored procedures in the sybsystemprocs database on your server, you
need not rerun the script to install the stored procedures again.

For instructions on running PBSY C.SQL, see How to run the scripts.

Stored proceduresit creates

The PBSY C.SQL script creates the following PowerBuilder stored proceduresin the
Adaptive Server sybsystemprocs database. The procedures are listed in the order in which the
script creates them.

Table3.3:

PBSYC.SQL What it does
stored

procedure

sp_pb190columnLists the columnsin atable.

sp_pb190pkchectbetermines whether a table has a primary key.
sp_pb190fktable Lists the tables that reference the current table.

sp_pb190procdesRetrieves a description of the argument list for a specified stored
procedure.

sp_pb190proclistLists available stored procedures and extended stored procedures.

If the SystemProcs DBParm parameter is set to 1 or Y es (the default),
sp_pb190proclist displays both system stored procedures and user-defined
stored procedures. If SystemProcsis set to 0 or No, sp_pb190proclist
displays only user-defined stored procedures.

sp_pb190text | Retrieves the text of a stored procedure from the SY SCOMMENTS table.

Page 75



Working with Native Database Interfaces

PBSYC.SQL What it does
stored

procedure

sp_pb190table | Retrievesinformation about all tablesin a database, including those for
which the current user has no permissions.

PBSY C.SQL contains the default version of sp_pb190table. If you want
to replace the default version of sp_pb190table with a version that restricts
the table list to those tables for which the user has SELECT permission,
you can run the PBSY C2.SQL script, described in PBSY C2.SQL script.

sp_pb190index | Retrieves information about all indexes for a specified table.

3.2.10.1.2 PBSYC2.SQL script
What it does

The PBSY C2.SQL script contains SQL code that drops and re-creates one PowerBuilder
stored procedure in the Adaptive Server sybsystemprocs database: a replacement version of
Sp_pb190table.

The default version of sp_pb190tableisinstalled by the PBSY C.SQL script. PowerBuilder
uses the sp_pb190table procedure to build alist of all tablesin the database, including those
for which the current user has no permissions. Thislist displaysin the Select Tables dialog
box in PowerBuilder.

For security reasons, you or your database administrator might want to restrict the table list
to display only those tables for which a user has permissions. To do this, you can run the
PBSY C2.SQL script after you run PBSY C.SQL. PBSY C2.SQL replaces the default version
of sp_pb190table with a new version that displays arestricted table list including only tables
and views:

» Owned by the current user

» For which the current user has SELECT authority

 For which the current user's group has SELECT authority
» For which SELECT authority was granted to PUBLIC

When torunit

If you are accessing an Adaptive Server database using the ASE or SYC DBMS identifier in
PowerBuilder, you must first run PBSY C.SQL once per database server to install the required
PowerBuilder stored procedures in the sybsystemprocs database.

After you run PBSY C.SQL, you can optionally run PBSY C2.SQL if you want to replace
sp_pb190table with aversion that restricts the table list to those tables for which the user has
SELECT permission.

If you do not want to restrict the table list, there is no need to run PBSY C2.SQL.
For instructions on running PBSY C2.SQL, see How to run the scripts.

Stored procedureit creates

Page 76



Working with Native Database Interfaces

The PBSY C2.SQL script creates the following PowerBuilder stored procedure in the
Adaptive Server sybsystemprocs database:

Table 3.4

PBSYC2.SQL What it does
stored

procedure

sp_pb190table | Retrievesinformation about those tables in the database for which the
current user has SELECT permission.

Thisversion of sp_pb190table replaces the default version of
sp_pb190table installed by the PBSY C.SQL script.

3.2.10.2 How to run the scripts

Y ou can use the ISQL or SQL Advantage tools to run the stored procedure scripts outside
PowerBuilder.

3.2.10.2.1 Using ISQL to run the stored procedure scripts

ISQL is an interactive SQL utility that comes with the Open Client software on the Windows
platforms. If you have |SQL installed, use the following procedure to run the PowerBuilder
stored procedure scripts.

For complete instructions on using 1 SQL, see your Open Client documentation.

TouseISQL torun the PowerBuilder stored procedure scripts:

1. Connect to the sybsystemprocs Adaptive Server database as the system administrator.

2. Open one of the following files containing the PowerBuilder stored procedure script you
want to run:
PBSY C.SQL
PBSY C2.SQL

3. Issuethe appropriate ISQL command to run the SQL script with the user ID, server

name, and (optionally) password you specify. Make sure you specify uppercase and
lowercase exactly as shown:

isgl /U sa/S SERVERNAME /i pathname /P { password }

Table 3.5:
sa The user ID for the system administrator. Do not change this user ID.
SERVERNAMH he name of the computer running the Adaptive Server database.
pathname The drive and directory containing the SQL script you want to run.
password (Optional) The password for the sa (system administrator) user ID. The
default Adaptive Server installation creates the sa user ID without a

Page 77



Working with Native Database Interfaces

Parameter Description

password. If you changed the password for sa during the installation,
replace password with your new password.

For example, if you are using PowerBuilder and are accessing the stored procedure
scripts from d:\server, type either of the following:

isql /Usa /S TESTDB /i d:\server\pbsyb.sql /P
isql /Usa /S SALES /i d:\server\pbsyc.sqgl /P adm npwd

3.2.10.2.2 Using SQL Advantage to run the stored procedure scripts

SQL Advantage is an interactive SQL utility that comes with the Open Client software on the
Windows platform. If you have SQL Advantage installed, use the following procedure to run
the PowerBuilder stored procedure scripts.

For complete instructions on using SQL Advantage, see your Open Client documentation.

Touse SQL Advantageto run the Power Builder stored procedur e scripts:

1.

2.

Start the SQL Advantage utility.

Open a connection to the sybsystemprocs Adaptive Server database as the system
administrator.

Open one of the following files containing the PowerBuilder stored procedure script you
want to run:

PBSYC.SQL
PBSY C2.SQL

Delete the use sybsystemprocs command and the go command at the beginning of each
script.

SQL Advantage requires that you issue the use sybsystemprocs command by itself,
with no other SQL commands following it. When you open a connection to the
sybsystemprocs database in step 2, you are in effect issuing the use sybsystemprocs
command. This command should not be issued again as part of the stored procedure
script.

Therefore, to successfully install the stored procedures, you must delete the lines shown
in the following table rom the beginning of the PowerBuilder stored procedure script
before executing the script.

Table 3.6:
PBSY C.SQL use sybsystemprocs
go
PBSY C2.SQL use sybsystemprocs
go

Page 78



Working with Native Database Interfaces

5. Executeall of the statementsin the SQL script.

6. Exit the SQL Advantage session.

3.3 Using Informix
About this chapter

This chapter describes how to use the native IBM Informix database interfacesin
PowerBuilder.

3.3.1 Supported versions for Informix

Y ou can access the IBM Informix Dynamic Server (IDS) database version 10.x/12.x using
the PowerBuilder 110 native Informix database interfaces. Y ou can also access Informix
OnLine and Informix Standard Engine (SE) databases.

The 110 interface in PBI10.dll requires the Informix Client SDK 2.9 or later for Informix
application development and Informix Connect 2.9 or later for runtime deployment.

3.3.2 Supported Informix datatypes

The Informix database interfaces support the Informix datatypes listed in the following table
in Datawindow objects and embedded SQL .

Table 3.7: Supported datatypesfor Infor mix

Blob LVarChar
Boolean Money
Byte (a maximum of 231 bytes) NChar
Char NVarChar
Clob Real
Date Seria
DateTime Serial8
Decimal Smalllnt (2 bytes)
Float Text (amaximum of 2731 bytes)
Int8 Time
Integer (4 bytes) VarChar (1 to 255 bytes)
Interval
Datatype conversion

When you retrieve or update columns, PowerBuilder converts data appropriately
between the Informix datatype and the PowerScript datatype. Keep in mind, however,
that similarly or identically named Informix and PowerScript datatypes do not
necessarily have the same definitions.

Page 79



Working with Native Database Interfaces

For information about the definitions of PowerScript datatypes, see Section 1.2, “ Datatypes’
in Power Script Reference.

3.3.2.1 Informix DateTime datatype

The DateTime datatype is a contiguous sequence of boxes. Each box represents a component
of time that you want to record. The syntax is.

DATETI ME | argest _qualifier TO smallest_qualifier

PowerBuilder defaultsto Year TO Fraction(5).

For alist of qualifiers, see your Informix documentation.

To createyour own variation of the DateTime datatype:

1. Inthe Database painter, create atable with a DateTime column.
For instructions on creating a table, see Section 5.1.5, “Working with tables” in Users
Guide.

2. Inthe Columns view, select Pending Syntax from the Objects or pop-up menu.
The Columns view displays the pending changes to the table definition. These changes
execute only when you click the Save button to save the table definition.

3. Select Copy from the Edit or pop-up menu or click the Copy button.
The SQL syntax (or the portion you selected) is copied to the clipboard.

4. InthelSQL view, modify the DateTime syntax and execute the CREATE TABLE
statement.

For instructions on using the ISQL view, see Part |, “Users Guide”.

3.3.2.2 Informix Time datatype

The Informix database interfaces also support atime datatype. The time datatype is a subset
of the DateTime datatype. The time datatype uses only the time qualifier boxes.

3.3.2.3 Informix Interval datatype

The interval datatype is one value or a sequence of values that represent a component of time.
The syntax is:

I NTERVAL | argest _qualifier TO smal |l est_qualifier

PowerBuilder defaults to Day(3) TO Day. For more about interval datatypes, see your
Informix documentation.

3.3.3 Features supported by the 110 interface

The interface of 110 supports several features that are not available when you use the IN9
interface. Some of these features require a specific version of the Informix Dynamic Server
database.

Page 80



Working with Native Database Interfaces

3.3.3.1 Accessing Unicode data

PowerBuilder can connect, save, and retrieve datain ANSI/DBCS databases using the
IN9 interface, but the IN9 interface does not support Unicode databases. The Informix 110
interface supports ANSI/DBCS and Unicode databases.

The 110 native interface uses the Informix GL S (Global Language Support) API for global
language support. The native interface uses three DBParms to help you set up the locale used
in the current connection:

e Client_Locae

« DB _Locae

o StrByCharset

These parameters are available on the Regional Settings tab page in the Database Profile
Setup dialog box.

Client_Locale

Client_L ocale specifies the value of the Informix environment variable CLIENT _LOCALE.
The format islanguage_territory.codeset. For example:

Client _Local e=' en_us. 1252’

Client _Local e='en_us. utf8'

The 110 interface uses this setting to access string datain an Informix database and to process

SQL statements. If you do not set the DBParm, the default locale value is based on the OS
locale.

DB_Locale

DB_L ocale specifies the value of the Informix environment variable DB_LOCALE. The
format islanguage _territory.codeset. For example:

DB Local e=' en_us. 1252'
DB Local e=' en_us. ut f 8'

DB_LOCALE specifiesthe language, territory, and code set that the database server needs
to correctly interpret locale-sensitive datatypes such as NChar and NVarChar in a specific
database. The code set specified in DB_L OCALE determines which characters are valid

in any character column, as well asin the names of database objects such as databases,
tables, columns, and views. If you do not set the DBParm, the 110 interface assumes that the
DB_LOCALE valueisthesameasthe CLIENT _LOCALE value.

You can set the CLIENT_LOCALE and DB_LOCALE environment variables directly
using the Informix Setnet32 utility, available in the Utilities folder for the Informix database
interfaces in the Objects view in the Database painter or the Database Profiles dialog box.

For more information about the Informix CLIENT_LOCALE and DB_LOCALE
environment variables, see the IBM Informix GLS User's Guide, currently available at the

Informix library website at http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?
topic=/com.ibm.glsug.doc/glsug.htm.

StrByChar set

The StrByCharset DBParm specifies how to convert string data between PowerBuilder
Unicode strings and Informix client multibyte strings. By default, string conversion for

Page 81


http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?topic=/com.ibm.glsug.doc/glsug.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?topic=/com.ibm.glsug.doc/glsug.htm

Working with Native Database Interfaces

UTF-8 code setsis based on the UTF-8 code set, and string conversion for non-UTF-8 code
setsis based on the current OS code page. If StrByCharset is set to 1 (true), string conversion
is based on the code set specified in the DBParm Client_L ocale.

3.3.3.2 Assigning an owner to the PowerBuilder catalog tables

When you use the 110 interface, you can use the PBCatalogOwner DBParm on the System
tab page to assign a nondefault owner to the extended attribute system tables. For ANSI-
compliant databases, the owner name that you specify must be unique but the table name
does not have to be unique. Y ou can create multiple sets of catalog tables prefaced with
different user names. However, if the database is not ANSI-compliant, the table name must
be unique, so that only one set of catalog tables can be created with an assigned owner name.

3.3.3.3 Support for long object names
The 110 interface supports Informix long object names with up to 128 characters.

3.3.3.4 Renaming an index

With IDS 9.2.1 and later, you can change the name of an index in the Database painter when
you are connected using the 110 interface. The 110 interface uses the IDS RENAME INDEX
statement to change the name of the index. Y ou need only drop and recreate the index if you
want to make other changes.

3.3.3.5 SQL statement caching

In1DS 9.2.1 and later, the database server uses the SQL statement cache (SSC) to store SQL
statements across user sessions. When any user executes a statement already stored in the
SQL statement cache, the database server does not parse and optimize the statement again,
resulting in improved performance. The statement must be a SELECT, UPDATE, DELETE,
or INSERT statement, and it cannot contain user-defined routines.

There are several ways to configure caching on the server. The SET STATEMENT

CACHE statement takes precedence over the STMT_CACHE environment variable and the
STMT_CACHE configuration parameter. Y ou must enable the SQL statement cache, either
by setting the STMT_CACHE configuration parameter or by using the Informix onmode
utility, before the SET STATEMENT CACHE statement can execute successfully.

Y ou can set the StmtCache DBParm on the System tab page in the Database Profile Setup
dialog box for 110 connections to turn SQL statement caching on or off on the client.
However, the server must be configured to support SQL statement caching before you can
access the cache from the client.

For more information about Informix SQL statement caching, see the IBM Informix
Dynamic Server Performance Guide at http://publib.boul der.ibm.com/infocenter/idshel p/
v111/index.jsp?topic=/com.ibm.glsug.doc/glsug.htm.

3.3.3.6 Creating and dropping indexes without locking

In1DS 10.0 and later, the SQL syntax of CREATE INDEX and DROP INDEX supports the
ONLINE keyword to create or drop an index in an online environment where the database
and its tables are continuously available. When you use the ONLINE keyword to create

Page 82


http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?topic=/com.ibm.glsug.doc/glsug.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v111/index.jsp?topic=/com.ibm.glsug.doc/glsug.htm

Working with Native Database Interfaces

or drop an index, data definition language (DDL) operations execute without applying an
exclusive lock on the table on which the specified index is defined.

If you use CREATE INDEX ONLINE to create an index on atable that other users are
accessing, the index is not available until no users are updating the table.

If you issue DROP INDEX ONLINE to drop an index, no users can reference the index,
but concurrent data manipulation language (DML) operations can use the index until the
operations terminate. Dropping the index is deferred until no users are using the index.

Y ou can set the Onlinelndex static DBParm on the System tab page in the Database Profile
Setup dialog box for 110 connections to specify that the Database painter should use the
ONLINE keyword when you create or drop an index.

Clustered index not supported

Y ou cannot create a clustered index using online mode because it is not supported by
IDS.

3.3.3.7 Column-level encryption

In1DS 10.0 and later, the SQL statement SET ENCRY PTION PASSWORD can improve
the confidentiality of data and support dataintegrity by defining or resetting a password for
encryption and decryption of data at the column level.

Y ou can set the EncryptionPass and Hint static DBParms on the System tab page in the
Database Profile Setup dialog box for 110 connections to specify a password and a hint to
help you remember the password. The application uses built-in Informix functions to encrypt
and decrypt character data.

3.3.3.8 Using multiple OUT parameters in user-defined routines

In a user-defined routine (UDR), an OUT parameter corresponds to a value returned through
apointer. Before IDS version 9.4, IDS supported no more than one OUT parameter in a
UDR, and any OUT parameter was required to appear as the last item in the parameter list.
IDS version 9.4 drops these restrictions, supporting multiple OUT parameters anywhere

in the parameter list of the UDR. Thisfeature is available when you use the 110 interface.

It provides greater flexibility in defining UDRS, and removes the need to return collection
variables in contexts where multiple returned values are required.

To return OUT parameters from a UDR, you must use statement local variables (SLVS).

In the following statement, the OUT parameter in the UDR myfunc is defined using the SLV
syntax slvname#out_param_type.

SELECT sal es FROM nyt abl e WHERE nyfunc(10, sal es#npney) < 1000

Informix does not support invoking a UDR with OUT parameters using an EXECUTE
statement, therefore multiple OUT parameters are not supported in PowerBuilder remote
procedure calls and embedded SQL EXECUTE PROCEDURE commands.

3.3.4 Basic software components for Informix

The following figure shows the basic software components required to access an Informix
database using the native Informix database interfaces.

Page 83



Working with Native Database Interfaces

Figure: Components of an Informix connection

Development environment

Database interface PBIM9.DLL ar

DLL PBINO.DLL

Supplied by Appeon

Database client Infarmix client software for

software your DBMS version

Supplied by IBM

Supplied by
Metwork layer Any supported network network vendar or
(if any) slraitzel databasevendor

Infarmix

Database

3.3.5 Preparing to use the Informix database

Before you define the database interface and connect to an Informix database in
PowerBuilder, follow these steps to prepare the database for use:

1. Install and configure the required database server, network, and client software.
2. Install the native Informix IN9 or 110 database interface.
3. Verify that you can connect to the Informix server and database outside PowerBuilder.

Step 1: Install and configurethe database server

You must install and configure the required database server, network, and client software for
Informix.

Toinstall and configurethe required database server, network, and client software:

1. Make surethe Informix database server software and database network softwareis
installed and running on the server specified in your database profile.

Page 84



Working with Native Database Interfaces

Y ou must obtain the database server and database network software from Informix.
For installation instructions, see your Informix documentation.

2. Install the required Informix client software on each client computer on which
PowerBuilder isinstalled.

Install Informix Connect or the Informix Client SDK (which includes Informix
Connect).

Y ou must obtain the Informix client software from IBM. Make sure the version of the
client software you install supports al of the following:

The operating system running on the client computer
The version of the database that you want to access
The version of PowerBuilder that you are running
For installation instructions, see your Informix documentation.
3.  Make sure the Informix client software is properly configured so that you can connect to
the Informix database server at your site.

Run the SetNet32 utility to configure the client registry settings. When you

configure Informix Connect client software, it creates aregistry entry in
HKEY_LOCAL_MACHINE\Software\Informix\SglHosts. The registry entry contains
parameters that define your network configuration, network protocol, and environment
variables. If you omit these values from the database profile when you define the native
Informix database interface, they default to the values specified in the registry entry.

For instructions on configuring your Informix client software, see your Informix
documentation.

4. If required by your operating system, make sure the directory containing the Informix
client software isin your system path.

Step 2: Install the database interface

If you install PowerBuilder using the PowerBuilder Installer (an online setup program), the
native Informix database interface is automatically installed. If you install PowerBuilder
using the downloaded installation package (an offline setup program), select Native Database
Interfaces | Informix interface from the list of components.

Step 3: Verify the connection

Make sure you can connect to the Informix server and database you want to access from
outside PowerBuilder.

To verify the connection, use any Windows-based utility (such as the Informix ilogin.exe
program) that connects to the database. When connecting, be sure to specify the same
parameters you plan to use in your PowerBuilder database profile to access the database.

For instructions on using ilogin.exe, see your Informix documentation.

Page 85



Working with Native Database Interfaces

3.3.6 Defining the Informix database interface

To define a connection through an Informix database interface, you must create a database
profile by supplying values for at least the basic connection parametersin the Database
Profile Setup dialog box for Informix IN9 or 110. Y ou can then select this profile at any time
to connect to your database in the devel opment environment.

For information on how to define a database profile, see Using database profiles.

3.3.6.1 Specifying the server name

When you specify the server name value, you must use the following format to connect to the
database through the Informix interfaces:

host _name@er ver _nane

Table3.8:

Parameter Description

host_name | The name of the host computer running the Informix database server. This
corresponds to the Informix HOSTNAME environment variable.

server_name| The name of the server containing the Informix database. This corresponds to
the Informix SERVER environment variable.

For example, to use a PowerBuilder native interface to connect to an Informix database
server named serverOl1 running on a host machine named sales, do either of the following:
* |n adatabase profile

Type the host name (sales) in the Host Name box and the server name (server0l) in the
Server box on the Connection tab in the Database Profile Setup dialog box. PowerBuilder
saves this server name as sales@serverOl in the database profile entry in the system

registry.
* InaPowerBuilder script
Type the following in your PowerBuilder application script:

SQLCA. Server Nane = "sal es@erver 01"

Tip
If you specify avalue for Host Name and Server in your database profile, this syntax

displays on the Preview tab in the Database Profile Setup dialog box. Y ou can then
copy the syntax from the Preview tab into your script.

3.3.7 Accessing serial values in a PowerBuilder script

If you are connecting to an Informix database from a PowerBuilder script, you can obtain
the serial number of the row inserted into an Informix table by checking the value of the
SQL ReturnData property of the Transaction object.

After an embedded SQL INSERT statement executes, SQL ReturnData contains the serial
number that uniquely identifies the row inserted into the table.

Page 86



Working with Native Database Interfaces

PowerBuilder updates SQL ReturnData following an embedded SQL statement only; it does
not update it following a DatawWindow operation.

3.4 Using Microsoft SQL Server
About this chapter

This chapter describes how to use the MSOLEDBSQL SQL Server and SNC SQL Native
Client database interfaces in PowerBuilder, to connect with the Microsoft SQL Server
database.

3.4.1 Supported versions for SQL Server
PowerBuilder provides the following SQL Server database interfaces. These interfaces use
different DLLs and access different versions of SQL Server.

Table 3.9: Supported native database interfacesfor SQL Server

SQL Server interface DLL

MSOLEDBSQL SQL Server PBMSOLEDBSQL.dlI
SNC SQL Native Client PBSNC.dII

The M SOLEDBSQL SQL Server interface allows you to connect to the Microsoft SQL
Server 2012, 2014, 2016, 2017, or 2019 databases using the Microsoft OLE DB Driver

for SQL Server. The Microsoft OLE DB Driver 18.2 or later must be installed on the

client computer. Before installing the driver, check the supported OS version at: https://
docs.microsoft.com/en-us/sgl/connect/ol edb/applicati ons/support-policies-for-ol edb-driver-
for-sgl-serverview=sgl-server-verls. Y ou can download the driver from the Microsoft
website at https.//docs.microsoft.com/en-us/sgl/connect/ol edb/downl oad-ol edb-driver-for-sgl -
serverview=sqgl-server-verls.

The SNC SQL Native Client interface allows you to connect to the Microsoft SQL Server
2008 R2, 2012, 2014, 2016, 2017, or 2019 databases using the SQL Server Native Client.
The SQL Server 2016 or later SQL Native Client software must be installed on the client
computer.

PBODB initialization file not used

Connections made directly through OLE DB Provider use the PBODB initialization
file to set some parameters, but connections made using the MSOLEDBSQL or SNC
interface do not depend on the PBODB initialization file.

Microsoft OLE DB Driver for SQL Server vs. Microsoft OLE DB Provider for
SQL Server

The Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL) isthe new
generation of the OLE DB provider for SQL Server; it is connected through the native
database interface (MSOLEDBSQL SQL Server). The Microsoft OLE DB Provider
for SQL Server (SQLOLEDB) is connected through the standard database interface
(OLE DB), however it is not maintained any more and it is not recommended to use it
for new development.

Page 87


https://docs.microsoft.com/en-us/sql/connect/oledb/applications/support-policies-for-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/applications/support-policies-for-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/applications/support-policies-for-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

Working with Native Database Interfaces

3.4.2 Supported SQL Server datatypes

The MSOLEDBSQL SQL Server and SNC SQL Native Client database interfaces support

the datatypes listed in the following table.

Table 3.10: Supported datatypesfor Microsoft SQL Server 2005

Binary Real

Bit SmallDateTime
Character (fewer than 255 characters) Smalllnt
DateTime SmallMoney
Decimal Text

Float Timestamp

| dentity Tinylnt

Image VarBinary(max)
Int VarBinary(n)
Money VarChar(max)
Numeric VarChar(n)

NV arChar(max) XML
NVarChar(n)

The XML datatypeis abuilt-in datatype in SQL Server 2005 that enables you to store

XML documents and fragmentsin a SQL Server database. The XML datatype maps to the
PowerScript String datatype. Y ou can use this datatype as a column type when you create
atable, asavariable, parameter, or function return type, and with CAST and CONVERT

functions.

Additional datatypes are supported for SQL Server 2008. For more information, see Support

for new datatypesin SQL Server 2008.

Datatype conversion

When you retrieve or update columns, PowerBuilder converts data appropriately
between the Microsoft SQL Server datatype and the PowerScript datatype. Keep
in mind, however, that similarly or identically named SQL Server and PowerScript

datatypes do not necessarily have the same definitions.

For information about the definitions of PowerScript datatypes, see Section 1.2,

“Datatypes’ in Power Script Reference.

In SQL Server 2005, the VarChar(max), NVarChar(max), and VarBinary(max) datatypes
store very large values (up to 2*31 bytes). The VarChar(max) and NV arChar(max) datatypes

map to the PowerScript String datatype and the VarBinary(max) datatype maps to the

PowerScript Blob datatype. Y ou can use these datatypes to obtain metadata, define new

columns, and query data from the columns. Y ou can aso use them to pipeline data.

Working with large data values

Page 88



Working with Native Database Interfaces

For large data values of datatypes Text, NText, Image, Varchar(max), NVarchar(max),
VarBinary(max), and XML, the MSOLEDBSQL and SNC interfaces support reading data
directly from the database using an embedded SQL statement.

Example 1:
sel ect image_col into :blob_var from nytable where key col = 1;
Example 2:

decl are cur cursor for select id, inmage_col from nytable;
open cur;
fetch cur into :id_var, :blob_var;

If the result set contains alarge datatype of type Text or Varchar(max), using ANSI
encoding, you must set a maximum size for each large value using the PBMaxBlobSize
database parameter. For other large datatypes, there is no limitation on the size of the data.
The MSOLEDBSQL and SNC interfacesretrieve all the data from the database if there is
sufficient memory.

The MSOLEDBSQL and SNC interfaces support inserting and updating values of large
datatypes using embedded SQL INSERT and UPDATE statements. Y ou must set the
DisableBind database parameter to 0 to enable the MSOLEDBSQL or SNC interface to bind
large data values. For example:

Insert into nmytable (id, blob_col) values(1, :blob_var);
Updat e nytabl e set blob_col = :blob_var where id = 1;
3.4.3 Basic software components for Microsoft SQL Server

Y ou must install the software components in the following figure to access a database with
the MSOLEDBSQL SQL Server or SNC SQL Native Client interface.

Figure: Components of a Microsoft SQL Server connection

Page 89



Working with Native Database Interfaces

Development environment

Database interface

sl pbmsoledbsql.dil / pbsnc.dil Supplied by Appeon

OLL
Database client or Microsoft OLE DB Driver / SQL Supplied by
driver Server Native Client Microsoft
W o Supplied by
Nehmrlflayer Any SUPF“D:‘ lrrehm ———network vendor or
(if any) protoco database vendor
Database Microsoft SQL

Server

3.4.4 Preparing to use the SQL Server database

Before you define the database interface and connect to a Microsoft SQL Server database in
PowerBuilder, follow these steps to prepare the database for use:

1. Install and configure the required database server, network, and client software.
2. Ingtall the SQL Server (MSOLEDBSQL) or SQL Native Client (SNC) database interface.

3. Verify that you can connect to the Microsoft SQL Server server and database outside
PowerBuilder.

Step 1: Install and configurethe database server

You must install and configure the database server, network, and client software for SQL
Server.

Toinstall and configurethe database server, network, and client software:

1. Make surethe Microsoft SQL Server database software isinstaled and running on the
server specified in your database profile.

Page 90



Working with Native Database Interfaces

Y ou must obtain the database server software and required licenses from Microsoft
Corporation. For installation instructions, see your Microsoft SQL Server
documentation.

Upgrading from an earlier version of SQL Server

For instructions on upgrading to alater version of SQL Server or installing it
alongside an earlier version, see your Microsoft SQL Server documentation.

2. If you are accessing aremote SQL Server database, make sure the required network
software (for example, TCP/IP) isinstalled and running on your computer and is
properly configured so that you can connect to the SQL Server database server at your
site.

For installation and configuration instructions, see your network or database
administrator.

3. Install the required Microsoft OLE DB Driver for SQL Server or SQL Server Native
Client software on each client computer on which PowerBuilder isinstalled.

Y ou must obtain the Microsoft OLE DB Driver for SQL Server or SQL Native Client
software from Microsoft. Make sure the version of the client software you install
supports all of the following:

The operating system running on the client computer
The version of the database that you want to access
The version of PowerBuilder that you are running
For installation instructions, see your Microsoft SQL Server documentation.
4, Make sure the Microsoft OLE DB Driver for SQL Server or SQL Native Client client

software is properly configured so that you can connect to the SQL Server database
server at your site.

For configuration instructions, see your Microsoft SQL Server documentation.

5.  Make sure the directory containing the Microsoft OLE DB Driver for SQL Server or
SQL Native Client software isin your system path.

6. (For SQL Native Client) Make sure only one copy of the Sglncli.dll fileisinstalled on
your computer.

Step 2: Install the database interface

If you install PowerBuilder using the PowerBuilder Installer (an online setup program),
the SQL Server database interface and the SQL Native Client database interface are
automatically installed. If you install PowerBuilder using the downloaded installation
package (an offline setup program), select Native Database Interfaces | SQL Server
(MSOLEDBSQL) or SQL Native Client (SNC) from the list of components.

Step 3: Verify the connection

Make sure you can connect to the SQL Server server and database you want to access from
outside PowerBuilder.

Page 91



Working with Native Database Interfaces

To verify the connection, use any Windows-based utility that connects to the database. When
connecting, be sure to specify the same parameters you plan to use in your PowerBuilder
database profile to access the database.

3.4.5 Defining the SQL Server database interface

To define a connection through the MSOLEDBSQL SQL Server or SQL Native Client
interface, you must create a database profile by supplying valuesfor at |least the basic
connection parameters in the Database Profile Setup - SQL Server or Database Profile Setup -
SQL Native Client dialog box. Y ou can then select this profile at any time to connect to your
database in the development environment.

For information on how to define a database profile, see Creating a database profile. For a
comparison of the database parameters you might have used with existing applications and
those used with the MSOLEDBSQL and SNC database interfaces, see Migrating from the
MSS or OLE DB database interfaces.

3.4.6 Migrating from the MSS or OLE DB database interfaces

In earlier releases of PowerBuilder, the MSS native interface was provided for connection to
Microsoft SQL Server. This native interface was based on Microsoft DB-LIB functionality,
which is no longer supported by Microsoft and is not Unicode-enabled. The MSS interface
was removed in PowerBuilder 10.0.

Prior to the introduction of SQL Server 2005 and SQL Native Client, Microsoft
recommended using the OLE DB database interface and MDAC to connect to SQL Server.
Y ou can continue to use this solution if you do not need to take advantage of new featuresin
SQL Server 2005 or later versions.

This section provides a comparison between database parameters you might have used in
existing applications with the parameters you can use with the MSOLEDBSQL and SNC
database interfaces.

M SS database parameter s supported by MSOLEDBSQL and SNC

The following table shows the database parameters and preferences that could be set in the
Database Profile Setup dialog box for the discontinued M SS native database interface for
Microsoft SQL Server, and indicates whether they are supported by the MSOLEDBSQL and
SNC interfaces.

The column on the |eft shows the tab page in the Database Profile Setup dialog box for MSS.
The parameters and preferences may be on different tab pagesin the MSOLEDBSQL or SNC
profile.

Table 3.11: M SS parameter s supported by MSOLEDBSQL and SNC

MSS MSOLEDBSQL and SNC

Connection tab:

Language Not supported

Lock Supported (Transaction tab)
AutoCommit Supported

Page 92



Working with Native Database Interfaces

MSS MSOLEDBSQL and SNC

CommitOnDisconnect Supported

System tab:

Log Not supported

SystemProcs Not supported

PBCatalogOwner Supported

Transaction tab:

Async Not supported

DBGetTime Not supported

CursorLock Not supported

CursorScrall Not supported

StaticBind Supported

MaxConnect Not supported

Syntax tab:

DBTextLimit Supported (as PBMaxTextSize on
Transaction tab)

DateTimeAllowed Not supported

OptSelectBlob Not supported

Network tab:

AppName Supported (System tab)

Host Supported (System tab)

PacketSize Supported (System tab)

Secure Supported (as TrustedConnection on General
tab)

OLE DB database parameter s supported by MSOLEDBSQL and SNC

The following table shows the database parameters and preferences that can be set in the
Database Profile Setup dialog box for the OLE DB standard interface for Microsoft SQL
Server, and indicates whether they are supported by the MSOLEDBSQL and SNC interfaces.

The column on the left shows the tab page in the Database Profile Setup dialog box for OLE
DB. The parameters and preferences may be on different tab pagesin the MSOLEDBSQL or
SNC profile.

Table 3.12: OLE DB parameters supported by MSOLEDBSQL and SNC

OLE DB MSOLEDBSQL and SNC

Connection tab:

Provider Not supported

DataSource Supported at runtime (as
SQL CA.ServerName)

Page 93



Working with Native Database Interfaces

OLE DB MSOLEDBSQL and SNC

DatalL ink Supported
Location Not supported
ProviderString Supported
System tab:

PBCatalogOwner Supported
ServiceComponents Not supported

AutoCommit

Supported (General tab)

CommitOnDisconnect

Supported (General tab)

StaticBind Supported (Transaction tab)

DisableBind Supported (Transaction tab)

Init_Prompt Not supported

TimeOut Supported

LCID Not supported

Transaction tab:

Block Supported

PBMaxBlobSize Supported

Mode Not supported

Lock Supported

Syntax tab:

Delimitldentifier Supported

| dentifierQuoteChar Not supported

DateFormat Supported

TimeFormat Supported

Decimal Separator Supported

OJSyntax Supported

Security tab:

EncryptPassword Not supported

CacheAuthentication Not supported

PersistSensitive Not supported

M askPassword Not supported

PersistEncrypted Not supported

I ntegratedSecurity Supported (TrustedConnection on General
tab)

ImpersonationLevel Not supported

ProtectionLevel Not supported

Additional database parameters

Page 94



Working with Native Database Interfaces

The MSOLEDBSQL and SNC interfaces also support the ReCheckRows and BinTxtBlob
runtime-only parameters, the Encrypt, TrustServerCertificate, and SPCache parameters (on
the System tab page), and the Identity parameter (on the Syntax tab page).

SPCache database parameter

Y ou can control how many stored procedures are cached with parameter information by
modifying the setting of the SPCache database parameter. The default is 100 procedures. To
turn off caching of stored procedures, set SPCache to O.

For more information about database parameters supported by the MSOLEDBSQL and SNC
interfaces, see Section 2.1, “ Database preferences and supported database interfaces’ in
Connection Reference.

3.4.7 SQL Server 2008 features

PowerBuilder support for connections to SQL Server 2008 databases includes new database
parameters as well as support for new SQL Server datatypes. To connect to SQL Server 2008
from PowerBuilder, you must install the SNC 10.0 driver; To connect to SQL Server 2012

or later from PowerBuilder, you must install Microsoft OLE DB Driver 18.2 or later, or SNC
10.0 driver or later.

3.4.7.1 New database parameters
Provider parameter

The Provider DBParm parameter for the SQL Server (MSOLEDBSQL) interface can connect
to various versions including SQL Server 2012, 2014, 2016, 2017, and 2019.

The Provider DBParm parameter for the SQL Native Client (SNC) interface allows you

to select the SQL Server version that you want to connect to. Y ou can set this parameter

in script to SQLNCLI (for the SNC 9.0 driver that connect to SQL Server 2005), to
SQLNCLI10 (for the SNC 10.0 driver that connects to SQL Server 2008), or to SQLNCLI111
(for the SNC 11.0 driver that connects to SQL Server 2012 or later). Otherwise, you can
select one of these providers on the Connection tab of the Database Profile Setup dialog box
for the SNC interface.

If you do not set or select a provider, the default selection is SQLNCLI (SNC 9.0 for SQL
Server 2005). This allows existing SNC interface users to be able to upgrade to PowerBuilder
2019 R3 without any modifications. If PowerBuilder failsto connect with the SQLNCLI
provider, it will attempt to connect to SQLNCLI10 provider. However, if you explicitly set
the provider and the connection fails, PowerBuilder displays an error message.

Failover parameter

The Failover Partner DBParm parameter alows you to set the name of amirror server,
thereby maintaining database availability if afailover event occurs. Y ou can also set the
name of the mirror server on the System tab of the Database Profile Setup dialog box for the
MSOLEDBSQL or SNC interface.

When failover occurs, the existing PowerBuilder connection to SQL Server islost. The
MSOLEDBSQL or SNC driver releases the existing connection and tries to reopen it. If
reconnection succeeds, PowerBuilder triggers the failover event.

The following conditions must be satisfied for PowerBuilder to trigger the failover event:

Page 95



Working with Native Database Interfaces

» The Failover Partner DBParm is supplied at connect time

» The SQL Server databaseis configured for mirroring

» PowerBuilder is able to reconnect successfully when the existing connection islost
When failover occurs:

» PowerBuilder returns an error code (998) and triggers the failover event

» EXisting cursors cannot be used and should be closed

» Any failed database operation can be tried again

» Any uncommitted transaction is lost. New transactions must be started

3.4.7.2 Support for new datatypes in SQL Server 2008
Date and time datatypes

The following table lists new SQL Server 2008 date and time datatypes and the Power Script
datatypes that they map to:

Table 3.13:

SQL Server  Power Script datatype

datatype

DATE Date

TIME Time (Supports only up to 6 fractional seconds precision although SQL

Server datatype supports up to 7 fractional seconds precision.)

DATETIME2 | DateTime (Supports only up to 6 fractional seconds precision athough
SQL Server datatype supports up to 7 fractional seconds precision.)

The SQL Server 2008 DATETIMEOFFSET datatype is not supported in PowerBuilder 2019
R3.

Precision settings

When you map to atable column in a SQL Server 2008 database, PowerBuilder includes a
column labeled "Dec" in the Column view of the DatawWindow painter, and atext box labeled
"Fractional Seconds Precision” in the Column (Object Details) view of the Database painter.
These fields allow you to list the precision that you want for the TIME and DATETIME2
columns.

The precision setting is for table creation only. When retrieving or updating the datain a
column, PowerBuilder uses only up to six decimal places precision for fractional seconds,
even if you enter a higher precision value for the column.

Filestream datatype

The FILESTREAM datatype alows large binary datato be stored directly inan NTFS
file system. Transact-SQL statements can insert, update, query, search, and back up
FILESTREAM data.

Page 96



Working with Native Database Interfaces

The SQL Server Database Engine implements FILESTREAM as a Varbinary(max) datatype.
The PowerBuilder MSOLEDBSQL and SNC interfaces map the Varbinary(max) datatype to
aBLOB datatype, so to retrieve or update filestream data, use the SelectBlob or UpdateBlob
SQL statements, respectively. To specify that a column should store data on the file system,
you must include the FILESTREAM attribute in the Varbinary(max) column definition. For
example:

CREATE TABLE FSTest (
Gui dCol 1 uni quei dentifier ROAGU DCOL NOT NULL
UNI QUE DEFAULT NEW IX(),
IntCol 2 int,
var bi naryCol 3 var bi nary(max) FI LESTREAM ;

Do not use Power Script file access functionswith FILESTREAM data

Y ou can access FILESTREAM data by declaring and using the Win32 API functions
directly in PowerBuilder applications. However, existing PowerBuilder file access
functions cannot be used to access FILESTREAM files. For more information

about accessing FILESTREAM data using Win32 APIs, see the MSDN SQL

Server Developer Center website at http://msdn.microsoft.com/en-ug/library/
bb933877(SQL.100).aspx.

Using CL R datatypesin PowerBuilder

The binary values of the .NET Common Language Runtime (CLR) datatypes can be retrieved
from a SQL Server database as blobs that you could use in PowerBuilder applications to
update other columnsin the database. If their return values are compatible with PowerBuilder
datatypes, you can use CLR datatype methods in PowerScript, dynamic SQL, embedded SQL
or in Datawindow objects, because the SQL script is executed on the SQL Server side.

The CLR datatypes can aso be mapped to Strings in PowerScript, but the retrieved datais a
hexadecimal string representation of binary data.

Y ou can use the ToString method to work with all datatypes that are implemented as CLR
datatypes, such asthe HierarchylD datatype, Spatial datatypes, and User-defined types.

Hierarchyl D datatype

HierarchylD is avariable length, system datatype that can store values representing nodesin
ahierarchical tree, such as an organizational structure. A value of this datatype represents a
position in the tree hierarchy.

ISQL Usage

Y ou can use HierarchylD columns with CREATE TABLE, SELECT, UPDATE, INSERT,
and DELETE statements in the ISQL painter. For example:

CREATE TABLE Enp (
Enpl d int NOT NULL,
EnpName var char (20) NOT NULL,
EnpNode hi erarchyid NULL);

To insert HierarchylD data, you can use the canonical string representation of HierarchylD or
any of the methods associated with the Hierarchyl D datatype as shown below.

INSERT into Enp VALUES (1, 'Scott',
hi erarchyi d: : Get Root ()) ;

Page 97


http://msdn.microsoft.com/en-us/library/bb933877(SQL.100).aspx
http://msdn.microsoft.com/en-us/library/bb933877(SQL.100).aspx

Working with Native Database Interfaces

INSERT into Enp VALUES (2, 'Tomi , '/1/');

DECLARE @mnager hierarchyid
SELECT @mnager = hi erarchyi d:: Get Root () FROM Enp
I NSERT into Enp VALUES (2, 'Tonm,
@mnager . Get Descendant ( NULL, NULL) ) ;
DECLARE @Enpl oyee hi erarchyid
SELECT @npl oyee = CAST('/1/2/3/4/" AS hierarchyid)
INSERT into Enp VALUES (2, 'Jim , @Enpl oyee);

Y ou cannot select the HierarchylD column directly since it has binary data, and the | SQL
painter Results view does not display binary columns. However, you can retrieve the
HierarchylD data as a string value using the ToString method of HierarchyID. For example:

Sel ect Enpld, EnpNanme, EnpNode. ToString() from Enp;

Y ou can also use the following methods on HierarchylD columns to retrieve its data:
GetAncestor, GetDescendant, GetL evel, GetRoot, |sDescendant, Parse, and Reparent. If
one of these methods returns a Hierarchyl D node, then use ToString to convert the datato a
string. For example:

Sel ect Enpld, EnpName, EnpNode. GetLevel () from Enp;
Sel ect Enpld, EnpName, EnpNode. Get Ancestor(1).ToString() from Enp;

HierarchylD columns can be updated using a String value or a HierarchylD variable:

Update Enp Set EnpNode = '/1/2/' where Enpld=4;
Del ete from Enp where EnpNode = '/1/2/";

Power Script Usage

Y ou can use Hierarchyl D columnsin embedded SQL statements for SELECT, INSERT,
UPDATE, and DELETE operations. HierarchylD data can be retrieved either asa String or as
a Binary(Blob) datatype using the SelectBlob statement.

When using a String datatype to retrieve Hierarchyl D data, use the ToString method.
Otherwise the data will be a hexadecimal representation of the binary HierarchylD value.

The following example shows how you can use HierarchylD methods in embedded SQL.:

long id
String hid, nane
Sel ect Enpld, EnpName, EnpNode. ToString()
into :id, :name, :hid
from Enp where Enpl d=3;
Sel ect Enpld, EnpName, EnpNode. GetLevel ()
into :id, :name, :hid
from Enp where Enpl d=3;
Bl ob b
Sel ect bl ob EnpNode into :b from Enp where Enpld =2;

DataWindow Usage

DatawWindow objects do not directly support the Hierarchyl D datatype. But you can convert
the HierarchyID to a string using the ToString method or an associated HierarchylD method
in the data source SQL. For example:

SELECT Enpld, EnpNanme, EnpNode. ToString() FROM Enp;
SELECT Enpld, EnpNanme, EnpNode. GetLevel () FROM Enp;

Spatial datatypes

Page 98



Working with Native Database Interfaces

Microsoft SQL Server 2008 supports two spatial datatypes. the geometry datatype and the
geography datatype. In SQL Server, these datatypes are implemented as .NET Common
Language Runtime (CLR) datatypes.

Although the PowerBuilder MSOLEDBSQL and SNC interfaces do not work with CLR
datatypes, you can convert the spatial datatypes into strings (with the ToString function)
and use them in PowerScript, in the ISQL painter, in embedded SQL, and in DataWindow
objects. Thisis similar to the way you use the HierarchylD datatype. The SelectBlob SQL
statement also lets you retrieve binary values for these datatypes.

The geography and geometry datatypes support eleven different data objects, or instance
types, but only seven of these types are instantiable: Points, LineStrings, Polygons, and

the objects in an instantiable GeometryCollection (MultiPoints, MultiLineStrings, and
MultiPolygons). Y ou can create and work with these objects in a database, calling methods
associated with them, such as STAsText, STArea, STGeometryType, and so on.

For example:

CREATE TABLE Spatial Table (id int IDENTITY (1,1),
GeontCol geonetry);
I NSERT | NTO Spati al Tabl e (GeontCol ) VALUES (
geonet ry: : STGeonfr onText (
" LI NESTRI NG (100 100, 20 180, 180 180)',0));
sel ect id, GeonCol.ToString() from Spati al Tabl e;
sel ect id, GeonCol.STAsText (),
GeontCol . STGeonet ryType(),
GeontCol . STArea() from Spati al Tabl e;

User-defined types

User-defined types (UDTSs) are implemented in SQL Server as CLR types and integrated
with .NET. Microsoft SQL Server 2008 eliminates the 8 KB limit for UDTSs, enabling the
size of UDT datato expand dramatically.

Although the PowerBuilder MSOLEDBSQL and SNC interfaces do not directly support
UDT datatypes, you can use the ToString method to retrieve data for UDTsin the same way
asfor other CLR datatypes such as Hierarchyld or the spatial datatypes. However, if aUDT
datatype is mapped to a String datatype in PowerScript, UDT binary values will be retrieved
as hexadecimal strings. To retrieve or update data in binary form (blob) from aUDT, you can
use the SelectBlob or UpdateBlob SQL statements, respectively.

Y ou can use any of the associated methods of UDT or CLR datatypes that return compatible
data (such as String, Long, Decimal, and so on) for PowerBuilder applications.

3.4.7.3 T-SQL enhancements
MERGE statement

The MERGE Transact-SQL statement performs INSERT, UPDATE, or DELETE operations
on atarget table or view based on the results of ajoin with a source table. Y ou can use
MERGE statement in the ISQL painter and in PowerScript using dynamic SQL. For example

String nmySQL

mySQL = "MERGE I NTO a USI NG b ON a. keycol = b.keycol " &
+ "WHEN MATCHED THEN " &
+ "UPDATE SET coll = b.col1,col2 = b.col2 " &
+ "WHEN NOT MATCHED THEN " &

Page 99



Working with Native Database Interfaces

"I NSERT (keycol, coll, col2, col3)" &

"VALUES (b. keycol, b.coll1, b.col2, b.col3) " &
"WHEN SOURCE NOT MATCHED THEN " &

" DELETE; "

EXECUTE | MVEDI ATE : Mysql ;

+
+
+
+

Using the MERGE statement in 1 SQL

A MERGE statement must be terminated by a semicolon. By default the ISQL painter
uses a semicolon as a SQL terminating character, so to use a MERGE statement in
ISQL, the terminating character must be changed to a colon (:), aforward slash (/), or
some other special character.

Grouping sets

GROUPING SETS is an extension of the GROUP BY clause that lets you define multiple
groupings in the same query. GROUPING SETS produce a single result set, making
aggregate querying and reporting easier and faster. It is equivalent to a UNION ALL
operation for differently grouped rows.

The GROUPING SETS, ROLLUP, and CUBE operators are added to the GROUP BY
clause. A new function, GROUPING _ID, returns more grouping-level information than the
existing GROUPING function. (The WITH ROLLUP, WITH CUBE, and ALL syntax is not
SO compliant and is therefore obsol ete.)

The following example uses the GROUPING SETS operator and the GROUPING_ID
function:

SELECT Enpld, Month, Yr, SUM Sal es) AS Sal es

FROM Sal es

GROUP BY GROUPI NG SETS((Enpld, ROLLUP(Yr, Month)));
SELECT COL1, COL2,

SUM COL3) AS TOTAL_VAL,

GROUPI NG(COL1) AS C1,

GROUPI NG( COL2) AS C2,

GROUPI NG | D{COL1, COL2) AS GRP_I D VALUE

FROM TEST_TBL GROUP BY ROLLUP (COL1, COL2);

Y ou can use the GROUPING SETS operator in the ISQL painter, in PowerScript (embedded
SQL and dynamic SQL) and in Datawindow objects (syntax mode).

Row constructors

Transact-SQL now allows multiple value inserts within asingle INSERT statement. Y ou can
use the enhanced INSERT statement in the ISQL painter and in PowerScript (embedded SQL
and dynamic SQL ). For example:

I NSERT | NTO Enpl oyees VALUES ('tom, 25, 5), (‘jerry', 30, 6), ('bok', 25, 3);

When including multiple values in asingle INSERT statement with host variables, you must
set the DisableBind DBParm to 1. If you use literal values as in the above example, you can
insert multiple rowsin asingle INSERT statement regardless of the binding setting.

Compatibility level

In SQL Server 2008, the ALTER DATABA SE statement allows you to set the database
compatibility level (SQL Server version), replacing the sp_dbcmptlevel procedure. Y ou can
use this syntax in the ISQL painter and in PowerScript (dynamic SQL). For example:

Page 100



Working with Native Database Interfaces

ALTER DATABASE <dat abase_nane>
SET COWPATIBILITY_LEVEL = {80 | 90 | 100}
80 = SQ. Server 2000
90 = SQ. Server 2005
100 = SQ. Server 2008

Compatibility level affects behaviors for the specified database only, not for the entire
database server. It provides only partial backward compatibility with earlier versions of SQL
Server. You can use the database compatibility level as an interim migration aid to work
around differences in the behaviors of different versions of the database.

Tablehints

The FORCESEEK table hint overrides the default behavior of the query optimizer. It
provides advanced performance tuning options, instructing the query optimizer to use an
index seek operation as the only access path to the datain the table or view that is referenced
by the query. Y ou can use the FORCESEEK table hint in the ISQL painter, in PowerScript
(embedded SQL and dynamic SQL ), and in DataWindow objects (syntax mode).

For example:

Sel ect Product! D, OrderQy from Sal esOrderDetail with (FORCESEEK);

3.4.7.4 Unsupported SQL Server 2008 features

The PowerBuilder MSOLEDBSQL and SNC interfaces do not support the User-Defined
Table Type (a user-defined type that represents the definition of atable structure) that was
introduced in SQL Server 2008.

3.4.8 Notes on using the MSOLEDBSQL and SNC interfaces
Using the DBHandle Power Script function

The DBHandle function on the Transaction object returns the IlUnknown* interface of the
current session object. You can use this interface to query any interface in the session object.
The interface is not locked by plUnknown->Addref() in PowerBuilder, therefore you should
not call the plUnknown->Release() to free the interface after using it.

SQL batch statements

The MSOLEDBSQL and SNC interfaces support SQL batch statements. However, they must
be enclosed in aBEGIN...END block or start with the keyword DECLARE:

* Enclosed in aBEGIN...END block:

BEG N

INSERT INTO t_1 val ues(1, 'sfdfs')
INSERT INTO t_2 val ues(1, 'sfdfs')
SELECT * FROM t _1

SELECT * FROMt_2

END

 Starting with the keyword DECLARE:

DECLARE @1 int, @2 varchar(50)
SELECT @1 =1
EXECUTE sp_4 @1, @2 OUTPUT

Page 101



Working with Native Database Interfaces

SELECT @2 AS 'output'
Y ou can run the batch of SQL statements in the Database painter or in PowerScript. For
example:
String batchSQL //contains a batch of SQ statements
DECLARE mny_cursor DYNAM C CURSOR FOR SQLSA ;
PREPARE SQLSA FROM : bat chSQL ;
OPEN DYNAM C ny_cursor ;
[/first result set
FETCH ny_cursor INTO . . .
//second result set
FETCH ny_cursor |INTO . .
CLOSE ny_cursor
Connection pooling

The MSOLEDBSQL and SNC interfaces pool connections automatically using OLE DB
pooling. To disable OLE DB pooling, type the following in the Extended Properties box on
the Connection tab page in the Database Profile Setup dialog box:

OLE DB Services=-4
Y ou can a'so type the following statement in code:
Provi der String=" OLE DB Servi ces=-4")

Triggersand synonymsin the Database painter

In the Objects view for MSOLEDBSQL and SNC profilesin the Database painter, triggers
display for tablesin the Tables folder and Microsoft SQL Server 2005 synonyms display for
tables and views.

3.5 Using Oracle
About this chapter

This chapter describes how to use the native Oracle database interfaces in PowerBuilder.

3.5.1 Supported versions for Oracle

PowerBuilder provides the following Oracle database interfaces. These interfaces use
different DLLs and access different versions of Oracle.

Table 3.14: Supported native database interfacesfor Oracle

Oracleinterface DLL

010 Oracle 10g PBO10.dll
ORA Oracle (for 119, 12c, 18c, and 19c) PBORA.dII

The ORA database interface allows you to connect to Oracle 119/12¢/18c¢/19c¢ servers using
Oracle 119/12¢/18c/19c Database Client or Oracle 119/12¢/18c¢/19c¢ Instant Client. It includes
partial support for the XML Type datatype that it maps to the PowerBuilder String datatype.

It also supports session and connection pooling, load balancing, the Oracle Client Cache,

Page 102



Working with Native Database Interfaces

setting of an application driver name, and access through a proxy. Oracle 119 clients can also
connect to Oracle 10g servers.

The O10 database interface allows you to connect to Oracle 10g servers using Oracle

10g Database Client or Oracle 10g Instant Client. It supports BINARY _FLOAT and
BINARY_DOUBLE datatypes and increased size limits for CLOB and NCL OB datatypes.
Oracle 10g clients can connect to Oracle 10g servers.

3.5.2 Supported Oracle datatypes

The Oracle database interfaces support the Oracle datatypes listed in the following table in
Datawindow objects and embedded SQL.

Table 3.15: Supported datatypesfor Oracle

Binary_Float (Oracle 10g and later only) LongRaw

Binary Double (Oracle 10g and later only) | NChar

Bfile Number

Blob NVarChar2

Char Raw

Clob TimeStamp

Date VarChar

Float VarChar2

Long XMLType (partial support, ORA driver only)

The ORA driver adds support for the XML Type datatype that was introduced with Oracle 9i.
However, you cannot use this datatype with embedded SQL statements or in a DataWindow
object.

Accessing Unicode data

PowerBuilder can connect, save, and retrieve data in both ANSI/DBCS and Unicode
databases, but it does not convert data between Unicode and ANSI/DBCS. When character
data or command text is sent to the database, PowerBuilder sends a Unicode string. The
driver must guarantee that the data is saved as Unicode data correctly. When PowerBuilder
retrieves character data, it assumes the datais Unicode.

A Unicode database is a database whose character set is set to a Unicode format, such as
UTF-8, UTF-16, UCS-2, or UCS-4. All data must be in Unicode format, and any data saved
to the database must be converted to Unicode dataimplicitly or explicitly.

A database that uses ANSI (or DBCS) as its character set might use specia datatypes to
store Unicode data. These datatypes are NCHAR and NVARCHAR2. Columns with this
datatype can store only Unicode data. Any data saved into such a column must be converted
to Unicode explicitly. This conversion must be handled by the database server or client.

A constant string is regarded as a char type by Oracle and its character set is

NLS CHARACTERSET. However, if the datatype in the database is NCHAR and
its character set isNLS NCHAR_CHARACTERSET, Oracle performs a conversion
from NLS CHARACTERSET toNLS NCHAR_CHARACTERSET. Thiscan

Page 103



Working with Native Database Interfaces

cause loss of data. For example, if NLS CHARACTERSET is WES8ISO8859P1 and
NLS NCHAR_CHARACTERSET is UTF8, when the Unicode data is mapped to
WES8ISO8859P1, the Unicode data is corrupted.

If you want to access Unicode data using NCHAR and NVARCHAR2 columns or stored
procedure parameters, use PowerBuilder variables to store the Unicode data in a script
using embedded SQL to avoid using a constant string, and force PowerBuilder to bind the
variables.

By default, the Oracle database interfaces bind all string data to internal variables as the
Oracle CHAR datatype to avoid downgrading performance. To ensure that NCHAR and
NVARCHAR2 columns are handled as such on the server, set the NCharBind database
parameter to 1 to have the drivers bind string data as the Oracle NCHAR datatype.

For example, suppose tablel has a column cl1 with the datatype NVARCHAR2. To insert
Unicode datainto the table, set DisableBind to 0, set NCharBind to 1, and use this syntax:

string varl
insert into tablel (cl) values(:varl);

If an Oracle stored procedure has an NCHAR or NVARCHAR?Z input parameter and the
input data is a Unicode string, set the BindSPInput database parameter to 1 to force the
Oracle database to bind the input data. The Oracle database interfaces are able to describe
the procedure to determine its parameters, therefore you do not need to set the NCharBind
database parameter.

For a Datawindow object to access NCHAR and NVARCHAR2 columns and retrieve data
correctly, set both DisableBind and StaticBind to 0. Setting StaticBind to O ensures that
PowerBuilder gets an accurate datatype before retrieving.

TimeStamp datatype

The TimeStamp datatype in Oracle9i and later is an extension of the Date datatype. It stores
the year, month, and day of the Date value plus hours, minutes, and seconds:

Ti mest anp[ fracti onal _seconds_preci si on]

The fractional_seconds_precision value is optional and provides the number of digits for
indicating seconds. The range of valid values for use with PowerBuilder is 0-6.

3.5.2.1 Datatype conversion

When you retrieve or update columns, in general PowerBuilder converts data appropriately
between the Oracle datatype and the PowerScript datatype. Keep in mind, however, that
similarly or identically named Oracle and PowerScript datatypes do not necessarily have the
same definitions.

For information about the definitions of PowerScript datatypes, see Section 1.2, “ Datatypes’
in Power Script Reference.

Number datatype converted to decimal

When a Datawindow object is defined in PowerBuilder, the Oracle datatype number(size,d)
is mapped to adecimal datatype. In PowerBuilder, the precision of adecimal is 18 digits. If
a column'’s datatype has a higher precision, for example number(32,30), inserting a number
with a precision greater than 18 digits produces an incorrect result when the number is

Page 104



Working with Native Database Interfaces

retrieved in a Datawindow. For example, 1.8E-17 displays as 0.000000000000000018,
whereas 1.5E-25 displays as 0.

Y ou might be able to avoid this problem by using a different datatype, such asfloat, for high
precision number columns in the Oracle DBMS. The float datatype is mapped to the number
datatype within the DataWindow's source.

3.5.3 Basic software components for Oracle

You must install the software components in the following figure to access an Oracle
database in PowerBuilder.

Figure: Components of an Oracle connection

Development environment

N PROS0.DLL
Database interface PBO10.DLL or

DLL PEORA.DLL

Supplied by Appeon

Database client Oracle Met 9i client software

software ar later

Supplied by Cracle

Supplied by
NEt‘Wﬂrk:. layer Any supported lrrehmrk network vendor or
(if any) protoco databasevendor

Oracle Viersion

Database 9i, 10g, 11qg,

12c, 18c. ar 19¢

3.5.4 Preparing to use the Oracle database

Before you define the database interface and connect to an Oracle database in PowerBuilder,
follow these steps to prepare the database for use:

1. Install and configure the required database server, network, and client software.

Page 105



Working with Native Database Interfaces

2. Ingtall the native Oracle database interface for the version of Oracle you want to access.
3. Verify that you can connect to the Oracle server and database outside PowerBuilder.

4. (ORA driver only) Determine whether you want to use connection pooling or session
pooling.

Preparing an Oracle database for use with PowerBuilder involves these basic tasks.

Step 1: Install and configure the database server

You must install and configure the database server, network, and client software for Oracle.
Toinstall and configurethe database server, network, and client software:
1. Make surethe Oracle database software isinstalled on your computer or on the server

specified in your database profile.

For example, with the Oracle O90 interface you can access an Oracle9i or Oracle 10g
database server.

Y ou must obtain the database server software from Oracle Corporation.
For installation instructions, see your Oracle documentation.
2. Make sure the supported network software (such as TCP/IP) isinstalled and running on

your computer and is properly configured so that you can connect to the Oracle database
server at your site.

The Hosts and Services files must be present on your computer and properly configured
for your environment.

Y ou must obtain the network software from your network vendor or database vendor.
For installation and configuration instructions, see your network or database
administrator.

3. Install the required Oracle client software on each client computer on which
PowerBuilder isinstalled.

Y ou must obtain the client software from Oracle Corporation. Make sure the client
software version you install supports all of the following:

The operating system running on the client computer
The version of the database that you want to access
The version of PowerBuilder that you are running

Oracle 10g Instant Client is free client software that |ets you run applications without
installing the standard Oracle client software. It has a small footprint and can be freely
redistributed.

4. Make sure the Oracle client softwareis properly configured so that you can connect to
the Oracle database server at your site.

For information about setting up Oracle configuration files, see your Oracle Net
documentation.

Page 106



Working with Native Database Interfaces

5. If required by your operating system, make sure the directory containing the Oracle
client software isin your system path.

Step 2: Install the database interface

If you install PowerBuilder using the PowerBuilder Installer (an online setup program), the
Oracle database interface is automatically installed. If you install PowerBuilder using the
downloaded installation package (an offline setup program), select Native Database Interface
| Oracle interfaces from the list of components.

For alist of the Oracle database interfaces available, see Supported versions for Oracle.

Step 3: Verify the connection

Make sure you can connect to the Oracle database server and log in to the database you want
to access from outside PowerBuilder.

Some possible ways to verify the connection are by running the following Oracle tools:

» Accessing the database server

Tools such as Oracle TNSPING (or any other ping utility) check whether you can reach the
database server from your computer.

» Accessing the database

Tools such as Oracle SQL*Plus check whether you can log in to the Oracle database you
want to access and perform database operations. It is agood idea to specify the same
connection parameters you plan to use in your PowerBuilder database profile to access the
database.

Step 4: Determine whether to use connection or session pooling

Oracle client interface (OCI) pooling for PowerBuilder applications is created when you
connect to an Oracle server for thefirst time. The pooling is identified by the server name
and character set which are passed in the DBPARM parameters SQL CA.ServerName and
NLS Charset, respectively. If two Oracle connections are connected to the same Oracle
server but use different character sets, the connections must reside in different connection
or session pools. All pooling-related DBPARM parameters must be set before the initial
database connection from PowerBuilder.

Session pooling means that the application creates and maintains a group of stateless
sessions to the database. These sessions are passed to thin clients as requested. If no session
isavailable, anew oneis created. When the client is done with the session, the client
releasesit to the pool. With session pooling, the number of sessionsin the pool can increase
dynamically.

Session pooling does not support external authentication using an OS account. If aLogin ID
is not specified in a database connection using an existing session pool, the Login ID of the
session pooling creator is used for the connection.

CNNPool parameter maintained for backward compatibility

The 090 and O10 database drivers that you can use in PowerBuilder to connect to
the 9.x and 10.x versions of the Oracle DBM S support connection pooling with the

Page 107



Working with Native Database Interfaces

DBPARM parameter CNNPool. For backward compatibility purposes, this parameter
is also supported by the ORA driver that you use with Oracle 11g. However, if the
Pooling parameter is used with this driver, the CNNPool parameter isignored.

Deciding on pooling type

The following table describes the circumstances under which you should make your pooling
selection.

Table 3.16: Pooling types and when or when not to use them

Choose When database sessions are

Session Stateless (reusable by middle tier threads) and the number of back-end server

pooling processes can cause database scaling problems.
Connection | Stateful (not reusable by middle tier threads) and the number of back-end
pooling server processes can cause database scaling problems. The number of physical

connections and back-end server processes is reduced by using connection
pooling. Therefore many more database sessions can be utilized for the same
back-end server configuration.

No pooling | Stateful (not reusable by middletier threads) and the number of back-end
server processes will never be large enough to cause scaling issues for the
database.

MTS components do not support either type of pooling for Oracle databases.

Setting pooling parameters

The database profile dialog box for an Oracle 11g connection includes a Pooling tab that lets
you select the pooling parameters listed in the following table.

Table 3.17: Pooling parametersfor the ORA driver

Pooling Description

parameter

Pooling Type | You can select Session Pooling, Connection Pooling, or None (default).
Sets the Pooling DBPARM.

Runtime This check box selected by default. It isignored when you select
Connection Connection Pooling or None for the Pooling Type. Sets the
Load Balancing | RTConnBalancing DBPARM.

Homogeneous | This check box is not selected by default and isvalid for session pooling
Session only. When selected, all sessionsin the pool are authenticated with the
user name and password in effect when the session pool was created.
The user name and password in later connection requests are ignored.
Proxy sessions cannot be created in homogeneous session mode. Sets the

SessionHomogeneous DBPARM.
Minimum Integer for the minimum number of database connection sessions; valueis
Number of 1 by default. Setsthe CSMin DBPARM. Thisvalueisignored when the
Sessions SessionHomogeneous DBPARM s set to false.

Page 108



Working with Native Database Interfaces

Pooling Description

parameter

Maximum Integer for the maximum number of database connection sessions; value
Number of is 100 by default. Sets the CSMax DBPARM.

Sessions

Increment Integer for database connection increments per session; valueis 1 by

default. Setsthe CSIncr DBPARM. Thisvalue isignored when the
SessionHomogeneous DBPARM s set to false.

Pool Creator User name used to create the connection or session pool when the pool is
not already created. Sets the Pool Creator DBParm to a string for the user
name prior to the database connection. If you do not provide avalue for
the Pool Creator DBParm, the Transaction object's LoglD and L ogPass
properties are used to create the pooling.

Password Password used to create the connection or session pool when the pool
isnot already created. Sets the PoolPwd DBParm to a string for the
password for the pool creator.

3.5.5 Defining the Oracle database interface

To define a connection through an Oracle database interface, you must create a database
profile by supplying values for at least the basic connection parametersin the Database
Profile Setup dialog box for your Oracle interface. Y ou can then select this profile at any time
to connect to your database in the devel opment environment.

For information on how to define a database profile, see Using database profiles.

3.5.5.1 Specifying the Oracle server connect descriptor

To connect to an Oracle database server that resides on a network, you must specify the
proper connect descriptor in the Server box on the Connection tab of the Database Profile
Setup dialog box for your Oracle interface. The connect descriptor specifies the connection
parameters that Oracle uses to access the database.

For help determining the proper connect descriptor for your environment, see your Oracle
documentation or system administrator.

Specifying a connect descriptor
The syntax of the connect descriptor depends on the Oracle client software you are using.
If you are using Net9 or later, the syntax is:

Or acl eSer vi ceNane

If you are using SQL* Net version 2.x, the syntax is:

@TNS: O acl eServi ceNane

Table 3.18:
Parameter  Description
@ Theat (@) signisrequired

Page 109



Working with Native Database Interfaces

Parameter  Description

TNS The identifier for the Oracle Transparent Network Substrate (TNS)
technology

Thecolon (:) isrequired

OracleServiceNEnaeservice name assigned to your server in the Oracle configuration file for
your platform

Net9 example

To use Net9 client software to connect to the service named ORA9, type the following
connect descriptor in the Server box on the Connection tab of the Database Profile Setup
dialog box for Oracle9i and later: ORAO.

3.5.6 Using Oracle stored procedures as a data source

This section describes how you can use Oracle stored procedures.

3.5.6.1 What is an Oracle stored procedure?

Oracle defines a stored procedure (or function) as a named PL/SQL program unit that
logically groups a set of SQL and other PL/SQL programming language statements together
to perform a specific task.

Stored procedures can take parameters and return one or more result sets (also called cursor
variables). You create stored procedures in your schema and store them in the data dictionary
for use by multiple users.

3.5.6.2 What you can do with Oracle stored procedures

Waysto use Oracle stored procedures

Y ou can use an Oracle stored procedure in the following ways in your PowerBuilder
application:

» Asadatasource for DataWindow objects

+ Called by an embedded SQL DECLARE PROCEDURE statement in a PowerBuilder
application (includes support for fetching against stored procedures with result sets)

» Cadled as an external function or subroutine in a PowerBuilder application by using the
RPCFUNC keyword when you declare the procedure

For information about the syntax for using the DECLARE PROCEDURE statement with
the RPCFUNC keyword, see the PowerScript Reference.

Procedures with a single result set

Y ou can use stored procedures that return a single result set in Datawindow objects and
embedded SQL, but not when using the RPCFUNC keyword to declare the stored procedure
as an external function or subroutine.

Page 110



Working with Native Database Interfaces

Procedures with multiple result sets

Y ou can use procedures that return multiple result sets only in embedded SQL. Multiple
result sets are not supported in DataWindows, reports, or with the RPCFUNC keyword.

3.5.6.3 Using Oracle stored procedures with result sets
Overview of basic steps

The following procedure assumes you are creating the stored procedure in the ISQL view of
the Database painter in PowerBuilder.

Tousean Oracle stored procedurewith aresult set:

1. SetupthelSQL view of the Database painter to create the stored procedure.

2. Create the stored procedure with aresult set asan IN OUT (reference) parameter.
3. Create DatawWindow objects that use the stored procedure as a data source.

Setting up the Database painter

When you create a stored procedure in the ISQL view of the Database painter, you must
change the default SQL statement terminator character to one that you do not plan to usein
your stored procedure syntax.

The default SQL terminator character for the Database painter is a semicolon (;). If you plan
to use a semicolon in your Oracle stored procedure syntax, you must change the painter's
terminator character to something other than a semicolon to avoid conflicts. A good choiceis
the backquote ( * ) character.

To change the default SQL terminator character in the Database painter:

1. Connect to your Oracle database in PowerBuilder as the System user.

For instructions, see Defining the Oracle database interface.

2. Open the Database painter.

3. Select Design>Options from the menu bar.

The Database Preferences dialog box displays. If necessary, click the General tab to
display the General property page.

4. Typethe character you want (for example, a backquote) in the SQL Terminator
Character box.

5. Click Apply or OK.

The SQL Terminator Character setting is applied to the current connection and all future
connections (until you change it).

Creating the stored procedure

Page 111



Working with Native Database Interfaces

After setting up the Database painter, you can create an Oracle stored procedure that has
aresult set asan IN OUT (reference) parameter. PowerBuilder retrieves the result set to
populate a DatawWindow object.

There are many ways to create stored procedures with result sets. The following procedure
describes one possible method that you can use.

For information about when you can use stored procedures with single and multiple result
sets, see What you can do with Oracle stored procedures.

To create Oracle stored procedureswith result sets:

1.

Make sure your Oracle user account has the necessary database access and privilegesto
access Oracle objects (such as tables and procedures).

Without the appropriate access and privileges, you will be unable to create Oracle stored
procedures.

Assume the following table named tt exists in your Oracle database:

Table 3.19:
a b C
1 Newman sysdate
2 Everett sysdate

Create an Oracle package that holds the result set type and stored procedure. The result
type must match your table definition.

For example, the following statement creates an Oracle package named spm that holds
aresult set type named rctl and a stored procedure named procl. The tt%ROWTY PE
attribute defines rctl to contain al of the columnsin table tt. The procedure procl takes
one parameter, a cursor variable named rcl that isan IN OUT parameter of type rctl.

CREATE OR REPLACE PACKAGE spm
IS TYPE rctl IS REF CURSOR
RETURN t t YROM YPE;
PROCEDURE procl(rcl IN OUT rctl); END;

Create the Oracle stored procedure separately from the package you defined.

The following examples show how to create two stored procedures. spm_proc 1 (returns
asingle result set) and spm_proc2 (returns multiple result sets).

The IN OUT specification means that PowerBuilder passes the cursor variable (rcl or
rc2) by reference to the Oracle procedure and expects the procedure to open the cursor.
After the procedure call, PowerBuilder fetches the result set from the cursor and then
closes the cursor.

spm_procl example for DataWindow objects

The following statements create spm_procl which returns one result set. Y ou can use
this procedure as the data source for a DataWindow object in PowerBuilder.

CREATE OR REPLACE PROCEDURE spm procl(rcl IN OQUT spmrctl)
AS

Page 112



Working with Native Database Interfaces

BEG N
OPEN rcl FOR SELECT * FROM tt;
END; °

spm_proc2 example for embedded SQL

The following statements create spm_proc2 which returns two result sets. Y ou can use
this procedure only in embedded SQL.

CREATE OR REPLACE PROCEDURE spm proc2 (rcl IN OQUT spmrctl, rc2 IN QUT
spmrctl)
AS
BEG N
OPEN rcl FOR SELECT * FROMtt ORDER BY 1;
OPEN rc2 FOR SELECT * FROM tt ORDER BY 2; END; °

Error checking

If necessary, check the Oracle system table public.user_errorsfor alist of errors.

Creating the DataWindow obj ect

After you create the stored procedure, you can define the DataWindow objects that uses the
stored procedure as a data source.

Y ou can use Oracle stored procedures that return a single result set in a Datawindow object.
If your stored procedure returns multiple result sets, you must use embedded SQL commands
to access it.

The following procedure assumes that your Oracle stored procedure returns only asingle
result set.

To create a DataWindow object using an Oracle stored procedure with a result set:

1. Select apresentation style on the DataWindow page of the New dialog box and click
OK.

2. Sedlect the Stored Procedure icon and click OK.

The Select Stored Procedure wizard page displays, listing the stored procedures
available in your database.

3. Select the stored procedure you want to use as a data source, and click Next.

4. Complete the wizard to define the Datawindow object.

When you preview the DataWindow object or call Retrieve, PowerBuilder fetches the
result set from the cursor in order to populate the Datawindow object. If you selected
Retrieve on Preview on the Choose Data Source page in the wizard, the result set
displaysin the Preview view when the DataWindow opens.

3.5.6.4 Using a large-object output parameter

Y ou can define alarge object (LOB) as an output parameter for an Oracle stored procedure
or function to retrieve large-object data. Thereis no limit on the number of LOB output
arguments that can be defined for each stored procedure or function.

Page 113



Working with Native Database Interfaces

In Oracle 10g, the maximum size of LOB datatypes has been increased from 4 gigabytes
minus 1 to 4 gigabytes minus 1 multiplied by the block size of the database. For a database
with ablock size of 32K, the maximum size is 128 terabytes.

3.5.6.5 RPC calls to stored procedures with array parameters

If your application performs aremote procedure call (RPC) that passes an array parameter
to an Oracle stored procedure, the array size in the stored procedure must not be zero. If the
array sizeisuninitialized (has no size), the PBVM returns an error.

For Oracle 18c and 19c, the string array parameter can only be the VarChar type and
VarChar2 type, and cannot be the NVarChar2, Char, or NChar type.

For Oracle 18c and 19c, the date array parameter can only be the Date type (cannot be the
DateTimetype).

3.5.7 Using Oracle user-defined types

PowerBuilder supports SQL CREATE TY PE and CREATE TABLE statements for Oracle
user-defined types (objects) in the ISQL view of the Database painter. It correctly handles

SQL SELECT, INSERT, UPDATE, and DELETE statements for user-defined typesin the
Database and DataWindow painters.

This means that using the Oracle native database interfaces in PowerBuilder, you can:

Table 3.20:
Use Oracle syntax to create user-defined Database painter
types
Use Oracle syntax to create tables with Database painter

columns that reference user-defined types

View columnsin Oracle tables that reference | Database painter
user-defined types

Manipulate data in Oracle tables that have Database painter
user-defined types

DataWindow painter

DataWindow objects

Export Oracle table syntax containing user- | Database painter
defined typesto alog file

Invoke methods Datawindow object painter (Computetabin
SQL Toolbox)

Example

Hereis a simple example that shows how you might create and use Oracle user-defined types
in PowerBuilder.

For more information about Oracle user-defined types, see your Oracle documentation.

Page 114



Working with Native Database Interfaces

To create and use Oracle user-defined types:

1.

In the ISQL view of the Database painter, create two Oracle user-defined types.
ball_stats type and player_type.

Hereisthe Oracle syntax to create ball_stats type. Notice that the ball_stats object of
type ball_stats type has a method associated with it called get_avg.

CREATE OR REPLACE TYPE bal |l _stats_type AS OBJECT (bat_avg NUMBER(4, 3), rbi
NUMBER( 3) , MEMBER FUNCTI ON get _avg RETURN NUMBER, PRAGVA RESTRI CT_REFERENCES
(get _avg, WNDS, RNPS, VAPS) ) ;

CREATE OR REPLACE TYPE BODY bal | _stats_type ASMEMBER FUNCTI ON get avg RETURN
NUMBER | SBEG NRETURN SELF. bat _avg;

END;

END;

Hereisthe Oracle SQL syntax to create player_type. Player_type references the user-
defined type ball_stats type. PowerBuilder supports such nesting graphically in the
Database, DataWindow, and Table painters (see step 3).

CREATE TYPE pl ayer _type AS OBJECT (pl ayer_no NUMBER(2), pl ayer _name
VARCHAR2(30), bal | _stats ball_stats_type);

In the Database painter, create a table named lineup that references these user-defined
types.

Hereisthe Oracle SQL syntax to create the lineup table and insert arow. Lineup
references the player_type user-defined type.

CREATE TABLE |ineup (position NUMBER(2) NOT NULL, player player_type);
I NSERT | NTO |i neup VALUES (1, pl ayer_type (15, 'Dustin Pedroia', ball_stats_type
(0.317, 50)));

Display the lineup table in the Database or DataWindow painter.

PowerBuilder uses the following structure->member notation to display the table:

posi tion

pl ayer->pl ayer _no

pl ayer - >pl ayer _nane

pl ayer->bal | _st at s- >bat _avg
pl ayer->bal | _st at s->rbi

To access the get_avg method of the object ball _stats contained in the object column
player, use the following structure->member notation when defining a computed column
for the Datawindow object. For example, when working in the Datawindow painter,
you could use this notation on the Compute tab in the SQL Toolbox:

pl ayer->bal | _st at s->get _avg()

3.5.8 Support for HA event notification

Oracle Real Application Clusters (RAC) isacluster database that uses a shared cache
architecture. In Oracle 10g Release 2, a High Availability (HA) client connected to an RAC
database can register a callback to indicate that it wants the server to notify it in case of a
database failure event that affects a connection made by the client.

Page 115



Working with Native Database Interfaces

To take advantage of this feature, PowerBuilder users can script the DBNotification event
of the Transaction object. For more information, see the description of the DBNotification
event and the HANotification database parameter in Section 2.3.27, “DBNatification” in
Power Script Reference and Section 1.1.64, “HANotification” in Connection Reference.

3.5.9 ORA driver support for Oracle 11g features

In addition to support for Oracle 11g session pooling and connection pooling, the ORA driver
adds support for other 11g features.

Client result cache

The PowerBuilder ORA driver supports Oracle Client Cache, however this feature depends
on your Oracle Server and Client configuration. Y ou can configure the Oracle Client Cache
with aninit.ora or sglnet.orafile. Cached queries are annotated with "/*+ result_cache */"
hintsto indicate that results are stored in the query result cache. Y ou enable OCI statement
caching from PowerBuilder applications with the StatementCache DBPARM parameter.

Application driver name

An OCI application can choose its own name and set it as adiagnostic aid. The
AppDriverName DPBARM parameter allows you to set your own client driver name
for the PowerBuilder ORA interface. The maximum length of the name is 8 characters.
Y ou can display the client driver name with the V$SESSION_CONNECT _INFO or GV
$SESSION_CONNECT _INFO dynamic performance view queries.

Client access through a proxy (Oracle 10.2 feature)

The PowerBuilder ORA driver supports the proxy authentication feature that was introduced
in Oracle 10.2. With proxy authentication, the end user typically authenticates to amiddle
tier (such asafirewall), that in turn logs into the database on the user's behalf as a proxy
user. After logging into the database, the proxy user can switch to the end user's identity and
perform operations using the authorization accorded to that user.

The ConnectAs DBParm parameter allows you to take advantage of this proxy connection
feature. For example, if the user's Transaction object LogID is " Scott" and you set the
ConnectAs DBParm parameter to "John", the OCI client logs in to database as the proxy user
("Scott"), then switches to the end user identity ("John").

If you are using connection or session pooling, the proxy user name is the connection or
session pooling creator (which you can provide in the Pool Creator and Pool Pwd DBParm
parameters), and the Transaction object's LoglD isignored. No proxy session can be created
if pooling is set to HomogeneousSession mode.

Limitation on proxy connection without pooling

When using a proxy connection without pooling, you must set the NLS Charset
DBPARM to "Loca" or to another non-Unicode character set. If you do not change
the "Unicode" default value for this DBPARM, the connection fails because the
Oracle Client Interface does not accept a Unicode name string for its proxy client
attribute.

L oad balancing

Page 116



Working with Native Database Interfaces

The Oracle Real Application Clusters (RAC) database option allows a single database to

be hosted in multiple instances on multiple nodes of the database server. This adds high
availability and failover capacity to the database. Availability isimproved since, if one node
fails, another node can assume its workload. All instances have access to the whol e database.
The shared disk method of clustering databases used by the RAC option increases scalability
because nodes can be added or freed as required.

In RAC environments, session pools can use service metrics received from the RAC load
balancing advisory to balance application session requests. The work requests coming into
the session pool can then be distributed across the instances of RAC based on current service
performance.

Connect time load balancing

Balancing of work requests occur at two different times. connect time and runtime. Connect
time load balancing occurs when a session isfirst created by the application. This ensures that
sessions that are part of the pool are well distributed across RAC instances, and that sessions
on each of the instances get a chance to execute work.

For session pools that support services at one instance only, the first available session in the
pool is adequate. When the pool supports services that span multiple instances, there is a need
to distribute the work requests across instances so that the instances that are providing better
service or have greater capacity get more requests.

Runtime connection load balancing

Runtime connection load balancing basically routs work requests to the sessionsin a session
pool that best serve the work. Runtime connection load balancing is enabled by default when
an Oracle 11.1 or higher client is connected to a 10.2 or higher Oracle server using OCI
session pooling.

The DBPARM parameter, RTConnBalancing, supports the runtime connection load
balancing feature. It is available only when the Pooling parameter is set to Session Pooling,
and it can be set before connection only. By default, when you select Session Pooling for the
pooling type, the RTConnBalancing value is true.

3.6 Using DirectConnect
About this chapter

This chapter describes how to use the DirectConnect interface in PowerBuilder.

3.6.1 Using the DirectConnect interface

The DirectConnect interface uses SAP's Open Client CT-Library (CT-Lib) API to access
a database through SAP middleware data access products such as the DirectConnect for
0S/390 component of Mainframe Connect and Open ServerConnect.

Accessing Unicode data

PowerBuilder can connect, save, and retrieve data in both ANSI/DBCS and Unicode
databases. When character data or command text is sent to the database, PowerBuilder sends
aDBCS string if the UTF8 database parameter is set to O (the default). If UTF8isset to 1,
PowerBuilder sends a UTF-8 string.

Page 117



Working with Native Database Interfaces

The database server must have the UTF-8 character set installed. See the description of the
UTF-8 database parameter in Section 1.1.182, “UTF8” in Connection Reference.

A Unicode database is a database whose character set is set to a Unicode format, such as
UTF-8, UTF-16, UCS-2, or UCS-4. All data must be in Unicode format, and any data saved
to the database must be converted to Unicode data implicitly or explicitly.

A database that uses ANSI (or DBCS) as its character set might use special datatypes to store
Unicode data. Columns with these datatypes can store only Unicode data. Any data saved
into such a column must be converted to Unicode explicitly. This conversion must be handled
by the database server or client.

3.6.1.1 Connecting through the DirectConnect middleware product

SAP DirectConnect is a data access server that provides a standardized middleware interface
between your applications and your enterprise data sources. Data access servicesto a
particular database are defined in a DirectConnect server. Since a DirectConnect server can
support multiple access services, you can access multiple databases through a single server.

When you use the DirectConnect interface to connect to a particular database, your
connection is routed through the access service for that database. An access service consists
of anamed set of configuration properties and a specific access service library.

To access DB2 data on an IBM mainframe through a DirectConnect server, you can use the
DirectConnect interface to connect through either a DirectConnect for MV S access service or
a DirectConnect Transaction Router Service (TRS).

TRS provides fast access to a DB2/MV S database by using remote stored procedures. The
DirectConnect interface supports both versions of the TRS library: TRSLU62 and TRSTCP.

The DirectConnect server operates in two modes. SQL transformation and passthrough.
The DirectConnect interface for DB2/MV S uses passthrough mode, which allows your
PowerBuilder application to have direct access to the capabilities of the DB2/MV S data
source.

3.6.1.2 Connecting through the Open ServerConnect middleware product

SAP's Open ServerConnect supports mainframe applications that retrieve and update data
stored on the mainframe that SAP client applications can execute. Client applications can
connect directly to aDB2/MV S database through an Open ServerConnect application
residing on the mainframe, eliminating the need for an intermediate gateway like
DirectConnect. (This type of connection is also known as a gateway-less connection.) In
addition, an Open ServerConnect application presents mainframe Remote Procedure Calls
(RPCs) as database stored procedures to the client application.

To access DB2 data on an IBM mainframe through Open ServerConnect, you can use the
DirectConnect interface to connect through Open ServerConnect for IMS and MV S.

3.6.1.3 Selecting the type of connection

To select how PowerBuilder accesses the database, use the Choose Gateway drop-down list
on the Connection tab of the DirectConnect Database Profile Setup dialog box and select one
of the following:

* Access Service

Page 118



Working with Native Database Interfaces

o Gatewayless
« TRS

All the DBParm parameters defined for the DirectConnect interface are applicable to all three
connections except the following:

» HostReqOwner applies to Access Service and Gatewayless only
* Reguest, ShowWarnings, and SystemOwner apply to Access Service only
» UseProcSyntax appliesto Gatewayless only

See Chapter 1, Database Parameters in Connection Reference for the complete list of
DBParm parameters applicable to the DirectConnect interface.

3.6.2 Supported versions for the DirectConnect interface

The DirectConnect interface usesaDLL named PBDIR.dIl to access a database through
either DirectConnect or Open ServerConnect.

Required DirectConnect versions

To access aDB2/MV S database through the access service, it is strongly recommended that
you use DirectConnect for MV S access service version 11.1.1p4 or later.

To access aDB2/MV S database through TRS, it is strongly recommended that you use
DirectConnect TRS version 11.1.1p4 or later.

For information on DirectConnect for MV S and TRS, see your DirectConnect
documentation.

Required Open Server Connect versions

To access aDB2/MV S database through Open ServerConnect, it is strongly recommended
that you use Open ServerConnect IMS and MV S version 4.0 or later.

For information on Open ServerConnect for MV S, see your Open ServerConnect
documentation.

3.6.3 Supported DirectConnect interface datatypes

The DirectConnect interface supports the PowerBuilder datatypes listed in the following table
in Datawindow objects and embedded SQL .

Table 3.21: Supported datatypesfor DirectConnect

Char (fewer than 255 characters) Long VarChar

Char for Bit Data Redl

Date Smallint

Decimal Time

Double Precision Timestamp (DateTime)

Page 119



Working with Native Database Interfaces

Float

VarChar

I nteger

VarChar for Bit Data

3.648B
Thefoll

asic software components for the DirectConnect interface

owing figure shows the basic software components required to access a database

using the DirectConnect interface and the DirectConnect middleware data access product.

Figure: Components of a DirectConnect connection using DirectConnect middieware

Database interface

Database client

Development environment

PBDIR.DLL Supplied by Appecn

DLL

SAP Open Client CT-Library

Supplied by SAP

software (CT-Lib) API
Supplied by
Metwork layer ——— Any supparted network —network vendor or
protocol databasevendor
Middleware — SAP DirectConnect Server Supplied by SAP

Supplied by SAP

Mainframe ——— SAP Mainframe Connect

Database ———

The following figure shows the basic software components required to access a database
using the DirectConnect interface and the Open ServerConnect middleware data access

product.

Figure: Components of a DirectConnect connection using Open ServerConnect middleware

Page 120




Working with Native Database Interfaces

Development environment

Database interface PEDIR.DLL
OLL

Supplied by Appeon

Database client SAP Qpen Clu_ent CT-Library supplied by SAP

software [CT-Lib) API

Supplied by
MNetwork layer Any supparted network ——network vendor or
protocol databasevendor
SAP Open Server Connect
Mainframe Supplied by SAP
SAP Mainframe Connect
Database ——

3.6.5 Preparing to use the database with DirectConnect

Before you define the interface and connect to a database through the DirectConnect
interface, follow these steps to prepare the database for use:

1. Install and configure the SAP middleware data access products, network, and client
software.

2. Install the DirectConnect interface.

3. Verify that you can connect to your middleware product and your database outside
PowerBuilder.

4. Create the extended attribute system tables outside PowerBuilder.

Step 1. Install and configurethe SAP middlewar e product

You must install and configure the SAP middleware data access product, network, and client
software.

Page 121



Working with Native Database Interfaces

Toinstall and configurethe SAP middlewar e data access product, network, and client software:

1.

Make sure the appropriate database software is installed and running on its server.

Y ou must obtain the database server software from your database vendor.

For installation instructions, see your database vendor's documentation.

Make sure the appropriate DirectConnect access service software is installed and
running on the DirectConnect server specified in your database profile

or

Make sure the appropriate Open ServerConnect software isinstalled and running on the
mainframe specified in your database profile.

Make sure the required network software (such as TCP/IP) isinstalled and running on
your computer and is properly configured so you that can connect to the DirectConnect
server or mainframe at your site.

Y ou must install the network communication driver that supports the network protocol
and operating system platform you are using.

For installation and configuration instructions, see your network or database
administrator.

Install the required Open Client CT-Library (CT-Lib) software on each client computer
on which PowerBuilder isinstalled.

Y ou must obtain the Open Client software from SAP. Make sure the version of Open
Client you install supports both of the following:

The operating system running on the client computer
The version of PowerBuilder that you are running

Open Client required
To use the DirectConnect interface, you must install Open Client.

For information about Open Client, see your Open Client documentation.

Make sure the Open Client software is properly configured so you can connect to the
middleware data access product at your site.

Installing the Open Client software places the SQL.INI configuration filein the SQL
Server directory on your computer. SQL.INI provides information that SQL Server uses
to find and connect to the middleware product at your site. Y ou can enter and modify
information in SQL.INI with the configuration utility or editor that comes with the Open
Client software.

For information about editing the SQL.INI file, see Editing the SQL.INI file. For more
information about setting up SQL.INI or any other required configuration file, see your
SQL Server documentation.

If required by your operating system, make sure the directory containing the Open Client
software isin your system path.

Page 122



Working with Native Database Interfaces

7. Make sure only one copy of each of the following filesisinstalled on your client
computer:

¢ DirectConnect interface DLL

» Network communication DLL (such as NLWNSCK.DLL for Windows Sockets-
compliant TCP/IP)

* Open Client DLLs(suchasLIBCT.DLL and LIBCS.DLL)

Step 2: Install the interface

If you install PowerBuilder using the PowerBuilder Installer (an online setup program), the
Direct Connect Interface (DIR) is automatically installed. If you install PowerBuilder using
the downloaded installation package (an offline setup program), select Native Database
Interfaces | Direct Connect Interface (DIR) from the list of components.

Step 3: Verify the connection

Make sure you can connect to your middleware product and your database and log in to the
database you want to access from outside PowerBuilder.

Some possible ways to verify the connection are by running the following tools:

» Accessing the database server
Tools such as the Open Client/Open Server Configuration utility (or any Ping utility) check
whether you can reach the database server from your computer.

» Accessing the database

Tools such as ISQL or SQL Advantage (interactive SQL utilities) check whether you can
log in to the database and perform database operations. It is a good idea to specify the same
connection parameters you plan to use in your PowerBuilder database profile to access the
database.

Step 4: Createthe extended attribute system tables

PowerBuilder uses a collection of five system tables to store extended attribute information.
When using the DirectConnect interface, you must create the extended attribute system tables
outside PowerBuilder to control the access rights and location of these tables.

Run the DB2SY SPB.SQL script outside PowerBuilder using the SQL tool of your choice.
For instructions, see Creating the extended attribute system tables in DB2 databases.
Editing the SQL.INI file

Make sure the SQL.INI file provides an entry about either the access service being used and
the DirectConnect server on which it resides or the Open ServerConnect program being used
and the mainframe on which it resides.

For the server object name, you need to provide the exact access service name as it is defined
in the access service library configuration file on the DirectConnect server. Y ou must also
specify the network communication DLL being used, the TCP/IP address or alias used for
the DirectConnect server on which the access service resides, and the port on which the
DirectConnect server listens for requests:

Page 123



Working with Native Database Interfaces

[ access_servi ce_nane]
query=network_dl |, server_ali as, server_port_no

PowerBuilder users must also specify the access service name in the SQLCA.ServerName
property of the Transaction object.

3.6.6 Defining the DirectConnect interface

To define a connection through the DirectConnect interface, you must create a database
profile by supplying values for at |east the basic connection parameters in the Database
Profile Setup - DirectConnect dialog box. Y ou can then select this profile anytime to connect
to your database in the devel opment environment.

For information on how to define a database profile, see Using database profiles.

3.6.7 Creating the extended attribute system tables in DB2 databases

This section describes how PowerBuilder creates the extended attribute system tablesin
your DB2 database to store extended attribute information. It then explains how to use the
DB2SY SPB.SQL script to create the extended attribute system tables outside PowerBuilder.

Y ou can use the DB2SY SPB.SQL script if you are connecting to the IBM DB2 family of
databases through any of the following database interfaces:

 ODBC interface

* SAP DirectConnect interface

3.6.7.1 Creating the extended attribute system tables

When you create or modify atable in PowerBuilder, the information you provide is stored

in five system tables in your database. These system tables contain extended attribute
information such as the text to use for labels and column headings, validation rules, display
formats, and edit styles. (These system tables are different from the system tables provided by
your DB2 database.)

By default, the extended attribute system tables are created automatically the first time a user
connects to the database using PowerBuilder.

When you use the DirectConnect interface

When you use the DirectConnect interface, the extended attribute system tables are
not created automatically. Y ou must run the DB2SY SPB.SQL script to create the
system tables as described in Using the DB2SY SPB.SQL script.

To ensurethat the extended attribute system tables are created with the proper accessrights:

*  Make sure thefirst person to connect to the database with PowerBuilder has sufficient
authority to create tables and grant permissionsto PUBLIC.

This means that the first person to connect to the database should log in as the database
owner, database administrator, system user, system administrator, or system owner, as
specified by your DBMS.

Page 124



Working with Native Database Interfaces

3.6.7.2 Using the DB2SYSPB.SQL script
Why do this

If you are a system administrator at a DB2 site, you might prefer to create the extended
attribute system tables outside PowerBuilder for two reasons:

» Thefirst user to connect to the DB2 database using PowerBuilder might not have the
proper authority to create tables.

» When PowerBuilder creates the extended attribute system tables, it places them in the
default tablespace. This might not be appropriate for your needs.

When using the DirectConnect interface

Y ou must create the extended attribute system tables outside PowerBuilder if you are
using the DirectConnect interface. Y ou need to decide which database and tablespace
should store the system tables. Y ou might also want to grant update privileges only to
specific developers or groups.

What you do

To create the extended attribute system tables, you run the DB2SY SPB.SQL script outside
PowerBuilder. This script contains SQL commands that create and initialize the system tables
with the table owner and tablespace you specify.

Whereto find DB2SY SPB.SQL

The DB2SY SPB.SQL script isin the Server directory in the PowerBuilder setup program.
This directory contains server-side installation components and is not installed with
PowerBuilder on your computer.

Y ou can access the DB2SY SPB.SQL script by copying it to your computer.

Use the following procedure from the database server to create the extended attribute system
tablesin a DB2 database outside PowerBuilder. This procedure assumes you are accessing
the DB2SY SPB.SQL script from d:\server.

To createthe extended attribute system tablesin a DB2 database outside Power Builder:
1. Loginto the database server or gateway as the system administrator.

2. Useany text editor to modify d:\server\DB2SY SPB.SQL for your environment. Y ou can
do any of the following:

» Change all instances of PBOwner to another name.

Specifying SY SIBM is prohibited
Y ou cannot specify SY SIBM as the table owner. Thisis prohibited by DB2.

» Change all instances of database.tablespace to the appropriate value.

» Add appropriate SQL statement delimiters for the tool you are using to run the script.

Page 125



Working with Native Database Interfaces

» Remove comments and blank lines if necessary.

PBCatalogOwner

If you changed PBOwner to another name in the DB2SY SPB.SQL script, you must
specify the new owner name as the value for the PBCatalogOwner DBParm parameter
in your database profile. For instructions, see PBCatalogOwner in Section 1.1.108,
“PBCatalogOwner” in Connection Reference.

3. Saveany changes you made to the DB2SY SPB.SQL script.

4. Execute the DB2SY SPB.SQL script from the database server or gateway using the SQL
tool of your choice.

Page 126



Working with Database Connections

4 Working with Database Connections

This part describes how to establish, manage, and troubleshoot database connections.

4.1 Managing Database Connections
About this chapter

After you install the necessary database software and define the database interface, you can
connect to the database from PowerBuilder. Once you connect to the database, you can work
with the tables and views stored in that database.

This chapter describes how to connect to a database in PowerBuilder, maintain database
profiles, and share database profiles.

Terminology
In this chapter, the term database refers to both of the following unless otherwise specified:

» A database or DBMS that you access with a standard database interface and appropriate
driver

» A database or DBMS that you access with the appropriate native database interface

4.1.1 About database connections

This section gives an overview of when database connections occur in PowerBuilder. It also
explains why you should use database profiles to manage your database connections.

4.1.1.1 When database connections occur
Connectionsin PowerBuilder
PowerBuilder connects to your database when you:

» Open apainter that accesses the database

» Compile or save a PowerBuilder script containing embedded SQL statements (such asa
CONNECT statement)

» Execute an application that accesses the database

* Invoke a DataWindow control function that accesses the database while executing an
application
How Power Builder determineswhich database to access

PowerBuilder connects to the database you used last when you open a painter that accesses
the database. PowerBuilder determines which database you used last by reading a setting in
the registry.

What'sin this book

This book describes how to connect to your database when you are working in the
PowerBuilder devel opment environment.

For instructions on connecting to a database in a PowerBuilder application, see Section 9.2.5,
“Database connections’ in Application Techniques.

Page 127



Working with Database Connections

4.1.1.2 Using database profiles
What is a database profile?

A database profileisanamed set of parameters stored in the registry that defines a
connection to a particular database in the PowerBuilder development environment.

Why use database pr ofiles?
Creating and using database profiles is the easiest way to manage your database connections
in PowerBuilder because you can:

» Select adatabase profile to establish or change database connections. Y ou can easily
connect to another database anytime during a PowerBuilder session. Thisis particularly
useful if you often switch between different database connections.

 Edit adatabase profile to modify or supply additional connection parameters.

» Usethe Preview tab page to test a connection and copy the connection syntax to your
application code.

» Delete adatabase profile if you no longer need to access that data.
* Import and export profiles.

Because database profiles are created when you define your data and are stored in the
registry, they have the following benefits:

» They are always available to you.

» Connection parameters supplied in a database profile are saved until you edit or delete the
database profile.

4.1.2 Connecting to a database

To establish or change a database connection in PowerBuilder, use a database profile. You
can select the database profile for the database you want to access in the Database Profiles
dialog box. For how to create a database profile, see Creating a database profile.

Using the Database painter to select a database profile

Y ou can also select the database profile for the database you want to access from
the Database painter's Objects view. However, this method requires more system
resources than using the Database Profiles dialog box.

4.1.2.1 Selecting a database profile
Y ou can select a database profile from the Database Profiles dialog box.

To connect to a database using the Database Pr ofiles dialog box:

1. Click the Database Profile button in the PowerBar or salect Tools>Database Profile
from the menu bar.

Page 128



Working with Database Connections

Database Profile button

If your PowerBar does not include the Database Profile button, use the customize
feature to add the button to the PowerBar. Having the Database Profile button on your
PowerBar isuseful if you frequently switch connections between different databases.
For instructions on customizing toolbars, see the Users Guide.

The Database Profiles dialog box displays, listing your installed database interfaces.

Wheretheinterfacelist comesfrom

When you run the setup program, it updates the Vendorslist in the registry with the
interfaces you install. The Database Profiles dialog box displays the same interfaces
that appear in the Vendors list.

2. Click the plus sign (+) to the left of the interface you are using or double-click the name.
The list expands to display the database profiles defined for your interface.

3. Select the name of the database profile you want to access and click Connect or display
the pop-up menu for a database profile and select Connect.

PowerBuilder connects to the specified database and returns you to the painter workspace.
Database painter Objectsview
Y ou can select a database profile from the Database painter Objects view.

To connect to a database using the Database painter:

1. Click the Database painter button in the PowerBar.
The Database painter displays. The Objects view lists your installed database interfaces.

Wheretheinterfacelist comesfrom

When you run the setup program, it updates the Vendors list in the registry with the
interfaces you install. The Database painter Objects view displays the same interfaces
that appear in the Vendors list.

2. Click the plus sign (+) to the left of the interface you are using or double-click the name.
The list expands to display the database profiles defined for your interface.

3. Select the name of the database profile you want to access and click the Connect button,
or display the pop-up menu for a database profile and select Connect.

4.1.2.2 What happens when you connect

When you connect to a database by selecting its database profile, PowerBuilder writes the
profile name and its connection parameters to the registry key HKEY CURRENT_USER
\Software\Sybase\PowerBuilder\19.0\DatabaseProfiles\PowerBuilder.

Each time you connect to a different database, PowerBuilder overwrites the "most-recently
used" profile name in the registry with the name for the new database connection.

Page 129



Working with Database Connections

When you open a painter that accesses the database, you are connected to the database you
used last. PowerBuilder determines which database this is by reading the registry.

The three-letter abbreviation for the database interface followed by the name of the database
profile displays in PowerBuilder's main title bar. If you are working with a DataWindow
object, thisvisual cue makesit easier to check that you are using the right connection.

For example, if you open the PowerBuilder Code Examples workspace and connect to
the Demo database, the title bar displays "pbexamples- ODB [PB Demo DB V2019R3] -
PowerBuilder."

4.1.2.3 Specifying passwords in database profiles

Y our password does not display when you specify it in the Database Profile Setup dialog
box.

However, when PowerBuilder stores the values for this profile in the registry, the actual
password does display, in encrypted form, in the DatabasePassword or LogPassword field.
Suppressing display in the profileregistry entry

To suppress password display in the profile registry entry, do the following when you create a
database profile.

To suppress password display in the profileregistry entry:

1. Select the Prompt For Database Information check box on the Connection tab in the
Database Profile Setup dialog box.

This tells PowerBuilder to prompt for any missing information when you select this
profile to connect to the database.

2. Leavethe Password box blank. Instead, specify the password in the dialog box that
displays to prompt you for additional information when you connect to the database.

What happens

When you specify the password in response to a prompt instead of in the Database Profile
Setup dialog box, the password does not display in the registry entry for this profile.

For example, if you do not supply a password in the Database Profile Setup - Adaptive Server
Enterprise dialog box when creating a database profile, the Client Library Login dialog box
displays to prompt you for the missing information.

4.1.2.4 Using the Preview tab to connect in a PowerBuilder application

To access adatabase in a PowerBuilder application, you must specify the required connection
parameters as properties of the Transaction object (SQLCA by default) in the appropriate
script. For example, you might specify the connection parameters in the script that opens the
application.

In PowerBuilder, the Preview tab in the Database Profile Setup dialog box makes it easy to
generate accurate PowerScript connection syntax in the development environment for use in
your PowerBuilder application script.

For instructions on using the Preview tab to help you connect in a PowerBuilder application,
see Section 4.1.2, “Working with Transaction objects’ in Application Techniques.

Page 130



Working with Database Connections

4.1.3 Maintaining database profiles
You can easily edit or delete an existing database profile in PowerBuilder.

Y ou can edit a database profile to change one or more of its connection parameters. Y ou can
delete a database profile when you no longer need to access its data. Y ou can also change a
profile using either the Database Profiles dialog box or the Database painter.

What happens

When you edit or delete a database profile, PowerBuilder either updates the database profile
entry in the registry or removesit.

Deleting a profile for an ODBC data source

If you delete a database profile that connects to an ODBC data source, PowerBuilder
does not delete the corresponding data source definition from the ODBC initialization
file. Thislets you re-create the database profile later if necessary without having to
redefine the data source.

4.1.4 Sharing database profiles
When you work in PowerBuilder, you can share database profiles among users.

Sharing database profiles between SAP tools

Since the database profiles used by PowerBuilder and InfoMaker are stored in a
common registry location, database profiles you create in any of these tools are
automatically available for use by the others, if the tools are running on the same
computer.

This section describes what you need to know to set up, use, and maintain shared database
profilesin PowerBuilder.

4.1.4.1 About shared database profiles

Y ou can share database profiles in the PowerBuilder devel opment environment by specifying
the location of afile containing the profiles you want to share. Y ou specify thislocation in
the Database Preferences dialog box in the Database painter.

Whereto storea shared profilefile

To share database profiles among all PowerBuilder users at your site, store aprofile fileon a
network file server accessible to all users.

When you share database profiles, PowerBuilder displays shared database profiles from the
file you specify aswell as those from your registry.

Shared database profiles are read-only. Y ou can select a shared profile to connect to a
database -- but you cannot edit, save, or delete profiles that are shared. (Y ou can, however,
make changes to a shared profile and save it on your computer, as described in Making local
changes to shared database profiles.)

4.1.4.2 Setting up shared database profiles
Y ou set up shared database profiles in the Database Preferences dialog box.

Page 131



Working with Database Connections

To set up shared database profiles:

1.

In the Database painter, select Design>Options from the menu bar to display the

Database Preferences dialog box.

In the Shared Database Profiles box on the General tab page, specify the location of the
file containing the database profiles you want to share. Do thisin either of the following

ways:

» Typethelocation (path name) in the Shared Database Profiles box.

* Click the Browse button to navigate to the file location and display it in the Shared
Database Profiles box.

In the following example, c:\work\share.ini is the location of the file containing the
database profilesto be shared:

~

Database Preferences

25

General | Object Colors | Script

Editor Font

Printer Font

Coloring

Application
Shared Database Profiles:

o \work\shared.ini

Painter Oplions
Connect to Default Profile

Keep Connection Open
Use Extended Attributes

Columns in Table Display: 8

SQL Terminator Character:

[~ | Read Only

Refresh Table List: 1300

Seconds

]

oK ] | Cancel | |

Apply

Help

Page 132



Working with Database Connections

3. Click OK.

PowerBuilder applies the Shared Database Profiles setting to the current connection and
all future connections and saves the setting in the registry.

4.1.4.3 Using shared database profiles to connect

Y ou select a shared database profile to connect to a database the same way you select a
profile stored in your registry. Y ou can select the shared profile in the Database Profiles
dialog box or from the File>Connect menu.

Database Profiles dialog box
Y ou can select and connect to a shared database profile in the Database Profiles dialog box.

To select a shared database profilein the Database Profiles dialog box:

1. Click the Database Profile button in the PowerBar or select Tools>Database Profile
from the menu bar.

The Database Profiles dialog box displays, listing both shared and local profiles. Shared
profiles are denoted by a network icon and the word (Shared).

Database Frofiles lﬁ

-4 DIR Direct Connect -~ Connect
-4 110 Informix v10.x|v12.x
-4 IN9 Informix v3.x | Close |
-4 IDB JDBC
-3 010 Orade 10g [ nNew.. |
-4 090 Orade 9i —
-4 ODB ODBC
& PB Demo DB V2017 Delete

-4 PB Demo DB V2017 IM

m

e £3 PB Demo DB V2017 IM Unicode Help

------ £3 PB Demo DB V2017 Unicode

: Orders (Shared)
1;-1 Sales (Shared)

. -3 Utiities

-4 ODT OData

[l = Bl =l ¥ 1 Lo e e

2. Select the name of the shared profile you want to access and click Connect.

PowerBuilder connects to the selected database and returns you to the painter
workspace.

Page 133



Working with Database Connections

4.1.4.4 Making local changes to shared database profiles

Because shared database profiles can be accessed by multiple users running PowerBuilder,
you should not make changes to these profiles. However, if you want to modify and save
acopy of ashared database profile for your own use, you can edit the profile and save the
modified copy in your computer's registry.

To save changesto a shar ed database profilein your registry:

1. Inthe Database Profiles dialog box, select the shared profile you want to edit and click
the Edit button.

2. Inthe Database Profile Setup dialog box that displays, edit the profile values as needed
and click OK.
A message box displays, asking if you want to save a copy of the modified profileto
your computer.

3. Click Yes.

PowerBuilder saves the modified profile in your computer's registry.

4.1.4.5 Maintaining shared database profiles

If you maintain the database profiles for PowerBuilder at your site, you might need to update
shared database profiles from time to time and make these changes available to your users.

Because shared database profiles can be accessed by multiple users running PowerBuilder, it
isnot agood idea to make changes to the profiles over a network. Instead, you should make
any changes locally and then provide the updated profiles to your users.

To maintain shared database profilesat your site:

1. Makeand save required changes to the shared profiles on your own computer. These
changes are saved in your registry.

For instructions, see Making local changes to shared database profiles.

2. Export the updated profile entries from your registry to the existing file containing
shared profiles.

For instructions, see Importing and exporting database profiles.

3. If they have not already done so, have users specify the location of the new profilesfile
in the Database Preferences property sheet so that they can access the updated shared
profiles on their computer.

For instructions, see Setting up shared database profiles.

4.1.5 Importing and exporting database profiles

Each database interface provides an Import Profile(s) and an Export Profile(s) option. You
can use the Import option to import a previously defined profile for use with an installed

Page 134



Working with Database Connections

database interface. Conversely, you can use the Export option to export a defined profile for
use by another user.

The ability to import and export profiles provides a way to move profiles easily between
developers. It also means you no longer have to maintain a shared file to maintain profiles. It
isideal for mobile development when you cannot rely on connecting to a network to share a
file.

Toimport a profile:

1. Highlight a database interface and select Import Profile(s) from the pop-up menu. (In the
Database painter, select Import Profile(s) from the File or pop-up menu.)

2. Fromthe Select Profile File dialog box, select the file whose profiles you want to import
and click Save.

3. Select the profile(s) you want to import from the Import Profile(s) dialog box and click
OK.

The profiles are copied into your registry. If aprofile with the same name already exists,
you are asked if you want to overwrite it.

Toexport a profile:

1. Highlight a database interface and select Export Profile(s) from the pop-up menu. (In the
Database painter, select Export Profile(s) from the File or pop-up menu.)

2. Select the profile(s) you want to export from the Export Profile(s) dialog box and click
OK.

The Export Profile(s) dialog box lists al profiles defined in your registry regardless of
the database interface for which they were defined. By default, the profiles defined for
the selected database interface are marked for export.

3. Fromthe Select Profile File dialog box, select adirectory and afile in which to save the
exported profile(s) and click Save.

The exported profiles can be saved to anew or existing file. If saved to an existing file,
the profile(s) are added to the existing profiles. If a profile with the same name already
exists, you are asked if you want to overwrite it.

4.1.6 About the PowerBuilder extended attribute system tables

PowerBuilder uses a collection of five system tables to store extended attribute information

(such as display formats, validation rules, and font information) about tables and columnsin
your database. Y ou can aso define extended attributes when you create or modify atablein
PowerBuilder.

This section tells you how to:

» Make sure the PowerBuilder extended attribute system tables are created with the proper
access rights when you log in to your database for the first time

Page 135



Working with Database Connections

» Display and open a PowerBuilder extended attribute system table

» Understand the kind of information stored in the PowerBuilder extended attribute system
tables

» Control extended attribute system table access

4.1.6.1 Logging in to your database for the first time

By default, PowerBuilder creates the extended attribute system tables the first time you
connect to a database.

To ensure that PowerBuilder creates the extended attribute system tables with the proper
access rights to make them available to al users, the first person to connect to the database
with PowerBuilder must log in with the proper authority.

Toensureproper creation of the Power Builder extended attribute system tables:

*  Make surethefirst person to connect to the database with PowerBuilder has sufficient
authority to create tables and grant permissionsto PUBLIC.

This means that the first person to connect to the database should log in as the database
owner, database administrator, system user, system administrator, or system owner, as
specified by your DBMS.

Creating the extended attribute system tables when using the Direct Connect
interface

When you are using the DirectConnect interface, the PowerBuilder extended attribute
system tables are not created automatically the first time you connect to a database.

Y ou must run the DB2SY SPB.SQL script to create the system tables, as described in
Using the DB2SY SPB.SQL. script.

4.1.6.2 Displaying the PowerBuilder extended attribute system tables

PowerBuilder updates the extended attribute system tables automatically whenever you
change the information for atable or column. The PowerBuilder extended attribute system
tables are different from the system tables provided by your DBMS.

Y ou can display and open PowerBuilder extended attribute system tables in the Database
painter just like other tables.

To display the Power Builder extended attribute system tables:

1. Inthe Database painter, highlight Tablesin the list of database objects for the active
connection and select Show System Tables from the pop-up menu.

Page 136



Working with Database Connections

ﬁ
o
%

-f& ASE SAP ASE 15.x16.x -
-4 DIR Direct Connect
-4 10 Informix v10.xv12 x
-4 ING Informix v3.x
- JDB JDBC
[ 010 Oracle 10g
-f4 090 Oracle 9i
E ODB ODBC
E| ﬁ PE Demo DB V2017
: . 3 Driver Information
-1 Events
D Groups
. 3 Metadata Types
. 3 Procedures & Functions

-DE"’

m

. L3 Use New Table...

F-C3 Viey | v | Show System Tables

- £4 PB Der ) ¥
. .3 PBDen Table Security...

. -3 PBDem Refresh

. 3 Utilities Propertics

&3 ODT ODats

-3 OLE Microsoft OLE DB

-3 ORA Oracle

-4 SMC SQL Mative Client

=3 SYC SAP ASE p

2.  The PowerBuilder extended attribute system tables and DBMS system tables display in
thetableslist, asfollows:
» PowerBuilder system tables
The five system tables are: pbcatcol, pbcatedt, pbcatfmt, pbcattbl, and pbcatvld.

* DBMS system tables

The system tables supplied by the DBM S usually have a DBM S-specific prefix (such
as sys or dbo).

Page 137



Working with Database Connections

T ax
-2 states .
-2 stock

-3 sys.dummy

Iﬂ sys.isysarticle

Iﬂ sys.isysarticlecol

Iﬂ sys.isysattribute

Iﬂ sys.Isysattributename

Iﬂ sys.isyscapability

Iﬂ sys.isyscertificate

Iﬂ sys.isyscheck

Iﬂ sys.isyscolperm

Iﬂ sys.isyscolstat

Iﬂ sys.isysconstraint

Iﬂ sys.isysdbfile

Iﬂ sys.isysdbspace -
Iﬂ sys.isysdbspaceperm
Iﬂ sys.Isysdependency
Iﬂ sys.isysdomain —
- sys.isysevent

Iﬂ sys.isysexterneny
Iﬂ sys.isysexternenvobject
Iﬂ sys.isysexternlogin
Iﬂ sys.isysfkey

- sys.isyshistory

Iﬂ sys.isysidx

Iﬂ sys.isysiducol

-5 sys.isysjar

m

3. Display the contents of a PowerBuilder system table in the Object Layout, Object
Details, and/or Columns views.

For instructions, see Section 8.1, “Appendix A. The Extended Attribute System Tables’
in Users Guide.

Do not edit the extended attribute system tables
Do not change the values in the PowerBuilder extended attribute system tables.

Page 138



Working with Database Connections

4.1.6.3 Contents of the extended attribute system tables

PowerBuilder stores five types of extended attribute information in the system tables as
described in the following table.

Table4.1: Extended attribute system tables

System Information Attributes
table about
pbcatcol Columns Names, comments, headers, |abels, case, initial value, and
justification
pbcatedt | Edit styles | Edit style names and definitions
pbcatfmt | Display Display format names and definitions
formats
pbcattbl Tables Name, owner, default fonts (for data, headings and labels), and
comments
pbcatvid | Validation |Validation rule names and definitions
rules

For more about the PowerBuilder system tables, see Section 8.1, “Appendix A. The Extended
Attribute System Tables’ in Users Guide.

Prefixesin system table names

For some databases, PowerBuilder precedes the name of the system table with a
default DBM S-specific prefix. For example, the names of PowerBuilder system tables
have the prefix DBO in a SQL Server database (such as DBO.pbcatcol), or SY STEM
in an Oracle database (such as SY STEM .pbcatfmt).

The preceding table gives the base name of each system table without the DBMS-
specific prefix.

4.1.6.4 Controlling system table access

To control accessto the PowerBuilder system tables at your site, you can specify that
PowerBuilder not create or update the system tables or that the system tables be accessible
only to certain users or groups.

Y ou can control system table access by doing any of the following:

» Setting Use Extended Attributes

Set the Use Extended Attributes database preference in the Database Preferences dialog
box in the Database painter.

» Setting Read Only

Set the Read Only database preference in the Database Preferences dialog box in the
Database painter.

 Granting permissions on the system tables

Grant explicit permissions on the system tables to users or groups at your site.

Page 139



Working with Database Connections

4.1.6.4.1 Setting Use Extended Attributes or Read Only to control access

To control system table access by setting Use Extended Attributes or Read Only:

1. Select Design>Options from the menu bar to display the Database Preferences dialog
box.

Database Preferences LiE-J

General | Object Colors | Script | Editor Font | Printer Font | Coloring

Application
Shared Database Profiles:

ct\work\shared.ini eae |

Painter Options
| Connect to Default Profile Read Only

| Keep Connection Open
| Use Extended Attributes

Columns in Table Display: 8
SQL Terminator Character: ;

Refresh Table List: 1300 Seconds

| Default |

oK ] | Cancel | | Apply | | Help |

b -

2.  Onthe Genera page, set values for Use Extended Attributes or Read Only as follows:

Table4.2:
Preference What you Effect

Use Clear the |Does not create the PowerBuilder system tablesif they do

Extended |check box |not exist. Instead, the painter uses the appropriate default

Attributes values for extended attributes (such as headers, labels, and
text color).

Page 140



Working with Database Connections

Preference What you Effect

do
If the PowerBuilder system tables already exist,
PowerBuilder does not use them when you create a new
DataWindow object.

Read Only | Select the |If the PowerBuilder system tables already exist,
check box | PowerBuilder uses them when you create a new DataWindow
object, but does not update them.

Y ou cannot modify (update) information in the system tables
or any other database tablesin the Datawindow painter when
the Read Only check box is selected.

3. Click OK.

PowerBuilder applies the preference settings to the current connection and all future
connections and saves them in the registry.

4.1.6.4.2 Granting permissions on system tables to control access

If your DBMS supports SQL GRANT and REV OKE statements, you can control access to
the PowerBuilder system tables. The default authorization for each repository tableis:

GRANT SELECT, UPDATE, | NSERT, DELETE ON table TO PUBLIC

After the system tables are created, you can (for example) control access to them by granting
SELECT authority to end users and SELECT, UPDATE, INSERT, and DELETE authority to
developers. Thistechnique offers security and flexibility that is enforced by the DBMS itself.

4.2 Setting Additional Connection Parameters
About this chapter

To fine-tune your database connection and take advantage of DBM S-specific features that
your interface supports, you can set additional connection parameters at any time. These
additional connection parameters include:

» Database parameters
» Database preferences

These connection parameters are described in Part |, “ Connection Reference”.

This chapter describes how to set database parameters and database preferencesin
PowerBuilder.

4.2.1 Basic steps for setting connection parameters

This section gives basic steps for setting database parameters and database preferencesin
PowerBuilder.

To set database parameters:

1. Learn how to set database parameters in the development environment or in code.

Page 141



Working with Database Connections

4.

See Setting database parameters.

Determine the database parameters you can set for your database interface.

For atable listing each supported database interface and the database parameters
you can use with that interface, see Section 1.1, “ Database parameters and supported
database interfaces” in Connection Reference.

Read the description of the database parameter you want to set in Chapter 1, Database
Parameters in Connection Reference.

Set the database parameter for your database connection.

To set database preferences:

1.

4,

Learn how to set database preferences in the devel opment environment or PowerBuilder
application script.

See Setting database preferences.

Determine the database preferences you can set for your DBMS.

For atable listing each supported database interface and the database preferences
you can use with that interface, see Section 1.1, “ Database parameters and supported
database interfaces’ in Connection Reference.

Read the description of the database preference you want to set in Chapter 1, Database
Parameters in Connection Reference.

Set the database preference for your database connection.

4.2.2 About the Database Profile Setup dialog box

The interface-specific Database Profile Setup dialog box makes it easy to set additional
connection parameters in the development environment or in code. Y ou can:

Supply values for connection options supported by your database interface

Each database interface has its own Database Profile Setup dialog box that includes
settings only for those connection parameters supported by the interface. Similar
parameters are grouped on the same tab page. The Database Profile Setup dialog box for
all interfaces includes the Connection tab and Preview tab. Depending on the requirements
and features of your interface, one or more other tab pages might also display.

Easily set additional connection parameters in the development environment

Y ou can specify additional connection parameters (database parameters and transaction
object properties) with easy-to-use check boxes, drop-down lists, and text boxes.
PowerBuilder generates the proper syntax automatically when it saves your database
profile in the system registry.

Generate connection syntax for use in your PowerBuilder application script

As you complete the Database Profile Setup dialog box in PowerBuilder, the correct
connection syntax for each selected option is generated on the Preview tab. PowerBuilder

Page 142



Working with Database Connections

assigns the corresponding database parameter or transaction object property name to each
option and inserts quotation marks, commas, semicolons, and other characters where
needed. Y ou can copy the syntax you want from the Preview tab into your PowerBuilder
script.

4.2.3 Setting database parameters
In PowerBuilder, you can set database parameters by doing either of the following:

 Editing the Database Profile Setup dialog box for your connection in the devel opment
environment

» Specifying connection parameters in an application script

4.2.3.1 Setting database parameters in the development environment
Editing database profiles

To set database parameters for a database connection in the PowerBuilder devel opment
environment, you must edit the database profile for that connection.

Character limit for strings

Strings containing database parameters that you specify in the Database Profile Setup dialog
box for your connection can be up to 999 charactersin length.

Thislimit applies only to database parameters that you set in a database profilein the
development environment. Database strings specified in code as properties of the Transaction
object are not limited to a specified length.

4.2.3.2 Setting database parameters in a PowerBuilder application script

If you are developing an application that connects to a database, you must specify the
required connection parameters in the appropriate script as properties of the default
Transaction object (SQLCA) or a Transaction object that you create. For example, you might
specify connection parameters in the script that opens the application.

One of the connection parameters you might want to specify in a script is DBParm. Y ou can
do thisby:

* (Recommended) Copying DBParm syntax from the Preview tab in the Database Profile
Setup dialog box into your script

» Coding PowerScript to set values for the DBParm property of the Transaction object

* Reading DBParm values from an external text file

4.2.3.2.1 Copying DBParm syntax from the Preview tab

The easiest way to specify DBParm parameters in a PowerBuilder application script isto
copy the DBParm syntax from the Preview tab in the Database Profile Setup dialog box into
your code, modifying the default Transaction object name (SQLCA) if necessary.

Asyou set parameters in the Database Profile Setup dialog box in the development
environment, PowerBuilder generates the correct connection syntax on the Preview tab.

Page 143



Working with Database Connections

Therefore, copying the syntax directly from the Preview tab ensures that you use the correct
DBParm syntax in your code.

To copy DBParm syntax from the Preview tab into your code:

1. Ononeor moretab pagesin the Database Profile Setup dialog box for your connection,
supply values for any parameters you want to set.

For instructions, see Setting database parameters in the development environment.

For information about the parameters for your interface and the values to supply, click
Help.

2. Click Apply to save your changes to the current tab without closing the Database Profile
Setup dialog box.

3. Click the Preview tab.
The correct DBParm syntax for each selected option displays in the Database
Connection Syntax box.

4. Select one or more lines of text in the Database Connection Syntax box and click Copy.
PowerBuilder copies the selected text to the clipboard.

5. Click OK to close the Database Profile Setup dialog box.

6. Pastethe selected text from the Preview tab into your code, modifying the default
Transaction object name (SQLCA) if necessary.

4.2.3.2.2 Coding PowerScript to set values for the DBParm property

Another way to specify connection parametersin a script is by coding PowerScript to assign
values to properties of the Transaction object. PowerBuilder uses a special nonvisual object
called a Transaction object to communicate with the database. The default Transaction object
is named SQL CA, which stands for SQL Communications Area.

SQL CA has 15 properties, 10 of which are used to connect to your database. One of the 10
connection properties is DBParm. DBParm contains DBM S-specific parameters that let your
application take advantage of various features supported by the database interface.

To set valuesfor the DBParm property in a Power Builder script:

1. Open the application script in which you want to specify connection parameters.
For instructions, see Section 3.1.2, “Opening Script views’ in Users Guide.
2. Usethefollowing PowerScript syntax to specify DBParm parameters. Make sure you

separate the DBParm parameters with commas, and enclose the entire DBParm string in
double quotes.

SQLCA. dbParm = "paraneter_1, paraneter_2, paraneter_n"

For example, the following statement in a PowerBuilder script sets the DBParm property
for an ODBC data source named Sales. In this example, the DBParm property consists
of two parameters: ConnectString and Async.

Page 144



Working with Database Connections

SQLCA. dbPar m=" Connect Stri ng=" DSN=Sal es; Ul D=PB; PWD=xyz',k Async=1"

3. Compile the PowerBuilder script to save your changes.

For instructions, see Section 3.1.7, “Compiling the script” in Users Guide.

4.2.3.2.3 Reading DBParm values from an external text file

As an aternative to setting the DBParm property in a PowerBuilder application script, you
can use the PowerScript ProfileString function to read DBParm values from a specified
section of an external text file, such as an application-specific initialization file.

Toread DBParm values from an exter nal text file:

1. Open the application script in which you want to specify connection parameters.
For instructions, see Section 3.1.2, “Opening Script views’ in Users Guide.

2.  Usethefollowing PowerScript syntax to specify the ProfileString function with the
SQLCA.DBParm property:

SQLCA. dbParm = ProfileString ( file, section, key, default )

For example, the following statement in a PowerBuilder script reads the DBParm values
from the [Database] section of the APP.INI file:

SQLCA. dbPar meProfil eString("APP.I NI ", "Database", "dbParni,6"")

3. Compile the script to save your changes.

For instructions, see Section 3.1.7, “Compiling the script” in Users Guide.

4.2.4 Setting database preferences
How to set

The way you set connection-related database preferences in PowerBuilder varies, as
summarized in the following table (AutoCommit and Lock are the only database preferences
that you can set in a PowerBuilder application script).

Table 4.3: Database preferences and wher e they can be set

Database preference Set in development Set in Power Builder
environment by editing application by editing
AutoCommit Database Profile Setup dialog | Application script
box for your connection
Lock Database Profile Setup dialog | Application script

box for your connection
Shared Database Profiles Database Preferences
property sheet

Connect to Default Profile Database Preferences
property sheet

Page 145



Working with Database Connections

Database preference Set in development Set in Power Builder
environment by editing application by editing
Read Only Database Preferences
property sheet
Keep Connection Open Database Preferences
property sheet
Use Extended Attributes Database Preferences
property sheet
SQL Terminator Character Database Preferences
property sheet

The following sections give the steps for setting database preferences in the devel opment
environment and (for AutoCommit and Lock) in a PowerBuilder application script.

For moreinformation

For information about using a specific database preference, see its description in the
PowerBuilder Help.

4.2.4.1 Setting database preferences in the development environment

There are two ways to set database preferences in the PowerBuilder development
environment on all supported devel opment platforms, depending on the preference you want
to set:

» Set AutoCommit and Lock (Isolation Level) in the Database Profile Setup dialog box for
your connection
ADO.NET
For ADO.NET, Isolation is a database parameter.

» Set dl other database preferences in the Database Preferences dialog box in the Database
painter

4.2.4.1.1 Setting AutoCommit and Lock in the database profile

The AutoCommit and Lock (Isolation Level) preferences are properties of the default
Transaction object, SQLCA. For AutoCommit and Lock to take effect in the PowerBuilder
development environment, you must specify them before you connect to a database. Changes
to these preferences after the connection occurs have no effect on the current connection.

To set AutoCommit and L ock before PowerBuilder connects to your database, you specify
their valuesin the Database Profile Setup dialog box for your connection.

To set AutoCommit and Lock (Isolation Level) in a database profile:
1. Display the Database Profiles dialog box.

2. Click the plus sign (+) to the left of the interface you are using or double-click the
interface name.

Page 146



Working with Database Connections

The list expands to display the database profiles defined for your interface.

Select the name of the profile you want and click Edit.
The Database Profile Setup dialog box for the selected profile displays.

On the Connection tab page, supply values for one or both of the following:

* |solation Level

If your database supports the use of locking and isolation levels, select the isolation
level you want to use for this connection from the Isolation Level drop-down list.
(TheIsolation Level drop-down list contains valid lock values for your interface.)

e AutoCommit Mode

The setting of AutoCommit controls whether PowerBuilder issues SQL statements
outside (True) or inside (False) the scope of atransaction. If your database supports
it, select the AutoCommit Mode check box to set AutoCommit to True or clear the
AutoCommit Mode check box (the default) to set AutoCommit to False.

For example, in addition to values for basic connection parameters (Server, Login ID,
Password, and Database), the Connection tab page for the following SAP Adaptive
Server Enterprise profile named Sales shows nondefault settings for Isolation Level
and AutoCommit Mode.

(Optional) In PowerBuilder, click the Preview tab if you want to see the PowerScript
connection syntax generated for Lock and AutoCommit.

PowerBuilder generates correct PowerScript connection syntax for each option you
set in the Database Profile Setup dialog box. Y ou can copy this syntax directly into a
PowerBuilder application script.

For instructions, see Copying DBParm syntax from the Preview tab.

Click OK to close the Database Profile Setup dialog box.
PowerBuilder saves your settings in the database profile entry in the registry.

4.2.4.1.2 Setting preferences in the Database Preferences dialog box

To set the following connection-rel ated database preferences, complete the Database
Preferences dialog box in the PowerBuilder Database painter:

Shared Database Profiles
Connect to Default Profile
Read Only

Keep Connection Open
Use Extended Attributes

SQL Terminator Character

Page 147



Working with Database Connections

Other database preferences

The Database Preferences dialog box also lets you set other database preferences that
affect the behavior of the Database painter itself. For information about the other
preferences you can set in the Database Preferences dialog box, see Section 5.1.3.1,
“Modifying database preferences’ in Users Guide.

To set connection-related preferencesin the Database Prefer ences dialog box:

1.

2.

Open the Database painter.

Select Design>Options from the menu bar.

The Database Preferences dialog box displays. If necessary, click the General tab to
display the General property page.

Specify values for one or more of the connection-related database preferencesin the

following table.

Table 4.4: Connection-related database preferences

Preference  Description For details, see
Shared Specifies the pathname of the file containing the Sharing database
Database database profiles you want to share. You cantype | profiles
Profiles the pathname or click Browse to display it.
Connect Controls whether the Database painter establishes | Section 2.1.2,
to Default a connection to a database using a default profile “Connect to
Profile when the painter isinvoked. If not selected, the Default Profile”
Database painter opens without establishing a in Connection
connection to a database. Reference
Read Only | Specifies whether PowerBuilder should update the | Section 2.1.5,
extended attribute system tables and any other tables | “Read Only”
in your database. Select or clear the Read Only in Connection
check box asfollows: Reference
» Select the check box
Does not update the extended attribute system
tables or any other tablesin your database.
Y ou cannot modify (update) information in the
extended attribute system tables or any other
database tables from the DataWindow painter
when the Read Only check box is selected.
* Clear the check box
(Default) Updates the extended attribute system
tables and any other tablesin your database.
Keep When you connect to a database in PowerBuilder Section 2.1.3,
Connection | without using a database profile, specifies when “Keep
Open Connection

Page 148



Working with Database Connections

Preference

Description
PowerBuilder closes the connection. Select or clear
the Keep Connection Open check box as follows:

* Sdlect the check box

(Default) Stays connected to the database
throughout your session and closes the connection
when you exit

* Clear the check box

Opens the connection only when a painter
requests it and closes the connection when you
close a painter or finish compiling a script

Not used with profile

This preference has no effect when you connect
using a database profile.

For details, see
Open” in
Connection
Reference

Use Extended
Attributes

Specifies whether PowerBuilder should create and
use the extended attribute system tables. Select or
clear the Use Extended Attributes check box as
follows:

» Select the check box
(Default) Creates and uses the extended attribute
system tables

e Clear the check box

Does not create the extended attribute system
tables

Section 2.1.8,
“Use Extended
Attributes’ in
Connection
Reference

Columns
in Table

Display

Specify the number of table columns to be displayed
when InfoM aker displays atable graphically. The
default iseight.

4. Do one of thefollowing:

» Click Apply to apply the preference settings to the current connection without closing
the Database Preferences dialog box.

» Click OK to apply the preference settings to the current connection and close the
Database Preferences dialog box.

PowerBuilder saves your preference settings in the database section of PB.INI.

4.2.4.2 Setting AutoCommit and Lock in a PowerBuilder application script

If you are developing a PowerBuilder application that connects to a database, you must
specify the required connection parameters in the appropriate script as properties of the

Page 149



Working with Database Connections

default Transaction object (SQLCA) or a Transaction object that you create. For example,
you might specify connection parameters in the script that opens the application.

AutoCommit and Lock are properties of SQLCA. Assuch, they are the only database
preferences you can set in a PowerBuilder script. Y ou can do this by:

* (Recommended) Copying PowerScript syntax for AutoCommit and Lock from the Preview
tab in the Database Profile Setup dialog box into your script

» Coding PowerScript to set values for the AutoCommit and Lock properties of the
Transaction object

* Reading AutoCommit and Lock values from an external text file

For more about using Transaction objects to communicate with a database in a PowerBuilder
application, see Section 4.1, “Using Transaction Objects’ in Application Techniques.

4.2.4.2.1 Copying AutoCommit and Lock syntax from the Preview tab

The easiest way to specify AutoCommit and Lock in a PowerBuilder application script isto
copy the PowerScript syntax from the Preview tab in the Database Profile Setup dialog box
into your script, modifying the default Transaction object name (SQLCA) if necessary.

Asyou complete the Database Profile Setup dialog box in the development environment,
PowerBuilder generates the correct connection syntax on the Preview tab for each selected
option. Therefore, copying the syntax directly from the Preview tab ensures that you use the
correct PowerScript syntax in your script.

To copy AutoCommit and L ock syntax from the Preview tab into your script:

1. Onthe Connection tab in the Database Profile Setup dialog box for your connection,
supply values for AutoCommit and Lock (Isolation Level) as required.

For instructions, see Setting AutoCommit and Lock in a PowerBuilder application
script.
For example, in addition to values for basic connection parameters (Server, Login ID,

Password, and Database), the Connection tab for the following Adaptive Server profile
named Sales shows nondefault settings for Isolation Level and AutoCommit Mode.

For information about the DBParm parameters for your interface and the values to
supply, click Help.

2. Click Apply to save your changes to the current tab without closing the Database Profile
Setup dialog box.
3. Click the Preview tab.

The correct PowerScript syntax for each selected option displays in the Database
Connection Syntax box. For example:

Page 150



Working with Database Connections

Database Connection Syntax:

[ Profile Sales -
SQLCA.DEMS = "SYC Adaptive Server Enterprise”
SOLCA.Database = "gadata”

SOLCA.LogPass = <™=

SOLCA.ServerMame = "ASE12"

SOLCA.Logld = "galogin®™

A, AutoCe =True
SOLCA.DBEParm = "Release='12.5"

4. Select one or more lines of text in the Database Connection Syntax box and click Copy.

PowerBuilder copies the selected text to the clipboard.
5. Click OK to close the Database Profile Setup dialog box.

6. Paste the selected text from the Preview tab into your script, modifying the default
Transaction object name (SQLCA) if necessary.

4.2.4.2.2 Coding PowerScript to set values for AutoCommit and Lock

Another way to specify the AutoCommit and Lock propertiesin a script is by coding
Power Script to assign values to the AutoCommit and Lock properties of the Transaction
object. PowerBuilder uses a special nongraphic object called a Transaction object to
communicate with the database. The default Transaction object is named SQLCA, which
stands for SQL Communications Area.

SQLCA has 15 properties, 10 of which are used to connect to your database. Two of the
connection properties are AutoCommit and L ock, which you can set as described in the
following procedure.

To set the AutoCommit and Lock propertiesin a PowerBuilder script:

1. Open the application script in which you want to set connection properties.

For instructions, see Section 3.1.2, “Opening Script views’ in Users Guide.

2. Usethefollowing PowerScript syntax to set the AutoCommit and Lock properties. (This

syntax assumes you are using the default Transaction object SQLCA, but you can also
define your own Transaction object.)

SQLCA. Aut oCommit = val ue
SQLCA. Lock = "val ue"

Page 151



Working with Database Connections

For example, the following statements in a PowerBuilder script use the default
Transaction object SQL CA to connect to an SAP Adaptive Server Enterprise database
named Test. SQLCA.AutoCommit is set to True and SQLCA.Lock is set to isolation
level 3 (Serializable transactions).

SQ.CA. DBVS = "SYc
SQLCA. Dat abase = "Test"
SQLCA. Logl D = "Frans”
SQLCA. LogPass = "xxyyzz"
SQLCA. Server Nanme = "HOST1"
SQLCA. Aut oCommit = True
SQLCA. Lock = 3"

For more information, see Section 2.1.1, “AutoCommit” in Connection Reference and
Section 2.1.4, “Lock” in Connection Reference.

Compile the script to save your changes.

For instructions, see the Section 3.1.7, “Compiling the script” in Users Guide.

4.2.4.2.3 Reading AutoCommit and Lock values from an external text file

As an aternative to setting the AutoCommit and Lock properties in a PowerBuilder
application script, you can use the PowerScript ProfileString function to read the
AutoCommit and Lock values from a specified section of an external text file, such as an
application-specific initialization file.

Toread AutoCommit and L ock values from an external text file:

1.

2.

Open the application script in which you want to set connection properties.

Use the following PowerScript syntax to specify the ProfileString function with the
SQLCA.Lock property:

SQLCA. Lock = ProfileString ( file, section, key, default )

The AutoCommit property is aboolean, so you need to convert the string returned by
ProfileString to a boolean. For example, the following statements in a PowerBuilder
script read the AutoCommit and Lock values from the [ Database] section of the APP.INI
file:

string |Is_string

I's_string=Upper(ProfileString("APP.IN ", "Database", "Autocommt",""))

if Is_string = "TRUE" then
SQ.CA. Autocommit = TRUE

el se
SQ.CA. Aut ocomrit = FALSE
end if
SQLCA. Lock=ProfileString("APP.I Nl ", "Database", "Lock","")

Compile the script to save your changes.

4.2.4.2.4 Getting values from the registry

If the AutoCommit and Lock values are stored in an application settings key in the registry,
use the RegistryGet function to obtain them. For example:

Page 152



Working with Database Connections

string |s_string
Regi st ryGet (" HKEY_CURRENT_USER!\ Sof t war e\ MyCo\ MyApp", &
"Autoconmit", RegString!, |s_string)

if Upper(ls_string) = "TRUE" then
SQLCA. Aut ocommit = TRUE

el se
SQLCA. Aut ocomit = FALSE

end if

Regi st ryGet (" HKEY_CURRENT_USER!\ Sof t war e\ MyCo\ MyApp", &
"Lock", RegString!, Is_string)

Page 153



Troubleshooting Your Connection

5 Troubleshooting Your Connection

This part describes how to troubleshoot your database connection in PowerBuilder.

5.1 Troubleshooting Your Connection
About this chapter

This chapter describes how to troubleshoot your database connection in PowerBuilder by
using the following tools:

» Database Trace

* SQL Statement Trace

» ODBC Driver Manager Trace
» JDBC Driver Manager Trace

5.1.1 Overview of troubleshooting tools

When you use PowerBuilder, there are several tools available to trace your database
connection in order to troubleshoot problems.

Table5.1: Database trace tools

Usethistool Totrace a connection to

Database Trace Any database that PowerBuilder accesses
through one of the database interfaces

ODBC Driver Manager Trace An ODBC data source only
JDBC Driver Manager Trace A JDBC database only

5.1.2 Using the Database Trace tool

This section describes how to use the Database Trace tool.

5.1.2.1 About the Database Trace tool

The Database Trace tool records the internal commands that PowerBuilder executes while
accessing a database. Y ou can trace a database connection in the development environment or
in a PowerBuilder application that connects to a database.

PowerBuilder writes the output of Database Trace to alog file named DBTRACE.LOG (by
default) or to anondefault log file that you specify. When you enable database tracing for the
first time, PowerBuilder creates the log file on your computer. Tracing continues until you
disconnect from the database.

Using the Database Trace tool with one connection

Y ou can use the Database Trace tool for only one DBMS at atime and for one
database connection at atime.

Page 154



Troubleshooting Your Connection

For example, if your application connects to both an ODBC data source and an
Adaptive Server Enterprise database, you can trace either the ODBC connection or
the Adaptive Server Enterprise connection, but not both connections at the same time.

5.1.2.1.1 How you can use the Database Trace tool

Y ou can use information from the Database Trace tool to understand what PowerBuilder is
doing internally when you work with your database. Examining the information in the log file
can help you:

» Understand how PowerBuilder interacts with your database
* Identify and resolve problems with your database connection

* Provide useful information to Technical Support if you call them for help with your
database connection

If you are familiar with PowerBuilder and your DBMS, you can use the information in the
log to help troubleshoot connection problems on your own. If you are less experienced or
need help, run the Database Trace tool before you call Technical Support. Y ou can then

report or send the results of the trace to the Technical Support representative who takes your
call.

5.1.2.1.2 Contents of the Database Trace log
Default contents of the tracefile

By default, the Database Trace tool records the following information in the log file when
you trace a database connection:

e Parameters used to connect to the database
» Timeto perform each database operation (in microseconds)

» Theinternal commands executed to retrieve and display table and column information
from your database. Examplesinclude:

* Preparing and executing SQL statements such as SELECT, INSERT, UPDATE, and
DELETE

* Getting column descriptions

 Fetching table rows

» Binding user-supplied values to columns (if your database supports bind variables)
» Committing and rolling back database changes

 Disconnecting from the database

 Shutting down the database interface

Page 155



Troubleshooting Your Connection

Y ou can opt to include the names of DBl commands and the time elapsed from the last
database connection to the completion of processing for each log entry. Y ou can exclude
binding and timing information as well as the data from all fetch requests.

Database Trace dialog box selections

The Database Trace dialog box lets you select the following items for inclusion in or
exclusion from a database tracefile:

* Bind variables
M etadata about the result set columns obtained from the database

* Fetch buffers
Data values returned from each fetch request

* DBI names

Database interface commands that are processed

» Timeto implement request

Time required to process DBI commands; the interval is measured in thousandths of
milliseconds (microseconds)

e Cumulativetime

Cumulative total of timings since the database connection began; the timing measurement
isin thousandths of milliseconds

Registry settingsfor DBTrace

The selections made in the Database Trace dialog box are saved to the registry of the machine
from which the database connections are made. Windows registry settings for the database
trace utility configuration are stored under the HKEY CURRENT _USER\Software\Sybase
\PowerBuilder\19.0\DBTrace key. Registry strings under this key are: ShowBindings,
FetchBuffers, ShowDBINames, Timing, SumTiming, LogFileName, and ShowDial og.
Except for the LogFileName string to which you can assign afull file name for the trace
output file, al strings can be set to either O or 1.

The ShowDialog registry string can be set to prevent display of the Database Trace dialog
box when a database connection is made with tracing enabled. Thisis the only one of the
trace registry strings that you cannot change from the Database Trace dialog box. Y ou must
set ShowDiaog to 0 in the registry to keep the configuration dialog box from displaying.

INI file settingsfor DBTrace

If you do not have accessto the registry, you can use PB.INI to store trace file settings. Add
a[DbTrace] section to the INI file with at least one of the following values set, then restart
PowerBuilder:

[ DbTr ace]
ShowDBI Nanes=0
Fet chBuf f er s=1
ShowBi ndi ngs=1
Suni m ng=1

Ti m ng=1

Page 156



Troubleshooting Your Connection

Showbi al og=1
LogFi | eName=dbt r ace. | og

The keywords are the same as in the registry and have the same meaning. When you connect
to the database again, the initial settings are taken from the INI file, and when you modify
them, the changes are written to the INI file.

If the file name for LogFileName does not include an absolute path, the log file is written to
the following path, where <username> isyour login ID: Users\<username>\AppData\L ocal
\Appeon\PowerBuilder 19.0. If there are no DbTrace settingsin the INI file, the registry
settings are used.

Error messages

If the database trace utility cannot open the trace output file with write access, an error
message lets you know that the specified trace file could not be created or opened. If the trace
utility driver cannot be loaded successfully, a message box informs you that the selected
Trace DBMSis not supported in your current installation.

5.1.2.1.3 Format of the Database Trace log

The specific content of the Database Trace log file depends on the database you are accessing
and the operations you are performing. However, the log uses the following basic format to
display output:

COWAND: (tine)
{addi tional _i nformati on}

Table5.2:

Parameter Description

COMMAND | Theinternal command that PowerBuilder executes to perform the database
operation.

time The number of microseconds it takes PowerBuilder to perform the database
operation. The precision used depends on your operating system's timing
mechanism.

additiona _infor(@ttasnal) Additional information about the command. The information
provided depends on the database operation.

Example

The following portion of the log file shows the commands PowerBuilder executes to fetch
two rows from a SQL Anywhere database table:

FETCH NEXT: (0.479 M)

COLUWMN=400
COLUMN=Mar ket i ng
COLUMN=Evans
FETCH NEXT: (0.001 MS)
COLUWMN=500

COLUMNEShI ppi ng
COLUMN=EMar t i nez

If you opt to include DBI Names and Sum Time information in the trace log file, the log for
the same two rows might look like this:

Page 157



Troubleshooting Your Connection

FETCH NEXT: (DBl _FETCHNEXT) (1.459 M5 / 3858.556 M5)
COLUWMN=400
COLUMN=Mar ket i ng
CCLUM\=Evans
FETCH NEXT: (DBl _FETCHNEXT) (0.001 MS / 3858.557 M5)
COLUMN=500
COLUMN=ShI ppi ng
COLUMN=Mar t i nez

For amore compl ete example of Database Trace output, see Sample Database Trace output.

5.1.2.2 Starting the Database Trace tool

By default, the Database Trace tool isturned off in PowerBuilder. You can start it in the
PowerBuilder devel opment environment or in a PowerBuilder application to trace your
database connection.

Turning tracing on and off

To turn tracing on or off you must reconnect. Setting and resetting are not sufficient.

5.1.2.2.1 Starting Database Trace in the development environment

To start the Database Trace tool in the PowerBuilder development environment, edit the
database profile for the connection you want to trace, as described in the following procedure.

To start the Database Trace tool by editing a database profile:
1. Open the Database Profile Setup dialog box for the connection you want to trace.

2. Onthe Connection tab, select the Generate Trace check box and click OK or Apply.
(The Generate Trace check box islocated on the System tab in the OLE DB Database
Profile Setup dialog box.)

The Database Profiles dialog box displays with the name of the edited profile
highlighted.

For example, here is the relevant portion of a database profile entry for Adaptive Server
12.5 Test. The setting that starts Database Trace is DBMS:

[ Def aul t] [val ue not set]
Aut oConmi t " FALSE"

Dat abase "gadat a"

Dat abasePassword " 00"

DBMS "TRACE SYC Adaptive Server Enterprise"
DbPar m "Rel ease="12.5""
Lock "

Logl d "gal ogi n"
LogPasswor d "00171717171717"
Pr onpt " FALSE"

Ser ver Nanme " Host 125"

User | D "

3. Click Connect in the Database Profiles dialog box to connect to the database.

The Database Trace dialog box displays, indicating that database tracing is enabled.
Y ou can enter the file location where PowerBuilder writes the trace output. By default,

Page 158



Troubleshooting Your Connection

PowerBuilder writes Database Trace output to alog file named DBTRACE.LOG. You
can change the log file name and location in the Database Trace dialog box.

The Database Trace dialog box also lets you select the level of tracing information that
you want in the database tracefile.
4. Select the types of items you want to include in the trace file and click OK.

PowerBuilder connects to the database and starts tracing the connection.

5.1.2.2.2 Starting Database Trace in a PowerBuilder application

In a PowerBuilder application that connects to a database, you must specify the required
connection parameters in the appropriate script. For example, you might specify them in the
script that opens the application.

To trace a database connection in a PowerBuilder script, you specify the name of the DBMS
preceded by the word trace and a single space. Y ou can do this by:

» Copying the PowerScript DBMS trace syntax from the Preview tab in the Database Profile
Setup dialog box into your script

» Coding PowerScript to set avaue for the DBMS property of the Transaction object

* Reading the DBMS value from an external text file

For more about using Transaction objects to communicate with a database in a PowerBuilder
application, see Section 4.1, “Using Transaction Objects’ in Application Techniques.

Copying DBM S trace syntax from the Preview tab

One way to start Database Trace in a PowerBuilder application script is to copy the
PowerScript DBMS trace syntax from the Preview tab in the Database Profile Setup dialog
box into your script, modifying the default Transaction object name (SQLCA) if necessary.

Asyou complete the Database Profile Setup dialog box in the development environment,
PowerBuilder generates the correct connection syntax on the Preview tab for each selected
option, including Generate Trace. Therefore, copying the syntax directly from the Preview
tab ensuresthat it is accurate in your script.

To copy DBM Strace syntax from the Preview tab into your script:

1. Onthe Connection tab (or System tab in the case of OLE DB) in the Database Profile
Setup dialog box for your connection, select the Generate Trace check box to turn on
Database Trace.

For instructions, see Starting Database Trace in the development environment.

2. Click Apply to save your changes to the Connection tab without closing the Database
Profile Setup dialog box.

3. Click the Preview tab.

The correct PowerScript connection syntax for the Generate Trace and other selected
options displays in the Database Connection Syntax box.

Page 159



Troubleshooting Your Connection

4. Select the SQLCA.DBMS line and any other syntax you want to copy to your script and
click Copy.

PowerBuilder copies the selected text to the clipboard.
5. Click OK to close the Database Profile Setup dialog box.

6. Paste the selected text from the Preview tab into your script, modifying the default
Transaction object name (SQLCA) if necessary.

Coding Power Script to set a value for the DBM S property

Another way to start the Database Trace tool in a PowerBuilder script isto specify it as

part of the DBMS property of the Transaction object. The Transaction object is a special
nonvisual object that PowerBuilder uses to communicate with the database. The default

Transaction object is named SQLCA, which stands for SQL Communications Area.

SQLCA has 15 properties, 10 of which are used to connect to your database. One of the 10
connection propertiesis DBMS. The DBMS property contains the name of the database to
which you want to connect.

To start the Database Tracetool by specifying the DBM S property:

»  Usethefollowing PowerScript syntax to specify the DBMS property. (This syntax
assumes you are using the default Transaction object SQLCA, but you can also define
your own Transaction object.)

SQLCA. DBMs = "trace DBMs_nane"

For example, the following statements in a PowerBuilder script set the SQLCA
properties required to connect to an Adaptive Server database named Test. The keyword
trace in the DBMSS property indicates that you want to trace the database connection.

SQ.CA. DBMS = "trace SYC'
SQLCA. dat abase = "Test"
SQLCA. | ogl d = "Frans"
SQLCA. LogPass = "xxyyzz"
SQLCA. Ser ver Nane = "Tom i n"

Reading the DBM Svalue from an external text file or theregistry

As an aternative to setting the DBMS property in your PowerBuilder application script, you
can use the PowerScript ProfileString function to read the DBM S value from a specified
section of an external text file, such as an application-specific initialization file, or from an
application settings key in the registry.

The following procedure assumes that the DBM S value read from the database section in
your initialization file uses the following syntax to enable database tracing:

DBVS = trace DBMS nane

To start the Database Trace tool by reading the DBM S value from an external text file:

*  Usethefollowing PowerScript syntax to specify the ProfileString function with the
DBMS property:

SQLCA.DBMS = ProfileString (file, section, variable, default_val ue)

Page 160



Troubleshooting Your Connection

For example, the following statement in a PowerBuilder script reads the DBM S value
from the [Database] section of the APP.INI file:

SQLCA. DBMS=Profil eString("APP.INI ", "Database", "DBMS","")

For how to get avalue from aregistry file instead, see Getting values from the registry.

5.1.2.2.3 Starting a trace in PowerScript with the PBTrace parameter

Instead of tracing all database commands from the start of a database connection, you can
start and end a trace programmatically for specific database queries. To start atrace, you can
assign the string value pair "PBTrace=1" to the transaction object DBParm property; to end a
trace, you assign the string value pair "PBTrace=0".

For example, if you wanted data to be logged to the trace output for asingle retrieve
command, you could disable tracing from the start of the connection and then surround the
retrieve call with DBParm property assignments as follows:

SQLCA. DBMS = " TRACE ODBC!
SQLCA. DBPar m=" PBTr ace=0"
Connect using SQLCA;

SQLCA. DBPar n&" PBTr ace=1"
dw_1.Retrieve ( )
SQLCA. DBPar n=" PBTr ace=0"

When you first connect to a database after setting the DBM S parameter to "Trace
DBMSName", a configuration dialog box displays. The configuration parameters that you set
in thisdialog box are saved to the registry. Configuration parameters are retrieved from the
registry when you begin tracing by assigning the DBParm parameter to "PBTrace=1".

Y ou can start and stop the SQL statement trace utility in the same way if you set the DBMS
valueto "TRS DBMSName" instead of "Trace DBMSName". For information about the SQL
statement trace utility, see Using the SQL statement trace utility.

5.1.2.3 Stopping the Database Trace tool

Once you start tracing a particular database connection, PowerBuilder continues sending
trace output to the log until you do one of the following:

» Reconnect to the same database with tracing stopped

* Connect to another database for which you have not enabled tracing

5.1.2.3.1 Stopping Database Trace in the development environment

To stop the Database Trace tool by editing a database profile:

1. Inthe Database Profile Setup dialog box for the database you are tracing, clear the
Generate Trace check box on the Connection tab.

2. Click OK inthe Database Profile Setup dialog box.

The Database Profiles dialog box displays with the name of the edited profile
highlighted.

Page 161



Troubleshooting Your Connection

3. Right-click on the connected database and select Re-connect from the drop-down menu
in the Database Profiles dialog box.

PowerBuilder connects to the database and stops tracing the connection.

5.1.2.3.2 Stopping Database Trace in a PowerBuilder application

To stop Database Trace in a PowerBuilder application script, you must delete the word trace
from the DBMS property. Y ou can do this by:

 Editing the value of the DBM S property of the Transaction object

* Reading the DBMS value from an external text file

Y ou must reconnect for the change to take effect.
Editing the DBM S property

To stop Database Trace by editing the DBM Svalue in a Power Builder script:

*  Deélete the word trace from the DBM S connection property in your application script.

For example, here isthe DBMS connection property in a PowerBuilder script that
enables the Database Trace. (This syntax assumes you are using the default Transaction
object SQLCA, but you can aso define your own Transaction object.)

SQLCA.DBMs = "trace SYC'

Here is how the same DBMS connection property should look after you edit it to stop
tracing:

SQ.CA. DBM5 = "SYC'

Reading the DBM S value from an external text file

As an adternative to editing the DBMS property in your PowerBuilder application script,
you can use the PowerScript ProfileString function to read the DBMS value from a specified
section of an external text file, such as an application-specific initialization file.

This assumes that the DBM S value read from your initialization file does not include the
word trace, as shown in the preceding example in Editing the DBM S property.

5.1.2.4 Using the Database Trace log

PowerBuilder writes the output of the Database Trace tool to afile named DBTRACE.LOG
(by default) or to anondefault log file that you specify. To use the trace log, you can do the
following anytime:

» View the Database Trace log with any text editor
» Annotate the Database Trace log with your own comments

» Delete the Database Trace log or clear its contents when it becomes too large

5.1.2.4.1 Viewing the Database Trace log
Y ou can display the contents of the log file anytime during a PowerBuilder session.

Page 162



Troubleshooting Your Connection

To view the contents of thelog file:
1. Openthelogfilein one of the following ways.

2. UsetheFile Editor in PowerBuilder. (For instructions, see the Section 1.1.10.2, “Using
thefile editor” in Users Guide.)

3.  Useany text editor outside PowerBuilder.

Leaving thelog file open

If you leave the log file open as you work in PowerBuilder, the Database Trace tool
does not update the log.

5.1.2.4.2 Annotating the Database Trace log

When you use the Database Trace log as a troubleshooting tool, it might be helpful to add
your own comments or notes to the file. For example, you can specify the date and time of
aparticular connection, the versions of database server and client software you used, or any
other useful information.

To annotate thelog file:
1. Openthe DBTRACE.LOG filein one of the following ways:

» UsetheFile Editor in PowerBuilder. (For instructions, see the Section 1.1.10.2,
“Using thefile editor” in Users Guide.)

» Use any text editor outside PowerBuilder.
2. Edit thelog file with your comments.

3. Saveyour changesto thelogfile.

5.1.2.4.3 Deleting or clearing the Database Trace log

Each time you connect to a database with tracing enabled, PowerBuilder appends the trace
output of your connection to the existing log. As aresult, the log file can become very large
over time, especialy if you frequently enable tracing when connected to a database.

To keep the size of the log file manageable:
1. Do either of the following periodically:

2. Openthelogfile, clear its contents, and save the empty file.

Provided that you use the default DBTRACE.LOG or the same nondefault file the next
time you connect to a database with tracing enabled, PowerBuilder will write to this
empty file.

3. Deletethelogfile.

PowerBuilder will automatically create anew log file the next time you connect to a
database with tracing enabled.

Page 163



Troubleshooting Your Connection

5.1.2.5 Sample Database Trace output

This section gives an example of Database Trace output that you might seein the log file and
briefly explains each portion of the output.

The example traces a connection with Sum Timing enabled. The output was generated while
running a PowerBuilder application that displays information about authors in a publications
database. The SELECT statement shown retrieves information from the Author table.

The precision (for example, microseconds) used when Database Trace records internal
commands depends on your operating system's timing mechanism. Therefore, the timing
precision in your Database Trace log might vary from this example.

Connect to database

CONNECT TO TRACE SYC Adaptive Server Enterprise
DATABASE=pubs2

LOG D=bob

SERVER=HOST12
DPPARM=Rel ease="' 12. 5. 2', St ati cBi nd=0

Prepare SELECT statement

PREPARE

SELECT authors. au_id, authors.au_|l name, authors.state FROM aut hors
VWHERE ( aut hors.state not in ( '"CA ) )

ORDER BY aut hors. au_l nane ASC (3.386 Ms / 20.349 M)

Get column descriptions

DESCRI BE: (0.021 M5 / 20.370 M)

nane=au_i d, | en=12, t ype=CHAR, pbt =1, dbt =1, ct =0, pr ec=0,
scal e=0

nane=au_| nane, | en=41, t ype=CHAR, pbt =1, dbt =1, ct =0,
prec=0, scal e=0

nane=st at e, | en=3, t ype=CHAR, pbt =1, dbt =1, ct =0, prec=0
scal e=0

Bind memory buffersto columns

Bl ND SELECT QUTPUT BUFFER ( Dat aW ndow) :
(0.007 M5 / 20.377 MB)

nanme=au_i d, | en=12, t ype=CHAR, pbt =1, dbt =1, ct =0, pr ec=0,
scal e=0

nanme=au_| nang, | en=41, t ype=CHAR, pbt =1, dbt =1, ct =0,
prec=0, scal e=0

nanme=st at e, | en=3, t ype=CHAR, pbt =1, dbt =1, ct =0, prec=0
scal e=0

Execute SEL ECT statement
EXECUTE: (0.001 M5 / 20.378 M)
Fetch rowsfrom result set

FETCH NEXT: (0.028 Ms / 20.406 M)

au_i d=648-92- 1872 au_| nane=Bl ot chet - Hal | st at e=OR
FETCH NEXT: (0.012 MS / 20.418 M)

au_i d=722-51- 5454 au_| nane=DeFr ance state=IN

FETCH NEXT: (0.010 MS / 20.478 M)

au_i d=341-22-1782 au_l nane=Snith st at e=KS
FETCH NEXT: (0.025 Ms / 20.503 M)

*** DBl FETCHEND *** (rc 100)

Page 164



Troubleshooting Your Connection

Update and commit database changes

PREPARE:

UPDATE aut hors SET state = 'NM

WHERE au_id = '648-92-1872' AND au_l nane = 'Blotchet-Halls' AND state = 'OR (3.284
Ms /| 23.787 MB)

EXECUTE: (0.001 MS / 23.788 M)

GET AFFECTED ROWS: (0.001 Ms / 23.789 M)

N 1 Rows Affected

COWM T: (1.259 M5 / 25.048 M)

Disconnect from database
DI SCONNECT: (0.764 MS / 25.812 M)
Shut down database interface

SHUTDOWN DATABASE | NTERFACE: (0.001 Ms / 25.813 M)

5.1.3 Using the SQL statement trace utility
SQL statement tracing

A separate database trace utility lets you add date and time entries to alog file for each SQL
statement issued to the database, along with the syntax of the SQL statement. By default, this
utility saves all log entriesto afile named PBTRSQL .log in theinitialization path directory.
Y ou can set the initialization path in the on the General tab of the System Options dialog box.

Y ou can also change the log file location and log file name in the registry or in the DbTrace
section of the PB.INI file in the same way you change the trace output file name for the main
database trace utility (see INI file settings for DBTrace):

[ DbTr ace]
Sql TraceFi | e=c: \ nyAppl ication\tracesql .| og

The registry string for the log file nameis Sgl TraceFile. It islocated under the
HKEY_CURRENT_USER\Software\Sybase\PowerBuilder\19.0\DBTrace key. If the
DbTrace section in the PB.INI file has at |east one entry, the registry value isignored. The
default file name is used only if both the registry value and the PB.INI value are not set.

You start the SQL statement trace utility in PowerScript code by invoking the driver for the
DBMS that you want to use with a TRS modifier. Y ou set the driver in the DBMS property
of a connection object. For example, for the default SQLCA connection object, if you wanted
to use ODBC with SQL tracing, you would code the following:

SQ.CA. DBM5="TRS CDBC"

Y ou can start and stop the SQL statement trace utility in PowerScript in the same way you
start and stop the main database utility: you can start trace logging by setting the DBParm
parameter to "PBTrace=1" and you can stop trace logging by setting the parameter to
"PBTrace=0".

For more information, see Starting atrace in PowerScript with the PBTrace parameter.

Server-side timestamps

Server-side timestamps can be used instead of client-side timestamps if the connecting
PowerBuilder database driver supportsthe DBI_GET_SERVER_TIME command type.
Currently, server-side timestamps are available for the ASE, SYC, and ODBC drivers.

Page 165



Troubleshooting Your Connection

PBTRS.dII obtains the date and time from the server only once during the database
connection processing. Each time a new timestamp needs to be generated, it determines
the number of milliseconds that have transpired since the connection was established and
computes the new server-side date and time by adding the elapsed interval to theinitial
connection timestamp obtained from the server.

Log file headers

Output to the log file is always appended. For ease of reading, the PBTRS.dIl produces a
banner inside the log file each time a new database connection is established. The banner lists
the date and time of the database connection using the system clock on the client workstation.
The DBParms for the database connection are listed immediately under the banner. If a server
timestamp is used for subsequent entriesin the log file, the statement "Using timestamp from
DBMS server" is entered immediately under the DBParm listings.

When you are running an application with a database trace utility, one of the DBParm values
should include the DisableBind parameter. Y ou should set DisableBind to 1. Otherwise the
syntax that islogged in the trace output file will contain parameter markers instead of human-
readable values.

The following output shows a banner from atrace file that uses a client-side timestamp in the
banner itself, and server-side timestamps el sewhere:

/* ___________________________________________________ */

/* 1/ 10/ 2007 16:08 >/

/* ___________________________________________________ */

(60ec068): CONNECT TO TRS ODBC. DBPARM:=Connect Stri ng='DSN= PB Denp DB
V2019R3; Ul D=dba; PWD=sql ' SERVER=DenpDat abase190

(60ec068): Using tinmestanp from DBVMS server. (1/10/2007 16: 08: 28.079)

(60ec068): PREPARE: (1/10/2007 16:08: 44.513) SELECT DI STI NCT “pbcatthbl "."pbt _tnant',
"pbcatthbl"."pbt _cmt" FROM "pbcattbl" ORDER BY "pbcatthbl"."pbt _tnant' ASC

5.1.4 Using the ODBC Driver Manager Trace tool

This section describes how to use the ODBC Driver Manager Trace tool.

5.1.4.1 About ODBC Driver Manager Trace

Y ou can use the ODBC Driver Manager Trace tool to trace a connection to any ODBC data
source that you access in PowerBuilder through the ODBC interface.

Unlike the Database Trace tool, the ODBC Driver Manager Trace tool cannot trace
connections through one of the native database interfaces.

What thistool does

ODBC Driver Manager Trace records information about ODBC API calls (such as

SQL DriverConnect, SQL Getlnfo, and SQL Fetch) made by PowerBuilder while connected to
an ODBC data source. It writes this information to a default log file named SQL.LOG or to a
log file that you specify.

What both tools do
The information from ODBC Driver Manager Trace, like Database Trace, can help you:

» Understand what PowerBuilder is doing internally while connected to an ODBC data
source

Page 166



Troubleshooting Your Connection

* ldentify and resolve problems with your ODBC connection

* Provide useful information to Technical Support if you call them for help with your
database connection
When to usethistool

Use ODBC Driver Manager Trace instead of the Database Trace tool if you want more
detailed information about the ODBC API calls made by PowerBuilder.

Performance consider ations

Turning on ODBC Driver Manager Trace can slow your performance while working
in PowerBuilder. Therefore, use ODBC Driver Manager Trace for debugging
purposes only and keep it turned off when you are not debugging.

SQL.LOG file

PowerBuilder writes ODBC Driver Manager Trace output to a default log file named
SQL.LOG or to alog file that you specify. The default location of SQL.LOG isin your root
directory.

5.1.4.2 Starting ODBC Driver Manager Trace

By default, ODBC Driver Manager Trace is turned off in PowerBuilder. Y ou can start it in
order to trace your ODBC connection in two ways.

 Edit your database profile in the PowerBuilder development environment

» Edit ascript in a PowerBuilder application

5.1.4.2.1 Starting ODBC Driver Manager Trace in the development environment

To start ODBC Driver Manager Trace in the PowerBuilder development environment,
edit the database profile for the connection you want to trace, as described in the following
procedure.

Tostart ODBC Driver Manager Trace by editing the database profile:

1. Open the Database Profile Setup-ODBC dialog box for the ODBC connection you want
to trace.

2. Onthe Options tab, select the Trace ODBC API Calls check box.

3.  (Optional) To specify alog file where you want PowerBuilder to write the output of
ODBC Driver Manager Trace, type the path name in the Trace File box
or

(Optional) Click Browse to display the pathname of an existing log filein the Trace File
box.

By default, if the Trace ODBC API Calls check box is selected and no tracefileis
specified, PowerBuilder sends ODBC Driver Manager Trace output to the default
SQL.LOG file.

Page 167



Troubleshooting Your Connection

ODEC Trace Oplions
Trace ODBC API Calls

Trace File: | Browse... |

4. Click OK or Apply
or

Right-click on the connected database and select Re-connect from the drop-down menu
in the Database Profiles dialog box.

The Database Profiles dialog box displays with the name of the edited profile
highlighted.

PowerBuilder saves your settings in the database profile entry in the registry in the
HKEY CURRENT_USER\Software\Sybase\19.0\DatabaseProfiles key.

For example, here is the relevant portion of a database profile entry for an ODBC
data source named Employee. The settings that start ODBC Driver Manager Trace
(corresponding to the ConnectOption DBParm parameter) are emphasized.

DBMS " ODBC"
DbParm " Connect St ri ng=' DSN=Enl oyee; U D=dba;

PWD=00c61737' , Connect Opt i on=" SQL_OPT_TRACE, SQL_OPT_TRACE_ON; SQL_OPT_TRACEFI LE, C
\ Tenp\ odbctrce. | og'

5. Click Connect in the Database Profiles dialog box to connect to the database
or

Right-click on the connected database and select Re-connect from the drop-down menu
in the Database Profiles dialog box.

PowerBuilder connects to the database, starts tracing the ODBC connection, and writes
output to the log file you specified.

5.1.4.2.2 Starting ODBC Driver Manager Trace in a PowerBuilder application

To start ODBC Driver Manager Trace in a PowerBuilder application, you must specify
certain values for the ConnectOption DBParm parameter in the appropriate script. For
example, you might include them in the script that opens the application.

Y ou can specify the required ConnectOption values in a PowerBuilder script by:

» (Recommended) Copying the PowerScript ConnectOption DBParm syntax from the
Preview tab in the Database Profile Setup dialog box into your script

» Coding PowerScript to set a value for the DBParm property of the Transaction object
» Reading the DBParm values from an external text file

For more about using Transaction objects to communicate with a database in a PowerBuilder
application, see Section 4.1, “Using Transaction Objects’ in Application Techniques.

Page 168



Troubleshooting Your Connection

About the ConnectOption DBParm parameter

ConnectOption includes several parameters, two of which control the operation of ODBC
Driver Manager Trace for any ODBC-compatible driver you are using in PowerBuilder.

Table 5.3: ConnectOption parametersfor ODBC Driver Manager Trace

Parameter Description

SQL_OPT_TRAQEpose
Starts or stops ODBC Driver Manager Trace in PowerBuilder.
Values

The values you can specify are:

* SQL_OPT_TRACE_OFF
(Default) Stops ODBC Driver Manager Trace

* SQL_OPT_TRACE_ON
Starts ODBC Driver Manager Trace
SQL_OPT_TRAQEROEE

Specifies the name of the trace file where you want to send the output of
ODBC Driver Manager Trace. PowerBuilder appends the output to the
trace file you specify until you stop the trace. To display the tracefile,
you can use the File Editor (in PowerBuilder) or any text editor (outside
PowerBuilder).

Values

Y ou can specify any filename for the trace file, following the naming
conventions of your operating system. By default, if tracing is on and you
have not specified a trace file, PowerBuilder sends ODBC Driver Manager
Trace output to afile named SQL.LOG.

For information about the location of SQL.LOG on different platforms, see
About ODBC Driver Manager Trace.

Copying ConnectOption syntax from the Preview tab

The easiest way to start ODBC Driver Manager Trace in a PowerBuilder application script is
to copy the PowerScript ConnectString DBParm syntax from the Preview tab in the Database
Profile Setup - ODBC dialog box into your script, modifying the default Transaction object
name (SQLCA) if necessary.

Asyou complete the Database Profile Setup dialog box in the development environment,
PowerBuilder generates the correct connection syntax on the Preview tab. Therefore, copying
the syntax directly from the Preview tab into your script ensuresthat it is accurate.

To copy ConnectOption syntax from the Preview tab into your script:

1. Onthe Optionstab in the Database Profile Setup - ODBC dialog box for your
connection, select the Trace ODBC API Calls check box and (optionally) specify alog
filein the Trace File box to start ODBC Driver Manager Trace.

Page 169



Troubleshooting Your Connection

2. Click Apply to save your changes to the Options tab without closing the dialog box.

3. Click the Preview tab.

The correct PowerScript syntax for ODBC Driver Manager Trace and other selected
options displays in the Database Connection Syntax box.

The following example shows the PowerScript syntax that starts ODBC Driver Manager
Trace and sends output to the file C\TEMP\ODBCTRCE.LOG.

/1 Profile Enpl oyee

SQLCA. DBMS = " ODBC'

SQLCA. Aut oCommit = Fal se

SQ.CA. DBPar m = " Connect st ri ng=' DSN=Enpl oyee',
Connect Opti on=" SQL_OPT_TRACE, SQL_OPT_TRACE_ON;
SQL_OPT_TRACEFI LE, c: \t enp\ odbctrce. |l og""

4. Select the SQLCA.DBParm line and any other syntax you want to copy to your script
and click Copy.

PowerBuilder copies the selected text to the clipboard.

5. Paste the selected text from the Preview tab into your script, modifying the default
Transaction object name (SQLCA) if necessary.

Coding Power Script to set a value for the DBParm property

Another way to start ODBC Driver Manager Trace in a PowerBuilder application script isto
include the ConnectOption parameters that control tracing as values for the DBParm property
of the Transaction object.

Tostart ODBC Driver Manager Trace by setting the DBParm property:

* Inyour application script, set the SQL_OPT_TRACE and (optionally)
SQL_OPT_TRACEFILE ConnectOption parameters to start the trace and to specify a
nondefault trace file, respectively.

For example, the following statement starts ODBC Driver Manager Trace in your
application and sends output to afile named MY TRACE.LOG. Insert acommato
separate the ConnectString and ConnectOption values.

This example assumes you are using the default Transaction object SQLCA, but you can
also define your own Transaction object.

SQLCA. DBPar n=" Connect Stri ng=" DSN=Test ; Ul D=PB;
PWD=xyz' , Connect Opt i on=" SQL_OPT_TRACE,
SQ._OPT_TRACE_ON; SQL_OPT_TRACEFI LE, C:\ TRC. LOG "

Reading the DBParm value from an external text file

As an dternative to setting the DBParm property in your PowerBuilder application script,
you can use the PowerScript ProfileString function to read DBParm values from a specified
section of an external text file, such as an application-specific initialization file.

This assumes that the DBParm value read from your initialization file includes the
ConnectOption parameter to start ODBC Driver Manager Trace, as shown in the preceding
example.

Page 170



Troubleshooting Your Connection

Tostart ODBC Driver Manager Trace by reading DBParm values from an external text file:

*  Usethefollowing PowerScript syntax to specify the ProfileString function with the
DBParm property:

SQLCA. dbParm = ProfileString (file, section, variable, default_val ue)

For example, the following statement in a PowerBuilder script reads the DBParm values
from the [ Database] section of the APP.INI file:

SQLCA. dbParm = ProfileString("APP.I N ", "Dat abase", "DBParni, "")

5.1.4.3 Stopping ODBC Driver Manager Trace

Once you start tracing an ODBC connection with ODBC Driver Manager Trace,
PowerBuilder continues sending trace output to the log file until you stop tracing. After you
stop tracing as described in the following sections, you must reconnect to have the changes
take effect.

5.1.4.3.1 Stopping ODBC Driver Manager Trace in the development environment

To stop ODBC Driver Manager Trace by editing a database pr ofile:

1. Open the Database Profile Setup - ODBC dialog box for the connection you are tracing.

For instructions, see Starting ODBC Driver Manager Trace.

2. Onthe Options tab, clear the Trace ODBC API Calls check box.
If you supplied the pathname of alog file in the Trace File box, you can leave it
specified in case you want to restart tracing later.

3. Click OK inthe Database Profile Setup - ODBC dialog box.
The Database Profiles dialog box displays, with the name of the edited profile
highlighted.

4. Click Connect in the Database Profiles dialog box or right-click on the connected
database and select Re-connect from the drop-down menu in the Database Profiles
dialog box.

PowerBuilder connects to the database and stops tracing the connection.

5.1.4.3.2 Stopping ODBC Driver Manager Trace in a PowerBuilder application

To stop ODBC Driver Manager Trace in a PowerBuilder application script, you must change
the SQL_OPT_TRACE ConnectOption parameter to SQL_OPT_TRACE_OFF. You can do
this by:

 Editing the value of the DBParm property of the Transaction object
* Reading the DBParm values from an external text file

Editing the DBParm property

Page 171



Troubleshooting Your Connection

One way to change the ConnectOption value in a PowerBuilder script isto edit the DBParm
property of the Transaction object.

Tostop ODBC Driver Manager Trace by editing the DBParm property:

* Inyour application script, edit the DBParm property of the Transaction object
to change the value of the SQL_OPT_TRACE ConnectOption parameter to
SQL_OPT_TRACE_OFF.

For example, the following statement starts ODBC Driver Manager Trace in your
application and sends the output to afile named MY TRACE.LOG. (This example
assumes you are using the default Transaction object SQLCA, but you can also define
your own Transaction object.)

SQLCA. DBPar n=" Connect Stri ng=" DSN=Test ; Ul D=PB;
PWD=xyz' , Connect Opti on=" SQL_OPT_TRACE,
SQ._OPT_TRACE_ON; SQL_OPT_TRACEFI LE, C:\ TRC. LOG "

Here is how the same statement should look after you edit it to stop ODBC Driver
Manager Trace. (Y ou can leave the name of the trace file specified in case you want to
restart tracing later.)

SQLCA. DBPar =" Connect Stri ng=" DSN=Test ; Ul D=PB;
PWD=xyz' , Connect Opt i on=" SQL_OPT_TRACE,
SQL_OPT_TRACE_OFF; SQL_OPT_TRACEFI LE, C:\ TRC. LOG "

Reading DBParm values

As an dternative to editing the DBParm property in your PowerBuilder application script,
you can use the PowerScript ProfileString function to read DBParm values from a specified
section of an external text file, such as an application-specific initialization file.

This assumes that the DBParm value read from your initialization file sets the value of
SQL_OPT_TRACE to SQL_OPT_TRACE_OFF, as shown in the preceding example.

5.1.4.4 Viewing the ODBC Driver Manager Trace log

Y ou can display the contents of the ODBC Driver Manager Trace log file anytime during a
PowerBuilder session.

L ocation of SQL.LOG

For information about where to find the default SQL.LOG file, see About ODBC
Driver Manager Trace.

To view the contents of thelog file:
1. Open SQL.LOG or thelog file you specified in one of the following ways:

2. UsetheFile Editor in PowerBuilder. (For instructions, see the Section 1.1.10.2, “Using
thefile editor” in Users Guide.)

3.  Useany text editor outside PowerBuilder.

Page 172



Troubleshooting Your Connection

L eaving thelog file open

If you leave the log file open as you work in PowerBuilder, ODBC Driver Manager
Trace does not update it.

5.1.4.5 Sample ODBC Driver Manager Trace output

This section shows a partial example of output from ODBC Driver Manager Trace to give
you an idea of the information it provides. The exampleis part of the trace on an ODBC
connection to the Demo Database.

For more about a particular ODBC API call, see your ODBC documentation.

PB125 179: 192 EXIT SQ.SetConnectOption wth return code 0 (SQ._SUCCESS)
HDBC 0x036e€1300
UWORD 104 <SQL_OPT_TRACE>
UDWORD 1

PB125 179: 192 EXIT SQGCetlnfoW with return code 0 (SQ._SUCCESS)
HDBC 0x036e€1300
UWORD 25 <SQL_DATA SOURCE_READ ONLY>
PTR 0x036e3c88 [ 2] "N’
SWORD 512
SWORD * 0x0012cc32 (2)

5.1.5 Using the JDBC Driver Manager Trace tool

This section describes how to use the JDBC Driver Manager Trace tool.

5.1.5.1 About JDBC Driver Manager Trace

Y ou can use the JDBC Driver Manager Trace tool to trace a connection to any database that
you access in PowerBuilder through the JDBC interface.

Unlike the Database Trace tool, the JDBC Driver Manager Trace tool cannot trace
connections through one of the native database interfaces.

What thistool does

JDBC Driver Manager Trace logs errors and informational messages originating from the
Driver object currently loaded (such as SAP's jConnect JDBC driver) when PowerBuilder
connects to a database through the JDBC interface. It writes thisinformation to a default log
file named JDBC.LOG or to alog file that you specify. The amount of trace output varies
depending on the JDBC driver being used.

What both tools do
The information from JDBC Driver Manager Trace, like Database Trace, can help you:

» Understand what PowerBuilder is doing internally while connected to a database through
the JIDBC interface

* Identify and resolve problems with your JDBC connection

» Provide useful information to Technical Support if you call them for help with your
database connection

Page 173



Troubleshooting Your Connection

When to use thistool

Use JDBC Driver Manager Trace instead of the Database Trace tool if you want more
detailed information about the JDBC driver.

Performance consider ations

Turning on JDBC Driver Manager Trace can slow your performance while working
in PowerBuilder. Therefore, use JDBC Driver Manager Trace for debugging purposes
only and keep it turned off when you are not debugging.

JDBC.LOG file

PowerBuilder writes JDBC Driver Manager Trace output to a default log file named
JDBC.LOG or to alog file that you specify. The default location of JIDBC.LOG is atemp
directory.

5.1.5.2 Starting JDBC Driver Manager Trace

By default, JDBC Driver Manager Trace is turned off in PowerBuilder. You can start it in
order to trace your JDBC connection in two ways:

 Edit your database profile in the PowerBuilder development environment

» Edit ascript in a PowerBuilder application

5.1.5.2.1 Starting JDBC Driver Manager Trace in the development environment

To start IDBC Driver Manager Trace in the PowerBuilder devel opment environment, edit the
database profile for the connection you want to trace, as described in the following procedure.

Tostart JDBC Driver Manager Trace by editing the database profile:

1.

Open the Database Profile Setup - JDBC dialog box for the JDB connection you want to
trace.

On the Options tab, select the Trace JDBC Calls check box.

(Optional) To specify alog file where you want PowerBuilder to write the output of
JDBC Driver Manager Trace, type the path name in the Trace File box, or click Browse
to display the path name of an existing log file in the Trace File box.

By default, if the Trace JIDBC Calls check box is selected and no alternative tracefile
is specified, PowerBuilder sends JDBC Driver Manager Trace output to the default
JDBC.LOG file.

JDEC Trace Optlions

Trace File:  c:\tempijdbc.log |Bru::nwse... |

Click OK or Apply.

Page 174



Troubleshooting Your Connection

The Database Profiles dialog box displays with the name of the edited profile
highlighted. PowerBuilder saves your settings in the database profile entry in the

registry.

For example, here are the DBM S and DBParm string values of a database profile entry
for a database named Employee. The settings that start JDBC Driver Manager Trace
(corresponding to the TraceFile DBParm parameter) are emphasized.

DBVS  "TRACE JDBC'

DbParm "Driver='com sybase. jdbc3.jdbc. SybDriver',

URL='j dbc: sybase: Tds: 199. 93. 178. 151:
5007/ tsdata', TraceFil e='c:\tenp\jdbc.|og""

5. Click Connect in the Database Profiles dialog box to connect to the database
or

Right-click on the connected database and select Re-connect from the drop-down menu
in the Database Profiles dialog box.

PowerBuilder connects to the database, starts tracing the JDBC connection, and writes
output to the log file you specified.

5.1.5.2.2 Starting JDBC Driver Manager Trace in a PowerBuilder application

To start IDBC Driver Manager Trace in a PowerBuilder application, you must specify the
TraceFile DBParm parameter in the appropriate script. For example, you might includeit in
the script that opens the application.

Y ou can specify the TraceFile parameter in a PowerBuilder script by:

» (Recommended) Copying the PowerScript TraceFile DBParm syntax from the Preview tab
in the Database Profile Setup dialog box into your script

» Coding PowerScript to set avalue for the DBParm property of the Transaction object

» Reading the DBParm values from an externa text file

For more about using Transaction objects to communicate with a database in a PowerBuilder
application, see Section 4.1, “Using Transaction Objects’ in Application Techniques.

About the TraceFile DBParm parameter

TraceFile controls the operation of JDBC Driver Manager Trace for any JDBC-compatible
driver you are using in PowerBuilder.

Copying TraceFile syntax from the Preview tab

The easiest way to start JDBC Driver Manager Trace in a PowerBuilder application script
isto copy the PowerScript TraceFile DBParm syntax from the Preview tab in the Database
Profile Setup - JDBC dialog box into your script, modifying the default Transaction object
name (SQLCA) if necessary.

Asyou complete the Database Profile Setup dialog box in the development environment,
PowerBuilder generates the correct connection syntax on the Preview tab. Therefore, copying
the syntax directly from the Preview tab into your script ensuresthat it is accurate.

Page 175



Troubleshooting Your Connection

To copy TraceFile syntax from the Preview tab into your script:

1.

On the Options tab in the Database Profile Setup - JIDBC dialog box for your
connection, select the Trace JDBC Calls check box and (optionally) specify alog filein
the Trace File box to start JDBC Driver Manager Trace.

For instructions, see Stopping JDBC Driver Manager Trace in the development
environment.

Click Apply to save your changes to the Options tab without closing the dialog box.

Click the Preview tab.

The correct PowerScript syntax for JDBC Driver Manager Trace and other selected
options displays in the Database Connection Syntax box.

The following example shows the PowerScript syntax that starts JDBC Driver Manager
Trace and sends output to the file CA\TEMP\AJDBC.LOG.

/1 Profile Enployee

SQLCA. DBMB = " TRACE JDBC'

SQLCA. DBParm = "Dri ver =' com sybase. j dbc3. j dbc. SybDri ver"',

URL='j dbc: sybase: Tds: 199. 93. 178. 151: 5007/ t sdat a',
TraceFile="c:\tenp\jdbc.log""

Select the DBParm line and any other syntax you want to copy to your script and click
Copy.

PowerBuilder copies the selected text to the clipboard.

Paste the selected text from the Preview tab into your script, modifying the default
Transaction object name (SQLCA) if necessary.

Coding Power Script to set a value for the DBParm property

Another way to start JIDBC Driver Manager Trace in a PowerBuilder application script is
to include the TraceFile parameter as a value for the DBParm property of the Transaction
object.

Tostart JDBC Driver Manager Trace by setting the DBParm property:

In your application script, include the TraceFile parameter to start the trace and specify a
nondefault trace file.

For example, this statement starts JDBC Driver Manager Trace in your application and
sends output to afile named MY TRACE.LOG. (This example assumes you are using
the default Transaction object SQLCA, but you can also define your own Transaction
object.)

SQLCA. DBParm = "Dri ver =' com sybase. j dbc3. j dbc. SybDri ver"',

URL=']j dbc: sybase: Tds: 199. 93. 178. 151: 5007/ t sdat a' ,
TraceFi | e=' c: \ MYTRACE. LOG "

Reading the DBParm value from an external text file

As an dlternative to setting the DBParm property in your PowerBuilder application script,
you can use the PowerScript ProfileString function to read DBParm values from a specified
section of an external text file, such as an application-specific initialization file.

Page 176



Troubleshooting Your Connection

This assumes that the DBParm value read from your initialization file includes the TraceFile
parameter to start JDBC Driver Manager Trace, as shown in the preceding example.

Tostart JDBC Driver Manager Trace by reading DBParm values from an external text file:

*  Usethefollowing PowerScript syntax to specify the ProfileString function with the
DBParm property:

SQLCA. dbParm = ProfileString (file, section, variable, default_val ue)

For example, the following statement in a PowerBuilder script reads the DBParm values
from the [Database] section of the APP.INI file:

SQLCA. dbParm = ProfileString("APP.IN ", "Dat abase", "DBParni, "")

5.1.5.3 Stopping JDBC Driver Manager Trace

Once you start tracing a JDBC connection with JIDBC Driver Manager Trace, PowerBuilder
continues sending trace output to the log file until you stop tracing.

5.1.5.3.1 Stopping JDBC Driver Manager Trace in the development environment

Tostop JDBC Driver Manager Trace by editing a database profile:

1. Open the Database Profile Setup - JDBC dialog box for the connection you are tracing.
For instructions, see Starting JDBC Driver Manager Trace.

2. Onthe Options tab, clear the Trace JDBC Calls check box.
If you supplied the path name of alog file in the Trace File box, you can leave it
specified in case you want to restart tracing later.

3. Click OK in the Database Profile Setup - JIDBC dialog box.
The Database Profiles dialog box displays, with the name of the edited profile
highlighted.

4. Click Connect in the Database Profiles dialog box or right click on the connected
database and select Re-connect from the drop-down menu in the Database Profiles
dialog box.

PowerBuilder connects to the database and stops tracing the connection.

5.1.5.3.2 Stopping JDBC Driver Manager Trace in a PowerBuilder application

To stop JDBC Driver Manager Trace in a PowerBuilder application script, you must delete
the TraceFile parameter. Y ou can do this by:

 Editing the value of the DBParm property of the Transaction object
* Reading the DBParm values from an external text file

Editing the DBParm property

One way to change the TraceFile parameter in a PowerBuilder script isto edit the DBParm
property of the Transaction object.

Page 177



Troubleshooting Your Connection

To stop JDBC Driver Manager Trace by editing the DBParm property:

* Inyour application script, edit the DBParm property of the Transaction object to delete
the TraceFile parameter.

For example, the following statement starts JDBC Driver Manager Trace in your
application and sends the output to afile named MY TRACE.LOG. (This example
assumes you are using the default Transaction object SQLCA, but you can also define
your own Transaction object.)

SQLCA. DBParm = "Dri ver =' com sybase. j dbc3. j dbc. SybDri ver"',
URL='j dbc: sybase: Tds: 199. 93. 178. 151: 5007/t sdat a'
TraceFi | e=' ¢:\ MYTRACE. LOG "

Here is how the same statement should look after you edit it to stop JDBC Driver
Manager Trace.

SQLCA. DBPar m = "Dri ver =' com sybase. j dbc3. j dbc. SybDri ver"',
URL='j dbc: sybase: Tds: 199. 93. 178. 151: 5007/t sdata' "

Reading DBParm values

As an aternative to editing the DBParm property in your PowerBuilder application script,
you can use the PowerScript ProfileString function to read DBParm values from a specified
section of an external text file, such as an application-specific initialization file, or you can
use RegistryGet to obtain values from aregistry key.

This assumes that the DBParm is no longer read from your initialization file or registry key,
as shown in the preceding example. Y ou must disconnect and reconnect for thisto take
effect.

5.1.5.4 Viewing the JDBC Driver Manager Trace log

Y ou can display the contents of the JIDBC Driver Manager Trace log file anytime during a
PowerBuilder session.

Location of JDBC.LOG

For information about where to find the default JDBC.LOG file, see About JIDBC
Driver Manager Trace.

To view the contents of the log file:
1. OpenJDBC.LOG or thelog file you specified in one of the following ways:

2. UsetheFile Editor in PowerBuilder. (For instructions, see the Section 1.1.10.2, “Using
thefile editor” in Users Guide.)

3.  Useany text editor outside PowerBuilder.

Leaving thelog file open

If you leave the log file open as you work in PowerBuilder, JDBC Driver Manager
Trace does not update the log.

Page 178



Using Embedded SQL

6 Using Embedded SQL

This part describes how to use embedded SQL when accessing a database with that interface
in a PowerBuilder application.

6.1 Using Embedded SQL with ODBC
About this chapter

When you cresate scripts for a PowerBuilder application, you can use embedded SQL
statements in the script to perform operations on the database. The features supported when
you use embedded SQL depend on the DBMS to which your application connects.

Overview

When you use the ODBC interface to connect to a backend database, you can use embedded
SQL inyour scripts.

Y ou can embed the following types of SQL statements in scripts and user-defined functions
if the ODBC driver you are using and the backend DBM S you are accessing supports this
functionality. (Not all backend databases support cursor statements and database stored
procedures.)

Transaction management statements

Non-cursor statements

Cursor statements

Database stored procedures

ODBC API

The ODBC interface uses the ODBC application programming interface (API) to interact
with the backend database.

When you use embedded SQL, PowerBuilder makes the required calls to the backend
database. Therefore, you do not need to know anything about the ODBC API to use
embedded SQL with PowerBuilder.

Seealso

Using the ODBC Interface

ODBC SQL Support

ODBC Transaction management statements

ODBC Non-cursor statements
ODBC Cursor statements
ODBC Database stored procedures

6.1.1 ODBC SQL Support

PowerBuilder embedded SQL supports the name qualification conventions and functions
used in the databases accessible through the ODBC interface.

Page 179



Using Embedded SQL

See also
ODBC Name qudlification
ODBC SQL functions

6.1.2 ODBC Name qualification

PowerBuilder does not inspect all SQL statement syntax, so you can qualify database catalog
entities as necessary.

For example, the following qualifications are acceptable for an ODBC interface to a SQL
Anywhere database:

s emp_name

» employee.emp_name

6.1.3 ODBC SQL functions

In SQL statements, you can use any function that your backend DBM S supports (such as
aggregate or mathematical functions). For example, if your DBM S supports the function
Sum, you can use the function Sum in a SELECT statement:

SELECT Sun{sal ary)
I NTO : sal ary_sum var
FROM enpl oyee;

Calling ODBC functions

While PowerBuilder provides access to alarge percentage of the features within ODBC, in
some cases you may decide that you need to call one or more ODBC functions directly for
a particular application. PowerBuilder provides access to most Windows DLLs by using
external function declarations.

The ODBC calls qualify for thistype of access. Most ODBC calls require a pointer to a
connection handle (of the variable type HDBC) to a structure as their first parameter. If you
want to call ODBC without reconnecting to the database to get a connection handle, use the
PowerScript DBHandle function.

6.1.3.1 DBHandle

DBHandle takes a transaction object as a parameter and returns along variable, which is
the handle to the database for the transaction. This handle is actually the connection handle
PowerBuilder uses internally to communicate with the database. Y ou can use this returned
long value in the ODBC DLLs and passit as one of the parametersin your function.

After you obtain the connection handle, you can use the ODBC SQL GetInfo call to obtain the
environment handle of the variable type HENV.

Example

This exampleillustrates how to use DBHandle. As with other examples, assume a successful
connection has occurred using the default transaction object (SQLCA).

// Define a variable to hold the DB connection handl e
| ong ODBCConnect i onHandl e

Page 180



Using Embedded SQL

/Il Go get the handl e.
ODBCConnect i onHandl e = SQLCA. DBHandl e( )

/1 Now that you have the ODBC connection pointer,
/1 call the DLL function.
MyDLLFunct i on( ODBCConnect i onHandl e, parnil, parnR)

In your DLL, cast the incoming connection handle of the type HDBC.:

MyDLLFuncti on(l ong 10DBCConnect i onHandl e,
parnml_type parni,
parn2_type Parn2, ...)

{

HDBC * pbDat abase;

pDat abase = (HDBC *) 10DBCConnecti onHandl e;

/] ODBC functions can be call ed using pDatabase.

}
See also
ODBC Using escape clauses

6.1.4 ODBC Using escape clauses

ODBC defines extensions that are common to most backend DBM Ss. To cover vendor-
specific extensions, the syntax defined by ODBC uses the escape clause provided by the X/
Open and SQL Access Group (SAG) SQL draft specifications.

For example, some of the extensions defined in ODBC are:

» Date, time, and timestamp data

» Scalar functions (such as data type, numeric, and string conversion functions)
» Quter joins

* Procedures

Maximum portability
For maximum portability, you should use escape sequences in your applications.
Syntax

For example, PowerBuilder uses the date, time, and timestamp escape clauses as the default
formats for data manipulation. The syntax for each of these escape clausesis:

{ dyyyy-nmdd }
{ t hh:mmss }
{ ts yyyy-mmdd hh:mmss: [fff[fff]] }

Example

Each of the following statements updates employee Henry Jones's start time in the Employee
table. The first statement uses the escape clause, and the second statement uses native syntax
for atime column:

UPDATE Enpl oyee
SET start_tine
VWHERE enp_nane

{t 08:30: 00}
"Henry Jones"

Page 181



Using Embedded SQL

UPDATE Enpl oyee
SET start_tine
WHERE enp_nane

(08: 30: 00)
"Henry Jones"

6.1.5 ODBC Transaction management statements

If the database you are connecting to supports transaction management, you can use the
following transaction management statements with one or more transaction objects to manage
connections and transactions for a database:

« CONNECT

* DISCONNECT
« COMMIT

* ROLLBACK

See also
ODBC Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK

6.1.6 ODBC Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK

The following table lists each transaction management statement and describes how it works
when you use the ODBC interface to connect to a database:

Table6.1:

Statement  Description

CONNECT | Establishes the database connection. After you assign values to the required
properties of the transaction object, you can execute a CONNECT. When you
connect to the database, the DBM S name returned by the ODBC SQL Getlnfo
call isreturned in the transaction object property SQL ReturnData

DISCONNEQCTerminates a successful connection. When a DISCONNECT is executed,
PowerBuilder internally executesa COMMIT WORK statement to commit
al changes and then issues a CLOSE DATABASE statement to terminate the
logical unit of work.

COMMIT |Appliesall changes made to the database since the beginning of the current
unit of work.

ROLLBACK Undoes all changes made to the database since the beginning of the current
logical unit of work.

See also
ODBC Performance and locking

6.1.7 ODBC Performance and locking

After a connection is established, SQL statements can cause locks to be placed on database
entities. The more locks there are in place at a given moment in time, the more likely it is that
the locks will hold up another transaction.

Page 182



Using Embedded SQL

Rules

No set of rulesfor designing a database application is totally comprehensive. However, when
you design a PowerBuilder application, you should do the following:

 Long-running connections

Determine whether you can afford to have long-running connections. If not, your
application should connect to the database only when absolutely necessary. After all the
work for that connection is complete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be issued as often

as possible to guarantee that all changes do in fact occur. More importantly, COMMITs
should be issued to release any locks that may have been placed on database entities as a
result of the statements executed using the connection.

» SetTrans or SetTransObject function

Determine whether you want to use default DataWindow transaction processing (the
SetTrans function) or control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have many short-
lived transactions, use the default DataWindow transaction processing. If you want to keep
connections open and issue periodic COMMITSs, use the SetTransObject function and
control the transaction yourself.

Switching during a connection

To switch between transaction processing and AutoCommit during a connection,
change the setting of AutoCommit in the transaction object.

| solation feature

ODBC usestheisolation feature to support assorted database lock options. In PowerBuilder,
you can use the Lock property of the transaction object to set the isolation level when you
connect to the database.

The following example shows how to set the Lock property to RU (Read uncommitted):

/1l Set the lock property to read unconmmitted
/[l in the default transaction object SQLCA.
SQLCA. Lock = "RU'

PowerBuilder uses the ODBC API call SQ2.SetConnectOption (SetlsolationLevel) to set the
isolation level. The lock value is passed to the function as a 32-bit mask.

Example 1

This script uses embedded SQL to connect to a database and attempts to insert arow in the
ORDER_HEADER table and arow in the ORDER_ITEM table. The script then executes a
COMMIT or ROLLBACK depending on the success of all statementsin the script.

/] Set the SQLCA connection properties.

SQLCA. DBMS = " ODBC"

SQLCA. DBPar m = "connectstring = 'DSN = orders'"
/1 Connect to the database.

CONNECT USI NG SQLCA;

/1 Insert a rowinto the ORDER HEADER t abl e.

Page 183



Using Embedded SQL

I NSERT | NTO ORDER_HEADER ( ORDER | D, CUSTOVER | D)
VALUES (7891, 129);
/] Test return code for ORDER _HEADER i nserti on.
/1l A ROLLBACK is required only if the first row
/'l was inserted successfully.
if SQLCA sqglcode = 0 then
/1 Since the ORDER HEADER is inserted,
/] try to insert ORDER | TEM
I NSERT | NTO ORDER | TEM
(ORDER_I D, | TEM NBR, PART_NBR, QTY)
VALUES (7891, 1, '991PLS', 456);
/] Test return code for ORDER | TEM i nserti on.
if SQLCA. sgl code = -1 then
/1 Disconnect fromthe database.
DI SCONNECT USI NG SQLCA;

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 2

This example uses scripts for the Open and Close events for awindow and the Clicked event
for aCommandButton to illustrate how you can manage transactions for a Datawindow
control. Assume awindow contains a Datawindow control dw_1 and a CommandButton
Cb_Update. Also assume the user enters datain dw_1 and then clicks the Cb_Update button
to update the database with the data.

The window OPEN event script:

[/l Set the transaction object properties

/1 and connect to the database.

/] Set the SQLCA connection properties.

SQLCA. DBMs = " ODBC"

SQLCA. DBPar m = "connectstring = 'DSN = orders'"

/] Connect to the database.

CONNECT USI NG SQLCA;

/1 Tell the DataW ndow which transacti on object to use.
dw_1. Set Tr ansQbj ect (sql ca)

The CommandButton CLICKED event script:

/| Decl are ReturnVal ue an integer.
i nt eger Ret ur nVal ue
Ret urnVal ue = dw_1. Update( )
/] Test to see if updates were successful.
if ReturnValue = -1 then
/'l Updates were not successful. Since we used
/1 SetTransObj ect, roll back any changes made
/1 to the database.
ROLLBACK USI NG SQLCA;
el se
/1 Updates were successful. Since we used
/1 SetTransObj ect, comit any changes nade
/1 to the database.
COW T USI NG SQLCA;
end if

The window CLOSE event script:

/! Disconnect fromthe database.

Page 184



Using Embedded SQL

DI SCONNECT USI NG SQLCA;

6.1.8 ODBC Non-cursor statements
The statements that do not involve cursors are;

» DELETE (ODBC DELETE, INSERT, and UPDATE)

* INSERT (ODBC DELETE, INSERT, and UPDATE)

» UPDATE (ODBC Update)

» ODBC SELECT (singleton)

6.1.9 ODBC DELETE, INSERT, and UPDATE

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE the same way.
PowerBuilder inspects these statements for variable references and replaces all variable
references with a constant that conforms to the backend database's rules for that data type.

Example
Assume you enter the following statement:
DELETE FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var is a PowerScript variable with the data type of integer that has
been defined within the scope of the script that contains the DELETE statement.

Before the DELETE statement is executed, emp_id_var is assigned a value (say 691) so when
the DELETE statement executes, the database receives the following command:

DELETE FROM enpl oyee WHERE enp_id = 691;
When isthis substitution technique used?

This variable substitution technique is used for all PowerScript variable types. When you use
embedded SQL, precede all PowerScript variableswith acolon ( :).

See also
ODBC SELECT

6.1.10 ODBC SELECT
The SELECT statement contains input and output variables.

* Input variables

are passed to the database as part of the execution, and the substitution is as described for
DELETE, INSERT, and UPDATE.

* Output variables
return values based on the result of the SELECT statement.

Example 1

Page 185



Using Embedded SQL

Assume you enter the following statement:

SELECT enp_nane, enp_sal ary
I NTO : enp_name_var, :enp_salary_var
FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var, emp_salary var, and emp_name_var are PowerScript variables
defined within the scope of the script containing the SELECT statement, and emp_id_var is
an input variable and is processed as described in the DELETE example above.

Both emp_name var and emp_salary var are output variables that will be used to return
values from the database. The data types of emp_name _var and emp_salary_var should be
the PowerScript data types that best match the data type in the database. When the data types
do not match perfectly, PowerBuilder converts them.

How big should numeric output variables be?

For numeric data, the output variable must be large enough to hold any value that may
come from the database.

Assume the value for emp_id_var is 691 asin the previous example. When the
SELECT statement executes, the database receives this command:

SELECT enp_nane, enp_sal ary FROM enpl oyee WHERE enp_id = 691;

If no errors are returned when the statement executes, data locations are bound internally
for the result fields. The data returned into these locations is converted if necessary, and the
appropriate PowerScript variables are set to those values.

Example 2

This example assumes the default transaction object (SQLCA) has been assigned valid
values and a successful CONNECT has executed. It also assumes the data type of the emp_id
column in the employee table is CHARACTER[10]. The user enters an employee ID into the
single line edit field le_ Emp and clicks the button Cb_Delete.

The script for the Clicked event in the CommandButton Cb_Deleteis:

/1l Make sure we have a val ue.
if sle_Enp.text <> "" then
[/l Since we have a value, let's try to delete it.
DELETE FROM enpl oyee
VWHERE enp_id = :sle_Enp.text;
/] Test to see if the DELETE worked.
if SQ.CA sqglcode = 0 then
/1l It seenms to have worked; |et user know.
MessageBox("Del ete", &
"The del ete has been successfully "&
+" processed! ")
el se
/[l It didn't work.
MessageBox("Error", &
"The del ete failed. Enployee ID "&
+"is not valid.")
end if
el se
/1 No input value. Pronpt user.
MessageBox("Error", &
"An enployee IDis required for "&

Page 186



Using Embedded SQL

+"del ete!")
end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 3

This example assumes the default transaction object (SQLCA) has been assigned valid values
and a successful CONNECT has executed. The user wants to extract rows from the employee
table and insert them into the table named extract_employees. The extraction occurs when
the user clicks the button Cb_Extract. The boolean variable Y oungWorkersis set to TRUE or
FALSE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

i nt eger Enpl oyeeAgeLower Li m t
i nt eger mpl oyeeAgeUpper Li m t

/! Do they have young workers?
if (YoungWirkers = TRUE) then

/Il Yes - set the age limt in the YOUNG range.
/1 Assune no enpl oyee is under |egal working age.
Enpl oyeeAgelLowerLinmt = 16

/1 Pick an upper limt.
Enpl oyeeAgeUpperLinmt = 42
el se

/Il No - set the age limt in the OLDER range.
Enpl oyeeAgelLowerLimt = 43

/1 Pick an upper limt that includes all enployees.

Enpl oyeeAgeUpperLimt = 200
end if

I NSERT | NTO extract _enpl oyees(enp_i d, enp_nane)
SELECT enp_id, enp_nanme FROM enpl oyee
WHERE enp_age >= : Enpl oyeeAgeLower Li m t
AND enp_age <= : Enpl oyeeAgeUpperLimt;
6.1.11 ODBC Cursor statements

In embedded SQL, statements that retrieve data and statements that update data can both
involve cursors. Not all backend DBM Ss support cursor statements.

Retrieval statements
The retrieval statements that involve cursors are:

DECLARE cursor_name CURSOR FOR ...

OPEN cursor_name

FETCH cursor_name INTO ...

CLOSE cursor_name

Page 187



Using Embedded SQL

Update statements

The update statements that involve cursors are:
« UPDATE ... WHERE CURRENT OF cursor_name
e DELETE ... WHERE CURRENT OF cursor_name

See also

ODBC Retrieval using cursors

ODBC FETCH NEXT

ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST

ODBC Update

6.1.12 ODBC Retrieval using cursors

Retrieval using cursorsis conceptually similar to the singleton SELECT discussed earlier.
The main difference is that since there can be multiple rowsin aresult set, you control when
the next row is fetched into PowerScript variables.

For example, if you expect only a single row to exist in the employee table for each emp _id,
use asingleton SELECT statement. In asingleton SELECT, you specify the SELECT
statement and destination variables in one concise SQL statement:
SELECT enp_nane, enp_sal ary

I NTO : enp_nanme_var, :enp_salary_var

FROM enpl oyee WHERE enp_id = :enp_id_var;

However, if the SELECT may return multiple rows, you must:
1. Declare acursor.

2. Open it (which conceptually executes the SELECT).

3. Fetch rows as needed.

4. Close the cursor.

Declaring and opening a cur sor

Declaring a cursor is tightly coupled with the OPEN statement. The DECLARE specifiesthe
SELECT statement to be executed, and the OPEN actually executes it.

Declaring a cursor is similar to declaring avariable. A cursor declaration is a nonexecutable
statement just like a variable declaration. The first step in declaring a cursor isto define how
the result set looks. To do this, you need a SELECT statement, and since you must refer to
the result set in subsequent SQL statements, you must associate the result set with alogical
name.

Example

Assume the SingleLineEdit sle_1 contains the state code for the retrieval:

/1 Declare cursor enp_curs for enployee table

Page 188



Using Embedded SQL

[l retrieval.

DECLARE enp_curs CURSOR FOR
SELECT enp_id, enp_nanme FROM EMPLOYEE
WHERE enp_state = :sle_1.text;

/1 Declare |ocal variables for retrieval.

string enp_id_var

string enp_nanme_var

/1 Execute the SELECT statenment with

/1 the current value of sle_1.text.

OPEN enp_curs;

// At this point, if there are no errors,

/!l the cursor is available for further
/'l processing.

Scrolling and locking

Use the DBParm parameters CursorScroll and CursorL ock to specify the scrolling and
locking options.

Note

Not all DBM Ss support these scrolling and locking options.

Fetching rows

The ODBC interface supports the following FETCH statements. Y ou can use them if they are
supported by your backend DBMS.

 FETCH NEXT

 FETCH FIRST

* FETCH PRIOR

 FETCH LAST

Note
Not all DBM Ss support al of these FETCH statements.

6.1.13 ODBC FETCH NEXT

In the singleton SELECT, you specify variablesto hold values for the columns within
the selected row. The syntax of the FETCH statement is similar to the singleton SELECT
statement syntax. Values are returned INTO a specified list of variables.

Example
This example continues the previous example by retrieving some data:

/Il Go get the first rowfromthe result set.
FETCH enp_curs | NTO : enp_i d_var, :enp_nane_var;

If at least one row isretrieved, this FETCH places the values of the emp_id and emp_name
columns from the first row in the result set into the PowerScript variables emp_id_var and
emp_name_var. FETCH statements typically occur in aloop that processes several rows from
aresult set (onerow at atime), but thisis not the only way they are used.

Page 189



Using Embedded SQL

What happenswhen theresult set is exhausted?

FETCH returns +100 (not found) in the SQL Code property within the referenced
transaction object. Thisis an informational return code; -1 in SQL Code indicates an
error.

See also
ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST

6.1.14 ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST

In addition to the conventional FETCH NEXT statement, the ODBC interface supports
FETCH FIRST, FETCH PRIOR, and FETCH LAST statements.

What happensif you only enter FETCH?
If you only enter FETCH, PowerBuilder assumes FETCH NEXT.

Closing the cursor

The CLOSE statement terminates processing for the specified cursor. CLOSE rel eases
resources associated with the cursor, and subsequent references to that cursor are alowed
only if another OPEN is executed. Although you can have multiple cursors open at the same
time, you should close the cursors as soon as possible for efficiency reasons.

See also
ODBC FETCH NEXT

6.1.15 ODBC Update

After a FETCH statement completes successfully, you are positioned on a current row within
the cursor. At this point, you can execute an UPDATE or DELETE statement using the
WHERE CURRENT OF cursor_name syntax to update or delete the row. PowerBuilder
enforces the cursor update restrictions of the backend database, and violations will result in
an execution error.

Example

This cursor example illustrates how to loop through aresult set. It assumes that the default
transaction object (SQLCA) has been assigned valid values and a successful CONNECT

has been executed. The statements retrieve rows from the employee table, and then display a
message box with the employee name for each row that is found.

[/l Declare the enp_curs.
DECLARE enp_curs CURSOR FOR
SELECT enp_name FROM EMPLOYEE
WHERE enp_state = :sle_1.text;
/] Declare a destination variable for enpl oyee
/1 names.
string enp_nane_var
/| Execute the SELECT statement with the
/1 current value of sle_1.text.
OPEN enp_curs;
[/l Fetch the first row fromthe result set.
FETCH enp_curs | NTO : enp_nane_var ;

Page 190



Using Embedded SQL

/1 Loop through result set until exhausted.

DO WH LE sql ca. sgl code = 0

/1 Display a nessage box with the enpl oyee nane.
MessageBox (" Found an enpl oyee! ", enp_nane_var)

/!l Fetch the next row fromthe result set.
FETCH enp_curs | NTO : enp_nane_var;

LOOP

/1 Al'l done; close the cursor.

CLOSE enp_curs;

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

6.1.16 ODBC Database stored procedures
Retrieval and update

Y ou can use database stored procedures for:
* Retrieva only

» Update only

* Retrieval and update

Your DBMS
Not all DBM Ss support these retrieval and update options.
Using stored procedures
When you use database stored procedures in a PowerBuilder application, keep the following
pointsin mind:
» Manipulating stored procedures
PowerBuilder provides SQL statements that are similar to cursor statements for
mani pul ating database stored procedures.
* Retrieval and update

PowerBuilder supports retrieval, update, or acombination of retrieval and update in
database stored procedures, including procedures that do not return aresult set and those
that return aresult set.

 Transactions and stored procedures without result sets

When a procedure executes using a particular connection (transaction) and the procedure
does not return aresult set, the procedure is no longer active. No result set is pending, and
therefore you do not execute a CL OSE statement.

Seealso

ODBC Retrieval

Page 191



Using Embedded SQL

ODBC Using database stored procedures in DataWindow objects

6.1.17 ODBC Retrieval

PowerBuilder uses a construct similar to cursors to support retrieval using database stored
procedures. PowerBuilder supports four embedded SQL statements that involve database
stored procedures:

» DECLARE procedure_name PROCEDURE FOR ...
» EXECUTE procedure_name

* FETCH procedure name INTO ...

* CLOSE procedure_name

Seealso

ODBC DECLARE and EXECUTE
ODBC EXECUTE

ODBC FETCH

ODBC CLOSE

6.1.18 ODBC DECLARE and EXECUTE

PowerBuilder requires a declarative statement to identify the database stored procedure that
is being used and to specify alogical name for the procedure. The logical name is used to
reference the procedure in subsequent SQL statements.

The general syntax for declaring a procedureis:

DECLARE | ogi cal _procedure_nane PROCEDURE FOR
pr ocedur e_namne
{@araml. = val ue, @aran?2 = value2, ...}
{USI NG transacti on_object};

where logical_procedure_name can be any valid PowerScript identifier and procedure_name
isthe name of a stored procedure in the database.

The parameter references can take the form of any valid parameter string the database
accepts. PowerBuilder inspects the parameter list format only for variable substitution. The
USING clauseisrequired only if you are using a transaction object other than the default
transaction object (SQLCA).

Output parameters might not be returned when you use an embedded SQL command to call
astored procedure. Y ou can set the PBNewSPInvocation database parameter to "Yes' to use
an alternative method to invoke a stored procedure. The behavior of the PowerBuilder ODBC
driver when this DBParm is set is consistent with the default behavior of the OLE DB and
JDBC drivers.

If PBNewSPInvocation is set to "Yes," the alternative method is used when you retrieve
datainto a Datawindow object that uses a stored procedure. See ODBC DECLARE and
EXECUTE with PBNewSPInvocation.

Page 192



Using Embedded SQL

Example

Assume a stored procedure named procl is defined on the server. To declare procl for
processing within PowerBuilder, enter:

DECLARE enp_proc PROCEDURE FOR procl;

The procedure declaration is a nonexecutable statement, just like a cursor declaration.
However, where cursors have an OPEN statement, procedures have an EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The EXECUTE refersto
the logical procedure name, in this example emp_proc:

EXECUTE enp_pr oc;

Seealso

ODBC EXECUTE

ODBC DECLARE and EXECUTE with PBNewSPInvocation

6.1.19 ODBC DECLARE and EXECUTE with PBNewSPInvocation

PowerBuilder requires a declarative statement to identify the database stored procedure that
is being used and to specify alogical name for the procedure. The logical name is used to
reference the procedure in subsequent SQL statements.

The general syntax for declaring a procedureis:

DECLARE | ogi cal _procedur e_nane PROCEDURE FOR
procedur e_nane
@ar anll = val ue, @aran2 = val ue2,
@PARAMB = VALUE3 OUTPUT

{USI NG transacti on_obj ect};

where logical_procedure_name can be any valid PowerScript identifier and procedure_name
isthe name of a stored procedure in the database. Use the OUT or OUTPUT keyword to
obtain the value of the output parameter.

The parameter references can take the form of any valid parameter string the database
accepts. PowerBuilder inspects the parameter list format only for variable substitution. The
USING clauseisrequired only if you are using atransaction object other than the default
transaction object (SQLCA).

Y ou must set the PBNewSPInvocation database parameter to "Yes' to use this method
to invoke a stored procedure. The behavior of the PowerBuilder ODBC driver when this
DBParmis set is consistent with the default behavior of the OLE DB and JDBC drivers.

If PBNewSPInvocationisset to "Yes', this method is used when you retrieve datainto a
Datawindow object that uses a stored procedure. This DBParm has no effect when you use
RPC to invoke a stored procedure.

If PBNewSPInvocation is set to "No", use the syntax described in ODBC DECLARE and
EXECUTE.

Example 1

Assume a stored procedure named procl is defined on the server as:

CREATE PROCEDURE procl AS

Page 193



Using Embedded SQL

SELECT enp_nane FROM enpl oyee
To declare procl for processing within PowerBuilder, enter:
DECLARE enp_proc PROCEDURE FOR procl;

The procedure declaration is a nonexecutable statement, just like a cursor declaration.
However, where cursors have an OPEN statement, procedures have an EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The EXECUTE refersto
the logical procedure name, in this example emp_proc:

EXECUTE enp_pr oc;

Example 2
To declare a procedure with input and output parameters, enter:

DECLARE sp_durati on PROCEDURE FOR pr_date_diff_prd_ken
@ar_date_1 = :ad_start,
@ar_date_2 = :ad_end,
@tn_diff_prd = :|s_durati on OQUTPUT;

If the stored procedure contains result sets, you must fetch the result setsfirst. If the stored
procedure has areturn value and you want to obtain it, use the format RC=procedure_name:

DECLARE sp_durati on PROCEDURE FORRC=pr _date diff_prd_ken
@ar_date 1 = :ad_start,
@ar _date 2 = :ad_end,
@tn_diff_prd = :Is_durati on OUTPUT,;

6.1.20 ODBC FETCH

To accessrows returned in aresult set, use the FETCH statement the same way you use it for
cursors. The FETCH statement can be executed after any successful EXECUTE statement for
aprocedure that returns aresult set.

Example

FETCH enp_proc | NTO : enp_nane_var ;

Using FETCH after EXECUTE

Following an EXECUTE statement for a procedure, you can use the FETCH
statement only to access values produced by the SELECT statement in the database
stored procedure.

Since PowerBuilder cannot determine at compile time what result set will be returned
when a database stored procedure executes, you must code FETCH statements so that
the stored procedure exactly matches the format of the result set during execution.
Assume you coded the second FETCH statement in the example above as.

FETCH enp_proc |INTO :varl, :var2, :var3;

The statement compiles without errors. However, you will get an execution error
indicating that the number of columnsin the FETCH statement does not match the
number of columns in the result set.

See also

Page 194



Using Embedded SQL

ODBC EXECUTE
ODBC FETCH NEXT
ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST

6.1.21 ODBC CLOSE

If a database stored procedure returns a result set, you must close the stored procedure when
processing is complete. The procedure remains open until you close it, execute a COMMIT
or ROLLBACK, or end the database connection.

Do you havetoretrieveall the rows?

Y ou do not have to retrieve all rowsin aresult set to close arequest or procedure.

Example
Closing a procedure looks the same as closing a cursor:

CLOSE enp_pr oc;

6.1.22 ODBC EXECUTE

Database stored procedures that perform only updates and do not return aresult set are
handled in much the same way as procedures that return aresult set. The only differenceis
that after the EXECUTE procedure_name statement executes, no result set is pending, so a
CLOSE statement is not required.

Using the SQL Code property

If a specific procedure can never return aresult set, only the EXECUTE statement is
required. If a procedure may or may not return aresult set, you can test the SQL Code
property of the referenced transaction object for +100 (the code for NOT FOUND) after the
EXECUTE.

The possible values for SQL Code after an EXECUTE are:

Table6.2:
Return M eans
code
0 The EXECUTE was successful and aresult set is pending. Regardless of the
number of FETCH statements executed, the procedure must be explicitly
closed with a CLOSE statement.
Fetched row not found.
+100 Fetched row not found.
-1 The EXECUTE was not successful and no result set was returned.
Example 1

This example illustrates how to execute a stored procedure that does not return aresult set.
It assumes the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed.

Page 195



Using Embedded SQL

/1 good_enpl oyee is a database stored procedure.

/1 Declare the procedure.

DECLARE good_enp_proc PROCEDURE
FOR good_enpl oyee;

/'l Execute it.

EXECUTE good_enp_pr oc;

/] Test return code. Al low for +100 since you

// do not expect a result set.

if SQLCA. sqgl code = -1 then

/1 lssue an error nessage since it failed.
MessageBox(" Stored Procedure Error!", &
SQLCA. sql errtext)

end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 2

This example illustrates how to pass parameters to a database stored procedure. It assumes
the default transaction object (SQLCA) has been assigned valid values and a successful
CONNECT has been executed. Emp_id_var was set to 691 elsewhere.

/1 get_enpl oyee is a database stored procedure.
/1 Declare the procedure.
DECLARE get _enp_proc PROCEDURE FOR
get _enpl oyee @np_id_parm = :enp_id_var;
/| Declare a destination variable for enp_nane.
string enp_nanme_var
/| Execute the stored procedure using the
/1 current value for enp_id_var.
EXECUTE get _enp_pr oc;
/| Test return code to see if it worked.
if SQLCA. sqgl code = 0 then
/1 Since we got a row, fetch it and display it.
FETCH get _enp_proc | NTO : enp_nane_var ;
/1 Display the enpl oyee nane.
MessageBox(" Got ny enpl oyee! ", enp_nane_var)
/1 You are all done, so close the procedure.
CLOSE Get _enp_proc;
end if

6.1.23 ODBC Using database stored procedures in DataWindow objects
Y ou can use database stored procedures as a data source for DataWindow objects. The
following rules apply:
* Result set definition
Y ou must define what the result set looks like in the DataWindow painter. PowerBuilder
cannot determine this information from the stored procedure definition in the database.

 Stored procedure arguments

The DataWindow painter provides the arguments for stored procedures only if the ODBC
driver you are using to connect gives PowerBuilder the required information. If the
arguments for the database stored procedure are not provided, you must define them.

Page 196



Using Embedded SQL

» Datawindow updates
Updates are not allowed for stored procedures in a DataWindow object. Only retrieval is
allowed.

» ODBC syntax

PowerBuilder supports the syntax appropriate for all backend databases supported by the
ODBC interface. In the DataWindow painter, PowerBuilder displays the most general
stored procedure syntax. It then convertsit to the syntax appropriate for the backend
database before passing it to the database.

6.2 Using Embedded SQL with JDBC

When you use the JDBC interface to connect to a database, you can use embedded SQL in
your scripts.

6.2.1 JDBC DECLARE and EXECUTE

PowerBuilder requires a declarative statement to identify the database stored procedure that is
being used and alogical name that can be referenced in subsequent SQL statements.

The general syntax for declaring a procedureis:

DECLARE | ogi cal _procedure_nane PROCEDURE FOR
pr ocedur e_namne
@Par aml = val uel, @raran? = val ue2 ,
@Par an8 = val ue3 OUTPUT,
{USI NG transaction_object} ;

where logical_procedure_name can be any valid PowerScript data identifier and
procedure_name is the name of the stored procedure in the database.

The parameter references can take the form of any valid parameter string that JDBC accepts.
PowerBuilder does not inspect the parameter list format except for purposes of variable
substitution. Y ou must use the reserved word OUTPUT to indicate an output parameter. The
USING clauseisrequired only if you are using a transaction object other than the default
transaction object (SQLCA).

Example 1
Assume a stored procedure procl is defined as:

CREATE PROCEDURE procl AS
SELECT enp_nane FROM enpl oyee

To declare that procedure for processing within PowerBuilder, enter:
DECLARE enp_proc PROCEDURE FOR procl;

Note that this declaration is a nonexecutabl e statement, just like a cursor declaration. Where
cursors have an OPEN statement, procedures have an EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The EXECUTE refersto
the logical procedure name:

EXECUTE enp_pr oc;

Page 197



Using Embedded SQL

Example 2

To declare a procedure with input and output parameters, enter:

DECLARE sp_durati on PROCEDURE FOR pr_date_diff_prd_ken
@ar_date_1 = :ad_start,

@ar _date_2 = :ad_end,
@tn_diff_prd = :ls_durati on OQUTPUT;

6.3 Using Embedded SQL with OLE DB

About this chapter

When you create scripts for a PowerBuilder application, you can use embedded SQL
statements in the script to perform operations on the database. The features supported when
you use embedded SQL depend on the DBMS to which your application connects.

Overview

When you use the PowerBuilder OLE DB interface to connect to a backend database, you can
use embedded SQL in your scripts.

Y ou can embed the following types of SQL statements in scripts and user-defined functions
if the OLE DB driver you are using and the backend DBM S you are accessing supports

this functionality. (Not all backend databases support cursor statements and database stored
procedures.)

» Transaction management statements
* Non-cursor statements

» Cursor statements

» Database stored procedures

OLE DB Programming M odels

OLE DB isaset of COM (Component Object Model) interfaces that provide uniform access
to data stored in multiple, diverse data sources. These data sources aso enable applications to
provide additional database services.

When you use embedded SQL, PowerBuilder makes the required calls to the backend
database. Therefore, you do not need to know anything about the OLE DB interface to use
embedded SQL with PowerBuilder.

See also

Using the OLE DB Interface

OLE DB SQL support

OLE DB Transaction management statements
OLE DB Non-cursor statements

OLE DB Cursor statements

OLE DB Database stored procedures

Page 198



Using Embedded SQL

6.3.1 OLE DB SQL support

PowerBuilder embedded SQL supports the name qualification conventions and functions
used in the databases accessible through the PowerBuilder OLE DB interface.

See also
OLE DB Name qualification
OLE DB SQL functions

6.3.2 OLE DB Name qualification

PowerBuilder does not inspect all SQL statement syntax, so you can qualify database catalog
entities as necessary.

For example, the following qualifications are acceptable for a PowerBuilder OLE DB
interface to a SQL Anywhere database:

e emp_name

* employee.emp_name

6.3.3 OLE DB SQL functions

In SQL statements, you can use any function that your backend DBM S supports (such as
aggregate or mathematical functions). For example, if your DBM S supports the function
Sum, you can use the function Sum in a SELECT statement:

SELECT Sun(sal ary)
I NTO : sal ary_sum var
FROM enpl oyee;

Calling OLE DB functions

While PowerBuilder provides access to alarge percentage of the features within OLE DB, in
some cases you might decide that you need to call one or more OLE DB functions directly
for a particular application. PowerBuilder provides access to most Windows DLLs by using
external function declarations.

PowerBuilder OLE DB can export OLE DB data source objects or session objects to users
using the PowerScript function DBHandle. Users can create their own session objects using
the exported data source object, so they can get a new independent connection that has
connection properties similar to those used by PowerBuilder OLE DB. With the exported
session object, users can also create their own command object that is under PowerBuilder
OLE DB's transaction scope. The behavior is like using DBHandle() with the PowerBuilder
ODBC interface.

DBHandle

DBHandle takes a transaction object as a parameter and returns along variable, which is
an interface pointer to a data source object or a session object. By default PowerBuilder
OLE DB exports adata source object. If the DBParm "ReturnCommandHandle=1" is set,
PowerBuilder OLE DB exports a session object.

Example 1

Page 199



Using Embedded SQL

This example illustrates how to use DBHandle to get an OLE DB data source object. Aswith
other examples, assume a successful connection has occurred using the default transaction
object (SQLCA).

// Define a variable to hold the DB connecti on handl e.
Long A eDbCnnl nterface

/|l Get OLE DB Data Source Object
A eDbCnnl nterface = SQ.CA. DBHandl e()

/1 Now that you have the OLE DB data source object,
/1 call the DLL function.
MyDLLFuncti on(d eDbCnnl nterface, parml, parnR)

/1 In your DLL, cast the incom ng handle to the
/'l 1 Unknown* interface

MyDLLFuncti on(l ong A eDbCnnl nt erf ace,
parml_t ype par i,
parn2_type Parn2, ...)

| Unknown* pUnkDat aSource = &
(I Unknown*) A eDbCnnl nt er f ace;
| DBCr eat eSessi on* pl DBCr eat eSessi on = NULL;

pUnkDat aSour ce- >Queryl nterface(l 1 D_| DBCreat eSessi on,
(voi d**) &l DBCr eat eSessi on) ) ;

/!l now you have the OLE DB | DBCreat eSession interface,
/1 you can create your own i ndependent session object
/1 fromthe PowerBuil der OLE DB driver

| Unknown ** ppUnkSessi on;

pl DBCr eat eSessi on- >Cr eat eSessi on( NULL, //pUnkQut er
11 D_| DBCreat eCommand, //riid
ppUnkSessi on /| ppSessi on

);
}
Example 2
This example illustrates how to use DBHandle to get an OLE DB session object.
/1 Before connection, set DBParm Retur nConmandHandl e=1

SQLCA. DBPar m = " Ret ur nCommandHandl e = 1"
CONNECT;

[/l After successful connection
/!l Define a variable to hold the DB connecti on handl e.
| ong A eDbCnnl nt er f ace

/'l Get OLE DB session object
A eDbCnnl nterface = SQ.CA. DBHandl e()

/1 Now you have the OLE DB sessi on object,
/1 call the DLL function.
MyDLLFuncti on(d eDbCnnl nterface, parml, parnR)

/1 1n your DLL, cast the incomi ng handle to
/'l 1 Unknown* interface

MyDLLFuncti on(l ong O eDbCnnl nterf ace,

Page 200



Using Embedded SQL

parml_t ype par i,
parn2_type Parn2, ...)

| Unknown* pUnkSession = &
(1 Unknown*) A eDbCnnl nt er f ace;
| DBCr eat eConmand * pl DBCr eat eCommand = NULL;

pUnkSessi on- >Queryl nterface &
(1l D_I DBCr eat eCommand,
(voi d**) &l DBCr eat eConmand) ) ;

With the IDBCreateCommand interface used by the PowerBuilder OLE DB interface, you
can create your own command object. Y our command object and the PowerBuilder command
object will be in the same transaction scope.

See also
OLE DB Using ODBC escape Seguences

6.3.4 OLE DB Using ODBC escape Sequences

ODBC defines extensions that are common to most backend DBM Ss. To cover vendor-
specific extensions, the syntax defined by ODBC uses the escape clause provided by the X/
Open and SQL Access Group (SAG) SQL draft specifications. OLE DB supports ODBC
escape sequences directly.

For example, some of the extensions defined in ODBC are:

» Date, Time, and Timestamp Literals

» Scalar functions (such as data type, numeric, and string conversion functions)
* Outer joins

* Procedure Calls

Note

For maximum portability, you should use escape sequences in your applications.

Syntax

For example, PowerBuilder uses the date, time, and timestamp escape clauses as the default
formats for data manipulation. The syntax for each of these escape clausesis:

{ d yyyy-mmadd }
{ t hh:mmss }
{ ts yyyy-mmdd hh:mmss: [fff[fff]] }

Example

Each of the following statements updates employee Henry Jones's start time in the Employee
table. Thefirst statement uses the escape clause, and the second statement uses native syntax
for atime column:

UPDATE Enpl oyee
SET start_tine
VWHERE enp_nane

{t 08:30: 00}
"Henry Jones"

Page 201



Using Embedded SQL

UPDATE Enpl oyee
SET start_tine
WHERE enp_nane

(08: 30: 00)
"Henry Jones"

6.3.5 OLE DB Transaction management statements

If the database you are connecting to supports transaction management, you can use the
following transaction management statements with one or more transaction objects to manage
connections and transactions for a database:

« CONNECT

* DISCONNECT
« COMMIT

* ROLLBACK

See also
OLE DB Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK

6.3.6 OLE DB Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK

The following table lists each transaction management statement and describes how it works
when you use the PowerBuilder OLE DB interface to connect to a database:

Table6.3:

Statemer Description

CONNECHstablishes the database connection. After you assign values to the required
properties of the transaction object, you can execute a CONNECT. After the
CONNECT completes successfully, by default PowerBuilder automatically starts
atransaction. Set SQL CA.AutoCommit=TRUE to tell PowerBuilder not to start a
transaction automatically.

DISCONNTEGinates a successful connection. When a DISCONNECT is executed,
PowerBuilder internally executesa COMMIT WORK statement to commit all
changes and then issues a CLOSE DATABASE statement to terminate the logical
unit of work.

COMMITApplies all changes made to the database since the beginning of the current unit of
work.

ROLLBAOKdoes all changes made to the database since the beginning of the current logical
unit of work.

See also
OLE DB Performance and locking

6.3.7 OLE DB Performance and locking

After aconnection is established, SQL statements can cause locks to be placed on database
entities. The more locks there are in place at a given moment in time, the more likely it is that
the locks will hold up another transaction.

Page 202



Using Embedded SQL

Rules

No set of rules for designing a database application istotally comprehensive. However, when
you design a PowerBuilder application, you should do the following:

* Long-running connections

Determine whether you can afford to have long-running connections. If not, your
application should connect to the database only when absolutely necessary. After all the
work for that connection is complete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be issued as often

as possible to guarantee that all changes do in fact occur. More importantly, COMMITs
should be issued to release any locks that may have been placed on database entities as a
result of the statements executed using the connection.

» SetTrans or SetTransObject function

Determine whether you want to use default DatawWindow transaction processing (the
SetTrans function) or control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have many short-
lived transactions, use the default DataWWindow transaction processing. If you want to keep
connections open and issue periodic COMMITSs, use the SetTransObject function and
control the transaction yourself.

Switching during a connection

To switch between transaction processing and AutoCommit during a connection,
change the setting of AutoCommit in the transaction object.

| solation feature

OLE DB uses theisolation feature to support assorted database lock options. In
PowerBuilder, you can use the Lock property of the transaction object to set the isolation
level when you connect to the database.

The following example shows how to set the Lock property to RU (Read uncommitted):

/1l Set the |ock property to read unconmitted
/[l in the default transaction object SQLCA.
SQLCA. Lock = "RU'

Example 1

This script uses embedded SQL to connect to a database and attempts to insert arow in the
ORDER_HEADER table and arow in the ORDER_ITEM table. The script then executes a
COMMIT or ROLLBACK depending on the success of all statementsin the script.

/] Set the SQLCA connection properties.

SQLCA. DBMS = "OLE DB"

SQLCA. DBPar m = " PROVI DER=" SACLEDB. 10' , DATASOURCE= &
' SQL Anywhere 10 Denp'”

// Connect to the database.
CONNECT USI NG SQLCA;

/1 Insert a rowinto the ORDER HEADER t abl e.

Page 203



Using Embedded SQL

| NSERT | NTO ORDER_HEADER ( ORDER | D, CUSTOVER | D)

VALUES (7891, 129);

/] Test return code for ORDER _HEADER i nserti on.
/1l A ROLLBACK is required only if the first row
/'l was inserted successfully.
if SQLCA sqglcode = 0 then
/1 Since the ORDER HEADER i s inserted,
[/l try to insert ORDER | TEM
I NSERT | NTO ORDER | TEM
(ORDER_I D, | TEM NBR, PART_NBR, QTY)
VALUES (7891, 1, '991PLS', 456);
/] Test return code for ORDER | TEM i nserti on.
if SQLCA. sgl code = -1 then
/1 1f insert failed, ROLLBACK insertion of
/| ORDER_HEADER.
ROLLBACK USI NG SQLCA;
end if
end if
/1 Disconnect fromthe database.

DI SCONNECT USI NG SQLCA;

Error checking

Although you should test the SQL Code after every SQL statement, these examples

show statements to test the SQL Code only to illustrate a specific point.

Example 2

This exampl e uses scripts for the Open and Close events for awindow and the Clicked event
for a CommandButton to illustrate how you can manage transactions for a Datawindow
control. Assume awindow contains a DataWindow control dw_1 and a CommandButton
Cb_Update. Also assume the user enters datain dw_1 and then clicks the Cb_Update button
to update the database with the data.

The window OPEN event script:

I
I
I

Set the transaction object properties
and connect to the database.
Set the SQ.CA connection properties.

SQLCA. DBMS = "OLE DB"

SQLCA. DBPar m = " PROVI DER=" SAOLEDB. 10' , DATASOURCE= &

I

'SQ Anywhere 10 Demp'”

Connect to the database.

CONNECT USI NG SQLCA;

I
I

Tel | the DataW ndow whi ch transacti on object
to use.

dw_1. Set Tr ansObj ect (sql ca)

The CommandButton CLICKED event script:

11

Decl are ReturnVal ue an integer.

i nt eger Ret ur nVal ue
Ret urnVal ue = dw_1. Update( )

11
if

Test to see if updates were successful.
ReturnValue = -1 then

Page 204



Using Embedded SQL

/1 Updates were not successful. Since we used
/1 SetTransObject, roll back any changes made
/1 to the database.
ROLLBACK USI NG SQLCA;
el se
/1 Updates were successful. Since we used
/1 SetTransObj ect, comit any changes nade
/1 to the database.

COMWM T USI NG SQLCA;
end if

The window CLOSE event script:

// Disconnect fromthe dat abase.
DI SCONNECT USI NG SQLCA;

6.3.8 OLE DB Non-cursor statements
The statements that do not involve cursors are;

« DELETE
* INSERT
« UPDATE

 SELECT

6.3.9 OLE DB DELETE, INSERT, and UPDATE

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE the same way.
PowerBuilder inspects these statements for variable references and replaces al variable
references with a constant that conforms to the backend database's rules for that data type.

Example
Assume you enter the following statement:
DELETE FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var is a PowerScript variable with the data type of integer that has
been defined within the scope of the script that contains the DELETE statement.

Before the DELETE statement is executed, emp_id_var is assigned avalue (say 691) so when
the DELETE statement executes, the database receives the following command:

DELETE FROM enpl oyee WHERE enp_id = 691;

When isthis substitution technique used?

This variable substitution technique is used for all PowerScript variable types. When
you use embedded SQL, precede all PowerScript variableswith acolon (:).

See also
OLE DB SELECT

Page 205



Using Embedded SQL

6.3.10 OLE DB SELECT
The SELECT statement contains input and output variables.

* |nput variables are passed to the database as part of the execution, and the substitution is as
described for DELETE, INSERT, and UPDATE.

* Output variables return values based on the result of the SELECT statement.

Example 1
Assume you enter the following statement:

SELECT enp_nane, enp_sal ary
I NTO : enp_nane_var, :enp_salary_var
FROM enpl oyee WHERE enp_id = :enp_id var;

In this example, emp_id_var, emp_salary _var, and emp_name_var are PowerScript variables
defined within the scope of the script containing the SELECT statement, and emp_id_var is
an input variable and is processed as described in the DELETE example above.

Both emp_name_var and emp_salary_var are output variables that will be used to return
values from the database. The data types of emp_name _var and emp_salary var should be
the PowerScript data types that best match the data type in the database. When the data types
do not match perfectly, PowerBuilder converts them.

How big should numeric output variables be?

For numeric data, the output variable must be large enough to hold any value that may
come from the database.

Assume the value for emp_id_var is 691 as in the previous example. When the
SELECT statement executes, the database receives this command:

SELECT enp_nane, enp_sal ary FROM enpl oyee WHERE enp_id = 691;

If no errors are returned when the statement executes, data locations are bound
internally for the result fields. The datareturned into these locations is converted if
necessary, and the appropriate PowerScript variables are set to those values.

Example 2

This example assumes the default transaction object (SQLCA) has been assigned valid
values and a successful CONNECT has executed. It also assumes the data type of the emp_id
column in the employee table is CHARACTER[10]. The user enters an employee ID into the
single line edit field le_Emp and clicks the button Cb_Delete.

The script for the Clicked event in the CommandButton Cb_Deleteiis:

/1l Make sure we have a val ue.
if sle_Emp.text <> "" then
/1l Since we have a value, let's try to
/] delete it.
DELETE FROM enpl oyee
VWHERE enp_id = :sle_Enp.text;
/] Test to see if the DELETE worked.
if SQ.CA sqglcode = 0 then
/1l It seenms to have worked; |et user know.

Page 206



Using Embedded SQL

MessageBox("Del ete", &
"The del ete has been successfully "&
+" processed! ")
el se
/[l It didn't work.
MessageBox("Error", &
"The delete failed. Enployee ID "&
+"is not valid.")
end if
el se
/1 No input value. Pronpt user.
MessageBox("Error", &
"An enployee IDis required for "&
+"del ete!")
end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 3

This example assumes the default transaction object (SQLCA) has been assigned valid values
and a successful CONNECT has executed. The user wants to extract rows from the employee
table and insert them into the table named extract_employees. The extraction occurs when
the user clicks the button Cb_Extract. The boolean variable Y oungWorkersis set to TRUE or
FALSE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

i nt eger Enpl oyeeAgelLower Li mi t
i nt eger Enpl oyeeAgeUpper Li m t

/! Do they have young workers?
if (YoungWorkers = TRUE) then

/!l Yes - set the age limt in the YOUNG range.
/1 Assunme no enpl oyee is under |egal working age.
Enpl oyeeAgelLovwerLimt = 16

/1 Pick an upper limt.
Enpl oyeeAgeUpperLimt = 42
el se

/Il No - set the age limt in the OLDER range.
Enpl oyeeAgelLowerLimt = 43

/1 Pick an upper limt that includes all enpl oyees.
Enpl oyeeAgeUpper Li mt = 200
end if

I NSERT | NTO extract _enpl oyees(enp_i d, enp_nane)
SELECT enp_id, enp_nane FROM enpl oyee
WHERE enp_age >= : Enpl oyeeAgelLower Li m t
AND enp_age <= : Enpl oyeeAgeUpperLimt;

6.3.11 OLE DB Cursor statements

In embedded SQL, statements that retrieve data can involve cursors. PowerBuilder OLE DB
supports only forward, read-only cursors.

Page 207



Using Embedded SQL

Retrieval statements

Theretrieval statements that involve cursors are:
* DECLARE cursor_name CURSOR FOR ...

» OPEN cursor_name

* FETCH cursor_name INTO ...

* CLOSE cursor_name

Update statements

UPDATE ... WHERE CURRENT OF cursor_name and DELETE ... WHERE CURRENT OF
cursor_name are not supported.

See also
OLE DB Retrieval using cursors
OLE DB FETCH NEXT

6.3.12 OLE DB Retrieval using cursors

Retrieval using cursorsis conceptually similar to the singleton SELECT discussed earlier.
The main differenceis that since there can be multiple rows in aresult set, you control when
the next row is fetched into PowerScript variables.

For example, if you expect only a single row to exist in the employee table for each emp _id,
use asingleton SELECT statement. In asingleton SELECT, you specify the SELECT
statement and destination variables in one concise SQL statement:
SELECT enp_nane, enp_sal ary

I NTO : enp_nanme_var, :enp_salary_var

FROM enpl oyee WHERE enp_id = :enp_id var;

However, if the SELECT may return multiple rows, you must:
1. Declare acursor.

2. Open it (which conceptually executes the SELECT).

3. Fetch rows as needed.

4. Closethe cursor.

Declaring and opening a cur sor

Declaring a cursor istightly coupled with the OPEN statement. The DECLARE specifies the
SELECT statement to be executed, and the OPEN actually executesit.

Declaring a cursor is similar to declaring avariable. A cursor declaration is a nonexecutable
statement just like a variable declaration. The first step in declaring a cursor isto define how
the result set looks. To do this, you need a SELECT statement, and since you must refer to

Page 208



Using Embedded SQL

the result set in subsequent SQL statements, you must associate the result set with alogical
name.

Example
Assume the SingleLineEdit sle_1 contains the state code for the retrieval:

/1 Declare cursor enp_curs for enployee table
[l retrieval.
DECLARE enp_curs CURSOR FOR
SELECT enp_id, enp_name FROM EMPLOYEE
WHERE enp_state = :sle_1.text;
/'l Declare |ocal variables for retrieval.
string enp_id_var
string enp_nanme_var
/'l Execute the SELECT statenment with
/1 the current value of sle_1.text.
OPEN enp_curs;
/[l At this point, if there are no errors,
/1 the cursor is available for further
/'l processing.

Fetching rows

The PowerBuilder OLE DB interface supports FETCH statements.
See also

OLE DB FETCH NEXT

6.3.13 OLE DB FETCH NEXT

In the singleton SELECT, you specify variablesto hold values for the columns within
the selected row. The syntax of the FETCH statement is similar to the singleton SELECT
statement syntax. Values are returned INTO a specified list of variables.

Example
This exampl e continues the previous example by retrieving some data:

/Il Go get the first rowfromthe result set.
FETCH enp_curs |INTO :enp_id_var, :enp_nane_var;

If at least one row isretrieved, this FETCH places the values of the emp_id and emp_name
columns from the first row in the result set into the PowerScript variables emp_id_var and
emp_name_var. FETCH statements typically occur in aloop that processes several rows from
aresult set (onerow at atime), but thisis not the only way they are used.

What happenswhen theresult set is exhausted?

FETCH returns +100 (not found) in the SQL Code property within the referenced
transaction object. Thisis an informational return code; -1 in SQL Code indicates an
error.

Closing the cursor

The CLOSE statement terminates processing for the specified cursor. CLOSE rel eases
resources associated with the cursor, and subsequent references to that cursor are alowed
only if another OPEN is executed. Although you can have multiple cursors open at the same
time, you should close the cursors as soon as possible for efficiency reasons.

Page 209



Using Embedded SQL

6.3.14 OLE DB Database stored procedures
Retrieval and update

Y ou can use database stored procedures for:
* Retrieval only

» Update only

* Retrieval and update

Your DBMS
Not al DBM Ss support these retrieval and update options.
Using stored procedures
When you use database stored procedures in a PowerBuilder application, keep the following
points in mind:
» Manipulating stored procedures
PowerBuilder provides SQL statements that are similar to cursor statements for
mani pul ating database stored procedures.
* Retrieval and update

PowerBuilder supports retrieval, update, or a combination of retrieval and update in
database stored procedures, including procedures that do not return aresult set and those
that return aresult set.

» Transactions and stored procedures without result sets

When a procedure executes using a particular connection (transaction) and the procedure
does not return aresult set, the procedure is no longer active. No result set is pending, and
therefore you do not execute a CL OSE statement.

Seealso

OLE DB Retrieval

OLE DB Using database stored procedures in DataWindow objects

6.3.15 OLE DB Retrieval

PowerBuilder uses a construct similar to cursors to support retrieval using database stored
procedures. PowerBuilder supports four embedded SQL statements that involve database
stored procedures:

* DECLARE procedure_name PROCEDURE FOR ...
» EXECUTE procedure_name
* FETCH procedure_nameINTO ...

» CLOSE procedure_name

Page 210



Using Embedded SQL

See also

OLE DB DECLARE and EXECUTE
OLE DB EXECUTE

OLE DB FETCH

OLE DB CLOSE

6.3.16 OLE DB DECLARE and EXECUTE

PowerBuilder requires a declarative statement to identify the database stored procedure that
is being used and to specify alogical name for the procedure. The logical name is used to
reference the procedure in subsequent SQL statements.

The general syntax for declaring a procedure is:

DECLARE | ogi cal _procedure_nane PROCEDURE FOR
[ RC=] pr ocedur e_nane
{@araml = value [QUTPUT], @aran? = &
val ue2[ QUTPUT], ...}
{USI NG transacti on_object};

where logical_procedure_name can be any valid PowerScript identifier and procedure_name
isthe name of a stored procedure in the database.

The parameter references can take the form of any valid parameter string the database
accepts. PowerBuilder inspects the parameter list format only for variable substitution.

Y ou must use the reserved word OUTPUT or OUT to indicate an output parameter if you
want to get the output parameter value. If the stored procedure has areturn value and you

want to get it, use the syntax "RC=procedure_name". If the procedure has one or more result
sets, only after al the result set has been retrieved can you get the output parameter or return
value. The USING clause is required only if you are using a transaction object other than the
default transaction object (SQLCA).

Example 1

Assume a stored procedure named procl is defined on the server. To declare procl for
processing within PowerBuilder, enter:

DECLARE enp_proc PROCEDURE FOR procl;

The procedure declaration is a nonexecutabl e statement, just like a cursor declaration.
However, where cursors have an OPEN statement, procedures have an EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The EXECUTE refersto
the logical procedure name, in this example emp_proc:

EXECUTE enp_pr oc;
Example 2
This example declares a stored procedure with two input and one output parameters:

DECLARE sp_durati on PROCEDURE FOR pr_date_diff_prd_ken

@ar_date_1 = :ad_start,
@ar_date_2 = :ad_end,
@tn_diff_prd = :ls_durati on OQUTPUT;

Page 211



Using Embedded SQL

If the stored procedure contains result sets, you must fetch the result setsfirst. If the stored
procedure has areturn value and you want to obtain it, use the format RC=procedure_name:
DECLARE sp_durati on PROCEDURE FOR&
RC=pr _date_diff_prd_ken
@ar_date_1 = :ad_start,
@ar_date_2 = :ad_end,
@tn_diff_prd = :ls_durati on OQUTPUT;

See also
OLE DB EXECUTE

6.3.17 OLE DB FETCH

To access rows returned in aresult set, use the FETCH statement the same way you use it for
cursors. The FETCH statement can be executed after any successful EXECUTE statement for
aprocedure that returns aresult set.

Example

FETCH enp_proc | NTO : enp_nane_var;

Using FETCH after EXECUTE

Following an EXECUTE statement for a procedure, you can use the FETCH
statement only to access values produced by the SELECT statement in the database
stored procedure.

Since PowerBuilder cannot determine at compile time what result set will be returned
when a database stored procedure executes, you must code FETCH statements so that
the stored procedure exactly matches the format of the result set during execution.
Assume you coded the second FETCH statement in the example above as.

FETCH enp_proc |INTO :varl, :var2, :var3;

The statement compiles without errors. However, you will get an execution error
indicating that the number of columnsin the FETCH statement does not match the
number of columnsin the result set.

See also
OLE DB EXECUTE
OLE DB FETCH NEXT

6.3.18 OLE DB CLOSE

If a database stored procedure returns a result set, you must close the stored procedure when
processing is complete. The procedure remains open until you close it, execute a COMMIT
or ROLLBACK, or end the database connection.

Do you havetoretrieveall the rows?

Y ou do not haveto retrieve all rowsin aresult set to close arequest or procedure.

Example

Page 212



Using Embedded SQL

Closing a procedure looks the same as closing a cursor:

CLOSE enp_pr oc;

6.3.19 OLE DB EXECUTE

Database stored procedures that perform only updates and do not return aresult set are
handled in much the same way as procedures that return aresult set. The only differenceis
that after the EXECUTE procedure_name statement executes, no result set is pending, so a
CLOSE statement is not required.

Using the SQL Code property

If aspecific procedure can never return aresult set, only the EXECUTE statement is
required. If aprocedure may or may not return aresult set, you can test the SQL Code
property of the referenced transaction object for +100 (the code for NOT FOUND) after the
EXECUTE.

The possible values for SQL Code after an EXECUTE are:

Table 6.4:
Return  Means
code
0 The EXECUTE was successful and aresult set is pending. Regardless of the
number of FETCH statements executed, the procedure must be explicitly closed
with a CLOSE statement.

This codeisreturned even if the result set is empty.
+100 Fetched row not found.
-1 The EXECUTE was not successful and no result set was returned.

Example 1

This example illustrates how to execute a stored procedure that does not return aresult set.
It assumes the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed.

/1 good_enpl oyee is a database stored procedure.

/1 Declare the procedure.

DECLARE good_enp_proc PROCEDURE
FOR good_enpl oyee;

/| Execute it.

EXECUTE good_enp_pr oc;

[l Test return code. Allow for +100 since you

/! do not expect a result set.

if SQLCA sqglcode = -1 then

I/l lssue an error nessage since it failed.
MessageBox(" Stored Procedure Error!", &
SQLCA. sql errtext)

end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Page 213



Using Embedded SQL

Example 2

This example illustrates how to pass parameters to a database stored procedure. It assumes
the default transaction object (SQLCA) has been assigned valid values and a successful
CONNECT has been executed. Emp_id var was set to 691 elsewhere.

I
I

get _enpl oyee is a database stored procedure.
Decl are the procedure.

DECLARE get _enp_proc PROCEDURE FOR

I

get _enpl oyee @np_id_parm = :enp_id_var;
Decl are a destination variable for enp_nane.

string enp_name_var

I
I

Execute the stored procedure using the
current value for enp_id_var.

EXECUTE get _enp_pr oc;

I
if
I
I

I

Test return code to see if it worked.

SQLCA. sgl code = 0 then

Since we got a row, fetch it and display it.
FETCH get _enp_proc | NTO : enp_nane_var ;

Di spl ay the enpl oyee nane.

MessageBox(" Got ny enpl oyee! ", enp_name_var)
You are all done, so close the procedure.
CLCSE Get _enp_proc;

end if

6.3.20 OLE DB Using database stored procedures in DataWindow objects

Y ou can use database stored procedures as a data source for DatawWindow objects. The
following rules apply:

6.

Result set definition

Y ou must define what the result set looks like in the DataWindow painter. PowerBuilder
cannot determine this information from the stored procedure definition in the database.
Stored procedure arguments

The Datawindow painter provides the arguments for stored procedures only if the driver
you are using to connect gives PowerBuilder the required information. If the arguments for
the database stored procedure are not provided, you must define them.

DataWindow updates

Updates are not allowed for stored procedures in a DataWindow object. Only retrieval is
allowed.

4 Using Embedded SQL with ADO.NET

When you use the ADO.NET interface to connect to a database, you can use embedded SQL
in your scripts.

6.4.1 ADO.NET DECLARE and EXECUTE

PowerBuilder requires a declarative statement to identify the database stored procedure that is
being used and alogical name that can be referenced in subsequent SQL statements.

The general syntax for declaring a procedureis:

Page 214



Using Embedded SQL

DECLARE | ogi cal _procedure_nane PROCEDURE FOR
procedur e_namne
@ar aml = val uel, @Paran = val ue2 ,
@ar an8 = val ue3 OUTPUT,
{USI NG transaction_object} ;

where logical_procedure_name can be any valid PowerScript data identifier and
procedure_name is the name of the stored procedure in the database.

The parameter references can take the form of any valid parameter string that ADO.NET
accepts. PowerBuilder does not inspect the parameter list format except for purposes of
variable substitution. Y ou must use the reserved word OUTPUT to indicate an output
parameter. The USING clauseisrequired only if you are using a transaction object other than
the default transaction object (SQLCA).

Example 1
Assume a stored procedure procl is defined as:

CREATE PROCEDURE procl AS
SELECT enp_nane FROM enpl oyee

To declare that procedure for processing within PowerBuilder, enter:

DECLARE enp_proc PROCEDURE FOR procl;

Note that this declaration is a nonexecutable statement, just like a cursor declaration. Where
cursors have an OPEN statement, procedures have an EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The EXECUTE refersto
the logical procedure name:

EXECUTE enp_pr oc;

Example 2

To declare a procedure with input and output parameters, enter:

DECLARE sp_durati on PROCEDURE FOR pr_date_diff_prd_ken
@ar _date 1 = :ad _start,

@ar _date 2 = :ad_end,
@tn_diff_prd = :ls_durati on OUTPUT;

6.5 Using Embedded SQL with SAP Adaptive Server Enterprise
About this chapter

When you create scripts for a PowerBuilder application, you can use embedded SQL
statements in the script to perform operations on the database. The features supported when
you use embedded SQL depend on the DBMS to which your application connects.

Overview

When you use the SAP Adaptive Server Enterprise interface, you can use embedded SQL
in your scripts. Y ou can embed the following types of SQL statements in scripts and user-
defined functions:

 Transaction management statements

¢ Non-cursor statements

Page 215



Using Embedded SQL

* Cursor statements
» Database stored procedures

Client Library API

The SAP Adaptive Server Enterprise database interface uses the Client Library (CT-Lib)
application programming interface (API) to interact with the database.

When you use embedded SQL, PowerBuilder makes the required callsto the API. Therefore,
you do not need to know anything about CT-Lib to use embedded SQL in PowerBuilder.

See also
Using Adaptive Server Enterprise
SAP Adaptive Server Enterprise SQL functions

SAP Adaptive Server Enterprise Transaction management statements

SAP Adaptive Server Enterprise Non-cursor statements

SAP Adaptive Server Enterprise Cursor statements
SAP Adaptive Server Enterprise Database stored procedures

SAP Adaptive Server Enterprise Name qualification

6.5.1 SAP Adaptive Server Enterprise Name qualification

Since PowerBuilder does not inspect all SQL statement syntax, you can qualify Adaptive
Server Enterprise catalog entities as necessary.

For example, the following qualifications are al acceptable:
¢ emp_name

* employee.emp_name

 dbo.employee.emp_name

» emp_db.dbo.employee.emp_name

6.5.2 SAP Adaptive Server Enterprise SQL functions

Y ou can use any function that Adaptive Server Enterprise supports (such as aggregate or
mathematical functions) in SQL statements.

This example shows how to use the Adaptive Server Enterprise function UPPER in a
SELECT statement:

SELECT UPPER( enp_nane)
I NTO : enp_namne_var
FROM enpl oyee;
Calling Client Library functions

While PowerBuilder provides access to a large percentage of the features within Adaptive
Server Enterprise, in some cases you may decide that you need to call one or more Client

Page 216



Using Embedded SQL

Library (CT-Lib) functions directly for a particular application. PowerBuilder provides
access to any Windows DLL by using external function declarations.

CT-Lib callsrequire a pointer to one of the following structures as their first parameter:

+ CS_CONNECTION

» CS _CONTEXT

« CS_ COMMAND

Y ou can obtain the current CS_CONNECTION pointer by using the PowerScript DBHandle
function.

Using DBHandleto obtain the CS_ CONNECTION pointer

DBHandle takes a transaction object as a parameter and returns along variable, which is
the CS_CONNECTION pointer that PowerBuilder uses internally to communicate with the
database. Y ou can pass this value as one of the parameters to your external function.

This example shows how to use DBHandle. Assume a successful connection has occurred
using the default transaction object (SQLCA):

// Define a variable to hold our DB handl e.
| ong SQ._Ser ver Handl e

/! Go get the handl e.
SQ.Ser ver Handl e = SQLCA. DBHandl e( )

/1 Now that you have the CS_CONNECTI ON poi nter,
[/ call the DLL function.
MyDLLFuncti on( SQ.Server Handl e, parnil, parn2, ... )

In your DLL, cast the incoming long value into a pointer to aCS_CONNECTION structure:

MyDLLFuncti on( | ong 1SQ Server Handl e,
parml_type par ni,
parn2_type Parn2, ... )

{

CS_CONNECTI ON * pConnect ;

pConnect = (CS_CONNECTI ON *) 1SQ.Server Handl e;
/1 CT-LIB functions can be called using pConnect.

}
Obtainingthe CS_CONTEXT pointer

Within your external function, you can obtain the CS_CONTEXT pointer with the following
function call:

CS_RETCODE RC,
CS_CONNECTI ON * PConnect ;
CS_I NT out | en;
CS_CONTEXT * pCont ext ;

rc = ct_con_props (pConnect, CS_GET, CS_PARENT_HANDLE,
(CS_VO D *) &pContext, CS_UNUSED,
&out | en) ;
Allocating a new command pointer
Likewise, you can alocate a new command pointer with the following code:

CS_COVIVAND * pConmand;

Page 217



Using Embedded SQL

rc = ct_cnd_all oc(pConnect, &pConmand) ;

6.5.3 SAP Adaptive Server Enterprise Transaction management statements

Y ou use the following transaction management statements with transaction objects to manage
connections and transactions for Adaptive Server Enterprise databases:

 CONNECT

« COMMIT

» DISCONNECT

* ROLLBACK

Transaction management statementsin triggers

Y ou should not use transaction statementsin triggers. A trigger is a special kind of stored
procedure that takes effect when you issue a statement such as INSERT, DELETE, or
UPDATE on a specified table or column. Triggers can be used to enforce referential integrity.

For example, assume that a certain condition within atrigger is not met and you want to
execute a ROLLBACK. Instead of coding the ROLLBACK directly in the trigger, you should
use RAISERROR and test for that particular return code in the DBM S-specific return code
(SQLDBCode) property within the referenced transaction object.

See also

SAP Adaptive Server Enterprise Using CONNECT, COMMIT, DISCONNECT, and
ROLLBACK

6.5.4 SAP Adaptive Server Enterprise Using CONNECT, COMMIT,
DISCONNECT, and ROLLBACK

The following table lists each transaction management statement and describes how it works
when you use the SAP Adaptive Server Enterprise interface to connect to a database:

Table6.5:

Statement Description

CONNECT Establishes the database connection. After you assign values to the required
properties of the transaction object, you can execute a CONNECT. After
the CONNECT completes successfully, PowerBuilder automatically starts a
transaction. Thisisthe start of alogical unit of work.

If AutoCommit istrue, PowerBuilder does not start a transaction.

COMMIT | COMMIT terminates the logical unit of work, guarantees that all changes
made to the database since the beginning of the current unit of work become
permanent, and starts a new logical unit of work.

If AutoCommit isfalse (the default), a COMMIT TRANSACTION executes,
then aBEGIN TRANSACTION executes to start a new logical unit of work.

If AutoCommit istrue, the COMMIT isissued but has no effect because all
previous database changes were already automatically committed.

Page 218



Using Embedded SQL

Statement Description

DISCONNEXEFminates a successful connection. DISCONNECT automatically executes
a COMMIT to guarantee that al changes made to the database since the
beginning of the current unit of work are committed.

If AutoCommit isfalse, aCOMMIT TRANSACTION executes automatically
to guarantee that all changes made to the database since the beginning of the
current logical unit of work are committed.

ROLLBACIROLLBACK terminates alogical unit of work, undoes all changes made to the
database since the beginning of the logical unit of work, and starts a new logical
unit of work.

If AutoCommit isfalse, aROLLBACK TRANSACTION executes, then a
BEGIN TRANSACTION executes to start anew logical unit of work.

If AutoCommit istrue, aROLLBACK TRAN executes but has no effect
because all previous database changes were already committed.

See also
SAP Adaptive Server Enterprise Performance and locking

SAP Adaptive Server Enterprise Using AutoCommit

6.5.5 SAP Adaptive Server Enterprise Using AutoCommit

The setting of the AutoCommit property of the transaction object determines whether
PowerBuilder issues SQL statements inside or outside the scope of atransaction. When
AutoCommit is set to false or O (the default), SQL statements are issued inside the scope of
atransaction. When you set AutoCommit to true or 1, SQL statements are issued outside the
scope of atransaction.

Adaptive Server Enterprise requires you to execute Data Definition Language (DDL)
statements outside the scope of atransaction unless you set the database option "ddl in tran”
to true. If you execute a database stored procedure that contains DDL statements within the
scope of atransaction, an error message is returned and the DDL statements are rejected.
When you use the transaction object to execute a database stored procedure that creates a
temporary table, you do not want to associate the connection with a transaction.

To execute Adaptive Server Enterprise stored procedures containing DDL statements, you
must either set "ddl in tran” to true, or set AutoCommit to true so PowerBuilder issues the
statements outside the scope of atransaction. However, if AutoCommit is set to true, you
cannot issue a ROLLBACK. Therefore, you should set AutoCommit back to false (the
default) immediately after completing the DDL operation.

When you change the value of AutoCommit from false to true, PowerBuilder issues a
COMMIT statement by default.

See also
SAP Adaptive Server Enterprise Performance and locking

SAP Adaptive Server Enterprise Using CONNECT, COMMIT, DISCONNECT, and
ROLLBACK

Page 219



Using Embedded SQL

6.5.6 SAP Adaptive Server Enterprise Performance and locking

An important consideration when designing a database application is deciding when
CONNECT and COMMIT statements should occur to maximize performance and limit
locking and resource use. A CONNECT takes a certain amount of time and can tie up
resources during the life of the connection. If thistime is significant, then limiting the number
of CONNECT statementsis desirable.

In addition, after a connection is established, SQL statements can cause locks to be placed
on database entities. The more locks at a given moment in time, the more likely it isthat the
locks will hold up another transaction.

Rules

No set of rulesfor designing a database application istotally comprehensive. However, when
you design a PowerBuilder application, you should do the following:

 Long-running connections

Determine whether you can afford to have long-running connections. If not, your
application should connect to the database only when absolutely necessary. After all the
work for that connection is complete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be issued as often

as possible to guarantee that all changes do in fact occur. More importantly, COMMITs
should be issued to release any locks that may have been placed on database entitiesas a
result of the statements executed using the connection.

» SetTrans or SetTransObject function

Determine whether you want to use default DatawWindow transaction processing (the
SetTrans function) or control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have many short-
lived transactions, use the default DataWindow transaction processing. If you want to keep
connections open and issue periodic COMMITSs, use the SetTransObject function and
control the transaction yourself.

| solation feature

SAP Adaptive Server Enterprise databases use the isolation feature to support assorted
database lock options. In PowerBuilder, you can use the Lock property of the transaction
object to set the isolation level when you connect to the database.

The following example shows how to set the Lock property to Read uncommitted:
Example 1

This script uses embedded SQL to connect to a database and insert arow in the
ORDER_HEADER table and arow in the ORDER_ITEM table. Depending on the success of
the statements in the script, the script executes either a COMMIT or aROLLBACK.

/1 Set the SQ.CA connection properties.
SQ.CA. DBM5 = " SYC'

SQ.CA. server nane = " SERVER24"

SQLCA. dat abase = " ORDERS"

SQ.CA. logid = "JPL"

SQLCA. | ogpass = " TREESTUWP"

Page 220



Using Embedded SQL

/1 Connect to the database. AutoConmit is set to
/1 Fal se by default.
CONNECT USI NG SQLCA;
/1 Insert a rowinto the ORDER HEADER t abl e.
/1l A ROLLBACK is required only if the first row
/'l was inserted successfully.
I NSERT | NTO ORDER_HEADER ( ORDER | D, CUSTOVER | D)
VALUES ( 7891, 129 );
/] Test return code for ORDER _HEADER i nserti on.
if SQLCA sqglcode = 0 then
/1 Since the ORDER HEADER is inserted,
[/l try to insert ORDER | TEM
I NSERT | NTO ORDER | TEM ORDER | D, | TEM NBR,
PART_NBR, QrY)
VALUES ( 7891, 1, '991PLS', 456 );
/] Test return code for ORDER | TEM i nserti on.
if SQLCA. sgl code = -1 then
/1l If insert failed, roll back insertion of
/| ORDER_HEADER.
ROLLBACK USI NG SQLCA;
end if
end if
/1l Commit changes and di sconnect fromthe database.
DI SCONNECT USI NG SQLCA;

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 2

This example uses the scripts for the Open and Close events in awindow and the Clicked
event in a CommandButton to illustrate how you can manage transactions in a Datawindow
control. Assume that the window contains a Datawindow control dw_1 and that the user
entersdatain dw_1 and then clicks the Cb_Update button to send the data to the database.

Since this script uses SetTransObject to connect to the database, the programmer is
responsible for managing the transaction.

The window OPEN event script:

/'l Set the transacti on object properties
/'l and connect to the database.

/'l Set the SQLCA connection properties.
SQLCA. DBMs = " SYC

SQLCA. servernanme = " SERVER24"

SQLCA. dat abase = " ORDERS"

SQ.CA.logid = "JPL"

SQLCA. | ogpass = " TREESTUMP"

/'l Connect to the database.

CONNECT USI NG SQLCA;

/1 Tell the DataW ndow whi ch transaction object
/] to use.

Set TransOoj ect ( dw_1, SQ.CA )

The CommandButton CLICKED event script:

/| Decl are ReturnVal ue an integer.

i nt eger ReturnVal ue

Ret urnVal ue = Update( dw_1 )

/] Test to see if updates were successful.

Page 221



Using Embedded SQL

if ReturnValue = -1 then
/1 Updates were not successful. Since we used
/1 SetTransObject, roll back any changes made
/1 to the database.
ROLLBACK USI NG SQ.CA;
el se
/1 Updates were successful. Since we used
/1 SetTransObj ect, comit any changes nade
/1 to the database.
COW T USI NG SQLCA;
end if

The window CLOSE event script:

// Disconnect fromthe database.
DI SCONNECT USI NG SQLCA;

See also

SAP Adaptive Server Enterprise Using CONNECT, COMMIT, DISCONNECT, and
ROLLBACK

6.5.7 SAP Adaptive Server Enterprise Non-cursor statements
The statements that do not involve cursors or procedures are:

» DELETE (SAP Adaptive Server Enterprise DELETE, INSERT, and UPDATE)

* INSERT (SAP Adaptive Server Enterprise DELETE, INSERT, and UPDATE)

o SELECT (singleton) (SAP Adaptive Server Enterprise SELECT)

» UPDATE (SAP Adaptive Server Enterprise DELETE, INSERT, and UPDATE)

6.5.8 SAP Adaptive Server Enterprise DELETE, INSERT, and UPDATE

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE statements the same
way. PowerBuilder inspects them for any PowerScript data variable references and replaces
all such references with a constant that conforms to Adaptive Server Enterprise rules for the
datatype.

Example
Assume you enter the following statement:
DELETE FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var is a PowerScript data variable with the data type of integer that
has been defined within the scope of the script that contains the DELETE statement. Before
the DELETE statement is executed, emp_id_var isassigned a value (say 691) so that when
the DELETE statement executes, the database receives the following statement:

DELETE FROM enpl oyee WHERE enp_id = 691;

When isthis substitution technique used?

This variable substitution technique is used for all PowerScript variable types. When you use
embedded SQL, precede all PowerScript variableswith acolon ( :).

Page 222



Using Embedded SQL

See also
SAP Adaptive Server Enterprise SELECT

6.5.9 SAP Adaptive Server Enterprise SELECT
The SELECT statement contains input variables and output variables.

* Input variables are passed to the database as part of the execution and the substitution as
described above for DELETE, INSERT, and UPDATE.

» Output variables are used to return values based on the result of the SELECT statement.

Example 1
Assume you enter the following statement:

SELECT enp_nane, enp_sal ary
I NTO : enp_nane_var, :enp_salary_var
FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var, emp_salary _var, and emp_name_var are variables defined
within the scope of the script that contains the SELECT statement, and emp_id_var is
processed as described in the DELETE example above.

Both emp_name var and emp_salary var are output variables that will be used to return
values from the database. The data types of emp_name_var and emp_salary var should be
the PowerScript data types that best match the Adaptive Server Enterprise data type. When
the data types do not match perfectly, PowerBuilder converts them.

How big should numeric output variables be?

For numeric data, the output variable must be large enough to hold any value that may
come from the database.

Assume the value for emp_id_var is 691 asin the previous example. When the SELECT
statement executes, the database receives the following statement:

SELECT enp_nane, enp_sal ary
FROM enpl oyee WHERE enp_id = 691;

If the statement executes with no errors, data locations for the result fields are bound
internally. The data returned into these locations is then converted as necessary and the
appropriate PowerScript data variables are set to those values.

Example 2

This example assumes the default transaction object (SQLCA) has been assigned valid
values and a successful CONNECT has executed. It also assumes the data type of the emp _id
column in the employee table is CHARACTER[10].

The user enters an employee ID into the single line edit field sle_Emp and clicks the button
Cb_Delete to delete the employee.

The script for the Clicked event in the CommandButton Cb_Deleteis:

// Make sure we have a val ue.

Page 223



Using Embedded SQL

if sle_Enp.text <> "" then
[/l Since we have a value, try to delete it.
DELETE FROM enpl oyee
VWHERE enp_id = :sle_Enp.text;
[/l Test to see if the DELETE worked.
if SQ.CA sqgl code = 0 then
/Il It seens to have worked, |et user know.
MessageBox( "Del ete", &
"The del ete has been successfully "&
+" processed!")
COW T;
el se
[/t didn't work.
MessageBox( "Error", &
"The delete failed. Enployee IDis not "&
+"'valid.")
ROLLBACK;
end if
el se
/1 No input value. Pronpt user.
MessageBox( "Error", &
"An enployee IDis required for "&
+"delete!" )
end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 3

This example assumes the default transaction object (SQLCA) has been assigned valid values
and a successful CONNECT has executed. The user wants to extract rows from the employee
table and insert them into the table named extract_employees. The extraction occurs when
the user clicks the button Cb_Extract. The boolean variable Y oungWorkersis set to TRUE or
FALSE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

i nt eger Enpl oyeeAgelLower Li mi t
i nt eger Enpl oyeeAgeUpper Li mi t

/! Do they have young workers?
if ( YoungWorkers = TRUE ) then

/Il Yes - set the age limt in the YOUNG range.
/1 Assune no enpl oyee is under |egal working age.
Enpl oyeeAgelLowerLinit = 16

/1 Pick an upper limt.
Enpl oyeeAgeUpperLinmt = 42
el se

/Il No - set the age limit in the OLDER range.
Enpl oyeeAgelLower Linmit = 43

/1 Pick an upper limt that includes all
/'l enpl oyees.

Enpl oyeeAgeUpperLimit = 200
end if

Page 224



Using Embedded SQL

I NSERT | NTO extract _enpl oyee(enp_i d, enp_nane)
SELECT enp_id, enp_nane FROM enpl oyee
VWHERE enp_age >= : Enpl oyeeAgelLower Li mi t
AND enp_age <= : Enpl oyeeAgeUpperLinit;

/1 1f there are no errors, comit the changes.
if SQLCA sqglcode = 0 then

COW T,
el se

/[l If there are errors, roll back the changes and
/1 tell the user.

ROLLBACK;

MessageBox( "I nsert Failed", SQLCA. sqlerrtext)
end if

See also
SAP Adaptive Server Enterprise DELETE, INSERT, and UPDATE

6.5.10 SAP Adaptive Server Enterprise Cursor statements

In embedded SQL, statements that retrieve data and statements that update data can both
involve cursors.

Retrieval statements

Theretrieval statements that involve cursors are:
* DECLARE cursor_name CURSOR FOR ...

* OPEN cursor_name

* FETCH cursor_name INTO ...

* CLOSE cursor_name

Update statements

The update statements that involve cursors are:
« UPDATE ... WHERE CURRENT OF cursor_name
 DELETE ... WHERE CURRENT OF cursor_name

Setting Cur sor Update to use updatable cursors

To usethe UPDATE ... WHERE CURRENT OF or DELETE ... WHERE CURRENT OF
statements, you must set the CursorUpdate DBParm parameter to 1 before declaring the
cursor. (By default, CursorUpdateis set to 0.)

For example:

SQLCA. DBPar m = " Cur sor Update = 1"

Y ou can set the CursorUpdate parameter at any time before or after connecting to the
database. Y ou can also change its setting at any time.

See also

Page 225



Using Embedded SQL

SAP Adaptive Server Enterprise Retrieval Using Cursors

SAP Adaptive Server Enterprise Closing the Cursor

6.5.11 SAP Adaptive Server Enterprise Retrieval Using Cursors

Retrieval using cursorsis conceptually similar to retrieval in the singleton SELECT. The
main difference is that since there can be multiple rowsin aresult set, you control when the
next row is fetched into the PowerScript data variables.

If you expect only asingle row to exist in the employee table with the specified emp_id,
use the singleton SELECT. In asingleton SELECT, you specify the SELECT statement and
destination variables in one concise SQL statement:
SELECT enp_nane, enp_sal ary

I NTO : enp_nane_var, :enp_salary_var

FROM enpl oyee WHERE enp_id = :enp_id_var;

However, when a SELECT may return multiple rows, you must:
1. Declare acursor.

2. Open it (which conceptually executes the SELECT).

3. Fetch rows as needed.

4. Closethe cursor.

Declaring and opening a cur sor

Declaring a cursor is tightly coupled with the OPEN statement. The DECLARE specifiesthe
SELECT statement to be executed, and the OPEN actually executes it.

Declaring a cursor is similar to declaring a variable; a cursor is a nonexecutable statement
just like a variable declaration. The first step in declaring a cursor is to define how the result
set looks. To do this, you need a SELECT statement. Since you must refer to the result set in
subsequent SQL statements, you must associate the result set with alogical name.

Multiple cursors

The CT-Lib API lets you declare and open multiple cursors without having to open
additional database connections.

Example
Assume the SingleLineEdit sle_1 contains the state code for the retrieval:

[/l Declare cursor enp_curs for enployee table retrieval.
DECLARE enp_curs CURSOR FOR

SELECT enp_id, enp_name FROM EMPLOYEE

WHERE enp_state = :sle_1.text;

[/l Declare |ocal variables for retrieval.
string enp_id_var
string enp_name_var

/] Execute the SELECT statenment with

Page 226



Using Embedded SQL

/1 the current value of sle_1.text.
OPEN enp_curs;

// At this point, if there are no errors,
/1 the cursor is available for further
/'l processing.

Fetching rows

In the singleton SELECT, you specify variablesto hold the values for the columns within the
selected row. The FETCH statement syntax is similar to the syntax of the singleton SELECT.
Values are returned INTO a specified list of variables.

This exampl e continues the previous example by retrieving some data:

/Il Go get the first rowfromthe result set.
FETCH enp_curs | NTO : enp_i d_var, :enp_nhane_var;

If at least one row can be retrieved, this FETCH places the values of the emp_id and
emp_name columns from the first row in the result set into the PowerScript data variables
emp_id_var and emp_name_var. Executing another FETCH statement will place the
variables from the next row into specified variables.

FETCH statements typically occur in aloop that processes several rows from aresult set (one
row at atime): fetch the row, process the variables, and then fetch the next row.

What happenswhen theresult set is exhausted?

FETCH returns +100 (not found) in the SQL Code property within the referenced
transaction object. Thisis an informational return code; -1 in SQL Code indicates an
error.

Example

This cursor example illustrates how you can loop through aresult set. Assume the default
transaction object (SQLCA) has been assigned valid values and a successful CONNECT has
been executed.

The statements retrieve rows from the employee table and then display a message box with
the employee name in each row that is found.

/1 Declare the enp_curs.

DECLARE enp_curs CURSOR FOR
SELECT enp_name FROM EMPLOYEE
WHERE enp_state = :sle_1.text;

/'l Declare a destination variable for enployee
/1 names.
string enp_nane_var

/| Execute the SELECT statement with the
/1 current value of sle_1.text.
OPEN enp_curs;

[/ Fetch the first rowfromthe result set.
FETCH enp_curs | NTO : enp_nane_var;

/1 Loop through result set until exhausted.
DO WHI LE SQLCA. sqgl code = 0

Page 227



Using Embedded SQL

/1 Pop up a nmessage box with the enpl oyee nane.
MessageBox (" Found an enpl oyee! ", enp_nane_var)

[/ Fetch the next row fromthe result set.
FETCH enp_curs | NTO : enp_nane_var;
LOOP

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

6.5.12 SAP Adaptive Server Enterprise Closing the Cursor

The CLOSE statement terminates processing for the specified cursor. CLOSE releases
resources associated with the cursor, and subsequent references to that cursor are alowed
only if another OPEN is executed. Although you can have multiple cursors open at the same
time, you should close the cursors as soon as possible for efficiency reasons.

Unlike the DB-Library interface to SQL Server, the CT-Library interface lets you issue other
commands while a cursor is open.

Example

In this example, the additional request for the employee name (shown in bold) isissued
while the cursor is open. Under the DB-Library interface, this request would have failed and
returned a Results Pending message. Under the CT-Library interface, it succeeds.

string dnane
| ong dept head
string f name
string | name

SQ.CA. dbnms = " SYC'

SQLCA. dat abase = "nectest"
SQ.CA logid = "m kec"

SQ.CA. | ogpass = "mi kecx"
SQ.CA. servernane = "SYB1001"
SQLCA. aut oconmmi t "fal se"

CONNECT USI NG SQLCA;
if SQLCA. sqgl code <> 0 then

MessageBox (" Connect Error", SQLCA. sql errtext)
end if

DECLARE dept_curs CURSOR FOR SELECT dept _nane,
dept _head_i d FROM depart nent ;
OPEN dept _curs;
if SQLCA. sqgl code < O then
MessageBox(" Open Cursor", SQLCA. sqgl errtext)
end if

DO WHI LE SQLCA. sqgl code = 0
FETCH dept _curs | NTO : dnane, :depthead;
if SQ.CA sqglcode < 0 then
MessageBox("Fetch Error", SQLCA. sql errtext)
el seif SQLCA. sqgl code = 0 then
SELECT enp_f nanme, enp_| name | NTO
: fnane, : | nane FROM enpl oyee
WHERE enp_id = :dept head;
if SQLCA sqgl code <> 0 then

Page 228



Using Embedded SQL

MessageBox(" Si ngl eton Select", &
SQLCA. sql errtext)
end if
end if
LOOP

CLCSE dept _curs;
if SQLCA. sqgl code <> 0 then

MessageBox(" Cl ose Cursor", SQ.CA. sqlerrtext)
end if

See also
SAP Adaptive Server Enterprise SELECT

6.5.13 SAP Adaptive Server Enterprise Database stored procedures

One of the most significant features of SAP Adaptive Server Enterprise is database stored
procedures. Y ou can use database stored procedures for:

* Retrieval only
» Update only
» Update and retrieval

PowerBuilder supports al these usesin embedded SQL.
Using AutoCommit with database stored procedures

The setting of the AutoCommit property of the transaction object determines whether
PowerBuilder issues SQL statements inside or outside the scope of atransaction. When
AutoCommit is set to false or O (the default), SQL statements are issued inside the scope of
atransaction. When you set AutoCommit to true or 1, SQL statements are issued outside the
scope of atransaction.

Adaptive Server Enterprise requires you to execute Data Definition Language (DDL)
statements outside the scope of atransaction unless you set the database option "ddl in tran™
to true. If you execute a database stored procedure that contains DDL statements within the
scope of atransaction, an error message is returned and the DDL statements are rejected.
When you use the transaction object to execute a database stored procedure that creates a
temporary table, you do not want to associate the connection with a transaction.

To execute Adaptive Server Enterprise stored procedures containing DDL statements, you
must either set "ddl in tran” to true, or set AutoCommit to true so PowerBuilder issues the
statements outside the scope of atransaction. However, if AutoCommit is set to true, you
cannot issue a ROLLBACK. Therefore, you should set AutoCommit back to false (the
default) immediately after completing the DDL operation.

When you change the value of AutoCommit from false to true, PowerBuilder issues a
COMMIT statement by default.

Using transaction statementsin database stored procedures

Transaction statements in database stored procedures are not honored when the stored
procedure is executing within the scope of atransaction. For example, aROLLBACK
statement will not be honored if the following are all true:

Page 229



Using Embedded SQL

» The AutoCommit property is FALSE (process transactions normally) when the transaction
is connected.

» The database stored procedure executes using a transaction.
» The procedure contains a ROLLBACK statement.

Y ou should use alternative means to execute the ROLLBACK. For example, you can use
return values as described in the information about triggers in Transaction management
statements (SAP Adaptive Server Enterprise Transaction management statements).

See also

SAP Adaptive Server Enterprise Retrieval

SAP Adaptive Server Enterprise Temporary tables

SAP Adaptive Server Enterprise Update

SAP Adaptive Server Enterprise Return values and output parameters

SAP Adaptive Server Enterprise System stored procedures

SAP Adaptive Server Enterprise Using database stored procedures in DataWindow objects

6.5.14 SAP Adaptive Server Enterprise Retrieval

PowerBuilder uses a construct that is very similar to cursors to support retrieval using
database stored procedures. In the PowerBuilder-supported embedded SQL, there are four
commands that involve database stored procedures:

* DECLARE procedure_name PROCEDURE FOR ...
» EXECUTE procedure_name

* FETCH procedure nameINTO ...

* CLOSE procedure_name

Seealso

SAP Adaptive Server Enterprise DECLARE and EXECUTE
SAP Adaptive Server Enterprise FETCH

SAP Adaptive Server Enterprise CLOSE

6.5.15 SAP Adaptive Server Enterprise DECLARE and EXECUTE

PowerBuilder requires a declarative statement to identify the database stored procedure that is
being used and alogical name that can be referenced in subsequent SQL statements.

The general syntax for declaring a procedureis:

DECLARE | ogi cal _procedure_nane PROCEDURE FOR
{@v =} SQL_Server_procedure_nane
@ar aml = val uel, @Paran = val ue2 ,
{USI NG transaction_object} ;

Page 230



Using Embedded SQL

where logical_procedure_name can be any valid PowerScript data identifier,
SQL_Server _procedure name is the name of the stored procedure in the database, and @rv is
an optional return value.

The parameter references can take the form of any valid parameter string that Adaptive
Server Enterprise accepts. PowerBuilder does not inspect the parameter list format except
for purposes of variable substitution. The USING clause is required only if you are using a
transaction object other than the default transaction object (SQLCA).

Example
Assume a stored procedure procl is defined as:

CREATE PROCEDURE procl AS
SELECT enp_nane FROM enpl oyee

To declare that procedure for processing within PowerBuilder, enter:
DECLARE enp_proc PROCEDURE FOR procl;

Note that this declaration is a nonexecutable statement, just like a cursor declaration. Where
cursors have an OPEN statement, procedures have an EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The EXECUTE refersto
the logical procedure name:

EXECUTE enp_pr oc;

6.5.16 SAP Adaptive Server Enterprise FETCH

To access rows returned in aresult set, you use the FETCH statement the same way you use
it for cursors. The FETCH statement can be executed after any EXECUTE statement that
refers to a procedure that returns aresult set.

For example:

FETCH enp_proc | NTO : enp_nane_var;

Note

Y ou can use this FETCH statement only to access values produced with a SELECT
statement in a database stored procedure. Y ou cannot use the FETCH statement to
access computed rows.

Example 1

Database stored procedures can return multiple result sets. Assume you define a database
stored procedure proc2 as:
CREATE PROCEDURE proc2 AS

SELECT enp_nane FROM enpl oyee

SELECT part_name FROM parts

PowerBuilder provides access to both result sets:

/1 Declare the procedure.
DECLARE enp_proc2 PROCEDURE FOR proc?2;

[/ Declare some variables to hold results.
string enp_nane_var

Page 231



Using Embedded SQL

string part _nanme_var

/1 Execute the stored procedure.
EXECUTE enp_proc2;

/1 Loop through all rows in the first result
Il set.
DO WHI LE SQLCA. sqgl code = 0

[/ Fetch the next row fromthe first result set.
FETCH enp_proc2 | NTO : enp_namne_var;
LOOP

[/l At this point we have exhausted the first
[/l result set. After this occurs,
/! PowerBuil der notes that there is another
/1 result set and internally shifts result sets.
[/ The next FETCH executed will retrieve the
[/ first row fromthe second result set.
[/ Fetch the first row fromthe second result
/] set.
if SQLCA. sqgl code = 100 then

FETCH enp_proc2 | NTO : part _nane_var;
end if

/1 Loop through all rows in the second result
Il set.
DO WHI LE SQLCA. sqgl code = 0
/!l Fetch the next row fromthe second result
Il set.

FETCH enp_proc2 | NTO : part _nane_var;
LOOP

/1 C ose the procedure.
CLOSE enp_proc2;

The result sets that will be returned when a database stored procedure executes cannot be
determined at compile time. Therefore, you must code FETCH statements that exactly match
the format of aresult set returned by the stored procedure when it executes.

Example 2

In the preceding example, if instead of coding the second fetch statement as:
FETCH enp_proc2 I NTO : part _nane_var;

you coded it as:

FETCH enp_proc2 I NTO : part_varl,:part_var2,:part_var3;

the statement would compile without errors. But an execution error would occur: the number
of columnsin the FETCH statement does not match the number of columns in the current
result set. The second result set returns values from only one column.

6.5.17 SAP Adaptive Server Enterprise CLOSE

If adatabase stored procedure returns aresult set, it must be closed when processing is
complete. Y ou do not haveto retrieve al the rowsin aresult set to close arequest or
procedure.

Closing a procedure looks the same as closing a cursor:

Page 232



Using Embedded SQL

CLOSE enp_pr oc;

If a procedure executes successfully and returns at |east one result set and is not closed,
aresult set is pending and no SQL commands other than the FETCH can be executed.
Procedures with result sets should be closed as soon as possible.

6.5.18 SAP Adaptive Server Enterprise Update

Database stored procedures that perform updates only and do not return result sets are
handled in much the same way as procedures that return result sets. The only differenceis
that after the EXECUTE procedure_name statement is executed, no result sets are pending
and no CLOSE statement is required.

Using the SQL Code property

If you know for sure that a particular procedure can never return result sets, then the
EXECUTE statement is al that is needed. If there is a procedure that may or may not return
aresult set, you can test the SQL Code property of the referenced transaction object for +100
(the code for NOT FOUND) after the EXECUTE.

The following table shows all the possible values for SQL Code after an EXECUTE:

Table 6.6:
Return Means

code

0 The EXECUTE was successful and at |east one result set is pending.
Regardless of the number of FETCH statements executed, the procedure must
be explicitly closed with a CLOSE statement.

This codeisreturned even if the result set is empty.
+100 Fetched row not found.

-1 The EXECUTE was not successful and no result sets were returned. The
procedure does not require a CLOSE. If a CLOSE is attempted against this
procedure an error will be returned.

Example 1

Assume the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed. Also assume the description of the Adaptive
Server Enterprise procedure good_employeeis:

/1 Adaptive Server Enterprise good_enpl oyee
/Il stored procedure:
CREATE PROCEDURE good_enpl oyee AS

UPDATE enpl oyee

SET enp_sal ary=enp_salary * 1.1

WHERE enp_status = ' EXC

This example illustrates how to execute a stored procedure that does not return any result
Sets:

/1 Declare the procedure.
DECLARE good_enp_proc PROCEDURE
FOR good_enpl oyee;

Page 233



Using Embedded SQL

/1 Execute it.
EXECUTE good_enp_pr oc;

/1 Test return code. Allow for +100 since you do
/1 not expect result sets.
if SQLCA sqgl code = -1 then

/1 |Issue error nessage since it failed.
MessageBox(" Stored Procedure Error!", &
SQLCA. sql errtext)

end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 2

Assume the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed. Also assume the description of the Adaptive
Server Enterprise procedure get_employeeis:
/1 Adaptive Server Enterprise get_enpl oyee
/'l stored procedure:

CREATE PROCEDURE get _enpl oyee @np_i d_parm

int AS SELECT enp_nane FROM enpl oyee
WHERE enp_id = @np_i d_parm

This example illustrates how to pass parameters to a database stored procedure. Emp_id_var
has been set elsewhere to 691.:

/1 Declare the procedure.
DECLARE get _enp_proc PROCEDURE FOR
get _enpl oyee @np_id_parm = :enp_id_var;

/| Declare a destination variable for enp_nane.
string enp_nane_var

/| Execute the stored procedure using the
/1 current value for enp_id_var.
EXECUTE get _enp_proc;

[/ Test return code to see if it worked.
if SQLCA sqglcode = 0 then

/1 Since we got a row, fetch it and display it.
FETCH get _enp_proc | NTO : enp_nane_var ;

/! Display the enpl oyee nane.
MessageBox(" Got ny enpl oyee! ", enp_nane_var)

/1 You are all done, so close the procedure.
CLOSE Get _enp_proc;

end if

6.5.19 SAP Adaptive Server Enterprise Return values and output parameters

In addition to result sets, SAP Adaptive Server Enterprise stored procedures may return a
long integer return value and output parameters of any data type. After all of the result sets

Page 234



Using Embedded SQL

have been returned, PowerScript requires you to issue one final FETCH procedure_name
INTO. .. statement to obtain these values. The order in which these values are returned is:

return val ue, output parnil, output parn®,

Example 1

The following stored procedure contains one input parameter (@deptno) and returns a result
set containing employee names and salaries for that department. It also returns two output
parameters (@totsal and @avgsal), and areturn value that is the count of employeesin the
department.

integer fetchcount = 0

| ong | Deptno, rc

string fnane, |nane

doubl e dSal ary, dTotSal, dAvgSal

| Deptno = 100

DECLARE dept proc PROCEDURE FOR
@c = dbo. deptroster

@lept no = : | Dept no,

@otsal = 0 output,

@vgsal = 0 out put
USI NG SQLCA;

EXECUTE dept pr oc;
CHOOSE CASE SQLCA. sql code
CASE 0
/'l Execute successful. There is at |east one
/1 result set. Loop to get the query result set
/1 fromthe tabl e SELECT.
DO
FETCH dept proc | NTO : fnane, :|nane, :dSalary;
CHOOSE CASE SQLCA. sql code
CASE 0
f et chcount ++
CASE 100
MessageBox ("End of Result Set", &
string (fetchcount) " rows fetched")
CASE -1
MessageBox ("Fetch Failed", &
string (SQ.CA. sql dbcode) " =" &
SQLCA. sql errtext)
END CHOOSE
LOOP WHI LE SQLCA. sqgl code = 0

/1 lssue an extra FETCH to get the Return Val ue
/1 and Qutput Paraneters.
FETCH dept proc INTO :rc, :dTotSal, :dAvgSal ;
CHOOSE CASE SQ.CA. sql code
CASE 0
MessageBox ("Fetch Return Value and Qutput" &
"Parms SUCCESSFUL", "Return Value is: " &
string (rc) &
"~r~nTotal Salary: " string (dTotSal) &

"~r~nAverage Sal: " string (dAvgSal))
CASE 100
MessageBox ("Return Val ue and Qut put Parnms" &
"NOT FOUND', "")
CASE ELSE

MessageBox ("Fetch Return Val ue and Qutput" &
"Parms FAILED', "SQLDBCode is " &

Page 235



Using Embedded SQL

string (SQ.CA. sql dbcode) " =" &
SQLCA. sql errtext)
END CHOCSE

CLCSE dept proc;

CASE 100
/| Execute successful; no result set.
/1 Do not try to close.
MessageBox ("Execute Successful”, "No result set")

CASE ELSE
MessageBox ("Execute Failed", &
string (SQ.CA. sql dbcode) " =" &
SQLCA. sql errtext)

END CHOCOSE

6.5.20 SAP Adaptive Server Enterprise Temporary tables

Database stored procedures frequently contain temporary tables that are used as repositories
when accumulating rows during processing within the procedure. Since Adaptive Server
Enterprise requires you to execute Data Definition Language (DDL) statements outside the
scope of atransaction unless you set the database option "ddl in tran” to true, PowerBuilder
provides the boolean AutoCommit property in the transaction object to allow you to handle
these cases.

The setting of AutoCommit determines whether PowerBuilder issues SQL statementsinside
or outside the scope of atransaction. When AutoCommit is set to false or O (the default),
SQL statements are issued inside the scope of atransaction. When you set AutoCommit to
true or 1, SQL statements are issued outside the scope of atransaction.

To execute Adaptive Server Enterprise stored procedures containing DDL statements, you
must either set "ddl in tran” to true, or set AutoCommit to true so PowerBuilder issues the
statements outside the scope of atransaction. However, if AutoCommit is set to true, you
cannot issue a ROLLBACK. Therefore, you should set AutoCommit back to false (the
default) immediately after completing the DDL operation.

When you change the value of AutoCommit from false to true, PowerBuilder issues a
COMMIT statement.

6.5.21 SAP Adaptive Server Enterprise System stored procedures

Y ou can access system database stored procedures the same way you access user-defined
stored procedures. Y ou can use the DECLARE statement against any procedure and can
qualify procedure namesif necessary.

6.5.22 SAP Adaptive Server Enterprise Using database stored procedures in
DataWindow objects

Using stored procedures as DataWindow data sour ces
Y ou can use a database stored procedures as a data source for DataWindow objects. The
following rules apply:

* Result set definition

Page 236



Using Embedded SQL

Y ou must define what the result set looks like. The Datawindow object cannot determine
this information from the stored procedure definition in the database.
DataWindow updates

Y ou cannot perform DataWindow updates through stored procedures (that is, you cannot
update the database with changes made in the DataWindow object); only retrieval is
alowed. (However, the DataWindow can have update characteristics set manually through
the Datawindow painter.)

Result set processing

Y ou can specify only one result set to be processed when you define the stored procedure
result set in the Datawindow painter. However, the result set you select does not have to
be the first result set.

Computed rows

Computed rows cannot be processed in a DataWindow.

Database stored procedures summary

When you use database stored procedures in a PowerBuilder application, keep the following
pointsin mind:

Manipulating stored procedures

To manipulate database stored procedures, PowerBuilder provides SQL statements that are
similar to cursor statements.

Retrieval and update

PowerBuilder supports retrieval, update, or a combination of retrieval and update in
database stored procedures, including procedures that return no results sets and those that
return one or more result sets.

Transactions and stored procedures with result sets

When a procedure executes successfully using a specific connection (transaction) and
returns at least one result set, no other SQL commands can be executed using that
connection until the procedure has been closed.

Transactions and stored procedures without result sets

When a procedure executes successfully using a specific transaction but does not return a
result set, the procedure is no longer active. No result sets are pending, and therefore you
should not execute a CL OSE statement.

6.6 Using Embedded SQL with Informix
About this chapter

When you create scripts for a PowerBuilder application, you can use embedded SQL
statements in the script to perform operations on the database. The features supported when
you use embedded SQL depend on the DBMS to which your application connects.

Page 237



Using Embedded SQL

Overview

When you use the Informix IN9 database interface to connect to a database, you can use
embedded SQL in your scripts. You can embed the following types of SQL statementsin
scripts and user-defined functions:

 Transaction management statements
* Non-cursor statements

» Cursor statements

» Database stored procedures

Informix API

The Informix database interfaces use the Informix application programming interface (API)
to interact with the database.

When you use embedded SQL, PowerBuilder makes the required calls to the API. Therefore,
you do not need to know anything about the Informix API in order to use embedded SQL in
PowerBuilder.

See also

Using Informix

Informix transaction management statements

Informix non-cursor statements

Informix cursor statements

Informix database stored procedures

Informix name qualification

6.6.1 Informix name qualification

Since PowerBuilder does not inspect all SQL statement syntax, you can qualify Informix
catalog entities as necessary.

For example, these qualifications are all acceptable:
¢ emp_name

* employee.emp_name

* Informix.employee.emp_name

Functions

Y ou can use any function that Informix supports (such as aggregate or mathematical
functions) in SQL statements.

This example illustrates how to call the Informix function HEX in a SELECT statement:

SELECT HEX(enp_nun) | NTO : enp_nane_var FROM enpl oyee; DBM5=0DB

Page 238



Using Embedded SQL

6.6.2 Informix transaction management statements
Qualification

Y ou can use the following transaction management statements with transaction objects to
manage connections and transactions for Informix databases:

For example, these qualifications are all acceptable:
« CONNECT

« COMMIT

* DISCONNECT

* ROLLBACK

See also
Informix using CONNECT, COMMIT, DISCONNECT, and ROLLBACK

6.6.3 Informix using CONNECT, COMMIT, DISCONNECT, and ROLLBACK

This table lists each transaction management statement and describes how it works when you
use the Informix IN9 interface to connect to a database:

Table6.7:

Statement  Description

CONNECT | Establishes the database connection. After you assign values to the required
properties of the transaction object, you can execute a CONNECT. After this
call completes successfully, PowerBuilder issues a BEGIN WORK to start a
logical unit of work for the transaction.

COMMIT | Terminatesthe logical unit of work, guarantees that all changes made to the
database since the beginning of the current unit of work become permanent,
and starts anew logical unit of work.

DISCONNECTerminates a successful connection. DISCONNECT automatically executes
aCOMMIT to guarantee that all changes made to the database since the
beginning of the current unit of work are committed.

ROLLBACK| Terminates alogical unit of work, undoes all changes made to the database
since the beginning of the logical unit of work, and starts anew logical unit of
work.

See also

Informix performance and locking

6.6.4 Informix performance and locking

An important consideration when designing a database application is deciding when connect
and commit statements should occur to maximize performance and limit locking and resource

Page 239



Using Embedded SQL

use. A connect takes a certain amount of time and can tie up resources during the life of the
connection. If thistime is significant, then limiting the number of connectsis desirable.

After a connection is established, SQL statements can cause locks to be placed on database
entities. The more locks there are in place at a given moment in time, the more likely it is that
the locks will hold up another transaction.

Rules

No set of rulesfor designing a database application is totally comprehensive. However, when
you design a PowerBuilder application, you should do the following:

 Long-running connections

Determine whether you can afford to have long-running connections. If not, your
application should connect to the database only when absolutely necessary. After al the
work for that connection is complete, the transaction should be disconnected.

If long-running connections are acceptable, then commits should be issued as often as
possible to guarantee that all changes do in fact occur. More importantly, COMMITs
should be issued to release any locks that may have been placed on database entities as a
result of the statements executed using the connection.

» SetTrans or SetTransObject function

SetTrans or SetTransObject function Determine whether you want to use default
Datawindow transaction processing (the SetTrans function) or control the transactionin a
script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have many short-
lived transactions, use the default DataWindow transaction processing. If you want to keep
connections open and issue periodic COMMITSs, use the SetTransObject function and
control the transaction yourself.

| solation feature

Informix-OnLine databases use the isolation feature to support assorted database lock
options. In PowerBuilder, you can use the Lock property of the transaction object to set the
isolation level when you connect to the database.

The following example shows how to set the Lock property to Committed read:
/1 Set the lock property to committed read

/[l in the default transaction object SQLCA.
SQLCA. Lock = "Conmitted read"

I nfor mix-SE databases do not support L ock

The Lock property applies only to Informix-OnLine databases. Informix-SE (Standard
Edition) databases do not support the use of lock values and isolation levels.

Example 1

This script uses embedded SQL to connect to a database and insert arow in the
ORDER_HEADER table and arow in the ORDER_ITEM table. Depending on the success of
the statements in the script, the script executesa COMMIT or ROLLBACK:

Page 240



Using Embedded SQL

/1 Set the SQLCA connection properties.
SQLCA. DBMS = " | N9"
SQLCA. dat abase = "ORDERS"// Connect to the database.

CONNECT USI NG SQLCA;

/1 Insert a rowinto the ORDER HEADER t abl e.

/1l A ROLLBACK is required only if the first row
/'l was inserted successfully.

| NSERT | NTO ORDER_HEADER ( ORDER | D, CUSTOVER | D)
VALUES ( 7891, 129 );

/] Test return code for ORDER HEADER i nsertion
if SQLCA sqglcode = 0 then

/1 Since the ORDER HEADER is inserted,
/] try to insert ORDER | TEM
I NSERT | NTO ORDER | TEM
(ORDER_I D, | TEM NBR, PART_NBR, QTY)
VALUES ( 7891, 1, '991PLS', 456 );

/] Test return code for ORDER | TEM i nserti on.
if SQLCA. sgl code = -1 then

[/ 1f insert failed

/1 ROLLBACK insertion of ORDER HEADER
ROLLBACK USI NG SQ.CA;
end if

end if

/! Disconnect fromthe database.
DI SCONNECT USI NG SQLCA;

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 2

This example uses the scripts for the Open and Close events in awindow and the Clicked
event in a CommandButton to illustrate how you can manage transactions in a Datawindow
control. Assume the window contains a DataWindow control dw_1 and the user enters datain
dw_1 and then clicks the Cb_Update button to send the data to the database.

Since this script uses SetTransObject to connect to the database, the programmer is
responsible for managing the transaction.

Window Open event script

[/l Set the transaction object properties
/1 and connect to the database.

/] Set the SQLCA connection properties.
SQ.CA. DBMS = "I N9"

SQLCA. dat abase = " ORDERS"

// Connect to the database.
CONNECT USI NG SQLCA;

/1 Tell the DataW ndow which transacti on object
/] to use.
Set TransCbj ect ( dw_1, SQLCA )

Page 241



Using Embedded SQL

CommandButton Clicked event script
/'l Decl are ReturnVal ue an integer.
/1 integer Ret ur nVal ue

Ret urnVal ue = Update( dw 1 )

I/l Test to see if updates were successful.
if ReturnValue = -1 then

/1 Updates were not successful. Since we used
/1 SetTransObj ect, rollback any changes nade
/1 to the database.

ROLLBACK USI NG SQLCA;
el se

/1 Updates were successful. Since we used
/1 SetTransObject, commt any changes nmde
/1 to the database.

COW T USI NG SQLCA;
end if

Window Close event script

/! Disconnect fromthe database.
DI SCONNECT USI NG SQLCA;

6.6.5 Informix non-cursor statements

The statements that do not involve cursors or stored procedures are:
 DELETE

* INSERT

 UPDATE

» SELECT (singleton)

See also
Informix DELETE, INSERT, and UPDATE
Informix SELECT

6.6.6 Informix DELETE, INSERT, and UPDATE

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE statements the same
way. PowerBuilder inspects them for any PowerScript variable references and replaces all
such references with a constant that conforms to Informix rules for that data type.

Row serial number

The serial number of the row is stored in the SQL ReturnData property of the
transaction object after an INSERT statement executes. (The SQLReturnData
property is updated after embedded SQL only; it is not updated after a DataWindow
operation.)

Page 242



Using Embedded SQL

Example
Assume you enter the following statement:
DELETE FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var isa PowerScript variable with the data type of integer that has
been defined within the scope of the script that contains the DELETE statement. Before the
DELETE statement is executed, emp_id var isassigned avalue (for example, 691) so that
when the DELETE statement executes, the database receives the following statement:

DELETE FROM enpl oyee WHERE enp_id = 691;

When isthis substitution technique used?

This variable substitution technique is used for all PowerScript variable types. When
you use embedded SQL, precede all PowerScript variables with acolon ( ;).

See also
Informix SELECT

6.6.7 Informix SELECT

The SELECT statement contains input variables and output variables. Input variables are
passed to the database as part of the execution and the substitution as described above for
DELETE, INSERT, and UPDATE. Output variables are used to return values based on the
result of the SELECT statement.

Example 1
Assume you enter the following statement:

SELECT enp_nane, enp_sal ary
I NTO : enp_nane_var, :enp_salary_var
FROM enpl oyee WHERE enp_id = :enp_id_var;

Hereemp_id var, emp_sadlary var, and emp_name var are PowerScript variables defined
within the scope of the script that contains the SELECT statement, emp _id_var is processed
as described in the DELETE example above.

Both emp_name var and emp_salary_var are output variables that will be used to return
values from the database. The data types of emp_name var and emp_salary var should be
the PowerScript data types that best match the Informix data type. When the data types do not
match perfectly, PowerBuilder converts them.

How big should numeric output variables be?

For numeric data, the output variable must be large enough to hold any value that may
come from the database.

Assume the value for emp_id var is 691 asin the previous example. When the SELECT
statement executes, the database receives the following statement:

SELECT enp_nane, enp_sal ary
FROM enpl oyee WHERE enp_id = 691;

Page 243



Using Embedded SQL

If no errors are returned on the execution, data locations are internally bound for the result
fields. The data returned into these locationsis converted if necessary and the appropriate
Power Script variables are set to those values.

Example 2

This example assumes the default transaction object (SQLCA) has been assigned valid
values and a successful CONNECT has executed. It also assumes the data type of the emp _id
column in the employee tableis CHARACTER[10].

The user enters an employee ID into the line edit Sle_Emp and clicks the button Cb_Delete to
delete the employee.

The script for the Clicked event in the CommandButton Cb_Deleteiis:

// Make sure we have a val ue.
if sle_Enp.text <> "" then

[/l Since we have a value, let's try to delete it.
DELETE FROM enpl oyee WHERE enp_id = :sle_Enp.text;

[/ Test to see if the DELETE wor ked.
i f SQLCA. sgl code = 0 then

/Il It seenms to have worked, |let user know.

MessageBox( "Del ete", &

"The del ete has been successfully processed!")
el se

[/ It didn't work.

MessageBox( "Error", &

"The delete failed. Enployee IDis not valid.")
end if

el se

/! No input value. Pronpt user.

MessageBox( "Error", &

"An enployee IDis required for "+"delete!" )
end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 3

This example assumes the default transaction object (SQLCA) has been assigned valid values
and a successful CONNECT has executed. The user wants to extract rows from the employee
table and insert them into the table named extract_employees.

The extraction occurs when the user clicks the button Cb_Extract. The boolean variable
YoungWorkersis set to TRUE or FALSE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

i nt eger Enpl oyeeAgeLower Li i t
i nt eger Enpl oyeeAgeUpper Li mi t

/! Do they have young workers?
if ( YoungWorkers = TRUE ) then

Page 244



Using Embedded SQL

/Il Yes - set the age limt in the YOUNG range.
/1 Assune no enpl oyee is under |egal working age.
Enpl oyeeAgelLowerLinmit = 16

/1 Pick an upper limt.
Enpl oyeeAgeUpperLinmit = 42
el se

/Il No - set the age linmit in the OLDER range.
Enpl oyeeAgelLower Linmit = 43

/1 Pick an upper limt that includes all
/'l enpl oyees.
Enpl oyeeAgeUpper Li mit = 200
end if
I NSERT | NTO extract _enpl oyees(enp_i d, enp_nane)
SELECT enp_id, enp_nane FROM enpl oyee
VWHERE enp_age >= : Enpl oyeeAgelLower Li mi t
AND enp_age <= : Enpl oyeeAgeUpperLinit;

6.6.8 Informix cursor statements

In embedded SQL, statements that retrieve data and statements that update data can both
involve cursors.

Retrieval statements
The retrieval statements that involve cursors are;

DECLARE cursor_name CURSOR FOR . ...

OPEN cursor_name

FETCH cursor_nameINTO. ..

CLOSE cursor_name

Update statements

The update statements that involve cursors are:
« UPDATE... WHERE CURRENT OF cursor_name
* DELETE... WHERE CURRENT OF cursor_name

See also
Informix retrieval using cursors
Informix FETCH statements

Informix CLOSE for cursors

6.6.9 Informix retrieval using cursors

Retrieval using cursorsis conceptually similar to the singleton SELECT discussed earlier.
The main difference is that there can be multiple rowsin aresult set when you use a cursor
and you control when the next row is fetched into PowerScript variables.

Page 245



Using Embedded SQL

If you expect only asingle row to exist in the employee table with the specified emp_id,
use the singleton SELECT. In asingleton SELECT, you specify the SELECT statement and
destination variables in one concise SQL statement:
SELECT enp_nane, enp_sal ary

I NTO : enp_nane_var, :enp_salary_var

FROM enpl oyee WHERE enp_id = :enp_id_var;

However, when a SELECT may return multiple rows, you must:
1. Declare acursor.

2. Open it (which effectively executes the SELECT).

3. Fetch rows as needed.

4. Close the cursor.

Declaring and opening a cur sor

Declaring a cursor istightly coupled with the OPEN statement. The DECLARE specifies the
SELECT statement to be executed, and the OPEN actually executes it.

Scroll cursors

When you fetch rowsin an Informix database table, using a scroll cursor allows you to fetch
rowsin the active set in any sequence. That is, you can fetch the next row, previous row, last
row, or first row.

To specify that you want to use a scroll cursor when connecting to an Informix database, set
the Scroll DBParm parameter to 1. By default, PowerBuilder does not use scroll cursorsin an
Informix connection (the Scroll parameter is set to 0).

Y ou cannot update scroll cursors

Scroll cursors are not updatable. If you try to declare a scroll cursor and make it
updatable, it will fail.

See also
Informix nonupdatable cursors

Informix updatable cursors

6.6.10 Informix nonupdatable cursors

Declaring a cursor is similar to declaring a variable; a cursor is a nonexecutabl e statement
just like a variable declaration. The first step in declaring a nonupdatable cursor is to define
how the result set looks. To do this, you need a SELECT statement. Y ou must associate the
result set with alogical name so you can refer to it in subsequent SQL statements.

Example
Assume the SingleLineEdit control sle 1 contains the state code for the retrieval:
The script for the Clicked event for the CommandButton Cb_Extract is:

[/l Declare cursor enp_curs for enployee table.
[l retrieval

Page 246



Using Embedded SQL

DECLARE enp_curs CURSOR FOR
SELECT enp_id, enp_nane FROM Enpl oyee
VWHERE enp_state = :sle_1.text;
/| Declare |local variables for retrieval.
string enp_i d_var
string enp_name_var
/| Execute the SELECT statenment with
/1 the current value of sle_1.text.
OPEN enp_curs;
// At this point, if there are no errors,
/] the cursor is available for further processing.
6.6.11 Informix updatable cursors
To declare an updatable cursor, use the FOR UPDATE keywords in the declaration.
Example
This statement uses the FOR UPDATE syntax to declare an updatable cursor:
DECLARE enp_curs CURSOR FOR
SELECT enp_id, enp_nane FROM Enpl oyee
WHERE enp_state = :sle_1.text
FOR UPDATE;
6.6.12 Informix FETCH statements
Qualification
The Informix database interfaces support the following FETCH statements:

« FETCH NEXT
 FETCH FIRST
* FETCH PRIOR
» FETCH LAST

See also
Informix FETCH NEXT
Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST

6.6.13 Informix FETCH NEXT

In the singleton SELECT, you specify variablesto hold the values for the columns within the
selected row. The FETCH statement syntax is similar to the syntax of the singleton SELECT.
Values arereturned INTO a specified list of variables.

/Il Go get the first rowfromthe result set
FETCH enp_curs | NTO : enp_i d_var, :enp_nhane_var;

If at least one row can beretrieved, this FETCH places the values of the emp_id and
emp_name columns from the first row in the result set into the PowerScript variables

Page 247



Using Embedded SQL

emp_id_var and emp_name_var. Executing another FETCH statement will place the
variables from the next row into specified variables.

FETCH statements typically occur in aloop that processes several rows from aresult set (one
row at atime); fetch the row, process the variables, and then fetch the next row.

What happenswhen theresult set is exhausted?

When aresult set has been exhausted, FETCH returns +100 (not found) in the
SQL Code property within the referenced transaction object. Thisis an informational
return code; -1 in SQL Code indicates an error.

See also
Informix FETCH statements
Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST

6.6.14 Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST

In addition to the conventional FETCH NEXT, the Informix interface supports FETCH
FIRST, FETCH PRIOR, and FETCH LAST statements.

What if you only enter FETCH?
If you only enter FETCH, PowerBuilder assumes FETCH NEXT.

Example

This cursor example illustrates how you can loop through aresult set. Assume the default
transaction object (SQLCA) has been assigned valid values and a successful CONNECT has
been executed.

The statements retrieve rows from the employee table and then display a message box with
the employee name in each row that is found.

/1 Declare the enmp_curs

DECLARE enp_curs CURSOR FOR
SELECT enp_name FROM EMPLOYEE
WHERE enp_state = :sle_1.text;

/'l Declare a destination variable for enployee
/1 names.
string enp_nane_var

/] Get current value of sle_1.text.
OPEN enp_curs;

[/ Fetch the first rowfromthe result set.
FETCH enp_curs | NTO : enp_nane_var ;

/1 Loop through result set until exhausted
DO WHI LE SQLCA. sqgl code = 0

/1 Pop up a nmessage box with the enpl oyee name
MessageBox (" Found an enpl oyee! ", enp_nane_var)

[/ Fetch the next row fromthe result set
FETCH enp_curs | NTO : enp_nane_var;

Page 248



Using Embedded SQL

LCoOP

// Al done, so close the cursor
CLOSE enp_curs;

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

See also
Informix FETCH statements
Informix FETCH NEXT

6.6.15 Informix CLOSE for cursors

The CLOSE statement terminates processing for the specified cursor. CLOSE rel eases
resources associated with the cursor, and subsequent references to that cursor are alowed
only if another OPEN is executed. Although you can have multiple cursors open at the same
time, you should close the cursors as soon as possible for efficiency reasons.

6.6.16 Informix database stored procedures
Qualification

One of the most significant features of Informix is support for database stored procedures.
Y ou can use database stored procedures for:

* Retrieva only
» Update only
» Update and retrieval

PowerBuilder supports all of these usesin embedded SQL.
See also

Informix retrieval using database stored procedures

Informix update using database stored procedures

Informix database stored procedures

Informix retrieval using database stored procedures

6.6.17 Informix retrieval using database stored procedures
Qualification

PowerBuilder uses a construct that is very similar to cursors to support retrieval using
database stored procedures. In PowerBuilder embedded SQL, there are four commands that
involve database stored procedures:

» DECLARE procedure_name PROCEDURE FOR .. . .

Page 249



Using Embedded SQL

 EXECUTE PROCEDURE procedure_name
* FETCH procedure_nameINTO. ..
* CLOSE procedure_nameRetrieval only

See also

Informix DECLARE and EXECUTE
Informix FETCH

Informix CLOSE

6.6.18 Informix DECLARE and EXECUTE

PowerBuilder requires a declarative statement to identify the database stored procedure that is
being used and specify alogical name. The logical name is used to reference the procedure in
subsequent SQL statements. The general syntax for declaring a procedureis:

DECLARE | ogi cal _procedur e_nane PROCEDURE FOR
I nf orm x_procedur e_nane

({:argl,:arg2 , ...})
{USI NG transaction_object};

where logical_procedure_name can be any valid PowerScript identifier and
Informix_procedure_name is the name of the stored procedure in the Informix database.
The parentheses after Informix_procedure_name are required even if the procedure has no
parameters.

Creating a stored procedure

The default SQL terminator character for the Database painter is a semicolon (;). Informix
also uses a semicolon in its stored procedure syntax. Therefore, to create a stored procedure
in the Database painter, you must change the SQL terminator character to something other
than a semicolon, such as a backquote (°).

To change the Database painter's SQL terminator character, type the character you want in
the SQL Terminator Character box in the Database Preferences dialog box.

The parameter references can take the form of any valid parameter string that Informix
accepts. PowerBuilder does not inspect the parameter list format except for purposes of
variable substitution. The USING clauseisrequired only if you are using a transaction object
other than the default transaction object (SQLCA).

Example
Assume a stored procedure procl is defined as:

CREATE PROCEDURE procl AS
SELECT enp_nane FROM enpl oyee

To declare that procedure for processing within PowerBuilder, enter:
DECLARE enp_proc PROCEDURE FOR procl;

Note that this declaration is a nonexecutable statement, just like a cursor declaration. Where
cursors have an OPEN statement, procedures have an EXECUTE statement.

Page 250



Using Embedded SQL

When an EXECUTE statement is executed, the procedure isinvoked. The EXECUTE refers
to the logical procedure name:

EXECUTE enp_pr oc;

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Issuing EXECUTE statements

Use PowerBuilder embedded SQL syntax when you enter an embedded EXECUTE statement
in ascript; do not enter the PROCEDURE keyword. Use this syntax:

EXECUTE pr ocedur e_nane;

Specify the EXECUTE statement the same way whether or not a stored procedure takes
arguments. The arguments used in the DECL ARE statement get passed automatically,
without your having to state them in the EXECUTE statement.

6.6.19 Informix FETCH

To access rows returned in aresult set, you use the FETCH statement the same way you use
it for cursors. The FETCH statement can be executed after any EXECUTE statement that
refersto a procedure that returns a result set.

I nformix syntax

PowerBuilder supports Informix syntax; however, the default syntax displayed in the
Datawindow painter is the most general syntax. Y ou can leave the syntax unchanged
or edit the displayed syntax to conform to the Informix syntax rules. If you do not
change the syntax, PowerBuilder convertsit to Informix syntax before passing it to
the Informix database.

Example 1
FETCH enp_proc | NTO : enp_nane_var;

Y ou can use this FETCH statement only to access values produced with a SELECT statement
in a database stored procedure. Y ou cannot use the FETCH statement to access computed
rows.

The result sets that will be returned when a database stored procedure executes cannot be
determined at compile time. Therefore, you must code FETCH statements that exactly match
the format of aresult set returned by the stored procedure when it executes.

Example 2
Assume you changed the second fetch statement in the preceding statement to:
FETCH enp_proc2 | NTO :part_varl, :part_var2, :part_var3;

The code would compile without errors, but an execution error would occur because the
number of columnsin the FETCH statement does not match the number of columnsin the
current result set. The second result set returns values from only one column.

Page 251



Using Embedded SQL

6.6.20 Informix CLOSE

If a database stored procedure returns aresult set, it must be closed when processing is
complete.

Doyou havetoretrieveall the rows?
Y ou do not have to retrieve al rowsin aresult set to close arequest or procedure.

Closing a procedure looks the same as closing a cursor:

CLOSE enp_pr oc;

Aswith cursors, if a procedure executes successfully and returns at least one result set and
isnot closed, aresult set is pending and no SQL commands other than the FETCH can be
executed. Procedures with result sets should be closed as soon as possible.

The procedure remains open until you close it, execute a COMMIT or aROLLBACK, or end
the database connection.

6.6.21 Informix update using database stored procedures

Database stored procedures that only perform updates and do not return aresult set are
handled in much the same way as procedures that return aresult set. The only differenceis
that after the EXECUTE procedure_name statement executes, no result set is pending and no
CLOSE statement is required.

Using the SQL Code property

If you know that a particular procedure can never return aresult set, only the EXECUTE
statement isrequired. If there is a procedure that may or may not return aresult set, you can
test the SQL Code property of the referenced transaction object for +100 (the code for not
found) after the EXECUTE.

Thistable shows all possible values for SQL Code after an EXECUTE:

Table6.8:
Return M eans

code

0 The EXECUTE PROCEDURE was successful and aresult set is pending.
Regardless of the number of FETCH statements executed, the procedure must
be explicitly closed with a CLOSE statement.

This codeisreturned even if the result set is empty.

+100 Fetched row not found
-1 The EXECUTE was not successful and no result set was returned.
Example 1

This example illustrates how to execute a database stored procedure that does not return a
result set:

/1 good_enployee is an Inform x stored procedure.

/1 Declare the procedure.

DECLARE good_enp_p 1roc PROCEDURE FOR good_enpl oyee;
EXECUTE good_enp_pr oc;

Page 252



Using Embedded SQL

/1 Test return code. Allow for +100 since you do
/1 not expect a result set.
if SQLCA. sqgl code = -1 then

/1 Issue error nessage since it failed.
MessageBox(" Stored Procedure Error!", &
SQLCA. sql errtext)

end if

Example 2

This exampleillustrates how to pass parameters to a database stored procedure that returns a
result set. Emp_id var has been set elsewhere to 691

/1 Get_enployee is an Inform x stored procedure.
/1 Declare the procedure.
DECLARE get _enp_proc PROCEDURE FOR

get _enpl oyee @np_id_parm = :enp_id_var;

/'l Declare a destination variable for enp_nane
string enp_name_var

/'l Execute the stored procedure using the
/1 current value for enp_id_var.
EXECUTE get _enp_pr oc;

/] Test return code to see if it worked.
if SQLCA sqglcode = 0 then

/Il W got arow, so fetch it and display it.
FETCH get _enp_proc | NTO : enp_nane_var ;

/1 Display the enpl oyee nane.
MessageBox(" Got ny enpl oyee! ", enp_nane_var)

/1 You are all done, close the procedure.
CLOSE Get _enp_proc;
end if

6.6.22 Informix using database stored procedures in DataWindow objects
Y ou can use database stored procedures as a data source for DataWindow objects. The
following considerations apply:
* Result set definition
Y ou must define what the result set looks like. The Datawindow object cannot determine
this information from the stored procedure definition in the database.
» Datawindow updates

Y ou cannot perform DataWindow updates through stored procedures (that is, you cannot
update the database with changes made in the DataWindow object); only retrieval is
allowed. (However, the DataWindow can have update characteristics set manually through
the DataWindow painter.)

* Result set processing

Y ou can specify only one result set to be processed when you define the stored procedure
result set in the Datawindow painter.

Page 253



Using Embedded SQL

Computed rows

Computed rows cannot be processed in DatawWindows.

Informix syntax

PowerBuilder supports Informix syntax; however, the syntax displayed in the Datawindow
painter isthe most general syntax. Y ou can leave the syntax unchanged or edit the
displayed syntax to conform to the Informix syntax rules. If you do not change the syntax,
PowerBuilder convertsit to Informix syntax before passing it to the Informix database.

6.6.23 Informix database stored procedure summary

When you use database stored procedures in a PowerBuilder application, keep the following
pointsin mind:

Manipulating stored procedures

To manipulate database stored procedures, PowerBuilder provides SQL statements that are
similar to cursor statements.

Retrieval and update

PowerBuilder supports retrieval, update, or a combination of retrieval and update in
database stored procedures, including procedures that do not return aresult set and those
that return aresult set.

Transactions and procedures without result sets

When a procedure executes using a particular connection (transaction) and the procedure
does not return aresult set, the procedure is no longer active. No result set is pending and,
therefore, you do not execute a CLOSE statement.

6.7 Using Embedded SQL with Microsoft SQL Server
About this chapter

When you create scripts for a PowerBuilder application, you can use embedded SQL
statements in the script to perform operations on the database. The features supported when
you use embedded SQL depend on the DBMS to which your application connects.

Overview

When your PowerBuilder application connects to a SQL Server database, you can use
embedded SQL in your scripts. Thisinterface uses the DB-Library (DB-Lib) client API to
access the database.

When you use the SQL Server database interface, you can embed the following types of SQL
statements in scripts and user-defined functions:

Transaction management statements
Non-cursor statements

Cursor statements

Page 254



Using Embedded SQL

» Database stored procedures

DB-Library API

The Microsoft SQL Server database interface uses the DB-Library (DB-Lib) application
programming interface (API) to access the database. When you use embedded SQL,
PowerBuilder makes the required calls to the API. Therefore, you do not need to know
anything about DB-Lib to use embedded SQL in PowerBuilder.

See also
Microsoft SOL Server Functions
Microsoft SOL Server Transaction management statements

Microsoft SQL Server Non-cursor statements

Microsoft SQL Server Cursor statements

Microsoft SQL Server Using database stored procedures in DataWindow objects
Microsoft SQL Server Name qualification

6.7.1 Microsoft SQL Server Name qualification

Since PowerBuilder does not inspect all SQL statement syntax, you can qualify SQL Server
catalog entities as necessary.

For example, the following qualifications are all acceptable:
¢ emp_name

* employee.emp_name

* dbo.employee.emp_name

» emp_db.dbo.employee.emp_name

6.7.2 Microsoft SQL Server Functions

Y ou can use any function that SQL Server supports (such as aggregate or mathematical
functions) in SQL statements.

This example shows how to use the SQL Server function UPPER in a SELECT statement:

SELECT UPPER(enp_nane) | NTO : enp_nane_var FROM enpl oyee;

Calling DB-Library functions

While PowerBuilder provides access to alarge percentage of the features within SQL Server,
in some cases you may decide that you need to call one or more DB-Lib functions directly
for a particular application. PowerBuilder provides access to any Windows DLL by using
external function declarations.

The DB-Lib calls qualify for thistype of access. Most DB-Lib calls require a pointer to

a DBPROCESS structure as their first parameter. If you want to call DB-Lib without
reconnecting to the database to get a DBPROCESS pointer, use the PowerScript DBHandle
function.

Page 255



Using Embedded SQL

DBHandle

DBHandle takes a transaction object as a parameter and returns along variable, which is

the handle to the database for the transaction. This handle is actually the DBPROCESS
pointer that PowerBuilder uses internally to communicate with the database. Y ou can use
thisreturned long value in the SQL Server DLLs and pass it as one of the parametersin your
function.

This example shows how to use DBHandle. Assume a successful connection has occurred
using the default transaction object (SQLCA):

// Define a variable to hold our DB handl e.

| ong SQLSer ver Handl e

/Il Go get the handl e.

SQLSer ver Handl e = SQLCA. DBHandl e( )

/1 Now that you have t he DBPROCESS poi nter,

/1 call the DLL function.
MyDLLFuncti on( SQ.ServerHandl e, parnl, parng2, ... )

In your DLL, cast the incoming long value into a pointer to a DBPROCESS structure:
MyDLLFunction( | ong 1SQ.Server Handl e,
parnl_t ype parnt,
parn2_type Parn2, ... )
{
DBPROCESS * pDat abase;

pDat abase = (DBPROCESS *) 1SQ.Server Handl e;
/1 DB-Lib functions can be call ed using pDatabase.

}

6.7.3 Microsoft SQL Server Transaction management statements

Transaction management statements

Y ou use the following transaction management statements with transaction objects to manage
connection and transactions for a SQL Server database:

* CONNECT

« COMMIT

» DISCONNECT

* ROLLBACK

Transaction management in triggers

Y ou should not use transaction statementsin triggers. A trigger is a special kind of stored
procedure that takes effect when you issue a statement such as INSERT, DELETE, or
UPDATE on a specified table or column. Triggers can be used to enforce referential integrity.

For example, assume that a certain condition within atrigger is not met and you want to
execute aROLLBACK. Instead of coding the ROLLBACK directly in the trigger, you should
use RAISERROR and test for that particular return code in the DBM S-specific return code
(SQLDBCode) property within the referenced transaction object.

See also
Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK

Page 256



Using Embedded

SQL

6.7.4 Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT, and

ROLLBACK

The following

table lists each transaction management statement and describes how it works

when you use the SQL Server interface to connect to a database:

Table6.9:

Statement  Description

CONNECT

Establishes the database connection. After you assign values to the required
properties of the transaction object, you can execute a CONNECT. After the
CONNECT completes successfully, PowerBuilder automatically starts a SQL
Server transaction. Thisisthe start of alogical unit of work.

COMMIT

COMMIT terminates the logical unit of work, guarantees that all changes
made to the database since the beginning of the current unit of work become
permanent, and starts a new logical unit of work.

If AutoCommitisfase, aCOMMIT TRANSACTION executes, then a
BEGIN TRANSACTION executes to start anew logical unit of work. If
AutoCommit is true, an error occurs when a COMMI T executes.

DISCONNECTerminates a successful connection. DISCONNECT automatically executes

aCOMMIT to guarantee that all changes made to the database since the
beginning of the current unit of work are committed.

If AutoCommit isfalse, aCOMMIT TRANSACTION executes automatically
to guarantee that all changes made to the database since the beginning of the
current logical unit of work are committed.

ROLLBACK

ROLLBACK terminates alogical unit of work, undoes all changes made to
the database since the beginning of the logical unit of work, and starts a new
logical unit of work.

If AutoCommitisfalse, aROLLBACK TRANSACTION executes, then
aBEGIN TRANSACTION executes to start anew logical unit of work. If
AutoCommit is true, an error occurs when a ROLLBACK executes.

See also

Microsoft SQL Server Performance and locking

Microsoft SQL Server Temporary tables

Microsoft SQOL Server Using AutoCommit

6.7.5 Microsoft SQL Server Using AutoCommit

Using AutoCommit

The setting of
PowerBuilder
AutoCommit i

the AutoCommit property of the transaction object determines whether
issues SQL statementsinside or outside the scope of a transaction. When
sset to false or O (the default), SQL statements are issued inside the scope of

atransaction. When you set AutoCommit to true or 1, SQL statements are issued outside the
scope of atransaction.

Page 257



Using Embedded SQL

Versions of SQL Server prior to SQL Server 2000 require you to execute Data Definition
Language (DDL) statements outside the scope of atransaction. If you execute a database
stored procedure that contains DDL statements within the scope of atransaction, an error
message is returned and the DDL statements are rejected. When you use the transaction
object to execute a database stored procedure that creates atemporary table, you do not want
to associate the connection with a transaction.

To execute SQL Server stored procedures containing DDL statementsin SQL Server 7 and
earlier, you must set AutoCommit to true so PowerBuilder issues the statements outside

the scope of atransaction. However, if AutoCommit is set to true, you cannot issue a
ROLLBACK. Therefore, you should set AutoCommit back to false (the default) immediately
after completing the DDL operation.

When you change the value of AutoCommit from false to true, PowerBuilder issues a
COMMIT statement by default.

Seealso

Microsoft SQL Server Performance and locking

Microsoft SQL Server Temporary tables

Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK

6.7.6 Microsoft SQL Server Performance and locking

An important consideration when designing a database application is deciding when
CONNECT and COMMIT statements should occur to maximize performance and limit
locking and resource use. A CONNECT takes a certain amount of time and can tie up
resources during the life of the connection. If thistimeis significant, then limiting the number
of CONNECT statementsis desirable.

In addition, after a connection is established, SQL statements can cause locks to be placed
on database entities. The more locks at a given moment in time, the more likely it is that the
locks will hold up another transaction.

Rules

No set of rulesfor designing a database application istotally comprehensive. However, when
you design a PowerBuilder application, you should do the following:

 Long-running connections

Determine whether you can afford to have long-running connections. If not, your
application should connect to the database only when absolutely necessary. After al the
work for that connection is complete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be issued as often

as possible to guarantee that all changes do in fact occur. More importantly, COMMITs
should be issued to release any locks that may have been placed on database entities as a
result of the statements executed using the connection.

» SetTrans or SetTransObject function

Determine whether you want to use default DatawWindow transaction processing (the
SetTrans function) or control the transaction in a script (the SetTransObject function).

Page 258



Using Embedded SQL

If you cannot afford to have long-running connections and therefore have many short-
lived transactions, use the default DataWindow transaction processing. If you want to keep
connections open and issue periodic COMMITSs, use the SetTransObject function and
control the transaction yourself.

| solation feature

SQL Server uses the isolation feature to support assorted database lock options. In
PowerBuilder, you can use the Lock property of the transaction object to set the isolation
level when you connect to a SQL Server database.

The following example shows how to set the Lock property to RU (Read uncommitted):

/1l Set the |ock property to read unconmitted
/[l in the default transaction object SQLCA.
SQLCA. Lock = "RU'

Example 1

This script uses embedded SQL to connect to a database and insert arow in the
ORDER_HEADER table and arow in the ORDER_ITEM table. Depending on the success of
the statements in the script, the script executes either a COMMIT or aROLLBACK.

/] Set the SQLCA connection properties.

SQLCA. DBMS = "SQ.Server"

SQLCA. server nanme = "SERVER24"

SQLCA. dat abase = " ORDERS"

SQLCA.logid = "JPL"

SQLCA. | ogpass = " TREESTUWP"

/] Connect to the database.

CONNECT USI NG SQLCA;

/1 Insert a rowinto the ORDER HEADER t abl e.

/1l A ROLLBACK is required only if the first row

/'l was inserted successfully.

I NSERT | NTO ORDER_HEADER ( ORDER | D, CUSTOVER | D)
VALUES ( 7891, 129 );

/] Test return code for ORDER _HEADER i nserti on.

if SQLCA sqglcode = 0 then

/1 Since the ORDER HEADER i s inserted,

[/l try to insert ORDER | TEM

I NSERT | NTO ORDER | TEM ORDER | D, | TEM NBR,
PART_NBR, QrY)

VALUES ( 7891, 1, '991PLS', 456 );

/] Test return code for ORDER | TEMinserti on.
if SQLCA. sgl code = -1 then

/1 1f insert fail ed.

/1 ROLLBACK insertion of ORDER HEADER
ROLLBACK USI NG SQLCA;
end if

end if

/1l Commit changes and di sconnect fromthe database.

DI SCONNECT USI NG SQLCA;

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 2

Page 259



Using Embedded SQL

This exampl e uses the scripts for the Open and Close events in awindow and the Clicked
event in a CommandButton to illustrate how you can manage transactions in a Datawindow
control. Assume that the window contains a Datawindow control dw_1 and that the user
entersdatain dw_1 and then clicks the Cb_Update button to send the data to the database.

Since this script uses SetTransObject to connect to the database, the programmer is
responsible for managing the transaction.

The window OPEN event script:

/Il Set the transaction object properties
/1 and connect to the database.

/1 Set the SQ.CA connection properties.
SQ.CA. DBM5S = "SQ.Server"

SQ.CA. server nane = " SERVER24"

SQLCA. dat abase = " ORDERS"

SQ.CA. logid = "JPL"

SQLCA. | ogpass = " TREESTUWP"

/1 Connect to the database.

CONNECT USI NG SQLCA;

/1 Tell the DataW ndow which transacti on object
/1 to use.

Set TransCbj ect ( dw_1, SQLCA )

The CommandButton CLICKED event script:

/1 Decl are ReturnVal ue an integer.
i nt eger ReturnVal ue
Ret urnVal ue = Update( dw_ 1 )
I/l Test to see if updates were successful.
if ReturnValue = -1 then
/1 Updates were not successful. Since we used
/1 SetTransObj ect, rollback any changes nade
/1 to the database.

ROLLBACK USI NG SQLCA;
el se
/1 Updates were successful. Since we used
/1 SetTransObj ect, commt any changes nade
/1 to the database.

COW T USI NG SQLCA;
end if

The window CLOSE event script:

// Di sconnect fromthe database.
DI SCONNECT USI NG SQLCA;

See also
Microsoft SQL Server Temporary tables

6.7.7 Microsoft SQL Server Non-cursor statements
The statements that do not involve cursors or procedures are:

DELETE (Microsoft SQL Server DELETE, INSERT, and UPDATE)

INSERT (Microsoft SQL Server DELETE, INSERT, and UPDATE)

SELECT (Microsoft SQL Server SELECT) (singleton)

UPDATE (Microsoft SQL Server DELETE, INSERT, and UPDATE)

Page 260



Using Embedded SQL

6.7.8 Microsoft SQL Server DELETE, INSERT, and UPDATE

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE statements the same
way. PowerBuilder inspects them for any PowerScript data variable references and replaces
all such references with a constant that conformsto SQL Server rules for the data type.

Example
Assume you enter the following statement:
DELETE FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var is a PowerScript data variable with the data type of integer that
has been defined within the scope of the script that contains the DELETE statement. Before
the DELETE statement is executed, emp_id_var isassigned a value (say 691) so that when
the DELETE statement executes, the database receives the following statement:

DELETE FROM enpl oyee WHERE enp_id = 691;
When isthis substitution technique used?

This variable substitution technique is used for all PowerScript variable types. When you use
embedded SQL, precede all PowerScript variableswith acolon (:).

See also
Microsoft SOL Server SELECT

6.7.9 Microsoft SQL Server SELECT
The SELECT statement contains input variables and output variables.

* Input variables are passed to the database as part of the execution and the substitution as
described above for DELETE, INSERT, and UPDATE.

» Output variables are used to return values based on the result of the SELECT statement.

Example 1
Assume you enter the following statement:

SELECT enp_nane, enp_sal ary
I NTO : enp_nane_var, :enp_salary_var
FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var, emp_salary var, and emp_name_var are variables defined
within the scope of the script that contains the SELECT statement, and emp_id var is
processed as described in the DELETE example above.

Both emp_name_var and emp_salary_var are output variables that will be used to return
values from the database. The data types of emp_name var and emp_salary var should be
the PowerScript data types that best match the SQL Server data type. When the data types do
not match perfectly, PowerBuilder converts them.

How big should numeric output variables be?

For numeric data, the output variable must be large enough to hold any value that may
come from the database.

Page 261



Using Embedded SQL

Assume the value for emp_id_var is 691 as in the previous example. When the
SELECT statement executes, the database receives the following statement:

SELECT enp_nane, enp_sal ary FROM enpl oyee WHERE enp_id = 691;

If the statement executes with no errors, data locations for the result fields are bound
internally. The data returned into these locations is then converted as necessary and
the appropriate PowerScript data variables are set to those values.

Example 2

This example assumes the default transaction object (SQLCA) has been assigned valid
values and a successful CONNECT has executed. It also assumes the data type of the emp _id
column in the employee tableis CHARACTER[10].

The user enters an employee ID into the single line edit field sle_Emp and clicks the button
Cb_Delete to delete the employee.

The script for the Clicked event in the CommandButton Cb_Deleteis:

/'l Make sure we have a val ue.
if sle_Enp.text <> "" then
[/l Since we have a value, try to delete it.
DELETE FROM enpl oyee
WHERE enp_id = :sle_Enp.text;
/] Test to see if the DELETE wor ked.
if SQ.CA sqgl code = 0 then
/1 1t seens to have worked, |et user know.
MessageBox( "Del ete", &
"The del ete has been successfully "&
+" processed!")
el se
/11t didn't work.
MessageBox( "Error", &
"The delete failed. Enployee IDis not "&
+"valid.")
end ifelse
/! No input value. Pronpt user.
MessageBox( "Error", &
"An enployee IDis required for "&
+"delete!" )
end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 3

This example assumes the default transaction object (SQLCA) has been assigned valid values
and a successful CONNECT has executed. The user wants to extract rows from the employee
table and insert them into the table named extract_employees. The extraction occurs when
the user clicks the button Cb_Extract. The boolean variable Y oungWorkersis set to TRUE or
FALSE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

i nt eger Enpl oyeeAgelLower Li mi t

Page 262



Using Embedded SQL

i nt eger Enpl oyeeAgeUpper Li mi t

/! Do they have young workers?
if ( YoungWorkers = TRUE ) then

/Il Yes - set the age limt in the YOUNG range.
/1 Assune no enpl oyee is under |egal working age.
Enpl oyeeAgelLowerLinmit = 16

/1 Pick an upper limt.
Enpl oyeeAgeUpperLimt = 42
el se

/Il No - set the age linmit in the OLDER range.
Enpl oyeeAgelLower Linmit = 43

/1 Pick an upper limt that includes all
/'l enpl oyees.
Enpl oyeeAgeUpper Li mit = 200
end if
I NSERT | NTO extract _enpl oyee(enp_i d, enp_nane)
SELECT enp_id, enp_nane FROM enpl oyee
VWHERE enp_age >= : Enpl oyeeAgelLower Li mi t
AND enp_age <= : Enpl oyeeAgeUpperLinit;

See also
Microsoft SQL Server DELETE, INSERT, and UPDATE

6.7.10 Microsoft SQL Server Cursor statements
In embedded SQL, statements that retrieve data can involve cursors. These statements are:

DECLARE cursor_name CURSOR FOR ...

OPEN cursor_name

FETCH cursor_name INTO ...

CLOSE cursor_name

Note UPDATE ... WHERE CURRENT OF cursor_name and DELETE ... WHERE
CURRENT OF cursor_name are not supported in SQL Server.

Retrieval

Retrieval using cursorsis conceptually similar to retrieval in the singleton SELECT. The
main difference is that since there can be multiple rowsin aresult set, you control when the
next row is fetched into the PowerScript data variables.

If you expect only asingle row to exist in the employee table with the specified emp_id,
use the singleton SELECT. In asingleton SELECT, you specify the SELECT statement and
destination variables in one concise SQL statement:
SELECT enp_nane, enp_sal ary

I NTO : enp_name_var, :enp_salary_var

FROM enpl oyee WHERE enp_id = :enp_id_var;

However, when a SELECT may return multiple rows, you must:

Page 263



Using Embedded SQL

1. Declare acursor.

2. Open it (which conceptually executes the SELECT).
3. Fetch rows as needed.

4. Closethe cursor.

Declaring and opening a cur sor

Declaring a cursor istightly coupled with the OPEN statement. The DECLARE specifiesthe

SELECT statement to be executed, and the OPEN actually executesit.

Declaring a cursor is similar to declaring a variable; a cursor is a nonexecutabl e statement
just like a variable declaration. Thefirst step in declaring a cursor is to define how the result
set looks. To do this, you need a SELECT statement. Since you must refer to the result set in

subsequent SQL statements, you must associate the result set with alogical name.

Scrolling and locking

Use the CursorScroll and CursorLock DBParm parameters to specify the scrolling and

locking options.

Example

Assume the SingleLineEdit sle_1 contains the state code for the retrieval:

/1 Declare cursor enp_curs for enployee table
Il retrieval.
DECLARE enp_curs CURSOR FOR
SELECT enp_id, enp_nanme FROM EMPLOYEE
WHERE enp_state = :sle_1.text;

/! Declare |local variables for retrieval.
string enp_id_var
string enp_nanme_var

/| Execute the SELECT statenment with
/1 the current value of sle_1.text.
OPEN enp_curs;

// At this point, if there are no errors,
/1 the cursor is available for further

/| processing.

See also

Microsoft SQL Server Fetching rows

Microsoft SQL Server Closing the cursor

6.7.11 Microsoft SQL Server Fetching rows

The SQL Server interfaces support the following FETCH statements
(Microsoft_SQL_Server FETCH):

* FETCH NEXT (Microsoft SQL Server FETCH NEXT)

» FETCH FIRST (Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH

LAST)

Page 264



Using Embedded SQL

« FETCH PRIOR (Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH
LAST)

« FETCH LAST (Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH
LAST)

6.7.12 Microsoft SQL Server FETCH NEXT

In the singleton SELECT, you specify variablesto hold the values for the columns within the
selected row. The FETCH statement syntax is similar to the syntax of the singleton SELECT.
Values arereturned INTO a specified list of variables.

This example continues the previous example by retrieving some data:

/Il Go get the first rowfromthe result set.
FETCH enp_curs | NTO : enp_i d_var, :enp_nhane_var;

If at least one row can beretrieved, this FETCH places the values of the emp_id and
emp_name columns from the first row in the result set into the PowerScript data variables
emp_id_var and emp_name_var. Executing another FETCH statement will place the
variables from the next row into specified variables.

FETCH statements typically occur in aloop that processes several rows from aresult set (one
row at atime): fetch the row, process the variables, and then fetch the next row.

What happenswhen theresult set is exhausted?

FETCH returns +100 (not found) in the SQL Code property within the referenced transaction
object. Thisisan informational return code; -1 in SQL Code indicates an error.

See also
Microsoft SOL Server FETCH NEXT
Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH LAST

6.7.13 Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH LAST

SQL Server support the FETCH FIRST, FETCH PRIOR, and FETCH LAST statementsin
addition to the conventional FETCH NEXT statement.

What if you only enter FETCH?
If you only enter FETCH, PowerBuilder assumes FETCH NEXT.

Example

This cursor example illustrates how you can loop through aresult set. Assume the default
transaction object (SQLCA) has been assigned valid values and a successful CONNECT has
been executed.

The statements retrieve rows from the employee table and then display a message box with
the employee name in each row that is found.

/'l Declare the enp_curs.

DECLARE enp_curs CURSOR FOR
SELECT enp_name FROM EMPLOYEE
WHERE enp_state = :sle_1.text;

Page 265



Using Embedded SQL

/1 Declare a destination variable for enployee
/'l names.
string enp_nane_var

/| Execute the SELECT statenment with the
/1 current value of sle_1.text.
OPEN enp_curs;

[/ Fetch the first rowfromthe result set.
FETCH enp_curs | NTO : enp_nane_var;

/1 Loop through result set until exhaust ed.
DO WH LE sql ca. sgl code = 0

[/l Pop up a nmessage box with the enpl oyee nane.
MessageBox (" Found an enpl oyee! ", enp_nane_var)

[/ Fetch the next row fromthe result set.
FETCH enp_curs | NTO : enp_nane_var;
LOOP

// Al done, so close the cursor.
CLOSE enp_curs;

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

See also
Microsoft SQL Server FETCH
Microsoft SQL Server FETCH NEXT

6.7.14 Microsoft SQL Server Closing the cursor

The CLOSE statement terminates processing for the specified cursor. CLOSE releases
resources associated with the cursor, and subsequent references to that cursor are allowed
only if another OPEN is executed. Although you can have multiple cursors open at the same
time, you should close the cursors as soon as possible for efficiency reasons.

In SQL Server, thereis an additional reason to close cursors as soon as possible. When an
OPEN statement completes successfully, there is aresult pending for the current connection.
FETCH statements can be executed as long as there are rows in the result set to be processed.
However, aslong as the result set is pending, no other commands can be executed using the
connection. To execute other commands using the connection, you must release the result set
by closing the cursor.

Internally, PowerBuilder issues a DB-Lib dbcancel statement when the cursor is closed. After
the CLOSE has been executed, the connection can be used for other SQL statements.

Example

This example illustrates the pending result set problem in SQL Server. These statements
use the cursor emp_curs to retrieve rows from the employee table, then attempt to execute
another SQL statement while the cursor is open:

[/l Declare the enp_curs.

Page 266



Using Embedded SQL

DECLARE enp_curs CURSOR FOR
SELECT enp_name FROM EMPLOYEE
WHERE enp_state = :sle_1.text;

/1 Declare a destination variable for enployee
/'l names.
string enp_nane_var

/! Execute the SELECT statenent with the current
/1 value of sle_1.text.
OPEN enp_curs;

/! Execute an | NSERT st at enent.
I NSERT | NTO of fice ( office_id, office city )
VALUES ( 1234, 'Boston' );

/1 This I NSERT statenent would fail because of
/1 the pending result set fromthe enp_curs

/1 cursor. If we had never opened the cursor, or
/1 if we had conpl eted processing of the cursor
/1 and then closed it, the | NSERT st atenent

/1 woul d work.

6.7.15 Microsoft SQL Server Database stored procedures

Retrieval and update

One of the most significant features of SQL Server is database stored procedures. Y ou can
use database stored procedures for:

* Retrieva only

» Update only

» Update and retrieval

PowerBuilder supports al these uses in PowerBuilder embedded SQL.
Using AutoCommit with database stored procedures

Database stored procedures often create temporary table that hold rows accumulated during
processing. To create these tables, the stored procedure executes SQL Data Definition
Language (DDL) statements. Versions of SQL Server prior to SQL Server 2000 do not allow
you to execute DDL statements within the scope of atransaction.

To execute SQL Server stored procedures that contain DDL statements statements in SQL
Server 7 and earlier, you must set the AutoCommit property of the transaction object to
true so PowerBuilder issues the statements outside the scope of a transaction. However,

if AutoCommit is set to true, you cannot issue a ROLLBACK. Therefore, you should set
AutoCommit back to false (the default) immediately after completing the DDL operation.

When you change the value of AutoCommit from false to true, PowerBuilder issues a
COMMIT statement by default.

System database stored procedures

Y ou can access system database stored procedures the same way you access user-defined
stored procedures. Y ou can use the DECLARE statement against any procedure and can
qualify procedure namesif necessary.

Page 267



Using Embedded SQL

See also

Microsoft SQL Server Retrieval

Microsoft SQL Server Temporary tables

Microsoft SQL Server Update

Microsoft SQL Server Using database stored procedures in DataWindow objects
Microsoft SQL Server Database stored procedures summary

6.7.16 Microsoft SQL Server Retrieval

PowerBuilder uses a construct that is very similar to cursors to support retrieval using
database stored procedures. In the PowerBuilder-supported embedded SQL, there are four
commands that involve database stored procedures:

* DECLARE procedure_name PROCEDURE FOR ...
» EXECUTE procedure_name

» FETCH procedure name INTO ...

* CLOSE procedure_name

Seealso

Microsoft SQL Server DECLARE and EXECUTE
Microsoft SQL Server FETCH

Microsoft SQL Server CLOSE

6.7.17 Microsoft SQL Server DECLARE and EXECUTE

PowerBuilder requires a declarative statement to identify the database stored procedure that is
being used and alogical name that can be referenced in subsequent SQL statements.

The general syntax for declaring a procedureis:

DECLARE | ogi cal _procedure_nane PROCEDURE FOR
SQL_Server _procedure_nane
@Par anml = val uel, @raran = val ue2,
@Par an8 = val ue3 OUTPUT,
{USI NG transaction_object} ;

where logical_procedure_name can be any valid PowerScript data identifier and
SQL_Server _procedure_name is the name of the stored procedure in the database.

The parameter references can take the form of any valid parameter string that SQL Server
accepts. PowerBuilder does not inspect the parameter list format except for purposes of
variable substitution. Y ou must use the reserved word OUTPUT to indicate an output
parameter. The USING clauseisrequired only if you are using a transaction object other than
the default transaction object (SQLCA).

Example 1

Assume a stored procedure procl is defined as:

Page 268



Using Embedded SQL

CREATE PROCEDURE procl AS
SELECT enp_nane FROM enpl oyee

To declare that procedure for processing within PowerBuilder, enter:
DECLARE enp_proc PROCEDURE FOR procl;

Note that this declaration is a nonexecutable statement, just like a cursor declaration. Where
cursors have an OPEN statement, procedures have an EXECUTE statement.

When an EXECUTE statement executes, the procedure isinvoked. The EXECUTE refersto
thelogical procedure name:

EXECUTE enp_pr oc;
Example 2
To declare a procedure with input and output parameters, enter:

DECLARE sp_durati on PROCEDURE FOR pr_date_diff_prd_ken

@ar_date_1 = :ad_start,
@ar _date_2 = :ad_end,
@tn_diff_prd = :Is_durati on OQUTPUT,;

6.7.18 Microsoft SQL Server FETCH

To access rows returned in aresult set, you use the FETCH statement the same way you use
it for cursors. The FETCH statement can be executed after any EXECUTE statement that
refersto a procedure that returns a result set.

Example 1

FETCH enp_proc | NTO : enp_nane_var;

Y ou can use this FETCH statement only to access values produced with a SELECT statement
in a database stored procedure. Y ou cannot use the FETCH statement to access computed
rows.

Database stored procedures can return multiple result sets. Assume you define a database
stored procedure proc2 as follows:

CREATE PROCEDURE proc2 AS
SELECT enp_nane FROM enpl oyee
SELECT part_nanme FROM parts

PowerBuilder provides access to both result sets:

/1 Declare the procedure.
DECLARE enp_proc2 PROCEDURE FCOR proc?2;

[/l Declare some variables to hold results.
string enp_nane_var
string part _name_var

/'l Execute the stored procedure.
EXECUTE enp_proc2;

[/l Fetch the first rowfromthe first result
/] set.
FETCH enp_proc2 | NTO : enp_nane_var;

/1 Loop through all rows in the first result

Page 269



Using Embedded SQL

Il set.
DO WH LE sql ca. sgl code = 0

[/ Fetch the next row fromthe first result set.
FETCH enp_proc2 | NTO : enp_nane_var;
LOOP

[/l At this point we have exhausted the first
[/l result set. After this occurs,
/! PowerBuil der notes that there is another
/1 result set and internally shifts result sets.
[/ The next FETCH executed will retrieve the
[/ first row fromthe second result set.
[/ Fetch the first row fromthe second result
/] set.
FETCH enp_proc2 I NTO : part _nane_var;

/1 Loop through all rows in the second result
Il set.

DO WH LE sql ca. sgl code = 0

/!l Fetch the next row fromthe second result
Il set.

FETCH enp_proc2 | NTO : part _nane_var;
LOOP

The result sets that will be returned when a database stored procedure executes cannot be
determined at compile time. Therefore, you must code FETCH statements that exactly match
the format of aresult set returned by the stored procedure when it executes.

Example 2

In the preceding example, if instead of coding the second fetch statement as:
FETCH enp_proc2 I NTO : part _nane_var;

you coded it as:

FETCH enp_proc2 INTO : part_varl,:part_var2,:part_var3;

the statement would compile without errors. But an execution error would occur: the number
of columnsin the FETCH statement does not match the number of columnsin the current
result set. The second result set returns values from only one column.

See also
Microsoft SOL Server FETCH NEXT
Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH LAST

6.7.19 Microsoft SQL Server CLOSE

If a database stored procedure returns aresult set, it must be closed when processing is
complete.

Closing a procedure looks the same as closing a cursor:

CLOSE enp_pr oc;

Aswith cursors, if a procedure executes successfully and returns at least one result set and
isnot closed, aresult set is pending and no SQL commands other than the FETCH can be
executed. Procedures with result sets should be closed as soon as possible.

Page 270



Using Embedded SQL

Y ou do not have to retrieve al the rows in aresult set to close arequest or procedure.

6.7.20 Microsoft SQL Server Update
Using the SQL Code property

If you know for sure that a particular procedure can never return result sets, then the
EXECUTE statement is al that is needed. If there is a procedure that may or may not return
aresult set, you can test the SQL Code property of the referenced transaction object for +100
(the code for NOT FOUND) after the EXECUTE.

The following table shows all the possible values for SQL Code after an EXECUTE:

Table6.10:

Return M eans

code

0 The EXECUTE was successful and at least one result set is pending.
Regardless of the number of FETCH statements executed, the procedure must
be explicitly closed with a CLOSE statement.

This codeisreturned even if the result set is empty.

+100 Fetched row not found.

-1 The EXECUTE was not successful and no result sets were returned. The
procedure does not require a CLOSE. If a CLOSE is attempted against this
procedure an error will be returned.

Example 1

Assume the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed. Also assume the description of the SQL Server
procedure good employeeis:

/1 SQ Server good_enpl oyee stored procedure:
CREATE PROCEDURE good_enpl oyee AS

UPDATE enpl oyee

SET enp_sal ary=enp_salary * 1.1

WHERE enp_status = ' EXC

This example illustrates how to execute a stored procedure that does not return any result
sets:

/1 Declare the procedure.
DECLARE good_enp_proc PROCEDURE
FOR good_enpl oyee;

/'l Execute it.
EXECUTE good_enp_pr oc;

/1 Test return code. Allow for +100 since you do
/1 not expect result sets.
if SQLCA. sqgl code = -1 then

/1 lssue error nessage since it failed.
MessageBox(" Stored Procedure Error!", &
SQLCA. sql errtext)

Page 271



Using Embedded SQL

end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 2

Assume the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed. Also assume the description of the SQL Server
procedure get_employeeis:
/1l SQ. Server get_enpl oyee stored procedure:

CREATE PROCEDURE get _enpl oyee @np_i d_parm

int AS SELECT enp_nane FROM enpl oyee
WHERE enp_id = @np_id_parm

This example illustrates how to pass parameters to a database stored procedure. Emp _id var
has been set elsewhere to 691

/1 Declare the procedure.
DECLARE get _enp_proc PROCEDURE FOR
get _enpl oyee @np_id_parm = :enp_id_var;

/] Declare a destination variable for enp_nane.
string enp_nane_var

/| Execute the stored procedure using the
/1 current value for enp_id_var.
EXECUTE get _enp_proc;

/] Test return code to see if it worked.
if SQLCA sqglcode = 0 then

/1 Since we got a row, fetch it and display it.
FETCH get _enp_proc | NTO : enp_nane_var ;

/1 Display the enpl oyee nane.
MessageBox(" Got ny enpl oyee! ", enp_nane_var)

/1 You are all done, so close the procedure.
CLOSE Get _enp_proc;
end if

PowerBuilder also provides access to return values and output parameters. The return values
and output parameters are always in the last result set returned by the stored procedure and
they arein this order:

return val ue, output parnml, output parm?2 ...

Example 3

Assume the default transaction object (SQLCA) has been assigned valid values and a
successful CONNECT has been executed. Also assume the description of the SQL Server
procedure return is:

CREATE PROCEDURE enp_return @rl int, @® int,
@esultp int output

AS SELECT @RESULTP = @rl* @2

RETURN 0

Page 272



Using Embedded SQL

where @m1, @m2, and @resultp are integers.
This example shows how PowerBuilder provides access to return values:

/] Stored procedure syntax

CREATE PROCEDURE sp_outputs @d int, @® int,
@esult int output as SELECT

@esult = @i *@72;

// Declare syntax in script.
DECLARE myproc PROCEDURE for sp_outputs @il = 3,
@2 = 3, @esult = 0 output;

// Note: The paraneters in the declare nmust match
/lexactly the paraneters in the sp.
EXECUTE nypr oc;

// Execute fetches needed until rc = 100
//then fetch output paraneters.
int nmyresult

FETCH nyproc into :myresult;
CLCOSE nypr oc;

6.7.21 Microsoft SQL Server Temporary tables

Database stored procedures frequently contain temporary tables that are used as repositories
when accumulating rows during processing within the procedure. Since versions of SQL
Server prior to SQL Server 2000 do not allow Data Definition Language (DDL) to be
executed within the scope of atransaction, PowerBuilder provides the boolean AutoCommit
property in the transaction object to allow you to handle these cases.

When AutoCommit is false (the default), normal transaction processing takes place: a
BEGIN TRANSACTION isinternally issued on a successful connect and this transaction is
terminated by a COMMIT TRANSACTION or ROLLBACK TRANSACTION.

When AutoCommit is set to true, no transaction management is performed. Therefore, stored
procedures that create temporary tables can be executed. This option should be used with
great care because of the recovery implications. If AutoCommit istrue, ROLLBACK cannot
be issued.

See also
Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK
Microsoft SQL Server Performance and locking

6.7.22 Microsoft SQL Server Using database stored procedures in DataWindow
objects

Y ou can use database stored procedures as a data source for Datawindow objects. The
following rules apply:
* Result set definition
Y ou must define what the result set looks like. The DatawWindow object cannot determine
thisinformation from the stored procedure definition in the database.

» Datawindow updates

Page 273



Using Embedded SQL

Y ou cannot perform DataWindow updates through stored procedures (that is, you cannot
update the database with changes made in the DataWindow object); only retrieval is
allowed. (However, the Datawindow can have update characteristics set manually through
the DataWindow painter.)

* Result set processing
Y ou can specify only one result set to be processed when you define the stored procedure
result set in the Datawindow painter.

» Computed rows

Computed rows cannot be processed in a DataWindow.

6.7.23 Microsoft SQL Server Database stored procedures summary
When you use database stored procedures in a PowerBuilder application, keep the following
points in mind:
» Manipulating stored procedures
To manipulate database stored procedures, PowerBuilder provides SQL statements that are
similar to cursor statements.
* Retrieval and update

PowerBuilder supports retrieval, update, or a combination of retrieval and update in
database stored procedures, including procedures that return no results sets and those that
return one or more result sets.

» Transactions and stored procedures with result sets

When a procedure executes successfully using a specific connection (transaction) and
returns at least one result set, no other SQL commands can be executed using that
connection until the procedure has been closed.

» Transactions and stored procedures without result sets

When a procedure executes successfully using a specific transaction but does not return
aresult set, the procedureis no longer active. No result sets are pending, and therefore a
CLOSE statement is not required.

6.8 Using Embedded SQL with Oracle
About this chapter

When you create scripts for a PowerBuilder application, you can use embedded SQL
statements in the script to perform operations on the database. The features supported when
you use embedded SQL depend on the DBM S to which your application connects.

Overview

When your PowerBuilder application connects to an Oracle database, you can use embedded
SQL inyour scripts.

Page 274



Using Embedded SQL

If you are using these interfaces to connect to an Oracle database, you can embed the
following types of SQL statements in scripts and user-defined functions:

+ Transaction management statements
* Non-cursor statements

» Cursor statements

» Database stored procedures

When you use Oracle database interfaces, PowerBuilder supports SQL CREATE TY PE and
CREATE TABLE statements for Oracle user-defined types (objects) in the ISQL view of
the Database painter. It correctly handles SQL SELECT, INSERT, UPDATE, and DELETE
statements for user-defined types in the Database and DataWindow painters.

Oracle Call Interface (OCI)

The Oracle database interfaces use the Oracle Call Interface (OCI) to interact with the
database.

When you use embedded SQL, PowerBuilder makes the required callsto the OCI. Therefore,
you do not need to know anything about the OCI to use embedded SQL in PowerBuilder.

See also

Using Oracle
Oracle SQL functions

Oracle Transaction management statements

Oracle Non-cursor statements

Oracle Cursor statements
Oracle Database stored procedures

Oracle Name qualification

6.8.1 Oracle Name qualification

Since PowerBuilder does not inspect all SQL statement syntax, you can qualify Oracle
catalog entities as necessary.

For example, all of the following qualifications are acceptable:
* emp_name

* employee.emp_name

* jpl.employee.emp_name

6.8.2 Oracle SQL functions

In SQL statements, you can use any function that Oracle supports (such as aggregate or
mathematical functions).

Page 275



Using Embedded SQL

For example, you can use the Oracle function UPPER in a SELECT statement:
SELECT UPPER(enp_nane) | NTO : enp_nane_var FROM enpl oyee;

Calling OCI functions

While PowerBuilder provides access to alarge percentage of the features within Oracle, in
some cases you may want to call one or more OCI functions directly. In PowerBuilder you
can use external function declarations to access any Windows DLL.

The OCI calls qualify for thistype of access. Most OCI calls require a pointer to an
LDA_DEF structure as their first parameter. If you want to call OCI functions without
reconnecting to the database to get an LDA_DEF pointer, use the PowerScript DBHandle
function.

DBHandle

DBHandle takes a transaction object as a parameter and returns along variable, which isthe
handle to the database for the transaction. This handleis actually the LDA_DEF pointer that
PowerBuilder uses internally to communicate with the database. Y ou can use the returned
valuein your DLLs and passit as one of the parametersin your function.

Example

This example shows how to use DBHandle. Assume a successful connection has occurred
using the default transaction object (SQLCA):

// Define a variable to hold our DB handl e.

Il ong Oracl eHandl e

/1 Cet the handle.

O acl eHandl e = SQLCA. DBHandl e( )

/1 Now that you have the LDA DEF pointer,

/1 call the DLL function.

MyDLLFuncti on( Oracl eHandl e, parnil, parn, ... )

Inyour DLL, cast the incoming long value into a pointer to an ORA_CSA:

VO D FAR PASCAL MyDLLFunction( |ong | O acl eHandl e,

parml_type parmni,

parn2_type parn2, ... )
{
[/l pLda will provide addressability to the Oracle
/1 1 ogon data area
Lda_Def FAR *pLda = (Lda_Def FAR *)I| Oracl eHandl e;
[/l pCda will point to an Oracle cursor
Cda_Def FAR *pCda = &

d obal Al | ocPt r (GVEM MOVEABLE, si zeof (Cda_Def)) ;

if(! pCda )
/'l handle error...
i f(open(pCda, pLda, NULL, -1, -1, NULL, -1))
/'l handle error...
#i fdef Oracl e7
/| parse the DELETE st at enent
i f(osql 3(pCda,

"DELETE FROM EMPLOYEE WHERE Enp_| D = 100", -1);
#el se
i f (oparse(pCda,

"DELETE FROM EMPLOYEE

WHERE Enp_I D = 100", -1, 0, 1) :

#endi f
/'l handle error...

i f(ocl ose(pCda))

Page 276



Using Embedded SQL

/1 handle error. ..
G obal FreePtr (pCda);

}

6.8.3 Oracle Transaction management statements

Y ou can use the following transaction management statements with one or more transaction
objects to manage connections and transactions for an Oracle database:

 CONNECT

* DISCONNECT
« COMMIT

* ROLLBACK

See also
Oracle Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK

6.8.4 Oracle Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK

The following table lists each transaction management statement and describes how it works
when you use any Oracle interface to connect to a database:

Table6.11:

Statement Description

CONNECT | Establishes the database connection. After you assign values to the required
properties of the transaction object, you can execute a CONNECT. After the
CONNECT completes successfully, PowerBuilder automatically starts an
Oracle transaction. Thisis the start of alogical unit of work.

DISCONNEC @& minates a successful connection. DISCONNECT automatically executes
aCOMMIT to guarantee that all changes made to the database since the
beginning of the current unit of work are committed.

COMMIT |COMMIT terminatesthelogical unit of work, guarantees that all changes
made to the database since the beginning of the current unit of work become
permanent, and starts anew logical unit of work.

ROLLBACKROLLBACK terminates alogical unit of work, undoes all changes made to
the database since the beginning of the logical unit of work, and starts a new
logical unit of work.

Note Oracle does not support the AutoCommit property of the transaction object.
See also

Oracle Performance and locking

6.8.5 Oracle Performance and locking

An important consideration when designing a database application is deciding when
CONNECT and COMMIT statements should occur to maximize performance and limit

Page 277



Using Embedded SQL

locking and resource use. A CONNECT takes a certain amount of time and can tie up
resources during the life of the connection. If thistime is significant, then limiting the number
of CONNECTsisdesirable.

After a connection is established, SQL statements can cause locks to be placed on database
entities. The more locks there are in place at a given moment in time, the more likely it isthat
the locks will hold up another transaction.

Rules

No set of rulesfor designing a database application istotally comprehensive. However, when
you design a PowerBuilder application, you should do the following:

 Long-running connections

Determine whether you can afford to have long-running connections. If not, your
application should connect to the database only when absolutely necessary. After all the
work for that connection is complete, the transaction should be disconnected.

If long-running connections are acceptable, then COMMITs should be issued as often

as possible to guarantee that all changes do in fact occur. More importantly, COMMITs
should be issued to release any locks that may have been placed on database entities as a
result of the statements executed using the connection.

» SetTrans or SetTransObject function

Determine whether you want to use default DataWindow transaction processing (the
SetTrans function) or control the transaction in a script (the SetTransObject function).

If you cannot afford to have long-running connections and therefore have many short-
lived transactions, use the default DataWWindow transaction processing. If you want to keep
connections open and issue periodic COMMITSs, use the SetTransObject function and
control the transaction yourself.

Example 1

This script uses embedded SQL to connect to a database and insert arow in the
ORDER_HEADER table and arow in the ORDER_ITEM table. Depending on the success of
the statements in the script, the script executesa COMMIT or ROLLBACK.

/'l Set the SQLCA connection properties.
SQLCA. DBMS = " Or3"

SQLCA. servername = " @NS: SHOPFLR'
SQLCA. l ogid = "JPL"

SQ.CA. | ogpass = " STUW"

// Connect to the database.
CONNECT USI NG SQLCA;

/Il Insert a rowinto the ORDER HEADER t abl e.

/!l A ROLLBACK is required only if the first row

/1 was inserted successfully.

I NSERT | NTO ORDER HEADER ( ORDER | D, CUSTOVER | D)
VALUES ( 7891, 129 );

/Il Test return code for ORDER HEADER i nserti on.
If SQLCA. sqgl code = 0 then

// Since the ORDER HEADER i s inserted,

Page 278



Using Embedded SQL

/] try to insert ORDER | TEM
I NSERT | NTO ORDER | TEM &
(ORDER_| D, | TEM_NBR, PART_NBR, QTY)
VALUES ( 7891, 1, '991PLS', 456 );

/] Test return code for ORDER | TEM i nserti on.
I f SQ.CA. sglcode = -1 then

/1 The insert fail ed.

/1 Roll back insertion of ORDER HEADER

ROLLBACK USI NG SQLCA;

End | f

End |f

COMWM T USI NG SQLCA;

/! Disconnect fromthe database.
DI SCONNECT USI NG SQLCA;

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 2

This exampl e uses the scripts for the Open and Close events in awindow and the Clicked
event in a CommandButton to illustrate how you can manage transactions in a Datawindow
control. Assume the window contains a DataWindow control dw_1 and the user enters datain
dw_1 and then clicks the Cb_Update button to send the data to the database.

Since this script uses SetTransObject to connect to the database, the programmer is
responsible for managing the transaction.

The window Open event script:

/'l Set the transacti on object properties
// and connect to the database.

/'l Set the SQLCA connection properties.
SQLCA. DBMS = " Or3"

SQLCA. servername = " @NS: SHOPFLR'

SQLCA. l ogid = "JPL"

SQ.CA. | ogpass = " STUW"

// Connect to the database.
CONNECT USI NG SQLCA;

/1 Tell the DataW ndow which transaction object to use.
dw_1. Set TransObj ect ( SQLCA )

The CommandButton Clicked event script:

/| Decl are ReturnVal ue an integer.
i nt eger Ret ur nVal ue

/] Update dw_1.
Ret urnVal ue = dw_1. Update( )

/1 Test to see whether the updates were successful.
If ReturnValue = -1 then

/1 The updates were not successful.
/1 Roll back any changes nade to the database.
ROLLBACK USI NG SQLCA;

Page 279



Using Embedded SQL

El se

/1 The updates were successful.

[/ Commit any changes nade to the database.
COW T USI NG SQLCA;

End |f

The window Close event script:
/1l Since we used Set TransObj ect,

// disconnect fromthe database.
DI SCONNECT USI NG SQLCA;

6.8.6 Oracle Non-cursor statements
The statements that do not involve cursors are;

» DELETE (Oracle DELETE, INSERT, and UPDATE)

* INSERT (Oracle DELETE, INSERT, and UPDATE)

» Oracle SELECT (singleton)

» UPDATE (Oracle DELETE, INSERT, and UPDATE)

6.8.7 Oracle DELETE, INSERT, and UPDATE

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE statements the same
way. PowerBuilder inspects them for any PowerScript variable references and replaces all
references with a constant that conforms to Oracle rules for the data type.

Example
Assume you enter the following statement:
DELETE FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var is a PowerScript variable with the data type of integer that has
been defined within the scope of the script that contains the DELETE statement. Before the
DELETE statement is executed, emp_id var isassigned a value (say 691) so that when the
DELETE statement executes, the database receives the following statement:

DELETE FROM enpl oyee WHERE enp_id = 691;
When isthis substitution technique used?

This variable substitution technique is used for all PowerScript variable types. When you use
embedded SQL, precede all PowerScript variableswith acolon ().

See also
Oracle SELECT

6.8.8 Oracle SELECT
The SELECT statement contains input variables and output variables.

* Input variables are passed to the database as part of the execution and the substitution as
described above for DELETE, INSERT, AND UPDATE.

Page 280



Using Embedded SQL

» Output variables are used to return values based on the result of the SELECT statement.

Example 1
Assume you enter the following statement:

SELECT enp_nane, enp_sal ary
I NTO : enp_nanme_var, :enp_salary_var
FROM enpl oyee WHERE enp_id = :enp_id_var;

In this example, emp_id_var, emp_salary var, and emp_name_var are variables defined
within the scope of the script that contains the SELECT statement, and emp_id var is
processed as described in the DELETE example above.

Both emp_name_var and emp_salary_var are output variables that will be used to return
values from the database. The data types of emp_name var and emp_salary var should be
the PowerScript data types that best match the Oracle data type. When the data types do not
match perfectly, PowerBuilder converts them.

How big should numeric output variables be?

For numeric data, the output variable must be large enough to hold any value that may
come from the database.

Assume the value for emp_id var is 691 asin the previous example. When the SELECT
statement executes, the database receives the following statement:

SELECT enp_nane, enp_sal ary FROM enpl oyee WHERE enp_i d=691;

If the statement executes with no errors, data locations for the result fields are bound
internally. The data returned into these locations is then converted as necessary, and the
appropriate PowerScript variables are set to those values.

Example 2

This example assumes the default transaction object (SQLCA) has been assigned valid
values and a successful CONNECT has executed. It also assumes the data type of the emp _id
column in the employee table is CHARACTER[10].

The user enters an employee ID into the line edit le_ Emp and clicks the button Cb_Delete to
delete the employee.

The script for the Clicked event in the CommandButton Cb_Deleteis:

/1l Make sure we have a val ue.
if sle_Emp.text <> "" then
[/l Since we have a value, let's try to delete it.
DELETE FROM enpl oyee
WHERE enp_id = :sle_Enp.text;
/] Test to see if the DELETE worked.
if SQ.CA sqglcode = 0 then
/1l It seenms to have worked, |let user know.
MessageBox( "Del ete", &
"The del ete processed successful ly!l")
el se
/1 It didn't work.
MessageBox("Error", &
"The delete failed. Invalid Enpl oyee |ID")
end if

Page 281



Using Embedded SQL

el se
/1 No input value. Pronpt user.

MessageBox( "Error", &

"An enployee IDis required for delete!")
end if

Error checking

Although you should test the SQL Code after every SQL statement, these examples
show statements to test the SQL Code only to illustrate a specific point.

Example 3

This example assumes the default transaction object (SQLCA) has been assigned valid values
and a successful CONNECT has executed. The user wants to extract rows from the employee
table and insert them into the table named extract_employees. The extraction occurs when
the user clicks the button Cb_Extract. The boolean variable Y oungWorkersis set to TRUE or
FALSE elsewhere in the application.

The script for the Clicked event for the CommandButton Cb_Extract is:

i nt eger Enpl oyeeAgelLower Li m t

i nt eger Enpl oyeeAgeUpper Li m t

/1 Do they have young workers?

if (YoungWorkers = TRUE ) then

/Il Yes - set the age limt in the YOUNG range.

/'l Assune no enpl oyee is under |egal working age.
Enpl oyeeAgelLowerLimt = 16

/1 Pick an upper limt.
Enpl oyeeAgeUpperLimt = 42

el se

/!l No - set the age limt in the OLDER range.
Enpl oyeeAgelLowerLimt = 43

/1 Pick an upper limt that includes all

/'l enpl oyees.
Enpl oyeeAgeUpperLim t = 200

end if

I NSERT | NTO extract_enpl oyee (enp_i d, enp_nane)
SELECT enp_id, enp_name FROM enpl oyee

VWHERE enp_age >= : Enpl oyeeAgelLowerLimt AND
enp_age <= : Enpl oyeeAgeUpperLimt;

6.8.9 Oracle Cursor statements

In embedded SQL, statements that retrieve data and statements that update data can both
involve cursors.

Retrieval statements

Theretrieval statements that involve cursors are:

DECLARE cursor_name CURSOR FOR ...

OPEN cursor_name

FETCH cursor_ nameINTO ...

CLOSE cursor_name

Page 282



Using Embedded SQL

Update statements

The update statements that involve cursors are:
« UPDATE ... WHERE CURRENT OF cursor_name
 DELETE ... WHERE CURRENT OF cursor_name

PowerBuilder supports al Oracle cursor features.
See also
Oracle Cursor support summary

Oracle Retrieval
Oracle Update

6.8.10 Oracle Retrieval

Retrieval using cursorsis conceptually similar to retrieval in the singleton SELECT. The
main difference is that since there can be multiple rowsin aresult set, you control when the
next row is fetched into the PowerScript variables.

If you expect only asingle row to exist in the employee table with the specified emp_id,
use the singleton SELECT. In asingleton SELECT, you specify the SELECT statement and
destination variables in one concise SQL statement:
SELECT enp_nane, enp_sal ary

I NTO : enp_name_var, :enp_salary_var

FROM enpl oyee WHERE enp_id = :enp_id_var;

However, if the SELECT may return multiple rows, you must:
1. Declareacursor.

2. Open it (which conceptually executes the SELECT).

3. Fetch rows as needed.

4. Closethe cursor.

Declaring and opening a cur sor

Declaring a cursor is tightly coupled with the OPEN statement. The DECLARE specifiesthe
SELECT statement to be executed, and the OPEN actually executes it.

Declaring a cursor is similar to declaring a variable; a cursor is a nonexecutabl e statement
just like a variable declaration. Thefirst step in declaring a cursor is to define how the result
set looks. To do this, you need a SELECT statement, and since you must refer to the result set
in subsequent SQL statements, you must associate the result set with alogical name.

Note

For UPDATE ... WHERE CURRENT OF cursor_name and DELETE ... WHERE
CURRENT OF cursor_name statements to execute successfully, the SELECT statement must
contain the FOR UPDATE clause.

Page 283



Using Embedded SQL

Example
Assume the SingleLineEdit sle_1 contains the state code for the retrieval:

/1 Declare cursor enp_curs for enployee table
[l retrieval.
DECLARE enp_curs CURSOR FOR
SELECT enp_id, enp_name FROM EMPLOYEE
WHERE enp_state = :sle_1.text;
/1 For UPDATE WHERE CURRENT OF cursor_nane and
/1 DELETE WHERE CURRENT OF cursor_nane to work
/1 correctly in Oracle 7, include the FOR UPDATE
/1 clause in the SELECT statenent.
/] Declare |local variables for retrieval.
string enp_i d_var
string enp_nane_var
/| Execute the SELECT statenment with
/1 the current value of sle_1.text.
OPEN enp_curs;
// At this point, if there are no errors,
/1 the cursor is available for further processing.

Fetching Rows

In the singleton SELECT, you specify variables to hold the values for the columns within the
selected row. The FETCH statement syntax is similar to the syntax of the singleton SELECT.
Values are returned INTO a specified list of variables.

This exampl e continues the previous example by retrieving some data:

/Il Get the first row fromthe result set.
FETCH enp_curs | NTO : enp_i d_var, :enp_nane_var;

If at least one row can beretrieved, this FETCH places the values of the emp_id and
emp_name columns from the first row in the result set into the PowerScript variables

emp_id var and emp_name_var. FETCH statements typically occur in aloop that processes
severa rows from aresult set (onerow at atime), but that is not the only way they are used.

What happenswhen theresult set is exhausted?

FETCH returns +100 (not found) in the SQL Code property within the referenced
transaction object. Thisis an informational return code; -1 in SQL Code indicates an
error.

Closing the cursor

The CLOSE statement terminates processing for the specified cursor. CLOSE releases
resources associated with the cursor, and subsequent references to that cursor are allowed
only if another OPEN is executed. Although you can have multiple cursors open at the same
time, you should close the cursors as soon as possible for efficiency reasons.

6.8.11 Oracle Update

After aFETCH statement compl etes successfully, you are positioned on a current row within
the cursor. At this point, you can execute an UPDATE or DELETE statement using the
WHERE CURRENT OF cursor_name syntax to update or delete the row. PowerBuilder
enforces Oracle cursor update restrictions, and any violation results in an execution error.

Example 1

Page 284



Using Embedded SQL

This cursor example illustrates how you can loop through aresult set. Assume the default
transaction object (SQLCA) has been assigned valid values and a successful CONNECT has

been executed.

The statements retrieve rows from the employee table and then display a message box with

the employee name in each row that is found.

/1 Declare the enp_curs cursor.
DECLARE enp_curs CURSOR FOR
SELECT enp_name FROM EMPLOYEE
WHERE enp_state = :sle_1.text;
/| For UPDATE WHERE CURRENT OF cursor_name and
/1 DELETE WHERE CURRENT OF cursor_nane to work
[/l correctly in Oracle 7, include the FOR UPDATE
/1 clause in the SELECT st atenent.
/] Declare a destination variable for enpl oyee
/'l names.
string enp_nane_var
/'l Execute the SELECT statenment with the
/1 current value of sle_1.text.
OPEN enp_curs;
/1 Fetch the first row fromthe result set.
FETCH enp_curs | NTO : enp_nane_var;
/1 Loop through result set until exhausted.
DO WHI LE SQLCA. sqgl code = 0
/1 Display a nmessage box with the enpl oyee nane.
MessageBox (" Found an enpl oyee! ", enp_nane_var)
/!l Fetch the next row fromthe result set.
FETCH enp_curs | NTO : enp_nane_var;
LOOP
/[l Al'l done, so close the cursor.
CLOSE enp_curs;

Error checking

Although you should test the SQL Code after every SQL statement, these examples

show statements to test the SQL Code only to illustrate a specific point.

Example 2

This cursor example illustrates how to use a cursor to update or delete rows. The statements
use emp_curs to retrieve rows from the employee table and then ask whether the user wants

to delete the employee:

/1 Declare the enp_curs cursor.
DECLARE enp_curs CURSOR FOR

SELECT enp_nanme FROM enpl oyee

WHERE enp_state = :sle_1.text;

/| Declare a destination variable for enpl oyee
/'l names.
string enp_name_var
/] Declare a return variable for the MessageBox.
int return_var
/| Execute the SELECT statenment with the current
/1 value of sle_1.text.
OPEN enp_curs;
/1 Fetch the first row fromthe result set.
FETCH enp_curs | NTO : enp_nane_var ;
/1 Loop through result set until it is
/'l exhaust ed.
DO WHI LE SQLCA. sqgl code = 0
/1 Ask the user to confirmthe del etion.

Page 285



Using Embedded SQL

return_var = MessageBox( "Want to delete?", &
enp_var _name, Question!, YesNo!, 2)
/1 Delete?
If ( return_var = 1) then
/Il Yes - delete the enpl oyee.
DELETE FROM enpl oyee
WHERE CURRENT OF enp_curs;
End |f
/!l Fetch the next row fromthe result set.
FETCH enp_curs | NTO : enp_nane_var;
LOOP
/[l Al'l done, so close the cursor.
CLOSE enp_curs;

6.8.12 Oracle Cursor support summary
When you use cursors with any Oracle interface, keep the following points in mind:

 Oracle provides native support for cursors.
» PowerBuilder supports retrieval using cursors.

» PowerBuilder supports delete or update using cursors.

6.8.13 Oracle Database stored procedures
Oracle stored procedures

If your database is Oracle Version 7.2 or higher, you can use an Oracle stored procedure that
has aresult set asan IN OUT (reference) parameter.

Procedures with a single result set

Y ou can use stored procedures that return a single result set in DatawWindow objects, reports,
and embedded SQL, but not when using the RPCFUNC keyword to declare the stored
procedure as an external function or subroutine.

Procedures with multiple result sets

Y ou can use stored procedures that return multiple result sets only in embedded SQL.
Multiple result sets are not supported in DataWindow objects, reports, or with the RPCFUNC

keyword.

The 090 database interface supports SQL CREATE TY PE and CREATE TABLE statements
for Oracle user-defined types (objects) in the ISQL view of the Database painter. It correctly
handles SQL SELECT, INSERT, UPDATE, and DELETE statements for user-defined types
in the Database and DataWindow painters. For more information, see Using Oracle

Methods for using Oracle stored procedures
There are three methods for using Oracle stored procedures in a PowerBuilder application:

* Asadatasource
for Datawindow objects.

* RPCFUNC keyword (Recommended)

Use the RPCFUNC keyword to declare the stored procedure as an external function
or external subroutine. Y ou cannot use the RPCFUNC keyword with Oracle stored

Page 286



Using Embedded SQL

procedures that return result sets. Using the RPCFUNC keyword to declare the stored
procedure provides the best performance and has more supported features and fewer
limitations than the DECL ARE Procedure and PBDBM S methods.

 DECLARE Procedure statement

Use the DECLARE Procedure (Oracle DECLARE and EXECUTE) statement to declare
the stored procedure as an external function or external subroutine. Thisincludes support
for fetching against Oracle stored procedures that return result sets.

See also
Supported features when using Oracle stored procedures
Using DECLARE, EXECUTE, FETCH, and CLOSE with Oracle stored procedures

6.8.14 Supported features when using Oracle stored procedures
Supported featureswith RPCFUNC keywor d

The following are supported and unsupported Oracle PL/SQL features when you use the
RPCFUNC keyword to declare the stored procedure:

Table6.12:
UselIN, OUT, and IN OUT parameters Pass and return records

Use an unlimited number of parameters

Overload procedures

Pass and return PowerScript arrays (PL/SQL
tables)

Use function return codes

Use blobs up to 32,512 byteslong as
parameters

Supported featureswith DECL ARE Procedur e statement

The following are supported and unsupported Oracle PL/SQL features when you use the
DECLARE Procedure statement:

Table 6.13:
Use IN and OUT parameters Use IN OUT parameters
Use up to 256 parameters Pass and return records

Use more than 256 parameters

Pass and return PowerScript arrays (PL/SQL
tables)

Page 287



Using Embedded SQL

You can Y ou cannot
Overload procedures

For an example that uses a REF CURSOR variable of type IN OUT, see Using Oracle

6.8.15 Using DECLARE, EXECUTE, FETCH, and CLOSE with Oracle stored
procedures

PowerBuilder provides SQL statements that are very similar to cursor operations to support
retrieval using database stored procedures. In PowerBuilder embedded SQL, there are four
commands that involve database stored procedures:

» DECLARE procedure_name PROCEDURE FOR ... (Oracle DECLARE and EXECUTE)

* EXECUTE procedure_name (Oracle DECLARE and EXECUTE)

* FETCH procedure_nameINTO ... (Oracle FETCH)

» CLOSE procedure_name (Oracle CLOSE)

6.8.16 Oracle DECLARE and EXECUTE

PowerBuilder requires a declarative statement to identify the database stored procedure that
isbeing used and alogical name that can be referenced in subsequent SQL statements. The
general syntax for declaring aprocedureis:

DECLARE | ogi cal _procedure_nane PROCEDURE FOR
Oracl e_procedure_nane(: | nParamd, : | nParan®2, ...)
{USI NG transacti on_object};

where logical_procedure_name can be any valid PowerScript data identifier and
Oracle_procedure_name is the name of the stored procedure in the database.

The parameter references can take the form of any valid parameter string that Oracle accepts.
PowerBuilder does not inspect the parameter list format except for purposes of variable
substitution. The USING clause is required only if you are using a transaction object other
than the default transaction object.

Y ou can use Oracle Named or Positional notation to specify the procedure arguments.
Positional is simpler to specify, but you must use Named if any output parameters are defined
to the left of any input parameters.

Example 1
If a stored procedure is defined as:

CREATE PROCEDURE spni
(dept varchar2, nmgr_name OUT varchar 2)
IS | utype varchar2(10);
BEG N
SELECT manager | NTO ngr_nanme FROM ngr_t abl e
WHERE dept _nanme = dept;
END;

To declare that procedure for processing within PowerBuilder, you code:

Page 288



Using Embedded SQL

DECLARE dept _proc PROCEDURE FOR spmil(: dept);

Note that this declaration is a non-executable statement, just like a cursor declaration. Where
cursors have an OPEN statement, procedures have an EXECUTE statement.

When the EXECUTE statement executes, the procedure isinvoked. The EXECUTE refersto
the logical procedure name.

EXECUTE dept _pr oc;

Example 2

The following example that declares afunction in a service object that reads a pipe shows the
use of named notation:

public function integer f_GCetld (string as_Pi peNane)
double Idbl_Id
DECLARE f _Get|d PROCEDURE FOR
f_Getld (pipe_name => :as_Pi peNane) USI NG SQLCA;
EXECUTE f_Get | d;
FETCH f _Getld INTO :Idbl _Id;
CLCSE f_Getl d;
RETURN | dbl _I d;

Example 3

Given this procedure:

CREATE OR REPLACE PROCEDURE spu_edt _obj ect (
0_i d_object OUT NUMVBER,

o_nessage OUT VARCHARZ,
a_id_object NUMBER,

a_param VARCHAR2 : = NULL,

a val ue VARCHAR2 : = NULL

) as

begi n

0_i d_object := 12345;
o_message := '"Hello World';
end;

The DECLARE statement must use hamed notation because output parameters are defined to
the left of input parameters:

dec{0} o_id_object, id_obiect = 54321
string o_nessage, param = 'Test'

DECLARE proc_updat e PROCEDURE FOR spu_edt object (
a_id_object => :id_object,

a_param => : param

)

USI NG SQLCA;

EXECUTE pr oc_updat e;

i f SQLCA. Sgl Code 0 then
SQLCA. f _out _error()
RETURN -1

end if

FETCH proc_update |INTO : o_i d_obj ect, o_nessage;
i f SQLCA. Sgl Code 0 then
SQLCA. f _out _error()

RETURN -1
end if

Page 289



Using Embedded SQL

6.8.17 Oracle FETCH

To access rows returned by a procedure, you use the FETCH statement as you did for cursors.
Y ou can execute the FETCH statement after any EXECUTE statement that executes a
procedure that has output parameters.

Example

FETCH dept _proc | NTO : nane_var ;

The FETCH FROM procedure statements must exactly match the output parameters returned
by the stored procedure when it executes.

6.8.18 Oracle CLOSE

If a database stored procedure has output parameters, it must be closed when processing is
complete.

Closing a procedure looks the same as closing a cursor.
Example

CLCSE dept _proc;

Page 290



Appendix

Appendix A. Appendix

The Appendix describes how to modify the PBODB.ini initialization file.

A.1 APPENDIX Adding Functions to the PBODB.ini Initialization File
About this appendix

Usually, you do not need to modify the PBODB.ini initidization file. In certain situations,
however, you might need to add functions to the PBODB.ini initialization file for connections
to your back-end DBMS through the ODBC or OLE DB interface in PowerBuilder.

This appendix describes how to add functions to the PBODB.ini initialization file if
necessary.

A.1.1 About the PBODB.ini file
What isthe PBODB.ini initialization file?

When you access data through the ODBC interface, PowerBuilder uses the PBODB
initialization file (PBODB.ini) to maintain access to extended functionality in the back-end
DBMS for which ODBC does not provide an API call. Examples of extended functionality
are SQL syntax or function calls specific to a particular DBMS.

See also: Whereis PBODB.ini?
Editing PBODB.ini

In most cases, you do not need to modify PBODB.ini. Changes to thisfile can adversely
affect PowerBuilder. Change PBODB.ini only if you are asked to do so by a Technical
Support representative.

However, you can edit PBODB.ini if you need to add functions for your back-end DBMS.

If you modify PBODB.ini, first make a copy of the existing file. Then keep arecord of
all changes you make. If you call Technical Support after modifying PBODB.ini, tell the
representative that you changed the file and describe the changes you made.

A.1.1.1 Adding functions to PBODB.ini
PBODB.ini lists the functions for certain DBM Ss that have ODBC drivers. If you need to
add afunction to PBODB.ini for use with your back-end DBMS, you can do either of the
following:
» Existing sections
Add the function to the Functions section for your back-end database if this section exists
in PBODB.ini.
* New sections

Create new sections for your back-end DBMS in PBODB.ini and add the function to the
newly created Functions section.

Page 291



Appendix

A.1.1.1.1 Adding functions to an existing section in the file

If sections for your back-end DBMS already exist in PBODB.ini, use the following procedure
to add new functions.

To add functions to an existing section in PBODB.ini:
1. Open PBODB.ini in one of the following ways:

» Usethe File Editor in PowerBuilder. (For instructions, see the Section 1.1.10.2,
“Using the file editor” in Users Guide.)

» Use any text editor outside PowerBuilder.

2. Locatethe entry for your back-end DBMSin the DBMS Driver/DBMS Settings section
of PBODB.ini.

For example, hereisthe PBODB.ini entry for SQL Anywhere:

B O S O S S S S O S O S S S
1

; DBVS Driver/DBMS Settings see comments at end
;of file

B O S R S S S O O O O S S O
1

[ S Anywher e]

PBSynt ax=" WATCOVb0_ SYNTAX'

PBDat eTi ne=' STANDARD_DATETI ME'

PBFunct i ons=" ASA_FUNCTI ONS'

PBDef aul t Val ues=" aut oi ncrenment, current date,
current time,current tinestanp,tinmestanp,
nul | , user'

PBDef aul t Cr eat e=' YES'

PBDef aul t Al t er =' YES'

PBDef aul t Expr essi ons=' YES'

Delimtldentifier="YES

PBDat eTi nel nval i dl nSear ch=" NO

PBTi mel nval i dl nSear ch=" YES'

PBQual i fierl sOwmer="NO

PBSpeci al Dat aTypes=" WATCOM_SPECI ALDATATYPES'

I dentifierQoteChar="""

PBSyst enDaner =' sys, dbo'

PBUsePr ocOmer =' YES'

SQ.Sr vr TSNane="' YES

SQ.Sr vr TSQuot e="' YES'

SQ.SrvrTSDel i m t =" YES'

For ei gnKeyDel et eRul e=' Di sal | ow i f Dependent Rows
Exi st (RESTRICT), Del ete any Dependent Rows
( CASCADE) , Set Dependent Col umms to NULL
(SET NULL)'

Tabl eLi st Type=' GLOBAL TEMPORARY'

3. Find the name of the section in PBODB.ini that contains function information for your
back-end DBMS.

To find this section, look for aline similar to the following in the DBMS Driver/DBM S
Settings entry:

PBFunct i ons=' secti on_nang'

For example, the following linein the DBMS Driver/DBMS Settings entry for SQL
Anywhere indicates that the name of the Functions section isASA_FUNCTIONS:

Page 292



Appendix

PBFunct i ons=" ASA_FUNCTI ONS

4. Find the Functions section for your back-end DBMS in PBODB.ini.

For example, here is the Functions section for SQL Anywhere:

Rk S Sk R S b Sk S R S S R R R S kS R
1

; Functi ons

Bk S Sk S S b Sk S R S S S R R S kS R
1

[ ASA_FUNCTI ONS]
Aggr Funcs=avg(x), avg(di stinct x), count(x),

count (di stinct x),count(*),list(x),
list(distinct x),max(x), max(di stinct x),
m n(x), m n(distinct x),sun(x),sun(distinct x)

Functi ons=abs(x), acos(x), asi n(x), atan(x),

atan2(x,y), ceiling(x),cos(x), cot(x), degrees(x),
exp(x), floor(x),log(x),!ogl0(x),

nmod( di vi dend, di vi sor), pi (*), power (Xx,Y),

radi ans(x), rand(), rand(x),

r enai nder (di vi dend, di vi sor), round(x, y),
sign(x),sin(x),sqgrt(x),tan(x),
"truncate"(x,y),ascii(x),byte_ | ength(x),
byte_substr(x,y, z), char(x), char _I engt h(x),
charindex(x,y), difference(x,y)insertstr(x,y,z),
| case(x),left(x,y),length(x), locate(x,y,z),

| ower (x),ltrimx), patindex('x"',y),repeat(x,y),
replicate(x,y),right(x,y),rtrimx),
simlar(x,y), soundex(x), space(x),str(x,y, z),
string(x,...),stuff(w x,y, z),substr(x,y, z),
trimx),ucase(x), upper(x), date(x),

dat ef or mat (x, y), dat enane(x, y), day(x),
daynane(x), days(x), dow x), hour (x), hour s(x),

m nut e(x), m nut es(x), m nut es(x,y), mont h(x),
nmont hname( x) , nont hs( x), mont hs(x, y), now *),
quarter(x), second(x), seconds(x), seconds(x,Y),
today(*), weeks(x), weeks(x,y), year(x), years(x),
years(x,y),yml(x,y, z), dat eadd(x, y, z),

datedi ff(x,y, z), dat enane(x, y), dat epart (x,y),
getdate(),cast(x as y),convert(Xx,y,z),

hext oi nt (x), i nttohex(x),
connection_property(x,...),datal ength(x),

db_i d(x), db_nanme(x), db_property(x),

next _connecti on(x), next _dat abase(x),
property(x), property_nanme(x),
property_nunber (x), property_description(x),
argn(x,y,...),coal esce(x,...),
estimate(x,y,z),esti mte_source(x,y, z),
experience_estimate(x,y,z),ifnull(x,y,z),

i ndex_estimate(x,y, z),isnull(x,...),

nunber (*), pl an(x), traceback(*)

5. To add anew function, type acomma followed by the function name at the end of the
appropriate function list, as follows:

» Aggregate functions

Add aggregate functions to the end of the AggrFuncslist.

« All other functions

Add all other functions to the end of the Functionslist.

Page 293



Appendix

Case sensitivity

If the back-end DBMS you are using is case sensitive, be sure to use the required case
when you add the function name.The following example shows a new function for
SQL Anywhere added at the end of the Functions list:

R I Sk S S b S S R S S S R R S S S S R
1

: Funct i ons

IR E RS EEEEE SR EEEEREEEEEEEEREEEEEEEEEEEEE SRS
1

[ ASA_FUNCTI ONS]

Aggr Funcs=avg( x), avg(di sti nct x), count(Xx),
count (di stinct x),count(*),list(x),
list(distinct x), max(x), max(distinct x),

m n(x), m n(distinct x),sum x), sun(distinct x)

Functi ons=abs(x), acos(x), asi n(x), atan(x),
atan2(x,y),ceiling(x),cos(x),cot(x),degrees(x),
exp(x), floor(x),log(x),!oglo(x),
nmod( di vi dend, di vi sor), pi (*), power (X, YY),
radi ans(x), rand(), rand(x),

nunber (*), pl an(x), traceback(*), newfuncti on()

6. Saveyour changesto PBODB.ini.

A.1.1.1.2 Adding functions to a new section in the file

If entries for your back-end DBMS do not exist in PBODB.ini, use the following procedure
to create the required sections and add the appropriate functions.

Beforeyou start

For more about the settings to supply for your back-end DBMS in PBODB.ini, read
the comments at the end of thefile.

To add functionsto a new section in PBODB.ini:
1. Open PBODB.ini in one of the following ways:

» Usethe File Editor in PowerBuilder. (For instructions, see the Section 1.1.10.2,
“Using the file editor” in Users Guide.)

» Useany text editor outside PowerBuilder.

2. Edit the DBMS Driver/DBMS Settings section of the PBODB initialization file to add
an entry for your back-end DBMS.

Finding the name

The name required to identify the entry for your back-end DBMSin the DBMS
Driver/DBMS Settings section isin PBODB.ini.

Make sure that you:

Page 294



Appendix

» Follow the instructions in the comments at the end of PBODB.ini.

» Usethe same syntax as existing entriesin the DBMS Driver/DBM S Settings section
of PBODB.ini.

* |nclude a section name for PBFunctions.

For example, here is the relevant portion of an entry for a DB2/2 database:

EE Ok I kR R kO b R O Rk O
1

; DBVS Driver/DBMS Settings

EE Ok O kR R kO b R O Rk O
1

[ DB2/ 2]

PBFunct i ons=' DB22_ FUNCTI ONS'

3. Edit the Functions section of PBODB.ini to add an entry for your back-end DBMS.
Make sure that you:

* Follow the instructions in the comments at the end of PBODB.ini.
» Usethe same syntax as existing entries in the Functions section of PBODB.ini.

* Give the Functions section the name that you specified for PBFunctionsin the DBMS
Driver/DBMS Settings entry.

For example:

ckkkkkhkkkhkhkhkkhkhkhkhkhkkhkhkhkhhkhhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkkhhkFdhkhkhkk ki hkkk
1

; Functi ons
IR R R R EEEEEEEEEEEEEEEEEEEEE SRS SRS
;

[ DB22_FUNCTI ONS]
Aggr Funcs=avg(), count (), list(), max(), m n(), sum)
Functi ons=curdate(), curtime(), hour(), ...

4. Type acommafollowed by the function name at the end of the appropriate function list,
asfollows:

» Aggregate functions
Add aggregate functions to the end of the AggrFuncslist.

« All other functions
Add all other functions to the end of the Functions list.

Case sengitivity
If the back-end DBMS you are using is case sensitive, be sure to use the required

case when you add the function name. The following example shows (in bold) a new
DB2/2 function named substr() added at the end of the Functions list:

ckkkkkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdkhkhkhkkhkhhkkk
1

; Functi ons
R R R R R R R R R I I I
:

Page 295



Appendix

[ DB22_FUNCTI ONS]
Aggr Funcs=avg(),count (), list(), max(),n n(), sum)
Functi ons=curdate(), curtime(), hour(), substr()

5. Saveyour changesto PBODB.ini.

Page 296



Index

Index
A
access the data source
how, 27
Adaptive Server

basic software components, 66
supported data types, 64
supported versions, 64
Adaptive Server database
prepare to use, 67
Adaptive Server database interface
define, 69
Adaptive Server databases
create a DataWindow object, 73
install stored procedures, 74
Adaptive Server stored procedures
use PRINT statements, 73
ADO.NET
about, 49
ADO.NET connection
export to a Third-Party .NET Assembly,
59
import from a Third-Party .NET
Assembly, 58
ADO.NET connections
components, 50
share, 57
ADO.NET database interface
about, 50
ADO.NET interface
define, 54
prepare to use, 53
AutoCommit (database)
Microsoft SQL Server, 257
SAP Adaptive Server Enterprise, 219
AutoCommit and Lock
code PowerScript to set values, 151
copy syntax from the Preview tab, 150
get values from the registry, 152
read values from an external text file, 152
set in the database profile, 146

C
CLOSE statement
Informix, 249, 252
Microsoft SQL Server, 266, 270
ODBC, 195

OLEDB, 212

Oracle, 290

SAP Adaptive Server Enterprise, 228, 232
CONNECT DISCONNECT COMMIT and
ROLLBACK

Informix, 239

Microsoft SQL Server, 257

ODBC, 182

OLE DB, 202

Oracle, 277

SAP Adaptive Server Enterprise, 218
connection parameters

basic steps, 141

how to set, 141
cursor statements

Informix, 245

Microsoft SQL Server, 263

ODBC, 187

OLE DB, 207

Oracle, 282

SAP Adaptive Server Enterprise, 225
cursor support

Oracle, 286

D

database connections

about, 127

connect to a database, 128

use database profiles, 128
Database interfaces, 19, 61
database parameters

set in a PowerBuilder application script,

143

set in the development environment, 143
database preferences

set AutoCommit and Lock ina

PowerBuilder application script, 149

set in the Database Preferences dialog box,

147

set in the development environment, 146
database profile

import and export, 134

maintain, 131

select, 128

share, 131

specify password, 130

use the Preview tab to connect, 130
Database Profile Setup dialog box, 142

Page 297



Index

database profiles, 14

create, 17

use, 14
Database profiles registry entry, 29
database stored procedure summary

Informix, 254

Microsoft SQL Server, 274
database stored procedures

Informix, 249

Microsoft SQL Server, 267

ODBC, 191

OLE DB, 210

Oracle, 286

supported features, 287

SAP Adaptive Server Enterprise, 229
database stored procedures in DataWindow
objects

Informix, 253

Microsoft SQL Server, 273

ODBC, 196

OLEDB, 214

SAP Adaptive Server Enterprise, 236
Database Trace log

annotate, 163

delete or clear, 163

view, 162
Database Trace tool

about, 154

sample output, 164

start, 158

aop! @-

uselog, 162
DB2SY SPB.SQL script, 125
DBHandle (ODBC SQL functions), 180
DBParm

code PowerScript to set values, 144

copy syntax from the Preview tab, 143

read values from an external text file, 145

DECLARE and EXECUTE
ADO.NET, 214
Informix, 250
JDBC, 197
Microsoft SQL Server, 268
ODBC, 192
OLEDB, 211
Oracle, 288
SAP Adaptive Server Enterprise, 230

DECLARE and EXECUTE with
PBNewSPInvocation
ODBC, 193
DECLARE EXECUTE FETCH and CLOSE
with Oracle stored procedures
Oracle, 288
define Adaptive Server database interface, 69
define ADO.NET interface, 54
define DirectConnect interface, 124
define Informix database interface, 86
define JDBC interface, 42
define ODBC data sources, 27
define ODBC interface, 31
define OLE DB interface, 48
define Oracle database interface, 109
define SQL Server database interface, 92
DELETE INSERT and UPDATE
Informix, 242
Microsoft SQL Server, 261
ODBC, 185
OLE DB, 205
Oracle, 280
SAP Adaptive Server Enterprise, 222
demo database
access, 14
DirectConnect interface
basic software components, 120
connect through DirectConnect
middleware product, 118
connect through Open ServerConnect
middleware product, 118
define, 124
prepare to use database, 121
supported data types, 119
supported versions, 119
type of connection, 118
use, 117

E
embedded SQL
use with ADO.NET, 214
use with Informix, 237
use with JDBC, 197
use with Microsoft SQL Server, 254
use with ODBC, 179
use with OLE DB, 198
use with Oracle, 274

Page 298



Index

use with SAP Adaptive Server Enterprise,
215
escape clauses
ODBC, 181
EXECUTE statement
ODBC, 195
OLEDB, 213
extended attribute system tables
about, 135
contents of, 139
control access, 139
create, 136
display, 136
extended attribute system tablesin DB2
create, 124
use DB2SY SPB.SQL script, 125

F

FETCH FIRST FETCH PRIOR and FETCH
LAST

Informix, 248

Microsoft SQL Server, 265

ODBC, 190
FETCH NEXT

Informix, 247

Microsoft SQL Server, 265

ODBC, 189

OLE DB, 209
FETCH statement

Informix, 247, 251

Microsoft SQL Server, 269

ODBC, 194

OLE DB, 212

Oracle, 290

SAP Adaptive Server Enterprise, 231
Fetching rows

Microsoft SQL Server, 264

I
110 interface
access Unicode data, 81
assign an owner to PowerBuilder catalog
tables, 82
column-level encryption, 83
create and drop indexes without locking,
82
features supported, 80
rename an index, 82
SQL statement caching, 82

support for long object names, 82
use multiple OUT parametersin user-
defined routines, 83
identity column values
get, 55
Informix
access serial vauesin a PowerBuilder
script, 86
basic software components, 83
DateTime data type, 80
Interval datatype, 80
supported data types, 79
supported versions, 79
Time data type, 80
Informix database
prepare to use, 84
Informix database interface
define, 86
specify the server name, 86

J
JDBC
supported data types, 40
supported versions, 40
JDBC connection
components, 38
JDBC Driver Manager Trace tool
about, 173
start in a PowerBuilder application, 175
start in the devel opment environment, 174
stop in a PowerBuilder application, 177
stop in the development environment, 177
view log, 178
JDBC interface
about, 37
define, 42
prepare to use, 41
use, 38
JDBC registry entries, 40

L
|oad database interface libraries, 13

M
multiple data sources
define for the same data, 30

N
name qualification

Page 299



Index

Informix, 238

Microsoft SQL Server, 255

ODBC, 180

OLE DB, 199

Oracle, 275

SAP Adaptive Server Enterprise, 216
native database connections

components, 61
native database interfaces, 13

about, 61

use, 62
non-cursor statements

Informix, 242

Microsoft SQL Server, 260

ODBC, 185

OLE DB, 205

Oracle, 280

SAP Adaptive Server Enterprise, 222
nonupdatable cursors

Informix, 246

@)
OData Interface, 60
ODBC connection
components, 20
ODBC data sources
define, 27
prepare, 27
ODBC Driver Manager Trace tool
about, 166
sample output, 173
start in a PowerBuilder application, 168
start in the devel opment environment, 167
stop in a PowerBuilder application, 171
stop in the development environment, 171
view log, 172
ODBC drivers
conformance levels, 24
display help for, 30
get help with, 26
obtain, 26
type, 22
use with PowerBuilder, 26
ODBC escape sequences
OLE DB, 201
ODBC initiaization files, 27
ODBC interface
about, 19

define, 31
use in PowerBuilder, 20
ODBC registry entries, 27, 28
ODBC tranglator
select, 31
ODBCINST registry entries, 28
OLEDB
supported versions, 46
OLE DB data providers, 52
obtain, 46
OLE DB interface
about, 43
components, 45
define, 48
prepare to use, 46
Open Client directory services
DBParm parameters, 73
requirements, 71
specify the server name, 72
use, 71
Open Client security services
DBParm parameters, 70
requirements, 69
use, 69
ORA driver, 116
Oracle
basic software components, 105
data type conversion, 104
ORA driver support for Oracle 11g
features, 116
support for HA event notification, 115
supported data types, 103
supported versions, 102
Oracle database
prepare to use, 105
Oracle database interface
define, 109
Oracle server connect descriptor
specify, 109
Oracle stored procedures
RPC cdlls, 114
use a large-object output parameter, 113
use as data sources, 110
use with result sets, 111
Oracle user-defined types
use, 114

Page 300



Index

P
PBODB initialization file, 28
PBODB.ini
about, 291

add functions to a new section, 294

add functions to an existing section, 292
PBSY C.SQL script, 75
PBSY C2.SQL script, 76
performance and locking

Informix, 239

Microsoft SQL Server, 258

ODBC, 182

OLE DB, 202

Oracle, 277

SAP Adaptive Server Enterprise, 220
PowerBuilder extended attribute system
tables, 135
PowerBuilder stored procedure scripts, 74
prepare ODBC data sources, 27

PRINT statementsin Adaptive Server stored

procedures, 73

R
retrieval using cursors
Informix, 245
ODBC, 188
OLE DB, 208
Oracle, 283

SAP Adaptive Server Enterprise, 226
retrieval using database stored procedures

Informix, 249

Microsoft SQL Server, 268

ODBC, 192

OLE DB, 210

SAP Adaptive Server Enterprise, 230
return values and output parameters

SAP Adaptive Server Enterprise, 234

S
SELECT (embedded SQL)
Informix, 243
Microsoft SQL Server, 261
ODBC, 185
OLE DB, 206
Oracle, 280

SAP Adaptive Server Enterprise, 223
shared database profiles

about, 131

maintain, 134

make local changesto, 134
set Up, &-
use to connect, 133
SQL Anywhere
basic software components, 32
supported versions, 31
SQL Anywhere data source
define, 33
prepare to use, 32
SQL functions
Microsoft SQL Server, 255
ODBC, 180
OLE DB, 199
Oracle, 275
SAP Adaptive Server Enterprise, 216
SQL Server
basic software components, 89
supported data types, 88
supported versions, 87
SQL Server 2008 features
new data types, 96
new database parameters, 95
T-SQL enhancements, 99
SQL Server database
prepare to use, 90
SQL Server database interface
define, 92
migrate from MSS or OLE DB database
interfaces, 92
SQL Server datatypes, 88
SQL statement trace utility, 165
SQL support
ODBC, 179
OLE DB, 199
SQL CA transaction object
set AutoCommit property, 151
set ConnectOption DBParm, 159, 168
set DBParm property, 144
set Lock property, 151
set TraceFile DBParm, 175
trace keyword in DBMS property, 159,
162
standard database interfaces, 12
stored procedure scripts
use ISQL to run, 77
use SQL Advantageto run, 78
stored procedures in Adaptive Server
databases, 74

Page 301



Index

system stored procedures
SAP Adaptive Server Enterprise, 236

T
temporary tables
Microsoft SQL Server, 273
SAP Adaptive Server Enterprise, 236
Transact-SQL specia timestamp columns
support, 35
transaction management statements
Informix, 239
Microsoft SQL Server, 256
ODBC, 182
OLE DB, 202
Oracle, 277
SAP Adaptive Server Enterprise, 218

U

updatable cursors

Informix, 247
Update (embedded SQL)

Microsoft SQL Server, 271

ODBC, 190

Oracle, 284

SAP Adaptive Server Enterprise, 233
update using database stored procedures

Informix, 252

Page 302



	Connecting to Your Database
	Contents
	1 Introduction to Database Connections
	1.1 Understanding Data Connections
	1.1.1 How to find the information you need
	1.1.2 Accessing data in PowerBuilder
	1.1.3 Accessing the Demo Database
	1.1.4 Using database profiles
	1.1.4.1 About creating database profiles
	1.1.4.2 Creating a database profile

	1.1.5 What to do next


	2 Working with Standard Database Interfaces
	2.1 Using the ODBC Interface
	2.1.1 About the ODBC interface
	2.1.1.1 What is ODBC?
	2.1.1.2 Using ODBC in PowerBuilder
	2.1.1.3 Components of an ODBC connection
	2.1.1.4 Types of ODBC drivers
	2.1.1.5 Ensuring the proper ODBC driver conformance levels
	2.1.1.5.1 What are ODBC conformance levels?

	2.1.1.6 Obtaining ODBC drivers
	2.1.1.7 Using ODBC drivers with PowerBuilder
	2.1.1.8 Getting help with ODBC drivers

	2.1.2 Preparing ODBC data sources
	2.1.3 Defining ODBC data sources
	2.1.3.1 How PowerBuilder accesses the data source
	2.1.3.1.1 PBODB initialization file
	2.1.3.1.2 ODBCINST registry entries
	2.1.3.1.3 ODBC registry entries
	2.1.3.1.4 Database profiles registry entry

	2.1.3.2 Defining multiple data sources for the same data
	2.1.3.3 Displaying Help for ODBC drivers
	2.1.3.3.1 Help for any ODBC driver

	2.1.3.4 Selecting an ODBC translator

	2.1.4 Defining the ODBC interface
	2.1.5 SAP SQL Anywhere
	2.1.5.1 Supported versions for SQL Anywhere
	2.1.5.2 Basic software components for SQL Anywhere
	2.1.5.3 Preparing to use the SQL Anywhere data source
	2.1.5.4 Defining the SQL Anywhere data source
	2.1.5.5 Support for Transact-SQL special timestamp columns
	2.1.5.6 What to do next

	2.1.6 PostgreSQL
	2.1.6.1 Limited support for stored procedure
	2.1.6.2 Support for auto-increment column


	2.2 Using the JDBC Interface
	2.2.1 About the JDBC interface
	2.2.1.1 What is JDBC?
	2.2.1.2 Using the JDBC interface
	2.2.1.3 Components of a JDBC connection
	2.2.1.4 JDBC registry entries
	2.2.1.5 Supported versions for JDBC
	2.2.1.6 Supported JDBC datatypes

	2.2.2 Preparing to use the JDBC interface
	2.2.3 Defining the JDBC interface

	2.3 Using the OLE DB Interface
	2.3.1 About the OLE DB interface
	2.3.1.1 What is OLE DB?
	2.3.1.2 Components of an OLE DB connection
	2.3.1.3 Obtaining OLE DB data providers
	2.3.1.4 Supported versions for OLE DB

	2.3.2 Preparing to use the OLE DB interface
	2.3.3 Defining the OLE DB interface

	2.4 Using the ADO.NET Interface
	2.4.1 About ADO.NET
	2.4.2 About the PowerBuilder ADO.NET database interface
	2.4.2.1 Components of an ADO.NET connection
	2.4.2.2 OLE DB data providers

	2.4.3 Preparing to use the ADO.NET interface
	2.4.4 Defining the ADO.NET interface
	2.4.4.1 Getting identity column values

	2.4.5 Sharing ADO.NET Database Connections
	2.4.5.1 Importing an ADO.NET Connection from a Third-Party .NET Assembly
	2.4.5.2 Exporting an ADO.NET Connection to a Third-Party .NET Assembly


	2.5 Using the OData Interface (Obsolete)

	3 Working with Native Database Interfaces
	3.1 Using Native Database Interfaces
	3.1.1 About native database interfaces
	3.1.2 Components of a database interface connection
	3.1.3 Using a native database interface

	3.2 Using Adaptive Server Enterprise
	3.2.1 Supported versions for Adaptive Server
	3.2.2 Supported Adaptive Server datatypes
	3.2.3 Basic software components for Adaptive Server
	3.2.4 Preparing to use the Adaptive Server database
	3.2.5 Defining the Adaptive Server database interface
	3.2.6 Using Open Client security services
	3.2.6.1 What are Open Client security services?
	3.2.6.2 Requirements for using Open Client security services
	3.2.6.3 Security services DBParm parameters

	3.2.7 Using Open Client directory services
	3.2.7.1 What are Open Client directory services?
	3.2.7.2 Requirements for using Open Client directory services
	3.2.7.3 Specifying the server name with Open Client directory services
	3.2.7.4 Directory services DBParm parameters

	3.2.8 Using PRINT statements in Adaptive Server stored procedures
	3.2.9 Creating a DataWindow object based on a cross-database join
	3.2.10 Installing stored procedures in Adaptive Server databases
	3.2.10.1 What are the PowerBuilder stored procedure scripts?
	3.2.10.1.1 PBSYC.SQL script
	3.2.10.1.2 PBSYC2.SQL script

	3.2.10.2 How to run the scripts
	3.2.10.2.1 Using ISQL to run the stored procedure scripts
	3.2.10.2.2 Using SQL Advantage to run the stored procedure scripts



	3.3 Using Informix
	3.3.1 Supported versions for Informix
	3.3.2 Supported Informix datatypes
	3.3.2.1 Informix DateTime datatype
	3.3.2.2 Informix Time datatype
	3.3.2.3 Informix Interval datatype

	3.3.3 Features supported by the I10 interface
	3.3.3.1 Accessing Unicode data
	3.3.3.2 Assigning an owner to the PowerBuilder catalog tables
	3.3.3.3 Support for long object names
	3.3.3.4 Renaming an index
	3.3.3.5 SQL statement caching
	3.3.3.6 Creating and dropping indexes without locking
	3.3.3.7 Column-level encryption
	3.3.3.8 Using multiple OUT parameters in user-defined routines

	3.3.4 Basic software components for Informix
	3.3.5 Preparing to use the Informix database
	3.3.6 Defining the Informix database interface
	3.3.6.1 Specifying the server name

	3.3.7 Accessing serial values in a PowerBuilder script

	3.4 Using Microsoft SQL Server
	3.4.1 Supported versions for SQL Server
	3.4.2 Supported SQL Server datatypes
	3.4.3 Basic software components for Microsoft SQL Server
	3.4.4 Preparing to use the SQL Server database
	3.4.5 Defining the SQL Server database interface
	3.4.6 Migrating from the MSS or OLE DB database interfaces
	3.4.7 SQL Server 2008 features
	3.4.7.1 New database parameters
	3.4.7.2 Support for new datatypes in SQL Server 2008
	3.4.7.3 T-SQL enhancements
	3.4.7.4 Unsupported SQL Server 2008 features

	3.4.8 Notes on using the MSOLEDBSQL and SNC interfaces

	3.5 Using Oracle
	3.5.1 Supported versions for Oracle
	3.5.2 Supported Oracle datatypes
	3.5.2.1 Datatype conversion

	3.5.3 Basic software components for Oracle
	3.5.4 Preparing to use the Oracle database
	3.5.5 Defining the Oracle database interface
	3.5.5.1 Specifying the Oracle server connect descriptor

	3.5.6 Using Oracle stored procedures as a data source
	3.5.6.1 What is an Oracle stored procedure?
	3.5.6.2 What you can do with Oracle stored procedures
	3.5.6.3 Using Oracle stored procedures with result sets
	3.5.6.4 Using a large-object output parameter
	3.5.6.5 RPC calls to stored procedures with array parameters

	3.5.7 Using Oracle user-defined types
	3.5.8 Support for HA event notification
	3.5.9 ORA driver support for Oracle 11g features

	3.6 Using DirectConnect
	3.6.1 Using the DirectConnect interface
	3.6.1.1 Connecting through the DirectConnect middleware product
	3.6.1.2 Connecting through the Open ServerConnect middleware product
	3.6.1.3 Selecting the type of connection

	3.6.2 Supported versions for the DirectConnect interface
	3.6.3 Supported DirectConnect interface datatypes
	3.6.4 Basic software components for the DirectConnect interface
	3.6.5 Preparing to use the database with DirectConnect
	3.6.6 Defining the DirectConnect interface
	3.6.7 Creating the extended attribute system tables in DB2 databases
	3.6.7.1 Creating the extended attribute system tables
	3.6.7.2 Using the DB2SYSPB.SQL script



	4 Working with Database Connections
	4.1 Managing Database Connections
	4.1.1 About database connections
	4.1.1.1 When database connections occur
	4.1.1.2 Using database profiles

	4.1.2 Connecting to a database
	4.1.2.1 Selecting a database profile
	4.1.2.2 What happens when you connect
	4.1.2.3 Specifying passwords in database profiles
	4.1.2.4 Using the Preview tab to connect in a PowerBuilder application

	4.1.3 Maintaining database profiles
	4.1.4 Sharing database profiles
	4.1.4.1 About shared database profiles
	4.1.4.2 Setting up shared database profiles
	4.1.4.3 Using shared database profiles to connect
	4.1.4.4 Making local changes to shared database profiles
	4.1.4.5 Maintaining shared database profiles

	4.1.5 Importing and exporting database profiles
	4.1.6 About the PowerBuilder extended attribute system tables
	4.1.6.1 Logging in to your database for the first time
	4.1.6.2 Displaying the PowerBuilder extended attribute system tables
	4.1.6.3 Contents of the extended attribute system tables
	4.1.6.4 Controlling system table access
	4.1.6.4.1 Setting Use Extended Attributes or Read Only to control access
	4.1.6.4.2 Granting permissions on system tables to control access



	4.2 Setting Additional Connection Parameters
	4.2.1 Basic steps for setting connection parameters
	4.2.2 About the Database Profile Setup dialog box
	4.2.3 Setting database parameters
	4.2.3.1 Setting database parameters in the development environment
	4.2.3.2 Setting database parameters in a PowerBuilder application script
	4.2.3.2.1 Copying DBParm syntax from the Preview tab
	4.2.3.2.2 Coding PowerScript to set values for the DBParm property
	4.2.3.2.3 Reading DBParm values from an external text file


	4.2.4 Setting database preferences
	4.2.4.1 Setting database preferences in the development environment
	4.2.4.1.1 Setting AutoCommit and Lock in the database profile
	4.2.4.1.2 Setting preferences in the Database Preferences dialog box

	4.2.4.2 Setting AutoCommit and Lock in a PowerBuilder application script
	4.2.4.2.1 Copying AutoCommit and Lock syntax from the Preview tab
	4.2.4.2.2 Coding PowerScript to set values for AutoCommit and Lock
	4.2.4.2.3 Reading AutoCommit and Lock values from an external text file
	4.2.4.2.4 Getting values from the registry




	5 Troubleshooting Your Connection
	5.1 Troubleshooting Your Connection
	5.1.1 Overview of troubleshooting tools
	5.1.2 Using the Database Trace tool
	5.1.2.1 About the Database Trace tool
	5.1.2.1.1 How you can use the Database Trace tool
	5.1.2.1.2 Contents of the Database Trace log
	5.1.2.1.3 Format of the Database Trace log

	5.1.2.2 Starting the Database Trace tool
	5.1.2.2.1 Starting Database Trace in the development environment
	5.1.2.2.2 Starting Database Trace in a PowerBuilder application
	5.1.2.2.3 Starting a trace in PowerScript with the PBTrace parameter

	5.1.2.3 Stopping the Database Trace tool
	5.1.2.3.1 Stopping Database Trace in the development environment
	5.1.2.3.2 Stopping Database Trace in a PowerBuilder application

	5.1.2.4 Using the Database Trace log
	5.1.2.4.1 Viewing the Database Trace log
	5.1.2.4.2 Annotating the Database Trace log
	5.1.2.4.3 Deleting or clearing the Database Trace log

	5.1.2.5 Sample Database Trace output

	5.1.3 Using the SQL statement trace utility
	5.1.4 Using the ODBC Driver Manager Trace tool
	5.1.4.1 About ODBC Driver Manager Trace
	5.1.4.2 Starting ODBC Driver Manager Trace
	5.1.4.2.1 Starting ODBC Driver Manager Trace in the development environment
	5.1.4.2.2 Starting ODBC Driver Manager Trace in a PowerBuilder application

	5.1.4.3 Stopping ODBC Driver Manager Trace
	5.1.4.3.1 Stopping ODBC Driver Manager Trace in the development environment
	5.1.4.3.2 Stopping ODBC Driver Manager Trace in a PowerBuilder application

	5.1.4.4 Viewing the ODBC Driver Manager Trace log
	5.1.4.5 Sample ODBC Driver Manager Trace output

	5.1.5 Using the JDBC Driver Manager Trace tool
	5.1.5.1 About JDBC Driver Manager Trace
	5.1.5.2 Starting JDBC Driver Manager Trace
	5.1.5.2.1 Starting JDBC Driver Manager Trace in the development environment
	5.1.5.2.2 Starting JDBC Driver Manager Trace in a PowerBuilder application

	5.1.5.3 Stopping JDBC Driver Manager Trace
	5.1.5.3.1 Stopping JDBC Driver Manager Trace in the development environment
	5.1.5.3.2 Stopping JDBC Driver Manager Trace in a PowerBuilder application

	5.1.5.4 Viewing the JDBC Driver Manager Trace log



	6 Using Embedded SQL
	6.1 Using Embedded SQL with ODBC
	6.1.1 ODBC SQL Support
	6.1.2 ODBC Name qualification
	6.1.3 ODBC SQL functions
	6.1.3.1 DBHandle

	6.1.4 ODBC Using escape clauses
	6.1.5 ODBC Transaction management statements
	6.1.6 ODBC Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK
	6.1.7 ODBC Performance and locking
	6.1.8 ODBC Non-cursor statements
	6.1.9 ODBC DELETE, INSERT, and UPDATE
	6.1.10 ODBC SELECT
	6.1.11 ODBC Cursor statements
	6.1.12 ODBC Retrieval using cursors
	6.1.13 ODBC FETCH NEXT
	6.1.14 ODBC FETCH FIRST, FETCH PRIOR, and FETCH LAST
	6.1.15 ODBC Update
	6.1.16 ODBC Database stored procedures
	6.1.17 ODBC Retrieval
	6.1.18 ODBC DECLARE and EXECUTE
	6.1.19 ODBC DECLARE and EXECUTE with PBNewSPInvocation
	6.1.20 ODBC FETCH
	6.1.21 ODBC CLOSE
	6.1.22 ODBC EXECUTE
	6.1.23 ODBC Using database stored procedures in DataWindow objects

	6.2 Using Embedded SQL with JDBC
	6.2.1 JDBC DECLARE and EXECUTE

	6.3 Using Embedded SQL with OLE DB
	6.3.1 OLE DB SQL support
	6.3.2 OLE DB Name qualification
	6.3.3 OLE DB SQL functions
	6.3.4 OLE DB Using ODBC escape Sequences
	6.3.5 OLE DB Transaction management statements
	6.3.6 OLE DB Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK
	6.3.7 OLE DB Performance and locking
	6.3.8 OLE DB Non-cursor statements
	6.3.9 OLE DB DELETE, INSERT, and UPDATE
	6.3.10 OLE DB SELECT
	6.3.11 OLE DB Cursor statements
	6.3.12 OLE DB Retrieval using cursors
	6.3.13 OLE DB FETCH NEXT
	6.3.14 OLE DB Database stored procedures
	6.3.15 OLE DB Retrieval
	6.3.16 OLE DB DECLARE and EXECUTE
	6.3.17 OLE DB FETCH
	6.3.18 OLE DB CLOSE
	6.3.19 OLE DB EXECUTE
	6.3.20 OLE DB Using database stored procedures in DataWindow objects

	6.4 Using Embedded SQL with ADO.NET
	6.4.1 ADO.NET DECLARE and EXECUTE

	6.5 Using Embedded SQL with SAP Adaptive Server Enterprise
	6.5.1 SAP Adaptive Server Enterprise Name qualification
	6.5.2 SAP Adaptive Server Enterprise SQL functions
	6.5.3 SAP Adaptive Server Enterprise Transaction management statements
	6.5.4 SAP Adaptive Server Enterprise Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK
	6.5.5 SAP Adaptive Server Enterprise Using AutoCommit
	6.5.6 SAP Adaptive Server Enterprise Performance and locking
	6.5.7 SAP Adaptive Server Enterprise Non-cursor statements
	6.5.8 SAP Adaptive Server Enterprise DELETE, INSERT, and UPDATE
	6.5.9 SAP Adaptive Server Enterprise SELECT
	6.5.10 SAP Adaptive Server Enterprise Cursor statements
	6.5.11 SAP Adaptive Server Enterprise Retrieval Using Cursors
	6.5.12 SAP Adaptive Server Enterprise Closing the Cursor
	6.5.13 SAP Adaptive Server Enterprise Database stored procedures
	6.5.14 SAP Adaptive Server Enterprise Retrieval
	6.5.15 SAP Adaptive Server Enterprise DECLARE and EXECUTE
	6.5.16 SAP Adaptive Server Enterprise FETCH
	6.5.17 SAP Adaptive Server Enterprise CLOSE
	6.5.18 SAP Adaptive Server Enterprise Update
	6.5.19 SAP Adaptive Server Enterprise Return values and output parameters
	6.5.20 SAP Adaptive Server Enterprise Temporary tables
	6.5.21 SAP Adaptive Server Enterprise System stored procedures
	6.5.22 SAP Adaptive Server Enterprise Using database stored procedures in DataWindow objects

	6.6 Using Embedded SQL with Informix
	6.6.1 Informix name qualification
	6.6.2 Informix transaction management statements
	6.6.3 Informix using CONNECT, COMMIT, DISCONNECT, and ROLLBACK
	6.6.4 Informix performance and locking
	6.6.5 Informix non-cursor statements
	6.6.6 Informix DELETE, INSERT, and UPDATE
	6.6.7 Informix SELECT
	6.6.8 Informix cursor statements
	6.6.9 Informix retrieval using cursors
	6.6.10 Informix nonupdatable cursors
	6.6.11 Informix updatable cursors
	6.6.12 Informix FETCH statements
	6.6.13 Informix FETCH NEXT
	6.6.14 Informix FETCH FIRST, FETCH PRIOR, and FETCH LAST
	6.6.15 Informix CLOSE for cursors
	6.6.16 Informix database stored procedures
	6.6.17 Informix retrieval using database stored procedures
	6.6.18 Informix DECLARE and EXECUTE
	6.6.19 Informix FETCH
	6.6.20 Informix CLOSE
	6.6.21 Informix update using database stored procedures
	6.6.22 Informix using database stored procedures in DataWindow objects
	6.6.23 Informix database stored procedure summary

	6.7 Using Embedded SQL with Microsoft SQL Server
	6.7.1 Microsoft SQL Server Name qualification
	6.7.2 Microsoft SQL Server Functions
	6.7.3 Microsoft SQL Server Transaction management statements
	6.7.4 Microsoft SQL Server Using CONNECT, COMMIT, DISCONNECT, and ROLLBACK
	6.7.5 Microsoft SQL Server Using AutoCommit
	6.7.6 Microsoft SQL Server Performance and locking
	6.7.7 Microsoft SQL Server Non-cursor statements
	6.7.8 Microsoft SQL Server DELETE, INSERT, and UPDATE
	6.7.9 Microsoft SQL Server SELECT
	6.7.10 Microsoft SQL Server Cursor statements
	6.7.11 Microsoft SQL Server Fetching rows
	6.7.12 Microsoft SQL Server FETCH NEXT
	6.7.13 Microsoft SQL Server FETCH FIRST, FETCH PRIOR, and FETCH LAST
	6.7.14 Microsoft SQL Server Closing the cursor
	6.7.15 Microsoft SQL Server Database stored procedures
	6.7.16 Microsoft SQL Server Retrieval
	6.7.17 Microsoft SQL Server DECLARE and EXECUTE
	6.7.18 Microsoft SQL Server FETCH
	6.7.19 Microsoft SQL Server CLOSE
	6.7.20 Microsoft SQL Server Update
	6.7.21 Microsoft SQL Server Temporary tables
	6.7.22 Microsoft SQL Server Using database stored procedures in DataWindow objects
	6.7.23 Microsoft SQL Server Database stored procedures summary

	6.8 Using Embedded SQL with Oracle
	6.8.1 Oracle Name qualification
	6.8.2 Oracle SQL functions
	6.8.3 Oracle Transaction management statements
	6.8.4 Oracle Using CONNECT, DISCONNECT, COMMIT, and ROLLBACK
	6.8.5 Oracle Performance and locking
	6.8.6 Oracle Non-cursor statements
	6.8.7 Oracle DELETE, INSERT, and UPDATE
	6.8.8 Oracle SELECT
	6.8.9 Oracle Cursor statements
	6.8.10 Oracle Retrieval
	6.8.11 Oracle Update
	6.8.12 Oracle Cursor support summary
	6.8.13 Oracle Database stored procedures
	6.8.14 Supported features when using Oracle stored procedures
	6.8.15 Using DECLARE, EXECUTE, FETCH, and CLOSE with Oracle stored procedures
	6.8.16 Oracle DECLARE and EXECUTE
	6.8.17 Oracle FETCH
	6.8.18 Oracle CLOSE


	Appendix A. Appendix
	A.1 APPENDIX Adding Functions to the PBODB.ini Initialization File
	A.1.1 About the PBODB.ini file
	A.1.1.1 Adding functions to PBODB.ini
	A.1.1.1.1 Adding functions to an existing section in the file
	A.1.1.1.2 Adding functions to a new section in the file




	Index

