
Application Techniques

Appeon PowerBuilder® 2021

Contents
1 Sample Applications .. 11

1.1 Using Sample Applications .. 11
1.1.1 About the sample applications .. 11
1.1.2 Installing the sample applications .. 11
1.1.3 Opening the sample applications .. 11
1.1.4 Using the Code Examples application ... 11

1.1.4.1 Browsing the examples ... 12
1.1.4.2 Finding examples .. 13
1.1.4.3 Running and examining examples .. 14

2 Language Techniques ... 16
2.1 Selected Object-Oriented Programming Topics .. 16

2.1.1 Terminology review .. 16
2.1.2 PowerBuilder techniques ... 18
2.1.3 Other techniques ... 21

2.2 Selected PowerScript Topics ... 26
2.2.1 Dot notation ... 26
2.2.2 Constant declarations .. 29
2.2.3 Controlling access for instance variables .. 30
2.2.4 Resolving naming conflicts .. 30
2.2.5 Return values from ancestor scripts .. 32
2.2.6 Types of arguments for functions and events 33
2.2.7 Ancestor and descendant variables .. 34
2.2.8 Optimizing expressions for DataWindow and external objects 36
2.2.9 Exception handling in PowerBuilder .. 37

2.2.9.1 Basics of exception handling ... 37
2.2.9.2 Objects for exception handling support 37
2.2.9.3 Handling exceptions .. 38
2.2.9.4 Creating user-defined exception types 40
2.2.9.5 Adding flexibility and facilitating object reuse 41
2.2.9.6 Using the SystemError and Error events 42

2.2.10 Garbage collection and memory management 43
2.2.10.1 Configuring memory management 44

2.2.11 Efficient compiling and performance ... 45
2.2.12 Reading and writing text or binary files ... 46

2.3 Getting Information About PowerBuilder Class Definitions 47
2.3.1 Overview of class definition information .. 47

2.3.1.1 Terminology ... 48
2.3.1.2 Who uses PowerBuilder class definitions 50

2.3.2 Examining a class definition .. 50
2.3.2.1 Getting a class definition object .. 50
2.3.2.2 Getting detailed information about the class 51
2.3.2.3 Getting information about a class's scripts 53
2.3.2.4 Getting information about variables 55

3 User Interface Techniques ... 57
3.1 Building an MDI Application .. 57

3.1.1 About MDI .. 57

3.1.2 Building an MDI frame window .. 59
3.1.3 Using sheets .. 60
3.1.4 Providing MicroHelp ... 62
3.1.5 Using toolbars in MDI applications .. 62

3.1.5.1 Customizing toolbar behavior .. 62
3.1.5.2 Saving and restoring toolbar settings 64

3.1.6 Sizing the client area ... 67
3.1.7 About keyboard support in MDI applications 69

3.2 Managing Window Instances ... 70
3.2.1 About window instances .. 70
3.2.2 Declaring instances of windows .. 71
3.2.3 Using window arrays ... 72
3.2.4 Referencing entities in descendants .. 75

3.3 Using Tab Controls in a Window ... 75
3.3.1 About Tab controls .. 76
3.3.2 Defining and managing tab pages ... 77
3.3.3 Customizing the Tab control .. 79
3.3.4 Using Tab controls in scripts ... 82

3.3.4.1 Referring to tab pages in scripts ... 82
3.3.4.2 Referring to controls on tab pages .. 84
3.3.4.3 Opening, closing, and hiding tab pages 84
3.3.4.4 Keeping track of tab pages ... 85
3.3.4.5 Creating tab pages only when needed 85
3.3.4.6 Events for the parts of the Tab control 87

3.4 Using TreeView Controls ... 88
3.4.1 About TreeView controls ... 88
3.4.2 Populating TreeViews .. 91

3.4.2.1 Functions for inserting items ... 91
3.4.2.2 Inserting items at the root level ... 93
3.4.2.3 Inserting items below the root level 94

3.4.3 Managing TreeView items ... 95
3.4.3.1 Deleting items .. 97
3.4.3.2 Renaming items ... 97
3.4.3.3 Moving items using drag and drop .. 98
3.4.3.4 Sorting items .. 100

3.4.4 Managing TreeView pictures ... 102
3.4.4.1 Pictures for items ... 102
3.4.4.2 Setting up picture lists ... 103
3.4.4.3 Using overlay pictures ... 104

3.4.5 Using DataWindow information to populate a TreeView 104
3.5 Using Lists in a Window .. 106

3.5.1 About presenting lists .. 106
3.5.2 Using lists .. 107
3.5.3 Using drop-down lists .. 111
3.5.4 Using ListView controls ... 113

3.5.4.1 Using report view ... 118
3.6 Using Drag and Drop in a Window .. 119

3.6.1 About drag and drop ... 119

3.6.2 Drag-and-drop properties, events, and functions 120
3.6.3 Identifying the dragged control .. 121

3.7 Providing Online Help for an Application ... 122
3.7.1 Creating help files .. 122
3.7.2 Providing online help for developers ... 123
3.7.3 Providing online help for users .. 125

4 Data Access Techniques ... 127
4.1 Using Transaction Objects ... 127

4.1.1 About Transaction objects ... 127
4.1.1.1 Description of Transaction object properties 128
4.1.1.2 Transaction object properties and supported PowerBuilder
database interfaces ... 130

4.1.2 Working with Transaction objects .. 132
4.1.2.1 Transaction basics ... 132
4.1.2.2 The default Transaction object .. 133
4.1.2.3 Assigning values to the Transaction object 134
4.1.2.4 Reading values from an external file 134
4.1.2.5 Connecting to the database .. 135
4.1.2.6 Using the Preview tab to connect in a PowerBuilder
application .. 135
4.1.2.7 Disconnecting from the database .. 136
4.1.2.8 Defining Transaction objects for multiple database
connections .. 136
4.1.2.9 Error handling after a SQL statement 138
4.1.2.10 Pooling database transactions .. 139

4.1.3 Using Transaction objects to call stored procedures 140
4.1.3.1 Step 1: define the standard class user object 142
4.1.3.2 Step 2: declare the stored procedure as an external
function ... 143
4.1.3.3 Step 3: save the user object ... 144
4.1.3.4 Step 4: specify the default global variable type for
SQLCA ... 144
4.1.3.5 Step 5: code your application to use the user object 146

4.1.4 Supported DBMS features when calling stored procedures 147
4.2 Using MobiLink Synchronization .. 149

4.2.1 About MobiLink synchronization .. 150
4.2.2 How the synchronization works ... 153
4.2.3 Working with PowerBuilder synchronization objects 154

4.2.3.1 Preparing to use the wizard .. 154
4.2.3.2 What gets generated ... 154
4.2.3.3 Creating an instance of MLSync ... 155
4.2.3.4 Auxiliary objects for MobiLink synchronization 156
4.2.3.5 Using the synchronization objects in your application 159
4.2.3.6 Runtime requirements for synchronization on remote
machines .. 161

4.2.4 Preparing consolidated databases .. 163
4.2.4.1 Connection events ... 163
4.2.4.2 Table events .. 164

4.2.4.3 Working with scripts and users in SQL Central 167
4.2.5 Creating remote databases ... 169

4.2.5.1 Creating and modifying publications 169
4.2.5.2 Creating MobiLink users .. 171
4.2.5.3 Adding subscriptions ... 172

4.2.6 Synchronization techniques ... 174
4.3 Using PowerBuilder XML Services .. 175

4.3.1 About XML and PowerBuilder ... 175
4.3.2 About PBDOM ... 176
4.3.3 PBDOM object hierarchy ... 176
4.3.4 PBDOM node objects .. 177

4.3.4.1 PBDOM_OBJECT .. 178
4.3.4.2 PBDOM_DOCUMENT ... 180
4.3.4.3 PBDOM_DOCTYPE .. 180
4.3.4.4 PBDOM_ELEMENT ... 180
4.3.4.5 PBDOM_ATTRIBUTE .. 182
4.3.4.6 PBDOM_ENTITYREFERENCE ... 185
4.3.4.7 PBDOM_CHARACTERDATA .. 185
4.3.4.8 PBDOM_TEXT .. 186
4.3.4.9 PBDOM_CDATA .. 188
4.3.4.10 PBDOM_COMMENT ... 189
4.3.4.11 PBDOM_PROCESSINGINSTRUCTION 189

4.3.5 Adding pbdom.pbx to your application .. 190
4.3.6 Using PBDOM ... 191

4.3.6.1 Validating the XML .. 191
4.3.6.2 Creating an XML document from XML 192
4.3.6.3 Creating an XML document from scratch 193
4.3.6.4 Accessing node data ... 194
4.3.6.5 Manipulating the node-tree hierarchy 195

4.3.7 Handling PBDOM exceptions .. 195
4.3.8 XML namespaces .. 196

4.3.8.1 Setting the name and namespace of a
PBDOM_ATTRIBUTE .. 197

4.4 Manipulating Graphs .. 200
4.4.1 Using graphs ... 200

4.4.1.1 Working with graph controls in code 200
4.4.2 Populating a graph with data ... 202
4.4.3 Modifying graph properties .. 203

4.4.3.1 How parts of a graph are represented 204
4.4.3.2 Referencing parts of a graph ... 204

4.4.4 Accessing data properties ... 205
4.4.4.1 Getting information about the data 205
4.4.4.2 Saving graph data ... 206
4.4.4.3 Modifying colors, fill patterns, and other data 206

4.4.5 Using point and click ... 206
4.5 Implementing Rich Text ... 208

4.5.1 Using rich text in an application .. 208
4.5.1.1 Sources of rich text ... 208

4.5.1.2 Language of rich text ... 209
4.5.1.3 Rich text editors .. 209
4.5.1.4 Deploying a rich text application ... 214

4.5.2 Using a RichText DataWindow object ... 214
4.5.3 Using a RichTextEdit control ... 217

4.5.3.1 Giving the user control .. 217
4.5.3.2 Text for the control .. 218
4.5.3.3 Using an ActiveX spell checking control 224
4.5.3.4 Formatting of rich text ... 225
4.5.3.5 Input fields ... 226
4.5.3.6 Using database data ... 227
4.5.3.7 Cursor position in the RichTextEdit control 228
4.5.3.8 Preview and printing .. 229

4.5.4 Rich text and the end user .. 231
4.6 Piping Data Between Data Sources .. 234

4.6.1 About data pipelines .. 234
4.6.2 Building the objects you need ... 235

4.6.2.1 Building a Pipeline object .. 235
4.6.2.2 Building a supporting user object .. 237
4.6.2.3 Building a window .. 239

4.6.3 Performing some initial housekeeping ... 241
4.6.4 Starting the pipeline ... 243

4.6.4.1 Monitoring pipeline progress ... 245
4.6.4.2 Canceling pipeline execution ... 247
4.6.4.3 Committing updates to the database 248

4.6.5 Handling row errors ... 249
4.6.5.1 Repairing error rows .. 250
4.6.5.2 Abandoning error rows .. 251

4.6.6 Performing some final housekeeping .. 252
4.7 Using RESTFul Web Services with JSON ... 254

4.7.1 Supported JSON formats .. 254
4.7.1.1 Plain JSON .. 254
4.7.1.2 DataWindow JSON .. 256
4.7.1.3 Applicable methods ... 263

4.7.2 Importing JSON data ... 264
4.7.2.1 Example 1 (using RESTClient) .. 264
4.7.2.2 Example 2 (using JSONPackage, HTTPClient, &
ImportJson) .. 264
4.7.2.3 Example 3 (using HTTPClient & JSONParser) 265

4.7.3 Compressing and extracting data .. 266
4.7.3.1 Example 1 (using HTTPClient) .. 266
4.7.3.2 Example 2 (using RESTClient) .. 267
4.7.3.3 Example 3 (using OAuthClient) ... 268

4.8 Supporting OAuth 2.0 Authorization Server ... 269
4.8.1 OAuth Grant Types ... 269

4.8.1.1 Authorization Code .. 272
4.8.1.2 Implicit Flow ... 273
4.8.1.3 Client Credentials .. 274

4.8.1.4 Extension (or Refresh Token) ... 275
4.8.1.5 Resource Owner Password ... 277

5 Program Access Techniques ... 281
5.1 Calling .NET Assembly in an Application .. 281

5.1.1 About .NET assembly .. 281
5.1.2 C# language vs. PowerScript language .. 281

5.1.2.1 Data types ... 281
5.1.2.2 Classes .. 283
5.1.2.3 Functions ... 283
5.1.2.4 Properties .. 284
5.1.2.5 Fields ... 284
5.1.2.6 Transaction Objects ... 284

5.1.3 Adding an adapter for unsupported features 284
5.1.4 Importing the adapter .. 285
5.1.5 Deploying .NET assembly ... 295
5.1.6 Debugging .NET assembly .. 295

5.2 Using DDE in an Application ... 296
5.2.1 About DDE ... 297
5.2.2 DDE functions and events ... 297

5.3 Using OLE in an Application ... 299
5.3.1 OLE support in PowerBuilder .. 299
5.3.2 OLE controls in a window ... 299
5.3.3 OLE controls and insertable objects .. 301

5.3.3.1 Setting up the OLE control .. 301
5.3.3.2 Linking versus embedding ... 304
5.3.3.3 Offsite or in-place activation .. 305
5.3.3.4 Menus for in-place activation ... 307
5.3.3.5 Modifying an object in an OLE control 308

5.3.4 OLE custom controls ... 312
5.3.4.1 Setting up the custom control .. 312
5.3.4.2 Programming the ActiveX control .. 313

5.3.5 Programmable OLE Objects .. 314
5.3.5.1 OLEObject object type .. 314
5.3.5.2 Assignments among OLEControl, OLECustomControl, and
OLEObject datatypes ... 317
5.3.5.3 Automation scenario .. 317

5.3.6 OLE objects in scripts ... 322
5.3.6.1 The automation interface ... 322
5.3.6.2 Automation and the Any datatype 327
5.3.6.3 OLEObjects for efficiency .. 328
5.3.6.4 Handling errors .. 328
5.3.6.5 Creating hot links ... 331
5.3.6.6 Setting the language for OLE objects and controls 332
5.3.6.7 Low-level access to the OLE object 333
5.3.6.8 OLE objects in DataWindow objects 333

5.3.7 OLE information in the Browser .. 336
5.3.8 Advanced ways to manipulate OLE objects 338

5.3.8.1 Structure of an OLE storage ... 338

5.3.8.2 Object types for storages and streams 339
5.3.8.3 Opening and saving storages .. 340
5.3.8.4 Opening streams ... 345
5.3.8.5 Strategies for using storages ... 348

5.4 Building a Mail-Enabled Application .. 348
5.4.1 About MAPI ... 348
5.4.2 Using MAPI .. 350

5.5 Using External Functions and Other Processing Extensions 350
5.5.1 Using external functions .. 350

5.5.1.1 Declaring external functions .. 351
5.5.1.2 Sample declarations .. 352
5.5.1.3 Passing arguments .. 353

5.5.2 Using utility functions to manage information 355
5.5.3 Sending Windows messages .. 356
5.5.4 The Message object .. 357

5.5.4.1 Message object properties .. 358
5.5.5 Context information .. 359

5.5.5.1 Context information service ... 360
5.5.5.2 Context keyword service ... 361
5.5.5.3 CORBACurrent service (obsolete) 362
5.5.5.4 Error logging service ... 362
5.5.5.5 Internet service .. 362
5.5.5.6 Transaction server service .. 365

6 Developing Distributed Applications .. 366
6.1 Distributed Application Development with PowerBuilder 366

6.1.1 Distributed application architecture .. 366
6.1.2 Server support ... 366

6.2 Building a COM or COM+ Client ... 367
6.2.1 About building a COM or COM+ client .. 368
6.2.2 Connecting to a COM server ... 368
6.2.3 Interacting with the COM component .. 369
6.2.4 Controlling transactions from a client .. 369

6.3 Building an EJB client (obsolete) ... 370
7 Developing Web Applications .. 372

7.1 Web Application Development with PowerBuilder 372
7.1.1 Building Web applications ... 372
7.1.2 .NET Web components (obsolete) ... 372
7.1.3 Web services (obsolete) .. 372
7.1.4 Web DataWindow (obsolete) ... 373
7.1.5 DataWindow Web control for ActiveX (obsolete) 373

7.2 Building a Web Services Client (Obsolete) .. 374
8 General Techniques ... 375

8.1 Internationalizing an Application .. 375
8.1.1 Developing international applications .. 375
8.1.2 Using Unicode ... 375

8.1.2.1 About Unicode ... 375
8.1.2.2 Unicode support in PowerBuilder .. 376

8.1.3 Internationalizing the user interface ... 379

8.1.4 Localizing the product .. 380
8.1.4.1 About the Translation Toolkit ... 381

8.2 Building Accessible Applications ... 382
8.2.1 Understanding accessibility challenges ... 382
8.2.2 Accessibility requirements for software and Web applications 384
8.2.3 Creating accessible software applications with PowerBuilder 385

8.2.3.1 Microsoft UI Automation .. 386
8.2.3.2 Microsoft Active Accessibility (MSAA) 388

8.2.4 About VPATs ... 391
8.2.5 Testing product accessibility .. 391

8.3 Printing from an Application .. 392
8.3.1 Printing functions ... 392
8.3.2 Printing basics ... 393
8.3.3 Printing a job ... 393
8.3.4 Using tabs .. 394
8.3.5 Stopping a print job ... 395
8.3.6 Advanced printing techniques ... 395

8.4 Managing Initialization Files and the Windows Registry 397
8.4.1 About preferences and default settings ... 397
8.4.2 Managing information in initialization files 398
8.4.3 Managing information in the Windows registry 399

8.5 Building InfoMaker Styles and Actions .. 400
8.5.1 About form styles ... 400
8.5.2 Naming the DataWindow controls in a form style 403
8.5.3 Building and using a form style ... 404
8.5.4 Modifying an existing style .. 405

8.5.4.1 Identifying the window as the basis of a style 405
8.5.5 Building a style from scratch ... 406
8.5.6 Completing the style .. 407

8.5.6.1 Working with the central DataWindow controls 407
8.5.6.2 Adding controls .. 408
8.5.6.3 Defining actions ... 408
8.5.6.4 Using menus .. 409
8.5.6.5 Writing scripts .. 409
8.5.6.6 Adding other capabilities ... 409

8.5.7 Using the style ... 410
8.5.7.1 Building a form with the custom form style 410
8.5.7.2 Managing the use of form styles ... 411

9 Deployment Techniques .. 413
9.1 Packaging an Application for Deployment ... 413

9.1.1 About deploying applications ... 413
9.1.2 Creating an executable version of your application 413

9.1.2.1 Compiler basics ... 413
9.1.2.2 Learning what can go in the package 414
9.1.2.3 Creating a PowerBuilder resource file 419
9.1.2.4 Choosing a packaging model .. 421
9.1.2.5 Implementing your packaging model 425
9.1.2.6 Testing the executable application 425

9.1.2.7 Digitally signing the executable application 426
9.1.3 Delivering your application to end users 426

9.1.3.1 Installation checklist ... 426
9.1.3.2 Starting the deployed application .. 429

9.2 Deploying Applications and Components .. 429
9.2.1 Deploying applications, components, and supporting files 429
9.2.2 PowerBuilder Runtime Packager ... 431
9.2.3 Third-party components and deployment 435

9.2.3.1 Apache files ... 435
9.2.3.2 Microsoft files ... 436
9.2.3.3 Oracle files ... 437
9.2.3.4 Software used for SOAP clients for Web services
(Obsolete) .. 437

9.2.4 PowerBuilder runtime files ... 437
9.2.4.1 List of runtime files .. 437
9.2.4.2 Installing PowerBuilder Runtime .. 441
9.2.4.3 Selecting a version of PowerBuilder Runtime 442

9.2.5 Database connections ... 445
9.2.5.1 Native database drivers ... 446
9.2.5.2 ODBC database drivers and supporting files 447
9.2.5.3 OLE DB database providers .. 450
9.2.5.4 ADO.NET database interface .. 451
9.2.5.5 JDBC database interface .. 452

9.2.6 Java support .. 453
9.2.7 PowerBuilder extensions ... 455
9.2.8 PDF and XSL-FO export ... 455

9.2.8.1 Using the Ghostscript distiller .. 455
9.2.8.2 Using the PDFlib generator ... 457
9.2.8.3 Using the Apache FO processor ... 458

9.3 Deploying 64-Bit Windows Applications .. 458
9.3.1 Deploying 64-Bit Windows Applications .. 458

Index .. 461

Sample Applications

Page 11

1 Sample Applications
This part introduces the sample applications provided with PowerBuilder and explains how
you use them to learn programming techniques.

1.1 Using Sample Applications
About this chapter

This chapter describes how to use PowerBuilder sample applications.

1.1.1 About the sample applications

PowerBuilder provides sample applications with source code so you can learn and reuse the
techniques used in the samples.

These samples are contributed by Appeon employees and users and are updated frequently.
They include standalone applications that illustrate specific features of PowerBuilder,
including features such as using Web services, and writing visual and nonvisual extensions
using the PowerBuilder Native Interface. Most samples include a readme document that
explains which features a sample demonstrates and how to download and use it.

1.1.2 Installing the sample applications

If you install PowerBuilder using the PowerBuilder Installer (an online setup program),
the sample applications are automatically installed. If you install PowerBuilder using the
downloaded installation package (an offline setup program), to install the samples from the
offline setup program, select Code Examples from the list of components; to install Code
Examples applications, select Example Application.

The setup program installs all samples in Code Examples subdirectories. Most Code
Examples applications use a sample SQL Anywhere database called PB Demo DB. The Code
Examples subdirectories and PB Demo DB databases are installed in the C:\Users\Public
\Public Documents\Appeon\PowerBuilder 21.0 directory on Windows 8.1/10.

If you cannot find the Code Examples directory or the PBDEMO2019R3.DB file, the sample
applications and the database may not have been installed.

1.1.3 Opening the sample applications

To open a sample application, select Programs>Appeon>PowerBuilder [version]>Code
Samples from the Start menu, then select the sample application that you want to open.

The next section contains a procedure that steps you through opening and running the Code
Examples application.

1.1.4 Using the Code Examples application

You run the Code Examples application from the development environment.

To run the Code Examples application:

1. Select File > New from the menu bar, select Workspace from the Workspace tab, and
click OK.

Sample Applications

Page 12

2. Navigate to the C:\Users\Public\Documents\Appeon\PowerBuilder 21.0\Code Examples
\Example App folder, type a name for the workspace, and click Save.

3. Select Add Target from the pop-up menu for the workspace you just created, navigate
to the C:\Users\Public\Documents\Appeon\PowerBuilder 21.0\Code Examples\Example
App folder, select the PB Examples target file, and click Open.

If you expand the target, you will see that the PBL that contains the application and all
its supporting PBLs have been added to the workspace.

4. Click the Run button on the PowerBar.

1.1.4.1 Browsing the examples

When the Code Examples application opens, the left pane contains an expandable tree
view listing the categories of examples available. Some examples appear in more than one
category. For example, the Business Class example is listed under Inheritance and User
Objects. If you are looking for examples showing how to work with a specific feature, such
as DataStores or DataWindows, expand that category and look at the example names.

When you select an example in the left pane, a description of the example and the techniques
it demonstrates displays on the right:

Sample Applications

Page 13

1.1.4.2 Finding examples

If you are looking for ways to work with a specific PowerBuilder object class or feature,
you can use the categories in the Examples pane and the descriptions to locate examples. If
you are looking for examples using a specific event, function, or user-defined object, use the
Search pane.

To search for a function, event, or object:

1. Click the Search tab in the Code Examples main window.

2. Select a radio button in the Search On group box.

3. Select the item you want in the drop-down list and click Perform Search.

The names of all the examples that use the function, event, or object you searched for
display:

Sample Applications

Page 14

1.1.4.3 Running and examining examples

Once you have located an example that performs some processing you want to learn about,
you can run it to examine how it works and look at the code (and copy it if you want to).

Running an example

To run the highlighted example, double-click it or click Run!. You can get Help on how to
use the example and what it does by clicking the Help button on the example's main window.

Examining the code

To see all the objects used in an example, click the Related Objects tab on the right pane and
click the plus signs to expand items:

Double-click the icon for a script or function to examine it.

Using examples in the development environment

Running the Code Examples application and looking at the code for an example gives you a
lot of information, but if you open objects in the examples in the development environment,
you can examine them in more depth.

For example, you can open any object in a painter, examine the inheritance hierarchy in the
Browser, and step through an example in the Debugger. You can even copy objects to your
own application in the Library painter or copy code fragments to the Script view.

Sample Applications

Page 15

The libraries in the Code Examples application are organized by object type. For example,
pbexamd1.pbl and pbexamd2.pbl contain DataWindow objects. This makes it easy to find the
objects that are referenced as examples later in this book. If you expand the sample libraries
in the List view in the Library painter, the comments tell you what each object is used for.

Language Techniques

Page 16

2 Language Techniques
This part presents a collection of programming techniques you can use to take advantage of
PowerBuilder object-oriented features and PowerScript language elements, including the
ClassDefinition object.

2.1 Selected Object-Oriented Programming Topics

About this chapter

This chapter describes how to implement selected object-oriented programming techniques in
PowerBuilder.

2.1.1 Terminology review

Classes, properties, and methods

In object-oriented programming, you create reusable classes to perform application
processing. These classes include properties and methods that define the class's behavior.
To perform application processing, you create instances of these classes. PowerBuilder
implements these concepts as follows:

• Classes

PowerBuilder objects (such as windows, menus, window controls, and user objects)

• Properties

Object variables and instance variables

• Methods

Events and functions

The remaining discussions in this chapter use this PowerBuilder terminology.

Fundamental principles

Object-oriented programming tools support three fundamental principles: inheritance,
encapsulation, and polymorphism.

• Inheritance

Objects can be derived from existing objects, with access to their visual component, data,
and code. Inheritance saves coding time, maximizes code reuse, and enhances consistency.
A descendant object is also called a subclass.

• Encapsulation

An object contains its own data and code, allowing outside access as appropriate.
This principle is also called information hiding. PowerBuilder enables and supports
encapsulation by giving you tools that can enforce it, such as access and scope. However,
PowerBuilder itself does not require or automatically enforce encapsulation.

• Polymorphism

Language Techniques

Page 17

Functions with the same name behave differently, depending on the referenced object.
Polymorphism enables you to provide a consistent interface throughout the application and
within all objects.

Visual objects

Many current applications make heavy use of object-oriented features for visual objects
such as windows, menus, and visual user objects. This allows an application to present a
consistent, unified look and feel.

Nonvisual objects

To fully benefit from PowerBuilder's object-oriented capabilities, consider implementing
class user objects, also known as nonvisual user objects:

Standard class user objects

Inherit their definitions from built-in PowerBuilder system objects, such as Transaction,
Message, or Error. The nvo_transaction Transaction object in the Code Examples
sample application is an example of a subclassed standard class user object. Creating
customized standard class user objects allows you to provide powerful extensions to built-in
PowerBuilder system objects.

Custom class user objects

Inherit their definitions from the PowerBuilder NonVisualObject class. Custom class user
objects encapsulate data and code. This type of class user object allows you to define an
object class from scratch. The u_business_object user object in the Code Examples sample
application is an example of a custom class user object. To make the most of PowerBuilder's
object-oriented capabilities, you must use custom class user objects. Typical uses include:

• Global variable container

The custom class user object contains variables and functions for use across your
application. You encapsulate these variables as appropriate for your application, allowing
access directly or through object functions.

• Service object

The custom class user object contains functions and variables that are useful either in
a specific context (such as a DataWindow) or globally (such as a collection of string-
handling functions).

• Business rules

The custom class user object contains functions and variables that implement business
rules. You can either create one object for all business rules or create multiple objects for
related groups of business rules.

• Distributed computing

The custom class user object contains functions that run on a server or cluster of servers.

For more information, see Part 6, "Distributed Application Techniques".

Language Techniques

Page 18

2.1.2 PowerBuilder techniques

PowerBuilder provides full support for inheritance, encapsulation, and polymorphism in both
visual and nonvisual objects.

Creating reusable objects

In most cases, the person developing reusable objects is not the same person using
the objects in applications. This discussion describes defining and creating reusable
objects. It does not address usage.

Implementing inheritance

PowerBuilder makes it easy to create descendant objects. You implement inheritance in
PowerBuilder by using a painter to inherit from a specified ancestor object.

For examples of inheritance in visual objects, see the w_employee window and
u_employee_object in the Code Examples sample application.

Example of ancestor service object

One example of using inheritance in custom class user objects is creating an ancestor service
object that performs basic services and several descendant service objects. These descendant
objects perform specialized services, as well as having access to the ancestor's services:

Figure: Ancestor service object

Example of virtual function in ancestor object

Another example of using inheritance in custom class user objects is creating an ancestor
object containing functions for all platforms and then creating descendant objects that
perform platform-specific functions. In this case, the ancestor object contains a virtual
function (uf_change_dir in this example) so that developers can create descendant objects
using the ancestor's datatype.

Figure: Virtual function in ancestor object

Language Techniques

Page 19

For more on virtual functions, see Other techniques.

Implementing encapsulation

Encapsulation allows you to insulate your object's data, restricting access by declaring
instance variables as private or protected. You then write object functions to provide selective
access to the instance variables.

One approach

One approach to encapsulating processing and data is as follows:

• Define instance variables as public, private, or protected, depending on the desired degree
of outside access. To ensure complete encapsulation, define instance variables as either
private or protected.

• Define object functions to perform processing and provide access to the object's data.

Table 2.1: Defining object functions

To do this Provide this function Example

Perform processing uf_do_operation uf_do_retrieve (which
retrieves rows from the
database)

Modify instance variables uf_set_variablename uf_set_style (which modifies
the is_style string variable)

Read instance variables uf_get_variablename uf_get_style (which returns
the is_style string variable)

(Optional) Read boolean
instance variables

uf_is_variablename uf_is_protected (which
returns the ib_protected
boolean variable)

Another approach

Another approach to encapsulating processing and data is to provide a single entry point, in
which the developer specifies the action to be performed:

Language Techniques

Page 20

• Define instance variables as private or protected, depending on the desired degree of
outside access

• Define private or protected object functions to perform processing

• Define a single public function whose arguments indicate the type of processing to perform

Figure: Defining a public function for encapsulation

For an example, see the uo_sales_order user object in the Code Examples sample application.

Implementing polymorphism

Polymorphism refers to a programming language's ability to process objects differently
depending on their datatype or class. Polymorphism means that functions with the same name
behave differently depending on the referenced object. Although there is some discussion
over an exact definition for polymorphism, many people find it helpful to think of it as
follows:

Operational polymorphism

Separate, unrelated objects define functions with the same name. Each function performs the
appropriate processing for its object type:

Figure: Operational polymorphism

Language Techniques

Page 21

For an example, see the u_external_functions user object and its descendants in the Code
Examples sample application.

Inclusional polymorphism

Various objects in an inheritance chain define functions with the same name.

With inclusional polymorphism PowerBuilder determines which version of a function to
execute, based on where the current object fits in the inheritance hierarchy. When the object
is a descendant, PowerBuilder executes the descendant version of the function, overriding the
ancestor version:

Figure: Inclusional polymorphism

For an example, see the u_employee_object user object in the Code Examples sample
application.

2.1.3 Other techniques

PowerBuilder allows you to implement a wide variety of object-oriented techniques. This
section discusses selected techniques and relates them to PowerBuilder.

Using function overloading

In function overloading, the descendant function (or an identically named function in the
same object) has different arguments or argument datatypes. PowerBuilder determines which

Language Techniques

Page 22

version of a function to execute, based on the arguments and argument datatypes specified in
the function call:

Figure: Function overloading

Global functions

Global functions cannot be overloaded.

Dynamic versus static lookup

Dynamic lookup

In certain situations, such as when insulating your application from cross-platform
dependencies, you create separate descendant objects, each intended for a particular situation.
Your application calls the platform-dependent functions dynamically:

Figure: Dynamic lookup

Language Techniques

Page 23

Instantiate the appropriate object at runtime, as shown in the following code example:

// This code works with both dynamic and
// static lookup.
// Assume these instance variables
u_platform iuo_platform
Environment ienv_env
...
GetEnvironment(ienv_env)
choose case ienv_env.ostype
 case windows!
 iuo_platform = CREATE u_platform_win
 case windowsnt!
 iuo_platform = CREATE u_platform_win
 case else
 iuo_platform = CREATE u_platform_unix
end choose

Although dynamic lookup provides flexibility, it also slows performance.

Static lookup

To ensure fast performance, static lookup is a better option. However, PowerBuilder enables
object access using the reference variable's datatype (not the datatype specified in a CREATE
statement).

Figure: Static lookup

When using static lookup, you must define default implementations for functions in the
ancestor. These ancestor functions return an error value (for example, -1) and are overridden
in at least one of the descendant objects.

Figure: Ancestor functions overridden in descendant functions

Language Techniques

Page 24

By defining default implementations for functions in the ancestor object, you get platform
independence as well as the performance benefit of static lookup.

Using delegation

Delegation occurs when objects offload processing to other objects.

Aggregate relationship

In an aggregate relationship (sometimes called a whole-part relationship), an object (called an
owner object) associates itself with a service object designed specifically for that object type.

For example, you might create a service object that handles extended row selection in
DataWindow objects. In this case, your DataWindow objects contain code in the Clicked
event to call the row selection object.

To use objects in an aggregate relationship:

1. Create a service object (u_sort_dw in this example).

2. Create an instance variable (also called a reference variable) in the owner (a
DataWindow control in this example):

u_sort_dw iuo_sort

3. Add code in the owner object to create the service object:

iuo_sort = CREATE u_sort_dw

Language Techniques

Page 25

4. Add code to the owner's system events or user events to call service object events or
functions. This example contains the code you might place in a ue_sort user event in the
DataWindow control:

IF IsValid(iuo_sort) THEN
 Return iuo_sort.uf_sort()
ELSE
 Return -1
END IF

5. Add code to call the owner object's user events. For example, you might create a
CommandButton or Edit>Sort menu item that calls the ue_sort user event on the
DataWindow control.

6. Add code to the owner object's Destructor event to destroy the service object:

IF IsValid(iuo_sort) THEN
 DESTROY iuo_sort
END IF

Associative relationship

In an associative relationship, an object associates itself with a service to perform a specific
type of processing.

For example, you might create a string-handling service that can be enabled by any of your
application's objects.

The steps you use to implement objects in an associative relationship are the same as for
aggregate relationships.

Using user objects as structures

When you enable a user object's AutoInstantiate property, PowerBuilder instantiates the user
object along with the object, event, or function in which it is declared. You can also declare
instance variables for a user object. By combining these two capabilities, you create user
objects that function as structures. The advantages of creating this type of user object are that
you can:

• Create descendant objects and extend them.

• Create functions to access the structure all at once.

• Use access modifiers to limit access to certain instance variables.

To create a user object to be used as a structure:

1. Create the user object, defining instance variables only.

2. Enable the user object's AutoInstantiate property by checking AutoInstantiate on the
General property page.

3. Declare the user object as a variable in objects, functions, or events as appropriate.

PowerBuilder creates the user object when the object, event, or function is created and
destroys it when the object is destroyed or the event or function ends.

Language Techniques

Page 26

Subclassing DataStores

Many applications use a DataWindow visual user object instead of the standard DataWindow
window control. This allows you to standardize error checking and other, application-specific
DataWindow behavior. The u_dwstandard DataWindow visual user object found in the
tutorial library TUTOR_PB.PBL provides an example of such an object.

Since DataStores function as nonvisual DataWindow controls, many of the same application
and consistency requirements apply to DataStores as to DataWindow controls. Consider
creating a DataStore standard class user object to implement error checking and application-
specific behavior for DataStores.

2.2 Selected PowerScript Topics
About this chapter

This chapter describes how to use elements of the PowerScript language in an application.

2.2.1 Dot notation

Dot notation lets you qualify the item you are referring to instance variable, property, event,
or function with the object that owns it.

Dot notation is for objects. You do not use dot notation for global variables and functions,
because they are independent of any object. You do not use dot notation for shared variables
either, because they belong to an object class, not an object instance.

Qualifying a reference

Dot notation names an object variable as a qualifier to the item you want to access:

objectvariable.item

The object variable name is a qualifier that identifies the owner of the property or other item.

Adding a parent qualifier

To fully identify an object, you can use additional dot qualifiers to name the parent of an
object, and its parent, and so on:

parent.objectvariable.item

A parent object contains the child object. It is not an ancestor-descendant relationship.
For example, a window is a control's parent. A Tab control is the parent of the tab pages it
contains. A Menu object is the parent of the Menu objects that are the items on that menu.

Many parent levels

You can use parent qualifiers up to the level of the application. You typically need qualifiers
only up to the window level.

For example, if you want to call the Retrieve function for a DataWindow control on a tab
page, you might qualify the name like this:

w_choice.tab_alpha.tabpage_a.dw_names.Retrieve()

Menu objects often need several qualifiers. Suppose a window w_main has a menu object
m_mymenu, and m_mymenu has a File menu with an Open item. You can trigger the Open
item's Selected event like this:

Language Techniques

Page 27

w_main.m_mymenu.m_file.m_open.EVENT Selected()

As you can see, qualifying a name gets complex, particularly for menus and tab pages in a
Tab control.

How many qualifiers?

You need to specify as many qualifiers as are required to identify the object, function, event,
or property.

A parent object knows about the objects it contains. In a window script, you do not need to
qualify the names of the window's controls. In scripts for the controls, you can also refer to
other controls in the window without a qualifier.

For example, if the window w_main contains a DataWindow control dw_data and a
CommandButton cb_close, a script for the CommandButton can refer to the DataWindow
control without a qualifier:

dw_data.AcceptText()
dw_data.Update()

If a script in another window or a user object refers to the DataWindow control, the
DataWindow control needs to be qualified with the window name:

w_main.dw_data.AcceptText()

Referencing objects

There are three ways to qualify an element of an object in the object's own scripts:

• Unqualified:

li_index = SelectItem(5)

An unqualified name is unclear and might result in ambiguities if there are local or global
variables and functions with the same name.

• Qualified with the object's name:

li_index = lb_choices.SelectItem(5)

Using the object name in the object's own script is unnecessarily specific.

• Qualified with a generic reference to the object:

li_index = This.SelectItem(5)

The pronoun This shows that the item belongs to the owning object.

This pronoun

In a script for the object, you can use the pronoun This as a generic reference to the owning
object:

This.property
This.function

Although the property or function could stand alone in a script without a qualifier, someone
looking at the script might not recognize the property or function as belonging to an object. A

Language Techniques

Page 28

script that uses This is still valid if you rename the object. The script can be reused with less
editing.

You can also use This by itself as a reference to the current object. For example, suppose you
want to pass a DataWindow control to a function in another user object:

uo_data.uf_retrieve(This)

This example in a script for a DataWindow control sets an instance variable of type
DataWindow so that other functions know the most recently used DataWindow control:

idw_currentdw = This

Parent pronoun

The pronoun Parent refers to the parent of an object. When you use Parent and you rename
the parent object or reuse the script in other contexts, it is still valid.

For example, in a DataWindow control script, suppose you want to call the Resize function
for the window. The DataWindow control also has a Resize function, so you must qualify it:

// Two ways to call the window function
w_main.Resize(400, 400)
Parent.Resize(400, 400)

// Three ways to call the control's function
Resize(400, 400)
dw_data.Resize(400, 400)
This.Resize(400, 400)

GetParent function

The Parent pronoun works only within dot notation. If you want to get a reference to the
parent of an object, use the GetParent function. You might want to get a reference to the
parent of an object other than the one that owns the script, or you might want to save the
reference in a variable:

window w_save
w_save = dw_data.GetParent()

For example, in another CommandButton's Clicked event script, suppose you wanted to
pass a reference to the control's parent window to a function defined in a user object. Use
GetParent in the function call:

uo_winmgmt.uf_resize(This.GetParent(), 400, 600)

ParentWindow property and function

Other tools for getting the parent of an object include:

• ParentWindow property -- used in a menu script to refer to the window that is the parent of
the menu

• ParentWindow function -- used in any script to get a reference to the window that is the
parent of a particular window

For more about these pronouns and functions, see Section 1.1.7, “Pronouns” in PowerScript
Reference and Section 2.4.558, “ParentWindow” in PowerScript Reference.

Objects in a container object

Language Techniques

Page 29

Dot notation also allows you to reach inside an object to the objects it contains. To refer to
an object inside a container, use the Object property in the dot notation. The structure of the
object in the container determines how many levels are accessible:

control.Object.objectname.property
control.Object.objectname.Object.qualifier.qualifier.property

Objects that you can access using the Object property are:

• DataWindow objects in DataWindow controls

• External OLE objects in OLE controls

These expressions refer to properties of the DataWindow object inside a DataWindow
control:

dw_data.Object.emp_lname.Border
dw_data.Object.nestedrpt[1].Object.salary.Border

No compiler checking

For objects inside the container, the compiler cannot be sure that the dot notation is valid. For
example, the DataWindow object is not bound to the control and can be changed at any time.
Therefore, the names and properties after the Object property are checked for validity during
execution only. Incorrect references cause an execution error.

For more information

For more information about runtime checking, see Optimizing expressions for DataWindow
and external objects.

For more information about dot notation for properties and data of DataWindow objects and
handling errors, see Part I, “DataWindow Reference”.

For more information about OLE objects and dot notation for OLE automation, see Using
OLE in an Application.

2.2.2 Constant declarations

To declare a constant, add the keyword CONSTANT to a standard variable declaration:

CONSTANT { access } datatype constname = value

Only a datatype that accepts an assignment in its declaration can be a constant. For this
reason, blobs cannot be constants.

Even though identifiers in PowerScript are not case sensitive, the declarations shown here use
uppercase as a convention for constant names:

CONSTANT integer GI_CENTURY_YEARS = 100
CONSTANT string IS_ASCENDING = "a"

Advantages of constants

If you try to assign a value to the constant anywhere other than in the declaration, you get
a compiler error. A constant is a way of assuring that the declaration is used the way you
intend.

Constants are also efficient. Because the value is established during compilation, the
compiled code uses the value itself, rather than referring to a variable that holds the value.

Language Techniques

Page 30

2.2.3 Controlling access for instance variables

Instance variables have access settings that provide control over how other objects' scripts
access them.

You can specify that a variable is:

• Public

Accessible to any other object

• Protected

Accessible only in scripts for the object and its descendants

• Private

Accessible in scripts for the object only

For example:

public integer ii_currentvalue
CONSTANT public integer WARPFACTOR = 1.2
protected string is_starship

// Private values used in internal calculations
private integer ii_maxrpm
private integer ii_minrpm

You can further qualify access to public and protected variables with the modifiers
PRIVATEREAD, PRIVATEWRITE, PROTECTEDREAD, or PROTECTEDWRITE:

public privatewrite ii_averagerpm

Private variables for encapsulation

One use of access settings is to keep other scripts from changing a variable when they should
not. You can use PRIVATE or PUBLIC PRIVATEWRITE to keep the variable from being
changed directly. You might write public functions to provide validation before changing the
variable.

Private variables allow you to encapsulate an object's functionality. This technique means
that an object's data and code are part of the object itself and the object determines the
interface it presents to other objects.

If you generate a component from a custom class user object, you can choose to expose its
instance variables in the component's interface, but private and protected instance variables
are never exposed.

For more information

For more about access settings, see Section 1.3, “Declarations” in PowerScript Reference.

For more about encapsulation, see Selected Object-Oriented Programming Topics.

2.2.4 Resolving naming conflicts

There are two areas in which name conflicts occur:

Language Techniques

Page 31

• Variables that are defined within different scopes can have the same name. For example, a
global variable can have the same name as a local or instance variable. The compiler warns
you of these conflicts, but you do not have to change the names.

• A descendant object has functions and events that are inherited from the ancestor and have
the same names.

If you need to refer to a hidden variable or an ancestor's event or function, you can use dot
notation qualifiers or the scope operator.

Hidden instance variables

If an instance variable has the same name as a local, shared, or global variable, qualify the
instance variable with its object's name:

objectname.instancevariable

If a local variable and an instance variable of a window are both named birthdate, then
qualify the instance variable:

w_main.birthdate

If a window script defines a local variable x, the name conflicts with the X property of the
window. Use a qualifier for the X property. This statement compares the two:

IF x > w_main.X THEN ...

Hidden global variables

If a global variable has the same name as a local or shared variable, you can access the global
variable with the scope operator (::) as follows:

::globalvariable

This expression compares a local variable with a global variable, both named total:

IF total < ::total THEN ...

Use prefixes to avoid naming conflicts

If your naming conventions include prefixes that identify the scope of the variable,
then variables of different scopes always have different names and there are no
conflicts.

For more information about the search order that determines how name conflicts are resolved,
see Section 1.3, “Declarations” in PowerScript Reference and Section 1.6, “Calling Functions
and Events” in PowerScript Reference.

Overridden functions and events

When you change the script for a function that is inherited, you override the ancestor version
of the function. For events, you can choose to override or extend the ancestor event script in
the painter.

You can use the scope operator to call the ancestor version of an overridden function or
event. The ancestor class name, not a variable, precedes the colons:

result = w_ancestor:: FUNCTION of_func(arg1, arg2)

Language Techniques

Page 32

You can use the Super pronoun instead of naming an ancestor class. Super refers to the
object's immediate ancestor:

result = Super:: EVENT ue_process()

In good object-oriented design, you would not call ancestor scripts for other objects. It is best
to restrict this type of call to the current object's immediate ancestor using Super.

For how to capture the return value of an ancestor script, see Return values from ancestor
scripts.

Overloaded functions

When you have several functions of the same name for the same object, the function name is
considered to be overloaded. PowerBuilder determines which version of the function to call
by comparing the signatures of the function definitions with the signature of the function call.
The signature includes the function name, argument list, and return value.

Overloading

Events and global functions cannot be overloaded.

2.2.5 Return values from ancestor scripts

If you want to perform some processing in an event in a descendant object, but that
processing depends on the return value of the ancestor event script, you can use a local
variable called AncestorReturnValue that is automatically declared and assigned the return
value of the ancestor event.

The first time the compiler encounters a CALL statement that calls the ancestor event of a
script, the compiler implicitly generates code that declares the AncestorReturnValue variable
and assigns to it the return value of the ancestor event.

The datatype of the AncestorReturnValue variable is always the same as the datatype defined
for the return value of the event. The arguments passed to the call come from the arguments
that are passed to the event in the descendant object.

Extending event scripts

The AncestorReturnValue variable is always available in extended event scripts. When you
extend an event script, PowerBuilder generates the following syntax and inserts it at the
beginning of the event script:

CALL SUPER::event_name

You see the statement only if you export the syntax of the object.

Overriding event scripts

The AncestorReturnValue variable is available only when you override an event script after
you call the ancestor event using the CALL syntax explicitly:

CALL SUPER::event_name

or

CALL ancestor_name::event_name

Language Techniques

Page 33

The compiler does not differentiate between the keyword SUPER and the name of the
ancestor. The keyword is replaced with the name of the ancestor before the script is
compiled.

The AncestorReturnValue variable is declared and a value assigned only when you use the
CALL event syntax. It is not declared if you use the new event syntax:

ancestor_name::EVENT event_name ()

Example

You can put code like the following in an extended event script:

IF AncestorReturnValue = 1 THEN
 // execute some code
ELSE
 // execute some other code
END IF

You can use the same code in a script that overrides its ancestor event script, but you must
insert a CALL statement before you use the AncestorReturnValue variable:

// execute code that does some preliminary processing
CALL SUPER::ue_myevent
IF AncestorReturnValue = 1 THEN
…

2.2.6 Types of arguments for functions and events

When you define a function or user event, you specify its arguments, their datatypes, and how
they are passed.

There are three ways to pass an argument:

• By value

Is the default

PowerBuilder passes a copy of a by-value argument. Any changes affect the copy, and the
original value is unaffected.

• By reference

Tells PowerBuilder to pass a pointer to the passed variable

The function script can change the value of the variable because the argument points back
to the original variable. An argument passed by reference must be a variable, not a literal
or constant, so that it can be changed.

• Read-only

Passes the argument by value without making a copy of the data

Read-only provides a performance advantage for some datatypes because it does not create
a copy of the data, as with by value. Datatypes for which read-only provides a performance
advantage are String, Blob, Date, Time, and DateTime.

For other datatypes, read-only provides documentation for other developers by indicating
something about the purpose of the argument.

Language Techniques

Page 34

Matching argument types when overriding functions

If you define a function in a descendant that overrides an ancestor function, the function
signatures must match in every way: the function name, return value, argument datatypes,
and argument passing methods must be the same.

For example, this function declaration has two long arguments passed by value and one
passed by reference:

uf_calc(long a_1, long a_2, ref long a_3) &
 returns integer

If the overriding function does not match, then when you call the function, PowerBuilder
calculates which function matches more closely and calls that one, which might give
unexpected results.

2.2.7 Ancestor and descendant variables

All objects in PowerBuilder are descendants of PowerBuilder system objects the objects you
see listed on the System page in the Browser.

Therefore, whenever you declare an object instance, you are declaring a descendant. You
decide how specific you want your declarations to be.

As specific as possible

If you define a user object class named uo_empdata, you can declare a variable whose type is
uo_empdata to hold the user object reference:

uo_empdata uo_emp1
uo_emp1 = CREATE uo_empdata

You can refer to the variables and functions that are part of the definition of uo_empdata
because the type of uo_emp1 is uo_empdata.

When the application requires flexibility

Suppose the user object you want to create depends on the user's choices. You can declare a
user object variable whose type is UserObject or an ancestor class for the user object. Then
you can specify the object class you want to instantiate in a string variable and use it with
CREATE:

uo_empdata uo_emp1
string ls_objname
ls_objname = ... // Establish the user object to open
uo_emp1 = CREATE USING ls_objname

This more general approach limits your access to the object's variables and functions. The
compiler knows only the properties and functions of the ancestor class uo_empdata (or the
system class UserObject if that is what you declared). It does not know which object you will
actually create and cannot allow references to properties defined on that unknown object.

Abstract ancestor object

In order to address properties and functions of the descendants you plan to instantiate, you
can define the ancestor object class to include the properties and functions that you will
implement in the descendants. In the ancestor, the functions do not need code other than a
return value they exist so that the compiler can recognize the function names. When you

Language Techniques

Page 35

declare a variable of the ancestor class, you can reference the functions. During execution,
you can instantiate the variable with a descendant, where that descendant implements the
functions as appropriate:

uuo_empdata uo_emp1
string ls_objname
// Establish which descendant of uo_empdata to open
ls_objname = ...
uo_emp1 = CREATE USING ls_objname

// Function is declared in the ancestor class
result = uo_emp1.uf_special()

This technique is described in more detail in Dynamic versus static lookup.

Dynamic function calls

Another way to handle functions that are not defined for the declared class is to use dynamic
function calls.

When you use the DYNAMIC keyword in a function call, the compiler does not check
whether the function call is valid. The checking happens during execution when the variable
has been instantiated with the appropriate object:

// Function not declared in the ancestor class
result = uo_emp1.DYNAMIC uf_special()

Performance and errors

You should avoid using the dynamic capabilities of PowerBuilder when your
application design does not require them. Runtime evaluation means that work the
compiler usually does must be done at runtime, making the application slower when
dynamic calls are used often or used within a large loop. Skipping compiler checking
also means that errors that might be caught by the compiler are not found until the
user is executing the program.

Dynamic object selection for windows and visual user objects

A window or visual user object is opened with a function call instead of the CREATE
statement. With the Open and OpenUserObject functions, you can specify the class of the
window or object to be opened, making it possible to open a descendant different from the
declaration's object type.

This example displays a user object of the type specified in the string s_u_name and stores
the reference to the user object in the variable u_to_open. Variable u_to_open is of type
DragObject, which is the ancestor of all user objects. It can hold a reference to any user
object:

DragObject u_to_open
string s_u_name
s_u_name = sle_user.Text
w_info.OpenUserObject(u_to_open, s_u_name, 100, 200)

For a window, comparable code looks like this. The actual window opened could be the class
w_data_entry or any of its descendants:

w_data_entry w_data
string s_window_name

Language Techniques

Page 36

s_window_name = sle_win.Text
Open(w_data, s_window_name)

2.2.8 Optimizing expressions for DataWindow and external objects

No compiler validation for container objects

When you use dot notation to refer to a DataWindow object in a DataWindow control or
DataStore, the compiler does not check the validity of the expression:

dw_data.Object.column.property

Everything you specify after the Object property passes the compiler and is checked during
execution.

The same applies to external OLE objects. No checking occurs until execution:

ole_1.Object.qualifier.qualifier.property.Value

Establishing partial references

Because of the runtime syntax checking, using many expressions like these can impact
performance. To improve efficiency when you refer repeatedly to the same DataWindow
component object or external object, you can define a variable of the appropriate type and
assign a partial reference to the variable. The script evaluates most of the reference only once
and reuses it.

The datatype of a DataWindow component object is DWObject:

DWObject dwo_column
dwo_column = dw_data.Object.column
dwo_column.SlideLeft = ...
dwo_column.SlideUp = ...

The datatype of a partially resolved automation expression is OLEObject:

OLEObject ole_wordbasic
ole_wordbasic = ole_1.Object.application.wordbasic
ole_wordbasic.propertyname1 = value
ole_wordbasic.propertyname2 = value

Handling errors

The Error and (for automation) ExternalException events are triggered when errors occur in
evaluating the DataWindow and OLE expressions. If you write a script for these events, you
can catch an error before it triggers the SystemError event. These events allow you to ignore
an error or substitute an appropriate value. However, you must be careful to avoid setting up
conditions that cause another error. You can also use try-catch blocks to handle exceptions as
described in Exception handling in PowerBuilder.

For information

For information about DataWindow data expressions and property expressions and
DWObject variables, see Section 4.2.1, “About DataWindow data expressions” in
DataWindow Reference, Section 5.3, “PowerBuilder: DataWindow property expressions” in
DataWindow Reference, and Section 5.3.3, “Using the DWObject variable in PowerBuilder”
in DataWindow Reference. For information about using OLEObject variables in automation,
see Using OLE in an Application.

Language Techniques

Page 37

2.2.9 Exception handling in PowerBuilder

When a runtime error occurs in a PowerBuilder application, unless that error is trapped,
a single application event (SystemError) fires to handle the error no matter where in the
application the error happened. Although some errors can be handled in the system error
event, catching the error closer to its source increases the likelihood of recovery from the
error condition.

You can use exception-handling classes and syntax to handle context-sensitive errors in
PowerBuilder applications. This means that you can deal with errors close to their source
by embedding error-handling code anywhere in your application. Well-designed exception-
handling code can give application users a better chance to recover from error conditions and
run the application without interruption.

Exception handling allows you to design an application that can recover from exceptional
conditions and continue execution. Any exceptions that you do not catch are handled by the
runtime system and can result in the termination of the application.

Exception handling can be found in such object-oriented languages as Java and C++. The
implementation for PowerBuilder is similar to the implementation of exception handling in
Java. In PowerBuilder, the TRY, CATCH, FINALLY, THROW, and THROWS reserved
words are used for exception handling. There are also several PowerBuilder objects that
descend from the Throwable object.

2.2.9.1 Basics of exception handling

Exceptions are objects that are thrown in the event of some exceptional (or unexpected)
condition or error and are used to describe the condition or error encountered. Standard
errors, such as null object references and division by zero, are typically thrown by the
runtime system. These types of errors could occur anywhere in an application and you can
include catch clauses in any executable script to try to recover from these errors.

User-defined exceptions

There are also exceptional conditions that do not immediately result in runtime errors. These
exceptions typically occur during execution of a function or a user-event script. To signal
these exceptions, you create user objects that inherit from the PowerScript Exception class.
You can associate a user-defined exception with a function or user event in the prototype for
the method.

For example, a user-defined exception might be created to indicate that a file cannot be
found. You could declare this exception in the prototype for a function that is supposed to
open the file. To catch this condition, you must instantiate the user-defined exception object
and then throw the exception instance in the method script.

2.2.9.2 Objects for exception handling support

Several system objects support exception handling within PowerBuilder.

Throwable object type

The object type Throwable is the root datatype for all user-defined exception and system
error types. Two other system object types, RuntimeError and Exception, derive from
Throwable.

RuntimeError and its descendants

Language Techniques

Page 38

PowerBuilder runtime errors are represented in the RuntimeError object type. For more
robust error-handling capabilities, the RuntimeError type has its own system-defined
descendants; but the RuntimeError type contains all information required for dealing with
PowerBuilder runtime errors.

One of the descendants of RuntimeError is the NullObjectError type that is thrown by the
system whenever a null object reference is encountered. This allows you to handle null-
object-reference errors explicitly without having to differentiate them from other runtime
errors that might occur.

Error types that derive from RuntimeError are typically used by the system to indicate
runtime errors. RuntimeErrors can be caught in a try-catch block, but it is not necessary to
declare where such an error condition might occur. (PowerBuilder does that for you, since
a system error can happen anywhere anytime the application is running.) It is also not a
requirement to catch these types of errors.

Exception object type

The system object Exception also derives from Throwable and is typically used as an
ancestor object for user-defined exception types. It is the root class for all checked
exceptions. Checked exceptions are user-defined exceptions that must be caught in a try-
catch block when thrown, or that must be declared in the prototype of a method when thrown
outside of a try-catch block.

The PowerScript compiler checks the local syntax where you throw checked exceptions to
make sure you either declare or catch these exception types. Descendants of RuntimeError
are not checked by the compiler, even if they are user defined or if they are thrown in a script
rather than by the runtime system.

2.2.9.3 Handling exceptions

Whether an exception is thrown by the runtime system or by a THROW statement in an
application script, you handle the exception by catching it. This is done by surrounding the
set of application logic that throws the exception with code that indicates how the exception
is to be dealt with.

TRY-CATCH-FINALLY block

To handle an exception in PowerScript, you must include some set of your application logic
inside a try-catch block. A try-catch block begins with a TRY clause and ends with the END
TRY statement. It must also contain either a CATCH clause or a FINALLY clause. A try-
catch block normally contains a FINALLY clause for error condition cleanup. In between the
TRY and FINALLY clauses you can add any number of CATCH clauses.

CATCH clauses are not obligatory, but if you do include them you must follow each CATCH
statement with a variable declaration. In addition to following all of the usual rules for
local variable declarations inside a script, the variable being defined must derive from the
Throwable system type.

You can add a TRY-CATCH-FINALLY, TRY-CATCH, or TRY-FINALLY block using
the Script view Paste Special feature for PowerScript statements. If you select the Statement
Templates check box on the AutoScript tab of the Design Options dialog box, you can also
use the AutoScript feature to insert these block structures.

Example

Language Techniques

Page 39

Example catching a system error

This is an example of a TRY-CATCH-FINALLY block that catches a system error when
an arccosine argument, entered by the application user (in a SingleLineEdit) is not in the
required range. If you do not catch this error, the application goes to the system error event,
and eventually terminates:

Double ld_num
ld_num = Double (sle_1.text)
TRY
 sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)
 MessageBox("Runtime Error", er.GetMessage())
FINALLY
 // Add cleanup code here
 of_cleanup()
 Return
END TRY
MessageBox("After", "We are finished.")

The system runtime error message might be confusing to the end user, so for production
purposes, it would be better to catch a user-defined exception -- see the example in Creating
user-defined exception types -- and set the message to something more understandable.

The TRY reserved word signals the start of a block of statements to be executed and can
include more than one CATCH clause. If the execution of code in the TRY block causes
an exception to be thrown, then the exception is handled by the first CATCH clause whose
variable can be assigned the value of the exception thrown. The variable declaration after a
CATCH statement indicates the type of exception being handled (a system runtime error, in
this case).

CATCH order

It is important to order your CATCH clauses in such a way that one clause does not hide
another. This would occur if the first CATCH clause catches an exception of type Exception
and a subsequent CATCH clause catches a descendant of Exception. Since they are processed
in order, any exception thrown that is a descendant of Exception would be handled by the
first CATCH clause and never by the second. The PowerScript compiler can detect this
condition and signals an error if found.

If an exception is not dealt with in any of the CATCH clauses, it is thrown up the call stack
for handling by other exception handlers (nested try-catch blocks) or by the system error
event. But before the exception is thrown up the stack, the FINALLY clause is executed.

FINALLY clause

The FINALLY clause is generally used to clean up after execution of a TRY or CATCH
clause. The code in the FINALLY clause is guaranteed to execute if any portion of the try-
catch block is executed, regardless of how the code in the try-catch block completes.

If no exceptions occur, the TRY clause completes, followed by the execution of the
statements contained in the FINALLY clause. Then execution continues on the line following
the END TRY statement.

In cases where there are no CATCH clauses but only a FINALLY clause, the code in the
FINALLY clause is executed even if a return is encountered or an exception is thrown in the
TRY clause.

Language Techniques

Page 40

If an exception occurs within the context of the TRY clause and an applicable CATCH clause
exists, the CATCH clause is executed, followed by the FINALLY clause. But even if no
CATCH clause is applicable to the exception thrown, the FINALLY clause still executes
before the exception is thrown up the call stack.

If an exception or a return is encountered within a CATCH clause, the FINALLY clause is
executed before execution is transferred to the new location.

FINALLY clause restriction

Do not use RETURN statements in the FINALLY clause of a TRY-CATCH block.
This can prevent the exception from being caught by its invoker.

2.2.9.4 Creating user-defined exception types

You can create your own user-defined exception types from standard class user objects that
inherit from Exception or RuntimeError or that inherit from an existing user object deriving
from Exception or RuntimeError.

Inherit from Exception object type

Normally, user-defined exception types should inherit from the Exception type or a
descendant, since the RuntimeError type is used to indicate system errors. These user-defined
objects are no different from any other nonvisual user object in the system. They can contain
events, functions, and instance variables.

This is useful, for example, in cases where a specific condition, such as the failure of a
business rule, might cause application logic to fail. If you create a user-defined exception
type to describe such a condition and then catch and handle the exception appropriately, you
can prevent a runtime error.

Throwing exceptions

Exceptions can be thrown by the runtime engine to indicate an error condition. If you want to
signal a potential exception condition manually, you must use the THROW statement.

Typically, the THROW statement is used in conjunction with some user-defined exception
type. Here is a simple example of the use of the THROW statement:

Exception le_ex
le_ex = create Exception
Throw le_ex
MessageBox ("Hmm", "We would never get here if" &
 + "the exception variable was not instantiated")

In this example, the code throws the instance of the exception le_ex. The variable following
the THROW reserved word must point to a valid instance of the exception object that
derives from Throwable. If you attempt to throw an uninstantiated Exception variable, a
NullObjectError is thrown instead, indicating a null object reference in this routine. That
could only complicate the error handling for your application.

Declaring exceptions thrown from functions

If you signal an exception with the THROW statement inside a method script -- and do not
surround the statement with a try-catch block that can deal with that type of exception -- you
must also declare the exception as an exception type (or as a descendant of an exception type)

Language Techniques

Page 41

thrown by that method. However, you do not need to declare that a method can throw runtime
errors, since PowerBuilder does that for you.

The prototype window in the Script view of most PowerBuilder painters allows you to
declare what user-defined exceptions, if any, can be thrown by a function or a user-defined
event. You can drag and drop exception types from the System Tree or a Library painter view
to the Throws box in the prototype window, or you can type in a comma-separated list of the
exception types that the method can throw.

Example

Example catching a user-defined exception

This code displays a user-defined error when an arccosine argument, entered by the
application user, is not in the required range. The try-catch block calls a method, wf_acos,
that catches the system error and sets and throws the user-defined error:

TRY
 wf_acos()

CATCH (uo_exception u_ex)
 MessageBox("Out of Range", u_ex.GetMessage())
END TRY

This code in the wf_acos method catches the system error and sets and throws the user-
defined error:

uo_exception lu_error
Double ld_num
ld_num = Double (sle_1.text)
TRY
 sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)
 lu_error = Create uo_exception
 lu_error.SetMessage("Value must be between -1" &
 + "and 1")
 Throw lu_error
END TRY

2.2.9.5 Adding flexibility and facilitating object reuse

You can use exception handling to add flexibility to your PowerBuilder applications, and to
help in the separation of business rules from presentation logic. For example, business rules
can be stored in a non-visual object (nvo) that has:

• An instance variable to hold a reference to the presentation object:

powerobject my_presenter

• A function that registers the presentation object

The registration function could use the following syntax:

SetObject (string my_purpose, powerobject myobject)

• Code to call a dynamic function implemented by the presentation object, with minimal
assumptions about how the data is displayed

The dynamic function call should be enclosed in a try-catch block, such as:

Language Techniques

Page 42

TRY
 my_presenter.Dynamic nf_displayScreen(" ")
 CATCH (Throwable lth_exception)
 Throw lth_exception
END TRY

This try-catch block catches all system and user-defined errors from the presentation object
and throws them back up the calling chain (to the object that called the nvo). In the above
example, the thrown object in the CATCH statement is an object of type Throwable, but
you could also instantiate and throw a user exception object:

uo_exception luo_exception

TRY
 my_presenter.Dynamic nf_displayScreen(" ")
CATCH (Throwable lth_exception)
 luo_exception = Create uo_exception
 luo_exception.SetMessage & +
 (lth_exception.GetMessage())
 Throw luo_exception
END TRY

Code for data processing could be added to the presentation object, to the business rules
nvo, or to processing objects called by the nvo. The exact design depends on your business
objectives, but this code should also be surrounded by try-catch blocks. The actions to take
and the error messages to report (in case of code processing failure) should be as specific as
possible in the try-catch blocks that surround the processing code.

There are significant advantages to this type of approach, since the business nvo can be
reused more easily, and it can be accessed by objects that display the same business data in
many different ways. The addition of exception handling makes this approach much more
robust, giving the application user a chance to recover from an error condition.

2.2.9.6 Using the SystemError and Error events

Error event

If a runtime error occurs, an error structure that describes the error is created. If the
error occurs in the context of a connection to a remote server then the Error event on the
Connection, DataWindow, or OLE control object is triggered, with the information in the
error structure as arguments.

The error can be handled in this Error event by use of a special reference argument that
allows the error to be ignored. If the error does not occur in the context described above, or
if the error in that context is not dealt with, then the error structure information is used to
populate the global error variable and the SystemError event on the Application object is
triggered.

SystemError event

In the SystemError event, unexpected error conditions can be dealt with in a limited way. In
general, it is not a good idea to continue running the application after the SystemError event
is triggered. However, error-handling code can and should be added to this event. Typically
you could use the SystemError event to save data before the application terminates and to
perform last-minute cleanup (such as closing files or database connections).

Precedence of exception handlers and events

Language Techniques

Page 43

If you write code in the Error event, then that code is executed first in the event of a thrown
exception.

If the exception is not thrown in any of the described contexts or the object's Error event
does not handle the exception or you do not code the Error event, then the exception is
handled by any active exception handlers (CATCH clauses) that are applicable to that type of
exception. Information from the exception class is copied to the global error variable and the
SystemError event on the Application object is fired only if there are no exception handlers to
handle the exception.

Error handling for new applications

For new PowerBuilder applications, the recommended approach for handling errors is to use
a try-catch block instead of coding the Error event on Connection, DataWindow, or OLE
control objects. You should still have a SystemError event coded in your Application object
to handle any uncaught exceptions. The SystemError event essentially becomes a global
exception handler for a PowerBuilder application.

2.2.10 Garbage collection and memory management

The PowerBuilder garbage collection mechanism checks memory automatically for
unreferenced and orphaned objects and removes any it finds, thus taking care of most
memory leaks. You can use garbage collection to destroy objects instead of explicitly
destroying them using the DESTROY statement. This lets you avoid runtime errors that
occur when you destroy an object that was being used by another process or had been passed
by reference to a posted event or function.

A reference to an object is any variable whose value is the object. When the variable goes out
of scope, or when it is assigned a different value, PowerBuilder removes a reference to the
object and counts the remaining references, and the garbage collection process destroys the
object if no references remain.

Garbage collection occurs:

• When the garbage collection interval has been exceeded and the PowerBuilder application
becomes idle and

• When you explicitly call the GarbageCollect function.

When PowerBuilder completes the execution of a system-triggered event, it makes a garbage
collection pass if the set interval between garbage collection passes has been exceeded. The
default interval is 0.5 seconds. Note that this system-triggered garbage collection pass only
occurs when the PowerBuilder application is idle, therefore if a long computation or process
is in progress when the interval is exceeded, garbage collection does not occur immediately.

You can force immediate garbage collection by invoking the GarbageCollect function. When
you use dot notation and OLEObjects, temporary variables are created. These temporary
variables are released only during the garbage collection process. You might want to invoke
GarbageCollect inside a loop that appears to be causing memory leaks.

The garbage collection pass removes any objects and classes that cannot be referenced,
including those containing circular references (otherwise unreferenced objects that reference
each other).

Language Techniques

Page 44

Posting events and functions

When you post an event or function and pass an object reference, PowerBuilder adds
an internal reference to the object to prevent its memory from being reclaimed by the
garbage collector between the time of the post and the actual execution of the event or
function. This reference is removed when the event or function is executed.

Exceptions to garbage collection

There are a few objects that are prevented from being collected:

• Visual objects

Any object that is visible on your screen is not collected because when the object is created
and displayed on your screen, an internal reference is added to the object. When any visual
object is closed, it is explicitly destroyed.

• Timing objects

Any Timing object that is currently running is not collected because the Start function for a
Timing object adds an internal reference. The Stop function removes the reference.

• Shared objects

Registered shared objects are not collected because the SharedObjectRegister function
adds an internal reference. SharedObjectUnregister removes the internal reference.

Controlling when garbage collection occurs

Garbage collection occurs automatically in PowerBuilder, but you can use functions to
force immediate garbage collection or to change the interval between reference count
checks. Three functions let you control when garbage collection occurs: GarbageCollect,
GarbageCollectGetTimeLimit, and GarbageCollectSetTimeLimit.

For information about these functions, see Part I, “PowerScript Reference”. For an example
illustrating their use, see the Code Examples sample application, described in Using Sample
Applications.

Performance concerns

You can use tracing and profiling to examine the effect of changing the garbage collection
interval on performance.

For information about tracing and profiling, see Section 7.2, “Tracing and Profiling
Applications” in Users Guide.

2.2.10.1 Configuring memory management

You can set the PB_POOL_THRESHOLD environment variable to specify the threshold at
which the PowerBuilder memory manager switches to a different memory allocation strategy.

When most windows, DataWindows, DataStores, or other PowerBuilder objects are
destroyed or reclaimed by the garbage collector, the PowerBuilder heap manager returns
the memory allocated for each object to a global memory pool and records its availability
on a global free list. The freed memory is not returned to the operating system. When a new
object is created, PowerBuilder allocates blocks of memory from the global memory pool (if

Language Techniques

Page 45

sufficient memory is available in the global free list) or from the operating system (if it is not)
to a memory pool for the object.

When the memory required by an object exceeds 256KB, PowerBuilder uses a different
strategy. It allocates subsequent memory requirements from the operating system in
large blocks, and returns the physical memory to the operating system when the object is
destroyed. It retains the virtual memory to reduce fragmentation of the virtual address space.

For most applications and components, the threshold of 256KB at which PowerBuilder
switches to the "large blocks" strategy works well and reduces the memory required by an
application when it is working at its peak level of activity. However, if you want to keep the
overall physical memory usage of your application as low as possible, you can try setting a
lower threshold.

The advantage of setting a low threshold is that the size of the global memory pool
is reduced. The application does not retain a lot of memory when it is inactive. The
disadvantage is that large blocks of memory are allocated for objects that require more
memory than the threshold value, so that when the application is running at its peak of
activity, it might use more virtual memory than it would with the default threshold.

Setting a low threshold can be beneficial for long-running client applications that use many
short-lived objects, where the client application's memory usage varies from low (when idle)
to high (when active). For multithreaded applications, such as servers, a higher threshold
usually results in lower virtual memory utilization.

Logging heap manager output

You can record diagnostic ouput from the PowerBuilder heap manager in a file to help you
troubleshoot memory allocation issues in your application. The PB_HEAP_LOGFILENAME
environment variable specifies the name and location of the file.

If you specify a file name but not a directory, the file is saved in the same directory as the
PowerBuilder executable.

If you specify a directory that does not exist, the file is not created.

By default, the log file is overwritten when you restart PowerBuilder. If you want diagnostic
output to be appended to the file, set PB_HEAP_LOGFILE_OVERWRITE to false.

You can set the variables in a batch file that launches the application, or as system or user
environment variables on the computer or server on which the application or component runs.

2.2.11 Efficient compiling and performance

The way you write functions and define variables affects your productivity and your
application's performance.

Short scripts for faster compiling

If you plan to build machine code dynamic libraries for your deployed application, keep
scripts for functions and events short. Longer scripts take longer to compile. Break the scripts
up so that instead of one long script, you have a script that makes calls to several other
functions. Consider defining functions in user objects so that other objects can call the same
functions.

Local variables for faster performance

Language Techniques

Page 46

The scope of variables affects performance. When you have a choice, use local variables,
which provide the fastest performance. Global variables have the biggest negative impact on
performance.

2.2.12 Reading and writing text or binary files

You use PowerScript text file functions to read and write text in line mode or text mode, or to
read and write binary files in stream mode:

• In line mode, you can read a file a line at a time until either a carriage return or line
feed (CR/LF) or the end-of-file (EOF) is encountered. When writing to the file after the
specified string is written, PowerScript appends a CR/LF.

• In stream mode, you can read the entire contents of the file, including any CR/LFs. When
writing to the file, you must write out the specified blob (but not append a CR/LF).

• In text mode, you can read the entire contents of the file, including any CR/LFs. When
writing to the file, you must write out the specified string (but not append a CR/LF).

Reading a file into a MultiLineEdit

You can use stream mode to read an entire file into a MultiLineEdit, and then write it
out after it has been modified.

Understanding the position pointer

When PowerBuilder opens a file, it assigns the file a unique integer and sets the position
pointer for the file to the position you specify the beginning, after the byte-order mark, if
any, or end of the file. You use the integer to identify the file when you want to read the file,
write to it, or close it. The position pointer defines where the next read or write will begin.
PowerBuilder advances the pointer automatically after each read or write.

You can also set the position pointer with the FileSeek or FileSeek64 function.

File functions

These are the built-in PowerScript functions that manipulate files:

Table 2.2: PowerScript functions that manipulate files

Function Datatype returned Action

FileClose Integer Closes the specified file

FileDelete Boolean Deletes the specified file

FileEncoding Encoding enumerated type Returns the encoding used in
the file

FileExists Boolean Determines whether the
specified file exists

FileLength Long Obtains the length of a file
with a file size of 2GB or less

FileLength64 LongLong Obtains the length of a file of
any size

Language Techniques

Page 47

Function Datatype returned Action

FileOpen Integer Opens the specified file

FileRead Integer Reads from the specified file
(obsolete)

FileReadEx Long Reads from the specified file

FileSeek Long Seeks to a position in a file
with a file size of 2GB or less

FileSeek64 LongLong Seeks to a position in a file of
any size

FileWrite Integer Writes to the specified file
(obsolete)

FileWriteEx Long Writes to the specified file

Encoding

The last argument in the FileOpen function lets you create an ANSI, UTF-8, UTF-16LE
(Little Endian), or UTF16-BE (Big Endian) file.

The encoding argument, like all arguments of the FileOpen function except the file name,
is optional. You need only specify it if you want to create a new text file with Unicode
encoding. If the filename argument refers to a file that does not exist, the FileOpen function
creates the file and sets the character encoding specified in the encoding argument.

By default, if the file does not exist and the encoding argument is not specified, PowerBuilder
opens a file with ANSI encoding. This ensures compatibility with earlier versions of
PowerBuilder.

The FileRead and FileWrite functions cannot read more than 32,766 bytes at a time. The
FileReadEx and FileWriteEx functions can write an unlimited number of bytes at a time.

2.3 Getting Information About PowerBuilder Class Definitions

About this chapter

This chapter explains what class definition information is and how it is used, and
presents some sample code. Developers of tools and object frameworks can use class
definition information for tasks such as producing reports or defining objects with similar
characteristics. You do not need to use class definition information if you are building typical
business applications.

2.3.1 Overview of class definition information

A ClassDefinition object is a PowerBuilder object that provides information about the class
of another PowerBuilder object. You can examine a class in a PowerBuilder library or the
class of an instantiated object. By examining the properties of its ClassDefinition object, you
can get details about how a class fits in the PowerBuilder object hierarchy.

From the ClassDefinition object, you can discover:

• The variables, functions, and events defined for the class

Language Techniques

Page 48

• The class's ancestor

• The class's parent

• The class's children (nested classes)

Related objects

The ClassDefinition object is a member of a hierarchy of objects, including the
TypeDefinition, VariableDefinition, and ScriptDefinition objects, that provide
information about datatypes or about the variables, properties, functions, and event
scripts associated with a class definition.

For more information, see the Browser or Objects and Controls.

Definitions for instantiated objects

For each object instance, a ClassDefinition property makes available a ClassDefinition object
to describe its definition. The ClassDefinition object does not provide information about the
object instance, such as the values of its variables. You get that information by addressing the
instance directly.

Definitions for objects in libraries

An object does not have to be instantiated to get class information. For an object in a
PowerBuilder library, you can call the FindClassDefinition function to get its ClassDefinition
object.

Performance

Class definition objects may seem to add a lot of overhead, but the overhead is incurred
only when you refer to the ClassDefinition object. The ClassDefinition object is instantiated
only when you call FindClassDefinition or access the ClassDefinition property of a
PowerBuilder object. Likewise, for properties of the ClassDefinition object that are
themselves ClassDefinition or VariableDefinition objects, the objects are instantiated only
when you refer to those properties.

2.3.1.1 Terminology

The class information includes information about the relationships between objects. These
definitions will help you understand what the information means.

object instance

A realization of an object. The instance exists in memory and has values assigned to its
properties and variables. Object instances exist only when you run an application.

class

A definition of an object, containing the source code for creating an object instance. When
you use PowerBuilder painters and save an object in a PBL, you are creating class definitions
for objects. When you run your application, the class is the datatype of object instances based
on that class. In PowerBuilder, the term object usually refers to an instance of the object. It
sometimes refers to an object's class.

system class

Language Techniques

Page 49

A class defined by PowerBuilder. An object you define in a painter is a descendant of a
system class, even when you do not explicitly choose to use inheritance for the object you
define.

parent

The object that contains the current object or is connected to the object in a way other than
inheritance. This table lists classes of objects and the classes that can be the parents of those
objects:

Table 2.3: Classes of objects and their parents

Object Parent

Window The window that opened the window.

A window might not have a parent. The parent is determined during
execution and is not part of the class definition.

Menu item The menu item on the prior level in the menu.

The item on the menu bar is the parent of all the items on the associated
drop-down menu.

Control on a
window

The window.

Control on user
object

The user object.

TabPage The Tab control in which the TabPage is defined or in which it was
opened.

ListViewItem or
TreeViewItem

The ListView or TreeView control.

Visual user object The window or user object on which the user object is placed.

child

A class that is contained within another parent class. Also called a nested class. For the types
of objects that have a parent and child relationship, see parent.

ancestor

A class from whose definition another object is inherited. See also descendant.

descendant

An object that is inherited from another object and that incorporates the specifics of that
object: its properties, functions, events, and variables. The descendant can use these values
or override them with new definitions. All objects you define in painters and store in libraries
are descendants of PowerBuilder system classes.

inheritance hierarchy

An object and all its ancestors.

collapsed hierarchy

A view of an object class definition that includes information from all the ancestors in the
object's inheritance tree, not just items defined at the current level of inheritance.

Language Techniques

Page 50

scalar

A simple datatype that is not an object or an array. For example, Integer, Boolean, Date, Any,
and String.

instance variable and property

Built-in properties of PowerBuilder system objects are called properties, but they are treated
as instance variables in the class definition information.

2.3.1.2 Who uses PowerBuilder class definitions

Most business applications do not need to use class definition information. Code that uses
class definition information is written by groups that write class libraries, application
frameworks, and productivity tools.

Although your application might not include any code that uses class definition information,
tools that you use for design, documentation, and class libraries will. These tools examine
class definitions for your objects so that they can analyze your application and provide
feedback to you.

Scenarios

Class information might be used when developing:

• A custom object browser

• A tool that needs to know the objects of an application and their relationships

The purpose might be to document the application or to provide a logical way to select and
work with the objects.

• A CASE tool that deconstructs PowerBuilder objects, allows the user to redesign them, and
reconstructs them

To do the reconstruction, the CASE tool needs both class definition information and a
knowledge of PowerBuilder object source code syntax.

• A class library in which objects need to determine the class associated with an instantiated
object, or a script needs to know the ancestor of an object in order to make assumptions
about available methods and variables

2.3.2 Examining a class definition

This section illustrates how to access a class definition object and how to examine its
properties to get information about the class, its scripts, and its variables.

2.3.2.1 Getting a class definition object

To work with class information, you need a class definition object. There are two ways to get
a ClassDefinition object containing class definition information.

For an instantiated object in your application

Use its ClassDefinition property.

For example, in a script for a button, this code gets the class definition for the parent window:

Language Techniques

Page 51

ClassDefinition cd_windef
cd_windef = Parent.ClassDefinition

For an object stored in a PBL

Call FindClassDefinition.

For example, in a script for a button, this code gets the class definition for the window named
w_genapp_frame from a library on the application's library list:

ClassDefinition cd_windef
cd_windef = FindClassDefinition("w_genapp_frame")

2.3.2.2 Getting detailed information about the class

This section has code fragments illustrating how to get information from a ClassDefinition
object called cd_windef.

For examples of assigning a value to cd_windef, see Getting a class definition object.

Library

The LibraryName property reports the name of the library a class has been loaded from:

s = cd_windef.LibraryName

Ancestor

The Ancestor property reports the name of the class from which this class is inherited. All
objects are inherited from PowerBuilder system objects, so the Ancestor property can hold a
ClassDefinition object for a PowerBuilder class. The Ancestor property contains a null object
reference when the ClassDefinition is for PowerObject, which is the top of the inheritance
hierarchy.

This example gets a ClassDefinition object for the ancestor of the class represented by
cd_windef:

ClassDefinition cd_ancestorwindef
cd_ancestorwindef = cd_windef.Ancestor

This example gets the ancestor name. Note that this code would cause an error if cd_windef
held the definition of PowerObject, because the Ancestor property would be NULL:

ls_name = cd_windef.Ancestor.Name

Use the IsValid function to test that the object is not NULL.

This example walks back up the inheritance hierarchy for the window w_genapp_frame and
displays a list of its ancestors in a MultiLineEdit:

string s, lineend
ClassDefinition cd
lineend = "~r~n"

cd = cd_windef
s = "Ancestor tree:" + lineend

DO WHILE IsValid(cd)
 s = s + cd.Name + lineend
 cd = cd.Ancestor
LOOP

Language Techniques

Page 52

mle_1.Text = s

The list might look like this:

Ancestor tree:
w_genapp_frame
window
graphicobject
powerobject

Parent

The ParentClass property of the ClassDefinition object reports the parent (its container)
specified in the object's definition:

ClassDefinition cd_parentwindef
cd_parentwindef = cd_windef.ParentClass

If the class has no parent, ParentClass is a null object reference. This example tests that
ParentClass is a valid object before checking its Name property:

IF IsValid(cd_windef.ParentClass) THEN
 ls_name = cd_windef.ParentClass.Name
END IF

Nested or child classes

The ClassDefinition object's NestedClassList array holds the classes the object contains.

NestedClassList array includes ancestors and descendants

The NestedClassList array can include classes of ancestor objects. For example,
a CommandButton defined on an ancestor window and modified in a descendant
window appears twice in the array for the descendant window, once for the window
and once for its ancestor.

This script produces a list of the controls and structures defined for the window represented
in cd_windef.

string s, lineend
integer li
lineend = "~r~n"

s = s + "Nested classes:" + lineend

FOR li = 1 to UpperBound(cd_windef.NestedClassList)
 s = s + cd_windef.NestedClassList[li].Name &
 + lineend
NEXT
mle_1.Text = s

This script searches the NestedClassList array in the ClassDefinition object cd_windef to find
a nested DropDownListBox control:

integer li
ClassDefinition nested_cd

FOR li = 1 to UpperBound(cd_windef.NestedClassList)
 IF cd_windef.NestedClassList[li].DataTypeOf &
 = "dropdownlistbox" THEN
 nested_cd = cd_windef.NestedClassList[li]

Language Techniques

Page 53

 EXIT
 END IF
NEXT

Class definitions for object instances as distinct from object references

Getting a ClassDefinition object for an instantiated object, such as an ancestor or
nested object, does not give you a reference to instances of the parent or child classes.
Use standard PowerBuilder programming techniques to get and store references to
your instantiated objects.

2.3.2.3 Getting information about a class's scripts

This section has code fragments illustrating how to get script information from a
ClassDefinition object called cd_windef.

For examples of assigning a value to cd_windef, see Getting a class definition object.

List of scripts

The ScriptList array holds ScriptDefinition objects for all the functions and events defined for
a class. If a function is overloaded, it will appear in the array more than once with different
argument lists. If a function or event has code at more than one level in the hierarchy, it will
appear in the array for each coded version.

This example loops through the ScriptList array and builds a list of script names. All objects
have a few standard functions, such as ClassName and PostEvent, because all objects are
inherited from PowerObject:

string s, lineend
integer li
ScriptDefinition sd
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.ScriptList)
 sd = cd_windef.ScriptList[li]
 s = s + sd.Name + " " + lineend
NEXT
mle_1.Text = s

This example amplifies on the previous one and accesses various properties in the
ScriptDefinition object. It reports whether the script is a function or event, whether it is
scripted locally, what its return datatype and arguments are, and how the arguments are
passed:

string s, lineend
integer li, lis, li_bound
ScriptDefinition sd
lineend = "~r~n"
FOR li = 1 to UpperBound(cd_windef.ScriptList)
 sd = cd_windef.ScriptList[li]
 s = s + sd.Name + " "

 CHOOSE CASE sd.Kind
 CASE ScriptEvent!
 // Events have three relevant properties
 // regarding where code is defined
 s = s + "Event, "

Language Techniques

Page 54

 IF sd.IsScripted = TRUE then
 s = s + "scripted, "
 END If
 IF sd.IsLocallyScripted = TRUE THEN
 s = s + "local, "
 END IF
 IF sd.IsLocallyDefined = TRUE THEN
 s = s + "local def,"
 END IF

 CASE ScriptFunction!
 // Functions have one relevant property
 // regarding where code is defined
 s = s + "Function, "
 IF sd.IsLocallyScripted = TRUE THEN
 s = s + "local, "
 END IF
 END CHOOSE

 s = s + "returns " + &
 sd.ReturnType.DataTypeOf + "; "
 s = s + "Args: "

 li_bound = UpperBound(sd.ArgumentList)
 IF li_bound = 0 THEN s = s + "None"

 FOR lis = 1 to li_bound
 CHOOSE CASE sd.ArgumentList[lis]. &
 CallingConvention
 CASE ByReferenceArgument!
 s = s + "REF "
 CASE ByValueArgument!
 s = s + "VAL "
 CASE ReadOnlyArgument!
 s = s + "READONLY "
 CASE ELSE
 s = s + "BUILTIN "
 END CHOOSE

 s = s + sd.ArgumentList[lis].Name + ", "
 NEXT

 s = s + lineend
NEXT
mle_1.text = s

Where the code is in the inheritance hierarchy

You can check the IsLocallyScripted property to find out whether a script has code at the
class's own level in the inheritance hierarchy. By walking back up the inheritance hierarchy
using the Ancestor property, you can find out where the code is for a script.

This example looks at the scripts for the class associated with the ClassDefinition cd_windef,
and if a script's code is defined at this level, the script's name is added to a drop-down
list. It also saves the script's position in the ScriptList array in the instance variable
ii_localscript_idx. The DropDownListBox is not sorted, so the positions in the list and the
array stay in sync:

integer li_pos, li

FOR li = 1 to UpperBound(cd_windef.ScriptList)
 IF cd_windef.ScriptList[li].IsLocallyScripted &

Language Techniques

Page 55

 = TRUE
 THEN
 li_pos = ddlb_localscripts.AddItem(&
 cd_windef.ScriptList[li].Name)
 ii_localscript_idx[li_pos] = li
 END IF
NEXT

Matching function signatures

When a class has overloaded functions, you can call FindMatchingFunction to find out what
function is called for a particular argument list.

For an example, see FindMatchingFunction in the PowerScript Reference.

2.3.2.4 Getting information about variables

This section has code fragments illustrating how to get information about variables from a
ClassDefinition object called cd_windef. For examples of assigning a value to cd_windef, see
Getting a class definition object.

List of variables

Variables associated with a class are listed in the VariableList array of the ClassDefinition
object. When you examine that array, you find not only variables you have defined explicitly
but also PowerBuilder object properties and nested objects, which are instance variables.

This example loops through the VariableList array and builds a list of variable names.
PowerBuilder properties appear first, followed by nested objects and your own instance and
shared variables:

string s, lineend
integer li
VariableDefinition vard
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.VariableList)
 vard = cd_windef.VariableList[li]
 s = s + vard.Name + lineend
NEXT
mle_1.Text = s

Details about variables

This example looks at the properties of each variable in the VariableList array and reports its
datatype, cardinality, and whether it is global, shared, or instance. It also checks whether an
instance variable overrides an ancestor declaration:

string s
integer li
VariableDefinition vard
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.VariableList)
 vard = cd_windef.VariableList[li]
 s = s + vard.Name + ", "
 s = s + vard.TypeInfo.DataTypeOf

 CHOOSE CASE vard.Cardinality.Cardinality
 CASE ScalarType!
 s = s + ", scalar"
 CASE UnboundedArray!, BoundedArray!

Language Techniques

Page 56

 s = s + ", array"
 END CHOOSE

 CHOOSE CASE vard.Kind
 CASE VariableGlobal!
 s = s + ", global"
 CASE VariableShared!
 s = s + ", shared"
 CASE VariableInstance!
 s = s + ", instance"
 IF vard.OverridesAncestorValue = TRUE THEN
 s = s + ", override"
 END IF
 END CHOOSE
 s = s + lineend
NEXT
mle_1.text = s

User Interface Techniques

Page 57

3 User Interface Techniques
This part presents a collection of techniques you can use to implement user interface features
in the applications you develop with PowerBuilder. It includes building an MDI application,
using drag and drop in a window, and providing online Help for an application.

3.1 Building an MDI Application

About this chapter

This chapter describes how to build a Multiple Document Interface (MDI) application in
PowerBuilder.

3.1.1 About MDI

Multiple Document Interface (MDI) is an application style you can use to open multiple
windows (called sheets) in a single window and move among the sheets. To build an MDI
application, you define a window whose type is MDI Frame and open other windows as
sheets within the frame.

Most large-scale Windows applications are MDI applications. For example, PowerBuilder is
an MDI application: the PowerBuilder window is the frame and the painters are the sheets.

If you expect your users to want to open several windows and easily move from window to
window, you should make your application an MDI application.

Using the Template Application feature

When you create a new application, you can select the Template Application Start
wizard and then choose to create an SDI or MDI application. If you select MDI
application, PowerBuilder generates the shell of an MDI application that includes an
MDI frame (complete with window functions that do such things as open or close
a sheet), a sheet manager object and several sheets, an About dialog box, menus,
toolbars, and scripts.

MDI frame windows

An MDI frame window is a window with several parts: a menu bar, a frame, a client area,
sheets, and (usually) a status area, which can display MicroHelp (a short description of the
current menu item or current activity).

User Interface Techniques

Page 58

The frame

The MDI frame is the outside area of the MDI window that contains the client area. There are
two types of MDI frames:

• Standard

• Custom

Standard frames

A standard MDI frame window has a menu bar and (usually) a status area for displaying
MicroHelp. The client area is empty, except when sheets are open. Sheets can have their own
menus, or they can inherit their menus from the MDI frame. Menu bars in MDI applications
always display in the frame, never in a sheet. The menu bar typically has an item that lists all
open sheets and lets the user tile, cascade, or layer the open sheets.

Custom frames

Like a standard frame, a custom frame window usually has a menu bar and a status area. The
difference between standard and custom frames is in the client area: in standard frames, the
client area contains only open sheets; in custom frames, the client area contains the open
sheets as well as other objects, such as buttons and StaticText. For example, you might want
to add a set of buttons with some explanatory text in the client area.

Client area

User Interface Techniques

Page 59

In a standard frame window, PowerBuilder sizes the client area automatically and the open
sheets display within the client area. In custom frame windows containing objects in the
client area, you must size the client area yourself. If you do not size the client area, the sheets
will open, but may not be visible.

The MDI_1 control

When you build an MDI frame window, PowerBuilder creates a control named MDI_1,
which it uses to identify the client area of the frame window. In standard frames,
PowerBuilder manages MDI_1 automatically. In custom frames, you write a script for the
frame's Resize event to size MDI_1 appropriately.

Displaying information about MDI_1

You can see the properties and functions for MDI_1 in the Browser. Create a window
of type MDI and select the Window tab in the Browser. Select the MDI frame
window and select Expand All from the pop-up menu. MDI_1 is listed as a window
control, and you can examine its properties, functions, and so forth in the right pane of
the Browser.

MDI sheets

Sheets are windows that can be opened in the client area of an MDI frame. You can use any
type of window except an MDI frame as a sheet in an MDI application. To open a sheet, use
either the OpenSheet or OpenSheetWithParm function.

Toolbars

Often you want to provide a toolbar for users of an MDI application. You can have
PowerBuilder automatically create and manage a toolbar that is based on the current menu,
or you can create your own custom toolbar (generally as a user object) and size the client area
yourself.

For information on providing a toolbar, see Section 4.6, “Working with Menus and Toolbars”
in Users Guide. For more information on sizing the client area, see Sizing the client area.

3.1.2 Building an MDI frame window

When you create a new window in PowerBuilder, its default window type is Main. Select
mdi! or mdihelp! on the General property page to change the window to an MDI frame
window.

Using menus

When you change the window type to MDI, you must associate a menu with the frame.
Menus usually provide a way to open sheets in the frame and to close the frame if the user
has closed all the sheets.

About menus and sheets

A sheet can have its own menu but is not required to. When a sheet without a menu is
opened, it uses the frame's menu.

User Interface Techniques

Page 60

3.1.3 Using sheets

In an MDI frame window, users can open windows (sheets) to perform activities. For
example, in an electronic mail application, an MDI frame might have sheets that users open
to create and send messages and read and reply to messages. All sheets can be open at the
same time and the user can move among the sheets, performing different activities in each
sheet.

About menus and sheets

A sheet can have its own menu but is not required to. When a sheet without a menu is
opened, it uses the frame's menu.

Opening sheets

To open a sheet in the client area of an MDI frame, use the OpenSheet function in a script for
an event in a menu item, an event in another sheet, or an event in any object in the frame.

For more information about OpenSheet, see Section 2.4.540, “OpenSheet” in PowerScript
Reference.

Opening instances of windows

Typically in an MDI application, you allow users to open more than one instance
of a particular window type. For example, in an order entry application, users can
probably look at several different orders at the same time. Each of these orders
displays in a separate window (sheet).

Listing open sheets

When you open a sheet in the client area, you can display the title of the window (sheet) in a
list at the end of a drop-down menu. This menu lists two open sheets:

User Interface Techniques

Page 61

To list open sheets in a drop-down menu:

• Specify the number of the menu bar item in which you want the open sheets listed when
you call the OpenSheet function. Typically you list the open sheets in the Windows
menu. In a menu bar with four items in the order File, Edit, Windows, and Help, you
specify the Windows menu with the number 3.

If more than nine sheets are open at one time, only nine sheets are listed in the menu and
More Windows displays in the tenth position. To display the rest of the sheets in the list,
click More Windows.

Arranging sheets

After you open sheets in an MDI frame, you can change the way they are arranged in the
frame with the ArrangeSheets function.

To allow arrangement of sheets

To allow the user to arrange the sheets, create a menu item (typically on a menu bar
item named Window) and use the ArrangeSheets function to arrange the sheets when
the user selects a menu item.

Maximizing sheets

If sheets opened in an MDI window have a control menu, users can maximize the sheets.
When the active sheet is maximized:

User Interface Techniques

Page 62

• If another sheet becomes the active sheet, that sheet is maximized (the sheet inherits the
state of the previous sheet).

• If a new sheet is opened, the current sheet is restored to its previous size and the new sheet
is opened in its original size.

Closing sheets

Active sheet

To close the active window (sheet), users can press ctrl+f4. You can write a script for a menu
item that closes the parent window of the menu (make sure the menu is associated with the
sheet, not the frame.) For example:

Close(ParentWindow)

All sheets

To close all sheets and exit the application, users can press alt+f4. You can write a script to
keep track of the open sheets in an array and then use a loop structure to close them.

3.1.4 Providing MicroHelp

MDI provides a MicroHelp facility that you can use to display information to the user in the
status area at the bottom of the frame. For example, when the user selects a menu item, the
MicroHelp facility displays a description of the selected item in the status area.

You can define MicroHelp for menu items and for controls in custom frame windows.

Providing MicroHelp for menu items

You specify the text for the MicroHelp associated with a menu item on the General property
page in the Menu painter. To change the text of the MicroHelp in a script for a menu item,
use the SetMicroHelp function.

Providing MicroHelp for controls

You can associate MicroHelp with a control in a custom frame window by using the control's
Tag property. For example, say you have added a Print button to the client area. To display
MicroHelp for the button, write a script for the button's GetFocus event that sets the Tag
property to the desired text and then uses SetMicroHelp to display the text. For example:

cb_print.Tag="Prints information about current job"
w_genapp_frame.SetMicroHelp(This.Tag)

You can also set a control's Tag property in the control's property sheet.

In the LoseFocus event, you should restore the MicroHelp:

w_genapp_frame.SetMicroHelp("Ready")

3.1.5 Using toolbars in MDI applications

This section describes some techniques you can use to customize the behavior of your
toolbars and save and restore toolbar settings. For information about how to define and use
menus and toolbars, see Section 4.6, “Working with Menus and Toolbars” in Users Guide.

3.1.5.1 Customizing toolbar behavior

Disabling toolbar buttons

User Interface Techniques

Page 63

To disable a toolbar button, you need to disable the menu item with which it is associated.
Disabling the menu item disables the toolbar button automatically.

To disable a menu item, you need to set the Enabled property of the menu item:

m_test.m_file.m_new.Enabled = FALSE

Using alternate icons

The enabled and disabled states of each toolbar button are normally indicated by a
pair of contrasting color and greyscale icons. For greater contrast between the enabled
and disabled states, you can apply an alternate set of icons to the toolbar buttons, by
setting the PBTOOLBARDISABLEMODE environment variable on your system to
1 .

Hiding toolbar buttons

To hide a menu item, you set the Visible property of the item:

m_test.m_file.m_open.Visible = FALSE

Hiding a menu item does not cause its toolbar button to disappear or be disabled. To hide a
toolbar button, you need to set the ToolbarItemVisible property of the menu item:

m_test.m_file.m_open.ToolBarItemVisible = FALSE

Hiding a menu item does not cause the toolbar buttons for the drop-down or cascading menu
items at the next level to disappear or be disabled. You need to hide or disable these buttons
individually.

Setting the current item in a drop-down toolbar

When a user clicks on a toolbar button in a drop-down toolbar, PowerBuilder makes the
selected button the current item. This makes it easy for the user to perform a particular
toolbar action repeatedly. You can also make a particular button the current item
programmatically by setting the CurrentItem property of the MenuCascade object. For
example, to set the current item to the toolbar button for the New option on the File menu,
you could execute this line in a script:

m_test.m_file.currentitem = m_test.m_file.m_new

In order for this to work, you would need to specify MenuCascade as the object type for the
File menu in the Menu painter.

Testing for whether a toolbar is moved

Whenever a toolbar moves in an MDI frame window, PowerBuilder triggers the
ToolBarMoved event for the window. In the script for this event, you can test to see which
toolbar has moved and perform some processing. When the user moves the FrameBar
or SheetBar, the ToolbarMoved event is triggered and the Message.WordParm and
Message.LongParm properties are populated with values that indicate which toolbar was
moved:

Table 3.1: Values of Message.WordParm and Message.LongParm properties

Property Value Meaning

0 FrameBar movedMessage.WordParm

1 SheetBar moved

User Interface Techniques

Page 64

Property Value Meaning

0 Moved to left

1 Moved to top

2 Moved to right

3 Moved to bottom

Message.LongParm

4 Set to floating

3.1.5.2 Saving and restoring toolbar settings

You can save and restore the current toolbar settings using functions that retrieve information
about your toolbar settings, and you can modify these settings.

GetToolbar and GetToolbarPos allow you to retrieve the current toolbar settings. SetToolbar
and SetToolbarPos allow you to change the toolbar settings. The syntax you use for the
GetToolbarPos and SetToolbarPos functions varies depending on whether the toolbar you are
working with is floating or docked.

Floating toolbars

The position of a floating toolbar is determined by its x and y coordinates. The size of a
floating toolbar is determined by its width and height.

When you code the GetToolbarPos and SetToolbarPos functions for a floating toolbar, you
need to include arguments for the x and y coordinates and the width and height.

Docked toolbars

The position of a docked toolbar is determined by its docking row and its offset from the
beginning of the docking row. For toolbars at the top or bottom, the offset for a docked
toolbar is measured from the left edge. For toolbars at the left or right, the offset is measured
from the top.

By default, the docking row for a toolbar is the same as its bar index. If you align the toolbar
with a different border in the window, its docking row may change depending on where you
place it.

When you code the GetToolbarPos and SetToolbarPos functions for a docked toolbar, you
need to include arguments for the docking row and the offset.

Example

The example below shows how to use a custom class user object to manage toolbar settings.
The user object has two functions, one for saving the current settings and the other for
restoring the settings later on. Because the logic required to save and restore the settings is
handled in the user object (instead of in the window itself), this logic can easily be used with
any window.

The sample code shown below supports both fixed and floating toolbars.

Script for the window's Open event

When the window opens, the following script restores the toolbar settings from an
initialization file. To restore the settings, it creates a custom class user object called u_toolbar
and calls the Restore function:

// Create the toolbar NVO

User Interface Techniques

Page 65

u_toolbar = create u_toolbar
// Restore the toolbar positions
u_toolbar.Restore(this, "toolbar.ini", this.ClassName())

Script for the window's Close event

When the window closes, the following script saves the toolbar settings by calling the Save
function. Once the settings have been saved, it destroys the user object:

// Save the toolbar
stateu_toolbar.Save(this, "toolbar.ini", ClassName())
// Destroy the toolbar NVO
destroy u_toolbar

Script for the Save function

The Save function has three arguments:

• Win -- provides the window reference

• File -- provides the name of the file where the settings should be saved

• Section -- identifies the section where the settings should be saved

The Save function uses the GetToolbar and GetToolbarPos functions to retrieve the current
toolbar settings. To write the settings to the initialization file, it uses the SetProfileString
function.

The Save function can handle multiple toolbars for a single menu. It uses the bar index to
keep track of information for each toolbar:

// Store the toolbar settings for the passed window
integer index, row, offset, x, y, w, h
boolean visible
string visstring, alignstring, title
toolbaralignment alignment
FOR index = 1 to 16

// Try to get the attributes for the bar.
IF win.GetToolbar(index, visible, alignment, &
 title)= 1 THEN
 // Convert visible to a string
 CHOOSE CASE visible
 CASE true
 visstring = "true"
 CASE false
 visstring = "false"
 END CHOOSE

 // Convert alignment to a string
 CHOOSE CASE alignment
 CASE AlignAtLeft!
 alignstring = "left"
 CASE AlignAtTop!
 alignstring = "top"
 CASE AlignAtRight!
 alignstring = "right"
 CASE AlignAtBottom!
 alignstring = "bottom"
 CASE Floating!
 alignstring = "floating"
 END CHOOSE

User Interface Techniques

Page 66

 // Save the basic attributes
 SetProfileString(file, section + &
 String(index), "visible", visstring)
 SetProfileString(file, section + &
 String(index), "alignment", alignstring)
 SetProfileString(file, section + &
 String(index), "title", title)

 // Save the fixed position
 win.GetToolbarPos(index, row, offset)
 SetProfileString(file, section + &
 String(index), "row", String(row))
 SetProfileString(file, section + &
 String(index), "offset", String(offset))

 // Save the floating position
 win.GetToolbarPos(index, x, y, w, h)
 SetProfileString(file, section + &
 String(index), "x", String(x))
 SetProfileString(file, section + &
 String(index), "y", String(y))
 SetProfileString(file, section + &
 String(index), "w", String(w))

 SetProfileString(file, section + &
 String(index), "h", String(h))
 END IF
NEXT

Script for the Restore function

The Restore function has the same three arguments as the Save function. It uses the
ProfileString function to retrieve toolbar settings from the initialization file. Once the settings
have been retrieved, it uses the SetToolbar and SetToolbarPos functions to restore the toolbar
settings.

Like the Save function, the Restore function can handle multiple toolbars for a single menu.
It uses the bar index to keep track of information for each toolbar:

// Restore toolbar settings for the passed window

integer index, row, offset, x, y, w, h
boolean visible
string visstring, alignstring, title
toolbaralignment alignment

FOR index = 1 to 16
 // Try to get the attributes for the bar.
 IF win.GetToolbar(index, visible, alignment, &
 title)= 1 THEN
 // Try to get the attributes from the .ini file
 visstring = ProfileString(file, section + &
 String(index), "visible", "")
 IF visstring > "" THEN
 // Get all of the attributes
 alignstring = ProfileString(file, section + &
 String(index), "alignment", "left")
 title = ProfileString(file, section + &
 String(index), "title", "(Untitled)")
 row = Integer(ProfileString(file, section + &
 String(index), "row", "1"))
 offset = Integer(ProfileString(file, &
 section + String(index), "offset", "0"))
 x = Integer(ProfileString(file, section + &

User Interface Techniques

Page 67

 String(index), "x", "0"))
 y = Integer(ProfileString(file, section + &
 String(index), "y", "0"))
 w = Integer(ProfileString(file, section + &
 String(index), "w", "0"))
 h = Integer(ProfileString(file, section + &
 String(index), "h", "0"))

 // Convert visstring to a boolean
 CHOOSE CASE visstring
 CASE "true"
 visible = true
 CASE "false"
 visible = false
 END CHOOSE

 // Convert alignstring to toolbaralignment
 CHOOSE CASE alignstring
 CASE "left"
 alignment = AlignAtLeft!
 CASE "top"
 alignment = AlignAtTop!
 CASE "right"
 alignment = AlignAtRight!
 CASE "bottom"
 alignment = AlignAtBottom!
 CASE "floating"
 alignment = Floating!
 END CHOOSE

 // Set the new position
 win.SetToolbar(index, visible, alignment, title)
 win.SetToolbarPos(index, row, offset, false)
 win.SetToolbarPos(index, x, y, w, h)
 END IF
 END IF
NEXT

3.1.6 Sizing the client area

PowerBuilder sizes the client area in a standard MDI frame window automatically
and displays open sheets unclipped within the client area. It also sizes the client area
automatically if you have defined a toolbar based on menu items, as described in the
preceding section.

However, in a custom MDI frame window where the client area contains controls in addition
to open sheets PowerBuilder does not size the client area; you must size it. If you do not size
the client area, the sheets open but may not be visible and are clipped if they exceed the size
of the client area.

If you plan to use an MDI toolbar with a custom MDI frame, make sure the controls you
place in the frame's client area are far enough away from the client area's borders so that the
toolbar does not obscure them when displayed.

Scroll bars display when a sheet is clipped

If you selected HScrollBar and VScrollBar when defining the window, the scroll bars
display when a sheet is clipped. This means not all the information in the sheet is
displayed. The user can then scroll to display the information.

User Interface Techniques

Page 68

When you create a custom MDI frame window, PowerBuilder creates a control named
MDI_1 to identify the client area of the frame. If you have enabled AutoScript, MDI_1
displays in the list of objects in the AutoScript pop-up window when you create a script for
the frame.

To size or resize the client area when the frame is opened or resized:

• Write a script for the frame's Open or Resize event that:

• Determines the size of the frame

• Sizes the client area (MDI_1) appropriately

For example, the following script sizes the client area for the frame w_genapp_frame.
The frame has a series of buttons running across the frame just below the menu, and
MicroHelp at the bottom:

int li_width, li_height

//Get the width and height of the frame's workspace.
//
//Note that if the frame displays any MDI toolbars,
//those toolbars take away from the size of the
//workspace as returned by the WorkSpaceWidth and
//WorkSpaceHeight functions. Later, you see how to
//to adjust for this.
//
li_width = w_genapp_frame.WorkSpaceWidth()

li_height = w_genapp_frame.WorkSpaceHeight()

//Next, determine the desired height of the client
//area by doing the following:
//
// 1) Subtract from the WorkSpaceHeight value: the
// height of your control and the Y coordinate of
// the control (which is the distance between the
// top of the frame's workspace -- as if no
// toolbars were there -- and the top of your

User Interface Techniques

Page 69

// control).
//
// 2) Then subtract: the height of the frame's
// MicroHelp bar (if present)
//
// 3) Then add back: the height of any toolbars that
// are displayed (to adjust for the fact that the
// original WorkSpaceHeight value we started with
// is off by this amount). The total toolbar
// height is equal to the Y coordinate returned
// by the WorkspaceY function.

li_height = li_height - (cb_print.y + cb_print.height)

li_height = li_height - MDI_1.MicroHelpHeight

li_height = li_height + WorkspaceY()

//Now, move the client area to begin just below your
//control in the workspace.

mdi_1.Move (WorkspaceX (), cb_print.y + &
 cb_print.height)

//Finally, resize the client area based on the width
//and height you calculated earlier.

mdi_1.Resize (li_width, li_height)

About MicroHelpHeight

MicroHelpHeight is a property of MDI_1 that PowerBuilder sets when you select
a window type for your MDI window. If you select MDI Frame, there is no
MicroHelp and MicroHelpHeight is 0; if you select MDI Frame with MicroHelp,
MicroHelpHeight is the height of the MicroHelp.

3.1.7 About keyboard support in MDI applications

PowerBuilder MDI applications automatically support arrow keys and shortcut keys.

Arrow keys

In an MDI frame, how the pointer moves when the user presses an arrow key depends on
where focus is when the key is pressed:

Table 3.2: Arrow key focus changes

Key If focus is in Focus moves to

The menu bar The menu item to the left of
the item that has focus

The first menu bar item The control menu of the
active sheet

The control menu of the
active sheet

The control menu of the
frame

Left

The control menu of the
frame

The last menu item

User Interface Techniques

Page 70

Key If focus is in Focus moves to

The menu bar The menu item to the right of
the item that has focus

The last menu bar item The control menu of the
frame

The control menu of the
frame

The control menu of the
active sheet

Right

The control menu of the
active sheet

The first item in the menu bar

A drop-down or cascading
menu

The menu item below the
current item

Down

The last menu item in the
drop-down or cascading
menu

The first item in the menu

A drop-down or cascading
menu

The menu item above the
current item

Up

The first menu item in a drop-
down or cascading menu

The last item in the menu

Shortcut keys

PowerBuilder automatically assigns two shortcut keys to every MDI frame:

Table 3.3: MDI frame shortcut keys

Key Use to

Ctrl+F4 Close the active sheet and make the previous sheet active. The previous sheet is
the sheet that was active immediately before the sheet that was closed.

Ctrl+F6 Make the previous sheet the active sheet.

3.2 Managing Window Instances
About this chapter

This chapter describes how to manage several instances of the same window.

3.2.1 About window instances

When you build an application, you may want to display several windows that are identical in
structure but have different data values.

For example, you may have a w_employee window and want to display information for
two or more employees at the same time by opening multiple copies (instances) of the
w_employee window.

You can do that, but you need to understand how PowerBuilder stores window definitions.

How PowerBuilder stores window definitions

When you save a window, PowerBuilder actually generates two entities in the library:

• A new datatype

User Interface Techniques

Page 71

The name of the datatype is the same as the name of the window.

For example, when you save a window named w_employee, PowerBuilder internally
creates a datatype named w_employee.

• A new global variable of the new datatype

The name of the global variable is the same as the name of the window.

For example, when you save the w_employee window, you are also implicitly defining a
global variable named w_employee of type w_employee.

It is as if you had made the following declaration:

Figure: Variable declaration

By duplicating the name of the datatype and variable, PowerBuilder allows new users to
access windows easily through their variables while ignoring the concept of datatype.

What happens when you open a window

To open a window, you use the Open function, such as:

Open(w_employee)

This actually creates an instance of the datatype w_employee and assigns it a reference to the
global variable, also named w_employee.

As you have probably noticed, when you open a window that is already open, PowerBuilder
simply activates the existing window; it does not open a new window. For example, consider
this script for a CommandButton's Clicked event:

Open(w_employee)

No matter how many times this button is clicked, there is still only one window w_employee.
It is pointed to by the global variable w_employee.

To open multiple instances of a window, you declare variables of the window's type.

3.2.2 Declaring instances of windows

Because a window is actually a datatype, you can declare variables of that datatype, just as
you can declare integers, strings, and so on. You can then refer to those variables in code.

For example:

w_employee mywin

declares a variable named mywin of type w_employee.

User Interface Techniques

Page 72

Limitation of using variables

When you declare a window instance, you cannot reference it from another window.
For example, if there are three windows open, you cannot explicitly refer to the first
one from the second or third. There is no global handle for windows opened using
reference variables. To maintain references to window instances using a script, see
Using window arrays.

Opening an instance

To open a window instance, you refer to the window variable in the Open function:

w_employee mywin
Open(mywin)

Here the Open function determines that the datatype of the variable mywin is w_employee. It
then creates an instance of w_employee and assigns a reference to the mywin variable.

If you code the above script for the Clicked event for a CommandButton, each time the
button is clicked, a new instance of w_employee is created. In other words, a new window is
opened each time the button is clicked.

By creating variables whose datatype is the name of a window, you can open multiple
instances of a window. This is easy and straightforward. PowerBuilder manages the windows
for you for example, freeing memory when you close the windows.

Closing an instance

A common way to close the instances of a window is to put a CommandButton in the
window with this script for the Clicked event:

Close(Parent)

This script closes the parent of the button (the window in which the button displays).
Continuing the example above, if you put a CommandButton in w_employee, the script
closes the current instance of w_employee. If you click the CommandButton in the mywin
instance of w_employee, mywin closes.

3.2.3 Using window arrays

To create an array of windows, declare an array of the datatype of the window. For example,
the following statement declares an array named myarray, which contains five instances of
the window w_employee:

w_employee myarray[5]

You can also create unbounded arrays of windows if the number of windows to be opened is
not known at compile time.

Opening an instance using an array

To open an instance of a window in an array, use the Open function and pass it the array
index. Continuing the example above, the following statements open the first and second
instances of the window w_employee:

Open(myarray[1]) // Opens the first instance
 // of the window w_employee.
Open(myarray[2]) // Opens the second instance.

User Interface Techniques

Page 73

Moving first instance opened

The statements in this example open the second instance of the window at the same
screen location as the first instance. Therefore, you should call the Move function in
the script to relocate the first instance before the second Open function call.

Manipulating arrays

Using arrays of windows, you can manipulate particular instances by using the array index.
For example, the following statement hides the second window in the array:

myarray[2].Hide()

You can also reference controls in windows by using the array index, such as:

myarray[2].st_count.text = "2"

Opening many windows

When you open or close a large number of instances of a window, you may want
to use a FOR...NEXT control structure in the main window to open or close the
instances. For example:

w_employee myarray[5]
for i = 1 to 5
 Open(myarray[i])
next

Creating mixed arrays

In the previous example, all windows in the array are the same type. You can also create
arrays of mixed type. Before you can understand this technique, you need to know one more
thing about window inheritance: all windows you define are actually descendants of the built-
in datatype window.

Suppose you have a window w_employee that is defined from scratch, and w_customer that
inherits from w_employee. The complete inheritance hierarchy is the following:

Figure: Window inheritance hierarchy

User Interface Techniques

Page 74

The system-defined object named window is the ancestor of all windows you define in
PowerBuilder. The built-in object named window defines properties that are used in all
windows (such as X, Y, and Title).

If you declare a variable of type window, you can reference any type of window in the
application. This is because all user-defined windows are a kind of window.

The following code creates an array of three windows. The array is named newarray. The
array can reference any type of window, because all user-defined windows are derived from
the window datatype:

window newarray[3]
string win[3]
int iwin[1] = "w_employee"
win[2] = "w_customer"
win[3] = "w_sales"

for i = 1 to 3
 Open(newarray[i], win[i])
next

The code uses this form of the Open function:

Open (windowVariable, windowType)

where windowVariable is a variable of type window (or a descendant of window) and
windowType is a string that specifies the type of window.

The preceding code opens three windows: an instance of w_employee, an instance of
w_customer, and an instance of w_sales.

Using arrays versus reference variables

The following table shows when you use reference variables and when you use arrays to
manipulate window instances.

Table 3.4: Arrays as opposed to reference variables

Item Advantages Disadvantages

Arrays You can refer
to particular
instances.

Arrays are more difficult to use. For example, if the user
closes the second window in an array, then wants to open
a new window, your code must determine whether to add a
window to the end of the array (thereby using more memory
than needed) or find an empty slot in the existing array for the
new window.

Reference
variables

Easy to use
PowerBuilder
manages them
automatically.

You cannot manipulate particular instances of windows
created using reference variables.

Suppose you use w_employee to provide or modify data for individual employees. You
may want to prevent a second instance of w_employee opening for the same employee, or
to determine for which employees an instance of w_employee is open. To do this kind of
management, you must use an array. If you do not need to manage specific window instances,
use reference variables instead to take advantage of their ease of use.

User Interface Techniques

Page 75

3.2.4 Referencing entities in descendants

When you declare a variable whose datatype is a kind of object, such as a window, you can
use the variable to reference any entity defined in the object, but not in one of its descendants.
Consider the following code:

w_customer mycust

Open(mycust)
// The following statement is legal if
// w_customer window has a st_name control.
mycust.st_name.text = "Joe"

mycust is declared as a variable of type w_customer (mycust is a w_customer window). If
w_customer contains a StaticText control named st_name, then the last statement shown
above is legal.

However, consider the following case:

window newwin
string winname = "w_customer"
Open(newwin, winname)
// Illegal because objects of type Window
// do not have a StaticText control st_name
newwin.st_name.text = "Joe"

Here, newwin is defined as a variable of type window. PowerBuilder rejects the above code
because the compiler uses what is called strong type checking: the PowerBuilder compiler
does not allow you to reference any entity for an object that is not explicitly part of the
variable's compile-time datatype.

Because objects of type window do not contain a st_name control, the statement is not
allowed. You would need to do one of the following:

• Change the declaration of newwin to be a w_customer (or an ancestor window that also
contains a st_name control), such as:

w_customer newwin
string winname = "w_customer"

Open(newwin, winname)
// Legal now
newwin.st_name.text = "Joe"

• Define another variable, of type w_customer, and assign it to newwin, such as:

window newwin
w_customer custwin
string winname = "w_customer"

Open(newwin, winname)
custwin = newwin
// Legal now
custwin.st_name.text = "Joe"

3.3 Using Tab Controls in a Window

About this chapter

This chapter describes how to use Tab controls in your application.

User Interface Techniques

Page 76

3.3.1 About Tab controls

A Tab control is a container for tab pages that display other controls. One page at a time fills
the display area of the Tab control. Each page has a tab like an index card divider. The user
can click the tab to switch among the pages:

The Tab control allows you to present many pieces of information in an organized way. You
add, resize, and move Tab controls just as you do any control. The Part I, “Users Guide”
describes how to add controls to a window or custom visual user object.

Tab terms

You need to know these definitions:

Tab control

A control that you place in a window or user object that contains tab pages. Part of the area in
the Tab control is for the tabs associated with the tab pages. Any space that is left is occupied
by the tab pages themselves.

Tab page

A user object that contains other controls and is one of several pages within a Tab control. All
the tab pages in a Tab control occupy the same area of the control and only one is visible at a
time. The active tab page covers the other tab pages.

You can define tab pages right in the Tab control or you can define them in the User Object
painter and insert them into the Tab control, either in the painter or during execution.

Tab

The visual handle for a tab page. The tab displays a label for the tab page. When a tab page is
hidden, the user clicks its tab to bring it to the front and make the tab page active.

User Interface Techniques

Page 77

3.3.2 Defining and managing tab pages

A tab page is a user object.

Two methods

There are different ways to approach tab page definition. You can define:

• An embedded tab page

In the painter, insert tab pages in the Tab control and add controls to those pages. An
embedded tab page is of class UserObject, but is not reusable.

• An independent user object

In the User Object painter, create a custom visual user object and add the controls that will
display on the tab page. You can use the user object as a tab page in a Tab control, either
in the painter or by calling OpenTab in a script. A tab page defined as an independent user
object is reusable.

You can mix and match the two methods -- one Tab control can contain both embedded tab
pages and independent user objects.

Creating tab pages

When you create a new Tab control, it has one embedded tab page. You can use that tab page
or you can delete it.

To create a new tab page within the Tab control:

1. Right-click in the tab area of the Tab control. Do not click a tab page.

2. Select Insert TabPage from the pop-up menu.

3. Add controls to the new page.

To define a tab page independent of a Tab control:

1. Select Custom Visual on the Object tab in the New dialog box.

2. In the User Object painter, size the user object to match the size of the display area of
the Tab control in which you will use it.

3. Add the controls that will appear on the tab page to the user object and write scripts for
their events.

4. On the user object's property sheet, click the TabPage tab and fill in information to be
used by the tab page.

To add a tab page that exists as an independent user object to a Tab control:

1. Right-click in the tab area of the Tab control. Do not click a tab page.

2. Select Insert User Object from the pop-up menu.

User Interface Techniques

Page 78

3. Select a user object.

The tab page is inherited from the user object you select. You can set tab page properties
and write scripts for the inherited user object just as you do for tab pages defined within
the Tab control.

Editing the controls on the tab page user object

You cannot edit the content of the user object within the Tab control. If you want to
edit or write scripts for the controls, close the window or user object containing the
Tab control and go back to the User Object painter to make changes.

Managing tab pages

You can view, reorder, and delete the tab pages on a Tab control.

To view a different tab page:

• Click the page's tab.

The tab page comes to the front and becomes the active tab page. The tabs are
rearranged according to the Tab position setting you have chosen.

To reorder the tabs within a Tab control:

1. Click the Page Order tab on the Tab control's property sheet.

2. Drag the names of the tab pages to the desired order.

To delete a tab page from a Tab control:

1. Click the page's tab.

2. Right-click the tab page and select Cut or Clear from the pop-up menu.

Selecting tab controls and tab pages

As you click on various areas within a tab control, you will notice the Properties view
changing to show the properties of the tab control itself, one of the tab pages, or a
control on a tab page. Before you select an item such as Cut from the pop-up menu,
make sure that you have selected the right object.

Clicking anywhere in the tab area of a tab control selects the tab control. When you
click the tab for a specific page, that tab page becomes active, but the selected object
is still the tab control. To select the tab page, click its tab to make it active and then
click anywhere on the background of the page except on the tab itself.

Controls on tab pages

The real purpose of a Tab control is to display other controls on its pages. You can think of
the tab page as a miniature window. You add controls to it just as you do to a window.

When you are working on a Tab control, you can add controls only to a tab page created
within the Tab control.

User Interface Techniques

Page 79

Adding controls to an independent user object tab page

To add controls to an independent user object tab page, open it in the User Object
painter.

To add a control to an embedded tab page:

• Choose a control from the toolbar or the Insert menu and click the tab page, just as you
do to add a control to a window.

When you click inside the tab page, the tab page becomes the control's parent.

To move a control from one tab page to another:

• Cut or copy the control and paste it on the destination tab page.

The source and destination tab pages must both be embedded tab pages, not independent
user objects.

To move a control between a tab page and the window containing the Tab control:

• Cut or copy the control and paste it on the destination window or tab page.

You cannot drag the control out of the Tab control onto the window.

Moving the control between a tab page and the window changes the control's parent, which
affects scripts that refer to the control.

3.3.3 Customizing the Tab control

The Tab control has settings for controlling the position and appearance of the tabs. Each tab
can have its own label, picture, and background color.

All tabs share the same font settings, which you set on the Tab control's Font property page.

Pop-up menus and property sheets for Tab controls and tab pages

A Tab control has several elements, each with its own pop-up menu and property sheet. To
open the property sheet, double-click or select Properties on the pop-up menu.

Where you click determines what element you access.

Table 3.5: Accessing Tab control elements

To access the pop-up
menu or property sheet
for a

Do this

Tab control Right-click or double-click in the tab area of the Tab control.

Tab page Click the tab to make the tab page active, then right-click or
double-click somewhere in the tab page but not on a control on
the page.

Control on a tab page Click the tab to make the tab page active and right-click or
double-click the control.

User Interface Techniques

Page 80

Position and size of tabs

The General tab in the Tab control's property sheet has several settings for controlling the
position and size of the tabs.

Table 3.6: Controlling size and position of tabs

To change Change the value for

The side(s) of the Tab control on which the tabs appear Tab Position

The size of the tabs relative to the size of the Tab control Ragged Right,
MultiLine, Fixed Width

The orientation of the text relative to the side of the Tab control
(use this setting with caution only TrueType fonts support
perpendicular text)

Perpendicular Text

Fixed Width and Ragged Right

When Fixed Width is checked, the tabs are all the same size. This is different from
turning Ragged Right off, which stretches the tabs to fill the edge of the Tab control,
like justified text. The effect is the same if all the tab labels are short, but if you have
a mix of long and short labels, justified labels can be different sizes unless Fixed
Width is on.

This figure illustrates the effect of combining some of these settings. Tab Position is Top:

This sample Tab control is set up like an address book. It has tabs that flip between the left
and right sides. With the Bold Selected Text setting on and the changing tab positions, it is
easy to see which tab is selected:

User Interface Techniques

Page 81

Tab labels

You can change the appearance of the tab using the property sheets of both the Tab control
and the Tab page.

Table 3.7: Changing the appearance of a tab

Property sheet Property page Setting Affects

Tab control General PictureOnRight,
ShowPicture,
ShowText

All tabs in the control

Tab page General Text,

BackColor

The label on the tab
and the background
color of the tab page

Tab page TabPage PictureName,
TabTextColor,
TabBackColor,
PictureMaskColor

The color of the text
and picture on the tab
and the background
color of the tab itself
(not the tab page)

If you are working in the User Object painter on an object you will use as a tab page, you can
make the same settings on the TabPage page of the user object's property sheet that you can
make in the tab page's property sheet.

This example has a picture and text assigned to each tab page. Each tab has a different
background color. The Show Picture and Show Text settings are both on:

User Interface Techniques

Page 82

Changing tab appearance in scripts

All these settings in the painter have equivalent properties that you can set in a script,
allowing you to change the appearance of the Tab control dynamically during execution.

3.3.4 Using Tab controls in scripts

This section provides examples of tabs in scripts:

• Referring to tab pages in scripts

• Referring to controls on tab pages

• Opening, closing, and hiding tab pages

• Keeping track of tab pages

• Creating tab pages only when needed

• Events for the parts of the Tab control

3.3.4.1 Referring to tab pages in scripts

Dot notation allows you to refer to individual tab pages and controls on those tab pages:

• The window or user object containing the Tab control is its parent:

window.tabcontrol

• The Tab control is the parent of the tab pages contained in it:

window.tabcontrol.tabpageuo

• The tab page is the parent of the control contained in it:

window.tabcontrol.tabpageuo.controlonpage

For example, this statement refers to the PowerTips property of the Tab control tab_1 within
the window w_display:

w_display.tab_1.PowerTips = TRUE

This example sets the PowerTipText property of tab page tabpage_1:

w_display.tab_1.tabpage_1.PowerTipText = &
 "Font settings"

This example enables the CommandButton cb_OK on the tab page tabpage_doit:

w_display.tab_1.tabpage_doit.cb_OK.Enabled = TRUE

Generic coding

You can use the Parent pronoun and GetParent function to make a script more general.

Parent pronoun

In a script for any tab page, you can use the Parent pronoun to refer to the Tab control:

Parent.SelectTab(This)

User Interface Techniques

Page 83

GetParent function

If you are in an event script for a tab page, you can call the GetParent function to get a
reference to the tab page's parent, which is the Tab control, and assign the reference to a
variable of type Tab.

In an event script for a user object that is used as a tab page, you can use code like the
following to save a reference to the parent Tab control in an instance variable.

This is the declaration of the instance variable. It can hold a reference to any Tab control:

tab itab_settings

This code saves a reference to the tab page's parent in the instance variable:

// Get a reference to the Tab control
// "This" refers to the tab page user object
itab_settings = This.GetParent()

In event scripts for controls on the tab page, you can use GetParent twice to refer to the tab
page user object and its Tab control:

tab tab_mytab
userobject tabpage_generic

tabpage_generic = This.GetParent()
tab_mytab = tabpage_generic.GetParent()

tabpage_generic.PowerTipText = &
 "Important property page"
tab_mytab.PowerTips = TRUE

tab_mytab.SelectTab(tabpage_generic)

Generic variables for controls have limitations

The type of these variables is the basic PowerBuilder object type -- a variable of type Tab has
no knowledge of the tab pages in a specific Tab control and a variable of type UserObject has
no knowledge of the controls on the tab page.

In this script for a tab page event, a local variable is assigned a reference to the parent Tab
control. You cannot refer to specific pages in the Tab control because tab_settings does not
know about them. You can call Tab control functions and refer to Tab control properties:

tab tab_settings
tab_settings = This.GetParent()
tab_settings.SelectTab(This)

User object variables

If the tab page is an independent user object, you can define a variable whose type is that
specific user object. You can now refer to controls defined on the user object, which is the
ancestor of the tab page in the control.

In this script for a Tab control's event, the index argument refers to a tab page and is used to
get a reference to a user object from the Control property array. The example assumes that all
the tab pages are derived from the same user object uo_emprpt_page:

uo_emprpt_page tabpage_current
tabpage_current = This.Control[index]
tabpage_current.dw_emp.Retrieve &
 (tabpage_current.st_name.Text)

User Interface Techniques

Page 84

The Tab control's Control property

The Control property array contains references to all the tab pages in the control,
including both embedded and independent user objects. New tab pages are added to
the array when you insert them in the painter and when you open them in a script.

3.3.4.2 Referring to controls on tab pages

If you are referring to a control on a tab page in another window, you must fully qualify the
control's name up to the window level.

The following example shows a fully qualified reference to a static text control:

w_activity_manager.tab_fyi.tabpage_today. &
 st_currlogon_time.Text = ls_current_logon_time

This example from the PowerBuilder Code Examples sets the size of a DataWindow control
on the tab page to match the size of another DataWindow control in the window. Because all
the tab pages were inserted in the painter, the Control property array corresponds with the tab
page index. All the pages are based on the same user object u_tab_dir:

u_tab_dir luo_Tab
luo_Tab = This.Control[newindex]
luo_Tab.dw_dir.Height = dw_list.Height
luo_Tab.dw_dir.Width = dw_list.Width

In scripts and functions for the tab page user object, the user object knows about its own
controls. You do not need to qualify references to the controls. This example in a function for
the u_tab_dir user object retrieves data for the dw_dir DataWindow control:

IF NOT ib_Retrieved THEN
 dw_dir.SetTransObject(SQLCA)
 dw_dir.Retrieve(as_Parm)
 ib_Retrieved = TRUE
END IF

RETURN dw_dir.RowCount()

3.3.4.3 Opening, closing, and hiding tab pages

You can open tab pages in a script. You can close tab pages that you opened, but you cannot
close tab pages that were inserted in the painter. You can hide any tab page.

This example opens a tab page of type tabpage_listbox and stores the object reference in an
instance variable i_tabpage. The value 0 specifies that the tab page becomes the last page in
the Tab control. You need to save the reference for closing the tab later.

This is the instance variable declaration for the tab page's object reference:

userobject i_tabpage

This code opens the tab page:

li_rtn = tab_1.OpenTab &
 (i_tabpage, "tabpage_listbox", 0)

This statement closes the tab page:

tab_1.CloseTab(i_tabpage)

User Interface Techniques

Page 85

3.3.4.4 Keeping track of tab pages

To refer to the controls on a tab page, you need the user object reference, not just the index of
the tab page. You can use the tab page's Control property array to get references to all your
tab pages.

Control property for tab pages

The Control property of the Tab control is an array with a reference to each tab page defined
in the painter and each tab page added in a script. The index values that are passed to events
match the array elements of the Control property.

You can get an object reference for the selected tab using the SelectedTab property:

userobject luo_tabpage
luo_tabpage = tab_1.Control[tab_1.SelectedTab]

In an event for the Tab control, like SelectionChanged, you can use the index value passed to
the event to get a reference from the Control property array:

userobject tabpage_generic
tabpage_generic = This.Control[newindex]

Adding a new tab page

When you call OpenTab, the control property array grows by one element. The new element
is a reference to the newly opened tab page. For example, the following statement adds a new
tab in the second position in the Tab control:

tab_1.OpenTab(uo_newtab, 2)

The second element in the control array for tab_1 now refers to uo_newtab, and the index
into the control array for all subsequent tab pages becomes one greater.

Closing a tab page

When you call CloseTab, the size of the array is reduced by one and the reference to the user
object or page is destroyed. If the closed tab was not the last element in the array, the index
for all subsequent tab pages is reduced by one.

Moving a tab page

The MoveTab function changes the order of the pages in a Tab control and also reorders the
elements in the control array to match the new tab order.

Control property array for user objects

The Control property array for controls in a user object works in the same way.

3.3.4.5 Creating tab pages only when needed

The user might never look at all the tab pages in your Tab control. You can avoid the
overhead of creating graphical representations of the controls on all the tab pages by
checking Create on Demand on the Tab control's General property page or setting the
CreateOnDemand property to TRUE.

The controls on all the tab pages in a Tab control are always instantiated when the Tab
control is created. However, when Create on Demand is checked, the Constructor event for

User Interface Techniques

Page 86

controls on tab pages is not triggered and graphical representations of the controls are not
created until the user views the tab page.

Constructor events on the selected tab page

Constructor events for controls on the selected tab page are always triggered when the
Tab control is created.

Tradeoffs for Create on Demand

A window will open more quickly if the creation of graphical representations is delayed for
tab pages with many controls. However, scripts cannot refer to a control on a tab page until
the control's Constructor event has run and a graphical representation of the control has been
created. When Create on Demand is checked, scripts cannot reference controls on tab pages
that the user has not viewed.

Whether a tab page has been created

You can check whether a tab page has been created with the PageCreated function. Then,
if it has not been created, you can trigger the constructor event for the tab page using the
CreatePage function:

IF tab_1.tabpage_3.PageCreated() = FALSE THEN
 tab_1.tabpage_3.CreatePage()
END IF

You can check whether a control on a tab page has been created by checking whether the
control's handle is nonzero. If so, the control has been created.

IF Handle(tab_1.tabpage_3.dw_list) > 0 THEN ...

Changing CreateOnDemand during execution

If you change the CreateOnDemand property to FALSE in a script, graphical representations
of any tab pages that have not been created are created immediately.

It does not do any good to change CreateOnDemand to TRUE during execution, because
graphical representations of all the tab pages have already been created.

Creating tab pages dynamically

If CreateOnDemand is FALSE, you can set the label for a dynamically created tab page
in its Constructor event, using the argument to OpenTabWithParm that is passed to the
Message object. If CreateOnDemand is TRUE, you need to set the label when the tab page
is instantiated, because the Constructor event is not triggered until the tab is selected. The
following script in a user event that is posted from a window's open event opens five tab
pages and sets the label for each tab as it is instantiated:

int li_ctr
string is_title
THIS.setredraw(false)

FOR li_ctr = 1 to 5
 is_title = "Tab#" + string(li_ctr)
 tab_test.opentabwithparm(iuo_tabpage[li_ctr], &
 is_title, 0)
iuo_tabpage[li_ctr].text = is_title //set tab label
NEXT

User Interface Techniques

Page 87

THIS.setredraw(true)
RETURN 1

3.3.4.6 Events for the parts of the Tab control

With so many overlapping pieces in a Tab control, you need to know where to code scripts
for events.

Table 3.8: Coding scripts for Tab control events

To respond to actions in the Write a script for events belonging to

Tab area of the Tab control, including clicks
or drag actions on tabs

The Tab control

Tab page (but not the tab) The tab page (for embedded tab pages) or the
user object (for independent tab pages)

Control on a tab page That control

For example, if the user drags to a tab and you want to do something to the tab page
associated with the tab, you need to code the DragDrop event for the Tab control, not the tab
page.

Examples

This code in the DragDrop event of the tab_1 control selects the tab page when the user drops
something onto its tab. The index of the tab that is the drop target is an argument for the
DragDrop event:

This.SelectTab(index)

The following code in the DragDrop event for the Tab control lets the user drag DataWindow
information to a tab and then inserts the dragged information in a list on the tab page
associated with the tab.

A user object of type tabpage_listbox that contains a ListBox control, lb_list, has been
defined in the User Object painter. The Tab control contains several independent tab pages of
type tabpage_listbox.

You can use the index argument for the DragDrop event to get a tab page reference from
the Tab control's Control property array. The user object reference lets the script access the
controls on the tab page.

The Parent pronoun in this script for the Tab control refers to the window:

long ll_row
string ls_name
tabpage_listbox luo_tabpage

IF TypeOf(source) = DataWindow! THEN
 l_row = Parent.dw_2.GetRow()
 ls_name = Parent.dw_2.Object.lname.Primary[ll_row]

 // Get a reference from the Control property array
 luo_tabpage = This.Control[index]

 // Make the tab page the selected tab page
 This.SelectTab(index)

User Interface Techniques

Page 88

 // Insert the dragged information
 luo_tabpage.lb_list.InsertItem(ls_name, 0)

END IF

If the tab page has not been created

If the CreateOnDemand property for the Tab control is TRUE, the Constructor events
for a tab page and its controls are not triggered until the tab page is selected. In the
previous example, making the tab page the selected tab page triggers the Constructor
events. You could also use the CreatePage function to trigger them:

IF luo_tabpage.PageCreated() = FALSE THEN &
luo_tabpage.CreatePage()

3.4 Using TreeView Controls

About this chapter

This chapter describes how to use TreeView controls to present hierarchical information in an
expandable list.

3.4.1 About TreeView controls

TreeView controls provide a way to represent hierarchical relationships within a list. The
TreeView provides a standard interface for expanding and collapsing branches of a hierarchy:

User Interface Techniques

Page 89

When to use a TreeView

You use TreeViews in windows and custom visual user objects. Choose a TreeView instead
of a ListBox or ListView when your information is more complex than a list of similar items
and when levels of information have a one-to-many relationship. Choose a TreeView instead
of a DataWindow control when your user will want to expand and collapse the list using the
standard TreeView interface.

Hierarchy of items

Although items in a TreeView can be a single, flat list like the report view of a ListView, you
tap the power of a TreeView when items have a one-to-many relationship two or more levels
deep. For example, your list might have one or several parent categories with child items
within each category. Or the list might have several levels of subcategories before getting to
the end of a branch in the hierarchy:

Root
 Category 1
 Subcategory 1a
 Detail
 Detail
 Subcategory 1b
 Detail
 Detail
 Category 2
 Subcategory 2a
 Detail

Number of levels in each branch

You do not have to have the same number of levels in every branch of the hierarchy if your
data requires more levels of categorization in some branches. However, programming for the
TreeView is simpler if the items at a particular level are the same type of item, rather than
subcategories in some branches and detail items in others.

For example, in scripts you might test the level of an item to determine appropriate actions.
You can call the SetLevelPictures function to set pictures for all the items at a particular
level.

Content sources for a TreeView

For most of the list types in PowerBuilder, you can add items in the painter or in a script, but
for a TreeView, you have to write a script. Generally, you will populate the first level (the
root level) of the TreeView when its window opens. When the user wants to view a branch, a
script for the TreeView's ItemPopulate event can add items at the next levels.

The data for items can be hard-coded in the script, but it is more likely that you will use
the user's own input or a database for the TreeView's content. Because of the one-to-many
relationship of an item to its child items, you might use several tables in a database to
populate the TreeView.

For an example using DataStores, see Using DataWindow information to populate a
TreeView.

Pictures for items

Pictures are associated with individual items in a TreeView. You identify pictures you want
to use in the control's picture lists and then associate the index of the picture with an item.

User Interface Techniques

Page 90

Generally, pictures are not unique for each item. Pictures provide a way to categorize or mark
items within a level. To help the user understand the data, you might:

• Use a different picture for each level

• Use several pictures within a level to identify different types of items

• Use pictures on some levels only

• Change the picture after the user clicks on an item

Pictures are not required

You do not have to use pictures if they do not convey useful information to the user. Item
labels and the levels of the hierarchy may provide all the information the user needs.

Appearance of the TreeView

You can control the appearance of the TreeView by setting property values. Properties that
affect the overall appearance are shown in the following table.

Table 3.9: TreeView properties

Properties Effect when set

HasButtons Puts + and - buttons before items that have children, showing the user
whether the item is expanded or collapsed

HasLines and
LinesAtRoot

Display lines connecting items within a branch and connecting items at the
root level

Checkboxes Replaces the state image with checked and unchecked check boxes

TrackSelect Changes the appearance of an item as the mouse moves over it

FullRowSelect Highlights the entire row of a selected item

SingleExpand Expands the selected item and collapses the previously selected item
automatically

Indent Sets the amount an item is indented

Font properties Specifies the font for all the labels

Various picture
properties

Controls the pictures and their size

LayoutRTL and
RightToLeft

Display elements and characters in the control from right to left

For more information about these properties, see Section 2.140, “TreeView control” in
Objects and Controls.

User interaction

Basic TreeView functionality allows users to edit labels, delete items, expand and collapse
branches, and sort alphabetically, without any scripting on your part. For example, the user
can click a second time on a selected item to edit it, or press the Delete key to delete an item.
If you do not want to allow these actions, properties let you disable them.

User Interface Techniques

Page 91

You can customize any of these basic actions by writing scripts. Events associated with the
basic actions let you provide validation or prevent an action from completing. You can also
implement other features such as adding items, dragging items, and performing customized
sorting.

Using custom events

In PowerBuilder 7 and later releases, PowerBuilder uses Microsoft controls for ListView and
Treeview controls. The events that fire when the right mouse button is clicked are different
from earlier releases.

When you release the right mouse button, the pbm_rbuttonup event does not fire. The stock
RightClicked! event for a TreeView control, pbm_tvnrclickedevent, fires when the button is
released.

When you click the right mouse button on an unselected TreeView item, focus returns to
the previously selected TreeView item when you release the button. To select the new item,
insert this code in the pbm_tvnrclickedevent script before any code that acts on the selected
item:

this.SelectItem(handle)

When you right double-click, only the pbm_rbuttondblclk event fires. In previous releases,
both the pbm_rbuttondblclk and pbm_tvnrdoubleclick events fired.

3.4.2 Populating TreeViews

You must write a script to add items to a TreeView. You cannot add items in the painter
as with other list controls. Although you can populate all the levels of the TreeView at
once, TreeView events allow you to populate only branches the user looks at, which saves
unnecessary processing.

Typically, you populate the first level of the TreeView when the control is displayed. This
code might be in a window's Open event, a user event triggered from the Open event, or the
TreeView's Constructor event. Then a script for the control's ItemPopulate event would insert
an item's children when the user chooses to expand it.

The ItemPopulate event is triggered when the user clicks on an item's plus button or double-
clicks the item, but only if the item's Children property is TRUE. Therefore, when you insert
an item that will have children, you must set its Children property to TRUE so that it can be
populated with child items when the user expands it.

You are not restricted to adding items in the ItemPopulate event. For example, you might let
the user insert items by dragging from a ListBox or filling in a text box.

3.4.2.1 Functions for inserting items

There are several functions for adding items to a TreeView control, as shown in the following
table.

Table 3.10: Functions for adding items to TreeView control

This function Adds an item here

InsertItem After a sibling item for the specified parent.

User Interface Techniques

Page 92

This function Adds an item here
If no siblings exist, you must use one of the other insertion
functions.

InsertItemFirst First child of the parent item.

InsertItemLast Last child of the parent item.

InsertItemSort As a child of the parent item in alphabetic order, if possible.

For all the InsertItem functions, the SortType property can also affect the position of the
added item.

There are two ways to supply information about the item you add, depending on the item
properties that need to be set.

Method 1: specifying the label and picture index only

You can add an item by supplying the picture index and label. All the other properties of the
item will have default values. You can set additional properties later as needed, using the
item's handle.

Example

This example inserts a new item after the currently selected item on the same level as that
item. First it gets the handles of the currently selected item and its parent, and then it inserts
an item labeled Hindemith after the currently selected item. The item's picture index is 2:

long ll_tvi, ll_tvparent

ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
ll_tvparent = tv_list.FindItem(ParentTreeItem!, &
 ll_tvi)
tv_list.InsertItem(ll_tvparent, ll_tvi, &
 "Hindemith", 2)

Method 2: setting item properties in a TreeViewItem structure

You can add items by supplying a TreeViewItem structure with properties set to specific
values. The only required property is a label. Properties you might set are shown in the
following table.

Table 3.11: TreeViewItem properties

Property Value

Label The text that is displayed for the item.

PictureIndex A value from the regular picture list.

SelectedPictureIndex A value from the regular picture list, specifying a picture that is
displayed only when the item is selected. If 0, no picture is displayed
for the item when selected.

StatePictureIndex A value from the State picture list. The picture is displayed to the left
of the regular picture.

Children Must be TRUE if you want double-clicking to trigger the
ItemPopulate event. That event script can insert child items.

User Interface Techniques

Page 93

Property Value

Data An optional value of any datatype that you want to associate with the
item. You might use the value to control sorting or to make a database
query.

Example

This example sets all these properties in a TreeViewItem structure before adding the item to
the TreeView control. The item is inserted as a child of the current item:

treeviewitem tvi
long h_item = 0, h_parent = 0

h_parent = tv_1.FindItem(CurrentTreeItem!, 0)
tvi.Label = "Choral"
tvi.PictureIndex = 1
tvi.SelectedPictureIndex = 2
tvi.Children = true
tvi.StatePictureIndex = 0
h_item = tv_1.InsertItemSort(h_parent, tvi)

For more information about inserting items into a TreeView control, see Section 2.4.411,
“InsertItem” in PowerScript Reference.

3.4.2.2 Inserting items at the root level

The very first item you insert does not have any sibling for specifying a relative position, so
you cannot use the InsertItem function -- you must use InsertItemFirst or InsertItemLast. For
an item inserted at the root level, you specify 0 as its parent.

This sample code is in a user event triggered from the Open event of the window containing
the TreeView. It assumes two instance variable arrays:

• A string array called item_label that contains labels for all the items that will be inserted at
the root level (here composer names)

• An integer array that has values for the Data property (the century for each composer); the
century value is for user-defined sorting:

int ct
long h_item = 0
treeviewitem tvi

FOR ct = 1 TO UpperBound(item_label)
 tvi.Label = item_label[ct]
 tvi.Data = item_data[ct]
 tvi.PictureIndex = 1
 tvi.SelectedPictureIndex = 2
 tvi.Children = TRUE
 tvi.StatePictureIndex = 0
 tvi.DropHighlighted = TRUE
 h_item = tv_1.InsertItemSort(0, tvi)
NEXT

After inserting all the items, this code scrolls the TreeView back to the top and makes the
first item current:

User Interface Techniques

Page 94

// Scroll back to top
h_item = tv_1.FindItem(RootTreeItem!, 0)
tv_1.SetFirstVisible(h_item)
tv_1.SelectItem(h_item)

3.4.2.3 Inserting items below the root level

The first time a user tries to expand an item to see its children, PowerBuilder triggers the
ItemPopulate event if and only if the value of the item's Children property is TRUE. In the
ItemPopulate event, you can add child items for the item being expanded.

Parent item's Children property

If the ItemPopulate event does not occur when you expect, make sure the Children
property for the expanding item is TRUE. It should be set to TRUE for any item that
will have children.

Inserting items not restricted to the ItemPopulate event

The ItemPopulate event helps you design an efficient program. It will not populate an item
that the user never looks at. However, you do not have to wait until the user wants to view an
item's children. You can add children in any script, just as you added items at the root level.

For example, you might fully populate a small TreeView when its window opens and use the
ExpandAll function to display its items fully expanded.

Has an item been populated?

You can check an item's ExpandedOnce property to find out if the user has looked at the
item's children. If the user is currently looking at an item's children, the Expanded property is
also TRUE.

Example

This TreeView lists composers and their music organized into categories. The script for its
ItemPopulate event checks whether the item being expanded is at level 1 (a composer) or
level 2 (a category). Level 3 items are not expandable.

For a level 1 item, the script adds three standard categories. For a level 2 item, it adds pieces
of music to the category being expanded, in this pattern:

Mozart
 Orchestral
 Symphony No. 33
 Overture to the Magic Flute
 Chamber
 Quintet in Eb for Horn and Strings
 Eine Kleine Nachtmusik
 Vocal
 Don Giovanni
 Idomeneo

This is the script for ItemPopulate:

TreeViewItem tvi_current, tvi_child, tvi_root
long hdl_root
Integer ct
string categ[]

User Interface Techniques

Page 95

// The current item is the parent for the new itemsThis.GetItem(handle,
 tvi_current)

IF tvi_current.Level = 1 THEN
 // Populate level 2 with some standard categories
 categ[1] = "Orchestral"
 categ[2] = "Chamber"
 categ[3] = "Vocal"

 tvi_child.StatePictureIndex = 0
 tvi_child.PictureIndex = 3
 tvi_child.SelectedPictureIndex = 4
 tvi_child.OverlayPictureIndex = 0
 tvi_child.Children = TRUE

 FOR ct = 1 to UpperBound(categ)
 tvi_child.Label = categ[ct]
 This.InsertItemLast(handle, tvi_child)
 NEXT
END IF

// Populate level 3 with music titles
IF tvi_current.Level = 2 THEN

 // Get parent of current item - it's the root of
 // this branch and is part of the key for choosing
 // the children

 hdl_root = This.FindItem(ParentTreeItem!, handle)
 This.GetItem(hdl_root, tvi_root)

 FOR ct = 1 to 4
 // This statement constructs a label -
 // it is more realistic to look up data in a
 // table or database or accept user input
 This.InsertItemLast(handle, &
 tvi_root.Label + " Music " &
 + tvi_current.Label + String(ct), 3)
 NEXT
END IF

3.4.3 Managing TreeView items

An item in a TreeView is a TreeViewItem structure. The preceding section described how to
set the item's properties in the structure and then insert it into the TreeView.

This code declares a TreeViewItem structure and sets several properties:

TreeViewItem tvi_defined

tvi_defined.Label = "Symphony No. 3 Eroica"
tvi_defined.StatePictureIndex = 0
tvi_defined.PictureIndex = 3
tvi_defined.SelectedPictureIndex = 4
tvi_defined.OverlayPictureIndex = 0
tvi_defined.Children = TRUE

For information about Picture properties, see Managing TreeView pictures.

When you insert an item, the inserting function returns a handle to that item. The
TreeViewItem structure is copied to the TreeView control, and you no longer have access to
the item's properties:

User Interface Techniques

Page 96

itemhandle = This.InsertItemLast(parenthandle, &
 tvi_defined)

Procedure for items: get, change, and set

If you want to change the properties of an item in the TreeView, you:

1. Get the item, which assigns it to a TreeViewItem structure.

2. Make the changes, by setting TreeViewItem properties.

3. Set the item, which copies it back into the TreeView.

When you work with items that have been inserted in the TreeView, you work with item
handles. Most TreeView events pass one or two handles as arguments. The handles identify
the items the user is interacting with.

This code for the Clicked event uses the handle of the clicked item to copy it into a
TreeViewItem structure whose property values you can change:

treeviewitem tvi
This.GetItem(handle, tvi)
tvi.OverlayPictureIndex = 1
This.SetItem(handle, tvi)

Important

Remember to call the SetItem function after you change an item's property value.
Otherwise, nothing happens in the TreeView.

Items and the hierarchy

You can use item handles with the FindItem function to navigate the TreeView and uncover
its structure. The item's properties tell you what its level is, but not which item is its parent.
The FindItem function does:

long h_parent
h_parent = This.FindItem(ParentTreeItem!, handle)

You can use FindItem to find the children of an item or to navigate through visible items
regardless of level.

For more information, see Section 2.4.190, “FindItem” in PowerScript Reference.

Enabling TreeView functionality in scripts

By setting TreeView properties, you can enable or disable user actions like deleting or
renaming items without writing any scripts. You can also enable these actions by calling
functions. You can:

• Delete items

• Rename items

• Move items using drag and drop

• Sort items

User Interface Techniques

Page 97

3.4.3.1 Deleting items

To allow the user to delete items, enable the TreeView's DeleteItems property. When the user
presses the Delete key, the selected item is deleted and the DeleteItem event is triggered. Any
children are deleted too.

If you want more control over deleting, such as allowing deleting of detail items only, you
can call the DeleteItem function instead of setting the property. The function also triggers the
DeleteItem event.

Example

This script is for a TreeView user event. Its event ID is pbm_keydown and it is triggered
by key presses when the TreeView has focus. The script checks whether the Delete key is
pressed and whether the selected item is at the detail level. If both are TRUE, it deletes the
item.

The value of the TreeView's DeleteItems property is FALSE. Otherwise, the user could
delete any item, despite this code:

TreeViewItem tvi
long h_item

IF KeyDown(KeyDelete!) = TRUE THEN
 h_item = This.FindItem(CurrentTreeItem!, 0)
 This.GetItem(h_item, tvi)
 IF tvi.Level = 3 THEN
 This.DeleteItem(h_item
) END IF
END IF
RETURN 0

3.4.3.2 Renaming items

If you enable the TreeView's EditLabels property, the user can edit an item label by clicking
twice on the text.

Events

There are two events associated with editing labels.

The BeginLabelEdit event occurs after the second click when the EditLabels property is set
or when the EditLabel function is called. You can disallow editing with a return value of 1.

This script for BeginLabelEdit prevents changes to labels of level 2 items:

TreeViewItem tvi
This.GetItem(handle, tvi)
IF tvi.Level = 2 THEN
 RETURN 1
ELSE
 RETURN 0
END IF

The EndLabelEdit event occurs when the user finishes editing by pressing enter, clicking on
another item, or clicking in the text entry area of another control. A script you write for the
EndLabelEdit event might validate the user's changes for example, it could invoke a spelling
checker.

EditLabel function

User Interface Techniques

Page 98

For control over label editing, the BeginLabelEdit event can prohibit editing of a label,
as shown above. Or you can set the EditLabels property to FALSE and call the EditLabel
function when you want to allow a label to be edited.

When you call the EditLabel function, the BeginLabelEdit event occurs when editing begins
and the EndLabelEdit event occurs when the user presses enter or the user clicks another
item.

This code for a CommandButton puts the current item into editing mode:

long h_tvi
h_tvi = tv_1.findItem(CurrentTreeItem!, 0)
tv_1.EditLabel(h_tvi)

3.4.3.3 Moving items using drag and drop

At the window level, PowerBuilder provides functions and properties for dragging controls
onto other controls. Within the TreeView, you can also let the user drag items onto other
items. Users might drag items to sort them, move them to another branch, or put child items
under a parent.

When you implement drag and drop as a way to move items, you decide whether the dragged
item becomes a sibling or child of the target, whether the dragged item is moved or copied,
and whether its children get moved with it.

There are several properties and events that you need to coordinate to implement drag and
drop for items, as shown in the following table.

Table 3.12: Drag-and-drop properties and events

Property or
event

Setting or purpose

DragAuto
property

TRUE or FALSE

If FALSE, you must call the Drag function in the BeginDrag event.

DisableDragDrop
property

FALSE

DragIcon
property

An appropriate icon

or

None!, which means the user drags an image of the item

BeginDrag
event

Script for saving the handle of the dragged item and optionally preventing
particular items from being dragged

DragWithin
event

Script for highlighting drop targets

DragDrop event Script for implementing the result of the drag operation

Example

The key to a successful drag-and-drop implementation is in the details. This section
illustrates one way of moving items. In the example, the dragged item becomes a sibling of
the drop target, inserted after it. All children of the item are moved with it and the original
item is deleted.

User Interface Techniques

Page 99

A function called recursively moves the children, regardless of the number of levels. To
prevent an endless loop, an item cannot become a child of itself. This means a drop target that
is a child of the dragged item is not allowed.

BeginDrag event

The script saves the handle of the dragged item in an instance variable:

ll_dragged_tvi_handle = handle

If you want to prevent some items from being dragged -- such as items at a particular level --
that code goes here too:

TreeViewItem tvi
This.GetItem(handle, tvi)
IF tvi.Level = 3 THEN This.Drag(Cancel!)

DragWithin event

The script highlights the item under the cursor so the user can see each potential drop target.
If only some items are drop targets, your script should check an item's characteristics before
highlighting it. In this example, you could check whether an item is a parent of the dragged
item and highlight it only if it is not:

TreeViewItem tvi
This.GetItem(handle, tvi)
tvi.DropHighlighted = TRUE
This.SetItem(handle, tvi)

DragDrop event

This script does all the work. It checks whether the item can be inserted at the selected
location and inserts the dragged item in its new position a sibling after the drop target. Then it
calls a function that moves the children of the dragged item too:

TreeViewItem tvi_src, tvi_child
long h_parent, h_gparent, h_moved, h_child
integer rtn

// Get TreeViewItem for dragged item
This.GetItem(ll_dragged_tvi_handle, tvi_src)
// Don't allow moving an item into its own branch,
// that is, a child of itself
h_gparent = This.FindItem(ParentTreeItem!, handle)

DO WHILE h_gparent <> -1
 IF h_gparent = ll_dragged_tvi_handle THEN
 MessageBox("No Drag", &
 "Can't make an item a child of itself.")
 RETURN 0
 END IF

h_gparent=This.FindItem(ParentTreeItem!, h_gparent)
LOOP

// Get item parent for inserting
h_parent = This.FindItem(ParentTreeItem!, handle)

// Use 0 if no parent because target is at level 1
IF h_parent = -1 THEN h_parent = 0

// Insert item after drop target

User Interface Techniques

Page 100

h_moved = This.InsertItem(h_parent, handle, tvi_src)
IF h_moved = -1 THEN
 MessageBox("No Dragging", "Could not move item.")
 RETURN 0
ELSE
 // Args: old parent, new parent
 rtn = uf_movechildren(ll_dragged_tvi_handle, &
 h_moved)

 / If all children are successfully moved,
 // delete original item
 IF rtn = 0 THEN
 This.DeleteItem(ll_dragged_tvi_handle)
 END IF

END IF

The DragDrop event script shown above calls the function uf_movechildren. The function
calls itself recursively so that all the levels of children below the dragged item are moved:

// Function: uf_movechildren
// Arguments:
// oldparent - Handle of item whose children are
// being moved. Initially, the dragged item in its
// original position
//
// newparent - Handle of item to whom children are
// being moved. Initially, the dragged item in its
// new position.

long h_child, h_movedchild
TreeViewItem tvi

// Return -1 if any Insert action fails

// Are there any children?
h_child = tv_2.FindItem(ChildTreeItem!, oldparent)
IF h_child <> -1 THEN
 tv_2.GetItem(h_child, tvi)
 h_movedchild = tv_2.InsertItemLast(newparent, tvi)
 IF h_movedchild = -1 THEN RETURN -1

 // Move the children of the child that was found
 uf_movechildren(h_child, h_movedchild)

 // Check for more children at the original level
 h_child = tv_2.FindItem(NextTreeItem!, h_child)
 DO WHILE h_child <> -1
 tv_2.GetItem(h_child, tvi)
 h_movedchild= tv_2.InsertItemLast(newparent,tvi)
 IF h_movedchild = -1 THEN RETURN -1
 uf_movechildren(h_child, h_movedchild)

 // Any more children at original level?
 h_child = tv_2.FindItem(NextTreeItem!, h_child)
 LOOP
END IF
RETURN 0 // Success, all children moved

3.4.3.4 Sorting items

A TreeView can sort items automatically, or you can control sorting manually. Manual
sorting can be alphabetic by label text, or you can implement a user-defined sort to define

User Interface Techniques

Page 101

your own criteria. The SortType property controls the way items are sorted. Its values are of
the enumerated datatype grSortType.

Automatic alphabetic sorting

To enable sorting by the text label, set the SortType property to Ascending! or Descending!.
Inserted items are sorted automatically.

Manual alphabetic sorting

For more control over sorting, you can set SortType to Unsorted! and sort by calling the
functions in the following table.

Table 3.13: TreeView sorting functions

Use this function To do this

InsertItemSort Insert an item at the correct alphabetic position, if possible

Sort Sort the immediate children of an item

SortAll Sort the whole branch below an item

If users will drag items to organize the list, you should disable sorting.

Sorting by other criteria

To sort items by criteria other than their labels, implement a user-defined sort by setting the
SortType property to UserDefinedSort! and writing a script for the Sort event. The script
specifies how to sort items.

PowerBuilder triggers the Sort event for each pair of items it tries to reorder. The Sort
script returns a value reporting which item is greater than the other. The script can have
different rules for sorting based on the type of item. For example, level 2 items can be sorted
differently from level 3. The TreeView is sorted whenever you insert an item.

Example of Sort event

This sample script for the Sort event sorts the first level by the value of the Data property and
other levels alphabetically by their labels. The first level displays composers chronologically,
and the Data property contains an integer identifying a composer's century:

//Return values
//-1 Handle1 is less than handle2
// 0 Handle1 is equal to handle2
// 1 Handle1 is greater than handle2

TreeViewItem tvi1, tvi2

This.GetItem(handle1, tvi1)
This.GetItem(handle2, tvi2)

IF tvi1.Level = 1 THEN
 // Compare century values stored in Data property
 IF tvi1.data > tvi2.Data THEN
 RETURN 1
 ELSEIF tvi1.data = tvi2.Data THEN
 RETURN 0
 ELSE
 RETURN -1
 END IF
 ELSE
 // Sort other levels in alpha order

User Interface Techniques

Page 102

 IF tvi1.Label > tvi2.Label THEN
 RETURN 1
 ELSEIF tvi1.Label = tvi2.Label THEN
 RETURN 0
 ELSE
 RETURN -1
 END IF
END IF

3.4.4 Managing TreeView pictures

PowerBuilder stores TreeView images in three image lists:

• Picture list (called the regular picture list here)

• State picture list

• Overlay picture list

You add pictures to these lists and associate them with items in the TreeView.

3.4.4.1 Pictures for items

There are several ways to use pictures in a TreeView. You associate a picture in one of the
picture lists with an item by setting one of the item's picture properties, described in the
following table.

Table 3.14: TreeView picture properties

Property Purpose

PictureIndex The primary picture associated with the item is displayed just to the left
of the item's label.

StatePictureIndex A state picture is displayed to the left of the regular picture. The item
moves to the right to make room for the state picture. If the Checkboxes
property is TRUE, the state picture is replaced by a pair of check boxes.

Because a state picture takes up room, items without state pictures will
not align with items that have pictures. So that all items have a state
picture and stay aligned, you could use a blank state picture for items
that do not have a state to be displayed.

A use for state pictures might be to display a check mark beside items
the user has chosen.

OverlayPictureIndexAn overlay picture is displayed on top of an item's regular picture.

You set up the overlay picture list in a script by designating a picture in
the regular picture list for the overlay picture list.

An overlay picture is the same size as a regular picture, but it often uses
a small portion of the image space so that it only partially covers the
regular picture. A typical use of overlay pictures is the arrow marking
shortcut items in the Windows Explorer.

SelectedPictureIndexA picture from the regular picture list that is displayed instead of the
regular picture when the item is the current item. When the user selects

User Interface Techniques

Page 103

Property Purpose
another item, the first item gets its regular picture and the new item
displays its selected picture.

If you do not want a different picture when an item is current, set
SelectedPictureIndex to the same value as PictureIndex.

How to set pictures

You can change the pictures for all items at a particular level with the SetLevelPictures
function, or you can set the picture properties for an individual item.

If you do not want pictures

Your TreeView does not have to use pictures for items. If an item's picture indexes are 0, no
pictures are displayed. However, the TreeView always leaves room for the regular picture.
You can set the PictureWidth property to 0 to eliminate that space:

tv_2.DeletePictures()
tv_2.PictureWidth = 0

3.4.4.2 Setting up picture lists

You can add pictures to the regular and state picture lists in the painter or during execution.
During execution, you can assign pictures in the regular picture list to the overlay list.

Mask color

The mask color is a color used in the picture that becomes transparent when the picture is
displayed. Usually you should pick the picture's background color so that the picture blends
with the color of the TreeView.

Before you add a picture, in the painter or in a script, you can set the mask color to a color
appropriate for that picture. This statement sets the mask color to white, which is right for a
picture with a white background:

tv_1.PictureMaskColor = RGB(255, 255, 255)

Each picture can have its own mask color. A picture uses the color that is in effect when the
picture is inserted. To change a picture's mask color, you have to delete the picture and add it
again.

Image size

In the painter you can change the image size at any time by setting the Height and Width
properties on each picture tab. All the pictures in the list are scaled to the specified size.

During execution, you can change the image size for a picture list only when that list is
empty. The DeletePictures and DeleteStatePictures functions let you clear the lists.

Example

This sample code illustrates how to change properties and add pictures to the regular picture
list during execution. Use similar code for state pictures:

tv_list.DeletePictures()
tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

User Interface Techniques

Page 104

tv_list.PictureMaskColor = RGB(255,255,255)
tv_list.AddPicture("c:\apps_pb\kelly.bmp")
tv_list.PictureMaskColor = RGB(255,0,0)
tv_list.AddPicture("Custom078!")
tv_list.PictureMaskColor = RGB(128,128,128)
tv_list.AddPicture("Custom044!")

Deleting pictures and how it affects existing items

Deleting pictures from the picture lists can have an unintended effect on item pictures being
displayed. When you delete pictures, the remaining pictures in the list are shifted to remove
gaps in the list. The remaining pictures get a different index value. This means items that use
these indexes get new images.

Deleting pictures from the regular picture list also affects the overlay list, since the overlay
list is not a separate list but points to the regular pictures.

To avoid unintentional changes to item pictures, it is best to avoid deleting pictures after you
have begun using picture indexes for items.

3.4.4.3 Using overlay pictures

The pictures in the overlay list come from the regular picture list. First you must add pictures
to the regular list, either in the painter or during execution. Then during execution you
specify pictures for the overlay picture list. After that you can assign an overlay picture to
items, individually or with the SetLevelPictures function.

This code adds a picture to the regular picture list and then assigns it to the overlay list:

integer idx
idx = tv_1.AddPicture("Custom085!")
IF tv_1.SetOverlayPicture(1, idx) <> 1 THEN
 sle_get.Text = "Setting overlay picture failed"
END IF

This code for the Clicked event turns the overlay picture on or off each time the user clicks an
item:

treeviewitem tvi
This.GetItem(handle, tvi)
IF tvi.OverlayPictureIndex = 0 THEN
 tvi.OverlayPictureIndex = 1
ELSE
 tvi.OverlayPictureIndex = 0
END IF
This.SetItem(handle, tvi)

3.4.5 Using DataWindow information to populate a TreeView

A useful implementation of the TreeView control is to populate it with information that you
retrieve from a DataWindow. To do this your application must:

• Declare and instantiate a DataStore and assign a DataWindow object

• Retrieve information as needed

• Use the retrieved information to populate the TreeView

User Interface Techniques

Page 105

• Destroy the DataStore instance when you have finished

Because a TreeView can display different types of information at different levels, you will
probably define additional DataWindows, one for each level. Those DataWindows usually
refer to different but related tables. When an item is expanded, the item becomes a retrieval
argument for getting child items.

Populating the first level

This example populates a TreeView with a list of composers. The second level of the
TreeView displays music by each composer. In the database there are two tables: composer
names and music titles (with composer name as a foreign key).

This example declares two DataStore instance variables for the window containing the
TreeView control:

datastore ids_data, ids_info

This example uses the TreeView control's Constructor event to:

• Instantiate the DataStore

• Associate it with a DataWindow and retrieve information

• Use the retrieved data to populate the root level of the TreeView:

//Constructor event for tv_1
treeviewitem tvi1, tvi2
long ll_lev1, ll_lev2, ll_rowcount, ll_row

//Create instance variable datastore
ids_data = CREATE datastore
ids_data.DataObject = "d_composers"
ids_data.SetTransObject(SQLCA)
ll_rowcount = ids_data.Retrieve()

//Create the first level of the TreeView
tvi1.PictureIndex = 1
tvi1.Children = TRUE
//Populate the TreeView with
//data retrieved from the datastore
FOR ll_row = 1 to ll_rowcount
 tvi1.Label = ids_data.GetItemString(ll_row, &
 'name')
 This.InsertItemLast(0, tvi1)
NEXT

Populating the second level

When the user expands a root level item, the ItemPopulate event occurs. This script for the
event:

• Instantiates a second DataStore

Its DataWindow uses the composer name as a retrieval argument for the music titles table.

• Inserts music titles as child items for the selected composer

The handle argument of ItemPopulate will be the parent of the new items:

User Interface Techniques

Page 106

//ItemPopulate event for tv_1
TreeViewItem tvi1, tvi2
long ll_row, ll_rowcount

//Create instance variable datastore
ids_info = CREATE datastore
ids_info.DataObject = "d_music"
ids_info.SetTransObject(SQLCA)

//Use the label of the item being populated
// as the retrieval argument
This.GetItem(handle, tvi1)
ll_rowcount = ids_info.Retrieve(tvi1.Label)

//Use information retrieved from the database
//to populate the expanded item
FOR ll_row = 1 to ll_rowcount
 This.InsertItemLast(handle, &
 ids_info.GetItemString(ll_row, &
 music_title'), 2)
NEXT

Destroying DataStore instances

When the window containing the TreeView control closes, this example destroys the
DataStore instances:

//Close event for w_treeview
DESTROY ids_data
DESTROY ids_info

3.5 Using Lists in a Window

About this chapter

This chapter describes how to use lists to present information in an application.

3.5.1 About presenting lists

You can choose a variety of ways to present lists in your application:

• ListBoxes and PictureListBoxes display available choices that can be used for invoking an
action or viewing and displaying data.

• DropDownListBoxes and DropDownPictureListBoxes also display available choices to the
user. However, you can make them editable to the user. DropDownListBoxes are text-only
lists; DropDownPictureListBoxes display a picture associated with each item.

• ListView controls present lists in a combination of graphics and text. You can allow the
user to add, delete, edit, and rearrange ListView items, or you can use them to invoke an
action.

TreeView controls

TreeView controls also combine graphics and text in lists. The difference is that
TreeView controls show the hierarchical relationship among the TreeView items.

User Interface Techniques

Page 107

As with ListView controls, you can allow the user to add, delete, edit, and rearrange
TreeView items. You can also use them to invoke actions.

For more information on TreeViews, see Using TreeView Controls

3.5.2 Using lists

You can use lists to present information to the user in simple lists with scroll bars. You can
present this information with text and pictures (in a PictureListBox) or with text alone (using
a ListBox).

Depending on how you design your application, the user can select one or more list items to
perform an action based on the list selection.

You add ListBox and PictureListBox controls to windows in the same way you add other
controls: select ListBox or PictureListBox from the Insert>Control menu and click the
window.

Adding items to list controls

In the painter

Use the Item property page for the control to add new items.

To add items to a ListBox or PictureListBox:

1. Select the Items tab in the Properties view for the control.

2. Enter the name of the items for the ListBox. For a PictureListBox, also enter a picture
index number to associate the item with a picture.

For instructions on adding pictures to a PictureListBox, see Adding pictures to
PictureListBox controls.

In a script

Use the AddItem and InsertItem functions to dynamically add items to a ListBox or
PictureListBox at runtime. AddItem adds items to the end of the list. However, if the list is
sorted, the item will then be moved to its position in the sort order. Use InsertItem if you
want to specify where in the list the item will be inserted.

Table 3.15: Using the InsertItem and AddItem functions

Function You supply

InsertItem Item name

Position in which the item will be inserted

Picture index (for a PictureListBox)

AddItem Item name

Picture index (for a PictureListBox)

For example, this script adds items to a ListBox:

User Interface Techniques

Page 108

This.AddItem ("Vaporware")
This.InsertItem ("Software",2)
This.InsertItem ("Hardware",2)
This.InsertItem ("Paperware",2)

This script adds items and images to a PictureListBox:

This.AddItem ("Monitor",2)
This.AddItem ("Modem", 3)
This.AddItem ("Printer",4)
This.InsertItem ("Scanner",5,1)

Using the Sort property

You can set the control's sort property to TRUE or check the Sorted check box on
the General property page to ensure that the items in the list are always arranged in
ascending alphabetical order.

Adding pictures to PictureListBox controls

In the painter

Use the Pictures and Items property pages for the control to add pictures.

To add pictures to a PictureListBox:

1. Select the Pictures tab in the Properties view for the control.

2. Select an image from the stock image list, or use the Browse button to select a bitmap,
cursor, or icon image.

3. Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask will appear transparent in the PictureListBox.

4. Select a picture height and width.

This will control the size of the images in the PictureListBox.

Dynamically changing image size

You can use a script to change the image size at runtime by setting the PictureHeight
and PictureWidth properties before you add any pictures when you create a
PictureListBox.

For more information about PictureHeight and PictureWidth, see Section 3.212,
“PictureHeight” in Objects and Controls and Section 3.218, “PictureWidth” in
Objects and Controls.

5. Repeat the procedure for the number of images you plan to use in your PictureListBox.

6. Select the Items tab and change the Picture Index for each item to the appropriate
number.

In a script

User Interface Techniques

Page 109

Use the AddPicture function to dynamically add pictures to a PictureListBox at runtime. For
example, the script below sets the size of the picture, adds a BMP file to the PictureListBox,
and adds an item to the control:

This.PictureHeight = 75
This.PictureWidth = 75
This.AddPicture ("c:\ArtGal\bmps\butterfly.bmp")
This.AddItem("Aine Minogue",8)

Deleting pictures from picture list controls

Use the DeletePicture and DeletePictures functions to delete pictures from either a
PictureListBox or a DropDownPictureListBox.

When you use the DeletePicture function, you must supply the picture index of the picture
you want to delete.

For example:

This.DeletePicture (1)

deletes the first Picture from the control, and

This.DeletePictures ()

deletes all the pictures in a control.

Example

The following window contains a ListBox control and a PictureListBox. The ListBox control
contains four items, and the PictureListBox has one:

When the user double-clicks an item in the ListBox, a script executes to:

• Delete all the items in the PictureListBox

User Interface Techniques

Page 110

• Add new items to the PictureListBox that are related to the ListBox item that was double-
clicked

This is the script used in the ListBox DoubleClicked event:

int li_count
//Find out the number of items
//in the PictureListBox
li_count = plb_1.totalItems()

// Find out which item was double-clicked
// Then:
// * Delete all the items in the PictureListBox
// * Add the items associated with the
// double-clicked item
CHOOSE CASE index
 CASE 1
 DO WHILE plb_1.totalitems() > 0
 plb_1.DeleteItem(plb_1.totalitems())
 LOOP
 plb_1.AddItem("Monitor",2)
 plb_1.AddItem("Modem",3)
 plb_1.AddItem("Printer",4)
 plb_1.InsertItem("Scanner",5,1)

 CASE 2
 DO WHILE plb_1.totalitems() > 0
 plb_1.DeleteItem(plb_1.totalitems())
 LOOP
 plb_1.InsertItem("GreenBar",6,1)
 plb_1.InsertItem("LetterHead",7,1)
 plb_1.InsertItem("Copy",8,1)
 plb_1.InsertItem("50 lb.",9,1)

 CASE 3
 DO WHILE plb_1.totalitems() > 0
 plb_1.DeleteItem(plb_1.totalitems())

User Interface Techniques

Page 111

 LOOP
 plb_1.InsertItem("SpreadIt!",10,1)
 plb_1.InsertItem("WriteOn!",11,1)
 plb_1.InsertItem("WebMaker!",12,1)
 plb_1.InsertItem("Chessaholic",13,1)

 CASE 4
 DO WHILE plb_1.totalitems() > 0
 plb_1.DeleteItem(plb_1.totalitems())
 LOOP
 plb_1.InsertItem("AlnaWarehouse",14,1)
 plb_1.InsertItem("AlnaInfo",15,1)
 plb_1.InsertItem("Info9000",16,1)
 plb_1.InsertItem("AlnaThink",17,1)

END CHOOSE

3.5.3 Using drop-down lists

Drop-down lists are another way to present simple lists of information to the user. You
can present your lists with just text (in a DropDownListBox) or with text and pictures (in
a DropDownPictureListBox). You add DropDownListBox and DropDownPictureListBox
controls to windows in the same way you add other controls: select DropDownListBox or
DropDownPictureListBox from the Insert>Control menu and click the window.

Adding items to drop-down list controls

In the painter

Use the Items property page for the control to add items.

To add items to a DropDownListBox or DropDownPictureListBox:

1. Select the Items tab in the Properties view for the control.

2. Enter the name of the items for the ListBox. For a PictureListBox, also enter a picture
index number to associate the item with a picture.

For how to add pictures to a DropDownPictureListBox, see Adding pictures to
DropDownPicture ListBox controls.

In a script

Use the AddItem and InsertItem functions to dynamically add items to a DropDownListBox
or DropDownPictureListBox at runtime.

AddItem adds items to the end of the list. However, if the list is sorted, the item will then be
moved to its position in the sort order. Use InsertItem if you want to specify where in the list
the item will be inserted.

Table 3.16: Using the InsertItem and AddItem functions

Function You supply

InsertItem Item name

Picture index (for a DropDownPictureListBox)

Position in which the item will be inserted

AddItem Item name

User Interface Techniques

Page 112

Function You supply
Picture index (for a DropDownPictureListBox)

This example inserts three items into a DropDownPictureListBox in the first, second, and
third positions:

This.InsertItem ("Atropos", 2, 1)
This.InsertItem ("Clotho", 2, 2)
This.InsertItem ("Lachesis", 2, 3)

This example adds two items to a DropDownPictureListBox:

this.AddItem ("Plasma", 2)
this.AddItem ("Platelet", 2)

Using the Sort property

You can set the control's sort property to TRUE to ensure that the items in the list are
always arranged in ascending sort order.

Adding pictures to DropDownPicture ListBox controls

In the painter

Use the Pictures and Items property pages for the control to add pictures.

To add pictures to a DropDownPictureListBox:

1. Select the Pictures tab in the Properties view for the control.

2. Select an image from the stock image list, or use the Browse button to select a bitmap,
cursor, or icon image.

3. Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask will appear transparent in the
DropDownPictureListBox.

4. Select a picture height and width for your image.

This will control the size of the image in the DropDownPictureListBox.

Dynamically changing image size

The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties before you add any pictures when you create a
DropDownPictureListBox. For more information about PictureHeight and
PictureWidth, see Section 3.212, “PictureHeight” in Objects and Controls and
Section 3.218, “PictureWidth” in Objects and Controls.

5. Repeat the procedure for the number of images you plan to use in your
DropDownPictureListBox.

6. Select the Items tab and change the Picture Index for each item to the appropriate
number.

User Interface Techniques

Page 113

In a script

Use the AddPicture function to dynamically add pictures to a PictureListBox at runtime. For
instance, this example adds two BMP files to the PictureListBox:

This.AddPicture ("c:\images\justify.bmp")
This.AddPicture ("c:\images\center.bmp")

Deleting pictures from DropDownPicture ListBox controls

For instructions on deleting pictures from DropDownPictureListBox controls, see Deleting
pictures from picture list controls.

3.5.4 Using ListView controls

A ListView control allows you to display items and icons in a variety of arrangements. You
can display large icon or small icon freeform lists, or you can display a vertical static list.
You can also display additional information about each list item by associating additional
columns with each list item:

ListView controls consist of ListView items, which are stored in an array. Each ListView
item consists of a:

• Label

The name of the ListView item

• Index

The position of the ListView item in the control

• Picture index

The number that associates the ListView item with an image

Depending on the style of the presentation, an item could be associated with a large picture
index and a small picture index.

• Overlay picture index

User Interface Techniques

Page 114

The number that associates the ListView item with an overlay picture

• State picture index

The number that associates the ListView item with a state picture

For more information about ListView items, picture indexes, and presentation style, see
Section 4.2.14.20, “ListView” in Users Guide.

Creating ListView controls

You add ListView controls to windows in the same way you add other controls: select
ListView from the Insert>Control menu and click the window.

Adding ListView items

In the painter

Use the Items property page for the control to add items.

To add items to a ListView:

1. Select the Items tab in the Properties view for the control.

2. Enter a name and a picture index number for each of the items you want to add to the
ListView.

Clearing all entries on the Items tab page

Setting the picture index for the first item to zero clears all the settings on the tab
page.

For more information about adding pictures to a ListView control, see Adding pictures
to ListView controls.

In a script

Use the AddItem and InsertItem functions to add items to a ListView dynamically at runtime.
There are two levels of information you supply when you add items to a ListView using
AddItem or InsertItem.

You can add an item by supplying the picture index and label, as this example shows:

lv_1.AddItem ("Item 1", 1)

or you can insert an item by supplying the item's position in the ListView, label, and picture
index:

lv_1.InsertItem (1,"Item 2", 2)

You can add items by supplying the ListView item itself. This example in the ListView's
DragDrop event inserts the dragged object into the ListView:

listviewitem lvi
This.GetItem(index, lvi)
lvi.label = "Test"
lvi.pictureindex = 1
This.AddItem (lvi)

User Interface Techniques

Page 115

You can insert an item by supplying the ListView position and ListView item:

listviewitem l_lvi
//Obtain the information for the
//second listviewitem
lv_list.GetItem(2, l_lvi)
//Change the item label to Entropy
//Insert the second item into the fifth position
lv_list.InsertItem (5, l_lvi)
lv_list.DeleteItem(2)

Adding pictures to ListView controls

PowerBuilder stores ListView images in four image lists:

• Small picture index

• Large picture index

• State picture index

• Overlay picture index

You can associate a ListView item with these images when you create a ListView in the
painter or use the AddItem and InsertItem at runtime.

However, before you can associate pictures with ListView items, they must be added to the
ListView control.

In the painter

Use the Pictures and Items property pages for the control to add pictures.

To add pictures to a ListView control:

1. Select the Large Picture, Small Picture, or State tab in the Properties view for the
control.

Overlay images

You can add overlay images only to a ListView control in a script.

2. Select an image from the stock image list, or use the Browse button to select a bitmap,
cursor, or icon image.

3. Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask appears transparent in the ListView.

4. Select a picture height and width for your image.

This controls the size of the image in the ListView.

Dynamically changing image size

The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties before you add any pictures when you create a ListView.
For more information about PictureHeight and PictureWidth, see Section 3.212,

User Interface Techniques

Page 116

“PictureHeight” in Objects and Controls and Section 3.218, “PictureWidth” in
Objects and Controls.

5. Repeat the procedure for the:

• Number of image types (large, small, and state) you plan to use in your ListView

• Number of images for each type you plan to use in your ListView

In a script

Use the functions in the following table to add pictures to a ListView image.

Table 3.17: Functions that add pictures to a ListView image

Function Adds a picture to this list

AddLargePicture Large image

AddSmallPicture Small image

AddStatePicture State image

Adding large and small pictures

This example sets the height and width for large and small pictures and adds three images to
the large picture image list and the small picture image list:

//Set large picture height and width
lv_1.LargePictureHeight=32
lv_1.LargePictureWidth=32

//Add large pictures
lv_1.AddLargePicture("c:\ArtGal\bmps\celtic.bmp")
lv_1.AddLargePicture("c:\ArtGal\bmps\list.ico")
lv_1.AddLargePicture("Custom044!")

//Set small picture height and width
lv_1.SmallPictureHeight=16
lv_1.SmallPictureWidth=16

//Add small pictures
lv_1.AddSmallPicture("c:\ArtGal\bmps\celtic.bmp")
lv_1.AddSmallPicture("c:\ArtGal\bmps\list.ico")
lv_1.AddSmallPicture("Custom044!")

//Add items to the ListView
lv_1.AddItem("Item 1", 1)
lv_1.AddItem("Item 2", 1)
lv_1.AddItem("Item 3", 1)

Adding overlay pictures

Use the SetOverLayPicture function to use a large picture or small picture as an overlay for
an item. This example adds a large picture to a ListView, and then uses it for an overlay
picture for a ListView item:

listviewitem lvi_1
int li_index

//Add a large picture to a ListView

User Interface Techniques

Page 117

li_index = lv_list.AddLargePicture &
 ("c:\ArtGal\bmps\dil2.ico")

//Set the overlay picture to the
//large picture just added
lv_list.SetOverlayPicture (3, li_index)

//Use the overlay picture with a ListViewItem
lv_list.GetItem(lv_list.SelectedIndex (), lvi_1)
lvi_1.OverlayPictureIndex = 3
lv_list.SetItem(lv_list.SelectedIndex (), lvi_1)

Adding state pictures

This example uses an item's state picture index property to set the state picture for the
selected ListView item:

listviewitem lvi_1

lv_list.GetItem(lv_list.SelectedIndex (), lvi_1)
lvi_1.StatePictureIndex = 2
lv_list.SetItem(lv_list.SelectedIndex (), lvi_1)

Deleting ListView items and pictures

You can delete items from a ListView one at a time with the DeleteItem function, or
you can use the DeleteItems function to purge all the items in a ListView. Similarly,
you can delete pictures one at a time with the DeleteLargePicture, DeleteSmallPicture,
and DeleteStatePicture functions, or purge all pictures of a specific type by using the
DeleteLargePictures, DeleteSmallPictures, and DeleteStatePictures functions.

This example deletes one item and all the small pictures from a ListView:

int li_index
li_index = This.SelectedIndex()
This.DeleteItem (li_index)
This.DeleteSmallPictures ()

Hot tracking and one- or two-click activation

Hot tracking changes the appearance of items in the Listview control as the mouse moves
over them and, if the mouse pauses, selects the item under the cursor automatically. You can
enable hot tracking by setting the TrackSelect property to TRUE.

Setting either OneClickActivate or TwoClickActivate to TRUE also enables hot tracking.
When OneClickActivate is TRUE, you can specify that either selected or unselected items are
underlined by setting the UnderlineHot or UnderlineCold properties. All these properties can
be set on the control's general properties page or in a script.

The settings for OneClickActivate and TwoClickActivate shown in the following table affect
when the ItemActivate event is fired.

Table 3.18: OneClickActivate and TwoClickActivate settings

OneClickActivate TwoClickActivate ItemActivate is fired when
you

TRUE TRUE or FALSE Click any item

FALSE TRUE Click a selected item

FALSE FALSE Double-click any item

User Interface Techniques

Page 118

Using custom events

In PowerBuilder 7 and later releases, PowerBuilder uses Microsoft controls for ListView
and Treeview controls, and the events that fire when the right mouse button is clicked are
different than in earlier releases. These are the events that fire when the right mouse button is
clicked in a ListView control:

Table 3.19: ListView control events fired by right mouse button

Location Action Events fired

Press right mouse button pbm_rbuttondownOn an item in the ListView

Release right mouse button pbm_lvnrclicked (stock
RightClicked! event)

pbm_contextmenu

Press right mouse button pbm_rbuttondown

pbm_lvnrclicked (stock
RightClicked! event)

pbm_contextmenu

On white space in the
ListView

Release right mouse button pbm_rbuttonup

pbm_contextmenu

3.5.4.1 Using report view

ListView report view requires more information than the large icon, small icon, and list view.
To enable report view in a ListView control, you must write a script that establishes columns
with the AddColumn and SetColumn functions, and then populate the columns using the
SetItem function.

Populating columns

Use AddColumn to create columns in a ListView. When you use the AddColumn function,
you specify the:

• Column label

The name that will display in the column header

• Column alignment

Whether the text will be left-aligned, right-aligned, or centered

• Column size

The width of the column in PowerBuilder units

This example creates three columns in a ListView:

This.AddColumn("Name", Left!, 1000)
This.AddColumn("Size", Left!, 400)
This.AddColumn("Date", Left!, 300)

Setting columns

Use SetColumn to set the column number, name, alignment, and size:

User Interface Techniques

Page 119

This.SetColumn (1, "Composition", Left!, 860)
This.SetColumn (2, "Album", Left!, 610)
This.SetColumn (3, "Artist", Left!, 710)

Setting column items

Use SetItem to populate the columns of a ListView:

This.SetItem (1, 1, "St.Thomas")
This.SetItem (1, 2, "Saxophone Colossus")
This.SetItem (1, 3, "Sonny Rollins")
This.SetItem (2, 1, "So What")
This.SetItem (2, 2, "Kind of Blue")
This.SetItem (2, 3, "Miles Davis")
This.SetItem (3, 1, "Good-bye, Porkpie Hat")
This.SetItem (3, 2, "Mingus-ah-um")
This.SetItem (3, 3, "Charles Mingus")

For more information about adding columns to a ListView control, see Section 2.4.6,
“AddColumn” in PowerScript Reference.

3.6 Using Drag and Drop in a Window

About this chapter

This chapter describes how to make applications graphical by dragging and dropping
controls.

3.6.1 About drag and drop

Drag and drop allows users to initiate activities by dragging a control and dropping it on
another control. It provides a simple way to make applications graphical and easy to use. For
example, in a manufacturing application you might allow the user to pick parts from a bin for
an assembly by dragging a picture of the part and dropping it in the picture of the finished
assembly.

Drag and drop involves at least two controls: the control that is being dragged (the drag
control) and the control to which it is being dragged (the target). In PowerBuilder, all controls
except drawing objects (lines, ovals, rectangles, and rounded rectangles) can be dragged.

Automatic drag mode

When a control is being dragged, it is in drag mode. You can define a control so that
PowerBuilder puts it automatically in drag mode whenever a Clicked event occurs in the
control, or you can write a script to put a control into drag mode when an event occurs in the
window or the application.

Drag icons

When you define the style for a draggable object in the Window painter, you can specify a
drag icon for the control. The drag icon displays when the control is dragged over a valid
drop area (an area in which the control can be dropped). If you do not specify a drag icon, a
rectangle the size of the control displays.

Drag events

Window objects and all controls except drawing objects have events that occur when they are
the drag target. When a dragged control is within the target or dropped on the target, these

User Interface Techniques

Page 120

events can trigger scripts. The scripts determine the activity that is performed when the drag
control enters, is within, leaves, or is dropped on the target.

3.6.2 Drag-and-drop properties, events, and functions

Drag-and-drop properties

Each PowerBuilder control has two drag-and-drop properties:

• DragAuto

• DragIcon

The DragAuto property

DragAuto is a boolean property.

Table 3.20: DragAuto property values

Value Meaning

TRUE When the object is clicked, the control is placed automatically in drag mode

FALSE When the object is clicked, the control is not placed automatically in drag mode;
you have to put the object in drag mode manually by using the Drag function in a
script

To specify automatic drag mode for a control in the Window painter:

1. Select the Other property page in the Properties view for the control.

2. Check the Drag Auto check box.

The DragIcon property

Use the DragIcon property to specify the icon you want displayed when the control is in drag
mode. The DragIcon property is a stock icon or a string identifying the file that contains the
icon (the ICO file). The default icon is a box the size of the control.

When the user drags a control, the icon displays when the control is over an area in which the
user can drop it (a valid drop area). When the control is over an area that is not a valid drop
area (such as a window scroll bar), the No-Drop icon displays.

To specify a drag icon:

1. Select the Other property page in the Properties view for the control.

2. Choose the icon you want to use from the list of stock icons or use the Browse button to
select an ICO file and click OK.

Creating icons

To create icons, use a drawing application that can save files in the Microsoft
Windows ICO format.

Drag-and-drop events

User Interface Techniques

Page 121

There are six drag-and-drop events.

Table 3.21: Drag-and-drop events

Event Occurs

BeginDrag When the user presses the left mouse button in a ListView or TreeView control
and begins dragging

BeginRightDragWhen the user presses the right mouse button in a ListView or TreeView
control and begins dragging

DragDrop When the hot spot of a drag icon (usually its center) is over a target (a
PowerBuilder control or window to which you drag a control) and the mouse
button is released

DragEnter When the hot spot of a drag icon enters the boundaries of a target

DragLeave When the hot spot of a drag icon leaves the boundaries of a target

DragWithinWhen the hot spot of a drag icon moves within the boundaries of a target

Drag-and-drop functions

Each PowerBuilder control has two functions you can use to write scripts for drag-and-drop
events.

Table 3.22: Drag-and-drop event functions

Function Action

Drag Starts or ends the dragging of a control

DraggedObject Returns the control being dragged

For more information about these events and functions, see Part I, “PowerScript Reference”.

3.6.3 Identifying the dragged control

To identify the type of control that was dropped, use the source argument of the DragDrop
event.

This script for the DragDrop event in a picture declares two variables, then determines the
type of object that was dropped:

CommandButton lcb_button
StaticText lst_info

IF source.TypeOf() = CommandButton! THEN
 lcb_button = source
 lcb_button.Text = "You dropped a Button!"
ELSEIF source.TypeOf() = StaticText! THEN
 lst_info = source
 lst_info.Text = "You dropped the text!"
END IF

Using CHOOSE CASE

If your window has a large number of controls that can be dropped, use a CHOOSE
CASE statement.

User Interface Techniques

Page 122

3.7 Providing Online Help for an Application
About this chapter

This chapter describes how to provide online help for other PowerBuilder developers and for
end users on Windows.

3.7.1 Creating help files

About help authoring tools

There are many authoring tools and related products available for creating online help files
on Windows. All of the authoring tools for Microsoft HTML Help files use the Microsoft
HTML Help compiler (hhc.exe) to generate a finished help file.

What to include

The source files for any help system typically include:

• Topic files (HTML) contain the text of your help system as well as footnote codes and
commands that serve to identify the topics and provide navigation and other features.

• Graphics files contain images associated with specific topics.

• Project file (HHP) defines a single help collection and contains instructions for the
compiler.

• Contents file (HHC) provides the entries that populate the Contents tab of the help
window.

• Index file (HHK) provides index keywords that the author provides, similar to a traditional
book index, that link to specific topics.

For each project, the compiler generates a single CHM file that can be opened in an HTML
Help window.

How to proceed

If you are using a full-featured Help authoring tool, follow its instructions for creating the
necessary source files and compiling them. The HTML Help Workshop, available from
Microsoft with the HTML Help compiler, also has help describing how to author help and
how to implement it in a Windows application.

Sample project file

For your convenience, the text of a sample project file is provided here. (It is also in one of
the topics of the PBUSR.CHM file that is installed with PowerBuilder.)

;***
 ; Sample HTML Help project file
 ; Use a semicolon (;) to start a comment
 ; Replace filenames and other options with values
 ; for your project.
 ;***

[OPTIONS]
Binary TOC=No
Binary Index=Yes

User Interface Techniques

Page 123

Compiled File=project.chm
Contents File=project.hhc
Index File=project.hhk
Default Window=main
Default Topic=doc/html/welcome.html
Default Font=
Flat=No
Full-text search=Yes
Auto Index=Yes
Language=
Title=Our Application Help
Create CHI file=No
Compatibility=1.1 or later
Error log file=project.log
Full text search stop list file=
Display compile progress=Yes
Display compile notes=Yes

[WINDOWS]
main="Our Application Help","project.hhc","project.hhk",
"doc/html/welcome.html","doc/html/welcome.html",,,,,
0x23520,222,0x1846,[10,10,640,450],0xB0000,,,,,,0

[FILES]
doc/html/pbusr.html
doc/styles/main.css
doc/images/logo.png

To use the sample project file:

1. Copy the help project code to the Windows clipboard.

2. Open a text editor (like Notepad, not a word processor like Word or Wordpad) and paste
the clipboard text into a blank document.

Alternatively, open the project file in your favorite HTML Help authoring tool.

3. Save the document in text format as PBUSR.HHP.

Edit your project file to specify the details of your help development environment, such as
source file names and directory path names. For details, see the instructions in the HTML
Help Workshop or your help authoring tool.

3.7.2 Providing online help for developers

You can provide your own online help for your user-defined functions, user events, and user
objects into the PowerBuilder development environment.

How context-sensitive help for user-defined functions works

When you select the name of a function or place the cursor in the function name in the Script
view and press Shift + F1:

1. PowerBuilder looks for the standard prefix (the default is uf_) in the function name.

2. If the standard prefix is found, PowerBuilder looks for the help topic in the help file
containing your user-defined function help topics (instead of looking in PBUSR.CHM,
its own main help file). The default file name for help on user-defined functions is
PBUSR.CHM.

User Interface Techniques

Page 124

PowerBuilder determines the name of the help file to look in by reading the UserHelpFile
variable in PB.INI. For information on changing the value of this variable, see Advanced
procedures.

3. If PowerBuilder finds the variable, it looks in the specified help file for the name of the
selected function. If there is no UserHelpFile variable in PB.INI, PowerBuilder looks for
the keyword in the PBUSR.CHM file in the PowerBuilder Help directory.

Simplest approach

If you work within the PowerBuilder defaults:

• Compile all of your online help for your user-defined functions, user events, and user
objects into a single file named PBUSR.CHM

• Prefix the name of each user-defined function you create with uf_ (for example,
uf_calculate)

Basic procedures

Here are details on how to build online help into the PowerBuilder environment.

To create context-sensitive help for user-defined functions:

1. When you create a user-defined function, give the name of the function a standard
prefix. The default prefix is uf_ (for example, uf_calculate).

2. For each user-defined function help topic, assign a search keyword (a K footnote entry)
identical to the function name.

For example, in the help topic for the user-defined function uf_CutBait, create a
keyword footnote uf_CutBait. PowerBuilder uses the keyword to locate the correct topic
to display in the help window.

3. Compile the help file and save it in the PowerBuilder Help directory.

Advanced procedures

You can specify a different file name for context-sensitive help:

To specify a different file name for context-sensitive help:

1. Open your PB.INI file in a text editor.

2. In the [PB] section, add a UserHelpFile variable, specifying the name of the help file
that contains your context-sensitive topics. Your help file must be in the PowerBuilder
Help directory. The format of the variable is:

UserHelpFile = helpfile.chm

Specify only the file name. A full path name designation will not be recognized.

You can change the prefix of your user-defined functions:

User Interface Techniques

Page 125

To use a different prefix for user-defined functions:

1. Open your PB.INI file in a text editor.

2. In the [PB] section, add a UserHelpPrefix variable, specifying the value of your prefix.
Use this format:

UserHelpPrefix = yourprefix_

The prefix must end with an underscore character.

3.7.3 Providing online help for users

Two ways to call help from an application

PowerBuilder provides two principal ways of calling an online help file from a PowerBuilder
application:

• Use the ShowHelp and ShowPopupHelp PowerScript functions in your application scripts
to call help topics.

• Declare the HTML Help API as an external function and use the HTMLHelp function in
your application scripts to call help topics.

Using ShowHelp

ShowHelp is simpler to implement than the HTML Help API. You can use the ShowHelp
PowerScript function to search for help topics by help context ID, by keyword, and by
accessing the help file Contents topic (the topic defined in the project file as the Help
Contents topic). ShowHelp can also be used with compiled WinHelp (.hlp) files.

ShowPopupHelp displays pop-up help for a control. Typically, you use ShowPopupHelp in
the Help event of a response window with the Context Help property enabled. Events relating
to movement of the cursor over a control or to the dragging of a control or object are also
logical places for a ShowPopupHelp call.

For more information on the ShowHelp and ShowPopupHelp functions as well as the
Help event, see Section 2.4.807, “ShowHelp” in PowerScript Reference, Section 2.4.808,
“ShowPopupHelp” in PowerScript Reference, Section 2.3.56, “Help” in PowerScript
Reference.

Using the HTML Help API

Declaring and using the HTML Help API allows access to the full range of HTMLHelp
functions, many of which are not available in ShowHelp. For example, using the HTMLHelp
function, you can easily specify a window type or window name in which to present a help
topic.

To declare the HTML Help API as an external function:

1. Select Declare>Global External Functions from the menu bar of any painter that
accesses the Script view.

2. Enter the function declaration in the text box and click OK.

This example declares the HTML Help API:

User Interface Techniques

Page 126

FUNCTION long HtmlHelpW(long hWndMain, &
 string lpszHelp, long uCommand, &
 long dwData) &
LIBRARY "hhctrl.ocx"

For more information about the HTML Help API, see the online help for the Microsoft
Help Workshop or the documentation for your help authoring tool. For more information
about declaring and using global external functions, see Section 1.3.4, “Declaring external
functions” in PowerScript Reference and Using external functions.

Data Access Techniques

Page 127

4 Data Access Techniques
This part presents a collection of techniques you can use to implement data access features
in the applications you develop with PowerBuilder. It includes using Transaction objects,
XML processing, graphs, rich text, and piping of data between data sources. The use of
DataWindow objects and DataStores for data access is described in Part I, “DataWindow
Programmers Guide”.

4.1 Using Transaction Objects
About this chapter

This chapter describes Transaction objects and how to use them in PowerBuilder
applications.

4.1.1 About Transaction objects

In a PowerBuilder database connection, a Transaction object is a special nonvisual object that
functions as the communications area between a PowerBuilder application and the database.
The Transaction object specifies the parameters that PowerBuilder uses to connect to a
database. You must establish the Transaction object before you can access the database from
your application, as shown in the following figure:

Figure: Transaction object to access database

Communicating with the database

In order for a PowerBuilder application to display and manipulate data, the application must
communicate with the database in which the data resides.

To communicate with the database from your PowerBuilder application:

1. Assign the appropriate values to the Transaction object.

2. Connect to the database.

3. Assign the Transaction object to the DataWindow control.

4. Perform the database processing.

5. Disconnect from the database.

For information about setting the Transaction object for a DataWindow control and using the
DataWindow to retrieve and update data, see Part I, “DataWindow Programmers Guide”.

Default Transaction object

Data Access Techniques

Page 128

When you start executing an application, PowerBuilder creates a global default Transaction
object named SQLCA (SQL Communications Area). You can use this default Transaction
object in your application or define additional Transaction objects if your application has
multiple database connections.

Transaction object properties

Each Transaction object has 15 properties, of which:

• Ten are used to connect to the database.

• Five are used to receive status information from the database about the success or failure of
each database operation. (These error-checking properties all begin with SQL.)

4.1.1.1 Description of Transaction object properties

The following table describes each Transaction object property. For each of the ten
connection properties, it also lists the equivalent field in the Database Profile Setup dialog
box that you complete to create a database profile in the PowerBuilder development
environment.

Transaction object properties for your PowerBuilder database interface

For the Transaction object properties that apply to your PowerBuilder database
interface, see Transaction object properties and supported PowerBuilder database
interfaces.

For information about the values you should supply for each connection property, see
the section for your PowerBuilder database interface in Part I, “Connecting to Your
Database”.

Table 4.1: Transaction object properties

PropertyDatatype Description In a database
profile

DBMS String The DBMS identifier for your connection. For a
complete list of the identifiers for the supported
database interfaces, see Part I, “Connection
Reference”.

DBMS

Database String The name of the database to which you are connecting. Database Name

UserID String The name or ID of the user who connects to the
database.

User ID

DBPass String The password used to connect to the database. Password

Lock String For those DBMSs that support the use of lock values
and isolation levels, the isolation level to use when you
connect to the database. For information about the lock
values you can set for your DBMS, see the description
of the Lock DBParm parameter in Section 2.1.4,
“Lock” in Connection Reference.

Isolation Level

LogID String The name or ID of the user who logs in to the database
server.

Login ID

Data Access Techniques

Page 129

PropertyDatatype Description In a database
profile

LogPass String The password used to log in to the database server. Login
Password

ServerNameString The name of the server on which the database resides. Server Name

AutoCommitBoolean For those DBMSs that support it, specifies whether
PowerBuilder issues SQL statements outside or inside
the scope of a transaction. Values you can set are:

• True

PowerBuilder issues SQL statements outside the
scope of a transaction; that is, the statements are not
part of a logical unit of work (LUW). If the SQL
statement succeeds, the DBMS updates the database
immediately as if a COMMIT statement had been
issued.

• False

(Default) PowerBuilder issues SQL statements
inside the scope of a transaction. PowerBuilder
issues a BEGIN TRANSACTION statement at the
start of the connection. In addition, PowerBuilder
issues another BEGIN TRANSACTION statement
after each COMMIT or ROLLBACK statement is
issued.

For more information, see the AutoCommit
description in Section 2.1.1, “AutoCommit” in
Connection Reference.

AutoCommit
Mode

DBParm String Contains DBMS-specific connection parameters that
support particular DBMS features. For a description of
each DBParm parameter that PowerBuilder supports,
see Section 4.2, “Setting Additional Connection
Parameters” in Connecting to Your Database.

DBPARM

SQLReturnDataString Contains DBMS-specific information. For example,
after you connect to an Informix database and
execute an embedded SQL INSERT statement,
SQLReturnData contains the serial number of the
inserted row.

SQLCodeLong The success or failure code of the most recent SQL
operation. For details, see Error handling after a SQL
statement.

SQLNRowsLong The number of rows affected by the most recent SQL
operation. The database vendor supplies this number,
so the meaning may be different for each DBMS.

Data Access Techniques

Page 130

PropertyDatatype Description In a database
profile

SQLDBCodeLong The database vendor's error code. For details, see Error
handling after a SQL statement.

SQLErrTextString The text of the database vendor's error message
corresponding to the error code. For details, see Error
handling after a SQL statement.

4.1.1.2 Transaction object properties and supported PowerBuilder database interfaces

The Transaction object properties required to connect to the database are different for each
PowerBuilder database interface. Except for SQLReturnData, the properties that return
status information about the success or failure of a SQL statement apply to all PowerBuilder
database interfaces.

The following table lists each supported PowerBuilder database interface and the Transaction
object properties you can use with that interface.

Table 4.2: PowerBuilder database interfaces

Database interface Transaction object properties

Informix DBMS

UserID

DBPass

Database

ServerName

DBParm

Lock

AutoCommit

SQLReturnData

SQLCode

SQLNRows

SQLDBCode

SQLErrText

JDBC DBMS

LogID

LogPass

DBParm

Lock

AutoCommit

SQLCode

SQLNRows

SQLDBCode

SQLErrText

Microsoft SQL Server DBMS

Database

ServerName

LogID

LogPass

DBParm

Lock

AutoCommit

SQLCode

SQLNRows

SQLDBCode

SQLErrText

ODBC DBMS AutoCommit

Data Access Techniques

Page 131

Database interface Transaction object properties
UserID*

LogID#

LogPass#

DBParm

Lock

SQLReturnData

SQLCode

SQLNRows

SQLDBCode

SQLErrText

OLE DB DBMS

LogID

LogPass

DBParm

AutoCommit

SQLCode

SQLNRows

SQLDBCode

SQLErrText

Oracle DBMS

ServerName

LogID

LogPass

DBParm

SQLReturnData

SQLCode

SQLNRows

SQLDBCode

SQLErrText

SAP Sybase DirectConnect DBMS

Database

ServerName

LogID

LogPass

DBParm

Lock

AutoCommit

SQLCode

SQLNRows

SQLDBCode

SQLErrText

SAP Adaptive Server
Enterprise

DBMS

Database

ServerName

LogID

LogPass

DBParm

Lock

AutoCommit

SQLCode

SQLNRows

SQLDBCode

SQLErrText

* UserID is optional for ODBC. (Be careful specifying the UserID property; it overrides the
connection's UserName property returned by the ODBC SQLGetInfo call.)
PowerBuilder uses the LogID and LogPass properties only if your ODBC driver does not
support the SQL driver CONNECT call.

Data Access Techniques

Page 132

4.1.2 Working with Transaction objects

PowerBuilder uses a basic concept of database transaction processing called logical unit of
work (LUW). LUW is synonymous with transaction. A transaction is a set of one or more
SQL statements that forms an LUW. Within a transaction, all SQL statements must succeed
or fail as one logical entity.

There are four PowerScript transaction management statements:

• COMMIT

• CONNECT

• DISCONNECT

• ROLLBACK

4.1.2.1 Transaction basics

CONNECT and DISCONNECT

A successful CONNECT starts a transaction, and a DISCONNECT terminates the
transaction. All SQL statements that execute between the CONNECT and the DISCONNECT
occur within the transaction.

Before you issue a CONNECT statement, the Transaction object must exist and you must
assign values to all Transaction object properties required to connect to your DBMS.

COMMIT and ROLLBACK

When a COMMIT executes, all changes to the database since the start of the current
transaction (or since the last COMMIT or ROLLBACK) are made permanent, and a new
transaction is started. When a ROLLBACK executes, all changes since the start of the current
transaction are undone and a new transaction is started.

When a transactional component is deployed to an application server, you can use the
TransactionServer context object to control transactions. See Transaction server deployment.

AutoCommit setting

You can issue a COMMIT or ROLLBACK only if the AutoCommit property of the
Transaction object is set to False (the default) and you have not already started a transaction
using embedded SQL.

For more about AutoCommit, see Description of Transaction object properties.

Automatic COMMIT when disconnected

When a transaction is disconnected, PowerBuilder issues a COMMIT statement.

Transaction pooling

To optimize database processing, you can code your PowerBuilder application to take
advantage of transaction pooling.

For information, see Pooling database transactions.

Data Access Techniques

Page 133

Transaction server deployment

Components that you develop in PowerBuilder can participate in transactions in application
servers. You can mark components to indicate that they will provide transaction support.
When a component provides transaction support, the transaction server ensures that the
component's database operations execute as part of a transaction and that the database
changes performed by the participating components are all committed or rolled back.
By defining components to use transactions, you can ensure that all work performed by
components that participate in a transaction occurs as intended.

PowerBuilder provides a transaction service context object called TransactionServer
that gives you access to the transaction state primitives that influence whether the
transaction server commits or aborts the current transaction. COM+ clients can also use
the OleTxnObject object to control transactions. If you use the TransactionServer context
object and set the UseContextObject DBParm parameter to Yes, COMMIT and ROLLBACK
statements called in the Transaction object will result in a database error.

By default, the TransactionServer context object is not used. Instead you can use COMMIT
and ROLLBACK statements to manage transactions. In this case, COMMIT is interpreted as
a SetComplete function and ROLLBACK is interpreted as a SetAbort function.

4.1.2.2 The default Transaction object

SQLCA

Since most applications communicate with only one database, PowerBuilder provides a
global default Transaction object called SQLCA (SQL Communications Area).

PowerBuilder creates the Transaction object before the application's Open event script
executes. You can use PowerScript dot notation to reference the Transaction object in any
script in your application.

You can create additional Transaction objects as you need them (such as when you are using
multiple database connections at the same time). But in most cases, SQLCA is the only
Transaction object you need.

Example

This simple example uses the default Transaction object SQLCA to connect to and
disconnect from an ODBC data source named Sample:

// Set the default Transaction object properties.
SQLCA.DBMS="ODBC"
SQLCA.DBParm="ConnectString='DSN=Sample'"
// Connect to the database.
CONNECT USING SQLCA;
IF SQLCA.SQLCode < 0 THEN &
 MessageBox("Connect Error", SQLCA.SQLErrText,&
 Exclamation!)
...
// Disconnect from the database.
DISCONNECT USING SQLCA;
IF SQLCA.SQLCode < 0 THEN &
 MessageBox("Disconnect Error", SQLCA.SQLErrText,&
 Exclamation!)

Data Access Techniques

Page 134

Semicolons are SQL statement terminators

When you use embedded SQL in a PowerBuilder script, all SQL statements must be
terminated with a semicolon (;). You do not use a continuation character for multiline
SQL statements.

4.1.2.3 Assigning values to the Transaction object

Before you can use a default (SQLCA) or nondefault (user-defined) Transaction object, you
must assign values to the Transaction object connection properties. To assign the values, use
PowerScript dot notation.

Example

The following PowerScript statements assign values to the properties of SQLCA required to
connect to an SAP Adaptive Server Enterprise database through the PowerBuilder Adaptive
Server Enterprise database interface:

sqlca.DBMS="SYC"
sqlca.database="testdb"
sqlca.LogId="CKent"
sqlca.LogPass="superman"
sqlca.ServerName="Dill"

4.1.2.4 Reading values from an external file

Using external files

Often you want to set the Transaction object values from an external file. For example,
you might want to retrieve values from your PowerBuilder initialization file when you
are developing the application or from an application-specific initialization file when you
distribute the application.

ProfileString function

You can use the PowerScript ProfileString function to retrieve values from a text file that
is structured into sections containing variable assignments, like a Windows INI file. The
PowerBuilder initialization file is such a file, consisting of several sections including PB,
Application, and Database:

[PB]
variables and their values
...
[Application]
variables and their values
...
[Database]
variables and their values
...

The ProfileString function has this syntax:

ProfileString (file, section, key, default)

Example

This script reads values from an initialization file to set the Transaction object to connect to
a database. Conditional code sets the variable startupfile to the appropriate value for each
platform:

Data Access Techniques

Page 135

sqlca.DBMS = ProfileString(startupfile, "database",&
 "dbms", "")
sqlca.database = ProfileString(startupfile,&
 "database", "database", "")
sqlca.userid = ProfileString(startupfile, "database",&
 "userid", "")
sqlca.dbpass = ProfileString(startupfile, "database",&
 "dbpass", "")
sqlca.logid = ProfileString(startupfile, "database",&
 "logid", "")
sqlca.logpass = ProfileString(startupfile, "database",&
 "LogPassWord","")
sqlca.servername = ProfileString(startupfile,&
 "database", "servername","")
sqlca.dbparm = ProfileString(startupfile, "database",&
 "dbparm", "")

4.1.2.5 Connecting to the database

Once you establish the connection parameters by assigning values to the Transaction object
properties, you can connect to the database using the SQL CONNECT statement:

// Transaction object values have been set.
CONNECT;

Because CONNECT is a SQL statement -- not a PowerScript statement -- you need to
terminate it with a semicolon.

If you are using a Transaction object other than SQLCA, you must include the USING
TransactionObject clause in the SQL syntax:

CONNECT USING TransactionObject;

For example:

CONNECT USING ASETrans;

4.1.2.6 Using the Preview tab to connect in a PowerBuilder application

The Preview tab page in the Database Profile Setup dialog box makes it easy to generate
accurate PowerScript connection syntax in the development environment for use in your
PowerBuilder application script.

As you complete the Database Profile Setup dialog box, the correct PowerScript connection
syntax for each selected option is generated on the Preview tab. PowerBuilder assigns the
corresponding DBParm parameter or SQLCA property name to each option and inserts
quotation marks, commas, semicolons, and other characters where needed. You can copy the
syntax you want from the Preview tab directly into your script.

To use the Preview tab to connect in a PowerBuilder application:

1. In the Database Profile Setup dialog box for your connection, supply values for basic
options (on the Connection tab) and additional DBParm parameters and SQLCA
properties (on the other tabbed pages) as required by your database interface.

For information about connection parameters for your interface and the values you
should supply, click Help.

2. Click Apply to save your settings without closing the Database Profile Setup dialog box.

Data Access Techniques

Page 136

3. Click the Preview tab.

The correct PowerScript connection syntax for each selected option displays in the
Database Connection Syntax box on the Preview tab.

4. Select one or more lines of text in the Database Connection Syntax box and click Copy.

PowerBuilder copies the selected text to the clipboard. You can then paste this syntax
into your script, modifying the default Transaction object name (SQLCA) if necessary.

5. Click OK.

4.1.2.7 Disconnecting from the database

When your database processing is completed, you disconnect from the database using the
SQL DISCONNECT statement:

DISCONNECT;

If you are using a Transaction object other than SQLCA, you must include the USING
TransactionObject clause in the SQL syntax:

DISCONNECT USING TransactionObject;

For example:

DISCONNECT USING ASETrans;

Automatic COMMIT when disconnected

When a transaction is disconnected, PowerBuilder issues a COMMIT statement by
default.

4.1.2.8 Defining Transaction objects for multiple database connections

Use one Transaction object per connection

To perform operations in multiple databases at the same time, you need to use multiple
Transaction objects, one for each database connection. You must declare and create
the additional Transaction objects before referencing them, and you must destroy these
Transaction objects when they are no longer needed.

Caution

PowerBuilder creates and destroys SQLCA automatically. Do not attempt to create or
destroy it.

Creating the nondefault Transaction object

To create a Transaction object other than SQLCA, you first declare a variable of type
transaction:

transaction TransactionObjectName

You then instantiate the object:

TransactionObjectName = CREATE transaction

For example, to create a Transaction object named DBTrans, code:

Data Access Techniques

Page 137

transaction DBTrans
DBTrans = CREATE transaction
// You can now assign property values to DBTrans.
DBTrans.DBMS = "ODBC"
...

Assigning property values

When you assign values to properties of a Transaction object that you declare and create in a
PowerBuilder script, you must assign the values one property at a time, like this:

// This code produces correct results.
transaction ASETrans
ASETrans = CREATE TRANSACTION
ASETrans.DBMS = "SYC"
ASETrans.Database = "Personnel"

You cannot assign values by setting the nondefault Transaction object equal to SQLCA, like
this:

// This code produces incorrect results.
transaction ASETrans
ASETrans = CREATE TRANSACTION
ASETrans = SQLCA // ERROR!

Specifying the Transaction object in SQL statements

When a database statement requires a Transaction object, PowerBuilder assumes the
Transaction object is SQLCA unless you specify otherwise. These CONNECT statements are
equivalent:

CONNECT;
CONNECT USING SQLCA;

However, when you use a Transaction object other than SQLCA, you must specify
the Transaction object in the SQL statements in the following table with the USING
TransactionObject clause.

Table 4.3: SQL statements that require USING TransactionObject

COMMIT INSERT

CONNECT PREPARE (dynamic SQL)

DELETE ROLLBACK

DECLARE Cursor SELECT

DECLARE Procedure SELECTBLOB

DISCONNECT UPDATEBLOB

EXECUTE (dynamic SQL) UPDATE

To specify a user-defined Transaction object in SQL statements:

• Add the following clause to the end of any of the SQL statements in the preceding list:

USING TransactionObject

For example, this statement uses a Transaction object named ASETrans to connect to the
database:

CONNECT USING ASETrans;

Data Access Techniques

Page 138

Always code the Transaction object

Although specifying the USING TransactionObject clause in SQL statements is
optional when you use SQLCA and required when you define your own Transaction
object, it is good practice to code it for any Transaction object, including SQLCA.
This avoids confusion and ensures that you supply USING TransactionObject when it
is required.

Example

The following statements use the default Transaction object (SQLCA) to communicate
with a SQL Anywhere database and a nondefault Transaction object named ASETrans to
communicate with an Adaptive Server Enterprise database:

// Set the default Transaction object properties.
SQLCA.DBMS = "ODBC"
SQLCA.DBParm = "ConnectString='DSN=Sample'"
// Connect to the SQL Anywhere database.
CONNECT USING SQLCA;
// Declare the ASE Transaction object.
transaction ASETrans
// Create the ASE Transaction object.
ASETrans = CREATE TRANSACTION
// Set the ASE Transaction object properties.
ASETrans.DBMS = "SYC"
ASETrans.Database = "Personnel"
ASETrans.LogID = "JPL"
ASETrans.LogPass = "JPLPASS"
ASETrans.ServerName = "SERVER2"

// Connect to the ASE database.
CONNECT USING ASETrans;

// Insert a row into the SQL Anywhere database
INSERT INTO CUSTOMER
VALUES ('CUST789', 'BOSTON')
USING SQLCA;
// Insert a row into the ASE database.
INSERT INTO EMPLOYEE
VALUES ("Peter Smith", "New York")
USING ASETrans;

// Disconnect from the SQL Anywhere database
DISCONNECT USING SQLCA;
// Disconnect from the ASE database.
DISCONNECT USING ASETrans;
// Destroy the ASE Transaction object.
DESTROY ASETrans

Using error checking

An actual script would include error checking after the CONNECT, INSERT, and
DISCONNECT statements.

For details, see Error handling after a SQL statement.

4.1.2.9 Error handling after a SQL statement

When to check for errors

Data Access Techniques

Page 139

You should always test the success or failure code (the SQLCode property of the Transaction
object) after issuing one of the following statements in a script:

• Transaction management statement (such as CONNECT, COMMIT, and DISCONNECT)

• Embedded or dynamic SQL

Not in DataWindows

Do not do this type of error checking following a retrieval or update made in a
DataWindow.

For information about handling errors in DataWindows, see Section 1.2.8, “Handling
DataWindow errors” in DataWindow Programmers Guide.

SQLCode return values

The following table shows the SQLCode return values.

Table 4.4: SQLCode return values

Value Meaning

0 Success

100 Fetched row not found

-1 Error (the statement failed)

Use SQLErrText or SQLDBCode to obtain
the details.

Using SQLErrText and SQLDBCode

The string SQLErrText in the Transaction object contains the database vendor-supplied
error message. The long named SQLDBCode in the Transaction object contains the database
vendor-supplied status code. You can reference these variables in your script.

Example

To display a message box containing the DBMS error number and message if the connection
fails, code the following:

CONNECT USING SQLCA;
IF SQLCA.SQLCode = -1 THEN
 MessageBox("SQL error " + String(SQLCA.SQLDBCode),&
 SQLCA.SQLErrText)
END IF

4.1.2.10 Pooling database transactions

Transaction pooling

To optimize database processing, an application can pool database transactions. Transaction
pooling maximizes database throughput while controlling the number of database
connections that can be open at one time. When you establish a transaction pool, an
application can reuse connections made to the same data source.

Data Access Techniques

Page 140

How it works

When an application connects to a database without using transaction pooling, PowerBuilder
physically terminates each database transaction for which a DISCONNECT statement is
issued.

When transaction pooling is in effect, PowerBuilder logically terminates the database
connections and commits any database changes, but does not physically remove them.
Instead, the database connections are kept open in the transaction pool so that they can be
reused for other database operations.

When to use it

Transaction pooling can enhance the performance of an application that services a high
volume of short transactions to the same data source.

How to use it

To establish a transaction pool, you use the SetTransPool function. You can code
SetTransPool anywhere in your application, as long as it is executed before the application
connects to the database. A logical place to execute SetTransPool is in the application Open
event.

Example

This statement specifies that up to 16 database connections will be supported through this
application, and that 12 connections will be kept open once successfully connected. When the
maximum number of connections has been reached, each subsequent connection request will
wait for up to 10 seconds for a connection in the pool to become available. After 10 seconds,
the application will return an error:

myapp.SetTransPool (12,16,10)

For more information

For more information about the SetTransPool function, see Section 2.4.790, “SetTransPool”
in PowerScript Reference.

4.1.3 Using Transaction objects to call stored procedures

SQLCA is a built-in global variable of type transaction that is used in all PowerBuilder
applications. In your application, you can define a specialized version of SQLCA that
performs certain processing or calculations on your data.

If your database supports stored procedures, you might already have defined remote stored
procedures to perform these operations. You can use the remote procedure call (RPC)
technique to define a customized version of the Transaction object that calls these database
stored procedures in your application.

Result sets

You cannot use the RPC technique to access result sets returned by stored procedures.
If the stored procedure returns one or more result sets, PowerBuilder ignores the
values and returns the output parameters and return value. If your stored procedure
returns a result set, you can use the embedded SQL DECLARE Procedure statement
to call it.

Data Access Techniques

Page 141

For information about the DECLARE Procedure statement, see Section 2.2, “SQL
Statements” in PowerScript Reference.

Overview of the RPC procedure

To call database stored procedures from within your PowerBuilder application, you can use
the remote procedure call technique and PowerScript dot notation (object.function) to define
a customized version of the Transaction object that calls the stored procedures.

To call database stored procedures in your application:

1. From the Objects tab in the New dialog box, define a standard class user object inherited
from the built-in Transaction object.

2. In the Script view in the User Object painter, use the RPCFUNC keyword to declare the
stored procedure as an external function or subroutine for the user object.

3. Save the user object.

4. In the Application painter, specify the user object you defined as the default global
variable type for SQLCA.

5. Code your PowerBuilder application to use the user object.

For instructions on using the User Object and Application painters and the Script view in
PowerBuilder, see Part I, “Users Guide”.

Understanding the example

u_trans_database user object

The following sections give step-by-step instructions for using a Transaction object to call
stored procedures in your application. The example shows how to define and use a standard
class user object named u_trans_database.

The u_trans_database user object is a descendant of (inherited from) the built-in Transaction
object SQLCA. A descendant is an object that inherits functionality (properties, variables,
functions, and event scripts) from an ancestor object. A descendant object is also called a
subclass.

GIVE_RAISE stored procedure

The u_trans_database user object calls an Oracle database stored procedure named
GIVE_RAISE that calculates a five percent raise on the current salary. Here is the Oracle
syntax to create the GIVE_RAISE stored procedure:

SQL terminator character

The syntax shown here for creating an Oracle stored procedure assumes that the SQL
statement terminator character is ` (backquote).

// Create GIVE_RAISE function for Oracle
// SQL terminator character is ` (backquote).
CREATE OR REPLACE FUNCTION give_raise
(salary IN OUT NUMBER)
return NUMBER
IS rv NUMBER;

Data Access Techniques

Page 142

BEGIN
 salary := salary * 1.05;
 rv := salary;
 return rv;
END; `
// Save changes.
COMMIT WORK`
// Check for errors.
SELECT * FROM all_errors`

4.1.3.1 Step 1: define the standard class user object

To define the standard class user object:

1. Start PowerBuilder.

2. Connect to a database that supports stored procedures.

The rest of this procedure assumes you are connected to an Oracle database that contains
remote stored procedures on the database server.

For instructions on connecting to an Oracle database in PowerBuilder and using Oracle
stored procedures, see Section 3.5, “Using Oracle” in Connecting to Your Database.

3. Click the New button in the PowerBar, or select File>New from the menu bar.

The New dialog box displays.

4. On the Object tab, select the Standard Class icon and click OK to define a new standard
class user object.

The Select Standard Class Type dialog box displays:

5. Select transaction as the built-in system type that you want your user object to inherit
from, and click OK.

The User Object painter workspace displays so that you can assign properties (instance
variables) and functions to your user object:

Data Access Techniques

Page 143

4.1.3.2 Step 2: declare the stored procedure as an external function

FUNCTION or SUBROUTINE declaration

You can declare a non-result-set database stored procedure as an external function or external
subroutine in a PowerBuilder application. If the stored procedure has a return value, declare
it as a function (using the FUNCTION keyword). If the stored procedure returns nothing or
returns VOID, declare it as a subroutine (using the SUBROUTINE keyword).

RPCFUNC and ALIAS FOR keywords

You must use the RPCFUNC keyword in the function or subroutine declaration to indicate
that this is a remote procedure call (RPC) for a database stored procedure rather than for an
external function in a dynamic library. Optionally, you can use the ALIAS FOR "spname"
expression to supply the name of the stored procedure as it appears in the database if this
name differs from the one you want to use in your script.

For complete information about the syntax for declaring stored procedures as remote
procedure calls, see Section 1.6, “Calling Functions and Events” in PowerScript Reference.

To declare stored procedures as external functions for the user object:

1. In the Script view in the User Object painter, select [Declare] from the first list and
Local External Functions from the second list.

2. Place your cursor in the Declare Local External Functions view. From the pop-up menu
or the Edit menu, select Paste Special>SQL>Remote Stored Procedures.

PowerBuilder loads the stored procedures from your database and displays the Remote
Stored Procedures dialog box. It lists the names of stored procedures in the current
database.

Data Access Techniques

Page 144

3. Select the names of one or more stored procedures that you want to declare as functions
for the user object, and click OK.

PowerBuilder retrieves the stored procedure declarations from the database and pastes
each declaration into the view.

For example, here is the declaration that displays on one line when you select
sp_addlanguage:

function long sp_addlanguage()
RPCFUNC ALIAS FOR "dbo.sp_addlanguage"

4. Edit the stored procedure declaration as needed for your application.

Use either of the following syntax formats to declare the database remote procedure
call (RPC) as an external function or external subroutine (for details about the syntax,
see Section 1.3.5, “Declaring DBMS stored procedures as remote procedure calls” in
PowerScript Reference):

FUNCTION rtndatatype functionname ({ { REF } datatype1 arg1, ...,
 { REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

SUBROUTINE functionname ({ { REF } datatype1 arg1 , ...,
 { REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

Here is the edited RPC function declaration for sp_addlanguage:

FUNCTION long sp_addlanguage()
 RPCFUNC ALIAS FOR "addlanguage_proc"

4.1.3.3 Step 3: save the user object

To save the user object:

1. In the User Object painter, click the Save button, or select File>Save from the menu bar.

The Save User Object dialog box displays.

2. Specify the name of the user object, comments that describe its purpose, and the library
in which to save the user object.

3. Click OK to save the user object.

PowerBuilder saves the user object with the name you specified in the selected library.

4.1.3.4 Step 4: specify the default global variable type for SQLCA

In the Application painter, you must specify the user object you defined as the default global
variable type for SQLCA. When you execute your application, this tells PowerBuilder to use
your standard class user object instead of the built-in system Transaction object.

Using your own Transaction object instead of SQLCA

This procedure assumes that your application uses the default Transaction object
SQLCA, but you can also declare and create an instance of your own Transaction
object and then write code that calls the user object as a property of your Transaction
object. For instructions, see Section 4.7, “Working with User Objects” in Users
Guide.

Data Access Techniques

Page 145

To specify the default global variable type for SQLCA:

1. Click the Open button in the PowerBar, or select File>Open from the menu bar.

The Open dialog box displays.

2. Select Applications from the Object Type drop-down list. Choose the application where
you want to use your new user object and click OK.

The Application painter workspace displays.

3. Select the General tab in the Properties view. Click the Additional Properties button.

The Additional Properties dialog box displays.

4. Click the Variable Types tab to display the Variable Types property page.

5. In the SQLCA box, specify the name of the standard class user object you defined in
Steps 1 through 3:

Data Access Techniques

Page 146

6. Click OK or Apply.

When you execute your application, PowerBuilder will use the specified standard class
user object instead of the built-in system object type it inherits from.

4.1.3.5 Step 5: code your application to use the user object

What you have done so far

In the previous steps, you defined the GIVE_RAISE remote stored procedure as an
external function for the u_trans_database standard class user object. You then specified
u_trans_database as the default global variable type for SQLCA. These steps give your
PowerBuilder application access to the properties and functions encapsulated in the user
object.

What you do now

You now need to write code that uses the user object to perform the necessary processing.

In your application script, you can use PowerScript dot notation to call the stored procedure
functions you defined for the user object, just as you do when using SQLCA for all other
PowerBuilder objects. The dot notation syntax is:

object.function (arguments)

For example, you can call the GIVE_RAISE stored procedure with code similar to the
following:

SQLCA.give_raise(salary)

To code your application to use the user object:

1. Open the object or control for which you want to write a script.

2. Select the event for which you want to write the script.

For instructions on using the Script view, see Section 3.1.2, “Opening Script views” in
Users Guide.

3. Write code that uses the user object to do the necessary processing for your application.

Here is a simple code example that connects to an Oracle database, calls the
GIVE_RAISE stored procedure to calculate the raise, displays a message box with the
new salary, and disconnects from the database:

// Set Transaction object connection properties.
SQLCA.DBMS="OR7"
SQLCA.LogID="scott"
SQLCA.LogPass="xxyyzz"
SQLCA.ServerName="@t:oracle:testdb"
SQLCA.DBParm="sqlcache=24,pbdbms=1"

// Connect to the Oracle database.
CONNECT USING SQLCA ;

// Check for errors.
IF SQLCA.sqlcode <> 0 THEN
 MessageBox ("Connect Error",SQLCA.SQLErrText)

Data Access Techniques

Page 147

 return
END IF

// Set 20,000 as the current salary.
DOUBLE val = 20000
DOUBLE rv

// Call the GIVE_RAISE stored procedure to
// calculate the raise.
// Use dot notation to call the stored procedure
rv = SQLCA.give_raise(val)

// Display a message box with the new salary.
MessageBox("The new salary is",string(rv))

// Disconnect from the Oracle database.
DISCONNECT USING SQLCA;

4. Compile the script to save your changes.

Using error checking

An actual script would include error checking after the CONNECT statement,
DISCONNECT statement, and call to the GIVE_RAISE procedure. For details, see
Error handling after a SQL statement.

4.1.4 Supported DBMS features when calling stored procedures

When you define and use a custom Transaction object to call remote stored procedures in
your application, the features supported depend on the DBMS to which your application
connects.

The following sections describe the supported features for some of the DBMSs that you can
access in PowerBuilder. Read the section for your DBMS to determine what you can and
cannot do when using the RPC technique in a PowerBuilder application.

Result sets

You cannot use the remote procedure call technique to access result sets returned
by stored procedures. If the stored procedure returns one or more result sets,
PowerBuilder ignores the values and returns the output parameters and return value.

If your stored procedure returns a result set, you can use the embedded SQL
DECLARE Procedure statement to call it. For information about the DECLARE
Procedure statement, see Section 2.2, “SQL Statements” in PowerScript Reference.

Informix

If your application connects to an Informix database, you can use simple nonarray datatypes.
You cannot use binary large objects (blobs).

ODBC

If your application connects to an ODBC data source, you can use the following ODBC
features if the back-end driver supports them. (For information, see the documentation for
your ODBC driver.)

Data Access Techniques

Page 148

• IN, OUT, and IN OUT parameters, as shown in the following table.

Table 4.5: ODBC IN, OUT, and IN OUT parameters

Parameter What happens

IN An IN variable is passed by value and indicates a value being passed to the
procedure.

OUT An OUT variable is passed by reference and indicates that the procedure can
modify the PowerScript variable that was passed. Use the PowerScript REF
keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the procedure
can reference the passed value and can modify the PowerScript variable. Use
the PowerScript REF keyword for this parameter type.

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

• Integer return codes.

Oracle

If your application connects to an Oracle database, you can use the following Oracle PL/SQL
features:

• IN, OUT, and IN OUT parameters, as shown in the following table.

Table 4.6: Oracle IN, OUT, and IN OUT parameters

Parameter What happens

IN An IN variable is passed by value and indicates a value being passed to the
procedure.

OUT An OUT variable is passed by reference and indicates that the procedure can
modify the PowerScript variable that was passed. Use the PowerScript REF
keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the procedure
can reference the passed value and can modify the PowerScript variable. Use
the PowerScript REF keyword for this parameter type.

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

• PL/SQL tables as parameters. You can use PowerScript arrays.

• Function return codes.

Microsoft SQL Server or SAP Adaptive Server Enterprise

If your application connects to a Microsoft SQL Server or SAP Adaptive Server Enterprise
database, you can use the following Transact-SQL features:

• IN, OUT, and IN OUT parameters, as shown in the following table.

Data Access Techniques

Page 149

Table 4.7: Adaptive Server Enterprise and Microsoft SQL Server IN, OUT, and IN OUT
parameters

Parameter What happens

IN An IN variable is passed by value and indicates a value being passed to the
procedure.

OUT An OUT variable is passed by reference and indicates that the procedure
can modify the PowerScript variable that was passed. Use the PowerScript
REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the procedure
can reference the passed value and can modify the PowerScript variable.
Use the PowerScript REF keyword for this parameter type.

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

• Integer return codes.

SQL Anywhere

If your application connects to a SQL Anywhere database, you can use the following SQL
Anywhere features:

• IN, OUT, and IN OUT parameters, as shown in the following table.

Table 4.8: SQL Anywhere IN, OUT, and IN OUT parameters

Parameter What happens

IN An IN variable is passed by value and indicates a value being passed to the
procedure.

OUT An OUT variable is passed by reference and indicates that the procedure
can modify the PowerScript variable that was passed. Use the PowerScript
REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the procedure
can reference the passed value and can modify the PowerScript variable.
Use the PowerScript REF keyword for this parameter type.

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

4.2 Using MobiLink Synchronization

About this chapter

This chapter supplements the introduction to MobiLink synchronization presented in
Section 5.1, “Managing the Database” in Users Guide. It provides additional background
on the synchronization process and the use of objects generated by the MobiLink
synchronization wizard. It also discusses how to create synchronization objects without using
the wizard.

Data Access Techniques

Page 150

4.2.1 About MobiLink synchronization

MobiLink is a session-based synchronization system that allows two-way synchronization
between a main database, called the consolidated database, and many remote databases.

This section introduces some MobiLink terms and concepts.

Where to find additional information

Detailed information about MobiLink synchronization is provided in the MobiLink
Getting Started, the MobiLink - Client Administration, and the Mobilink - Server
Administration books. These books are available online on the SQL Anywhere
Product Manuals website at http://dcx.sap.com/index.html.

If you are already familiar with MobiLink, go to Working with PowerBuilder
synchronization objects to learn about PowerBuilder integration with MobiLink.

Data movement and synchronization

Data movement occurs when shared data is distributed over multiple databases on multiple
nodes and changes to data in one database are applied to the corresponding data in other
databases. Data can be moved using replication or synchronization.

Data replication moves all transactions from one database to another, whereas data
synchronization moves only the net result of transactions. Both techniques get their
information by scanning transaction log files, but synchronization uses only updated log file
segments instead of the full log file, making data movement much faster and more efficient.

With synchronization, data is available locally and can be modified without a connection
to a server. MobiLink synchronization uses a loose consistency model, which means that
all changes are synchronized with each site over time in a consistent manner, but different
sites might have different copies of data at any instant. Only successful transactions are
synchronized.

Consolidated and remote databases

The consolidated database, which can be any ODBC-compliant database, such as SQL
Anywhere, SAP Adaptive Server Enterprise, Oracle, IBM DB2 UDB, or Microsoft SQL
Server, holds the master copy of all the data.

The remote database contains a subset of the consolidated data. Although MobiLink can
synchronize SQL Anywhere and UltraLite databases, for PowerBuilder applications, remote
databases must be SQL Anywhere databases.

The MobiLink synchronization server

The MobiLink synchronization server, mlsrv11, manages the synchronization process and
provides the interface between remote databases and the consolidated database server. All
communication between the MobiLink synchronization server and the consolidated database
occurs through an ODBC connection.The consolidated database and synchronization server
often reside on the same machine, but that is not a requirement.

The MobiLink server must be running before a synchronization process is launched. You can
start the MobiLink synchronization server from the Utilities folder in the Objects view in the
Database painter.

http://dcx.sap.com/index.html

Data Access Techniques

Page 151

For information about starting the server from the command line, see "Running the MobiLink
server" in the online MobiLink - Server Administration book.

MobiLink hierarchy

MobiLink typically uses a hierarchical configuration. The nodes in the hierarchy can reside
on servers, desktop computers, and handheld or embedded devices. A simple hierarchy might
consist of a consolidated database on a server and multiple remote databases on mobile
devices. A more complex hierarchy might contain multiple levels in which some sites act as
both remote and consolidated databases. For PowerBuilder applications, any consolidated
database that also acts as a remote database must be a SQL Anywhere database.

For example, suppose remote sites A1, A2, and A3 synchronize with a consolidated database
A on a local server, and remote sites B1, B2, and B3 synchronize with a consolidated
database B on another local server. A and B in turn act as remote sites and synchronize with
a consolidated database C on a master server. C can be any ODBC-compliant database, but A
and B must both be SQL Anywhere databases.

Figure: MobiLink hierarchy

Synchronization scripts

MobiLink synchronization is an event-driven process. When a MobiLink client initiates
a synchronization, a number of synchronization events occur inside the MobiLink server.

Data Access Techniques

Page 152

When an event occurs, MobiLink looks for a script to match the synchronization event. If you
want the MobiLink server to take an action, you must provide a script for the event.

You can write synchronization scripts for connection-level events and for events for each
table in the remote database. You save these scripts in the consolidated database.

You can write scripts using SQL, Java, or .NET. For more information about event scripts
and writing them in the MobiLink Synchronization plug-in in SQL Central, see Preparing
consolidated databases.

The MobiLink synchronization client

SQL Anywhere clients at remote sites initiate synchronization by running a command-
line utility called dbmlsync. This utility synchronizes one or more subscriptions in a
remote database with the MobiLink synchronization server. Subscriptions are described in
Publications, articles, users, and subscriptions. For more information about the dbmlsync
utility and its options, see "dbmlsync utility" in the index of the SQL Anywhere online books.

In PowerBuilder, synchronization objects that you create with the ASA MobiLink
Synchronization wizard manage the dbmlsync process. For more information, see Working
with PowerBuilder synchronization objects.

Publications, articles, users, and subscriptions

A publication is a database object on the remote database that identifies tables and columns to
be synchronized. Each publication can contain one or more articles. An article is a database
object that represents a whole table, or a subset of the columns and rows in a table.

A user is a database object in the remote database describing a unique synchronization
client. There is one MobiLink user name for each remote database in the MobiLink system.
The ml_user MobiLink system table, located in the consolidated database, holds a list of
MobiLink user names. These names are used for authentication.

A subscription associates a user with one or more publications. It specifies the
synchronization protocol (such as TCP/IP, HTTP, or HTTPS), address (such as
myserver.acmetools.com), and additional optional connection and extended options.

Users, publications, and subscriptions are created in the remote database. You can create
them in SQL Central with the SQL Anywhere plug-in (not the MobiLink Synchronization
plug-in). For information about creating users, publications, and subscriptions, see Creating
remote databases.

The synchronization process

Dbmlsync connects to the remote database using TCP/IP, HTTP, or HTTPS, and prepares
a stream of data (the upload stream) to be uploaded to the consolidated database. Dbmlsync
uses information contained in the transaction log of the remote database to build the upload
stream. The upload stream contains the MobiLink user name and password, the version of
synchronization scripts to use, the last synchronization timestamp, the schema of tables and
columns in the publication, and the net result of all inserts, updates, and deletes since the last
synchronization.

After building the upload stream, dbmlsync uses information stored in the specified
publication and subscription to connect to the MobiLink synchronization server and to
exchange data.

Data Access Techniques

Page 153

When the MobiLink synchronization server receives data, it updates the consolidated
database, then builds a download stream that contains all relevant changes and sends it
back to the remote site. At the end of each successful synchronization, the consolidated and
remote databases are consistent. Either a whole transaction is synchronized, or none of it is
synchronized. This ensures transactional integrity at each database.

4.2.2 How the synchronization works

How MLSync events are implemented

The MLSync object in a PowerBuilder application and the dbmlsync process communicate
with each other by sending messages between two windows, as shown in the following
figure. The window that the MLSync object creates uses an internal function,
MlSyncControlWindowProc, to process these messages.

The Synchronize function adds a "-wh window_handle" argument to the end of the command
line string that launches dbmlsync. This lets dbmlsync send WM_COPYDATA messages to
this window handle. MlSyncControlWindowProc then triggers the appropriate event in the
MLSync object.

Figure: How the synchronization process works

How progress window events are triggered

Data Access Techniques

Page 154

The MobiLink Synchronization Wizard generates an instance of an MLSync object that
contains PowerScript code in each of its events. When appropriate, this code triggers an event
of the same name in the progress window that is either generated by the wizard or customized
for your applications.

How the CancelSync function is implemented

On the dbmlsync command string, there is a "-wc window_class" argument that specifies
the class name of a communications window that dbmlsync registers and creates. If the
PowerBuilder application needs to cancel the synchronization process during any of its event
processing logic, it calls CancelSync. This function finds the window handle associated with
the -wc window class and sends a WM_CLOSE message.

4.2.3 Working with PowerBuilder synchronization objects

When you run the ASA MobiLink Synchronization wizard from the Database page in the
New dialog box, the wizard generates objects that let you initiate and control MobiLink
synchronization requests from a PowerBuilder application. These objects let you obtain
feedback during the synchronization process, code PowerScript events at specific points
during synchronization, and cancel the process programmatically.

For more information about the MobiLink synchronization wizard, see Section 5.1,
“Managing the Database” in Users Guide.

4.2.3.1 Preparing to use the wizard

Before you use the wizard in a production application, you need to complete the following
tasks:

• Set up a consolidated database and write synchronization scripts as described in Preparing
consolidated databases

• Create a remote database on the desktop and set up one or more publications, users, and
subscriptions as described in Creating remote databases

• Register the database with the ODBC manager on all remote machines, or create a file
DSN for the remote database, as described in Part I, “Connecting to Your Database” and in
Using a file DSN instead of a registry DSN

• Make sure all remote machines have the required supporting files, as described in Runtime
requirements for synchronization on remote machines

• (Optional) Create a database connection profile for the remote database, as described
in Part I, “Connecting to Your Database”. This allows the wizard to retrieve a list of
publications in the remote database for which MobiLink subscriptions have been entered

4.2.3.2 What gets generated

The wizard generates two sets of objects.

Objects that initiate and monitor synchronization

The first set of objects lets the end user initiate and monitor synchronization:

Data Access Techniques

Page 155

• nvo_appname_mlsync -- a custom class user object that controls the MobiLink client
(appname is the name of your application)

• gf_appname_sync -- a global function that instantiates the user object and calls a function
to launch a synchronization request

• w_appname_syncprogress -- an optional status window that reports the progress of the
synchronization process

In the wizard, you can choose whether the application uses the status window. The generated
status window includes an OK button that lets the user view the status before dismissing the
window, and a Cancel button that lets the user cancel synchronization before it completes.
You can also customize the window to fit your application's needs.

Objects that modify synchronization options

The second set of objects is generated only if you select Prompt User for Password and
Runtime Changes in the wizard. It lets the end user change synchronization options before
initiating synchronization:

• w_appname_sync_options -- an options window that lets the end user modify the
MobiLink user name and password, the host name and port of the MobiLink server, and
other options for dbmlsync, and choose how to display status

• gf_appname_configure_sync -- a global function that opens the options window and, if the
user clicked OK, calls gf_appname_sync to initiate synchronization

Most applications that use the options window provide two menu items or command buttons
to launch synchronization: one to open the options window so that users can set up or modify
dbmlsync options before requesting a synchronization, and one to request a synchronization
with the preset options.

4.2.3.3 Creating an instance of MLSync

You do not have to use the MobiLink Synchronization Wizard to create a nonvisual object
that launches Dbmlsync.exe. You can include an MLSync system object in your applications:

• Programmatically with PowerScript

• By selecting it from the New dialog box

Adding an MLSync object programatically

The code fragment below creates an instance of an MLSync object and programmatically
populates all of the necessary properties as well as some optional properties using an instance
of the system SyncParm structure. Then it calls the Synchronize function to start the database
synchronization.

SyncParm Parms
MLSync mySync
Long rc

Data Access Techniques

Page 156

mySync = CREATE MLSync
mySync.MLServerVersion = 11 // required property
mySync.Publication = 'salesapi '// required property
mySync.UseLogFile = TRUE // optional
mySync.LogFileName = "C:\temp\sync.log "// optional
mySync.Datasource = 'salesdb_remote '// required
Parms.MLUser = '50 '// required
Parms.MLPass = 'xyz123 '// required
//The following values are required if they are not
//set by the DSN
Parms.DBUser = 'dba '
Parms.DBPass = 'sql '

// Apply the property values to the sync object
mySync.SetParm(Parms)
// Launch the synchronization process
rc = mySync.Synchronize()
destroy mySync

Adding an MLSync object from the New dialog box

You can add an MLSync object to a target PBL using the New dialog box: from the
PowerBuilder menu, choose File>New, go to the PB Object tab, select Standard Class,
then MLSync. This opens a new MLSync object in the User Object painter, where you can
initialize all or some of the properties. When you are finished, you can save it as a new object
in your target PBL.

Since all of the properties are already initialized, including userids and passwords, it is ready
for immediate use. To launch a synchronization requires very little coding, as this example
for an MLsync object that you save as "nvo_my_mlsync" illustrates:

nvo_my_mlsync mySync
Long rc
mySync = CREATE nvo_my_mlsync
mySync.Synchronize()
destroy mySync

You would typically add the above code to the Clicked event for a menu item or a command
button on one of the application windows.

For more information

For more information on system objects related to synchronization, and their functions,
events, and properties, see MLSynchronization, MLSync, and SyncParm in Section 2.62,
“MLSynchronization object” in Objects and Controls, Section 2.61, “MLSync object” in
Objects and Controls, and Section 2.113, “SyncParm object” in Objects and Controls.

4.2.3.4 Auxiliary objects for MobiLink synchronization

If you create an instance of MLSync by PowerScript code or from the New dialog box, you
should also consider using auxiliary objects that are generated automatically by the wizard
that you can customize in the PowerBuilder Window painter.

Using an existing synchronization progress window

After you instantiate an MLSync object and call SetParm to enable an end user to set
authentication properties at runtime, you can call a Response! type window to document
the progress of a database synchronization. You open the progress window with an
OpenWithParm call, using the window name and the MLSync object name as arguments. By

Data Access Techniques

Page 157

default, the wizard generates a progress window named w_appname_syncprogress and adds
the OpenWithParm call for you.

In the Properties view for an MLSync object, you can select a customized progress window
to document the progress of a synchronization call. If you customize a wizard-generated
progress window -- typically to hide some of the fields on its tab pages, or even to hide one
or two of the tab pages -- you can select the customized progress window for all of your
MobiLink applications.

Changing the connection arguments at runtime

To allow a user to override authentication parameters at runtime, you can call a customized
options window or the synchronization options window generated by the wizard. The options
window can, in turn, call an instance of the SyncParm object that can be initialized with
authentication values from a highly secure persistent store, such as a remote database table.
You can choose to make some or all of the authentication values writable, allowing the end
user to override them at runtime.

Maintaining property settings in the MLSync object

Normally when you call SetParm(SyncParm) from an MLSync object, you
automatically override any authentication values (AuthenticationParms, DBUser,
DBPass, EncryptionKey, MLUser, and MLPass) that you set for properties of the
MLSync object even when the value of a particular SyncParm property is an empty
string. However, if you call SetNull to set a particular property of the SyncParm
object to NULL before you call SetParm, the property value in the MLSync object
will be used instead.

The default synchronization options window, w_appname_sync_options, returns a SyncParm
structure to its caller through the PowerObjectParm property of the Message object. This
allows the caller to save the highly sensitive authentication property values in a secure
location. It also sets the SyncParm ReturnCode property with an integer value that indicates
whether to proceed with the actual synchronization.

Default tab pages of the options window

The default synchronization options window has four tab pages: Subscriptions, SQL
Anywhere, MobiLink Server, and Settings.

Subscriptions page

When you used the MobiLink wizard, you selected one or more publications from the list
of available publications. The selected publications display on the Subscriptions page, but
cannot be edited at runtime.

Each remote user can supply a MobiLink synchronization user name on this page. The
name must be associated in a subscription with the publications displayed on the page. If
the application is always used by the same MobiLink user, this information never needs
to be supplied again. The name is saved in the registry and used by default every time
synchronization is launched from the application on this device.

The MobiLink password and authentication parameters are never saved to the user's registry.
They can either be entered each time by the user or provided from a secure database.

SQL Anywhere page

Data Access Techniques

Page 158

Remote users can supply a DSN file name on this page to pass all the arguments needed to
connect to a remote database.

If a DSN file is not used, or if the DSN file does not include a user name and password, each
remote user can supply a remote database user name. The name is saved in the registry and
used by default every time synchronization is launched from the application on this device.

The following figure displays the options window SQL Anywhere tab page with DSN,
DBUser, DBPass, and Encryption Key fields. The database password and encryption key are
never saved in the registry.

Figure: Synchronization options window

MobiLink Server page

When you create a subscription, you specify a protocol, host, port, and other connection
options. For ease of testing, the default protocol is TCP/IP and the default host is localhost.
The default port is 2439 for TCP/IP, 80 for HTTP, and 443 for HTTPS.

You might need to change these defaults when you are testing, and your users might need to
change them when your application is in use if the server is moved to another host or the port
changes. If you did not enter values for the host and port at design time, and the user does not
make any changes on this page, dbmlsync uses the values in the subscription.

For more information about subscriptions, see Adding subscriptions.

Settings page

The Settings page displays logging options, and any other dbmlsync options you specified at
design time and lets the user change any of these options at runtime. It also gives the user a
choice of displaying or not displaying a synchronization progress window.

Data Access Techniques

Page 159

Extended options

Extended options are added to the dbmlsync command line with the -e switch. You do
not need to type the -e switch in the text box.

4.2.3.5 Using the synchronization objects in your application

Before you use the generated objects, you should examine them in the PowerBuilder painters
to understand how they interact. Many of the function and event scripts contain comments
that describe their purpose.

All the source code is provided so that you have total control over how your application
manages synchronization. You can use the objects as they are, modify them, or use them as
templates for your own objects.

Properties of the user object

The nvo_appname_mlsync user object contains properties that represent specific dbmlsync
arguments, including the publication name, the MobiLink server host name and port, and the
user name and password for a connection to the remote database.

When you run the wizard, the values that you specify for these properties are set as default
values in the script for the constructor event of the user object. They are also set in the
Windows registry on the development computer in HKEY_CURRENT_USER\Software
\Sybase\PowerBuilder\21.0\appname\MobiLink, where appname is the name of your
application.

At runtime, the constructor event script gets the values of the properties from the registry
on the remote machine. If they cannot be obtained from the registry, or if you override the
registry settings, the default value supplied in the script is used instead and is written to the
registry.

You can change the default values in the event script, and you can let the user change the
registry values at runtime by providing a menu item that opens the w_appname_sync_options
window.

Launching dbmlsync

To enable the user to launch a synchronization process, code a button or menu event script
to call the gf_appname_sync global function. This function creates an instance of the
nvo_appname_mlsync user object, and the user object's constructor event script sets the
appname\MobiLink key in the registry of the remote machine.

If you specified in the wizard that the progress window should display, the global function
opens the progress window, whose ue_postopen event calls the nvo_appname_mlsync user
object's synchronize function; otherwise, the global function calls the synchronize function.
The synchronize function launches dbmlsync as an external process.

Supplying a MobiLink user name and password

The global function takes a structure for its only argument. You can pass a system SyncParm
structure that you instantiate. The structure includes six variables with string datatypes (one
each for MobiLink and remote database user names and passwords, as well as variables for
the authentication parameters and the encryption key) and another variable that takes a long
datatype for a return code.

Data Access Techniques

Page 160

If you assign valid values to the structure that you pass as an argument, the global function
passes these values to the user object to enable MobiLink server and remote database
connections.

The options window (described in Default tab pages of the options window) provides
a mechanism to store certain of these values in the registry the first time a user starts a
synchronization. (Sensitive password and encryption information is never saved to the
registry.) Subsequent synchronizations can be started without the user having to reenter the
information, however, the options window can still be used to override and reset the registry
values.

Retrieving data after synchronization

After synchronizing, you would typically test for synchronization errors, then retrieve data
from the newly synchronized database. For example:

if gf_myapp_sync(s_opt) <> 0 then
 MessageBox("Error", "MobiLink error")
else
 dw_1.Retrieve()
end if

Capturing dbmlsync messages

The PowerBuilder VM traps messages from the dbmlsync process and triggers events in the
user object as the synchronization process runs.

These events are triggered before synchronization begins as the upload stream is prepared:

ue_begin_logscan (long rescan_log)
ue_progress_info (long progress_index, long progress_max)
ue_end_logscan ()

These events correspond to events on the synchronization server, as described in Connection
events:

ue_begin_sync (string user_name, string pub_names)
ue_connect_MobiLink ()
ue_begin_upload ()
ue_end_upload ()
ue_begin_download ()
ue_end_download (long upsert_rows, long delete_rows)
ue_disconnect_MobiLink()
ue_end_sync (long status_code)

These events are triggered after ue_end_upload and before ue_begin_download:

ue_wait_for_upload_ack ()
ue_upload_ack (long upload_status)

These events are triggered when various messages are sent by the server:

ue_error_msg (string error_msg)
ue_warning_msg (string warning_msg)
ue_file_msg (string file_msg)
ue_display_msg (string display_msg)

The default event scripts created by the wizard trigger corresponding events in the optional
progress window, if it exists. The window events write the progress to the multiline edit
control in the progress window. Some window events also update a static text control that
displays the phase of the synchronization operation that is currently running (log scan,

Data Access Techniques

Page 161

upload, or download) and control a horizontal progress bar showing what percentage of the
operation has completed.

You can also add code to the user object or window events that will execute at the point in
the synchronization process when the corresponding MobiLink events are triggered. The
dbmlsync process sends the event messages to the controlling PowerBuilder application and
waits until PowerBuilder event processing is completed before continuing.

Cancelling synchronization

The Cancel button on the progress window calls the cancelsync user object function to cancel
the synchronization process. If your application does not use the progress window, you can
call this function in an event script elsewhere in your application.

4.2.3.6 Runtime requirements for synchronization on remote machines

Support files required on remote machine

If you do not install PowerBuilder or SQL Anywhere on remote machines, you must copy
the files listed in the following table to use MobiLink synchronization with a PowerBuilder
application. These files must be copied to the system path on the remote machine or the
directory where you copy your PowerBuilder applications.

Table 4.9: Required runtime files on system path of remote machine

Required files Description

PBDPL.dll, PBVM.dll, PBDWE.dll,
PBSHR.dll, PBODB.dll, PBODB.ini,
LIBJCC.DLL, LIBJUTILS.DLL,
LIBJTML.DLL, NLWNSCK.DLL

PowerBuilder files that you can copy from the
%systemdrive%\Program Files (x86)\Appeon
\Common\PowerBuilder\Runtime [version]\
directory of the development machine.

GDIPLUS.DLL, MSVCP100.DLL,
MSVCR100.DLL

Microsoft files that ship with PowerBuilder. For
restrictions on distributing these files with client
applications, see Microsoft files.

DBENG11.EXE, DBMLSYNC.EXE,
DBSERV11.DLL, DBTOOL11.DLL,
DBODBC11.DLL, DBLIB11.DLL,
DBLGEN11.DLL, DBCON11.DLL,
DBCTRS11.DLL, DBICU11.DLL,
DBICUDT11.DLL

SQL Anywhere and MobiLink files that you can
copy from the SAP\SQL Anywhere 12\bin32
(or bins64) directory of the development
machine. You should copy these files to a "bin32"
subdirectory of the location where you copy the
PowerBuilder application and supporting runtime
files.

Registry requirements for a remote machine

If you install SQL Anywhere on all remote machines that you use with MobiLink
synchronization, the required registry entries are assigned automatically. If you
copy SQL Anywhere and MobiLink files to a remote machine, you must create the
HKEY_CURRENT_USER\SOFTWARE\Sybase\SQL Anywhere\16.0 registry key and add a
"Location" string value that points to the parent directory of the bin32 or bin64 subdirectory
where you copied SQL Anywhere and MobiLink files. (The code in the uf_runsync function
of the nvo_appname_sync user object appends "\bin32\dbmlsync.exe" to the path that you
assign to this registry value.)

Data Access Techniques

Page 162

Objects generated by the MobiLink Synchronization wizard also require registry entries to
define the ODBC data source for a remote SQL Anywhere connection. The following table
lists the required registry entries. You can create a REG file that installs these registry entries.

Table 4.10: Required registry entries on remote machine

Registry key Name of string value and data to assign it

HKEY_LOCAL_MACHINE
\SOFTWARE\ODBC\ODBCINST.INI
\SQL Anywhere 16.0

Driver = full path to DBODBC11.DLL

Setup = full path to DBODBC11.DLL

HKEY_LOCAL_MACHINE
\SOFTWARE\ODBC\ODBCINST.INI
\ODBC Drivers

SQL Anywhere 16.0 = "Installed"

HKEY_LOCAL_MACHINE
\SOFTWARE\ODBC\ODBC.INI
\ODBC Data Sources

dataSourceName = "SQL Anywhere 16.0"

HKEY_LOCAL_MACHINE
\SOFTWARE\ODBC\ODBC.INI
\dataSourceName

Driver = full path to DBODBC11.DLL

Userid = user name for remote database

Password = password for remote database

DatabaseName = remoteDatabaseName

DatabaseFile = full path to remote database

ServerName = remoteDatabaseName

Start = "dbeng16 -c 8M"

CommLinks = "shmem"

Using a file DSN instead of a registry DSN

You can use a file DSN or a registry DSN for your remote database connections. To avoid
having to specify a fully qualified path, you can copy file DSNs to a path specified by the
ODBC registry key (typically c:\program files\common files\ODBC\data sources).

The following is an example of the contents of a valid file DSN:

[ODBC]
DRIVER=SQL Anywhere 16.0
UID=dba
Compress=NO
AutoStop=YES
Start=dbeng16 -c 8M -zl -ti 0
EngineName=SalesDB_Remote
DBN=SalesDB_Remote
DatabaseFile=C:\work\salesdb\salesdb_remote.db
DatabaseName=SalesDB_remote

The Datasource property of the MLSync object distinguishes a file DSN from a registry DSN
using these rules:

• If the Datasource name ends with a .dsn file extension, it is a file DSN

• If the Datasource name begins with "drive:\" prefix where drive is any alphabetic
character, then it is a file DSN

Data Access Techniques

Page 163

File DSN location before EBFs are applied to older DBMS versions

If you have not applied the latest EBFs to SQL Anywhere 10.0.0 or Adaptive Server
Anywhere 9, dbmlsync looks in the current directory for file DSNs when a full path is
not specified -- not in the path specified by the ODBC registry key. The registry key
is used by SQL Anywhere 10.0.1 and later to locate file DSNs when their paths are
not fully qualified.

4.2.4 Preparing consolidated databases

Whether you are designing a new database or preparing an existing one to be used as a
MobiLink consolidated database, you must install the MobiLink system tables in that
database. SQL Anywhere provides setup scripts for SAP Adaptive Server Enterprise, Oracle,
Microsoft SQL Server, and IBM DB2. A setup script is not required for SQL Anywhere
databases.

MobiLink system tables store information for MobiLink users, tables, scripts, and script
versions in the consolidated database. You will probably not directly access these tables, but
you alter them when you perform actions such as adding synchronization scripts.

ODBC connections and drivers

To carry out synchronization, the MobiLink synchronization server needs an ODBC
connection to the consolidated database. You must have an ODBC driver for your server
and you must create an ODBC data source for the database on the machine on which
your MobiLink synchronization server is running. For a list of supported drivers, see
Recommended ODBC Drivers for MobiLink at https://archive.sap.com/documents/docs/
DOC-67711.

Writing synchronization scripts

There are two types of events that occur during synchronization and for which you need to
write synchronization scripts:

• Connection events that perform global tasks required during every synchronization

• Table events that are associated with a specific table and perform tasks related to
modifying data in that table

4.2.4.1 Connection events

At the connection level, the sequence of major events is as follows:

begin_connection
 begin_synchronization
 begin_upload
 end_upload
 prepare_for_download
 begin_download
 end_download
 end_synchronization
end_connection

When a synchronization request occurs, the begin_connection event is fired. When
all synchronization requests for the current script version have been completed, the

https://archive.sap.com/documents/docs/DOC-67711
https://archive.sap.com/documents/docs/DOC-67711

Data Access Techniques

Page 164

end_connection event is fired. Typically you place initialization and cleanup code in the
scripts for these events, such as variable declaration and database cleanup.

Apart from begin_connection and end_connection, all of these events take the MobiLink user
name stored in the ml_user table in the consolidated database as a parameter. You can use
parameters in your scripts by placing question marks where the parameter value should be
substituted.

To make scripts in SQL Anywhere databases easier to read, you might declare a
variable in the begin_connection script, then set it to the value of ml_username in the
begin_synchronization script.

For example, in begin_connection:

CREATE VARIABLE @sync_user VARCHAR(128);

In begin_synchronization:

SET @sync_user = ?

The begin_synchronization and end_synchronization events are fired before and after
changes are applied to the remote and consolidated databases.

The begin_upload event marks the beginning of the upload transaction. Applicable inserts
and updates to the consolidated database are performed for all remote tables, then rows are
deleted as applicable for all remote tables. After end_upload, upload changes are committed.

If you do not want to delete rows from the consolidated database, do not write scripts for the
upload_delete event, or use the STOP SYNCHRONIZATION DELETE statement in your
PowerScript code. For more information, see Deleting rows from the remote database only.

The begin_download event marks the beginning of the download transaction. Applicable
deletes are performed for all remote tables, and then rows are added as applicable for
all remote tables in the download_cursor. After end_download, download changes are
committed. These events have the date of the last download as a parameter.

Other connection-level events can also occur, such as handle_error, report_error, and
synchronization_statistics. For a complete list of events and examples of their use, see the
chapter on synchronization events in the MobiLink Administration Guide.

4.2.4.2 Table events

Many of the connection events that occur between the begin_synchronization and
end_synchronization events, such as begin_download and end_upload, also have table
equivalents. These and other overall table events might be used for tasks such as creating an
intermediate table to hold changes or printing information to a log file.

You can also script table events that apply to each row in the table. For row-level events,
the order of the columns in your scripts must match the order in which they appear in the
CREATE TABLE statement in the remote database, and the column names in the scripts
must refer to the column names in the consolidated database.

Generating default scripts

Although there are several row-level events, most tables need scripts for three upload events
(for INSERT, UPDATE, and DELETE) and one download event. To speed up the task of
creating these four scripts for every table, you can generate scripts for them automatically

Data Access Techniques

Page 165

by running the -- create a synchronization model -- task from the MobiLink plug-in in SQL
Central.

For information on the MobiLink plug-in, see the online MobiLink Getting Started book.

The MobiLink plug-in allows you to add more functionality to default scripts than default
scripts generated in earlier versions of MobiLink. However, if you are using ASA 8 or ASA 9
instead of SQL Anywhere 10, 11, 12, 16, or 17, you can still generate default synchronization
scripts by starting the MobiLink synchronization server with the -za switch and setting the
SendColumnNames extended option for dbmlsync.

The following procedure describes how to generate ASA 8 or 9 synchronizations scripts from
the PowerBuilder UI.

To generate ASA 8 or 9 synchronization scripts automatically from PowerBuilder:

1. Expand the ODBC Utilities folder in the Database painter and double-click the
MobiLink Synchronization Server item.

The MobiLink Synchronize Server Options dialog box displays.

2. Select Adaptive Server Anywhere 8 or 9 from the MobiLink Version drop-down list.

You enable the Automatic Script Generation check box.

3. Select the Automatic Script Generation check box in the MobiLink Synchronize Server
Options dialog box and click OK to start the server.

You can open this dialog box from the Utilities folder in the Database painter or the
Database Profiles dialog box.

4. In your application, enter SendColumnNames=ON in the Extended text box on the
Settings page of the w_appname_sync_options window.

You must have at least one publication, user, and subscription defined in the remote
database. If you have more than one publication or user, you must use the -n and/or -u
switches to specify which subscription you want to work with.

If there are existing scripts in the consolidated database, MobiLink does nothing. If
there are no existing scripts, MobiLink generates them for all tables specified in the
publication. The scripts control the upload and download of data to and from your client
and consolidated databases.

If the column names on the remote and consolidated database differ, the generated
scripts must be modified to match the names on the consolidated database.

You can also generate ASA 8 or 9 synchronization scripts from a command prompt. Start
the server using the -za switch, then run dbmlsync and set the SendColumnNames extended
option to on. For example:

dbmlsrv9 -c "dsn=masterdb" -za
dbmlsync -c "dsn=remotedb" -e SendColumnNames=ON

Generated scripts

The following table shows sample default scripts generated by the MobiLink plug-in in
SQL Central. The scripts are generated for a table named emp with the columns emp_id,

Data Access Techniques

Page 166

emp_name, and dept_id. The primary key is emp_id. The generated download scripts use a
timestamp based download.

Table 4.11: Sample default synchronization scripts from MobiLink plug-in

Script name Script

upload_insert INSERT INTO "GROUP1"."emp" ("emp_id", "emp_name", "dept_id")

VALUES ({ml r."emp_id"}, {ml r."emp_name"}, {ml r."dept_id"})

upload_updateUPDATE "GROUP1"."emp" SET "emp_name" =

{ml r."emp_name"}, "dept_id" =

{ml r."dept_id"}

WHERE "emp_id" = {ml r."emp_id"}

upload_deleteDELETE FROM "GROUP1"."emp"

WHERE "emp_id" = {ml r."emp_id"}

download_cursorSELECT "GROUP1"."emp"."emp_id", "GROUP1"."emp"."emp_name",
"GROUP1"."emp"."dept_id"

FROM "GROUP1"."emp"

WHERE "GROUP1"."emp"."last_modified" >= {ml s.last_table_download}

download_delete_cursorSELECT "emp_del"."emp_id

FROM "emp_del"

WHERE "emp_del"."last_modified" >= {ml s.last_table_download}

The scripts that you generate with the MobiLink plug-in constitute a synchronization model.
After you create a synchronization model, you must use the -- Deploy the synchronization
model -- task of the plug-in to deploy the scripts to consolidated and remote databases or to
SQL files.

The following table shows the scripts that are generated for the same table using the -za
command switch for the ASA 9 MobiLink synchronization server. The scripts generated
for downloading data perform "snapshot" synchronization. A complete image of the table is
downloaded to the remote database. Typically you need to edit these scripts to limit the data
transferred.

For more information, see Limiting data downloads.

Table 4.12: Sample default scripts generated by dbmlsrv9 -za

Script name Script

upload_insert INSERT INTO emp (emp_id, emp_name,
dept_id)

VALUES (?,?,?)

upload_update UPDATE emp SET emp_name = ?, dept_id
= ?

WHERE emp_id=?

upload_delete DELETE FROM emp WHERE emp_id=?

Data Access Techniques

Page 167

Script name Script

download_cursor SELECT emp_id, emp_name, dept_id
FROM emp

Before modifying any scripts, you should test the synchronization process to make sure that
the generated scripts behave as expected. Performing a test after each modification will help
you narrow down errors.

4.2.4.3 Working with scripts and users in SQL Central

You can view and modify existing scripts and write new ones in the MobiLink
Synchronization plug-in in SQL Central (formerly known as Sybase Central). These
procedures describe how to connect to the plug-in and write scripts, and how to add a user to
the consolidated database.

To connect to a consolidated database in SQL Central:

1. Start SQL Central and select Connections>Connect with MobiLink 11 from the menu
bar.

2. On the Identification page in the Connect to Consolidated Database dialog box, select or
browse to a data source name or file, and click OK.

When you expand the node for a consolidated database in the MobiLink Synchronization
plug-in, you see folders with the following labels: Tables, Connection Scripts, Synchronized
Tables, Users, Versions, and Notifications. All the procedures in this section begin by
opening one of these folders.

Script versions

Scripts are organized into groups called script versions. By specifying a particular version,
MobiLink clients can select which set of synchronization scripts is used to process the upload
stream and prepare the download stream. If you want to define different versions for scripts,
you must add a script version to the consolidated database before you add scripts for it.

If you create two different versions, make sure that you have scripts for all required events in
both versions.

To add a script version:

1. Open the Versions folder, then select File>New>Version from the SQL Central menu
bar.

2. In the Create Script Version wizard, provide a name for the version and optionally a
description, then click Finish.

SQL Central creates the new version and gives it a unique integer identifier.

Adding synchronized tables and scripts

Scripts added for connection events are executed for every synchronization. Scripts added for
table events are executed when a specific table has been modified. You must specify that a
table is synchronized before you can add scripts for it.

Data Access Techniques

Page 168

To add a table for synchronization:

1. Open the Synchronized Tables folder and select File>New>Synchronized Table.

2. Specify a remote table name you want to synchronize or select a table in the
consolidated database that has the same name as a table in the remote database.

3. Click Finish.

To add a script to a synchronized table:

1. Double-click a table name in the Synchronized Tables folder, then select
File>New>Table Script.

2. In the Create Table Script wizard, select the version for which you want to add a script,
select the event you want to cause the script to execute, and click Next.

3. Choose to create a new script definition and the language (SQL, Java, or .NET) in which
you want to write the definition, or select an existing script version that you want to
share for the new script.

4. Click Finish.

5. Type your script in the editor that displays, then save and close the file.

For example, if you want to remove rows that have been shipped from the Order
table in a remote database, you can place the following SELECT statement in the
download_delete_cursor event, where order_id is the primary key column. The first
parameter to this event is the last_download timestamp. It is used here to supply the
value for a last_modified column:

SELECT order_id
 FROM Order
WHERE status = 'Shipped'
 AND last_modified >= ?

For more information about using the download_delete_cursor event, see the section
on "Writing download_delete_cursor scripts" in the online MobiLink - Server
Administration book.

To add a connection-level script:

1. Open the Connection Scripts folder and select File>New>Connection Script from the
menu bar.

2. Follow steps 2 to 5 in the previous procedure.

Adding users

You can add users directly to the ml_user table in the consolidated database, then provide the
user names and optional passwords to your users. To add a user, open the Users folder, select
File>New>User, and complete the Create User wizard.

You also have to add at least one user name to each remote database, as described in Creating
MobiLink users.

Data Access Techniques

Page 169

4.2.5 Creating remote databases

Any SQL Anywhere database can be converted for use as a remote database in a MobiLink
installation. You can also create a new SQL Anywhere remote database that uses all or part
of the schema of the consolidated SQL Anywhere database.

You create the database on your desktop using the SQL Central SQL Anywhere plug-in, the
Create SA Database utility in the Database painter, or another tool. If your database uses an
English character set, use the 1252 Latin1 collation sequence.

To use a database as a remote database for MobiLink synchronization, you need to create
at least one publication and MobiLink user, then add a subscription to the publication for
the user. See Creating and modifying publications, Creating MobiLink users, and Adding
subscriptions.

Remote database schemas

Tables in a remote database need not be identical to those in the consolidated database, but
you can often simplify your design by using a table structure in the remote database that is a
subset of the one in the consolidated database. Using this method ensures that every table in
the remote database exists in the consolidated database. Corresponding tables have the same
structure and foreign key relationships as those in the consolidated database.

Tables in the consolidated database frequently contain extra columns that are not
synchronized. Extra columns can even aid synchronization. For example, a timestamp
column can identify new or updated rows in the consolidated database. In other cases, extra
columns or tables in the consolidated database might hold information that is not required at
remote sites.

4.2.5.1 Creating and modifying publications

You create publications using SQL Central or the SQL CREATE PUBLICATION statement.
In SQL Central, all publications and articles appear in the Publications folder. This section
describes how to create publications in SQL Central. For information about creating and
modifying publications using SQL, see the online MobiLink - Client Administration book.

Connecting to the database in SQL Central

You use the SQL Anywhere plug-in in SQL Central, not the MobiLink Synchronization plug-
in, to work with MobiLink clients and remote databases. For information on starting SQL
Central from the PowerBuilder design time environment, see the Part I, “Users Guide”.

You must have DBA authority to create or modify publications, MobiLink users, and
subscriptions.

To connect to the database in SQL Central:

1. Start SQL Central, select Connections>Connect with SQL Anywhere 16 from the SQL
Central menu bar.

2. On the Identification page in the Connect dialog box, enter DBA as the user name and
SQL as the password, select or browse to the data source name or file and click OK.

Publishing all the rows and columns in a table

Data Access Techniques

Page 170

The simplest publication you can create is a single article that consists of all rows and
columns of one or more tables. The tables must already exist.

To publish one or more entire tables in SQL Central:

1. Connect to SQL Central as described in Connecting to the database in SQL Central.

2. Open the Publications folder and select File>New>Publication from the SQL Central
menu.

3. Type a name for the new publication and click Next.

4. On the Specify Tables page, select a table from the list of available tables and click Add.

The table appears in the list of selected tables on the right.

5. Optionally, add more tables. The order of the tables is not important.

6. Click Finish.

Publishing only some columns in a table

You can create a publication that contains all the rows but only some of the columns of a
table.

To publish only some columns in a table in SQL Central:

1. Follow the first four steps of the procedure in Publishing all the rows and columns in a
table.

2. Click Next. On the Specify Columns page, double-click the table's icon to expand the
list of available columns, select each column you want to publish, and click Add.

The selected columns appear on the right.

3. Click Finish.

Publishing only some rows in a table

You can create a publication that contains some or all of the columns in a table, but only
some of the rows. You do so by writing a search condition that matches only the rows you
want to publish.

In MobiLink, you can use the WHERE clause to exclude the same set of rows from all
subscriptions to a publication. All subscribers to the publication upload any changes to the
rows that satisfy the search condition.

To create a publication using a WHERE clause in SQL Central:

1. Follow the first four steps of the procedure in Publishing all the rows and columns in
a table, and optionally the first two steps of the procedure in Publishing only some
columns in a table.

Data Access Techniques

Page 171

2. Click Next. On the Specify Where Clauses page, select the table and type the search
condition in the lower box.

Optionally, you can use the Insert dialog box to help you format the search condition.

3. Click Finish.

Adding articles

You can add articles to existing publications.

To add articles in SQL Central:

1. Connect to SQL Central as described in Connecting to the database in SQL Central.

2. Open the Publications folder and double-click the name of the publication to which you
want to add an article.

3. Select File>New>Article from the SQL Central menu.

4. In the Create Article wizard, select a table and click Next.

5. If you want only some columns to be synchronized, select the Selected Columns radio
button and select the columns.

6. If you want to add a WHERE clause, click Next and enter the clause.

7. Click Finish.

Modifying and removing publications and articles

You can modify or drop existing publications in SQL Central by navigating to the location of
the publication and selecting Properties or Delete from its pop-up menu. You can modify and
remove articles in the same way.

Publications can be modified only by the DBA or the publication's owner. You must have
DBA authority to drop a publication. If you drop a publication, all subscriptions to that
publication are automatically deleted as well.

Avoid altering publications in a running MobiLink setup

Altering publications in a running MobiLink setup is likely to cause replication errors
and can lead to loss of data unless carried out with care.

4.2.5.2 Creating MobiLink users

MobiLink users are not the same as database users. Each type of user resides in a different
namespace. MobiLink user IDs can match the names of database users, but there is no
requirement that they match.

To add a MobiLink user to a remote database in SQL Central:

1. Connect to SQL Central as described in Connecting to the database in SQL Central.

Data Access Techniques

Page 172

2. Open the MobiLink Users folder and select File>New>User from the SQL Central
menu.

3. Enter a name for the MobiLink user.

The name is supplied to the MobiLink synchronization server during synchronization. In
production databases, each user name is usually added to the consolidated database, then
provided to the individual user.

4. Click Finish.

To configure MobiLink user properties in SQL Central:

1. Connect to SQL Central as described in Connecting to the database in SQL Central.

2. Open the MobiLink Users folder, right-click the MobiLink user, and select Properties
from the pop-up menu

3. Change the properties as needed.

To drop a MobiLink user in SQL Central:

1. Connect to SQL Central as described in Connecting to the database in SQL Central.

2. Open the MobiLink Users folder, right-click the MobiLink user, and select Delete from
the pop-up menu.

Dropping MobiLink users

You must drop all subscriptions for a MobiLink user before you drop the user from a
remote database.

Adding MobiLink users to the consolidated database

The consolidated database contains a table called ml_user that is used to authenticate the
names of MobiLink users when a synchronization is requested. When you add a user to a
remote database, you need to be sure that the user is also added to the ml_user table.

You can add users automatically by selecting the Automatic Addition of Users check box in
the MobiLink Synchronization Server Options dialog box and then starting the server. You
open this dialog box from the Utilities folder in the Database painter or Database Profiles
dialog box. You can also start the server from a command prompt, passing it the -zu+ switch.

Any users defined in the remote database are added to the ml_user table in the consolidated
database, as long as the script for the authenticate_user connection event is undefined.
Typically the -zu+ switch is not used in a production environment. Names are usually added
to the ml_user table in the consolidated database, then added to each of the remote databases.
Each user is given a unique name and optional password.

4.2.5.3 Adding subscriptions

A synchronization subscription links a particular MobiLink user with a publication. You must
have at least one publication and one user to create a subscription.

Data Access Techniques

Page 173

A subscription can also carry other information needed for synchronization. For example, you
can specify the address of the MobiLink server and other connection options. Values for a
specific subscription override those set for individual MobiLink users.

Overriding options in the wizard

You can override the MobiLink server name and port set for the subscription and user
with settings in the ASA MobiLink Synchronization wizard in PowerBuilder.

Synchronization subscriptions are required in MobiLink SQL Anywhere remote databases.
Server logic is implemented through synchronization scripts, stored in the MobiLink system
tables in the consolidated database.

A single SQL Anywhere database can synchronize with more than one MobiLink
synchronization server. To allow synchronization with multiple servers, create different
subscriptions for each server.

To add a subscription for a MobiLink user in SQL Central:

1. Connect to SQL Central as described in Connecting to the database in SQL Central.

2. Open the Publications folder, select the publication for which you want to enter a
subscription, select the Synchronization Subscriptions tab in the right pane of SQL
Central, then select File>New>Synchronization Subscription from the menu bar.

Instead of creating a new subscription in the Publications folder, you can create one in
the MobiLink Users folder by double-clicking the user for whom you want to create a
subscription, and then selecting File>New>Synchronization Subscription from the menu
bar.

3. In the Create Synchronization Subscription wizard, select the user for whom you want to
enter a subscription and click Finish.

If you started the wizard from the MobiLink Users folder, the wizard prompts you to
select the publication to which you want to subscribe. In this case, select the publication
and click Finish.

To modify a subscription in SQL Central:

1. Connect to SQL Central as described in Connecting to the database in SQL Central.

2. Open the MobiLink Users folder and double-click the name of the MobiLink user who
owns the subscription you want to modify.

3. On the Synchronization Subscriptions tab, right-click the subscription you want to
modify and select Properties from the pop-up menu.

4. Change the properties as needed on the Connection and Extended Options pages of the
Synchronization Subscription Properties dialog box.

To delete a synchronization subscription in SQL Central:

1. Connect to SQL Central as described in Connecting to the database in SQL Central.

Data Access Techniques

Page 174

2. Open the MobiLink Users folder and double-click the name of the MobiLink user who
owns the subscription you want to delete.

3. On the Synchronization Subscriptions tab, right-click the subscription you want to delete
and click Delete.

4. Click Yes in the Confirm Delete dialog box.

4.2.6 Synchronization techniques

This section highlights some issues that you need to consider when designing an application
that uses MobiLink synchronization.

Limiting data downloads

One of the major goals of synchronization is to increase the speed and efficiency of data
movement by restricting the amount of data moved. To limit the data transferred by the
download_cursor script, you can partition data based on its timestamp, the MobiLink user
name, or both.

Timestamp partitioning

One way to limit downloads to data changed since the last download is to add a last_modified
column to each table in the consolidated database (or, if the table itself cannot be changed,
to a shadow table that holds the primary key and that is joined to the original table in the
download_cursor script). The last_modified column need only be added to the consolidated
database.

In SQL Anywhere, you can use built-in DEFAULT TIMESTAMP datatypes for this
column. In other DBMSs, you need to provide an update trigger to set the timestamp of the
last_modified column.

The timestamp is generated on the consolidated database and downloaded unmodified to the
remote database during synchronization; the time zone of the remote database does not affect
it.

User-based partitioning

The download_cursor script has two parameters: last_download, of datatype datetime, and
ml_username, of type varchar(128). You can use these parameters to restrict the download
not only to rows that have changed since the last synchronization, but also to rows that
belong to the current user.

In this sample download_cursor script, only those rows are downloaded that have been
modified since the last synchronization, and that apply to the sales representative whose ID
matches the MobiLink user ID:

SELECT order_id, cust_id, order_date
 FROM Sales_Order
WHERE last_modified >= ?
 AND sales_rep = ?

For this to work correctly, the MobiLink user ID must match the sales_rep ID. If this is not
the case, you might need to join a table that associates these two IDs.

Primary key uniqueness

Data Access Techniques

Page 175

In a conventional client/server environment where clients are always connected, referential
integrity is directly imposed. In a mobile environment, you must ensure that primary keys are
unique and that they are never updated. There are several techniques for achieving this, such
as using primary key pools.

Handling conflicts

You need to handle conflicts that arise when, for example, two remote users update the same
rows but synchronize at different intervals, so that the latest synchronization might not be the
latest update. MobiLink provides mechanisms to detect and resolve conflicts.

Deleting rows from the remote database only

By default, when a user starts a synchronization, the net result of all the changes made to the
database since the last synchronization is uploaded to the consolidated database. However,
sometimes a remote user deletes certain rows from the remote database to recapture space,
perhaps because the data is old or a customer has transferred to another sales agent. Usually,
those deleted rows should not be deleted from the consolidated database.

One way to handle this is to use the command STOP SYNCHRONIZATION DELETE in a
script in your PowerBuilder application to hide the SQL DELETE statements that follow it
from the transaction log. None of the subsequent DELETE operations on the connection will
be synchronized until the START SYNCHRONIZATION DELETE statement is executed.

For example, you might provide a menu item called Delete Local where the code that handles
the delete is wrapped, as in this example:

STOP SYNCHRONIZATION DELETE;
// call code to perform delete operation
START SYNCHRONIZATION DELETE;
COMMIT;

There are other approaches to handling deletes. For more information, see the chapter on
synchronization techniques in the online MobiLink - Server Administration book.

4.3 Using PowerBuilder XML Services

About this chapter

This chapter presents an overview of XML services in PowerBuilder. It describes the
PowerBuilder Document Object Model (PBDOM), and describes how to use it in a
PowerBuilder application.

4.3.1 About XML and PowerBuilder

PowerBuilder provides several features that enable you to work with the Extensible Markup
Language (XML). You can:

• Export the data in a DataWindow object to XML, and import data in an XML document or
string into a DataWindow object

• Determine whether an XML document or string is well-formed or conforms to a schema or
DTD using the XMLParseFile and XMLParseString PowerScript functions

• Build applications and components that can produce and process XML documents

Data Access Techniques

Page 176

For an overview of XML and information about the export and import capabilities in the
DataWindow, see Section 6.12, “Exporting and Importing XML Data” in Users Guide.

For information about the XML parsing functions, see Section 2.4.882, “XMLParseFile” in
PowerScript Reference and Section 2.4.883, “XMLParseString” in PowerScript Reference.

This chapter describes how you can produce and process XML documents using the
PowerBuilder Document Object Model.

4.3.2 About PBDOM

PBDOM is the PowerBuilder implementation of the Document Object Model (DOM), a
programming interface defining the means by which XML documents can be accessed and
manipulated.

Although PBDOM is not an implementation of the World Wide Web Consortium (W3C)
DOM API, it is very similar. The PBDOM PowerBuilder API can be used for reading,
writing, and manipulating standard-format XML from within PowerScript code. PBDOM
portrays an XML document as a collection of interconnected objects and provides intuitive
methods indicating the use and functionality of each object.

PBDOM is also similar to JDOM, which is a Java-based document object model for XML
files.

For information on the W3C DOM and JDOM objects and hierarchies, refer to their
respective specifications. The W3C DOM specification is available at http://www.w3.org/
DOM/. The JDOM specification, or a link to it, is available at http://www.jdom.org/docs/.

With PBDOM, your applications can parse existing XML documents and extract the
information contained as part of a business process or in response to an external request.
Applications can also produce XML documents that conform to the type or schema required
by other applications, processes, or systems. Existing XML documents can be read and
modified by manipulating or transforming the PBDOM tree of objects instead of having to
edit XML strings directly.

You can also build components that can produce or process XML documents for use in
multitier applications or as part of a Web service.

Node trees

PBDOM interacts with XML documents according to a tree-view model consisting of parent
and child nodes. A document element represents the top-level node of an XML document.
Each child node of the document element has one or many child nodes that represent the
branches of the tree. Nodes in the tree are accessible through PBDOM class methods.

XML parser

The PBDOM XML parser is used to load and parse an XML document, and also to generate
XML documents based on user-specified DOM nodes.

PBDOM provides all the methods you need to traverse the node tree, access the nodes
and attribute values (if any), insert and delete nodes, and convert the node tree to an XML
document so that it can be used by other systems.

4.3.3 PBDOM object hierarchy

The following figure shows the PBDOM object hierarchy:

http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.jdom.org/docs/

Data Access Techniques

Page 177

Figure: The PBDOM object hierarchy

PBDOM_OBJECT and its descendants

The base class for PBDOM objects that represent XML nodes, PBDOM_OBJECT, inherits
from the PowerBuilder NonVisualObject class. Each of the node types is represented
by a PBDOM class whose methods you use to access objects in a PBDOM node tree.
PBDOM_OBJECT and its descendants are described in PBDOM node objects. You can also
find some information about XML node types in Section 6.12, “Exporting and Importing
XML Data” in Users Guide.

PBDOM_BUILDER

The PBDOM_BUILDER class also inherits from NonVisualObject. It serves as a factory
class that creates a PBDOM_DOCUMENT from various XML input sources including a
string, a file, and a DataStore.

Building a PBDOM_DOCUMENT from scratch

To build a PBDOM_DOCUMENT without a source that contains existing XML, use
the PBDOM_DOCUMENT NewDocument methods.

PBDOM_EXCEPTION

The PBDOM_EXCEPTION class inherits from the PowerBuilder Exception class. It
extends the Exception class with a method that returns a predefined exception code when
an exception is raised in a PBDOM application. For more information about this class, see
Handling PBDOM exceptions.

4.3.4 PBDOM node objects

This section describes the PBDOM_OBJECT class and all of the classes that descend from it:

• PBDOM_OBJECT

• PBDOM_DOCUMENT

• PBDOM_DOCTYPE

• PBDOM_ELEMENT

Data Access Techniques

Page 178

• PBDOM_ATTRIBUTE

• PBDOM_ENTITYREFERENCE

• PBDOM_CHARACTERDATA

• PBDOM_TEXT

• PBDOM_CDATA

• PBDOM_COMMENT

• PBDOM_PROCESSINGINSTRUCTION

For detailed descriptions of PBDOM class methods, see Part I, “PowerBuilder Extension
Reference”.

4.3.4.1 PBDOM_OBJECT

The PBDOM_OBJECT class represents any node in an XML node tree and serves as the base
class for specialized PBDOM classes that represent specific node types. The DOM class that
corresponds to PBDOM_OBJECT is the Node object. PBDOM_OBJECT contains all the
basic features required by derived classes. A node can be an element node, a document node,
or any of the node types listed above that derive from PBDOM_OBJECT.

Methods

The PBDOM_OBJECT base class has the following methods:

• AddContent, GetContent, InsertContent, RemoveContent, and SetContent to allow you to
manipulate the children of the PBDOM_OBJECT

• Clone to allow you to make shallow or deep clones of the PBDOM_OBJECT

• Detach to detach the PBDOM_OBJECT from its parent

• Equals to test for equality with another PBDOM_OBJECT

• GetName and SetName to get and set the name of the PBDOM_OBJECT

• GetObjectClass and GetObjectClassString to identify the class of the PBDOM_OBJECT

• GetOwnerDocumentObject to identify the owner PBDOM_DOCUMENT of the current
PBDOM_OBJECT

• GetParentObject and SetParentObject to get and set the parent of the PBDOM_OBJECT

• GetText, GetTextNormalize, and GetTextTrim to obtain the text data of the
PBDOM_OBJECT

• HasChildren to determine whether the PBDOM_OBJECT has any children

• IsAncestorObjectOf to determine whether the PBDOM_OBJECT is the ancestor of another
PBDOM_OBJECT

PBDOM_OBJECT inheritance

Data Access Techniques

Page 179

The PBDOM_OBJECT class is similar to a virtual class in C++ in that it is not expected to
be directly instantiated and used. For example, although a PBDOM_OBJECT can be created
using the PowerScript CREATE statement, its methods cannot be used directly:

PBDOM_OBJECT pbdom_obj
pbdom_obj = CREATE PBDOM_OBJECT
pbdom_obj.SetName("VIRTUAL_PBDOM_OBJ") //exception!

The third line of code above throws an exception because it attempts to directly access
the SetName method for the base class PBDOM_OBJECT. A similar implementation
is valid, however, when the SetName method is accessed from a derived class, such as
PBDOM_ELEMENT:

PBDOM_OBJECT pbdom_obj
pbdom_obj = CREATE PBDOM_ELEMENT
pbdom_obj.SetName ("VIRTUAL_PBDOM_OBJ")

Using the base PBDOM_OBJECT as a placeholder

The PBDOM_OBJECT class can be used as a placeholder for an object of a derived class:

PBDOM_DOCUMENT pbdom_doc
PBDOM_OBJECT pbdom_obj

pbdom_doc = CREATE PBDOM_DOCUMENT
pbdom_doc.NewDocument ("", "", &
 "Root_Element_From_Doc_1", "", "")
pbdom_obj = pbdom_doc.GetRootElement
pbdom_obj.SetName &
 ("Root_Element_From_Doc_1_Now_Changed")

The instantiated PBDOM_OBJECT pbdom_obj is assigned to a PBDOM_DOCUMENT
object, which holds the return value of the GetRootElement method. Here, pbdom_obj holds
a reference to a PBDOM_ELEMENT and can be operated on legally like any object of a
class derived from PBDOM_OBJECT.

Standalone objects

A PBDOM_OBJECT can be created as a self-contained object independent of any document
or parent PBDOM_OBJECT. Such a PBDOM_OBJECT is known as a standalone object. For
example:

PBDOM_ELEMENT pbdom_elem_1
pbdom_elem_1 = Create PBDOM_ELEMENT
pbdom_elem_1.SetName("pbdom_elem_1")

pbdom_elem_1 is instantiated in the derived class PBDOM_ELEMENT using the Create
keyword. The SetName method can then be invoked from the pbdom_elem_1 object, which
is a standalone object not contained within any document.

Standalone objects can perform any legal PBDOM operations, but standalone status does not
give the object any special advantages or disadvantages.

Parent-owned and document-owned objects

A PBDOM_OBJECT can be assigned a parent by appending it to another standalone
PBDOM_OBJECT, as in the following example:

PBDOM_ELEMENT pbdom_elem_1
PBDOM_ELEMENT pbdom_elem_2

pbdom_elem_1 = Create PBDOM_ELEMENT

Data Access Techniques

Page 180

pbdom_elem_2 = Create PBDOM_ELEMENT

pbdom_elem_1.SetName("pbdom_elem_1")
pbdom_elem_2.SetName("pbdom_elem_2")
pbdom_elem_1.AddContent(pbdom_elem_2)

Two PBDOM_ELEMENT objects, pbdom_elem_1 and pbdom_elem_2, are instantiated. The
pbdom_elem_2 object is appended as a child object of pbdom_elem_1 using the AddContent
method.

In this example, neither pbdom_elem_1 nor pbdom_elem_2 is owned by any document, and
the pbdom_elem_1 object is still standalone. If pbdom_elem_1 were assigned to a parent
PBDOM_OBJECT owned by a document, pbdom_elem_1 would cease to be a standalone
object.

4.3.4.2 PBDOM_DOCUMENT

The PBDOM_DOCUMENT class derives from PBDOM_OBJECT and represents an XML
DOM document. The PBDOM_DOCUMENT methods allow access to the root element,
processing instructions, and other document-level information.

Methods

In addition to the methods inherited from PBDOM_OBJECT, the PBDOM_DOCUMENT
class has the following methods:

• DetachRootElement, GetRootElement, HasRootElement, and SetRootElement to
manipulate the root element of the PBDOM_DOCUMENT

• GetDocType and SetDocType to get and set the DOCTYPE declaration of the XML
document

• NewDocument to build a new PBDOM_DOCUMENT from scratch

• SaveDocument to save the content of the DOM tree in the PBDOM_DOCUMENT to a file

4.3.4.3 PBDOM_DOCTYPE

The PBDOM_DOCTYPE class represents the document type declaration object of an XML
DOM document. The PBDOM_DOCTYPE methods allow access to the root element name,
the internal subset, and the system and public IDs.

Methods

In addition to the methods inherited from PBDOM_OBJECT, the PBDOM_DOCTYPE class
has the following methods:

• GetPublicID, SetPublicID, GetSystemID, and SetSystemID to get and set the public and
system IDs of an externally-referenced ID declared in the PBDOM_DOCTYPE

• GetInternalSubset and SetInternalSubset to get and set the internal subset data of the
PBDOM_DOCTYPE

4.3.4.4 PBDOM_ELEMENT

The PBDOM_ELEMENT represents an XML element modeled in PowerScript. The
PBDOM_ELEMENT methods allow access to element attributes, children, and text.

Data Access Techniques

Page 181

Methods

In addition to the methods inherited from PBDOM_OBJECT, the PBDOM_ELEMENT class
has the following methods:

• AddNamespaceDeclaration and RemoveNamespaceDeclaration to add namespace
declarations to and remove them from the PBDOM_ELEMENT

• GetAttribute, GetAttributes, GetAttributeValue, HasAttributes, RemoveAttribute,
SetAttribute, and SetAttributes to manipulate the attributes of the PBDOM_ELEMENT

• GetChildElement, GetChildElements, HasChildElements, RemoveChildElement, and
RemoveChildElements to manipulate the children of the PBDOM_ELEMENT

• GetNamespacePrefix and GetNamespaceURI to get the prefix and URI of the namespace
associated with the PBDOM_ELEMENT

• GetQualifiedName to get the full name of the PBDOM_ELEMENT including the prefix (if
any)

• SetDocument to set a PBDOM_DOCUMENT as the parent of the PBDOM_ELEMENT

• SetNamespace to set the namespace of the PBDOM_ELEMENT

• SetText to set the text content of the PBDOM_ELEMENT

The relationship between PBDOM_ELEMENT and PBDOM_ATTRIBUTE

In PBDOM, an XML element's attributes are not its children. They are properties of elements
rather than having a separate identity from the elements they are associated with.

Consider the following simple XML document:

<root attr="value1">
 <child attr_1="value1" attr_2="value2"/>
</root>

The equivalent PBDOM tree is shown in the following figure:

Figure: Relationship between PBDOM_ELEMENTs and PBDOM_ATTRIBUTEs

Data Access Techniques

Page 182

The solid line joining root with child represents a parent-child relationship. The dashed lines
represent a "property-of" relationship between an attribute and its owner element.

The PBDOM_ELEMENT content management methods do not apply to
PBDOM_ATTRIBUTE objects. There are separate get, set, and remove methods for
attributes.

Because they are not children of their owner elements, PBDOM does not consider attributes
as part of the overall PBDOM document tree, but they are linked to it through their owner
elements.

An attribute can contain child objects (XML text and entity reference nodes), so an attribute
forms a subtree of its own.

Because an element's attributes are not considered its children, they have no sibling
relationship among themselves as child objects do. In the sample XML document and in
the following figure, attr_1 and attr_2 are not siblings. The order of appearance of attributes
inside its owner element has no significance.

Attribute setting and creation

In PBDOM, an XML element's attribute is set using the PBDOM_ELEMENT SetAttribute
and SetAttributes methods. These methods always attempt to create new attributes for the
PBDOM_ELEMENT and attempt to replace existing attributes with the same name and
namespace URI.

If the PBDOM_ELEMENT already contains an existing attribute with the same name
and namespace URI, these methods first remove the existing attribute and then insert a
new attribute into the PBDOM_ELEMENT. Calling the SetAttribute method can cause a
PBDOM_ATTRIBUTE (representing an existing attribute of the PBDOM_ELEMENT) to
become detached from its owner PBDOM_ELEMENT.

For example, consider the following element:

<an_element an_attr="some_value"/>

If a PBDOM_ELEMENT object pbdom_an_elem represents the element an_element and
the following statement is issued, the method first attempts to create a new attribute for the
an_element element:

pbdom_an_elem.SetAttribute("an_attr", "some_other_value")

Then, because an_element already contains an attribute with the name an_attr, the attribute
is removed. If there is an existing PBDOM_ATTRIBUTE object that represents the
original an_attr attribute, this PBDOM_ATTRIBUTE is detached from its owner element
(an_element).

For more information about attributes and namespaces, see XML namespaces.

4.3.4.5 PBDOM_ATTRIBUTE

The PBDOM_ATTRIBUTE class represents an XML attribute modeled in PowerScript.
The PBDOM_ATTRIBUTE methods allow access to element attributes and namespace
information.

Methods

Data Access Techniques

Page 183

In addition to the methods inherited from PBDOM_OBJECT, the PBDOM_ATTRIBUTE
class has the following methods:

• GetBooleanValue, SetBooleanValue, GetDateValue, SetDateValue, GetDateTimeValue,
SetDateTimeValue, GetDoubleValue, SetDoubleValue, GetIntValue, SetIntValue,
GetLongValue, SetLongValue, GetRealValue, SetRealValue, GetTimeValue,
SetTimeValue, GetUIntValue, SetUintValue, GetULongValue,and SetULongValue to get
and set the value of the PBDOM_ATTRIBUTE as the specified datatype

• GetNamespacePrefix and GetNamespaceURI to get the prefix and URI of the namespace
associated with the PBDOM_ATTRIBUTE

• GetOwnerElementObject and SetOwnerElementObject to get and set the owner
PBDOM_ELEMENT of the PBDOM_ATTRIBUTE

• GetQualifiedName to get the full name of the PBDOM_ATTRIBUTE including the prefix,
if any

• SetNamespace to set the namespace of the PBDOM_ATTRIBUTE

• SetText to set the text content of the PBDOM_ATTRIBUTE

Child PBDOM_OBJECTs

A PBDOM_ATTRIBUTE contains a subtree of child PBDOM_OBJECTs. The child objects
can be a combination of PBDOM_TEXT and PBDOM_ENTITYREFERENCE objects.

The following example produces a PBDOM_ELEMENT named elem that contains a
PBDOM_ATTRIBUTE named attr:

PBDOM_ATTRIBUTE pbdom_attr
PBDOM_TEXT pbdom_txt
PBDOM_ENTITYREFERENCE pbdom_er
PBDOM_ELEMENT pbdom_elem

pbdom_elem = Create PBDOM_ELEMENT
pbdom_elem.SetName ("elem")

pbdom_attr = Create PBDOM_ATTRIBUTE
pbdom_attr.SetName("attr")
pbdom_attr.SetText("Part 1 ")

pbdom_txt = Create PBDOM_TEXT
pbdom_txt.SetText (" End.")

pbdom_er = Create PBDOM_ENTITYREFERENCE
pbdom_er.SetName("ER")

pbdom_attr.AddContent(pbdom_er)
pbdom_attr.AddContent(pbdom_txt)

pbdom_elem.SetAttribute(pbdom_attr)

The element tag in the XML looks like this:

<elem attr="Part 1 &ER; End.">

In the following figure, the arrows indicate a parent-child relationship between the
PBDOM_ATTRIBUTE and the other PBDOM_OBJECTs:

Data Access Techniques

Page 184

Figure: PBDOM_ATTRIBUTE subtree example

The Default PBDOM_TEXT child

A PBDOM_ATTRIBUTE generally always contains at least one PBDOM_TEXT child that
might contain an empty string. This is the case unless the RemoveContent method has been
called to remove all contents of the PBDOM_ATTRIBUTE.

The following examples show how a PBDOM_TEXT object with an empty string can
become the child of a PBDOM_ATTRIBUTE.

Example 1

The following example uses the PBDOM_ELEMENT SetAttribute method. The name
of the PBDOM_ATTRIBUTE is set to attr but the text value is an empty string. The
PBDOM_ATTRIBUTE will have one child PBDOM_TEXT that will contain an empty
string:

PBDOM_DOCUMENT pbdom_doc
PBDOM_ATTRIBUTE pbdom_attr
PBDOM_OBJECT pbdom_obj_array[]

try

 pbdom_doc = Create PBDOM_DOCUMENT
 pbdom_doc.NewDocument("root")

 // Note that the name of the attribute is set to
 // "attr" and its text value is the empty string ""
 pbdom_doc.GetRootElement().SetAttribute("attr", "")

 pbdom_attr = &
 pbdom_doc.GetRootElement().GetAttribute("attr")

 MessageBox ("HasChildren", &
 string(pbdom_attr.HasChildren()))

catch(PBDOM_EXCEPTION pbdom_except)
 MessageBox ("PBDOM_EXCEPTION", &
 pbdom_except.GetMessage())
end try

When you use the SaveDocument method to render pbdom_doc as XML, it looks like this:

Data Access Techniques

Page 185

<root attr="" />

Example 2

The following example creates a PBDOM_ATTRIBUTE and sets its name to attr. No
text value is set, but a PBDOM_TEXT object is automatically created and attached to the
PBDOM_ATTRIBUTE. This is the default behavior for every PBDOM_ATTRIBUTE
created in this way:

PBDOM_DOCUMENT pbdom_doc
PBDOM_ATTRIBUTE pbdom_attr

try
 pbdom_doc = Create PBDOM_DOCUMENT
 pbdom_doc.NewDocument("root")

 // Create a PBDOM_ATTRIBUTE and set its name to "attr"
 pbdom_attr = Create PBDOM_ATTRIBUTE
 pbdom_attr.SetName("attr")

 pbdom_doc.GetRootElement().SetAttribute(pbdom_attr)

 MessageBox ("HasChildren", &
 string(pbdom_attr.HasChildren()))

catch(PBDOM_EXCEPTION pbdom_except)
 MessageBox ("PBDOM_EXCEPTION", &
 pbdom_except.GetMessage())
end try

When you call the SetText method (or any of the other Set* methods except SetNamespace),
the default PBDOM_TEXT is replaced by a new PBDOM_TEXT. If you call the SetContent
method, you can replace the default PBDOM_TEXT by a combination of PBDOM_TEXT
and PBDOM_ENTITYREFERENCE objects.

4.3.4.6 PBDOM_ENTITYREFERENCE

The PBDOM_ENTITYREFERENCE class defines behavior for an XML entity reference
node. It is a simple class intended primarily to help you insert entity references within
element nodes as well as attribute nodes.

When the PBDOM_BUILDER class parses an XML document and builds up the DOM tree,
it completely expands entities as they are encountered in the DTD. Therefore, immediately
after a PBDOM_DOCUMENT object is built using any of the PBDOM_BUILDER build
methods, there are no entity reference nodes in the resulting document tree.

A PBDOM_ENTITYREFERENCE object can be created at any time and inserted into any
document whether or not there is any corresponding DOM entity node representing the
referenced entity in the document.

Methods

The PBDOM_ENTITYREFERENCE class has only methods that are inherited from
PBDOM_OBJECT.

4.3.4.7 PBDOM_CHARACTERDATA

The PBDOM_CHARACTERDATA class derives from PBDOM_OBJECT and
represents character-based content (not markup) within an XML document. The

Data Access Techniques

Page 186

PBDOM_CHARACTERDATA class extends PBDOM_OBJECT with methods specifically
designed for manipulating character data.

Methods

In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_CHARACTERDATA class has the following methods:

• Append to append a text string or the text data of a PBDOM_CHARACTERDATA object
to the text in the current object

• SetText to set the text content of the PBDOM_CHARACTERDATA object

Parent of three classes

The PBDOM_CHARACTERDATA class is the parent class of three other PBDOM classes:

• PBDOM_TEXT

• PBDOM_CDATA

• PBDOM_COMMENT

The PBDOM_CHARACTERDATA class, like its parent class PBDOM_OBJECT, is
a "virtual" class (similar to a virtual C++ class) in that it is not expected to be directly
instantiated and used. For example, creating a PBDOM_CHARACTERDATA with the
CREATE statement is legal in PowerScript, but operating on it directly by calling its SetText
method is not. The last line in this code raises an exception:

PBDOM_CHARACTERDATA pbdom_chrdata
pbdom_chrdata = CREATE PBDOM_CHARACTERDATA

pbdom_chrdata.SetText("character string") //exception!

In this example, pbdom_chrdata is declared as a PBDOM_CHARACTERDATA but is
instantiated as a PBDOM_TEXT. Calling SetText on pbdom_chrdata is equivalent to calling
the PBDOM_TEXT SetText method:

PBDOM_CHARACTERDATA pbdom_chrdata
pbdom_chrdata = CREATE PBDOM_TEXT

pbdom_chrdata.SetText("character string")

4.3.4.8 PBDOM_TEXT

The PBDOM_TEXT class derives from PBDOM_CHARACTERDATA and represents a
DOM text node in an XML document.

Methods

The PBDOM_TEXT class has no methods that are not inherited from PBDOM_OBJECT or
PBDOM_CHARACTERDATA.

Using PBDOM_TEXT objects

PBDOM_TEXT objects are commonly used to represent the textual content of a
PBDOM_ELEMENT or a PBDOM_ATTRIBUTE. Although PBDOM_TEXT objects

Data Access Techniques

Page 187

are not delimited by angle brackets, they are objects and do not form the value of a parent
PBDOM_ELEMENT.

A PBDOM_TEXT object represented in graphical form in a PBDOM tree is a leaf node
and contains no child objects. For example, the following figure represents the following
PBDOM_ELEMENT:

<parent_element>some text</parent_element>

Figure: PBDOM_TEXT parent-child relationship

The arrow indicates a parent-child relationship.

Occurrence of PBDOM_TEXTs

When an XML document is first parsed, if there is no markup inside an element's content,
the text within the element is represented as a single PBDOM_TEXT object. This
PBDOM_TEXT object is the only child of the element. If there is markup, it is parsed into a
list of PBDOM_ELEMENT objects and PBDOM_TEXT objects that form the list of children
of the element.

For example, parsing the following XML produces one PBDOM_ELEMENT that represents
<element_1> and one PBDOM_TEXT that represents the textual content Some Text:

<root>
 <element_1>Some Text</element_1>
</root>

The <element_1> PBDOM_ELEMENT has the PBDOM_TEXT object as its only child.

Consider this document:

<root>
 <element_1>
 Some Text
 <element_1_1>Sub Element Text</element_1_1>
 More Text
 <element_1_2/>
 Yet More Text
 </element_1>
</root>

Data Access Techniques

Page 188

Parsing this XML produces a PBDOM_ELEMENT that represents <element_1> and its five
children:

• A PBDOM_TEXT representing Some Text

• A PBDOM_ELEMENT representing <element_1_1/>

• A PBDOM_TEXT representing More Text

• A PBDOM_ELEMENT representing <element_1_2/>

• A PBDOM_TEXT representing Yet More Text

Adjacent PBDOM_TEXT objects

You can create adjacent PBDOM_TEXT objects that represent the contents of a given
element without any intervening markup. For example, suppose you start with this document:

<root>
 <element_1>Some Text</element_1>
</root>

Calling AddContent("More Text") on the element_1 PBDOM_ELEMENT produces the
following result:

<root>
 <element_1>Some TextMore Text</element_1>
</root>

There are now two PBDOM_TEXT objects representing "Some Text" and "More Text" that
are adjacent to each other. There is nothing between them, and there is no way to represent
the separation between them.

Persistence of PBDOM_TEXT objects

The separation of adjacent PBDOM_TEXT objects does not usually persist between DOM
editing sessions. When the document produced by adding "More Text" shown in the
preceding example is reopened and reparsed, only one PBDOM_TEXT object represents
"Some TextMore Text".

4.3.4.9 PBDOM_CDATA

The PBDOM_CDATA class derives from PBDOM_TEXT and represents an XML DOM
CDATA section.

Methods

The PBDOM_CDATA class has no methods that are not inherited from PBDOM_OBJECT
or PBDOM_CHARACTERDATA.

Using CDATA objects

You can think of a PBDOM_CDATA object as an extended PBDOM_TEXT object. A
PBDOM_CDATA object is used to hold text that can contain characters that are prohibited
in XML, such as < and &. Their primary purpose is to allow you to include these special
characters inside a large block of text without using entity references.

This example contains a PBDOM_CDATA object:

Data Access Techniques

Page 189

<some_text>
<![CDATA[(x < y) & (y < z) => x < z]]>
</some_text>

To express the same textual content as a PBDOM_TEXT object, you would need to write
this:

<some_text>
(x < y) & (y < z) => x < z
</some_text>

Although the PBDOM_CDATA class is derived from PBDOM_TEXT, a PBDOM_CDATA
object cannot always be inserted where a PBDOM_TEXT can be inserted. For example,
a PBDOM_TEXT object can be added as a child of a PBDOM_ATTRIBUTE, but a
PBDOM_CDATA object cannot.

4.3.4.10 PBDOM_COMMENT

The PBDOM_COMMENT class represents a DOM comment node within
an XML document. The PBDOM_COMMENT class is derived from the
PBDOM_CHARACTERDATA class.

Methods

The PBDOM_COMMENT class has no methods that are not inherited from
PBDOM_OBJECT or PBDOM_CHARACTERDATA.

Using comments

Comments are useful for annotating parts of an XML document with user-readable
information.

When a document is parsed, any comments found within the document persist in memory as
part of the DOM tree. A PBDOM_COMMENT created at runtime also becomes part of the
DOM tree.

An XML comment does not usually form part of the content model of a document. The
presence or absence of comments has no effect on a document's validity, and there is no
requirement that comments be declared in a DTD.

4.3.4.11 PBDOM_PROCESSINGINSTRUCTION

The PBDOM_PROCESSINGINSTRUCTION class represents an XML processing
instruction (PI). The PBDOM_PROCESSINGINSTRUCTION methods allow access to
the processing instruction target and its data. The data can be accessed as a string or, where
appropriate, as name/value pairs.

The actual processing instruction of a PI is a string. This is so even if the instruction
is cut up into separate name="value" pairs. PBDOM, however, does support such
a PI format. If the PI data does contain these pairs, as is commonly the case, then
PBDOM_PROCESSINGINSTRUCTION parses them into an internal list of name/value
pairs.

Methods

In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_PROCESSINGINSTRUCTION class has the following methods:

Data Access Techniques

Page 190

• GetData and SetData to get and set the raw data of the
PBDOM_PROCESSINGINSTRUCTION object

• GetNames to get a list of names taken from the part of the
PBDOM_PROCESSINGINSTRUCTION data that is separated into name="value" pairs

• GetValue, RemoveValue, and SetValue to get, remove, and set the value of a specified
name/value pair in the PBDOM_PROCESSINGINSTRUCTION object

• GetTarget to get the target of a PBDOM_PROCESSINGINSTRUCTION. For example,
the target of the XML declaration, which is a special processing instruction, is the string
xml.

4.3.5 Adding pbdom.pbx to your application

The PBDOM classes are implemented in a DLL file with the suffix PBX (for PowerBuilder
extension). The simplest way to add the PBDOM classes to a PowerBuilder target is to
import the object descriptions in the pbdom.pbx PBX file into a library in the PowerBuilder
System Tree. You can also add the pbdom.pbd file, which acts as a wrapper for the classes, to
the target's library search path.

pbdom.pbx is installed to %systemdrive%\Program Files (x86)\Appeon\Common
\PowerBuilder\Runtime [version]\ and pbdom.pbd is installed in %AppeonInstallPath%
\PowerBuilder [version]\IDE\. When you are building a PBDOM application, you do not
need to copy pbdom.pbx to another location, but you do need to deploy it with the application
in a directory in the application's search path.

To import the descriptions in an extension into a library:

1. In the System Tree, expand the target in which you want to use the extension, right-click
a library, and select Import PB Extension from the pop-up menu.

Data Access Techniques

Page 191

2. Navigate to the location of the PBX file and click Open.

Each class in the PBX displays in the System Tree so that you can expand it, view its
properties, events, and methods, and drag and drop to add them to your scripts.

After you import pbdom.pbx, the PBDOM objects display in the System Tree:

4.3.6 Using PBDOM

This section describes how to accomplish basic tasks using PBDOM classes and
methods. To check for complete code samples that you can download and test, select
Programs>Appeon>PowerBuilder [version]>Code Samples from the Windows Start menu.

4.3.6.1 Validating the XML

Before you try to build a document from a file or string, you can test whether the XML
is well formed or, optionally, whether it conforms to a DTD or Schema using the
XMLParseFile or XMLParseString PowerScript functions. For example, this code tests
whether the XML in a file is well formed:

long ll_ret
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ValNever!)

By default, these functions display a message box if errors occur. You can also provide
a parsingerrors string argument to handle them yourself. For more information about
these functions, see Section 2.4.882, “XMLParseFile” in PowerScript Reference and
Section 2.4.883, “XMLParseString” in PowerScript Reference.

Data Access Techniques

Page 192

4.3.6.2 Creating an XML document from XML

The PBDOM_BUILDER class provides three methods for creating a PBDOM_DOCUMENT
from an existing XML source. It also provides the GetParseErrors method to get a list of any
parsing errors that occur.

Using BuildFromString

The following example uses an XML string and the PBDOM_BUILDER class to create a
PBDOM_DOCUMENT. First the objects are declared:

PBDOM_BUILDER pbdom_builder_new
PBDOM_DOCUMENT pbdom_doc

The objects are then instantiated using the constructor and the PBDOM_BUILDER
BuildFromString method:

pbdombuilder_new = Create PBDOM_Builder
pbdom_doc = pbdombuilder_new.BuildFromString(Xml_doc)

XML can also be loaded directly into a string variable, as in the following example:

string Xml_str
Xml_str = "<?xml version="1.0" ?>"
Xml_str += "<WHITEPAPER>"
Xml_str += "<TITLE>Document Title</TITLE>"
Xml_str += "<AUTHOR>Author Name</AUTHOR>"
Xml_str += "<PARAGRAPH>Document text.</PARAGRAPH>"
Xml_str += "</WHITEPAPER>"

Using BuildFromFile

You can create an XML file using the BuildFromFile method and a string containing the path
to a file from which to create a PBDOM_DOCUMENT:

PBDOM_BUILDER pbdombuilder_new
PBDOM_DOCUMENT pbdom_doc
pbdombuilder_new = Create PBDOM_Builder
pbdom_doc = pbdombuilder_new.BuildFromFile &
 ("c:\pbdom_doc_1.xml")

Using BuildFromDataStore

The following PowerScript code fragment demonstrates how to use the BuildFromDataStore
method with a referenced DataStore object.

PBDOM_Builder pbdom_bldr
pbdom_document pbdom_doc
datastore ds

ds = Create datastore
ds.DataObject = "d_customer"
ds.SetTransObject (SQLCA)
ds.Retrieve

pbdom_doc = pbdom_bldr.BuildFromDataStore(ds)

Using GetParseErrors

After a call to any of the Build methods, you can obtain a list of parsing and validating errors
encountered by the Build methods with the GetParseErrors method:

PBDOM_Builder pbdom_bldr
pbdom_document pbdom_doc
string strParseErrors[]

Data Access Techniques

Page 193

BOOLEAN bRetTemp = FALSE

pbdom_buildr = Create PBDOM_BUILDER
pbdom_doc = pbdom_buildr.BuildFromFile("D:\temp.xml")
bRetTemp = pbdom_buildr.GetParseErrors(strParseErrors)
if bRetTemp = true then
 for l = 1 to UpperBound(strParseErrors)
 MessageBox ("Parse Error", strParseErrors[l])
 next
end if

Parsing errors

If parsing errors are found and GetParseErrors returns true, a complete PBDOM node
tree that can be inspected might still be created.

4.3.6.3 Creating an XML document from scratch

You can create an XML document in a script using the appropriate PBDOM_OBJECT
subclasses and methods. The following code uses the PBDOM_ELEMENT and
PBDOM_DOCUMENT classes and some of their methods to create a simple XML
document.

First, the objects are declared and instantiated:

PBDOM_ELEMENT pbdom_elem_1
PBDOM_ELEMENT pbdom_elem_2
PBDOM_ELEMENT pbdom_elem_3
PBDOM_ELEMENT pbdom_elem_root
PBDOM_DOCUMENT pbdom_doc1

pbdom_elem_1 = Create PBDOM_ELEMENT
pbdom_elem_2 = Create PBDOM_ELEMENT
pbdom_elem_3 = Create PBDOM_ELEMENT

The instantiated objects are assigned names. Note that the PBDOM_DOCUMENT object
pbdom_doc1 is not named:

pbdom_elem_1.SetName("pbdom_elem_1")
pbdom_elem_2.SetName("pbdom_elem_2")
pbdom_elem_3.SetName("pbdom_elem_3")

The objects are arranged into a node tree using the AddContent method. The AddContent
method adds the referenced object as a child node under the object from which AddContent is
invoked:

pbdom_elem_1.AddContent(pbdom_elem_2)
pbdom_elem_2.AddContent(pbdom_elem_3)

Use the NewDocument method to create a new XML document. The parameter value
supplied to the NewDocument method becomes the name of the root element. This name
is then accessed from the PBDOM_DOCUMENT object pbdom_doc1 and assigned to the
PBDOM_ELEMENT object pbdom_elem_root using the GetRootElement method:

pbdom_doc1.NewDocument("Root_Element_From_Doc_1")
pbdom_elem_root = pbdom_doc1.GetRootElement()

The ELEMENT object pbdom_elem_1 and all its child nodes are placed in the new XML
document node tree under the root element using the AddContent method. Note that as the
ancestor node pbdom_elem_1 is placed in the node tree, all its child nodes move as well:

Data Access Techniques

Page 194

pbdom_elem_root.AddContent(pbdom_elem_1)

The XML document created looks like this:

<!DOCTYPE Root_Element_From_Doc_1>
<Root_Element_From_Doc_1>
 <pbdom_elem_1>
 <pbdom_elem_2>
 <pbdom_elem_3/>
 </pbdom_elem_2>
 </pbdom_elem_1>
</Root_Element_From_Doc_1>

4.3.6.4 Accessing node data

An XML document can be read by accessing the elements of its node tree using the
appropriate PBDOM_OBJECT subclasses and methods. The following code uses an array,
the PBDOM_OBJECT, and its descendant class PBDOM_DOCUMENT, and the GetContent
and GetRootElement methods of the PBDOM_DOCUMENT class to access node data on an
XML document.

A PBDOM_DOCUMENT object named pbdom_doc contains the following XML document:

<Root>
 <Element_1>
 <Element_1_1/>
 <Element_1_2/>
 <Element_1_3/>
 </Element_1>
 <Element_2/>
 <Element_3/>
</Root>

The following code declares an array to hold the elements returned from the GetContent
method, which reads the PBDOM_DOCUMENT object named pbdom_doc:

PBDOM_OBJECT pbdom_obj_array[]
...
pbdom_doc.GetContent(ref pbdom_obj_array)

The pbdom_obj_array array now contains one value representing the root element of
pbdom_doc: <Root>.

To access the other nodes in pbdom_doc, the GetRootElement method is used with the
GetContent method.

pbdom_doc.GetRootElement().GetContent &
 (ref pbdom_obj_array)

The pbdom_obj_array array now contains three values corresponding to the three child nodes
of the root element of pbdom_doc: <Element_1>, <Element_2>, and <Element_3>.

PBDOM provides other methods for accessing data, including InsertContent, AddContent,
RemoveContent, and SetContent.

Changing node content with arrays

You can use the AddContent method to change node content:

pbdom_obj_array[3].AddContent("This is Element 3.")

This line of code changes the node tree as follows:

Data Access Techniques

Page 195

<Root>
 <Element_1>
 <Element_1_1/>
 <Element_1_2/>
 <Element_1_3/>
 </Element_1>
 <Element_2/>
 <Element_3>This is Element 3.</Element_3>
</Root>

Arrays and object references

When you use a method such as the GetContent method of the
PBDOM_DOCUMENT class to return an array of PBDOM_OBJECT references,
the references are to instantiated PBDOM objects. If you modify any of these objects
through its array item, the changes are permanent and are reflected in any other arrays
that hold the same object reference.

4.3.6.5 Manipulating the node-tree hierarchy

You can restructure an XML node tree by rearranging its nodes. One means of manipulating
nodes involves detaching a child node from its parent node. This can be accomplished with
the Detach method, as in the following example.

The root element of a PBDOM_DOCUMENT object named pbdom_doc is obtained using
the GetRootElement method:

pbdom_obj = pbdom_doc.GetRootElement()

The root element is detached from the PBDOM_DOCUMENT object, which is the parent
node of the root element:

pbdom_obj.Detach()

PBDOM provides the SetParentObject method to make an object a child of another object.

Checking for parent node

The GetParentObject method can be used to determine whether an element has a parent
object, as in the following example:

pbdom_parent_obj = pbdom_obj.GetParentObject()
if not IsValid(pbdom_parent_obj) then
 MessageBox ("Invalid", "Root Element has no Parent")
end if

If the object on which GetParentObject is called has no parent object, the function returns
NULL.

PBDOM provides similar methods that return information about an element's place in an
XML node tree. These methods include HasChildren, which returns a boolean indicating
whether an object has child objects, and IsAncestorObjectOf, which indicates whether an
object is the ancestor of another object.

4.3.7 Handling PBDOM exceptions

PBDOM defines an exception class, PBDOM_EXCEPTION, derived from the standard
PowerBuilder Exception class. The standard Text property of the Exception class can be

Data Access Techniques

Page 196

used to obtain more detail on the nature of the exception being thrown. The class extends the
PowerBuilder Exception class with one method, GetExceptionCode, that returns the unique
code that identifies the exception being thrown.

For a list of exception codes, see Section 14.1, “PBDOM exceptions” in PowerBuilder
Extension Reference or Section 4.3.7, “Handling PBDOM exceptions”.

PBDOM is a PowerBuilder extension, built using PBNI. The extension itself might throw a
PBXRuntimeError exception. In the following example, the try-catch block checks first for a
PBDOM exception, then for a PBXRuntimeError.

The example builds a PBDOM_DOCUMENT from a passed-in file name and uses a user-
defined function called ProcessData to handle the DOM nodes. ProcessData could be a
recursive function that extracts information from the DOM elements for further processing:

Long ll_ret

ll_ret = XMLParseFile(filename, ValNever!)
if ll_ret < 0 then return

PBDOM_Builder domBuilder

TRY
 domBuilder = CREATE PBDOM_Builder
 PBDOM_Document domDoc
 PBDOM_Element root
 domDoc = domBuilder.BuildFromFile(filename)
 IF IsValid(domDoc) THEN
 IF domDoc.HasChildren() THEN
 PBDOM_Object data[]
 IF domDoc.GetContent(data) THEN
 Long ll_index, ll_count
 ll_count = UpperBound(data)
 FOR ll_index = 1 TO ll_count
 ProcessData(data[ll_index], 0)
 NEXT
 END IF
 END IF
 END IF

CATCH (PBDOM_Exception pbde)
 MessageBox("PBDOM Exception", pbde.getMessage())
CATCH (PBXRuntimeError re)
 MessageBox("PBNI Exception", re.getMessage())
END TRY

4.3.8 XML namespaces

XML namespaces provide a way to create globally unique names to distinguish between
elements and attributes with the same name but of different terminologies. For example, in an
XML invoice document for a bookstore, the name "date" could be used by accounting for the
date of the order and by order fulfillment for the date of publication.

An XML namespace is identified by a Uniform Resource Identifier (URI), a short string that
uniquely identifies resources on the Web. The elements and attributes in each namespace can
be uniquely identified by prefixing the element or attribute name (the local name) with the
URI of the namespace.

Associating a prefix with a namespace

Data Access Techniques

Page 197

You declare an XML namespace using xmlns as part of a namespace declaration attribute.
With the namespace declaration attribute, you can associate a prefix with the namespace.

For example, the following namespace declaration attribute declares the http://www.pre.com
namespace and associates the prefix pre with this namespace:

xmlns:pre="http://www.pre.com"

Default XML namespace

If an XML namespace declaration does not specify a prefix, the namespace becomes a default
XML namespace. For example, the following element, digicom, declares the namespace
http://www.digital_software.com:

<digicom xmlns="http://www.digital_software.com" />

The namespace http://www.digital_software.com is the in-scope default namespace for the
element digicom and any child elements that digicom might contain. The child elements of
digicom will automatically be in this namespace.

The NONAMESPACE declaration

The following namespace declaration is known as the NONAMESPACE declaration:

xmlns=""

The containing element and its child elements are declared to be in no namespace. An
element that is in the NONAMESPACE namespace has its namespace prefix and URI set to
empty strings.

Initial state

When a PBDOM_ELEMENT or a PBDOM_ATTRIBUTE is first created, it has no name,
and the namespace information is by default set to the NONAMESPACE namespace (that is,
its namespace prefix and URI are both empty strings). The SetName method is used to set the
local name and the SetNamespace method is used to set the namespace prefix and URI.

The name is required

The name is a required property of a PBDOM_ELEMENT and
PBDOM_ATTRIBUTE, but the namespace information is not.

Retrieving from a parsed document

If a PBDOM_ELEMENT or PBDOM_ATTRIBUTE is retrieved programmatically from a
parsed document, then its name and namespace information are inherited from the Element
or Attribute contained in the parsed document. However, even after parsing, the name and
namespace information of the PBDOM_ELEMENT and PBDOM_ATTRIBUTE can be
further modified with the SetName and SetNamespace methods.

The name and namespace information are stored separately internally. Changing the name of
a PBDOM_ELEMENT or PBDOM_ATTRIBUTE does not affect its namespace information,
and changing its namespace information has no effect on its name.

4.3.8.1 Setting the name and namespace of a PBDOM_ATTRIBUTE

The W3C "Namespaces in XML" specification (in section 5.3) places restrictions on setting
the name and namespace of a PBDOM_ATTRIBUTE. No tag can contain two attributes with

Data Access Techniques

Page 198

identical names, or with qualified names that have the same local name and have prefixes that
are bound to identical namespace names.

The specification provides the following examples of illegal and legal attributes:

<!-- http://www.w3.org is bound to n1 and n2 -->
<x xmlns:n1="http://www.w3.org"
 xmlns:n2="http://www.w3.org" >
 <bad a="1" a="2" />
 <bad n1:a="1" n2:a="2" />
</x>
<!-- http://www.w3.org is bound to n1 and is the default -->
<x xmlns:n1="http://www.w3.org"
 xmlns="http://www.w3.org" >
 <good a="1" b="2" />
 <good a="1" n1:a="2" />
</x>

In the first example, <bad a="1" a="2" /> violates the rule that no tag can contain two
attributes with identical names. In the second tag, the attributes have the same local name
but different prefixes, so that their names are different. However, their prefixes point to the
same namespace URI, http://www.w3.org, so it is illegal to place them inside the same owner
element.

PBDOM scenarios

The following scenarios illustrate how PBDOM conforms to these requirements.

• When the PBDOM_ATTRIBUTE SetName method is invoked:

If the PBDOM_ATTRIBUTE pbdom_attr1 has an owner PBDOM_ELEMENT
that contains an existing PBDOM_ATTRIBUTE with the same name that is to
be set for pbdom_attr1 and has the same namespace URI as pbdom_attr1, the
EXCEPTION_INVALID_NAME exception is thrown.

• When the PBDOM_ATTRIBUTE SetNamespace method is invoked:

If the PBDOM_ATTRIBUTE pbdom_attr1 has an owner PBDOM_ELEMENT
that contains an existing PBDOM_ATTRIBUTE with the same name as
pbdom_attr1 and the same namespace URI that is to be set for pbdom_attr1, the
EXCEPTION_INVALID_NAME exception is thrown.

• When the PBDOM_ELEMENT SetAttribute(pbdom_attribute pbdom_attribute_ref)
method is invoked:

If the PBDOM_ELEMENT already contains an attribute that has the same name and
namespace URI as the input PBDOM_ATTRIBUTE, the existing attribute is replaced by
the input PBDOM_ATTRIBUTE. The existing attribute is thus removed (detached) from
the owner element.

• When the PBDOM_ELEMENT SetAttributes(pbdom_attribute pbdom_attribute_array[])
method is invoked:

If any two PBDOM_ATTRIBUTE objects in the array have the same name and namespace
URI, the EXCEPTION_INVALID_NAME exception is thrown. If there is no name or
namespace conflict within the array, all the existing attributes of the PBDOM_ELEMENT
are replaced by the PBDOM_ATTRIBUTE objects in the array.

Data Access Techniques

Page 199

Note

All the above scenarios apply to PBDOM_ATTRIBUTE objects that are contained in
the NONAMESPACE namespace.

• When the PBDOM_ELEMENT SetAttribute(string strName, string strValue) method is
invoked:

A new PBDOM_ATTRIBUTE with the specified name and value is created and set into
the PBDOM_ELEMENT. If the PBDOM_ELEMENT already contains an attribute that
has the same name and that is contained within the NONAMESPACE namespace, it is
removed (detached) from the PBDOM_ELEMENT.

• When the PBDOM_ELEMENT SetAttribute(string strName, string strValue, string
strNamespacePrefix, string strNamespaceUri, boolean bVerifyNamespace) method is
invoked:

A new PBDOM_ATTRIBUTE with the specified name, value, and namespace information
is created and set into the PBDOM_ELEMENT. If the PBDOM_ELEMENT already
contains a PBDOM_ATTRIBUTE that has the same name and namespace URI as the input
namespace URI, it is removed (detached) from the PBDOM_ELEMENT.

Example

The following example demonstrates the impact of setting a PBDOM_ATTRIBUTE for a
PBDOM_ELEMENT where the PBDOM_ELEMENT already contains an attribute of the
same name and namespace URI as the input PBDOM_ATTRIBUTE.

The example creates a PBDOM_DOCUMENT based on the following document:

<root xmlns:pre1="http://www.pre.com" xmlns:pre2="http://www.pre.com">
 <child1 pre1:a="123"/>
</root>

Then it creates a PBDOM_ATTRIBUTE object and set its name to a and its prefix and URI
to pre2 and http://www.pre.com. The bVerifyNamespace argument is set to FALSE because
this PBDOM_ATTRIBUTE has not been assigned an owner PBDOM_ELEMENT yet, so
that the verification for a predeclared namespace would fail. The text value is set to 456.

The child1 element already contains an attribute named a that belongs to the namespace
http://www.pre.com, as indicated by the prefix pre1. The new PBDOM_ATTRIBUTE
uses the prefix pre2, but it represents the same namespace URI, so setting the new
PBDOM_ATTRIBUTE to child1 successfully replaces the existing pre1:a with the new
PBDOM_ATTRIBUTE pre2:a.

PBDOM_BUILDER pbdom_buildr
PBDOM_DOCUMENT pbdom_doc
PBDOM_ATTRIBUTE pbdom_attr

string strXML = "<root xmlns:pre1=~"http://www.pre.com~" xmlns:pre2=~"http://
www.pre.com~"><child1 pre1:a=~"123~"/></root>"

try

Data Access Techniques

Page 200

 pbdom_buildr = Create PBDOM_BUILDER
 pbdom_doc = pbdom_buildr.BuildFromString (strXML)

 // Create a PBDOM_ATTRIBUTE and set its properties
 pbdom_attr = Create PBDOM_ATTRIBUTE
 pbdom_attr.SetName ("a")
 pbdom_attr.SetNamespace ("pre2", &
 "http://www.pre.com", false)
 pbdom_attr.SetText("456")

 // Attempt to obtain the child1 element and
 // set the new attribute to it
 pbdom_doc.GetRootElement(). &
 GetChildElement("child1").SetAttribute(pbdom_attr)

 pbdom_doc.SaveDocument &
 ("pbdom_elem_set_attribute_1.xml")

catch (PBDOM_EXCEPTION except)
 MessageBox ("PBDOM_EXCEPTION", except.GetMessage())
end try

The XML output from SaveDocument looks like the following:

<root xmlns:pre1="http://www.pre.com" xmlns:pre2="http://www.pre.com">
 <child1 pre2:a="456"/>
</root>

4.4 Manipulating Graphs
About this chapter

This chapter describes how to write code that allows you to access and change a graph in
your application at runtime.

4.4.1 Using graphs

In PowerBuilder, there are two ways to display graphs:

• In a DataWindow, using data retrieved from the DataWindow data source

• In a graph control in a window or user object, using data supplied by your application code

This chapter discusses the graph control and describes how your application code can supply
data for the graph and manipulate its appearance.

For information about graphs in DataWindows, see Part I, “DataWindow Programmers
Guide” and Part I, “DataWindow Reference”.

To learn about designing graphs and setting graph properties in the painters, see Section 6.9,
“Working with Graphs” in Users Guide.

4.4.1.1 Working with graph controls in code

Graph controls in a window can be enabled or disabled, visible or invisible, and can be used
in drag and drop. You can also write code that uses events of graph controls and additional
graph functions.

Properties of graph controls

Data Access Techniques

Page 201

You can access (and optionally modify) a graph by addressing its properties in code at
runtime. There are two kinds of graph properties:

• Properties of the graph definition itself

These properties are initially set in the painter when you create a graph. They include
a graph's type, title, axis labels, whether axes have major divisions, and so on. For 3D
graphs, this includes the Render 3D property that uses transparency rather than overlays to
enhance a graph's appearance and give it a more sophisticated look.

• Properties of the data

These properties are relevant only at runtime, when data has been loaded into the graph.
They include the number of series in a graph (series are created at runtime), colors of bars
or columns for a series, whether the series is an overlay, text that identifies the categories
(categories are created at runtime), and so on.

Events of graph controls

Graph controls have the events listed in the following table.

Table 4.13: Graph control events

Clicked DragLeave

Constructor DragWithin

Destructor GetFocus

DoubleClicked LoseFocus

DragDrop Other

DragEnter RButtonDown

So, for example, you can write a script that is invoked when a user clicks a graph or drags an
object on a graph (as long as the graph is enabled).

Functions for graph controls

You use the PowerScript graph functions in the following table to manipulate data in a graph.

Table 4.14: PowerScript graph functions

Function Action

AddCategory Adds a category

AddData Adds a data point

AddSeries Adds a series

DeleteCategory Deletes a category

DeleteData Deletes a data point

DeleteSeries Deletes a series

ImportClipboard Copies data from the clipboard to a graph

ImportFile Copies the data in a text file to a graph

ImportString Copies the contents of a string to a graph

InsertCategory Inserts a category before another category

Data Access Techniques

Page 202

Function Action

InsertData Inserts a data point before another data point
in a series

InsertSeries Inserts a series before another series

ModifyData Changes the value of a data point

Reset Resets the graph's data

4.4.2 Populating a graph with data

This section shows how you can populate an empty graph with data.

Using AddSeries

You use AddSeries to create a series. AddSeries has this syntax:

graphName.AddSeries (seriesName)

AddSeries returns an integer that identifies the series that was created. The first series is
numbered 1, the second is 2, and so on. Typically you use this number as the first argument
in other graph functions that manipulate the series.

So to create a series named Stellar, code:

int SNum
SNum = gr_1.AddSeries("Stellar")

Using AddData

You use AddData to add data points to a specified series. AddData has this syntax:

graphName.AddData (seriesNumber, value, categoryLabel)

The first argument to AddData is the number assigned by PowerBuilder to the series. So to
add two data points to the Stellar series, whose number is stored by the variable SNum (as
shown above), code:

gr_1.AddData(SNum, 12, "Q1") // Category is Q1
gr_1.AddData(SNum, 14, "Q2") // Category is Q2

Getting a series number

You can use the FindSeries function to determine the number PowerBuilder has
assigned to a series. FindSeries returns the series number. This is useful when you
write general-purpose functions to manipulate graphs.

An example

Say you want to graph quarterly printer sales. Here is a script that populates the graph with
data:

gr_1.Reset(All!) // Resets the graph.
// Create first series and populate with data.

int SNum
SNum = gr_1.AddSeries("Stellar")
gr_1.AddData(SNum, 12, "Q1") // Category is Q1.
gr_1.AddData(SNum, 14, "Q2") // Category is Q2.
gr_1.Adddata(SNum, 18, "Q3") // Category is Q3.
gr_1.AddData(SNum, 25, "Q4") // Category is Q4.

Data Access Techniques

Page 203

// Create second series and populate with data.
SNum = gr_1.AddSeries("Cosmic")
// Use the same categories as for series 1 so the data
// appears next to the series 1 data.
gr_1.AddData(SNum, 18, "Q1")
gr_1.AddData(SNum, 24, "Q2")
gr_1.Adddata(SNum, 38, "Q3")
gr_1.AddData(SNum, 45, "Q4")
// Create third series and populate with data.
SNum = gr_1.AddSeries("Galactic")
gr_1.AddData(SNum, 44, "Q1")
gr_1.AddData(SNum, 44, "Q2")
gr_1.Adddata(SNum, 58, "Q3")
gr_1.AddData(SNum, 65, "Q4")

Here is the resulting graph:

You can add, modify, and delete data in a graph in a window through graph functions
anytime during execution.

For more information

For complete information about each graph function, see Part I, “PowerScript Reference”.

4.4.3 Modifying graph properties

When you define a graph in the Window or User Object painter, you specify its behavior and
appearance. For example, you might define a graph as a column graph with a certain title,
divide its Value axis into four major divisions, and so on. Each of these entries corresponds
to a property of a graph. For example, all graphs have an enumerated attribute GraphType,
which specifies the type of graph.

When dynamically changing the graph type

If you change the graph type, be sure to change other properties as needed to define
the new graph properly.

You can change these graph properties at runtime by assigning values to the graph's
properties in scripts. For example, to change the type of the graph gr_emp to Column, you
could code:

gr_emp.GraphType = ColGraph!

Data Access Techniques

Page 204

To change the title of the graph at runtime, you could code:

gr_emp.Title = "New title"

4.4.3.1 How parts of a graph are represented

Graphs consist of parts: a title, a legend, and axes. Each of these parts has a set of display
properties. These display properties are themselves stored as properties in a subobject
(structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies the title's text. Graphs also have a
property TitleDispAttr, of type grDispAttr, which itself contains properties that specify all the
characteristics of the title text, such as the font, size, whether the text is italicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These properties are
stored in a subobject (structure) of Graph called grAxis. For example, graphs have a property
Values of type grAxis, which contains properties that specify the Value axis's properties, such
as whether to use autoscaling of values, the number of major and minor divisions, the axis
label, and so on.

Here is a representation of the properties of a graph:

Graph
 int Height
 int Depth
 grGraphType GraphType
 boolean Border
 string Title

grDispAttr TitleDispAttr, LegendDispAttr, PieDispAttr
 string FaceName
 int TextSize
 boolean Italic

grAxis Values, Category, Series
 boolean AutoScale
 int MajorDivisions
 int MinorDivisions
 string Label

4.4.3.2 Referencing parts of a graph

You use dot notation to reference these display properties. For example, one of the properties
of a graph's title is whether the text is italicized or not. That information is stored in the
boolean Italic property in the TitleDispAttr property of the graph.

For example, to italicize title of graph gr_emp, code:

gr_emp.TitleDispAttr.Italic = TRUE

Similarly, to turn on autoscaling of a graph's Values axis, code:

gr_emp.Values.Autoscale = TRUE

To change the label text for the Values axis, code:

gr_emp.Values.Label = "New label"

To change the alignment of the label text in the Values axis, code:

gr_emp.Values.LabelDispAttr.Alignment = Left!

Data Access Techniques

Page 205

For a complete list of graph properties, see Part I, “Objects and Controls” or use the Browser.

For more about the Browser, see Section 4.3.4, “Browsing the class hierarchy” in Users
Guide.

4.4.4 Accessing data properties

To access properties related to a graph's data during execution, you use PowerScript graph
functions. The graph functions related to data fall into several categories:

• Functions that provide information about a graph's data

• Functions that save data from a graph

• Functions that change the color, fill patterns, and other visual properties of data

How to use the functions

To call functions for a graph in a graph control, use the following syntax:

graphControlName.FunctionName (Arguments)

For example, to get a count of the categories in the window graph gr_printer, code:

Ccount = gr_printer.CategoryCount()

Different syntax for graphs in DataWindows

The syntax for the same functions is more complex when the graph is in a
DataWindow, like this:

DataWindowName.FunctionName ("graphName", otherArguments...)

For more information, see Section 1.5, “Manipulating Graphs” in DataWindow
Programmers Guide.

4.4.4.1 Getting information about the data

The PowerScript functions in the following table allow you to get information about data in a
graph at runtime.

Table 4.15: PowerScript functions for information at runtime

Function Information provided

CategoryCount The number of categories in a graph

CategoryName The name of a category, given its number

DataCount The number of data points in a series

FindCategory The number of a category, given its name

FindSeries The number of a series, given its name

GetData The value of a data point, given its series and position (superseded by
GetDataValue, which is more flexible)

GetDataLabellingIndicates whether the data at a given data point is labeled in a DirectX 3D
graph

GetDataieExplodeThe percentage by which a pie slice is exploded

Data Access Techniques

Page 206

Function Information provided

GetDataStyle The color, fill pattern, or other visual property of a specified data point

GetDataTransparencyIndicates the transparency value of a given data point in a DirectX 3D
graph

GetDataValue The value of a data point, given its series and position

GetSeriesLabellingIndicates whether a data series has a label in a DirectX 3D graph

GetSeriesStyle The color, fill pattern, or other visual property of a specified series

GetSeriesTransparencyIndicates the transparency value of a data series in a DirectX 3D graph

ObjectAtPointer The graph element over which the mouse was positioned when it was
clicked

SeriesCount The number of series in a graph

SeriesName The name of a series, given its number

4.4.4.2 Saving graph data

The PowerScript functions in the following table allow you to save data from the graph.

Table 4.16: PowerScript functions for saving graph data

Function Action

Clipboard Copies a bitmap image of the specified graph to the clipboard

SaveAs Saves the data in the underlying graph to the clipboard or to a file in one of
a number of formats

4.4.4.3 Modifying colors, fill patterns, and other data

The PowerScript functions in the following table allow you to modify the appearance of data
in a graph.

Table 4.17: PowerScript functions for changing appearance of data

Function Action

ResetDataColorsResets the color for a specific data point

SetDataLabellingSets the label for a data point in a DirectX 3D graph

SetDataPieExplodeExplodes a slice in a pie graph

SetDataStyle Sets the color, fill pattern, or other visual property for a specific data point

SetDataTransparencySets the transparency value for a data point in a DirectX 3D graph

SetSeriesLabellingSets the label for a series in a DirectX 3D graph

SetSeriesStyle Sets the color, fill pattern, or other visual property for a series

SetSeriesTransparencySets the transparency value for a series in a DirectX 3D graph

4.4.5 Using point and click

Users can click graphs during execution. PowerScript provides a function called
ObjectAtPointer that stores information about what was clicked. You can use this function in
a number of ways in Clicked scripts. For example, you can provide the user with the ability

Data Access Techniques

Page 207

to point and click on a data value in a graph and see information about the value in a message
box. This section shows you how.

Clicked events and graphs

To cause actions when a user clicks a graph, you write a Clicked script for the graph control.
The control must be enabled. Otherwise, the Clicked event does not occur.

Using ObjectAtPointer

ObjectAtPointer has the following syntax.

graphName.ObjectAtPointer (seriesNumber, dataNumber)

You should call ObjectAtPointer in the first statement of a Clicked script.

When called, ObjectAtPointer does three things:

• It returns the kind of object clicked on as a grObjectType enumerated value. For example,
if the user clicks on a data point, ObjectAtPointer returns TypeData!. If the user clicks on
the graph's title, ObjectAtPointer returns TypeTitle!.

For a complete list of the enumerated values of grObjectType, open the Browser and click
the Enumerated tab.

• It stores the number of the series the pointer was over in the variable seriesNumber, which
is an argument passed by reference.

• It stores the number of the data point in the variable dataNumber, also an argument passed
by reference.

After you have the series and data point numbers, you can use other graph functions to get
or provide information. For example, you might want to report to the user the value of the
clicked data point.

Example

Assume there is a graph gr_sale in a window. The following script for its Clicked event
displays a message box:

• If the user clicks on a series (that is, if ObjectAtPointer returns TypeSeries!), the message
box shows the name of the series clicked on. The script uses the function SeriesName to
get the series name, given the series number stored by ObjectAtPointer.

• If the user clicks on a data point (that is, if ObjectAtPointer returns TypeData!), the
message box lists the name of the series and the value clicked on. The script uses GetData
to get the data's value, given the data's series and data point number:

int SeriesNum, DataNum
double Value
grObjectType ObjectType
string SeriesName, ValueAsString

// The following function stores the series number
// clicked on in SeriesNum and stores the number
// of the data point clicked on in DataNum.
ObjectType = &
 gr_sale.ObjectAtPointer (SeriesNum, DataNum)

Data Access Techniques

Page 208

IF ObjectType = TypeSeries! THEN
 SeriesName = gr_sale.SeriesName (SeriesNum)
 MessageBox("Graph", &
 "You clicked on the series " + SeriesName)

ELSEIF ObjectType = TypeData! THEN
 Value = gr_sale. GetData (SeriesNum, DataNum)
 ValueAsString = String(Value)
 MessageBox("Graph", &
 gr_sale. SeriesName (SeriesNum) + &
 " value is " + ValueAsString)
END IF

4.5 Implementing Rich Text
About this chapter

This chapter explains how to use rich text in an application, either in a RichText
DataWindow object or in a RichTextEdit control.

Before you begin

This chapter assumes you know how to create RichText DataWindow objects and
RichTextEdit controls, as described in Section 6.13, “Working with Rich Text” in Users
Guide. For information about using the RichText edit style in DataWindow objects that do
not have the RichText presentation style, see Section 6.5, “Displaying and Validating Data”
in Users Guide.

4.5.1 Using rich text in an application

Rich text format (RTF) is a standard for specifying formatting instructions and document
content in a single ASCII document. An editor that supports rich text format interprets the
formatting instructions and displays the text with formatting.

In an application, you may want to:

• Provide a window for preparing rich text documents

Although not a full-fledged word processor, the RichTextEdit control allows the user to
apply formatting to paragraphs, words, and characters.

• Create a mail-merge application

You or the user can set up boilerplate text with input fields associated with database data.

• Display reports with formatted text

A RichText DataWindow object is designed for viewing data, rather than entering data. It
does not have the edit styles of other DataWindow presentation styles.

• Store rich text as a string in a database and display it in a RichTextEdit control

4.5.1.1 Sources of rich text

Any word processor

You can prepare rich text in any word processor that can save or export rich text format.

Input fields in PowerBuilder only

Data Access Techniques

Page 209

Although many word processors support some kinds of fields, the fields are usually
incompatible with other rich text interpreters. If you want to specify input fields for a
PowerBuilder application, you will have to insert them using the PowerBuilder RichTextEdit
control.

Rich text in the database

Since rich text is represented by ASCII characters, you can also store rich text in a string
database column or string variable. You can retrieve rich text from a string database column
and use the PasteRTF function to display the text with formatting in a RichTextEdit control.

4.5.1.2 Language of rich text

English is the currently recommended language for the rich text, as only English is fully
tested. The other languages will be listed here after they are fully tested in the future versions.

4.5.1.3 Rich text editors

You can select from the rich text editors supported by PowerBuilder. The selected rich text
editor will be applicable to the RichTextEdit control, the RichText DataWindow object, and
the RichText edit style. For how to select the rich text editor, see Section 2.1.4.4, “Specifying
a rich text editor” in Users Guide.

For 32-bit application:

• Built-in TX Text Control ActiveX 15.0

TX Text Control ActiveX 15.0 is added as a built-in rich text editor in PowerBuilder 2019
(not in InfoMaker). It is a special OEM version and is provided at no cost. Note that TX
Text Control ActiveX 15.0 supports 32-bit only.

• Built-in TX Text Control ActiveX 28.0

Recommended.

Starting from PowerBuilder 2019 R3, a special OEM version of TX Text Control ActiveX
28.0 is added as a built-in rich text editor in PowerBuilder, and it is provided at no cost and
is highly recommended to be used by all existing PowerBuilder projects (no matter they
already make use of the RichTextEdit of SAP PowerBuilder version 12.6 or older, TX Text
Control ActiveX 15.0, or TE Edit Control).

• Built-in Rich Edit Control (TE Edit Control)

Obsolete.

TE Edit Control is added as a built-in rich text editor for free use in PowerBuilder 2017
and InfoMaker 2017. This editor provides almost the same functions/events/properties
as the old one used in PowerBuilder 12.6 and earlier. For the difference, refer to Feature
difference between TE Edit Control and TX Text Control.

Class name difference

The class name for TE Edit Control is "Ter24Class" in PowerBuilder 2017 and 2017
R2, and "Ter25Class" in PowerBuilder 2017 R3 and later. Please make sure to use the
corresponding class name in your API calls or the third-party auto-test scripts.

Data Access Techniques

Page 210

However, TE Edit Control has the following issues and unsupported features in
PowerBuilder:

• When copying text into the RichTextEdit control, the font used may not be the default
font for the RichTextEdit control. PowerBuilder 12.6 has the same issue.

• It is unsupported to merge the data of two RichTextEdit controls into the third
RichTextEdit control. For example, the following code is unsupported:

ls_1 = rte_1.CopyRTF (false)
ls_2 = rte_2.CopyRTF (false)
ls_3 = ls_1 + ls_2
ris = rte_3.PasteRTF (ls_3)

• RichTextEdit control has problems in handling the space width of some fixed width
fonts such as Courier and Courier New, which causes text not aligned.

• In DataWindow preview, content of RichTextEdit controls do not scale like other
controls do.

• In printout of DataWindows, RichTextEdit controls show additional unwanted padding
on the top depending on the location on the page.

• SaveDocument will fail if the specified directory contains non-English characters.

• SetFont function or setting font via APIs is unsupported.

• SelectText function supports 98303 as the maximum length. If the length is over 98303,
SelectText failed to select any text.

• TX Text Control ActiveX 24.0 Professional/Enterprise

This is the rich text editor used in PowerBuilder 12.6 and earlier versions. If you want to
continue using and distributing this editor in PowerBuilder 2017 and later, you will have
to purchase it separately from the vendor (http://www.textcontrol.com) and follow the
vendor's documentation to package and distribute it to your users.

Only the Professional or Enterprise edition of TX Text Control ActiveX 24.0 is supported
by PowerBuilder 2017 and later; Standard edition is not supported.

The SP1, SP2, and SP3 of TX Text Control ActiveX 2400 do not support the RichText
edit style any more, although it supports the RichTextEdit control and the RichText
DataWindow object. You should use TX Text Control ActiveX 2400 for supporting all of
these three features.

For 64-bit application:

• Built-in TX Text Control ActiveX 28.0

Recommended.

Starting from PowerBuilder 2019 R3, a special OEM version of TX Text Control ActiveX
28.0 is added as a built-in rich text editor in PowerBuilder, and it is provided at no cost and
is highly recommended to be used by all existing PowerBuilder projects.

http://www.textcontrol.com

Data Access Techniques

Page 211

• Microsoft RichEdit Control

Pay attention to the feature difference between these two 64-bit editors in the following
section: Feature difference between TX Text Control 28.0 (64-bit) and Microsoft RichEdit
Control (64-bit).

4.5.1.3.1 Feature difference between TX Text Control 28.0 (64-bit) and Microsoft RichEdit
Control (64-bit)

If you intended to build a 64-bit application, it is recommended to select Built-in TX Text
Control ActiveX 28.0 (32-bit and 64-bit) which is used as the rich text editor by both 32-bit
and 64-bit applications; otherwise, Microsoft RichEdit Control will be used as the 64-bit rich
text editor by the 64-bit application.

Pay attention to the following differences between TX Text Control 28.0 (64-bit) and
Microsoft RichEdit Control (64-bit).

Table 4.18:

Microsoft RichEdit Control (64-bit) TX Text Control 28.0 (64-bit)

The UI is old fashioned and not updated for
long time.

The UI is more modern and user friendly.

The font and size in the toolbar does not
display at initial launch.

The font and size in the toolbar display at
initial launch.

RichText DataWindows cannot successfully
retrieve data.

RichText DataWindows can successfully
retrieve data.

The SaveAs of RichText DataWindows only
supports save to PDF in Distill! Method, and
the method must be specified before save.

The SaveAs of RichText DataWindows
supports save to PDF in Distill! or
NativePDF! method. NativePDF! method
will be used if none is specified.

The RMB menu of RichTextEdit control
and RichText DataWindow only supports
inserting files of RTF and TXT formats.

The InsertDocument and SaveDocument
functions of RichTextEdit control only
support files of RTF and TXT formats.

Therefore,

InsertDocument ("*.htm",true) returns -1

InsertDocument("*.doc",true) returns -1

SaveDocument (string f, {FileTypeDoc!|
FileTypeHTML!|FileTypePDF!}) returns -1
and FileExists event is not triggered.

The RMB menu of RichTextEdit control and
RichText DataWindow supports inserting
files of RTF/TXT/DOC/DOCX/HTML
formats.

The InsertDocument function of
RichTextEdit control supports files of RTF/
TXT/DOC/DOCX/HTML formats.

The SaveDocument function of RichTextEdit
control supports files of RTF/TXT/DOC/
DOCX/HTML/PDF formats and can trigger
the FileExists event correctly.

If the document inserted into RichTextEdit
control and RichText DataWindow contains
tables, tables will not display.

If the document inserted into RichTextEdit
control and RichText DataWindow contains
tables, tables can display.

The RMB menu of RichTextEdit control and
RichText DataWindow supports 4 RichText

The RMB menu of RichTextEdit control and
RichText DataWindow supports 3 RichText

Data Access Techniques

Page 212

Microsoft RichEdit Control (64-bit) TX Text Control 28.0 (64-bit)
presentation settings: Input Fields Names
Visible, Returns Visible, Tabs Visible and
Spaces Visible.

presentation settings: Input Fields Names
Visible, ControlChars Visible (covering
Returns Visible, Tabs Visible and Spaces
Visible), and Input Fields Visible.

RichTextEdit control and RichText
DataWindow do not support the status bar
property.

RichTextEdit control and RichText
DataWindow support the status bar property.

When locating the footer through
ShowHeadFoot, Position returns the header
(which is incorrect); when locating the footer
manually, Position returns the correct value.

When locating the footer through
ShowHeadFoot or manually, Position returns
the correct value.

The footer and header areas of RichTextEdit
control and RichText DataWindow
cannot display at the same time as
the main content area, unless you call
ShowHeaderFooter(true).

The footer and header areas of RichTextEdit
control and RichText DataWindow can
display at the same time as the main content
area.

Mouse wheel does not scroll a RichTextEdit
page.

Mouse wheel can scroll a RichTextEdit page.

The preview mode of RichTextEdit control
and RichText DataWindow is more like
a print preview, for example, the left side
will show the paper size/margin/page
information, and the margin and page
settings can be dynamically modified.

In preview mode of RichTextEdit control
and RichText DataWindow, the left side
does not show the paper size/margin/page
information.

4.5.1.3.2 Feature difference between TE Edit Control and TX Text Control

TE Edit Control (added in PowerBuilder 2017) provides almost the same functions/events/
properties as TX Text Control (which has been used since earlier versions of PowerBuilder),
except for the following differences and issues (due to the different ways they are designed):

Table 4.19:

Affected area Type Description

Double-byte
languages

UnsupportedDouble-byte languages such as Korean, Japanese are not
supported well in TE Edit Control.

InputFieldBackColor
property

LimitationFor TE Edit Control, this property will not take effect until
you save the data into a PDF file or print the data; which
means, when you preview the UI in the design view or when
you run the UI, you will always see the background color is
gray, only when you save the data to a PDF file or print the
data, you will see the background color is changed to what
you set.

Wordwrap property LimitationFor TE Edit Control, this property is always true (it cannot
be set to false).

Data Access Techniques

Page 213

Affected area Type Description

BackColor property DifferenceFor TE Edit Control, if you set a negative value for the
BackColor property, the returned value will be 0 and the
color will be black.

For TX Text Control, if you set a negative value for the
BackColor property, the returned value will be 16777215
and the color will be white.

BottomMargin/
RightMargin/
LeftMargin/
TopMargin
properties

DifferenceFor TE Edit Control, if you set a negative value, the returned
value will be 0.

For TX Text Control, if you set a negative value, the
returned value will be the negative value.

Find function EnhancementFor TE Edit Control, the Find function can not only find the
text string, but also can find the carriage return characters
and some special characters.

GetTextColor/
GetTextStyle
functions and font
settings

DifferenceFor TE Edit Control, this function will return the settings
(text color, font name, text style etc.) of the first character of
the selected text if the selected text contains more than one
type of settings.

For TX Text Control, this property will return empty if the
selected text contains more than one type of settings.

GetAlignment/
GetSpacing/
GetParagraphSetting
functions

DifferenceFor TE Edit Control, this function will return the alignment
(or spacing or paragraph settings) of the paragraph where
the insertion point is located if more than one paragraph are
selected.

For TX Text Control, this property will return null if more
than one paragraph with different alignments (or spacing or
paragraph settings) are selected.

GetParagraphSetting
function

DifferenceThe returned value is different between TE Edit Control and
TX Text Control due to the different units used.

Visio drawings New
feature

Visio drawings can be pasted or inserted into TE Edit
Control.

Preview New
feature

All pages can be previewed (by scrolling) in TE Edit
Control; while only the first page can be previewed in TX
Text Control.

SelectedPage
function

LimitationFor TE Edit Control, the SelectedPage function returns
the number of the page which is being viewed (rather than
where the insertion point is placed).

ShowHeadFoot
function

DifferenceWhen the document is in preview mode, TX Text Control
returns 1; while TE Edit Control returns 1 and closes the
preview mode, and when the parameter is true, the insertion
point is placed to the header band; when the parameter is
false, the insertion point is placed to the detail band.

Data Access Techniques

Page 214

Affected area Type Description

ReplaceText
function

LimitationIn TE Edit Control, the text after replaced will take over the
settings (such as font name, font size etc.) carried over by
the given string.

SaveDocument
function

LimitationIn TE Edit Control, when saving to HTML, the image
will lose some quality and will be saved as individual files
separately from the document and the reference to the image
file uses the absolute path,.

CopyRTF function DifferenceTE Edit Control will return a longer string which contains
more types of information.

Insertion point DifferenceWhen the user switches the editor band (e.g. from the
header/footer band to the detail band), the insertion point is
placed to the last column and last row in TE Edit Control,
while the insertion point's last position will be remembered
and restored in TX Text Control, if it is the firs time, the
insertion point is placed to the first column and first row.

Input field DifferenceTE Edit Control limits the length of the input field data to
no more than 2000 characters while TX Text Control has no
such limitation.

Font DifferenceIn TE Edit Control, if the user uses a non-English input
method to input the English characters, the inserted
characters appear like using a different font than the other
characters, although they actually use the same font.

Image DifferenceIn TE Edit Control, when the user tries to manually select
an image (only image, no text), the user can only select it
by dragging from end to beginning, but cannot select by
dragging from beginning to end.

Bullet list alignment Issue In TE Edit Control, the bullet symbol is cut off in a rich-
text edit style column under the preview mode or print mode
because the bullet list is not perfectly aligned with the body
text.

4.5.1.4 Deploying a rich text application

To deploy a rich text application to a server or client machine:

• If using the built-in text editor, you can use the PowerBuilder Runtime Packager to deploy
the required rich text files with your application.

For more information on the runtime packager, see PowerBuilder Runtime Packager.

• If using the old editor (TX Text Control ActiveX), you must follow the vendor's
documentation to deploy the required files with your application.

4.5.2 Using a RichText DataWindow object

This section discusses:

Data Access Techniques

Page 215

• How scrolling differs from other DataWindow styles

• Problems you may encounter with default values for new rows

• What happens when the user makes changes

Scrolling

In a RichText DataWindow object, the rich text can consist of more than one page. A row
of data can be associated with several pages, making a row larger than a page. In other
DataWindow styles, a page consists of one or more than one row -- a page is larger than a
row.

For a RichText DataWindow object, the scrolling functions behave differently because of this
different meaning for a page:

• ScrollNextRow and ScrollPriorRow still scroll from row to row so that another row's data
is displayed within the document template.

• ScrollNextPage and ScrollPriorPage scroll among pages of the document rather than pages
of rows.

Page flow

As you scroll, the pages appear to flow from one row to the next. Scrolling to the next page
when you are on the last page of the document takes you to the first page for the next row.
The user gets the effect of scrolling through many instances of the document.

New rows: default data and validation rules

Input fields are invisible when they have no value. Before data is retrieved, PowerBuilder
displays question marks (??) in fields to make them visible. For new rows, PowerBuilder
assigns an initial value based on the datatype.

If you have specified an initial value for the column, PowerBuilder uses that value; if no
value is specified, PowerBuilder uses spaces for string columns or zero for numeric columns.

Possible validation errors

If the default initial value provided by PowerBuilder does not satisfy the validation rule,
the user gets a validation error as soon as the new row is inserted. To avoid this, you should
specify initial values that meet your validation criteria.

When the user makes changes

Display only

When you check Display Only on the General property page for the Rich Text Object, the
user cannot make any changes to the data or the rich text.

If you leave the pop-up menu enabled, the user can turn off the display-only setting and make
the DataWindow object editable.

Input fields

In an editable DataWindow object, users change the value of a column input field by
displaying the input field's property sheet and editing the Data Value text box. For a
computed field input field, the Data Value text box is read-only.

Data Access Techniques

Page 216

You can let the user display input field names instead of data. You might do this if you
were providing an editing environment in which users were developing their own RichText
DataWindow object. However, the RichTextEdit control is better suited to a task like this,
because you have more scripting control over the user's options.

Rich text

If users edit the text or formatting, they are changing the document template. The changes are
seen for every row.

The changes apply to that session only, unless you take extra steps to save the changes and
restore them.

To save the changes, you can write a script that uses the CopyRTF function to get all the text,
including the named input fields but not the row data, and save the contents of that string in
a file or database. Whenever users view the RichText DataWindow object, you can restore
their latest version or let them return to the original definition of the DataWindow object's
text.

Functions for RichText DataWindow objects

The DataWindow control has many functions.

Functions that behave the same

DataWindow control functions that operate on data, such as Update or Retrieve, have the
same behavior for all types of DataWindow objects.

When the object in the control is a RichText DataWindow object, some of the functions do
not apply or they behave differently.

Functions that do not apply

Some functions are not applicable when the object is a RichText DataWindow object. The
following functions return an error or have no effect:

• Functions for graph and crosstab DataWindow objects

• Functions for grouping: GroupCalc, FindGroupChange

• Functions for code tables: GetValue, SetValue

• Functions for selecting rows: SelectRow, SetRowFocusIndicator, GetSelectedRow

• Functions that affect column and detail band appearance: SetBorderStyle, SetDetailHeight

• ObjectAtPointer

• OLEActivate

Functions that behave differently

Some functions have different behavior when the object is a RichText DataWindow object:

• Functions for the clipboard: Copy, Clear, and so on

Data Access Techniques

Page 217

• Functions for editable text (they apply to the edit control in other DataWindow styles):
LineCount, Position, SelectText, and so on

• Find and FindNext (the arguments you specify for Find determine whether you want the
general DataWindow Find function or the RichText version)

• Scrolling

4.5.3 Using a RichTextEdit control

A RichTextEdit control in a window or user object lets the user view or edit formatted text.
Functions allow you to manipulate the contents of the control by inserting text, getting the
selected text, managing input fields, and setting properties for all or some of the contents.

You define RichTextEdit controls in the Window painter or the User Object painter.

4.5.3.1 Giving the user control

In the Window or User Object painter, on the Document page of the RichTextEdit control's
property sheet, you can enable or disable the features in the following table.

Table 4.20: RichTextEdit control features

Features Details

Editing bars A toolbar for text formatting, a ruler bar, and a status bar.

Pop-up menu Provides access to the InsertFile and clipboard commands, as well as the
property sheet.

Display of
nonprinting
characters

Carriage returns, tabs, and spaces.

Display of fields Whether fields are visible at all, or whether the field name or data
displays. You can also change the background color for fields.

Wordwrap Affects newly entered text only.

If the user enters new text in an existing paragraph, word wrap is
triggered when the text reaches the right edge of the control. To get
existing text to wrap within the display, the user can tweak the size of the
control (if it is resizable).

Print margins Print margins can be set relative to the default page size.

You can also specify a name for the document that is displayed in the print queue. The
document name has nothing to do with a text file you might insert in the control.

Users can change the available tools

When users display the property sheet for the rich text document, they can change the tools
that are available to them, which you might not want. For example, they might:

• Remove the display-only setting so that they can begin editing a document you set up as
protected

Data Access Techniques

Page 218

• Turn off the tool, ruler, or status bars

• View input fields' names instead of data

• Disable the pop-up menu so that they cannot restore tools they turn off

You might want to guard against some of these possibilities. You can reset the property
values for these settings in a script. For example, this statement restores the pop-up menu
when triggered in an event script:

rte_1.PopMenu = TRUE

Undoing changes

The user can press Ctrl+Z to undo a change. You can also program a button or menu item
that calls the Undo function.

If Undo is called repeatedly, it continues to undo changes to a maximum of 50 changes. The
script can check whether there are changes that can be undone (meaning the maximum depth
has not been reached) by calling the CanUndo function:

IF rte_1.CanUndo() THEN
 rte_1.Undo()
ELSE
 MessageBox("Stop", "Nothing to undo.")
END IF

4.5.3.2 Text for the control

In the Window painter, you do not enter text in the control. Instead, in your application you
can programmatically insert text or let the user enter text using the editing tools.

Setting a default font

The Font tab page in the Properties view for a RichTextEdit control lets you set
default font characteristics for the control. When the control first displays at runtime,
and you include the toolbar with a RichTextEdit control, the toolbar indicates
the default font characteristics that you selected on the Font tab page at design
time. Although the application user can change fonts at runtime, or you can use
PowerScript to change the font style, you can set the default font at design time only.

Inserting text

From a file

If you have prepared a text file for your application, you can insert it with the
InsertDocument function. The file can be rich text or ASCII:

li_rtn = rte_1.InsertDocument &
 ("c:\mydir\contacts.rtf", FALSE, FileTypeRichText!)

The boolean clearflag argument lets you specify whether to insert the file into existing text
or replace it. If you want to include headers and footers from a document that you insert, you
must replace the existing text by setting the clearflag argument to TRUE. (The InsertFile
command on the runtime pop-up menu is equivalent to the InsertDocument function with the
clearflag argument set to FALSE.)

Data Access Techniques

Page 219

DisplayOnly property must be set to false

You cannot insert a document into a rich text control when the control's DisplayOnly
property is set to true. If you try to do this, PowerBuilder displays a runtime error
message.

From a database

If you have saved rich text as a string in a database, you can use a DataStore to retrieve the
text.

After retrieving data, paste the string into the RichTextEdit control:

ls_desc = dw_1.Object.prod_desc.Primary[1]
rte_1.PasteRTF(ls_desc)

Rich text and the clipboard

The CopyRTF and PasteRTF functions let you get rich text with formatting
instructions and store it in a string. If you use the clipboard by means of the Copy,
Cut, and Paste functions, you get the text only -- the formatting is lost.

Example of saving rich text in a database

Suppose you have a database table that records tech support calls. Various fields record each
call's date, support engineer, and customer. Another field stores notes about the call. You
can let the user record notes with bold and italic formatting for emphasis by storing rich text
instead of plain text.

The window for editing call information includes these controls:

• A DataWindow control that retrieves all the data and displays everything except the call
notes

• A RichTextEdit control that displays the call notes

• A button for updating the database

RowFocusChanged event

As row focus changes, the notes for the current row are pasted into the RichTextEdit control.
The RowFocusChanged event has this script:

string ls_richtext

// Get the string from the call_notes column
ls_richtext = dw_1.Object.call_notes[currentrow]

// Prevent flicker
rte_1.SetRedraw(FALSE)

// Replace the old text with text for the current row
rte_1.SelectTextAll()
rte_1.Clear()
rte_1.PasteRTF(ls_richtext)
rte_1.SetRedraw(TRUE)

LoseFocus event

Data Access Techniques

Page 220

When the user makes changes, the changes are transferred to the DataWindow control. It is
assumed that the user will click on the button or the DataWindow control when the user is
through editing, triggering the LoseFocus event, which has this script:

string ls_richtext
long l_currow
GraphicObject l_control

// Check whether RichTextEdit still has focus
// If so, don't transfer the text
l_control = GetFocus()

IF TypeOf(l_control) = RichTextEdit! THEN RETURN 0

// Prevent flicker
rte_1.SetRedraw(FALSE)

// Store all the text in string ls_richtext
ls_richtext = rte_1.CopyRTF()

// Assign the rich text to the call_notes column
// in the current row
l_currow = dw_1.GetRow()
dw_1.Object.call_notes[l_currow] = ls_richtext
rte_1.SetRedraw(TRUE)

LoseFocus and the toolbars

A LoseFocus event occurs for the RichTextEdit control even when the user clicks
a RichTextEdit toolbar. Technically, this is because the toolbars are in their own
windows. However, the RichTextEdit control still has focus, which you can check
with the GetFocus function.

Saving rich text in a file

You can save the rich text in the control, with the input field definitions, with the
SaveDocument function. You have the choice of rich text format (RTF) or ASCII:

rte_1.SaveDocument("c:\...\contacts.rtf", &
 FileTypeRichText!)

SaveDocument does not save the data in the input fields. It saves the document template.

Does the file exist?

If the file exists, calling SaveDocument triggers the FileExists event. In the event script, you
might ask users if they want to overwrite the file.

To cancel the saving process, specify a return code of 1 in the event script.

Are there changes that need saving?

The Modified property indicates whether any changes have been made to the contents of the
control. It indicates that the contents are in an unsaved state. When the first change occurs,
PowerBuilder triggers the Modified event and sets the Modified property to TRUE. Calling
SaveDocument sets Modified to FALSE, indicating that the document is clean.

Opening a file triggers the Modified event and sets the property because the control's contents
changed. Usually, though, what you really want to know is whether the contents of the

Data Access Techniques

Page 221

control still correspond to the contents of the file. Therefore, in the script that opens the file,
you can set the Modified property to FALSE yourself. Then when the user begins editing, the
Modified event is triggered again and the property is reset to TRUE.

4.5.3.2.1 Opening and saving files: an example

This example consists of several scripts that handle opening and saving files. Users can open
existing files and save changes. They can also save the contents to another file. If users save
the file they opened, saving proceeds without interrupting the user. If users save to a file
name that exists, but is not the file they opened, they are asked whether to overwrite the file:

The example includes instance variable declarations, scripts, functions, and events.

Instance variable declarations

ib_saveas

A flag for the FileExists event. When FALSE, the user is saving to the file that was opened,
so overwriting is expected:

boolean ib_saveas=FALSE

is_filename

The current file name for the contents, initially set to "Untitled":

Data Access Techniques

Page 222

string is_filename

Open Document script

This script opens a file chosen by the user. Since opening a file triggers the Modified event
and sets the Modified property, the script resets Modified to FALSE. The Checked property
of the Modified check box is set to FALSE too:

integer li_answer, li_result
string ls_name, ls_path

li_answer = GetFileOpenName("Open File", ls_path, &
 ls_name, "rtf", &
 "Rich Text(*.RTF),*.RTF, Text files(*.TXT),*.TXT")

IF li_answer = 1 THEN
 // User did not cancel
 li_result = rte_1.InsertDocument(ls_path, TRUE)

 IF li_result = 1 THEN // Document open successful
 // Save and display file name
 is_filename = ls_path
 st_filename.Text = is_filename

 // Save and display modified status
 rte_1.Modified = FALSE

 cbx_modified.Checked = rte_1.Modified
 ELSE

 MessageBox("Error", "File not opened.")
 END IF

 END IF
RETURN 0

Scripts that save the document

The user might choose to save the document to the same name or to a new name. These
scripts could be assigned to menu items as well as buttons. The Save button script checks
whether the instance variable is_filename holds a valid name. If so, it passes that file name to
the of_save function. If not, it triggers the SaveAs button's script instead:

integer li_result
string ls_name

// If not associated with file, get file name
IF is_filename = "Untitled" THEN
 cb_saveas.EVENT Clicked()

ELSE
 li_result = Parent.of_save(is_filename)
END IF
RETURN 0

The SaveAs script sets the instance variable ib_saveas so that the FileExists event, if
triggered, knows to ask about overwriting the file. It calls of_getfilename to prompt for a file
name before passing that file name to the of_save function.

integer li_result
string ls_name

ib_saveas = TRUE

Data Access Techniques

Page 223

ls_name = Parent.of_getfilename()
// If the user canceled or an error occurred, abort
IF ls_name = "" THEN RETURN -1

li_result = Parent.of_save(ls_name)

ib_saveas = FALSE
RETURN 0

Functions for saving and getting a file name

of_save function

This function accepts a file name argument and saves the document. It updates the file name
instance variable with the new name and sets the check box to correspond with the Modified
property, which is automatically set to FALSE after you call SaveDocument successfully:

integer li_result

MessageBox("File name", as_name)

// Don't need a file type because the extension
// will trigger the correct type of save
li_result = rte_1.SaveDocument(as_name)

IF li_result = -1 THEN
 MessageBox("Warning", "File not saved.")
 RETURN -1
ELSE
 // File saved successfully
 is_filename = as_name
 st_filename.Text = is_filename
 cbx_modified.Checked = rte_1.Modified
 RETURN 1
END IF

of_getfilename function

The function prompts the user for a name and returns the file name the user selects. It is
called when a file name has not yet been specified or when the user chooses Save As. It
returns a file name:

integer li_answer
string ls_name, ls_path

li_answer = GetFileSaveName("Document Name", ls_path, &
 ls_name, "rtf", &
 "Rich Text(*.RTF),*.RTF,Text files(*.TXT),*.TXT")

IF li_answer = 1 THEN
 // Return specified file name
 RETURN ls_path
ELSE
 RETURN ""
END IF

Events for saving and closing

FileExists event

When the user has selected a file name and the file already exists, this script warns the user
and allows the save to be canceled. The event occurs when SaveDocument tries to save a file

Data Access Techniques

Page 224

and it already exists. The script checks whether ib_saveas is TRUE and, if so, asks if the user
wants to proceed with overwriting the existing file:

integer li_answer

// If user asked to Save to same file,
// don't prompt for overwriting
IF ib_saveas = FALSE THEN RETURN 0

li_answer = MessageBox("FileExists", &
 filename + " already exists. Overwrite?", &
 Exclamation!, YesNo!)

// Returning a non-zero value cancels save
IF li_answer = 2 THEN RETURN 1

Modified event

This script sets a check box so the user can see that changes have not been saved. The
Modified property is set automatically when the event occurs. The event is triggered when
the first change is made to the contents of the control:

cbx_modified.Checked = TRUE

CloseQuery event

This script for the window's CloseQuery event checks whether the control has unsaved
changes and asks whether to save the document before the window closes:

integer li_answer

// Are there unsaved changes? No, then return.
IF rte_1.Modified = FALSE THEN RETURN 0

// Ask user whether to save
li_answer = MessageBox("Document not saved", &
 "Do you want to save " + is_filename + "?", &
 Exclamation!, YesNo!)

IF li_answer = 1 THEN
 // User says save. Trigger Save button script.
 cb_save.EVENT Clicked()
END IF
RETURN 0

4.5.3.3 Using an ActiveX spell checking control

ActiveX controls can be used to spell check text in a RichTextEdit control. The supported
ActiveX spell checking controls include VSSpell from ComponentOne and WSpell from
Wintertree Software.

You can use the SelectedStartPos and SelectedTextLength properties of the RichTextEdit
control to highlight the current position of a misspelled word in a text string that you are
parsing with a supported ActiveX spell checking control. The following procedure uses an
ActiveX control to spell check the entire text of the current band of a RichTextEdit control.

To spell check selected text in a RichTextEdit control:

1. On a window with a RichTextEdit control, select Insert>Control>OLE from the window
menu.

Data Access Techniques

Page 225

2. Click the Insert Control tab of the Insert Object dialog box, select the installed ActiveX
spell checking control, and click OK.

3. Click inside the window in the Window painter to insert the ActiveX control.

By default, the name of the inserted control is ole_n, where n = 1 when there are no
other OLE controls on the window.

4. Add a menu item to a menu that you associate with the current window and change its
Text label to Check Spelling.

5. Add the following code to the Clicked event of the menu item, where windowName is
the name of the window containing the RichTextEdit and ActiveX controls:

string ls_selected
//get the current band context, and leave select mode
windowName.rte_1.selecttext(0,0,0,0)
windowName.rte_1.SelectTextAll()
ls_selected = windowName.rte_1.SelectedText()
windowName.rte_1.SelectedTextLength = 0
//assign the string content to the ActiveX control
windowName.ole_1.object.text = ls_selected
windowName.ole_1.object.start()

6. Select the ActiveX control in the Window painter and select ReplaceWord from the
event list for the control.

7. Add the following code to the ReplaceWord event script:

string str
str = this.object.MisspelledWord
rte_1.SelectedStartPos = this.object.WordOffset
rte_1.SelectedTextLength = Len(str)
rte_1.ReplaceText(this.object.ReplacementWord)
messagebox("misspelled word", "replaced")

The next time you run the application, you can click the Check Spelling menu item to
spell check the entire contents of the current band of the RichTextEdit control.

4.5.3.4 Formatting of rich text

In a RichText control, there are several user-addressable objects:

• The whole document

• Selected text and paragraphs

• Input fields

• Pictures

The user can make selections, use the toolbars, and display the property sheets for these
objects.

Input fields get values either because the user or you specify a value or because you have
called DataSource to associate the control with a DataWindow object or DataStore.

Data Access Techniques

Page 226

4.5.3.5 Input fields

An input field is a named value. You name it and you determine what it means by setting its
value. The value is associated with the input field name. You can have several fields with the
same name and they all display the same value. If the user edits one of them, they all change.

In this sample text, an input field for the customer's name is repeated throughout:

Hello {customer}!

We know that you, {customer}, will be excited about our new deal. Please call soon,
{customer}, and save money now.

In a script, you can set the value of the customer field:

rte_1.InputFieldChangeData("customer", "Mary")

Then the text would look like this:

Hello Mary!

We know that you, Mary, will be excited about our new deal. Please call soon, Mary, and
save money now.

The user can also set the value. There are two methods:

• Selecting it and typing a new value

• Displaying the Input Field property sheet and editing the Data Value text box

Inserting input fields in a script

The InputFieldInsert function inserts a field at the insertion point:

rtn = rte_1.InputFieldInsert("datafield")

In a rich text editing application, you might want the user to insert input fields. The user
needs a way to specify the input field name.

In this example, the user selects a name from a ListBox containing possible input field
names. The script inserts an input field at the insertion point using the selected name:

string ls_field
integer rtn

ls_field = lb_fields.SelectedItem()
IF ls_field <> "" THEN
 rtn = rte_1.InputFieldInsert(ls_field)
 IF rtn = -1 THEN
 MessageBox("Error", "Cannot insert field.")
 END IF
ELSE
 MessageBox("No Selection", &
 "Please select an input field name.")
END IF

Input fields for dates and page numbers

To display a date or a page number in a printed document, you define an input field and set
the input field's value.

Data Access Techniques

Page 227

To include today's date in the opening of a letter, you might:

1. Create an input field in the text. Name it anything you want.

2. In the script that opens the window or some other script, set the value of the input field
to the current date.

For example, if the body of the letter included an input field called TODAY, you would
write a script like the following to set it:

integer li_rtn
li_rtn = rte_1.InputFieldChangeData("today", &
 String(Today()))

For information about setting page number values see What the user sees.

4.5.3.6 Using database data

You can make a connection between a RichTextEdit control and a DataWindow control or
DataStore object. When an input field in the RichTextEdit control has the same name as a
column or computed column in the DataWindow object, it displays the associated data.

Whether or not the RichTextEdit control has a data source, there is always only one copy
of the rich text content. While editing, you might visualize the RichTextEdit contents as a
template into which row after row of data can be inserted. While scrolling from row to row,
you might think of many instances of the document in which the text is fixed but the input
field data changes.

To share data between a DataWindow object or DataStore, use the DataSource function:

rte_1.DataSource(ds_empdata)

Example of sharing data

If the DataWindow object associated with the DataStore ds_empdata has the four columns
emp_id, emp_lname, emp_fname, and state, the RichTextEdit content might include text and
input fields like this:

Sample letter with columns from the employee table

ID: {emp_id}

Dear {emp_fname} {emp_lname}:

We are opening a new plant in Mexico. If you would like to transfer from {state} to
Mexico, the company will cover all expenses.

Navigating rows and pages

For the RichTextEdit control, navigation keys let the user move among the pages of the
document. However, you must provide scrolling controls so that the user can move from row
to row.

You should provide Prior Row and Next Row buttons. The scripts for the buttons are simple.
For Next Row:

rte_1.ScrollNextRow()

Data Access Techniques

Page 228

For Prior Row:

rte_1.ScrollPriorRow()

If you also provide page buttons, then when the user is on the last page of the document for
one row, scrolling to the next page moves to the first page for the next row:

rte_1.ScrollNextPage()

4.5.3.7 Cursor position in the RichTextEdit control

Functions provide several ways to find out what is selected and to select text in the
RichTextEdit control.

Where is the insertion point or what is selected?

The text always contains an insertion point and it can contain a selection, which is shown
as highlighted text. When there is a selection, the position of the insertion point can be at
the start or the end of the selection, depending on how the selection is made. If the user
drags from beginning to end, the insertion point is at the end. If the user drags from end to
beginning, the insertion point is at the beginning.

The Position function provides information about the selection and the insertion point.

For more information, see Section 2.4.577, “Position” in PowerScript Reference.

Changing the cursor image

The Pointer page of the Rich Text Object property sheet has a list box with stock pointers that
can be used to indicate cursor position in a RichTextEdit control or RichText DataWindow.
Users can change the cursor image at runtime by selecting one of these pointers and clicking
OK in the Rich Text Object property sheet.

Selecting text programmatically

There are several functions that select portions of the text relative to the position of the
insertion point:

• SelectTextWord

• SelectTextLine

• SelectTextAll

A more general text selection function is SelectText. You specify the line and character
number of the start and end of the selection.

Passing values to SelectText

Because values obtained with Position provide more information than simply a selection
range, you cannot pass the values directly to SelectText. In particular, zero is not a valid
character position when selecting text, although it is meaningful in describing the selection.

For more information, see Section 2.4.577, “Position” in PowerScript Reference.

For an example of selecting words one by one for the purposes of spell checking, see
Section 2.4.695, “SelectTextWord” in PowerScript Reference.

Data Access Techniques

Page 229

Tab order, focus, and the selection

Tab order

For a window or user object, you include the RichTextEdit control in the tab order of
controls. However, after the user tabs to the RichTextEdit control, pressing the tab key inserts
tabs into the text. The user cannot tab out to other controls. Keep this in mind when you
design the tab order for a window.

Focus and the selection

When the user tabs to the RichTextEdit control, the control gets focus and the current
insertion point or selection is maintained. If the user clicks the RichTextEdit control to set
focus, the insertion point moves to the place the user clicks.

LoseFocus event

When the user clicks on a RichTextEdit toolbar, a LoseFocus event occurs. However, the
RichTextEdit control still has focus. You can check whether the control has lost focus with
the GetFocus function.

4.5.3.8 Preview and printing

The user can preview the layout and print the contents of the RichTextEdit control. In print
preview mode, users see a view of the document reduced so that it fits inside the control.
However, you must set the print margins and page size before you display the control in print
preview mode.

There are two ways to enter print preview mode:

• The user can press CTRL+F2 to switch between editing and print preview mode

• You can call the Preview function in a script:

rte_1.Preview(TRUE)

Users can page through the control contents in print preview mode by using the up arrow and
down arrow keys or the Page Up and Page Down keys.

Adjusting the print margins

If you set page margins at design time, or enable headers and footers for a rich text control,
application users can adjust the margins of the control at runtime. Users can do this by
opening the property sheet for the RichTextEdit control to the Print Specifications tab and
modifying the left, right, top, or bottom margins, or by triggering an event that changes the
margins in PowerScript code. Adjusting the margins in the Rich Text Object dialog box also
affects the display of the RichTextEdit control content in print preview mode.

If you do not set page margins at design time or leave them at 0, any changes the user makes
to the margins at runtime are visible in print preview mode only.

Data Access Techniques

Page 230

Setting page size and orientation

You cannot set the default page size and page orientation at design time. However,
users can set these properties at runtime from the Print Specifications tab of the Rich
Text Object dialog box. This dialog box is available from the standard view only. You
must also enable the pop-up menu on a RichTextEdit control to enable application
users to display this dialog box.

Printing

If the RichTextEdit is using DataWindow object data, you can limit the number of rows
printed by setting the Print.Page.Range property for the DataWindow control. Its value is a
string that lists the page numbers that you want to print. A dash indicates a range.

Example of a page range

Suppose your RichTextEdit control has a data source in the control dw_source. Your rich text
document is three pages and you want to print the information for rows 2 and 5. You can set
the page range property before you print:

Data Access Techniques

Page 231

dw_source.Object.DataWindow.Print.Page.Range = &
 "4-6,13-15"

You can also filter or discard rows so that they are not printed.

For more information, see the SetFilter, Filter, RowsMove, and RowsDiscard functions
in Part I, “PowerScript Reference” and the Print DataWindow object property in
Section 3.3.163, “Print.property” in DataWindow Reference.

Inserting footer text programmatically

This sample code sets the insertion point in the footer and inserts two blank lines, text, and
two input fields:

rte_1.SelectText(1, 1, 0, 0, Footer!)
rte_1.ReplaceText("~r~n~r~nRow ")
rte_1.InputFieldInsert("row")
rte_1.ReplaceText(" Page ")
rte_1.InputFieldInsert("page")
rte_1.SetAlignment(Center!)

4.5.4 Rich text and the end user

All the editing tools described throughout this chapter and in Section 6.13, “Working with
Rich Text” in Users Guide can be made available to your users.

What users can do

Users can:

• Use the toolbars for text formatting

• Use the pop-up menu, which includes using the clipboard and opening other rich text and
ASCII files

• Edit the contents of input fields

• Turn the editing tools on and off

What you can make available to users in your code

You can program an application to allow users to:

• Insert and delete input fields

• Insert pictures

• Switch to header and footer editing

• Preview the document for printing

If a RichTextEdit control shares data with a DataWindow object or DataStore, you can
program:

• Scrolling from row to row (you do not need to program page-to-page scrolling, although
you can)

Data Access Techniques

Page 232

• Updating the database with changes made in input fields

The best way for you to prepare rich text for use in your application is to become a user
yourself and edit the text in an application designed for the purpose. During execution, all the
tools for text preparation are available.

What the user sees

The default view is the body text. You can also show header and footer text and a print
preview. To show header and footer text, you must select the HeaderFooter property in
the rich text control's Properties view at design time. This value cannot be changed during
execution, although if you select it at design time, you can programmatically show the header
and footer text at runtime.

Header and footer text

For either a RichText DataWindow object or the RichTextEdit control, you can call the
ShowHeadFoot function in a menu or button script. To display the header editing panel, you
can call:

dw_1.ShowHeadFoot(TRUE)

To display the footer editing panel, you must call:

dw_1.ShowHeadFoot(TRUE, FALSE)

Inserting the current page number in a footer

The following script inserts the current page number in the footer, then returns the
focus to the body of the document in the rich text control. The PAGENO field name
that you insert must be entered in capital letters only:

rte_1.ShowHeadFoot(true,false)
rte_1.SetAlignment (Center!)
rte_1.InputFieldInsert("PAGENO")
rte_1.ShowHeadFoot(false,false)

You cannot change the PAGENO field with an InputFieldChangeData call.

In the overloaded function ShowHeadFoot, the second argument defaults to TRUE if a value
is not provided. Call the function again to return to normal view.

dw_1.ShowHeadFoot(FALSE)

The document as it would be printed

The user can press CTRL+F2 to switch print preview mode on and off. You can also control
print preview mode programmatically.

For a RichTextEdit control, call the Preview function:

rte_1.Preview(TRUE)

For a RichText DataWindow object, set the Preview property:

dw_1.Object.DataWindow.Print.Preview = TRUE

Text elements and formatting

Data Access Techniques

Page 233

The user can specify formatting for:

• Selected text

• Paragraphs

• Pictures

• The whole rich text document

To display the property sheet for an object, the user can:

1. Select the object. For example:

• Drag or use editing keys to select text

• Click on a picture

• Set an insertion point (nothing selected) for the rich text document

2. Right-click in the workspace and select Properties from the pop-up menu.

To make settings for the paragraphs in the selection:

• Double-click on the ruler bar

or

Type Ctrl+Shift+S.

Modifying input fields

Unless you have made the rich text object display only, the user can modify the values of
input fields.

To modify the value of an input field:

1. Click the input field to select it.

2. Right-click in the workspace and choose Properties from the pop-up menu.

The Input Field Object property sheet displays.

3. On the Input Field page, edit the Data Value text box.

Text formatting for input fields

There are several ways to select the input field and apply text formatting. When the input
field is selected, the Font page of the property sheet and the toolbar affect the text. When the
input field is part of a text selection, changes affect all the text, including the input field.

The user cannot apply formatting to individual characters or words within the field. When the
user selects the input field, the entire field is selected.

Data Access Techniques

Page 234

Inserting and deleting input fields

You write scripts that let the user insert and delete input fields. The user can also copy and
paste existing input fields. All copies of an input field display the same data.

Formatting keys and toolbars

When the toolbar is visible, users can use its buttons to format text, or they can use
designated keystrokes to format text in the RichTextEdit control.

For a list of keystrokes for formatting rich text, see Section 6.13, “Working with Rich Text”
in Users Guide.

4.6 Piping Data Between Data Sources

About this chapter

This chapter tells you how you can use a Pipeline object in your application to pipe data from
one or more source tables to a new or existing destination table.

Sample applications

This chapter uses a simple order entry application to illustrate the use of a data pipeline.
To see working examples using data pipelines, look at the examples in the Data Pipeline
category in the Code Examples sample application.

For information on how to use the sample applications, see Using Sample Applications.

4.6.1 About data pipelines

PowerBuilder provides a feature called the data pipeline that you can use to migrate data
between database tables. This feature makes it possible to copy rows from one or more source
tables to a new or existing destination table -- either within a database, or across databases, or
even across DBMSs.

Two ways to use data pipelines

You can take advantage of data pipelines in two different ways:

• As a utility service for developers

While working in the PowerBuilder development environment, you might occasionally
want to migrate data for logistical reasons (such as to create a small test table from a
large production table). In this case, you can use the Data Pipeline painter interactively to
perform the migration immediately.

For more information on using the Data Pipeline painter this way, see Section 5.2,
“Working with Data Pipelines” in Users Guide.

• To implement data migration capabilities in an application

If you are building an application whose requirements call for migrating data between
tables, you can design an appropriate data pipeline in the Data Pipeline painter, save it, and
then enable users to execute it from within the application.

This technique can be useful in many different situations, such as: when you want the
application to download local copies of tables from a database server to a remote user, or

Data Access Techniques

Page 235

when you want it to roll up data from individual transaction tables to a master transaction
table.

Walking through the basic steps

If you determine that you need to use a data pipeline in your application, you must determine
what steps this involves. At the most general level, there are five basic steps that you
typically have to perform.

To pipe data in an application:

1. Build the objects you need.

2. Perform some initial housekeeping.

3. Start the pipeline.

4. Handle row errors.

5. Perform some final housekeeping.

The remainder of this chapter gives you the details of each step.

4.6.2 Building the objects you need

To implement data piping in an application, you need to build a few different objects:

• A Pipeline object

• A supporting user object

• A window

4.6.2.1 Building a Pipeline object

You must build a Pipeline object to specify the data definition and access aspects of
the pipeline that you want your application to execute. Use the Data Pipeline painter in
PowerBuilder to create this object and define the characteristics you want it to have.

Characteristics to define

Among the characteristics you can define in the Data Pipeline painter are:

• The source tables to access and the data to retrieve from them (you can also access
database stored procedures as the data source)

• The destination table to which you want that data piped

• The piping operation to perform (create, replace, refresh, append, or update)

• The frequency of commits during the piping operation (after every n rows are piped, or
after all rows are piped, or not at all -- if you plan to code your own commit logic)

Data Access Techniques

Page 236

• The number of errors to allow before the piping operation is terminated

• Whether or not to pipe extended attributes to the destination database (from the
PowerBuilder repository in the source database)

For full details on using the Data Pipeline painter to build your Pipeline object, see
Section 5.2, “Working with Data Pipelines” in Users Guide.

Example

Here is an example of how you would use the Data Pipeline painter to define a Pipeline
object named pipe_sales_extract1 (one of two Pipeline objects employed by the
w_sales_extract window in a sample order entry application).

The source data to pipe

This Pipeline object joins two tables (Sales_rep and Sales_summary) from the company's
sales database to provide the source data to be piped. It retrieves just the rows from a
particular quarter of the year (which the application must specify by supplying a value for the
retrieval argument named quarter):

Notice that this Pipeline object also indicates specific columns to be piped from each source
table (srep_id, srep_lname, and srep_fname from the Sales_rep table, as well as ssum_quarter
and ssum_rep_team from the Sales_summary table). In addition, it defines a computed
column to be calculated and piped. This computed column subtracts the ssum_rep_quota
column of the Sales_summary table from the ssum_rep_actual column:

How to pipe the data

Data Access Techniques

Page 237

The details of how pipe_sales_extract1 is to pipe its source data are specified here:

Notice that this Pipeline object is defined to create a new destination table named
Quarterly_extract. A little later you will learn how the application specifies the destination
database in which to put this table (as well as how it specifies the source database in which to
look for the source tables).

Also notice that:

• A commit will be performed only after all appropriate rows have been piped (which means
that if the pipeline's execution is terminated early, all changes to the Quarterly_extract
table will be rolled back).

• No error limit is to be imposed by the application, so any number of rows can be in error
without causing the pipeline's execution to terminate early.

• No extended attributes are to be piped to the destination database.

• The primary key of the Quarterly_extract table is to consist of the srep_id column and the
ssum_quarter column.

• The computed column that the application is to create in the Quarterly_extract table is to
be named computed_net.

4.6.2.2 Building a supporting user object

So far you have seen how your Pipeline object defines the details of the data and access for
a pipeline, but a Pipeline object does not include the logistical supports -- properties, events,
and functions -- that an application requires to handle pipeline execution and control.

About the Pipeline system object

Data Access Techniques

Page 238

To provide these logistical supports, you must build an appropriate user object inherited from
the PowerBuilder Pipeline system object. The following table shows some of the system
object's properties, events, and functions that enable your application to manage a Pipeline
object at runtime.

Table 4.21: Pipeline system object properties, events, and functions

Properties Events Functions

DataObject

RowsRead

RowsWritten

RowsInError

Syntax

PipeStart

PipeMeter

PipeEnd

Start

Repair

Cancel

A little later in this chapter you will learn how to use most of these properties, events, and
functions in your application.

To build the supporting user object for a pipeline:

1. Select Standard Class from the PB Object tab of the New dialog box.

The Select Standard Class Type dialog box displays, prompting you to specify the name
of the PowerBuilder system object (class) from which you want to inherit your new user
object:

2. Select pipeline and click OK.

3. Make any changes you want to the user object (although none are required). This might
involve coding events, functions, or variables for use in your application.

To learn about one particularly useful specialization you can make to your user object,
see Monitoring pipeline progress.

Data Access Techniques

Page 239

Planning ahead for reuse

As you work on your user object, keep in mind that it can be reused in the future to
support any other pipelines you want to execute. It is not automatically tied in any
way to a particular Pipeline object you have built in the Data Pipeline painter.

To take advantage of this flexibility, make sure that the events, functions, and
variables you code in the user object are generic enough to accommodate any Pipeline
object.

4. Save the user object.

For more information on working with the User Object painter, see Section 4.7, “Working
with User Objects” in Users Guide.

4.6.2.3 Building a window

One other object you need when piping data in your application is a window. You use this
window to provide a user interface to the pipeline, enabling people to interact with it in one
or more ways. These include:

• Starting the pipeline's execution

• Displaying and repairing any errors that occur

• Canceling the pipeline's execution if necessary

Required features for your window

When you build your window, you must include a DataWindow control that the pipeline
itself can use to display error rows (that is, rows it cannot pipe to the destination table for
some reason). You do not have to associate a DataWindow object with this DataWindow
control -- the pipeline provides one of its own at runtime.

To learn how to work with this DataWindow control in your application, see Starting the
pipeline and Handling row errors.

Optional features for your window

Other than including the required DataWindow control, you can design the window as you
like. You will typically want to include various other controls, such as:

• CommandButton or PictureButton controls to let the user initiate actions (such as starting,
repairing, or canceling the pipeline)

• StaticText controls to display pipeline status information

• Additional DataWindow controls to display the contents of the source and/or destination
tables

If you need assistance with building a window, see Section 4.1.4, “Building a new window”
in Users Guide.

Example

Data Access Techniques

Page 240

The following window handles the user-interface aspect of the data piping in the order entry
application. This window is named w_sales_extract:

Several of the controls in this window are used to implement particular pipeline-related
capabilities. The following table provides more information about them.

Table 4.22: Window controls to implement pipeline capabilities

Control
type

Control
name

Purpose

rb_create Selects pipe_sales_extract1 as the Pipeline object to executeRadioButton

rb_insert Selects pipe_sales_extract2 as the Pipeline object to execute

cb_write Starts execution of the selected pipeline

cb_stop Cancels pipeline execution or applying of row repairs

cb_applyfixes Applies row repairs made by the user (in the dw_pipe_errors
DataWindow control) to the destination table

CommandButton

cb_forgofixes Clears all error rows from the dw_pipe_errors DataWindow
control (for use when the user decides not to make repairs)

dw_review_extractDisplays the current contents of the destination table
(Quarterly_extract)

DataWindow

dw_pipe_errors(Required) Used by the pipeline itself to automatically display
the PowerBuilder pipeline-error DataWindow (which lists rows
that cannot be piped due to some error)

StaticText st_status_read Displays the count of rows that the pipeline reads from the
source tables

Data Access Techniques

Page 241

Control
type

Control
name

Purpose

st_status_writtenDisplays the count of rows that the pipeline writes to the
destination table or places in dw_pipe_errors

st_status_error Displays the count of rows that the pipeline places in
dw_pipe_errors (because they are in error)

4.6.3 Performing some initial housekeeping

Now that you have the basic objects you need, you are ready to start writing code to make
your pipeline work in the application. To begin, you must take care of some setup chores that
will prepare the application to handle pipeline execution.

To get the application ready for pipeline execution:

1. Connect to the source and destination databases for the pipeline.

To do this, write the usual connection code in an appropriate script. Just make sure
you use one Transaction object when connecting to the source database and a different
Transaction object when connecting to the destination database (even if it is the same
database).

For details on connecting to a database, see Using Transaction Objects.

2. Create an instance of your supporting user object (so that the application can use its
properties, events, and functions).

To do this, first declare a variable whose type is that user object. Then, in an appropriate
script, code the CREATE statement to create an instance of the user object and assign it
to that variable.

3. Specify the particular Pipeline object you want to use.

To do this, code an Assignment statement in an appropriate script; assign a string
containing the name of the desired Pipeline object to the DataObject property of your
user-object instance.

For more information on coding the CREATE and Assignment statements, see Section 2.1.5,
“CREATE” in PowerScript Reference and Section 2.1.1, “Assignment” in PowerScript
Reference.

Example

The following sample code takes care of these pipeline setup chores in the order entry
application.

Connecting to the source and destination database

In this case, the company's sales database (ABNCSALE.DB) is used as both the source and
the destination database. To establish the necessary connections to the sales database, write
code in a user event named uevent_pipe_setup (which is posted from the Open event of the
w_sales_extract window).

The following code establishes the source database connection:

Data Access Techniques

Page 242

// Create a new instance of the Transaction object
// and store it in itrans_source (a variable
// declared earlier of type transaction).
itrans_source = CREATE transaction

// Next, assign values to the properties of the
// itrans_source Transaction object.
...

// Now connect to the source database.
CONNECT USING itrans_source;

The following code establishes the destination database connection:

// Create a new instance of the Transaction object
// and store it in itrans_destination (a variable
// declared earlier of type transaction).

itrans_destination = CREATE transaction

// Next, assign values to the properties of the
// itrans_destination Transaction object.
...
// Now connect to the destination database.

CONNECT USING itrans_destination;

Setting USERID for native drivers

When you execute a pipeline in the Pipeline painter, if you are using a native driver,
PowerBuilder automatically qualifies table names with the owner of the table. When
you execute a pipeline in an application, if you are using a native driver, you must
set the USERID property in the Transaction object so that the table name is properly
qualified.

Failing to set the USERID property in the Transaction object for the destination
database causes pipeline execution errors. If the source database uses a native driver,
extended attributes are not piped if USERID is not set.

Creating an instance of the user object

Earlier you learned how to develop a supporting user object named u_sales_pipe_logistics.
To use u_sales_pipe_logistics in the application, first declare a variable of its type:

// This is an instance variable for the
// w_sales_extract window.

u_sales_pipe_logistics iuo_pipe_logistics

Then write code in the uevent_pipe_setup user event to create an instance of
u_sales_pipe_logistics and store this instance in the variable iuo_pipe_logistics:

iuo_pipe_logistics = CREATE u_sales_pipe_logistics

Specifying the Pipeline object to use

The application uses one of two different Pipeline objects, depending on the kind of piping
operation the user wants to perform:

• pipe_sales_extract1 (which you saw in detail earlier) creates a new Quarterly_extract table
(and assumes that this table does not currently exist)

Data Access Techniques

Page 243

• pipe_sales_extract2 inserts rows into the Quarterly_extract table (and assumes that this
table does currently exist)

To choose a Pipeline object and prepare to use it, write the following code in the Clicked
event of the cb_write CommandButton (which users click when they want to start piping):

// Look at which radio button is checked in the
// w_sales_extract window. Then assign the matching
// Pipeline object to iuo_pipe_logistics.

IF rb_create.checked = true THEN
 iuo_pipe_logistics.dataobject = "pipe_sales_extract1"
ELSE
 iuo_pipe_logistics.dataobject = "pipe_sales_extract2"
END IF

This code appears at the beginning of the script, before the code that starts the chosen
pipeline.

Deploying Pipeline objects for an application

Because an application must always reference its Pipeline objects dynamically at
runtime (through string variables), you must package these objects in one or more
dynamic libraries when deploying the application. You cannot include Pipeline
objects in an executable (EXE) file.

For more information on deployment, see Part 9, "Deployment Techniques".

4.6.4 Starting the pipeline

With the setup chores taken care of, you can now start the execution of your pipeline.

To start pipeline execution:

1. Code the Start function in an appropriate script. In this function, you specify:

• The Transaction object for the source database

• The Transaction object for the destination database

• The DataWindow control in which you want the Start function to display any error
rows

The Start function automatically associates the PowerBuilder pipeline-error
DataWindow object with your DataWindow control when needed.

• Values for retrieval arguments you have defined in the Pipeline object

If you omit these values, the Start function prompts the user for them automatically at
runtime.

2. Test the result of the Start function.

For more information on coding the Start function, see Section 2.4.817, “Start” in
PowerScript Reference.

Data Access Techniques

Page 244

Example

The following sample code starts pipeline execution in the order entry application.

Calling the Start function

When users want to start their selected pipeline, they click the cb_write CommandButton in
the w_sales_extract window:

This executes the Clicked event of cb_write, which contains the Start function:

// Now start piping.
integer li_start_result
li_start_result = iuo_pipe_logistics.Start &
 (itrans_source,itrans_destination,dw_pipe_errors)

Notice that the user did not supply a value for the pipeline's retrieval argument (quarter). As a
consequence, the Start function prompts the user for it:

Testing the result

The next few lines of code in the Clicked event of cb_write check the Start function's return
value. This lets the application know whether it succeeded or not (and if not, what went
wrong):

CHOOSE CASE li_start_result

 CASE -3
 Beep (1)
 MessageBox("Piping Error", &
 "Quarterly_Extract table already exists ...
 RETURN

 CASE -4
 Beep (1)
 MessageBox("Piping Error", &
 "Quarterly_Extract table does not exist ...
 RETURN
 ...

Data Access Techniques

Page 245

END CHOOSE

4.6.4.1 Monitoring pipeline progress

Testing the Start function's return value is not the only way to monitor the status of pipeline
execution. Another technique you can use is to retrieve statistics that your supporting user
object keeps concerning the number of rows processed. They provide a live count of:

• The rows read by the pipeline from the source tables

• The rows written by the pipeline to the destination table or to the error DataWindow
control

• The rows in error that the pipeline has written to the error DataWindow control (but not to
the destination table)

By retrieving these statistics from the supporting user object, you can dynamically display
them in the window and enable users to watch the pipeline's progress.

To display pipeline row statistics:

1. Open your supporting user object in the User Object painter.

The User Object painter workspace displays, enabling you to edit your user object.

2. Declare three instance variables of type StaticText:

statictext ist_status_read, ist_status_written, &
 ist_status_error

You will use these instance variables later to hold three StaticText controls from your
window. This will enable the user object to manipulate those controls directly and make
them dynamically display the various pipeline row statistics.

3. In the user object's PipeMeter event script, code statements to assign the values of
properties inherited from the pipeline system object to the Text property of your three
StaticText instance variables.

ist_status_read.text = string(RowsRead)
ist_status_written.text = string(RowsWritten)
ist_status_error.text = string(RowsInError)

4. Save your changes to the user object, then close the User Object painter.

5. Open your window in the Window painter.

6. Insert three StaticText controls in the window:

One to display the RowsRead value

One to display the RowsWritten value

One to display the RowsInError value

Data Access Techniques

Page 246

7. Edit the window's Open event script (or some other script that executes right after the
window opens).

In it, code statements to assign the three StaticText controls (which you just inserted
in the window) to the three corresponding StaticText instance variables you declared
earlier in the user object. This enables the user object to manipulate these controls
directly.

In the sample order entry application, this logic is in a user event named
uevent_pipe_setup (which is posted from the Open event of the w_sales_extract
window):

iuo_pipe_logistics.ist_status_read = st_status_read
iuo_pipe_logistics.ist_status_written = &
 st_status_written
iuo_pipe_logistics.ist_status_error = &
 st_status_error

8. Save your changes to the window. Then close the Window painter.

When you start a pipeline in the w_sales_extract window of the order entry application,
the user object's PipeMeter event triggers and executes its code to display pipeline row
statistics in the three StaticText controls:

Data Access Techniques

Page 247

4.6.4.2 Canceling pipeline execution

In many cases you will want to provide users (or the application itself) with the ability to stop
execution of a pipeline while it is in progress. For instance, you may want to give users a way
out if they start the pipeline by mistake or if execution is taking longer than desired (maybe
because many rows are involved).

To cancel pipeline execution:

1. Code the Cancel function in an appropriate script

Make sure that either the user or your application can execute this function (if
appropriate) once the pipeline has started. When Cancel is executed, it stops the piping
of any more rows after that moment.

Rows that have already been piped up to that moment may or may not be committed to
the destination table, depending on the Commit property you specified when building
your Pipeline object in the Data Pipeline painter. You will learn more about committing
in the next section.

2. Test the result of the Cancel function

For more information on coding the Cancel function, see Section 2.4.54, “Cancel” in
PowerScript Reference.

Example

The following example uses a command button to let users cancel pipeline execution in the
order entry application.

Data Access Techniques

Page 248

Providing a CommandButton

When creating the w_sales_extract window, include a CommandButton control named
cb_stop. Then write code in a few of the application's scripts to enable this CommandButton
when pipeline execution starts and to disable it when the piping is done.

Calling the Cancel function

Next write a script for the Clicked event of cb_stop. This script calls the Cancel function and
tests whether or not it worked properly:

IF iuo_pipe_logistics.Cancel() = 1 THEN
 Beep (1)
 MessageBox("Operation Status", &
 "Piping stopped (by your request).")
ELSE
 Beep (1)
 MessageBox("Operation Status", &
 "Error when trying to stop piping.", &
 Exclamation!)
END IF

Together, these features let a user of the application click the cb_stop CommandButton to
cancel a pipeline that is currently executing.

4.6.4.3 Committing updates to the database

When a Pipeline object executes, it commits updates to the destination table according to
your specifications in the Data Pipeline painter. You do not need to write any COMMIT
statements in your application's scripts (unless you specified the value None for the Pipeline
object's Commit property).

Example

For instance, both of the Pipeline objects in the order entry application (pipe_sales_extract1
and pipe_sales_extract2) are defined in the Data Pipeline painter to commit all rows. As a
result, the Start function (or the Repair function) will pipe every appropriate row and then
issue a commit.

You might want instead to define a Pipeline object that periodically issues commits as rows
are being piped, such as after every 10 or 100 rows.

If the Cancel function is called

A related topic is what happens with committing if your application calls the Cancel function
to stop a pipeline that is currently executing. In this case too, the Commit property in the Data
Pipeline painter determines what to do, as shown in the following table.

Table 4.23: Commit property values

If your Commit value
is

Then Cancel does this

All Rolls back every row that was piped by the current Start function
(or Repair function)

A particular number of
rows (such as 1, 10, or
100)

Commits every row that was piped up to the moment of
cancellation

Data Access Techniques

Page 249

This is the same commit/rollback behavior that occurs when a pipeline reaches its Max Errors
limit (which is also specified in the Data Pipeline painter).

For more information on controlling commits and rollbacks for a Pipeline object, see
Section 5.2.3.3.1, “Whether rows are committed” in Users Guide.

4.6.5 Handling row errors

When a pipeline executes, it may be unable to write particular rows to the destination table.
For instance, this could happen with a row that has the same primary key as a row already in
the destination table.

Using the pipeline-error DataWindow

To help you handle such error rows, the pipeline places them in the DataWindow
control you painted in your window and specified in the Start function. It does this by
automatically associating its own special DataWindow object (the PowerBuilder pipeline-
error DataWindow) with your DataWindow control.

Consider what happens in the order entry application. When a pipeline executes in the
w_sales_extract window, the Start function places all error rows in the dw_pipe_errors
DataWindow control. It includes an error message column to identify the problem with each
row:

Making the error messages shorter

If the pipeline's destination Transaction object points to an ODBC data source,
you can set its DBParm MsgTerse parameter to make the error messages in the
DataWindow shorter. Specifically, if you type:

Data Access Techniques

Page 250

MsgTerse = 'Yes'

then the SQLSTATE error number does not display.

For more information on the MsgTerse DBParm, see Section 1.1.94, “MsgTerse” in
Connection Reference.

Deciding what to do with error rows

Once there are error rows in your DataWindow control, you need to decide what to do with
them. Your alternatives include:

• Repairing some or all of those rows

• Abandoning some or all of those rows

4.6.5.1 Repairing error rows

In many situations it is appropriate to try fixing error rows so that they can be applied to
the destination table. Making these fixes typically involves modifying one or more of their
column values so that the destination table will accept them. You can do this in a couple of
different ways:

• By letting the user edit one or more of the rows in the error DataWindow control (the easy
way for you, because it does not require any coding work)

• By executing script code in your application that edits one or more of the rows in the error
DataWindow control for the user

In either case, the next step is to apply the modified rows from this DataWindow control to
the destination table.

To apply row repairs to the destination table:

1. Code the Repair function in an appropriate script. In this function, specify the
Transaction object for the destination database.

2. Test the result of the Repair function.

For more information on coding the Repair function, see Section 2.4.635, “Repair” in
PowerScript Reference.

Example

In the following example, users can edit the contents of the dw_pipe_errors DataWindow
control to fix error rows that appear. They can then apply those modified rows to the
destination table.

Providing a CommandButton

When painting the w_sales_extract window, include a CommandButton control named
cb_applyfixes. Then write code in a few of the application's scripts to enable this
CommandButton when dw_pipe_errors contains error rows and to disable it when no error
rows appear.

Calling the Repair function

Data Access Techniques

Page 251

Next write a script for the Clicked event of cb_applyfixes. This script calls the Repair
function and tests whether or not it worked properly:

IF iuo_pipe_logistics.Repair(itrans_destination) &
 <> 1 THEN
 Beep (1)
 MessageBox("Operation Status", "Error when &
 trying to apply fixes.", Exclamation!)
END IF

Together, these features let a user of the application click the cb_applyfixes CommandButton
to try updating the destination table with one or more corrected rows from dw_pipe_errors.

Canceling row repairs

Earlier in this chapter you learned how to let users (or the application itself) stop writing rows
to the destination table during the initial execution of a pipeline. If appropriate, you can use
the same technique while row repairs are being applied.

For details, see Canceling pipeline execution.

Committing row repairs

The Repair function commits (or rolls back) database updates in the same way the Start
function does.

For details, see Committing updates to the database.

Handling rows that still are not repaired

Sometimes after the Repair function has executed, there may still be error rows left in the
error DataWindow control. This may be because these rows:

• Were modified by the user or application but still have errors

• Were not modified by the user or application

• Were never written to the destination table because the Cancel function was called (or were
rolled back from the destination table following the cancellation)

At this point, the user or application can try again to modify these rows and then apply them
to the destination table with the Repair function. There is also the alternative of abandoning
one or more of these rows. You will learn about that technique next.

4.6.5.2 Abandoning error rows

In some cases, you may want to enable users or your application to completely discard one or
more error rows from the error DataWindow control. This can be useful for dealing with error
rows that it is not desirable to repair.

The following table shows some techniques you can use for abandoning such error rows.

Table 4.24: Abandoning error rows

If you want to abandon Use

All error rows in the error DataWindow
control

The Reset function

One or more particular error rows in the error
DataWindow control

The RowsDiscard function

Data Access Techniques

Page 252

For more information on coding these functions, see Section 9.122, “Reset” in DataWindow
Reference and Section 9.130, “RowsDiscard” in DataWindow Reference.

Example

In the following example, users can choose to abandon all error rows in the dw_pipe_errors
DataWindow control.

Providing a CommandButton

When painting the w_sales_extract window, include a CommandButton control named
cb_forgofixes. Write code in a few of the application's scripts to enable this CommandButton
when dw_pipe_errors contains error rows and to disable it when no error rows appear.

Calling the Reset function

Next write a script for the Clicked event of cb_forgofixes. This script calls the Reset function:

dw_pipe_errors.Reset()

Together, these features let a user of the application click the cb_forgofixes CommandButton
to discard all error rows from dw_pipe_errors.

4.6.6 Performing some final housekeeping

When your application has finished processing pipelines, you need to make sure it takes care
of a few cleanup chores. These chores basically involve releasing the resources you obtained
at the beginning to support pipeline execution.

Garbage collection

You should avoid using the DESTROY statement to clean up resources unless you
are sure that the objects you are destroying are not used elsewhere. PowerBuilder's
garbage collection mechanism automatically removes unreferenced objects. For more
information, see Garbage collection and memory management.

To clean up when you have finished using pipelines:

1. Destroy the instance that you created of your supporting user object.

To do this, code the DESTROY statement in an appropriate script and specify the name
of the variable that contains that user-object instance.

2. Disconnect from the pipeline's source and destination databases.

To do this, code two DISCONNECT statements in an appropriate script. In one, specify
the name of the variable that contains your source transaction-object instance. In the
other, specify the name of the variable that contains your destination transaction-object
instance.

Then test the result of each DISCONNECT statement.

3. Destroy your source transaction-object instance and your destination transaction-object
instance.

To do this, code two DESTROY statements in an appropriate script. In one, specify
the name of the variable that contains your source transaction-object instance. In the

Data Access Techniques

Page 253

other, specify the name of the variable that contains your destination transaction-object
instance.

For more information on coding the DESTROY and DISCONNECT statements,
see Section 2.1.6, “DESTROY” in PowerScript Reference and Section 2.2.1.9,
“DISCONNECT” in PowerScript Reference.

Example

The following code in the Close event of the w_sales_extract window takes care of these
cleanup chores.

Destroying the user-object instance

At the beginning of the Close event script, code the following statement to destroy the
instance of the user object u_sales_pipe_logistics (which is stored in the iuo_pipe_logistics
variable):

DESTROY iuo_pipe_logistics

Disconnecting from the source database

Next, code these statements to disconnect from the source database, test the result of the
disconnection, and destroy the source transaction-object instance (which is stored in the
itrans_source variable):

DISCONNECT USING itrans_source;

 // Check result of DISCONNECT statement.
IF itrans_source.SQLCode = -1 THEN
 Beep (1)
 MessageBox("Database Connection Error", &
 "Problem when disconnecting from the source " &
 + "database. Please call technical support. " &
 + "~n~r~n~rDetails follow: " + &
 String(itrans_source.SQLDBCode) + " " + &
 itrans_source.SQLErrText, Exclamation!)
END IF

DESTROY itrans_source

Disconnecting from the destination database

Finally, code these statements to disconnect from the destination database, test the result of
the disconnection, and destroy their destination transaction-object instance (which is stored in
the itrans_destination variable):

DISCONNECT USING itrans_destination;

 // Check result of DISCONNECT statement.
IF itrans_destination.SQLCode = -1 THEN
 Beep (1)
 MessageBox("Database Connection Error", &
 "Problem when disconnecting from " + &
 "the destination (Sales) database. " + &
 "Please call technical support." + &
 "~n~r~n~rDetails follow: " + &
 String(itrans_destination.SQLDBCode) + " " + &
 itrans_destination.SQLErrText, Exclamation!)
END IF

DESTROY itrans_destination

Data Access Techniques

Page 254

4.7 Using RESTFul Web Services with JSON
PowerBuilder DataWindow/DataStore/DataWindowChild (except for Composite, Crosstab,
OLE 2.0, and RichText styles) can exchange JSON data with RESTFul Web services.

The JSONGenerator object constructs the JSON objects by adding values, objects, or
arrays. JSONParser object loads the JSON data from a string or from a TXT file into a
JSON object. JSONPackage merges data in a JSON object and extracts data from the JSON
object. The data to be merged can be from DataWindow/DataStore/DataWindowChild, or
from an existing JSON. The resulted JSON can be posted from the client to the server via
HTTPClient, or retrieved from the server to the client via RESTClient. And to import JSON
to or export JSON from the DataWindow control, DataStore object, or DataWindowChild
object, you can use the DataWindow ImportJson/ImportJsonByKey/ExportJson functions.

The HTTPClient object sends HTTP requests and receives HTTP responses from a resource
identified by a URI. Compared to the Inet object, HTTPClient is easier to use and supports
more methods (Get/Post/Put/Delete) and more SSL protocols (TLS 1.0, TLS 1.1, TLS 1.2,
SSL 2.0, and SSL 3.0). RESTClient object accesses the RESTful Web APIs and loads the
JSON string returned from the RESTful Web APIs into the DataWindow object. The JSON
string returned from the RESTFul Web Service APIs must have no more than 2 levels, and
the top-level must be arrays, the second-level must be objects.

For more information about these objects and their functions/events/properties, see

Section 2.47, “JSONPackage object” in Objects and Controls

Section 2.46, “JSONGenerator object” in Objects and Controls

Section 2.48, “JSONParser object” in Objects and Controls

Section 2.41, “HTTPClient object” in Objects and Controls

Section 2.87, “RESTClient object” in Objects and Controls

Section 9.97, “ImportJson” in DataWindow Reference

Section 9.98, “ImportJsonByKey” in DataWindow Reference

Section 9.29, “ExportJson” in DataWindow Reference

Section 2.9, “CompressorObject object” in Objects and Controls

Section 2.33, “ExtractorObject object” in Objects and Controls.

4.7.1 Supported JSON formats

4.7.1.1 Plain JSON

A plain JSON follows the industry standard JSON format (as specified in https://
www.json.org) and has one of the following structures depending on the actual export/import
scenario.

A plain JSON can only contain elements of the following 4 data types: integer, string,
boolean, and null.

One-level structure

A one-level plain JSON string must have only one level (cannot be two or more) and must be
an object (cannot be an array).

https://www.json.org
https://www.json.org

Data Access Techniques

Page 255

This format is supported by the following methods (For all formats supported by a particular
method, see Applicable methods):

Table 4.25:

Object Method

DataWindow ImportRowFromJSON, ExportRowAsJson

RESTClient RetrieveOne

Here is an example of a one-level plain JSON string:

{ "column1":1, "column2":"name", "column3":true, "column4":null... }

Two-level structure

A two-level plain JSON must have its top-level as an array and the second-level as object(s)
which represent a row of data.

[SIMPLE-ROW1, SIMPLE-ROW2, SIMPLE-ROW3, SIMPLE-ROW4, SIMPLE-ROW5...]

This format is supported by the following methods (For all formats supported by a particular
method, see Applicable methods):

Table 4.26:

Object Method

DataWindow ImportJson, ImportJsonByKey, ExportJson

JSONPackage GetValueToDataWindow,
SetValueByDataWindow

RESTClient Retrieve, RetrieveOne, Submit

Here is an example of a two-level plain JSON string:

[{"emp_id":1,"emp_fname":"Fran","emp_lname":"Whitney", &
 "street":"9 East Washington Street","city":"Cornwall"}, &
 {"emp_id":2,"emp_fname":"Matthew","emp_lname":"Cobb", &
 "street":"7 Pleasant Street","city":"Grimsby"}, &
 {"emp_id":3,"emp_fname":"Philip","emp_lname":"Chin", &
 "street":"539 Pond Street","city":"Oakville"}, &
 {"emp_id":4,"emp_fname":"Julie","emp_lname":"Jordan", &
 "street":"1244 Great Plain Avenue","city":"Woodbridge"}, &
 {"emp_id":5,"emp_fname":"Robert","emp_lname":"Breault", &
 "street":"358 Cherry Street","city":"Milton"}, &
 {"emp_id":6,"emp_fname":"Melissa","emp_lname":"Espinoza", &
 "street":"1121 Apple Tree Way","city":"Iroquois Falls"}, &
 {"emp_id":7,"emp_fname":"Jeannette","emp_lname":"Bertrand", &
 "street":"2090A Concord Street","city":"Waterloo"}, &
 {"emp_id":8,"emp_fname":"Marc","emp_lname":"Dill", &
 "street":"897 Hancock Street","city":"Milton"}, &
 {"emp_id":9,"emp_fname":"Jane","emp_lname":"Francis", &
 "street":"127 Hawthorne Drive","city":"Scarborough"}, &
 {"emp_id":10,"emp_fname":"Natasha","emp_lname":"Shishov", &
 "street":"151 Milk Street","city":"Grimsby"}, &
 {"emp_id":11,"emp_fname":"Kurt","emp_lname":"Driscoll", &
 "street":"1546 School Street","city":"Grimsby"}, &
 {"emp_id":12,"emp_fname":"Rodrigo","emp_lname":"Guevara", &
 "street":"72 East Main Street","city":"Fort Henry"}]

Data Access Techniques

Page 256

4.7.1.2 DataWindow JSON

A DataWindow JSON is an object that contains elements representing the various aspects of
a DataWindow.

This format is supported by the following methods (For all formats supported by a particular
method, see Applicable methods):

Table 4.27:

Object Method

DataWindow ImportJson, ImportJsonByKey, ExportJson

JSONPackage GetValueToDataWindow,
SetValueByDataWindow

RESTClient Submit

The structure of DataWindow JSON is as follows:

{
"identity": "70c86603-983b-4bd9-adbc-259436e43cbd",
"version":1.0,
"platform":"PowerBuilder",
"mapping-method": 0,
"dataobject":{"name":"d_example",
 "meta-columns": [COLUMN-META1, COLUMN-META2…],
 "primary-rows": [DW-STANDARD-ROW1, DW-STANDARD-ROW2…],
 "filter-rows": [DW-STANDARD-ROW1, DW-STANDARD-ROW2…],
 "delete-rows": [DW-STANDARD-ROW1, DW-STANDARD-ROW2…],
 "dwchilds":{"department_id": [SIMPLE-ROW1,SIMPLE-ROW2…],
 "category_id": [SIMPLE-ROW1,SIMPLE-ROW2…]
 …
 }
}
}

Table 4.28:

Elements Description

identity A string identifying the format. Should keep
unchanged.

version An integer specifying the format version.
Currently it is 1.0.

platform A string specifying the platform where
JSON string is generated. Values are:
PowerBuilder, C#.

mapping-method An integer specifying the method for
mapping columns. Values are:

• 0 -- Use the index of JSON item to map
with the DataWindow column.

• 1 -- Use the index of meta-columns to map
with the DataWindow column.

• 2 -- Use the key of JSON item to map with
the DataWindow column.

Data Access Techniques

Page 257

Elements Description
Note: ImportJson function supports only 0
and 1, and ImportJsonByKey function and
GetValueToDataWindow function ignore
this value.

dataobject An object indicating it is a DataWindow.

name A string specifying the name of the
DataWindow object (DataObject).

meta-columns (optional) An array specifying the information of
the DataWindow columns (excluding the
computed columns).

For elements about the column meta
information, see COLUMN-META [257]
below.

primary-rows (optional) An array specifying the data row in the
DataWindow primary buffer.

For elements about the DataWindow row, see
DW-STANDARD-ROW [258] below.

filter-rows (optional) An array specifying the data row in the
DataWindow filter buffer.

For elements about the DataWindow row, see
DW-STANDARD-ROW [258] below.

delete-rows (optional) An array specifying the data row in the
DataWindow delete buffer.

For elements about the DataWindow row, see
DW-STANDARD-ROW [258] below.

dwchilds (optional) An object specifying the data in the
DataWindowChild. The column name
of the DataWindowChild is the key of
dwchilds. The data row is SIMPLE-ROW.
see SIMPLE-ROW [258] below for more
information.

COLUMN-META

COLUMN-META is an object that contains elements representing the various aspects of the
DataWindow column (but not the computed column).

{
"name": "department_id",
"index": 1,
"datatype": "long",
"nullable": 0
}

name -- (required) a string specifying the name of the column.

Data Access Techniques

Page 258

index -- (required) an integer specifying the sequence order of the column. This value will be
used to map with the DataWindow column when the mapping-method value is set to 1.

datatype -- (required) a string specifying the type of the column. This value is not used by
import.

nullable -- (required) an integer specifying whether to allow a null value. 0 - a null value is
not allowed, 1 - a null value is allowed.

DW-STANDARD-ROW

DW-STANDARD-ROW is an object that contains elements representing the detailed
information of the DataWindow row.

{
 "row-status": 0,
 "columns":{"column1": [CURRENT-VALUE, COLUMN-STATUS, ORIGINAL-VALUE],
 "column2": [CURRENT-VALUE, COLUMN-STATUS, ORIGINAL-VALUE],
 ...
 }
}

row-status -- (required) an integer specifying the status of the DataWindow row. 0 -
NotModified!, 1 - DataModified!, 2 - New!, 3 - NewModified!.

columns -- (required) an object specifying the DataWindow column information including
the current value, the column status, and the original value.

• CURRENT-VALUE: (required) The current value of the column, in the following data
type: integer, string, boolean, or null.

• COLUMN-STATUS: (optional) An integer specifying the column status. 0 - (default)
NotModified!, 1 - DataModified!.

• ORIGINAL-VALUE: (optional) The original value of the column, in the following data
type: integer, string, boolean, or null. The default type is null.

SIMPLE-ROW

SIMPLE-ROW is an object that contains elements representing the simple information of the
DataWindow row. The data must be in the following data type: integer, string, boolean, or
null.

{ "column1":1, "column2":"name", "column3":true, "column4":null... }

Example

Here is an example of a DataWindow JSON string:

{
 "identity": "70c86603-983b-4bd9-adbc-259436e43cbd",
 "version": 1,
 "platform": "PowerBuilder",
 "mapping-method": 0,
 "dataobject": {
 "name": "d_employee",
 "meta-columns": [
 {
 "name": "emp_id",
 "index": 0,
 "datatype": "long",
 "nullable": 1

Data Access Techniques

Page 259

 },
 {
 "name": "manager_id",
 "index": 1,
 "datatype": "long",
 "nullable": 1
 },
 {
 "name": "emp_fname",
 "index": 2,
 "datatype": "string",
 "nullable": 1
 },
 {
 "name": "emp_lname",
 "index": 3,
 "datatype": "string",
 "nullable": 1
 },
 {
 "name": "dept_id",
 "index": 4,
 "datatype": "long",
 "nullable": 1
 },
 {
 "name": "street",
 "index": 5,
 "datatype": "string",
 "nullable": 1
 },
 {
 "name": "city",
 "index": 6,
 "datatype": "string",
 "nullable": 1
 },
 {
 "name": "state",
 "index": 7,
 "datatype": "string",
 "nullable": 1
 },
 {
 "name": "zip_code",
 "index": 8,
 "datatype": "string",
 "nullable": 1
 },
 {
 "name": "phone",
 "index": 9,
 "datatype": "string",
 "nullable": 1
 },
 {
 "name": "status",
 "index": 10,
 "datatype": "string",
 "nullable": 0
 },
 {
 "name": "ss_number",
 "index": 11,

Data Access Techniques

Page 260

 "datatype": "string",
 "nullable": 1
 },
 {
 "name": "salary",
 "index": 12,
 "datatype": "decimal",
 "nullable": 1
 },
 {
 "name": "start_date",
 "index": 13,
 "datatype": "date",
 "nullable": 1
 },
 {
 "name": "termination_date",
 "index": 14,
 "datatype": "date",
 "nullable": 1
 },
 {
 "name": "birth_date",
 "index": 15,
 "datatype": "date",
 "nullable": 1
 },
 {
 "name": "bene_health_ins",
 "index": 16,
 "datatype": "string",
 "nullable": 0
 },
 {
 "name": "bene_life_ins",
 "index": 17,
 "datatype": "string",
 "nullable": 0
 },
 {
 "name": "bene_day_care",
 "index": 18,
 "datatype": "string",
 "nullable": 0
 }
],
 "primary-rows": [
 {
 "row-status": 1,
 "columns": {
 "emp_id": [102],
 "manager_id": [501],
 "emp_fname": ["Fran"],
 "emp_lname": ["Whitney"],
 "dept_id": [400, 1, 100],
 "street": ["49 East Washington Street"],
 "city": ["Needham"],
 "state": ["MA"],
 "zip_code": ["02192 "],
 "phone": ["6175554321", 1, "6175553985"],
 "status": ["A"],
 "ss_number": ["017349033"],
 "salary": [50000, 1, 45700],
 "start_date": ["1994-02-26"],

Data Access Techniques

Page 261

 "termination_date": [null],
 "birth_date": ["1966-06-05"],
 "bene_health_ins": ["Y"],
 "bene_life_ins": ["Y"],
 "bene_day_care": ["N"]
 }
 },
 {
 "row-status": 0,
 "columns": {
 "emp_id": [129],
 "manager_id": [902],
 "emp_fname": ["Philip"],
 "emp_lname": ["Chin"],
 "dept_id": [200],
 "street": ["59 Pond Street"],
 "city": ["Atlanta"],
 "state": ["GA"],
 "zip_code": ["30339 "],
 "phone": ["4045552341"],
 "status": ["A"],
 "ss_number": ["024608923"],
 "salary": [38500],
 "start_date": ["2005-08-04"],
 "termination_date": [null],
 "birth_date": ["1974-10-30"],
 "bene_health_ins": ["Y"],
 "bene_life_ins": ["Y"],
 "bene_day_care": ["N"]
 }
 },
 {
 "row-status": 3,
 "columns": {
 "emp_id": [104, 1, null],
 "manager_id": [902, 1, null],
 "emp_fname": ["Chris", 1, null],
 "emp_lname": ["Young", 1, null],
 "dept_id": [200, 1, null],
 "street": ["57 Carver Street", 1, null],
 "city": ["Concord", 1, null],
 "state": ["MA", 1, null],
 "zip_code": ["12345 ", 1, null],
 "phone": ["6185551234", 1, null],
 "status": ["A", 1, null],
 "ss_number": ["010123456", 1, null],
 "salary": [63000, 1, null],
 "start_date": ["2018-05-06", 1, null],
 "termination_date": [null],
 "birth_date": ["1984-10-12", 1, null],
 "bene_health_ins": ["Y", 1, null],
 "bene_life_ins": ["Y", 1, null],
 "bene_day_care": [null]
 }
 }
],
 "filter-rows": [
 {
 "row-status": 0,
 "columns": {
 "emp_id": [148],
 "manager_id": [1293],
 "emp_fname": ["Julie"],
 "emp_lname": ["Jordan"],

Data Access Techniques

Page 262

 "dept_id": [300],
 "street": ["144 Great Plain Avenue"],
 "city": ["Winchester"],
 "state": ["MA"],
 "zip_code": ["01890 "],
 "phone": ["6175557835"],
 "status": ["A"],
 "ss_number": ["501704733"],
 "salary": [51432],
 "start_date": ["2004-10-04"],
 "termination_date": [null],
 "birth_date": ["1959-12-13"],
 "bene_health_ins": ["Y"],
 "bene_life_ins": ["Y"],
 "bene_day_care": ["N"]
 }
 }
],
 "delete-rows": [
 {
 "row-status": 0,
 "columns": {
 "emp_id": [105],
 "manager_id": [501],
 "emp_fname": ["Matthew"],
 "emp_lname": ["Cobb"],
 "dept_id": [100],
 "street": ["77 Pleasant Street"],
 "city": ["Waltham"],
 "state": ["MA"],
 "zip_code": ["02154 "],
 "phone": ["6175553840"],
 "status": ["A"],
 "ss_number": ["052345739"],
 "salary": [62000],
 "start_date": ["1994-07-02"],
 "termination_date": [null],
 "birth_date": ["1968-12-04"],
 "bene_health_ins": ["Y"],
 "bene_life_ins": ["Y"],
 "bene_day_care": ["N"]
 }
 }
],
 "dwchilds": {
 "dept_id": [
 {
 "dept_id": 100,
 "dept_name": "R & D"
 },
 {
 "dept_id": 200,
 "dept_name": "Sales"
 },
 {
 "dept_id": 300,
 "dept_name": "Finance"
 },
 {
 "dept_id": 400,
 "dept_name": "Marketing"
 },
 {
 "dept_id": 500,

Data Access Techniques

Page 263

 "dept_name": "Shipping"
 }
]
 }
 }
}

4.7.1.3 Applicable methods

The following table summarizes the methods that support the different JSON formats.

Table 4.29:

Objects Methods Supported JSON Formats

ImportRowFromJSON,
ExportRowAsJson

1. Plain JSON: One-level structure

ImportJson,
ImportJsonByKey

1. Plain JSON: Two-level structure

2. DataWindow JSON

DataWindow

ExportJson 1. Plain JSON: Two-level structure

2. DataWindow JSON

LoadString, LoadFile 1. An object which contains a set of key/
value pairs where key is the name of a
JSONObjectItem-type object and the value
for the key is a string, object, or array in
the following formats: plain JSON, or
DataWindow JSON.

GetValueToDataWindow 1. Plain JSON: Two-level structure

2. DataWindow JSON

3. An object which contains a set of key/
value pairs where key is the name of a
JSONObjectItem-type object and the value
for the key is a string, object, or array in
the following formats: plain JSON, or
DataWindow JSON.

JSONPackage

SetValueByDataWindow 1. Plain JSON: Two-level structure

2. DataWindow JSON

3. An object which contains a set of key/
value pairs where key is the name of a
JSONObjectItem-type object and the value
for the key is a string, object, or array in
the following formats: plain JSON, or
DataWindow JSON.

Retrieve 1. Plain JSON: Two-level structure

RetrieveOne 1. Plain JSON: One-level structure & Two-
level structure

RESTClient

Submit 1. Plain JSON: Two-level structure

Data Access Techniques

Page 264

Objects Methods Supported JSON Formats
2. DataWindow JSON

3. An object which contains a set of key/
value pairs where key is the name of a
JSONObjectItem-type object and the value
for the key is a string, object, or array in
the following formats: plain JSON, or
DataWindow JSON.

See also

Plain JSON: One-level or Two-level structure

DataWindow JSON

4.7.2 Importing JSON data

4.7.2.1 Example 1 (using RESTClient)

If the JSON string returned from the RESTFul Web Service is a two-level plain JSON string,
you can directly use the RESTClient object to get the data, as shown below.

restclient lnv_restclient
string ls_url
long ll_row
lnv_restclient = create restclient

ls_url = "https://rest.appeon.test/getemployees"
/* JSON string retruned from the url
[
{"Id":1106,"First_name":"Vincent","Last_name":"Phillipino","Sex":"Male","Age":63},
{"Id":1107,"First_name":"Natalie","Last_name":"Mariano","Sex":"Female","Age":16},
{"Id":1108,"First_name":"Li","Last_name":"Mary","Sex":"Female","Age":36},
{"Id":1109,"First_name":"Vic","Last_name":"Lu","Sex":"male","Age":20}
]*/
ll_row = lnv_restclient.retrieve(dw_1,ls_url)
destroy lnv_restclient
messagebox("Restclient","The rowcount of dw_1 = "+string(ll_row))

4.7.2.2 Example 2 (using JSONPackage, HTTPClient, & ImportJson)

If the JSON string returned from the RESTFul Web Service is not a perfect two-level plain
JSON string, you may consider using the JSONPackage object to get the part of JSON string
that is the plain JSON, and then use DataWindow ImportJson or ImportJsonByKey function
to import the JSON data to the DataWindow.

string ls_value
string ls_url
string ls_json
long ll_return,ll_row
httpclient lnv_httpclient
jsonpackage lnv_pack1,lnv_pack2

lnv_pack1 = create jsonpackage
lnv_pack2 = create jsonpackage
lnv_httpclient = create httpclient

Data Access Techniques

Page 265

//Get the JSON string via httpclient
ls_url = "https://test.appeon.com/getfood"
ll_return = lnv_httpclient.sendrequest("Get",ls_url)
if ll_return <> 1 then
messagebox("Failed","SendRequest Failed:"+lnv_httpclient.getresponsestatustext())
return
end if
lnv_httpclient.getresponsebody(ls_json)
/* JSON string returned from the URL#
 '{
"id": "0001",
"type": "donut",
"name": "Cake",
"ppu": 0.55,
"batters":
 {
 "batter":
 [
 { "id": "1001", "type": "Regular" },
 { "id": "1002", "type": "Chocolate" },
 { "id": "1003", "type": "Blueberry" },
 { "id": "1004", "type": "Devil~'s Food"},
 { "id": "5001", "type": "None" }
]
 }
}'*/

//Load the JSON string via jsonpackage
lnv_pack1.loadstring(ls_json)
//Get the JSON string under key=batters
ls_value = lnv_pack1.getvalue("batters")
//Load the new JSON string via jsonpackage
lnv_pack2.loadstring(ls_value)
//Get the JSON data under key=batter (this json data meets the requirements by
 RestClient)
ls_value = lnv_pack2.getvalue("batter")
//Import JSON data to the DataWindow via importjson
dw_1.importjson(ls_value)
destroy lnv_pack1
destroy lnv_pack2
destroy lnv_httpclient

4.7.2.3 Example 3 (using HTTPClient & JSONParser)

If the JSON string returned from the RESTFul Web Service is not at the required format, for
example, the top-level are not arrays, or item contains null values, you may consider using
the JSONParser and HTTPClient objects to import the JSON data to the DataWindow.

string ls_json
string ls_url
string ls_error
long ll_row,ll_return
long ll_root,ll_object,ll_item
long ll_loop1,ll_loop2
long ll_id,ll_data
string ls_data,ls_key
jsonparser lnv_jsonparser
httpclient lnv_httpclient

lnv_httpclient = create httpclient
lnv_jsonparser = create jsonparser
ls_url = "https://json.appeon.test/employees"

Data Access Techniques

Page 266

//Get the JSON string via httpclient
ll_return = lnv_httpclient.sendrequest("Get",ls_url)
if ll_return <> 1 then
messagebox("Failed","SendRequest Failed:"+lnv_httpclient.getresponsestatustext())
return
end if
lnv_httpclient.getresponsebody(ls_json)
/* JSON string returned from the URL#
{
"1106":{"First_name":"Vincent","Last_name":"Phillipino","Sex":"Male","Age":63},
"1107":{"First_name":"Natalie","Last_name":"Mariano","Sex":"Female","Age":16},
"1108":{"First_name":"Li","Last_name":"Mary","Sex":"Female","Age":36},
"1109":{"First_name":"Vic","Last_name":null,"Sex":"male","Age":20}
}*/

//Loads the JSON data via jsonpaser
ls_error = lnv_jsonparser.loadstring(ls_json)
if len(trim(ls_error)) > 0 then
Messagebox("Failed","Load json failed:"+ls_error)
return
end if
//Obtains the handle of root item
ll_root = lnv_jsonparser.getrootitem()
//Obtains the each row in a loop
for ll_loop1 = 1 to lnv_jsonparser.getchildcount(ll_root)
ll_row = dw_1.insertrow(0)
//Obtains ID
ll_id = long(lnv_jsonparser.getchildkey(ll_root, ll_loop1))
dw_1.setitem(ll_row,"id", ll_id)
//Obtains the other column data in a loop
ll_object = lnv_jsonparser.getchilditem(ll_root, ll_loop1)
for ll_loop2 = 1 to lnv_jsonparser.getchildcount(ll_object)
 ll_item = lnv_jsonparser.getchilditem(ll_object, ll_loop2)
 ls_key = lnv_jsonparser.getchildkey(ll_object, ll_loop2)
 //Obtains the data type of each item
 choose case lnv_jsonparser.getitemtype(ll_item)
 case jsonarrayitem!,jsonobjectitem!,jsonnullitem!
 //ignores array, object and null item
 case jsonstringitem!
 ls_data =
 lnv_jsonparser.getitemstring(ll_object,ls_key)
 dw_1.setitem(ll_row,ls_key,ls_data)
 case jsonnumberitem!
 ll_data =
 lnv_jsonparser.getitemnumber(ll_object,ls_key)
 dw_1.setitem(ll_row,ls_key,ll_data)
 case jsonbooleanitem!
 //handles boolean as string
 ls_data =
 string(lnv_jsonparser.getitemboolean(ll_object,ls_key))
 dw_1.setitem(ll_row,ls_key,ls_data)
 end choose
next //Finish processing one row
next//Start processing next row
destroy lnv_jsonparser

4.7.3 Compressing and extracting data

4.7.3.1 Example 1 (using HTTPClient)

The HTTPClient object sends a request with a header "Accept-Encoding:gzip" which informs
the RESTFul Web service that the client can extract data; then the Web service returns a

Data Access Techniques

Page 267

compressed package and a response header "Content-Encoding: gzip" which indicates that
the data is compressed; and then the ExtractorObject object extracts data from the package.

HttpClient lhc_Client
ExtractorObject lnv_extractor
String ls_Url, ls_id, ls_Method, ls_Body, ls_Respose
Long ll_rtn
Blob lb_body, lb_Extr
Boolean ib_comp

lnv_extractor = Create ExtractorObject
lhc_Client = Create HttpClient

ls_Url = "https://demo.appeon.com/pb/webapi_client/department"
ls_Method = "GET"
lhc_Client.timeout = 10
lhc_Client.SetRequestHeader ("Content-Type", "application/json")
lhc_Client.SetRequestHeader("Accept-Encoding", "gzip")

ll_rtn = lhc_Client.sendrequest(ls_Method, ls_Url)
If ll_rtn = 1 Then
 ls_Respose = lhc_Client.Getresponseheaders()
 If Pos (ls_Respose, "Content-Encoding: gzip") > 0 Or Pos (ls_Respose, "gzip")
 > 0 Then
 ib_comp = true
 End If
 If ib_comp Then
 // Extract the package
 ll_rtn = lhc_Client.GetResponsebody(lb_Body)
 If ll_rtn = 1 Then
 ll_rtn = lnv_extractor.Extract(lb_body, lb_Extr, ArchiveFormatGZip!)
 If ll_rtn = 1 Then
 ls_Body = String (lb_Extr,EncodingUTF8!)
 MessageBox ("Extract Success", ls_Body)
 Else
 MessageBox ("Extract Failed", "return:" + String (ll_rtn))
 End If
 Else
 MessageBox ("GetResponsebody Failed", "return:" + String (ll_rtn))
 End If
 else
 // Extraction did not happen
 ll_rtn = lhc_Client.GetResponsebody(ls_Body,EncodingUTF8!)
 MessageBox ("No Extract", ls_Body)
 End IF
Else
 MessageBox ("SendRequest Failed", "Return:" + String (ll_rtn))
End If

If IsValid (lnv_extractor) Then Destroy (lnv_extractor)
If IsValid (lhc_Client) Then Destroy (lhc_Client)

4.7.3.2 Example 2 (using RESTClient)

The RESTClient object sends a request with a header "Accept-Encoding:gzip" which informs
the RESTFul Web service that the client can extract data; then the Web service returns a
compressed package and a response header "Content-Encoding: gzip" which indicates that
the data is compressed; and then the RESTClient object retrieves data from the compressed
package.

RestClient lrc_Client
String ls_Url, ls_Method

Data Access Techniques

Page 268

Long ll_rtn

lrc_Client = Create RestClient
ls_Url = "https://demo.appeon.com/pb/webapi_client/department"
ls_Method = "GET"
lrc_Client.SetRequestHeader ("Content-Type", "application/json")
lrc_Client.SetRequestHeader("Accept-Encoding", "gzip")

ll_rtn = lrc_Client.Retrieve(dw_1,ls_Url)
If ll_rtn >= 0 And lrc_Client.GetResponseStatusCode() = 200 Then
 MessageBox("Retrieve Success","Rows:" + String (ll_rtn))
Else
 MessageBox("Retrieve Failed","Rows:" + String (ll_rtn))
End If

If IsValid (lrc_Client) Then Destroy (lrc_Client)

4.7.3.3 Example 3 (using OAuthClient)

The OAuthClient object sends a request with a header "Accept-Encoding:gzip" which
informs the RESTFul Web service that the client can extract data; then the Web service
returns a compressed package and a response header "Content-Encoding: gzip" which
indicates that the data is compressed; and then the ExtractorObject object extracts data from
the package.

OAuthRequest loa_Request
OAuthClient loa_Client
ExtractorObject lnv_extractor
ResourceResponse lrr_Response
Integer li_rtn
Long ll_rtn
String ls_Body,ls_Response,ls_Token
Blob lb_body, lb_Extr
Boolean ib_comp

lnv_extractor = Create ExtractorObject
loa_Client = Create OAuthClient

ls_Token =
 "eyJhbGciOiJSUzI1NiIsImtpZCI6IjE1NDZjNzliNzkyODVmYTJmMzZjY2Q3Mzg1OGE4MjY3IiwidHlwIjoiSldUIn0.eyJuYmYiOjE1NDQ0MzMzMzAsImV4cCI6MTU0NDQzNjkzMCwiaXNzIjoiaHR0cDovL2NzaGFycHNlcnZlci5hcHBlb24uY29tOjYwMDAiLCJhdWQiOlsiaHR0cDovL2NzaGFycHNlcnZlci5hcHBlb24uY29tOjYwMDAvcmVzb3VyY2VzIiwiQXBwZW9uQXBpIl0sImNsaWVudF9pZCI6ImNsaWVudCIsInN1YiI6ImN1c3RvbV9jb2RlIiwiYXV0aF90aW1lIjoxNTQ0NDMzMzMwLCJpZHAiOiJsb2NhbCIsInNjb3BlIjpbIkFwcGVvbkFwaSJdLCJhbXIiOlsiY3VzdG9tX2NyZWRlbnRpYWxzIl19.XlGwMqVRwJ_4gkIbNaK_HX6_0hvWE0EJXciurkNjqdOZegF_QQYTJp3jBA1idtMC_lB24TurZM1JSfbTXv4ZSQVdCTk3p5kyV8UTqpDUKbu73HQoPNDlXuTyQb58rGVRGC4bp7weLlpUqrQT2OB8PT2N_JCWtTnrwNToNsc4H1e2NNvNUoe90May7ICs2ovofQ37FQG7IwLSoe_aUsS-8togNxQ1SxsdR7__Amb0G0Asu8QaRTIzomerDGX9Ct_yt6cgz-3Z7jR9Eb1QFaZxr_PALwMVIHVmHJK58GCePGQ0nivJCYMO4WEhysme_Thics4cx_EKl4T8t0VHmcqCNw"
loa_Request.SetHeader("Accept-Encoding", "gzip")
li_rtn = loa_Request.SetAccessToken (ls_Token)
loa_Request.Method = "GET"
loa_Request.Url = "https://demo.appeon.com/pb/webapi_client/identity/departments"
li_rtn =loa_Client.RequestResource(loa_Request, lrr_Response)
If li_rtn = 1 Then
 ls_Response = lrr_Response.getheaders()
 If Pos (ls_Response, "Content-Encoding: gzip") > 0 Or Pos (ls_Response,
 "gzip") > 0 Then
 ib_comp = true
 End If
 If ib_comp Then
 // Extract the package
 ll_rtn = lrr_Response.getbody(lb_body)
 If ll_rtn = 1 Then
 ll_rtn = lnv_extractor.Extract(lb_body, lb_Extr,ArchiveFormatGZip!)
 If ll_rtn = 1 Then
 ls_body = String (lb_Extr,EncodingUTF8!)
 MessageBox("Extract Success", String (Len (ls_body)))
 Else
 MessageBox("Extract Failed", "return:" + String (ll_rtn))
 End If
 Else

Data Access Techniques

Page 269

 MessageBox("Getbody Failed", "return:" + String (ll_rtn))
 End If

 else
 // Extraction did not happen
 ll_rtn = lrr_Response.getbody(ls_Body)
 MessageBox("No Extract", ls_Body)
 End IF
Else
 MessageBox ("RequestResource Failed","RequestResource Return:" + String
 (li_Rtn))
End If

If IsValid (loa_Client) Then Destroy (loa_Client)
If IsValid (lnv_extractor) Then Destroy (lnv_extractor)

4.8 Supporting OAuth 2.0 Authorization Server

4.8.1 OAuth Grant Types

PowerBuilder supports getting secured data from the OAuth 2.0 authorization server. The
Bearer access token is supported, and the following grant types are supported:

• Authorization Code

• Implicit Flow

• Client Credentials

• Extension (or Refresh Token)

• Resource Owner Password

Authorization Code and Implicit Flow can be implemented using the WebBrowser control
and the OAuthClient object. The WebBrowser control gets the authorization code. The
OAuthClient object obtains the access token and protected resources.

Client Credentials, Extension, and Resource Owner Password can be implemented using
the OAuthClient object (including TokenRequest, TokenResponse, OAuthRequest, and
ResourceResponse). The OAuthClient object obtains the access token and protected
resources. The TokenRequest and TokenResponse objects get or set the access token request
and response. The OAuthRequest and ResourceResponse objects get or set the protected
resource request and response.

PowerBuilder supports the Basic HTTP authentication theme (see Example 2 (using
HTTPClient)), and does not support the following HTTP authentication themes: Digest,
NTLM, Passport, and Negotiate.

As shown in the following figure, to access data from the OAuth 2.0 authorization server,
there are mainly two steps:

1. Use the HTTP Post method to request the access token from the authorization server;

2. Set the access token in the HTTP Authorization header, and use Get method to request the
data from the resource server.

Data Access Techniques

Page 270

Figure 4.1:

This section provides code examples to demonstrate how to get data using different grant
type.

And the examples will use the following server settings and parameters.

Table 4.30: For requesting access token

 For requesting access token

Token
URL
and

settings

TokenLocation="https://xxx.xxx.xxx/oauth2/token"

ClientID="367c4163ddc1427d96655cd220c6714b"

Secret="4079f8749939446cbc81fd0c27709187"

ParametersAuthorization
Server
(GrantType="authorization_code"):

• UserName="username"
in the
following
example.

• Password="password123"
in the

Implicit Flow:

• UserName="username"
in the
following
example.

• Password="password123"
in the
following
example.

Client Credentials
(GrantType="client_credentials"):

• Scope="dscode
dsperf" in
the following
example. This
parameter is
optional.

Extension
(GrantType="refresh_token"):

• refresh_token=
"8a9767b5f7e59245339cb965ce4bfdf589e155535c042a8b2a90d89093eefb7e"

• Scope="testcode
upcode
profile
offline_access"
in the
following

Resource Owner
Password
(GrantType="password"):

• UserName="username"
in the following
example.

• Password="password123"
in the following
example.

Data Access Techniques

Page 271

 For requesting access token
following
example.

• Scope="https://
www.googleapis.com/
auth/
youtube"

• Redirect="https://
www.appeon.com/
callback"

• Authorization
URL="https://
accounts.google.com/
o/
oauth2/
auth"

• Scope="https://
www.googleapis.com/
auth/
youtube"

• Redirect="https://
www.appeon.com/
callback"

• Authorization
URL="https://
accounts.google.com/
o/oauth2/
auth"

example.
This
parameter
is
optional.

• Scope="testcode"
in the following
example. This
parameter is optional.

Format JSON

Required
Authentication

Yes ("Basic ...")

Note: The WebBrowser control does not support the OAuth basic authentication,
therefore, when implementing the Authorization Code grant type with the
WebBrowser control, the user will have to specify the authorization username and
password.

Successful
Responses:

Return the following value and JSON string if succeed:

200 OK {"access_token":
"0374672c0f9a83d7e808725bd8ea748a250f2b8e151b9d93f2afa7805ec2dd52",
"expires_in": 3600, "token_type": "Bearer", "refresh_token":
"8a9767b5f7e59245339cb965ce4bfdf589e155535c042a8b2a90d89093eefb7e"}

Table 4.31: For requesting resource

 For requesting resource

Resource URL https://xxx.xxx.xxx/order/getall

Format JSON

Required
Authentication

Yes ("Bearer ...")

Successful
Responses:

Return the following value and JSON string if succeed:

200 OK [{"person_Title": "Mr.", "person_Firstname": "Kevin",
"person_Middlename": "F.", "person_Lastname": "Browne",
"customer_Modifieddate": "2014-09-12T11:15:07.263",
"customer_Customerid": 29592, "sumamt": 80468.2110, "avgamt":
10058.5263}]

Data Access Techniques

Page 272

4.8.1.1 Authorization Code

For the Authorization Code grant type (granttype = "authorization_code"), the following
example is provided for demonstration using the WebBrowser control and the OAuthClient
object.

The WebBrowser control does not support the OAuth basic authentication, therefore, when
implementing the Authorization Code grant type with the WebBrowser control, the user will
have to specify the authorization username and password.

Step 1: Get the redirect authorization code by accessing the authorization URL via the
WebBrowser control.

The Google OAuth server is used in this example. You will need to ask the user to input the
user name and password for accessing the URL. The WebBrowser control will pass along the
user name and password, and will be returned with the authorization code when successful.

ls_Url_code = "https://accounts.google.com/o/oauth2/auth?client_id=" + ls_id +
 "&redirect_uri=" + ls_redirect +"&scope=" + ls_Scope + "&response_type=code"
OpenWithParm (w_webbrowser, ls_Url_code) //via the WebBrowser control
ls_code = Message.Stringparm

Step 2: Get the access token using the authorization code via OAuthClient.

ltr_Request.tokenlocation = "https://accounts.google.com/o/oauth2/token"
ltr_Request.Method = "POST"
ltr_Request.granttype = "authorization_code"
ltr_Request.clientid = ls_id
ltr_Request.clientsecret = ls_secret
ltr_Request.ClearParams()
ltr_Request.AppendParam("grant_type", "authorization_code")
ltr_Request.AppendParam("client_id", ls_id)
ltr_Request.AppendParam("client_secret", ls_secret)
ltr_Request.AppendParam("scope", ls_Scope)
ltr_Request.AppendParam("code", ls_code)
ltr_Request.AppendParam("redirect_uri", ls_Redirect)
ltr_Request.ClearHeaders()
ltr_Request.SetHeader("Content-Type", "application/x-www-form-urlencoded")

li_rtn = loa_Client.AccessToken(ltr_Request, ltr_Response)

Step 3: Get the resource from the resource URL via the access token.

OAuthRequest loa_Request
ResourceResponse lrr_Response
loa_Request.SetAccessToken (access_token)
loa_Request.Method = "GET"
loa_Request.Url = "https://www.googleapis.com/oauth2/v1/tokeninfo"
li_rtn = ioa_Client.requestresource(loa_Request, lrr_Response)

The complete code example is as below:

String ls_id, ls_secret, ls_Scope, ls_Redirect
String ls_Body, ls_code, ls_Url_code, ls_AccessToken
Integer li_rtn
OAuthClient loa_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
OAuthRequest loa_Request
ResourceResponse lrr_Response
CoderObject lco_Code
Blob lb_data

lco_Code = Create CoderObject

Data Access Techniques

Page 273

loa_Client = Create OAuthClient

ls_id = "434849452875-6905f1g9rjiargcnqut06afmnn0b0fp7.apps.googleusercontent.com"
ls_secret = "E1b7RsBxZWKq_yrl-kbfONF5"
ls_Scope = "https://www.googleapis.com/auth/youtube"
ls_Redirect = "https://www.appeon.com/callback"

//Step 1: Get the authorization code
ls_Url_code = "https://accounts.google.com/o/oauth2/auth?client_id=" + ls_id +
 "&redirect_uri=" + ls_Redirect +"&scope=" + ls_Scope + "&response_type=code"
OpenWithParm (w_webbrowser,ls_Url_code)
ls_code = Message.Stringparm
If Len (ls_code) < 1 Then Return
If Pos(ls_code, "code=") < 0 Then return
ls_code = Mid (ls_code, pos(ls_code,"=") + 1)
ls_code = Mid (ls_code, 1, pos(ls_code,"&") - 1)
lb_data = lco_Code.Urldecode(ls_code)
ls_code = String (lb_data,EncodingANSI!)

//Step 2: Get the RESTful Server token
ltr_Request.tokenlocation = "https://accounts.google.com/o/oauth2/token"
ltr_Request.Method = "POST"
ltr_Request.granttype = "authorization_code"
ltr_Request.clientid = ls_id
ltr_Request.clientsecret = ls_secret
ltr_Request.ClearParams()
ltr_Request.AppendParam("grant_type","authorization_code")
ltr_Request.AppendParam("client_id", ls_id)
ltr_Request.AppendParam("client_secret", ls_secret)
ltr_Request.AppendParam("scope", ls_Scope)
ltr_Request.AppendParam("code", ls_code)
ltr_Request.AppendParam("redirect_uri", ls_Redirect)
ltr_Request.ClearHeaders()
ltr_Request.SetHeader("Content-Type","application/x-www-form-urlencoded")

li_rtn = loa_Client.AccessToken(ltr_Request, ltr_Response)
If li_rtn = 1 Then
 ls_AccessToken = ltr_Response.GetAccessToken ()
 //Step 3: Get the RESTful Server resource
 If Len(ls_AccessToken) > 0 Then
 loa_Request.SetAccessToken (ls_AccessToken)
 loa_Request.Method = "GET"
 loa_Request.Url = "https://www.googleapis.com/oauth2/v1/tokeninfo"
 li_rtn = loa_Client.requestresource(loa_Request, lrr_Response)
 If li_rtn = 1 Then
 lrr_Response.GetBody(ls_Body)
 MessageBox ("Tips", ls_Body)
 End If

 End If
End If

4.8.1.2 Implicit Flow

For the Implicit Flow grant type, the following example is provided for demonstration using
the WebBrowser control and the OAuthClient object.

Step 1: Get the access token of the redirect authorization code by accessing the authorization
URL via the WebBrowser control. You will need to input the user name and password for
accessing the URL.

ls_Url_token = "https://accounts.google.com/o/oauth2/auth?client_id=" + ls_id +
 "&redirect_uri=" + ls_redirect +"&scope=" + ls_Scope + "&response_type=token"

Data Access Techniques

Page 274

OpenWithParm (w_webbrowser, ls_Url_token) //via the WebBrowser control
ls_AccessToken = Message.Stringparm

Step 2: Get the resource from the resource URL via the access token.

OAuthRequest loa_Request
ResourceResponse lrr_Response
loa_Request.SetAccessToken (access_token)
loa_Request.Method = "GET"
loa_Request.Url = "https://www.googleapis.com/oauth2/v1/tokeninfo"
li_rtn = ioa_Client.requestresource(loa_Request, lrr_Response)

The complete code example is as below:

String ls_id, ls_Scope, ls_Redirect
String ls_Body, ls_AccessToken, ls_Url_token
Integer li_rtn
OAuthClient loa_Client
OAuthRequest loa_Request
ResourceResponse lrr_Response

loa_Client = Create OAuthClient

ls_id = "434849452875-6905f1g9rjiargcnqut06afmnn0b0fp7.apps.googleusercontent.com"
ls_Scope = "https://www.googleapis.com/auth/youtube"
ls_Redirect = "https://www.appeon.com/callback"

//Step 1: Get the access token
ls_Url_token = "https://accounts.google.com/o/oauth2/auth?client_id=" + ls_id +
 "&redirect_uri=" + ls_Redirect +"&scope=" + ls_Scope + "&response_type=token"
OpenWithParm (w_webbrowser2,ls_Url_token)
ls_AccessToken = Message.Stringparm
If Len (ls_AccessToken) < 1 Then Return
If Pos(ls_AccessToken, "access_token=") < 0 Then return
ls_AccessToken = Mid (ls_AccessToken, Pos(ls_AccessToken, "access_token=") + 13)
ls_AccessToken = Mid (ls_AccessToken,1,pos(ls_AccessToken,"&token_type") - 1)

//Step 2: Get the RESTful Server resource
If Len(ls_AccessToken) > 0 Then
 loa_Request.SetAccessToken (ls_AccessToken)
 loa_Request.Method = "GET"
 loa_Request.Url = "https://www.googleapis.com/oauth2/v1/tokeninfo"
 li_rtn = loa_Client.requestresource(loa_Request, lrr_Response)
 If li_rtn = 1 Then
 lrr_Response.GetBody(ls_Body)
 MessageBox ("Tips", ls_Body)
 End If
End If

If IsValid (loa_Client) Then Destroy (loa_Client)

4.8.1.3 Client Credentials

For the Client Credentials grant type (granttype = "client_credentials"), the following
example is provided for demonstration using OAuthClient object.

Step 1: Get the RESTful server access token.

Step 2: Get the RESTful server resource.

The complete code example is as below:

OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response

Data Access Techniques

Page 275

OAuthRequest loar_Request
ResourceResponse lrr_Response
String ls_AccessToken
String ls_Body, ls_type, ls_description, ls_uri, ls_state
Long ll_return

loac_Client = Create OAuthClient

//Step 1: Get the RESTful server access token.
//The following line is fake code. Replace it with settings
//from your OAuth 2.0 authorization server provider.
ltr_Request.tokenlocation = "https://xxx.xxx.xxx/oauth2/token"
ltr_Request.Method = "POST"
ltr_Request.secureprotocol = 0
ltr_Request.clientid = "367c4163ddc1427d96655cd220c6714b"
ltr_Request.clientsecret = "4079f8749939446cbc81fd0c27709187"
ltr_Request.scope = "dscode dsperf"
ltr_Request.granttype = "client_credentials"

ll_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If ll_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ll_Return = ltr_Response.GetBody(ls_Body)
 If ll_Return = 1 Then
 ls_AccessToken = ltr_Response.GetAccessToken()

 //Step 2: Get the RESTful server resource.
 loar_Request.Method = "GET"
 //The following line is fake code. Replace it with settings
 //from your OAuth 2.0 authorization server provider.
 loar_Request.Url = "https://xxx.xxx.xxx/order/getall"
 loar_Request.SetAccessToken(ls_AccessToken)
 ll_Return = loac_Client.RequestResource(loar_Request,
 lrr_Response)
 If ll_Return = 1 Then
 ll_Return = lrr_Response.GetBody(ls_Body)
 If ll_Return = 1 Then
 MessageBox ("Resource", ls_Body)
 End If
 Else
 MessageBox("Requestresource Falied", "Return :" +
 String (ll_return) + "~r~n" + lrr_Response.GetStatusText())
 End If

 End If
Else
 ll_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri,
 ls_state)
 MessageBox("AccessToken Falied", "Return :" + String (ll_return) +
 "~r~n" + ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)

4.8.1.4 Extension (or Refresh Token)

For the Extension grant type (granttype = "refresh_token"), the following example is
provided for demonstration using the OAuthClient object.

Step 1: Get the RESTful server access token.

Step 2: Get the RESTful server resource.

The complete code example is as below:

Data Access Techniques

Page 276

OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
OAuthRequest loar_Request
ResourceResponse lrr_Response
CoderObject lco_Code
String ls_AccessToken, ls_refresh_token, ls_ClientID, ls_Sercet, ls_Auth
String ls_Body, ls_type, ls_description, ls_uri, ls_state
Long ll_return
Blob lblb_data

loac_Client = Create OAuthClient
lco_Code = Create CoderObject

//Step 1: Get the RESTful server access token.
//Authorization
ls_ClientID = "367c4163ddc1427d96655cd220c6714b"
ls_Sercet = "4079f8749939446cbc81fd0c27709187"
lblb_data = Blob (ls_ClientID + ":" + ls_Sercet, EncodingUTF8!)
ls_Auth = lco_Code.Base64Encode(lblb_data)
ltr_Request.SetHeader("Authorization", "Basic " + ls_Auth)
ltr_Request.SetHeader("Content-Type", "application/x-www-form-urlencoded")

//The following line is fake code. Replace it with settings
//from your OAuth 2.0 authorization server provider.
ltr_Request.tokenlocation = "https://xxx.xxx.xxx/oauth2/token"
ltr_Request.Method = "POST"
ltr_Request.secureprotocol = 0
ltr_Request.scope = "testcode upcode profile offline_access"
ltr_Request.granttype = "refresh_token"

ls_refresh_token =
 "8a9767b5f7e59245339cb965ce4bfdf589e155535c042a8b2a90d89093eefb7e"
ltr_Request.AppendParam("refresh_token",ls_refresh_token)

ll_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If ll_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ll_Return = ltr_Response.GetBody(ls_Body)
 If ll_Return = 1 Then
 ls_AccessToken = ltr_Response.GetAccessToken()

 //Step 2: Get the RESTful server resource.
 loar_Request.Method = "GET"
 //The following line is fake code. Replace it with settings
 //from your OAuth 2.0 authorization server provider.
 loar_Request.Url = "https://xxx.xxx.xxx/order/getall"
 loar_Request.SetAccessToken(ls_AccessToken)
 ll_Return = loac_Client.RequestResource(loar_Request,
 lrr_Response)
 If ll_Return = 1 Then
 ll_Return = lrr_Response.GetBody(ls_Body)
 If ll_Return = 1 Then
 MessageBox ("Resource", ls_Body)
 End If
 Else
 MessageBox("Requestresource Falied", "Return :" +
 String (ll_return) + "~r~n" + lrr_Response.GetStatusText())
 End If

 End If
Else
 ll_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri,
 ls_state)

Data Access Techniques

Page 277

 MessageBox("AccessToken Falied", "Return :" + String (ll_return) +
 "~r~n" + ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)
If IsValid (lco_Code) Then DesTroy (lco_Code)

4.8.1.5 Resource Owner Password

For the Resource Owner Password grant type (granttype = "password"), three examples are
provided respectively:

• Example 1 using OAuthClient object (recommended)

• Example 2 using HTTPClient object

• Example 3 using OAuthClient and HTTPClient objects

4.8.1.5.1 Example 1 (using OAuthClient) (recommended)

Step 1: Get the RESTful server access token.

Step 2: Get the RESTful server resource.

The complete code example is as below:

OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
OAuthRequest loar_Request
ResourceResponse lrr_Response
String ls_AccessToken
String ls_Body, ls_type, ls_description, ls_uri, ls_state
Long ll_return

loac_Client = Create OAuthClient

//Step 1: Get the RESTful server access token.
//The following line is fake code. Replace it with settings
//from your OAuth 2.0 authorization server provider.
ltr_Request.tokenlocation = "https://xxx.xxx.xxx/oauth2/token"
ltr_Request.Method = "POST"
ltr_Request.secureprotocol = 0
ltr_Request.clientid = "367c4163ddc1427d96655cd220c6714b"
ltr_Request.clientsecret = "4079f8749939446cbc81fd0c27709187"
ltr_Request.UserName = "username"
ltr_Request.Password = "password123"
ltr_Request.scope = "testcode"
ltr_Request.granttype = "password"

ll_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If ll_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ll_Return = ltr_Response.GetBody(ls_Body)
 If ll_Return = 1 Then
 ls_AccessToken = ltr_Response.GetAccessToken()

 //Step 2: Get the RESTful server resource.
 loar_Request.Method = "GET"
 //The following line is fake code. Replace it with settings
 //from your OAuth 2.0 authorization server provider.
 loar_Request.Url = "https://xxx.xxx.xxx/order/getall"
 loar_Request.SetAccessToken(ls_AccessToken)

Data Access Techniques

Page 278

 ll_Return = loac_Client.RequestResource(loar_Request,
 lrr_Response)
 If ll_Return = 1 Then
 ll_Return = lrr_Response.GetBody(ls_Body)
 If ll_Return = 1 Then
 MessageBox ("Resource", ls_Body)
 End If
 Else
 MessageBox("Requestresource Falied", "Return :" +
 String (ll_return) + "~r~n" + lrr_Response.GetStatusText())
 End If

 End If
Else
 ll_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri,
 ls_state)
 MessageBox("AccessToken Falied", "Return :" + String (ll_return) +
 "~r~n" + ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)

4.8.1.5.2 Example 2 (using HTTPClient)

Step 1: Get the RESTful server access token.

Step 2: Get the RESTful server resource.

The complete code example is as below:

HttpClient lhc_Client
CoderObject lco_Code
Jsonpackage ljpg_json
String ls_ClientID, ls_Sercet, ls_Auth, ls_Url, ls_PostData, ls_UserName,
 ls_Password, ls_scope, ls_Body, ls_Error
String ls_Token, ls_TokenType, ls_AccessToken
Blob lblb_data
Long ll_return

lhc_Client = Create HttpClient
lco_Code = Create CoderObject
ljpg_json = Create Jsonpackage

//Step 1: Get the RESTful server access token.
//Url
//The following line is fake code. Replace it with settings
//from your OAuth 2.0 authorization server provider.
ls_Url = "https://xxx.xxx.xxx/oauth2/token"
//Authorization
ls_ClientID = "367c4163ddc1427d96655cd220c6714b"
ls_Sercet = "4079f8749939446cbc81fd0c27709187"
lblb_data = Blob (ls_ClientID + ":" + ls_Sercet, EncodingUTF8!)
ls_Auth = lco_Code.Base64Encode(lblb_data)
lhc_Client.SetRequestHeader("Authorization", "Basic " + ls_Auth)
lhc_Client.SetRequestHeader("Content-Type", "application/x-www-form-urlencoded")
//PostData
ls_UserName = "username"
ls_Password = "password123"
ls_scope = "testcode"
ls_PostData = "grant_type=password&username="+ls_UserName+"&password="+ls_Password
+"&scope=" + lco_Code.UrlEncode(Blob(ls_scope,EncodingUTF8!))

ll_return = lhc_Client.SendRequest("POST", ls_Url, ls_PostData)
If ll_return = 1 And lhc_Client.GetResponsestatusCode() = 200 Then

Data Access Techniques

Page 279

 lhc_Client.GetResponseBody (ls_body)
 ls_Error = ljpg_json.loadString (ls_body)
 If ls_Error = "" then
 ls_TokenType = ljpg_json.GetValue("token_type")
 ls_Token = ljpg_json.GetValue("access_token")
 ls_AccessToken = ls_TokenType + " " + ls_Token

 //Step 2: Get the RESTful server resource.
 //The following line is fake code. Replace it with settings
 //from your OAuth 2.0 authorization server provider.
 ls_Url = "https://xxx.xxx.xxx/order/getall"
 lhc_Client.ClearRequestHeaders()
 lhc_Client.SetRequestHeader("Authorization", ls_AccessToken)
 ll_return = lhc_Client.SendRequest("GET", ls_Url)
 If ll_return = 1 And lhc_Client.GetResponsestatusCode() = 200
 Then
 lhc_Client.GetResponseBody (ls_body)
 MessageBox ("Resource", ls_body)
 Else
 MessageBox("ResourceResponse Falied", "Return :" +
 String (ll_return) + "~r~n" + lhc_Client.GetResponsestatusText())
 End If

 Else
 MessageBox("Error", ls_Error)
 End If
Else
 MessageBox("AccessToken Falied", "Return :" + String (ll_return) +
 "~r~n" + lhc_Client.GetResponsestatusText())
End If

If IsValid (lco_Code) Then DesTroy (lco_Code)
If IsValid (ljpg_json) Then DesTroy (ljpg_json)
If IsValid (lhc_Client) Then DesTroy (lhc_Client)

4.8.1.5.3 Example 3 (using OAuthClient and HTTPClient)

Step 1: Get the RESTful server access token.

Step 2: Get the RESTful server resource.

The complete code example is as below:

OAuthClient loac_Client
TokenRequest ltr_Request
TokenResponse ltr_Response
HttpClient lhc_Client
String ls_AccessToken, ls_TokenType
String ls_Body, ls_type, ls_description, ls_uri, ls_state, ls_Url
Long ll_return

loac_Client = Create OAuthClient
lhc_Client = Create HttpClient

//Step 1: Get the RESTful server access token.
//The following line is fake code. Replace it with settings
//from your OAuth 2.0 authorization server provider.
ltr_Request.tokenlocation = "https://xxx.xxx.xxx/oauth2/token"
ltr_Request.Method = "POST"
ltr_Request.secureprotocol = 0
ltr_Request.clientid = "367c4163ddc1427d96655cd220c6714b"
ltr_Request.clientsecret = "4079f8749939446cbc81fd0c27709187"
ltr_Request.UserName = "username"
ltr_Request.Password = "password123"

Data Access Techniques

Page 280

ltr_Request.scope = "testcode"
ltr_Request.granttype = "password"

ll_Return = loac_Client.AccessToken(ltr_Request, ltr_Response)
If ll_Return = 1 and ltr_Response.GetStatusCode () = 200 Then
 ls_AccessToken = ltr_Response.GetAccessToken()
 ls_TokenType = ltr_Response.GetTokenType()

 //Step 2: Get the RESTful server resource.
 //The following line is fake code. Replace it with settings
 //from your OAuth 2.0 authorization server provider.
 ls_Url = "https://xxx.xxx.xxx/order/getall"
 lhc_Client.ClearRequestHeaders()
 lhc_Client.SetRequestHeader("Authorization", ls_TokenType + " " +
 ls_AccessToken)
 ll_return = lhc_Client.SendRequest("GET", ls_Url)
 If ll_return = 1 And lhc_Client.GetResponsestatusCode() = 200 Then
 lhc_Client.GetResponseBody (ls_body)
 MessageBox ("Resource", ls_body)
 Else
 MessageBox("ResourceResponse Falied", "Return :" + String
 (ll_return) + "~r~n" + lhc_Client.GetResponsestatusText())
 End If

Else
 ll_Return = ltr_Response.GetTokenError(ls_type, ls_description, ls_uri,
 ls_state)
 MessageBox("AccessToken Falied", "Return :" + String (ll_return) +
 "~r~n" + ls_description)
End If

If IsValid (loac_Client) Then DesTroy (loac_Client)
If IsValid (lhc_Client) Then DesTroy (lhc_Client)

Program Access Techniques

Page 281

5 Program Access Techniques
This part presents a collection of techniques you can use to implement program access
features in the applications you develop with PowerBuilder. It includes using DDE in an
application, using OLE in an application, building a mail-enabled application, and adding
other processing extensions.

5.1 Calling .NET Assembly in an Application
About this chapter

This chapter describes how PowerBuilder application calls the .NET assembly.

5.1.1 About .NET assembly

The .NET assembly supported by PowerBuilder must be developed on .NET Framework 4.x
or .NET Core 2.x/3.x. .NET 5.0 and later is unsupported at this moment.

The assembly DLL file will require the corresponding version of .NET Framework, .NET
Core, or .NET Standard to run, especially if the DLL file is a .NET Standard class library.
Please check the Microsoft website or the following table for the compatible versions
between .NET Standard, .NET Core, and .NET Framework. For an interactive table, see
.NET Standard versions.

Table 5.1:

.NET
Standard

1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1

.NET
Core

1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0

.NET
Framework

4.5 4.5 4.5.1 4.6 4.6.1 4.6.1 4.6.1 4.6.1 N/A

If the assembly DLL is created by PowerBuilder .NET, the dependent Sybase DLLs must be
copied to the same folder as the assembly DLL.

The Sybase DLLs are originally located at %AppeonInstallPath%\PowerBuilder
[version]\DotNET\bin.

5.1.2 C# language vs. PowerScript language

5.1.2.1 Data types

The following table lists the data type mappings between PowerBuilder and .NET. Keep
in mind that PowerBuilder and .NET data types may not have the same definitions even
if the type name is the same or similar. For PowerBuilder data types, refer to Section 1.2,
“Datatypes” in PowerScript Reference. For .NET data types, refer to the Types and variables
web page.

PowerBuilder char maps to .NET string, and PowerBuilder ref char maps to .NET char.

PowerBuilder blob[] maps to .NET byte[][]. PowerBuilder blob two-dimensional array is
unsupported.

https://docs.microsoft.com/en-us/dotnet/standard/net-standard#net-implementation-support
https://dotnet.microsoft.com/platform/dotnet-standard#versions
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/types-and-variables

Program Access Techniques

Page 282

The index in PowerScript starts from 1, while the index in .NET starts from 0, therefore,
PowerBuilder Array[1] maps to .NET Array[0].

When the .NET function is imported to the NVO, the two-dimensional array will be
converted to Any data type when passed as arguments or return values, and the first-
dimensional array will be converted to Any data type when passed as return values, because
PowerBuilder does not support using the array argument as the return value of a function (the
developer can use the corresponding array or any to receive the value).

For numeric data type, the mapping between PowerBuilder and .NET can be fuzzy. For
example, even the .NET integer-type should be mapped to PowerBuilder long-type normally,
the .NET function "public int Add(int parm1, int parm2)" can also be called by the integer-
type parameter in PowerBuilder (instead of the long-type parameter).

For standard data type and array data type, PowerBuilder can map to the .NET nullable and
non-nullable types, for example, PowerBuilder integer type can map to the .NET short and
short? types.

For numeric array, PowerBuilder and .NET must be exactly mapped. For example,
PowerBuilder integer-type array can only map to the .NET short-type array.

Date and Time can only be used in arguments and cannot be used in return values; when
used in arguments, they are passed to .NET as DateTime; when passed by Ref, the value
will be sync to the Date and Time variables; they cannot be used as return values to receive
DateTime return values from .NET; and cannot set or receive DateTime property values
from .NET.

When passing a PowerBuilder variable-length array to .NET, .NET can use list to process
the data from the PowerBuilder variable-length array, and then assign the data to the
PowerBuilder ref variable-length array or return the data directly. At the end of this section,
there is a sample of PowerScript code that uses the variable-length array to receive the
double-type data from .NET.

Table 5.2:

PowerBuilder C# Array (one and
two dimension)

Reference Generic
Nullable<T>

int short Supported Supported Supported

uint ushort Supported Supported Supported

long int Supported Supported Supported

longptr int32/int64 Supported Supported Supported

ulong uint Supported Supported Supported

longlong long/Int64 Supported Supported Supported

boolean bool Supported Supported Supported

char string/char Supported Supported Supported

string string Supported Supported Unsupported

real float Supported Supported Supported

double double Supported Supported Supported

decimal decimal Supported Supported Supported

Program Access Techniques

Page 283

blob byte[] Supported Supported Supported

Date DateTime Supported Supported Supported

DateTime DateTime Supported Supported Supported

Time DateTime Supported Supported Supported

Supported return value data types

The following table lists the return value data type mappings between PowerBuilder
and .NET.

Table 5.3:

PowerBuilder C#

int short

uint ushort

long int

longptr int32/int64

ulong uint

longlong long/Int64

boolean bool

char char

string string

real float

double double

decimal decimal

blob byte[]

DateTime DateTime

5.1.2.2 Classes

.NET classes are supported, except for the following:

• Interface

• Struct

• Abstract, Generic, Internal, Partial, Protected, Private, or Static class

Nested class is supported, except that using the plus sign (“+”) instead of the dot (“.”) to
access the nested class: [namespace].[class]+[nested-class].

5.1.2.3 Functions

.NET functions are supported, except for the following:

• Private, Protected, Extension, or Generic function

Function parameters and return values are supported with the following exceptions:

Program Access Techniques

Page 284

• Using a generic type, delegate, or class as the parameters or return value of a function

• Passing parameters by reference is supported when the developer adds the keyword "ref"
or "out" explicitly; however, passing parameters by reference to a constructor function is
unsupported

• The params keyword

• The optional attribute of arguments

• Object-type or Sbyte-type arguments

• Transaction object array

• Date and Time can only be used in arguments and cannot be used in return values.

5.1.2.4 Properties

Each property will have two functions imported (one for getting the property value and the
other for setting). Read-only or write-only property will have only one function imported.

Getting or setting a property is supported, except for the following:

• More than one-level dot notation for getting or setting a property. For example, the
following is unsupported: Student.Informations.Name="Kit".

• Using a generic type, delegate, or class as the value of a property.

• Private or Protected property

• Indexer

5.1.2.5 Fields

Data fields are unsupported.

5.1.2.6 Transaction Objects

Transaction Objects (specifically IAdoConnectionProxy) are only supported in .NET
Framework, but not in .NET Core.

Transaction Objects from .NET do not support Oracle Data Provider for .NET
(Oracle.DataAccess.Client or Oracle.ManagedDataAccess.Client).

5.1.3 Adding an adapter for unsupported features

As illustrated in the previous section "C# language vs. PowerScript language", there are
incompatible or unsupported features when mapping the C# programming language with the
PowerScript programming language. These incompatible or unsupported features cannot be
automatically modified when importing the .NET assembly using .NET DLL Importer. Any
function using these features will not be able to work properly after imported.

Therefore, it is recommended that you create an adapter (also known as "wrapper") that calls
the target .NET assembly and then import the adapter only using .NET DLL Importer. The
adapter acts as a connector between the .NET class and the PowerScript object. You can add
an adapter to deal with unsupported features including:

Program Access Techniques

Page 285

• C# enum variables -- replaces them with integer variables

• C# List -- replaces it with a string-type argument

• Complex data types or unsupported features (such as Abstract, Interface, Static, Generic
and Delegate classes, List, etc.) -- replaces them with simple data types or rewrites with
supported features

You can get a list of unsupported features in the .NET assembly by loading it in .NET DLL
Importer, and .NET DLL Importer will show the unsupported features after you click the
View Failed Item button at the bottom of the tool.

After you add an adapter to call the target .NET assembly, you only need to import the
adapter using .NET DLL Importer; you do not need to import the target .NET assembly.

5.1.4 Importing the adapter

Although you can write scripts to load a .NET DLL, create the DotNetObject object, and then
call the .NET class functions through the DotNetObject object, it is difficult to ensure the
functions/parameters/return values are called correctly. Therefore, we recommend that you
use the .NET DLL Importer tool to import the .NET class to PowerBuilder first, and then call
the imported object and function to execute the corresponding .NET code.

.NET DLL Importer can import the names and data types of the .NET classes, functions,
properties, and parameters from the .NET assembly to the application PBL. It creates the
DotNetObject object as an NVO for each .NET class and then imports the .NET functions
to the NVO. After that you can write scripts to call the NVO and functions to execute
the corresponding .NET code. It can also create the DotNetAssembly object for each
DotNetObject object and add try-catch scripts to catch and handle the errors, which can
greatly simplify the scripts that you need to write.

Note that PowerBuilder does not check the syntax of the DotNetObject NVO (such as
mismatched data type etc.) when compiling this NVO; and PowerBuilder calls the .NET
function in this order: it searches and calls the function in the NVO first; if no function is
found in the NVO, it searches and calls the function in the corresponding .NET class.

Compared to calling the .NET function in DotNetObject, calling the NVO function has the
following advantages and disadvantages:

Advantages:

• Simple to call, as it uses the same way as PB calls the NVO function.

• No need to explicitly load DLL or create the class instance.

• No need to have a clear understanding of the control, class or function in the DLL.

Disadvantages:

• Calls the parameterless constructor by default. If you want to to call the parameterized
constructor, you need to manually modify the scripts.

• Requires more work of debugging, as no syntax is checked during compiling.

Program Access Techniques

Page 286

• Needs to follow PB's rule when matching the function parameter. If the function parameter
requires exact matching of data types, exceptions would occur. For example,

• If the function parameter is a ref one-dimensional array, and if you want to use the
PowerBuilder fixed-length array to map with it, you will need to first change this
function parameter in the NVO object from one-dimensional array to one-dimensional
fixed-length array.

• After the .NET class and functions are imported as an NVO, you can only use
PowerBuilder DateTime type to map with the .NET DateTime type (although
PowerBuilder Date, time, and DateTime can be used to map with the .NET DateTime if
the .NET function is not imported to NVO.)

• At 64-bit runtime environment, PowerBuilder longptr type is unable to map with the
ref longlong type in NVO, and PowerBuilder does not check the mismatched mapping
between ref longlong and longptr in NVO.

Step 1: Select Tools | .NET DLL Importer menu in the PowerBuilder IDE.

Step 2: In the .NET DLL Importer window, select the .NET DLL file, the framework type,
and the destination PBT and PBL files in the upper part.

The framework type specifies the framework for the assembly; it can be .NET Framework
or .NET Core. Different functions will be used to load the DLL. For .NET Framework
type, the LoadWithDotNetFramework function will be used, for .NET Core, the
LoadWithDotNetCore function will be used.

You can edit the Source .NET DLL field to specify the relative path for the .NET DLL file.
The DLL file will be loaded when the cursor is moved away from this field.

Once you select a DLL, the DLL file as well as all the classes/functions/properties it contains
will be automatically listed in the lower left corner of the window.

The first level will be the DLL name

- The second level will be the namespace

-- The third level will be the class name

--- The fourth level will be the function and property name

---- The fifth level will be the function name that accesses the property value

Step 3: Select the classes and functions that you want to import.

Once you select an item to import, the corresponding PowerBuilder object and function that
will be created can be previewed on the right.

Each .NET class will be imported as a DotNetObject object which is an NVO; and the
functions contained in the .NET class will be imported as functions of the NVO.

The names are case insensitive in both .NET and PowerBuilder. The naming conventions for
the PowerBuilder objects/functions can be configured by clicking the Advanced Settings
button.

If any function(s) cannot be imported, you can click the View Failed Item link to view all of
the failed items and the reasons (most of them are unsupported features).

Program Access Techniques

Page 287

You can also click the Advanced Settings button to specify more detailed settings for the
import:

• Whether to add prefix to the imported object name or the function name.

For example, the following default prefix will be added:

• nvo_ for object, where the .NET class will be imported

• of_ for function, where the .NET function will be imported

• get_ for function which gets the property value and set_ for function which sets the
property value.

• Whether to add prefix to the argument name to identify the data type.

For example, ai_ for integer, al_ for long, abyt_ for byte, abln_ for boolean, adb_ for
double, aado_ for SQLCA.GetAdoConnection etc.

• Whether to add number suffix to the object name if object names are duplicated.

The second and subsequent duplicate objects will have number suffix 1, 2, 3 etc.

Program Access Techniques

Page 288

If this option is not selected, only the first one of the duplicate objects will be imported.

• Whether to encapsulate a DotNetAssembly object in each DotNetObject object.

When a DotNetAssembly object is encapsulated, it will automatically

1. load the .NET DLL;

Different functions will be used to load the DLL. For .NET Framework type,
the LoadWithDotNetFramework function will be used, for .NET Core, the
LoadWithDotNetCore function will be used.

The .NET DLL and its absolute path is stored in the is_assemblypath instance
variable by default. You will need to modify the absolute path first.

2. and then call the parameterless constructor in the .NET class to create the instance of
the class.

If there is no parameterless constructor, the instance will fail to create. In such case, you
can manually modify the PowerScripts to call the parameterized constructor.

• Whether to incorporate the try-catch error handling in the DotNetObject object.

If this option is selected, scripts will be automatically added to catch the errors caused
by failing to load the .NET DLL or create the instance etc. And the following instance
variables will be used for the error type and message:

• The il_ErrorType instance variable indicates the error types:

0 -- succeed

-1 -- failed to load the DLL

-2 -- failed to create the instance

-3 -- failed to call the .NET function

• The is_ErrorText instance variable stores the detailed error message.

Program Access Techniques

Page 289

Step 4: Click Import in the .NET DLL Importer window.

After the .NET classes and functions are imported to the PBL successfully, you can call the
corresponding NVO and function directly to execute the corresponding .NET code.

Here is a sample of the C# assembly source code:

namespace Appeon.PowerBuilder.DotNet.Test
{
 public class TestCLR1
 {
 public int m_iTest
 {
 set;
 get;
 }
 public string m_strTest
 {
 set;
 get;
 }

 //int argument
 public int Add(int iFirst, int iSecond)
 {

Program Access Techniques

Page 290

 return iFirst + iSecond;
 }

 //string argument
 public string StringCat(string strFirst, string strSecond)
 {
 return strFirst + strSecond;
 }

 //array argument
 public void TestByteArray(byte[] bArray)
 {
 for(int i = 0; i < bArray.Length; i++)
 {
 }
 }

 //reference argument
 public void TestReference(ref int iTest)
 {
 iTest = 1;
 }
 }
}

Here is a sample of the automatically imported scripts with DotNetAssembly object and try-
catch error handling incorporated in the DotNetObject object:

//public function long of_add (string as_parm1, string as_parm2);
//*---*/
//* .NET function : Add
//* Argument#
//* String as_parm1
//* String as_parm2
//* Return : Long
//*---*/
/* .NET function name */
String ls_function
Long ll_result

/* Set the dotnet function name */
ls_function = "Add"

Try
 /* Create .NET object */
 If Not This.of_createOnDemand() Then
 SetNull(ll_result)
 Return ll_result
 End If

 /* Trigger the dotnet function */
 ll_result = This.add(as_parm1,as_parm2)
 Return ll_result
Catch(runtimeerror re_error)

 If This.ib_CrashOnException Then Throw re_error

 /* Handle .NET error */
 This.of_SetDotNETError(ls_function, re_error.text)
 This.of_SignalError()

 /* Indicate error occurred */
 SetNull(ll_result)
 Return ll_result

Program Access Techniques

Page 291

End Try
//end function

Here is a sample of the PowerScript code that calls the C# assembly after the import, when
the DotNetAssembly object is encapsulated and the try-catch error handling is incorporated in
the DotNetObject object.

//When the DotNetAssembly object is encapsulated
//and try-catch error handling is incorporated
nvo_TestCLR1 lnv_TestCLR1
long ll_return

//Instantiates the object
lnv_TestCLR1 = create nvo_TestCLR1

//Calls the NVO function
ll_return = lnv_TestCLR1.of_Add(1, 2)
//Accesses the property
lnv_TestCLR1.set_m_iTest(1)
//Checks the result
if lnv_TestCLR1.il_ErrorType < 0 then
 messagebox("Failed", lnv_TestCLR1.is_ErrorText)
end if

Here is a sample of the PowerScript code that calls the C# assembly after the import, without
encapsulating the DotNetAssembly object or incorporating the try-catch error handling in the
DotNetObject object.

//Instantiates PB objects
nvo_TestCLR1 lnv_TestCLR1
DotNetAssembly lnv_Assembly
long ll_return

lnv_Assembly = create DotNetAssembly
lnv_TestCLR1 = create nvo_TestCLR1

//Loads assembly
ll_return = lnv_Assembly.LoadWithDotNetFramework
 ("Appeon.PowerBuilder.DotNet.Test.dll")
//ll_return = lnv_Assembly.LoadWithDotNetCore
 ("Appeon.PowerBuilder.DotNet.Test.dll")

if ll_return < 0 then
 MessageBox("Error", "Failed to load assembly: " + lnv_Assembly.errortext)
 return
end if

//Creates the instance and binds it to DotNetObject
ll_return = lnv_Assembly.CreateInstance
 ("Appeon.PowerBuilder.DotNet.Test.TestCLR1", lnv_TestCLR1)

if ll_return = 1 then
 try
 //tests long argument by calling the nvo function
 ll_return = lnv_TestCLR1.of_Add(1, 2)
 //or by calling the C# function
 ll_return = lnv_TestCLR1.Add(1, 2)

 //tests property by calling the nvo function
 lnv_TestCLR1.set_m_iTest(1)
 //or by accessing the C# property
 lnv_TestCLR1.m_iTest=1
 catch(Runtimeerror re)

Program Access Techniques

Page 292

 messagebox("Failed to call C# function", re.text)
 end try
else
 MessageBox("Error", "Failed to create instance: " + lnv_Assembly.errortext)
 return
end if

Here is a sample of PowerScript code that uses the variable-length array to receive the
double-type data from C#. C# uses list to process the data from a PowerBuilder variable-
length array, and then assign the data to the PowerBuilder ref variable-length array or return
the data directly.

public void GetBigvalue(ref double[] darr, ref string[] sarr, bool max)
{
 //Uses list to process data
 IList<double> dvalues = new List<double>();
 IList<string> svalues = new List<string>();
 if (max)
 {
 //Process the largest value
 for (var d = double.MaxValue; d >= 8.72501618486925E+307; d /= 1.00001)
 {
 dvalues.Add(d);
 svalues.Add(d.ToString());
 }
 }
 else
 {
 //Process the smallest value
 for (var d = double.MinValue; d <= -8.72501618486925E+307; d /=1.00001)
 {
 dvalues.Add(d);
 svalues.Add(d.ToString());
 }
 }
 darr = dvalues.ToArray();
 sarr = svalues.ToArray();
}

If the .NET process uses IAdoConnectionProxy connection proxy, use the
SQLCA.GetAdoConnection method in PowerBuilder. Note that IAdoConnectionProxy is
supported in .NET Framework, but not in .NET Core. PowerBuilder ref oleObject maps
to .NET [ref,out] IAdoConnectionProxy, and reference array is unsupported.

Here is a sample that PowerScript code shares its connection to a SQL Server database with
C# code via ADO.NET, and C# code retrieves data successfully using the shared connection.

Sample C# function that makes SQL queries:

public string GetDatabyDS(IAdoConnectionProxy ado, string sql,Boolean native=false)
{
 if (native)
 {
 //Returns data via dataset
 SqlConnection con = ado.Connection as SqlConnection;
 SqlTransaction tran = ado.Transaction as SqlTransaction;

 SqlDataAdapter adp = new SqlDataAdapter();
 //Populates the SQL statements
 adp.SelectCommand = new SqlCommand();
 adp.SelectCommand.CommandText = sql;
 adp.SelectCommand.CommandType = CommandType.Text;

Program Access Techniques

Page 293

 adp.SelectCommand.Connection = con;
 adp.SelectCommand.Transaction = tran;
 //Populates data
 DataSet dataSet = new DataSet();
 adp.Fill(dataSet);
 return JsonConvert.SerializeObject(dataSet);
 }
 else
 {
 SqlConnection tmp = ado.Connection as SqlConnection;
 tmp.Close();
 SqlServerDataContext context = new SqlServerDataContext(tmp);
 //Makes SQL query
 var ds = context.SqlExecutor.SelectToStore<DynamicModel>(sql);
 return ds.ExportPlainJson();
 }
}

Sample PowerScript code that makes the database connection:

SQLCA.DBMS = "ADO.Net"
SQLCA.LogPass = "admin"
SQLCA.LogId = "sa"
SQLCA.AutoCommit = False
SQLCA.DBParm =
 "Namespace='System.Data.SqlClient',DataSource='localhost',Database='adventureworks'"
Connect;

Sample PowerScript code that calls the C# function:

string ls_result,ls_sql
dotnetobject lcs_obj
dotnetassembly lcs_ass
long ll_return

lcs_obj = create dotnetobject
lcs_ass = create dotnetassembly
//Loads DLL
ll_return = lcs_ass.LoadWithDotNetFramework("resource\AppeonAssembly.dll")
if ll_return < 0 then
 messagebox("Load Failed",lcs_ass.errortext)
 return
end if
//Creates instances of dotnetobject and dotnetassembly
ll_return = lcs_ass.createinstance("AppeonAssembly.PBCsharpTrans",lcs_obj,false)
if ll_return < 0 then
 messagebox("createinstance failed",lcs_ass.errortext)
 return
end if
ls_sql = "Select * from esq_dept"
//Calls C# function
ls_result = lcs_obj.GetDatabyDS(sqlca.getadoconnection(),ls_sql)

//Below are samples for calling NVO (instead of dotnetobject)
//public function string of_getdatabyds(OleObject aado_ado,string as_sql,boolean
 abln_native)
//eon_pbcsharp leon_pbcsharp
//leon_pbcsharp = create eon_pbcsharp
//ls_result = leon_pbcsharp.of_getdatabyds(sqlca.getadoconnection(),ls_sql,false)

//Creates datawindow
wf_createdw(ls_sql)
//Shows result
dw_1.importjsonbykey(ls_result)

Program Access Techniques

Page 294

destroy lcs_obj
destroy lcs_ass

Here is a sample that C# code shares its connection to a SQL Server database with
PowerScript code, and PowerScript code retrieves data successfully using the shared
connection.

Sample C# function that returns the connection:

public IAdoConnectionProxy GetpostgreConnection()
{
 string connection = "";
 connection = "Data Source=Localhost;Initial Catalog=adventureworks;User
 ID=sa;Password=admin;";
 SqlConnection sqlcon = new SqlConnection(connection);
 sqlcon.Open();
 IAdoConnectionProxy adosql = new AdoConnectionProxy();
 adosql.Connection = sqlcon;
 return adosql;
}

Sample PowerScript code that calls the connection returned by C# code, connects with the
database, and executes the static SQL queries.

//Gets SQL Server connection from C#
oleobject leon_sql
boolean lbn_result
string ls_sql
dotnetobject lcs_obj
dotnetassembly lcs_ass
long ll_return,ll_count

lcs_obj = create dotnetobject
lcs_ass = create dotnetassembly
//Loads DLL
ll_return = lcs_ass.LoadWithDotNetFramework("resource\AppeonAssembly.dll")
if ll_return < 0 then
 messagebox("Load Failed",lcs_ass.errortext)
 return
end if
//Creates instances of dotnetobject and dotnetassembly
ll_return = lcs_ass.createinstance("AppeonAssembly.PBCsharpTrans",lcs_obj,false)
if ll_return < 0 then
 messagebox("createinstance failed",lcs_ass.errortext)
 return
end if

leon_sql = create oleobject
//Specifies transaction object to ADO
SQLCA.DBMS = "ADO.Net"
SQLCA.DBParm = "Namespace='test123'"
//Gets ADO connection info from C#
leon_sql = lcs_obj.GetpostgreConnection()

//Below are samples for calling NVO (instead of dotnetobject)
//public function OleObject of_getsqlserverconnection()
//eon_pbcsharp leon_pbcsharp
//leon_pbcsharp = create eon_pbcsharp
//leon_sql = leon_pbcsharp.of_getsqlserverconnection ()

//Connects with the database
lbn_result = sqlca.setadoconnection(leon_sql)
if lbn_result then

Program Access Techniques

Page 295

 connect;
 if sqlca.sqlcode <> 0 then
 messagebox("Error",sqlca.sqlerrtext)
 return
 end if
end if
//Checks result
select count(*) into :ll_count from customer;
messagebox("customer count ",string(ll_count))

5.1.5 Deploying .NET assembly

When the PowerBuilder application is deployed, the system DLLs such as PBDotNet.dll,
PBDotNetFrameworkInvoker.dll, and PBDotNetCoreInvoker.dll will be deployed
automatically. However, you will need to make sure the .NET DLLs as well as any dependent
DLLs are deployed in the same folder.

And also make sure the target machine have Universal CRT (C Runtime) and the
required .NET Framework or .NET Core installed in order to run the .NET DLLs.

5.1.6 Debugging .NET assembly

If the C# assembly is compiled under the debug mode using SnapDevelop, then when you
debug the PowerBuilder application which calls the C# assembly, SnapDevelop can be
launched automatically to help you debug the C# assembly. Please make sure that the PDB
file which is created by SnapDevelop with the same name of the assembly DLL file is placed
in the same location as the assembly DLL file.

Step 1: Select Tools | System Options menu in the PowerBuilder IDE.

Step 2: Make sure the Launch SnapDevelop to debug C# assemblies option is selected on
the General tab.

Program Access Techniques

Page 296

Step 3: Start the debugger in the PowerBuilder IDE, and select Step In to run through the
scripts.

When the debugger goes to the script where the DotNetObject object executes the C#
functions, SnapDevelop will be launched automatically to assist the debug.

5.2 Using DDE in an Application

About this chapter

This chapter describes how PowerBuilder supports DDE.

Program Access Techniques

Page 297

5.2.1 About DDE

Dynamic Data Exchange (DDE) makes it possible for two Windows applications to
communicate with each other by sending and receiving commands and data. Using DDE, the
applications can share data, execute commands remotely, and check error conditions.

PowerBuilder supports DDE by providing PowerScript events and functions that enable a
PowerBuilder application to send messages to other DDE-supporting applications and to
respond to DDE requests from other DDE applications.

Clients and servers

A DDE-supporting application can act as either a client or a server.

About the terminology

Used in connection with DDE, these terms are not related to client/server architecture,
in which a PC or workstation client communicates with a database server.

A client application makes requests of another DDE-supporting application (called the
server). The requests can be commands (such as open, close, or save) or requests for data.

A server application is the opposite of a client application. It responds to requests from
another DDE-supporting application (called the client). As with client applications, the
requests can be commands or requests for specific data.

A PowerBuilder application can function as a DDE client or as a DDE server.

In PowerBuilder, DDE clients and servers call built-in functions and process events. DDE
events occur when a command or data is sent from a client to a server (or from a server to a
client).

5.2.2 DDE functions and events

The following tables list the DDE functions and events separated into those functions and
events used by DDE clients and those used by DDE servers. For more information on DDE
support, see the PowerScript Reference.

Return values

Every DDE function returns an integer.

DDE client

Table 5.4: DDE client functions

Function Action

CloseChannel Closes a channel to a DDE server application that was opened using
OpenChannel.

ExecRemote Asks a DDE server application to execute a command.

GetDataDDE Obtains the new data from a hot-linked DDE server application and moves
it into a specified string.

GetDataDDEOriginDetermines the origin of data that has arrived from a hot-linked DDE server
application.

Program Access Techniques

Page 298

Function Action

GetRemote Asks a DDE server application for data. This function has two formats: one
that uses a channel and one that does not.

OpenChannel Opens a DDE channel to a specified DDE server application.

RespondRemoteIndicates to the DDE server application whether the command or data
received from the DDE application was acceptable to the DDE client.

SetRemote Asks a DDE server application to set an item such as a cell in a worksheet
or a variable to a specific value. This function has two formats: one that
uses a DDE channel and one that does not.

StartHotLink Initiates a hot link to a DDE server application so that PowerBuilder is
immediately notified of specific data changes in the DDE server application.

StopHotLink Ends a hot link with a DDE server application.

Table 5.5: DDE client event

Event Occurs when

HotLinkAlarm A DDE server application has sent new (changed) data.

DDE server

Table 5.6: DDE server functions

Function Action

GetCommandDDEObtains the command sent by a DDE client application

GetCommandDDEOriginDetermines the origin of a command from a DDE client

GetDataDDE Gets data that a DDE client application has sent and moves it into a
specified string

GetDataDDEOriginDetermines the origin of data that has arrived from a hot-linked DDE client
application

RespondRemoteIndicates to the sending DDE client application whether the command or
data received from the DDE application was acceptable to the DDE server

SetDataDDE Sends specified data to a DDE client application

StartServerDDECauses a PowerBuilder application to begin acting as a DDE server

StopServerDDECauses a PowerBuilder application to stop acting as a DDE server

Table 5.7: DDE server events

Event Occurs when

RemoteExec A DDE client application has sent a command

RemoteHotLinkStartA DDE client application wants to start a hot link

RemoteHotLinkStopA DDE client application wants to end a hot link

RemoteRequestA DDE client application has requested data

Program Access Techniques

Page 299

Event Occurs when

RemoteSend A DDE client application has sent data

5.3 Using OLE in an Application

About this chapter

This chapter describes several ways of implementing OLE in your PowerBuilder
applications.

5.3.1 OLE support in PowerBuilder

OLE, originally an acronym for Object Linking and Embedding, is a facility that allows
Windows programs to share data and program functionality. PowerBuilder OLE controls are
containers that can call upon OLE server applications to display and manipulate OLE objects.

OLE control

The OLE control in the Window painter allows you to link or embed components from
several applications in a window. For most servers, you can also control the server
application using functions and properties defined by that server.

In PowerBuilder, the OLE control is a container for an OLE object. The user can activate
the control and edit the object using functionality supplied by the server application. You
can also automate OLE interactions by programmatically activating the object and sending
commands to the server. OLE servers might be either DLLs or separate EXE files. They
could be running on a different computer.

You can use PowerScript automation on an OLE control that is visible in a window, or use it
invisibly on an object whose reference is stored in an OLEObject variable. The OLEObject
datatype lets you create an OLE object without having an OLE container visible in a window.

OLECustomControl

A second control, OLECustomControl, is a container for an ActiveX control (also called
an OLE custom control or OCX control). ActiveX controls are DLLs (sometimes with the
extension OCX) that always run in the same process as the application that contains them.

Managing OLE objects

You can manage OLE objects by storing them in variables and saving them in files. There
are two object types for this purpose: OLEStorage and OLEStream. Most applications will
not require these objects, but if you need to do something complicated (such as combining
several OLE objects into a single data structure), you can use these objects and their
associated functions.

Other areas of OLE support

For information about OLE objects in a DataWindow object, see Section 6.14, “Using OLE
in a DataWindow Object” in Users Guide.

5.3.2 OLE controls in a window

You can add OLE objects and ActiveX controls to a window or user object. To do so, you use
one of the PowerBuilder OLE controls, which acts as an OLE container. This section explains

Program Access Techniques

Page 300

how you select the control you want by choosing whether it holds an OLE object (also called
an insertable object) or an ActiveX control:

• An insertable OLE object is a document associated with a server application. The object
can be activated and the server provides commands and toolbars for modifying the object.

• An ActiveX control or OLE custom control is itself a server that processes user actions
according to scripts you program in PowerBuilder. You can write scripts for ActiveX
control events and for events of the PowerBuilder container. Those scripts call functions
and set properties that belong to the ActiveX control. When appropriate, the ActiveX
control can present its own visual interface for user interaction.

ActiveX controls range from simple visual displays (such as a meter or a gauge) to single
activities that are customizable (spellchecking words or phrases) to working environments
(image acquisition with annotation and editing).

OLE control container features

All OLE control containers support a set of required interfaces. PowerBuilder provides some
additional support:

• Extended control

An OLE control can determine and modify its location at runtime using its extended
control properties. PowerBuilder supports the X (Left), Y (Top), Width, and Height
properties, all of which are measured in PowerBuilder units. The control writer can access
these properties using the IDispatch-based interface returned from the GetExtendedControl
method on the IOleControlSite interface.

• Window as OLE container

PowerBuilder implements the IOleContainer class at the window level, so that all OLE
controls on a window are siblings and can obtain information about each other. The control
writer can access this information using the OLE EnumObjects method. Information about
siblings is useful when the controls are part of a suite of controls. Unlike other controls, the
OLE controls on a window are stored in a flat hierarchy.

OLE objects and controls only

Only OLE objects and controls are visible to this object enumerator. You cannot use
this technique to manipulate other controls on the window.

• Message reflection

If a control container does not support message reflection, a reflector window is created
when an OLE control sends a message to its parent. The reflector window reflects the
message back to the control so that the control can process the message itself. If the
container supports message reflection, the need for a reflector window, and the associated
runtime overhead, is eliminated. PowerBuilder OLE control containers perform message
reflection for a specific set of messages.

Defining the control

Program Access Techniques

Page 301

This procedure describes how to create an OLE control and select its contents.

To place an OLE control in a window or user object:

1. Open the window or user object that will contain the OLE control.

2. Select Insert>Control>OLE from the menu bar.

PowerBuilder displays the Insert Object dialog box. There are three tabs to choose from.

3. Choose a server application or a specific object for the control (which embeds or links
an object in the control), select a custom control, or leave the control empty for now:

• To create and embed a new object, click the Create New tab. After you have chosen a
server application, click OK.

• To choose an existing object for the control, click the Create From File tab. After you
have specified the file, click OK.

• To insert a custom control (ActiveX control), click the Insert Control tab. After you
have chosen an ActiveX control, click OK.

• To leave the control empty, click Cancel.

If you click Cancel, the control becomes an OLE control rather than an OLE custom
control, and you can choose to link or embed an OLE object in it at any time; you
cannot insert an ActiveX control later.

4. Click where you want the control.

If you inserted an object, PowerBuilder opens the server application so you can view
and edit the object. ActiveX controls cannot be opened.

If you want to insert an object that belongs to an OLE server application that is not in
the list, see the server documentation to find out how to install it.

For more information about using the Insert Object dialog box, see Section 6.14.2.1, “Adding
an OLE object to a DataWindow object” in Users Guide.

5.3.3 OLE controls and insertable objects

The OLE control contains an insertable OLE object. You can change the object in the
control in the painter or in a script. You specify what is allowed in the control by setting
PowerBuilder properties.

5.3.3.1 Setting up the OLE control

When you create an OLE control and insert an object, PowerBuilder activates the server
application to allow you to modify the object. After you deactivate it (by clicking outside the
object's borders in the Layout view), you can use the control's property sheets to set up the
control.

To specify the control's appearance and behavior:

1. Double-click the control, or select Properties from the control's pop-up menu.

Program Access Techniques

Page 302

2. In the Properties view, give the control a name that is relevant to your application.

You will use this name in scripts. The default name is ole_ followed by a number.

3. Specify a value for Display Name for use by the OLE server. The OLE server can use
this name in window title bars.

4. Specify the control's appearance and behavior by choosing appropriate settings in the
Properties view.

In addition to the standard Visible, Enabled, Focus Rectangle, and Border properties,
which are available for most controls, there are several options that control the object's
interaction with the server:

Table 5.8:

Option Meaning

Activation How the user activates the control.

Options are:

• Double Click -- When the user double-clicks the control, the server
application is activated.

• Get Focus -- When the user clicks or tabs to the control, the server is
activated. If you also write a script for the GetFocus event, do not call
MessageBox or any function that results in a change in focus.

• Manual -- The control can be activated only programmatically with the
Activate function.

The control can always be activated programmatically, regardless of the
Activation setting.

Display
Type

What the control displays.

Options are:

• Contents -- Display a representation of the object, reduced to fit within
the control.

• Icon -- Display the icon associated with the data. This is usually an icon
provided by the server application.

• ActiveX document -- Display as an ActiveX document. ActiveX
documents fill the space of the container and have access to all the
features of the server application.

Contents What the user can insert in the control at runtime.

Options are:

• Any -- The user can insert either a linked or embedded object.

• Embedded -- The user can insert an embedded object.

Program Access Techniques

Page 303

Option Meaning
• Linked -- The user can insert a linked object.

Setting Contents changes the value of the ContentsAllowed property.

Link
Update

When the object in the control is linked, the method for updating link
information.

Options are:

• Automatic -- If the link is broken and PowerBuilder cannot find the
linked file, it displays a dialog box in which the user can specify the
file.

• Manual -- If the link is broken, the object cannot be activated. You can
re-establish the link in a script using the LinkTo or UpdateLinksDialog
function.

Setting Link Update changes the value of the LinkUpdateOptions
property.

Size Mode How the object is displayed in the container.

Options are:

• Clip -- The object's image displays full size. If it is larger than the OLE
control, it is clipped by the control's borders.

• Stretch -- The object's image is resized to fit into and fill the OLE
control (default).

5.3.3.1.1 Activating the object in the painter

The object in the OLE control needs to be activated so that the server application can
manipulate it. For the user, double-clicking is the default method for activating the object.
You can choose other methods by setting the control's Activation property, as described in
the preceding table. During development, you activate the object in the Window painter.

To activate an OLE object in the Window painter:

1. Select Open from the control's pop-up menu.

If the control is empty, Open is unavailable. You must select Insert to assign an object to
the control first.

PowerBuilder invokes the server application and activates the object offsite.

2. Use the server application to modify the object.

3. When you have finished, deactivate the object by clicking outside its hatched border.

You can also choose Exit or Return on the server's File menu, if available.

Program Access Techniques

Page 304

5.3.3.1.2 Changing the object in the control

In the painter, you can change or remove the object in the control.

To delete the object in the control:

• Select Delete from the control's pop-up menu.

The control is now empty and cannot be activated. Do not select Clear -- it deletes the
control from the window.

To insert a different object in the control:

1. Select Insert from the control's pop-up menu.

PowerBuilder displays the Insert Object dialog box.

2. Select Create New and select a server application, or select Create from File and specify
a file, as you did when you defined the control.

3. Click OK.

During execution

You can insert a different object in the control by calling the InsertObject, InsertFile,
InsertClass, or LinkTo function. You can delete the object in the control by calling Cut or
Clear.

5.3.3.1.3 How the user interacts with the control

When the window containing the OLE control opens, the data is displayed using the
information stored with the control in the PBL (or PBD or EXE file if the application has
been built).

When the object is activated, either because the user double-clicks or tabs to it or because a
script calls Activate, PowerBuilder starts the server application and enables in-place editing if
possible. If not, it enables offsite editing.

As the user changes the object, the data in the control is kept up to date with the changes.
This is obvious when the object is being edited in place, but it is also true for offsite editing.
Because some server applications update the object periodically, rather than continually, the
user might see only periodic changes to the contents of the control. Most servers also do a
final update automatically when you end the offsite editing session. However, to be safe, the
user should select the server's Update command before ending the offsite editing session.

5.3.3.2 Linking versus embedding

An OLE object can be linked or embedded in your application. The method you choose
depends on how you want to maintain the data.

Embedding data

The data for an embedded object is stored in your application. During development, it is
stored in your application's PBL. When you build your application, it is stored in the EXE or
PBD file. This data is a template or a starting point for the user. Although the user can edit

Program Access Techniques

Page 305

the data during a session, the changes cannot be saved because the embedded object is stored
as part of your application.

Embedding is suitable for data that will not change (such as the body of a form letter) or as a
starting point for data that will be changed and stored elsewhere.

To save the data at runtime, you can use the SaveAs and Open functions to save the user's
data to a file or OLE storage.

Linking data

When you link an object, your application contains a reference to the data, not the data itself.
The application also stores an image of the data for display purposes. The server application
handles the actual data, which is usually saved in a file. Other applications can maintain links
to the same data. If any application changes the data, the changes appear in all the documents
that have links to it.

Linking is useful for two reasons:

• More than one application can access the data.

• The server manages the saving of the data, which is useful even if your PowerBuilder
application is the only one using the data.

Maintaining link information

The server, not PowerBuilder, maintains the link information. Information in the OLE object
tells PowerBuilder what server to start and what data file and item within the file to use.
From then on, the server services the data: updating it, saving it back to the data file, updating
information about the item (for example, remembering that you inserted a row in the middle
of the range of linked rows).

Fixing a broken link

Because the server maintains the link, you can move and manipulate an OLE object within
your application without worrying about whether it is embedded or linked.

If the link is broken because the file has been moved, renamed, or deleted, the Update setting
of the control determines how the problem is handled. When Update is set to Automatic,
PowerBuilder displays a dialog box that prompts the user to find the file. You can call the
UpdateLinksDialog function in a script to display the same dialog box. You can establish a
link in a script without involving the user by calling the LinkTo function.

PowerBuilder displays a control with a linked object with the same shading that is used for an
open object.

5.3.3.3 Offsite or in-place activation

During execution, when a user activates the object in the OLE control, PowerBuilder tries to
activate an embedded object in place, meaning that the user interacts with the object inside
the PowerBuilder window. The menus provided by the server application are merged with the
PowerBuilder application's menus. You can control how the menus are merged in the Menu
painter (see Menus for in-place activation).

When the control is active in place, it has a wide hatched border:

Program Access Techniques

Page 306

Offsite activation means that the server application opens and the object becomes an open
document in the server's window. All the server's menus are available. The control itself is
displayed with shading, indicating that the object is open in the server application.

Limits to in-place activation

The server's capabilities determine whether PowerBuilder can activate the object
in place. OLE 1.0 objects cannot be activated in place. In addition, the OLE 2.0
standards specify that linked objects are activated offsite, not in place.

From the Window painter, the object is always activated offsite.

Changing the default behavior

You can change the default behavior in a script by calling the Activate function and choosing
whether to activate an object in place or offsite. If you set the control's Activation setting to
Manual, you can write a script that calls the Activate function for the DoubleClicked event
(or some other event):

ole_1.Activate(Offsite!)

When the control will not activate

You cannot activate an empty control (a control that does not have an OLE object
assigned to it). If you want the user to choose the OLE object, you can write a script
that calls the InsertObject function.

If the object in the control is linked and the linked file is missing, the user cannot
activate the control. If the Update property is set to Automatic, PowerBuilder displays
a dialog box so that the user can find the file.

If the Update property is set to Manual, a script can call the UpdateLinksDialog
function to display the dialog box, or call LinkTo to replace the contents with another
file.

Program Access Techniques

Page 307

5.3.3.4 Menus for in-place activation

When an object is activated in place, menus for its server application are merged with the
menus in your PowerBuilder application. The Menu Merge Option settings in the Menu
painter let you control how the menus of the two applications are merged. The values are
standard menu names, as well as the choices Merge and Exclude.

To control what happens to a menu in your application when an OLE object is activated:

1. Open the menu in the Menu painter.

2. Select a menu item that appears on the menu bar. Menu Merge Option settings apply
only to items on the menu bar, not items on drop-down menus.

3. On the Style property page, choose the appropriate Menu Merge Option setting. The
following table lists these settings.

Table 5.9: Menu Merge Option settings

You can
choose

Meaning Source of menu
in resulting
menu bar

File The menu from the container application (your
PowerBuilder application) that will be leftmost on the
menu bar. The server's File menu never displays.

Container

Edit The menu identified as Edit never displays. The
server's Edit menu displays.

Server

Window The menu from the container application that has the
list of open sheets. The server's Window menu never
displays.

Container

Help The menu identified as Help never displays. The
server's Help menu displays.

Server

Merge The menu will be displayed after the first menu of the
server application.

Container

Exclude The menu will be removed while the object is active.

4. Repeat steps 2 and 3 for each item on the menu bar.

Standard assignments for standard menus

In general, you should assign the File, Edit, Window, and Help Menu Merge options to the
File, Edit, Window, and Help menus. Because the actual menu names might be different in
an international application, you use the Menu Merge Option settings to make the correct
associations.

Resulting menu bar for activated object

The effect of the Menu Merge Option settings is that the menu bar displays the container's
File and Window menus and the server's Edit and Help menus. Any menus that you label
as Merge are included in the menu bar at the appropriate place. The menu bar also includes
other menus that the server has decided are appropriate.

Program Access Techniques

Page 308

5.3.3.5 Modifying an object in an OLE control

When an OLE object is displayed in the OLE control, the user can interact with that object
and the application that created it (the server). You can also program scripts that do the same
things the user might do. This section describes how to:

• Activate the OLE object and send general commands to the server

• Change and save the object in the control

• Find out when data or properties have changed by means of events

For information about automation for the control, see OLE objects in scripts.

5.3.3.5.1 Activating the OLE object

Generally, the OLE control is set so that the user can activate the object by double-clicking.
You can also call the Activate function to activate the object in a script. If the control's
Activation property is set to Manual, you have to call Activate to start a server editing
session:

ole_1.Activate(InPlace!)

You can initiate general OLE actions by calling the DoVerb function. A verb is an integer
value that specifies an action to be performed. The server determines what each integer value
means. The default action, specified as 0, is usually Edit, which also activates the object.

For example, if ole_1 contains a Microsoft Excel spreadsheet, the following statement
activates the object for editing:

ole_1.DoVerb(0)

Check the server's documentation to see what verbs it supports. OLE verbs are a relatively
limited means of working with objects; automation provides a more flexible interface. OLE
1.0 servers support verbs but not automation.

5.3.3.5.2 Changing the object in an OLE control

PowerBuilder provides several functions for changing the object in an OLE control. The
function you choose depends on whether you want the user to choose an object and whether
the object should be linked or embedded, as shown in the following table.

Table 5.10: Functions for changing object in OLE control

When you want to Choose this function

Let the user choose an object and, if the control's Contents
property is set to Any, whether to link or embed it.

InsertObject

Create a new object for a specified server and embed it in the
control.

InsertClass

Embed a copy of an existing object in the control. InsertFile

Link to an existing object in the control. LinkTo

Program Access Techniques

Page 309

When you want to Choose this function

Open an existing object from a file or storage. Information in the
file determines whether the object is linked or embedded.

Open

The following figure illustrates the behavior of the three functions that do not allow a choice
of linking or embedding.

Figure: Functions that do not allow a choice of linking or embedding

You can also assign OLE object data stored in a blob to the ObjectData property of the OLE
control:

blob myblob
... // Code to assign OLE data to the blob
ole_1.ObjectData = myblob

The Contents property of the control specifies whether the control accepts embedded and/or
linked objects. It determines whether the user can choose to link or embed in the InsertObject
dialog box. It also controls what the functions can do. If you call a function that chooses a
method that the Contents property does not allow, the function will fail.

OLE information in the Browser

Use the Browser to find out the registered names of the OLE server applications installed
on your system. You can use any of the names listed in the Browser as the argument for the
InsertClass function, as well as the ConnectToObject and ConnectToNewObject functions
(see Programmable OLE Objects).

For more information about OLE and the Browser, see OLE information in the Browser.

Using the clipboard

Using the Cut, Copy, and Paste functions in menu scripts lets you provide clipboard
functionality for your user. Calling Cut or Copy for the OLE control puts the OLE object it
contains on the clipboard. The user can also choose Cut or Copy in the server application to
place data on the clipboard. (Of course, you can use these functions in any script, not just
those associated with menus.)

Program Access Techniques

Page 310

There are several Paste functions that can insert an object in the OLE control. The difference
is whether the pasted object is linked or embedded.

Table 5.11: Paste functions

When you want to Choose this function

Embed the object on the clipboard in the control Paste

Paste and link the object on the clipboard PasteLink

Allow the user to choose whether to embed or link the pasted
object

PasteSpecial

If you have a general Paste function, you can use code like the following to invoke
PasteSpecial (or PasteLink) when the target of the paste operation is the OLE control:

graphicobject lg_obj
datawindow ldw_dw
olecontrol lole_ctl

// Get the object with the focus
lg_obj = GetFocus()

// Insert clipboard data based on object type
CHOOSE CASE TypeOf(lg_obj)
 CASE DataWindow!
 ldw_dw = lg_obj
 ldw_dw.Paste()
 ...
 CASE OLEControl!
 lole_ctl = lg_obj
 lole_ctl.PasteSpecial()
END CHOOSE

Saving an embedded object

If you embed an OLE object when you are designing a window, PowerBuilder saves the
object in the library with the OLE control. However, when you embed an object during
execution, that object cannot be saved with the control because the application's executable
and libraries are read-only. If you need to save the object, you save the data in a file or in the
database.

For example, the following script uses SaveAs to save the object in a file. It prompts the user
for a file name and saves the object in the control as an OLE data file, not as native data of
the server application. You can also write a script to open the file in the control in another
session:

string myf
ilename, mypathname
integer result
GetFileSaveName("Select File", mypathname, &
 myfilename, "OLE", &
 "OLE Files (*.OLE),*.OLE")
result = ole_1.SaveAs(myfilename)

When you save OLE data in a file, you will generally not be able to open that data directly
in the server application. However, you can open the object in PowerBuilder and activate the
server application.

When you embed an object in a control, the actual data is stored as a blob in the control's
ObjectData property. If you want to save an embedded object in a database for later retrieval,

Program Access Techniques

Page 311

you can save it as a blob. To transfer data between a blob variable and the control, assign the
blob to the control's ObjectData property or vice versa:

blob myblob
myblob = ole_1.ObjectData

You can use the embedded SQL statement UPDATEBLOB to put the blob data in the
database (see Section 2.2.1.18, “UPDATEBLOB” in PowerScript Reference).

You can also use SaveAs and Save to store OLE objects in PowerBuilder's OLEStorage
variables (see Opening and saving storages).

When the user saves a linked object in the server, the link information is not affected and you
do not need to save the open object. However, if the user renames the object or affects the
range of a linked item, you need to call the Save function to save the link information.

5.3.3.5.3 Events for the OLE control

There are several events that let PowerBuilder know when actions take place in the server
application that affect the OLE object.

Events for data

Events that have to do with data are:

• DataChange

The data has been changed

• Rename

The object has been renamed

• Save, SaveObject

The data has been saved

• ViewChange

The user has changed the view of the data

When these events occur, the changes are reflected automatically in the control. If you need
to perform additional processing when the object is renamed, saved, or changed, you can
write the appropriate scripts.

Because of the architecture of OLE, you often cannot interact with the OLE object within
these events. Trying to do so can generate a runtime error. A common workaround is to use
the PostEvent function to post the event to an asynchronous event handler. You do not need
to post the SaveObject event, which is useful if you want to save the data in the object to a
file whenever the server application saves the object.

Events for properties

If the server supports property notifications, then when values for properties of the server
change, the PropertyRequestEdit and PropertyChanged events will occur. You can write
scripts that cancel changes, save old values, or read new values.

For more information about property notification, see Creating hot links.

Program Access Techniques

Page 312

5.3.4 OLE custom controls

The OLE control button in the Controls menu gives you the option of inserting an object or
a custom control in an OLE container. When you select an OLE custom control (ActiveX
control), you fix the container's type and contents. You cannot choose later to insert an object
and you cannot select a different custom control.

Each ActiveX control has its own properties, events, and functions. Preventing the ActiveX
control from being changed helps avoid errors later in scripts that address the properties and
methods of a particular ActiveX control.

5.3.4.1 Setting up the custom control

The PowerBuilder custom control container has properties that apply to any ActiveX control.
The ActiveX control itself has its own properties. This section describes the purpose of each
type of property and how to set them.

PowerBuilder properties

For OLE custom controls, PowerBuilder properties have two purposes:

• To specify appearance and behavior of the container, as you do for any control

You can specify position, pointer, and drag-and-drop settings, as well as the standard
settings on the General property page (Visible, Enabled, and so on).

• To provide default information that the ActiveX control can use

Font information and the display name are called ambient properties in OLE terminology.
PowerBuilder does not display text for the ActiveX control, so it does not use these
properties directly. If the ActiveX control is programmed to recognize ambient properties,
it can use the values PowerBuilder provides when it displays text or needs a name to
display in a title bar.

To modify the PowerBuilder properties for the custom control:

1. Double-click the control, or select Properties from the control's pop-up menu.

The OLE Custom Control property sheet displays.

2. Give the control a name that is relevant to your application. You will use this name in
scripts. The default name is ole_ followed by a number.

3. Specify values for other properties on the General property page and other pages as
appropriate.

4. Click OK when you are done.

Documenting the control

Put information about the ActiveX control you are using in a comment for the
window or in the control's Tag property. Later, if another developer works with your
window and does not have the ActiveX control installed, that developer can easily
find out what ActiveX control the window was designed to use.

ActiveX control properties

Program Access Techniques

Page 313

An ActiveX control usually has its own properties and its own property sheet for setting
property values. These properties control the appearance and behavior of the ActiveX control,
not the PowerBuilder container.

To set property values for the ActiveX control in the control:

1. Select OLE Control Properties from the control's pop-up menu or from the General
property page.

2. Specify values for the properties and click OK when done.

The OLE control property sheet might present only a subset of the properties of the ActiveX
control. You can set other properties in a script.

For more information about the ActiveX control's properties, see the documentation for the
ActiveX control.

5.3.4.2 Programming the ActiveX control

You make an ActiveX control do its job by programming it in scripts, setting its properties,
and calling its functions. Depending on the interface provided by the ActiveX control
developer, a single function call might trigger a whole series of activities or individual
property settings, and function calls may let you control every aspect of its actions.

An ActiveX control is always active -- it does not contain an object that needs to be opened
or activated. The user does not double-click and start an OLE server. However, you can
program the DoubleClicked or any other event to call a function that starts ActiveX control
processing.

Setting properties in scripts

Programming an ActiveX control is the same as programming automation for insertable
objects. You use the container's Object property to address the properties and functions of the
ActiveX control.

This syntax accesses a property value. You can use it wherever you use an expression. Its
datatype is Any. When the expression is evaluated, its value has the datatype of the control
property:

olecontrol.Object.ocxproperty

This syntax calls a function. You can capture its return value in a variable of the appropriate
datatype:

{ value } = olecontrol.Object.ocxfunction ({ argumentlist })

Errors when accessing properties

The PowerBuilder compiler does not know the correct syntax for accessing properties and
functions of an ActiveX control, so it does not check any syntax after the Object property.
This provides the flexibility you need to program any ActiveX control. But it also leaves an
application open to runtime errors if the properties and functions are misnamed or missing.

PowerBuilder provides two events (ExternalException and Error) for handling OLE errors. If
the ActiveX control defines a stock error event, the PowerBuilder OLE control container has
an additional event, ocx_event. These events allow you to intercept and handle errors without

Program Access Techniques

Page 314

invoking the SystemError event and terminating the application. You can also use a TRY-
CATCH exception handler.

For more information, see Handling errors.

Using events of the ActiveX control

An ActiveX control has its own set of events, which PowerBuilder merges with the events for
the custom control container. The ActiveX control events appear in the Event List view with
the PowerBuilder events. You write scripts for ActiveX control events in PowerScript and
use the Object property to refer to ActiveX control properties and methods, just as you do for
PowerBuilder event scripts.

The only difference between ActiveX control events and PowerBuilder events is where
to find documentation about when the events get triggered. The ActiveX control provider
supplies the documentation for its events, properties, and functions.

The PowerBuilder Browser provides lists of the properties and methods of the ActiveX
control. For more information, see OLE information in the Browser.

New versions of the ActiveX control

If you install an updated version of an ActiveX control and it has new events, the
event list in the Window painter does not add the new events. To use the new events,
you have to delete and recreate the control, along with the scripts for existing events.
If you do not want to use the new events, you can leave the control as is -- it will use
the updated ActiveX control with the pre-existing events.

5.3.5 Programmable OLE Objects

You do not need to place an OLE control on a window to manipulate an OLE object in a
script. If the object does not need to be visible in your PowerBuilder application, you can
create an OLE object independent of a control, connect to the server application, and call
functions and set properties for that object. The server application executes the functions and
changes the object's properties, which changes the OLE object.

For some applications, you can specify whether the application is visible. If it is visible, the
user can activate the application and manipulate the object using the commands and tools of
the server application.

5.3.5.1 OLEObject object type

PowerBuilder's OLEObject object type is designed for automation. OLEObject is a dynamic
object type, which means that the compiler will accept any property names, function
names, and parameter lists for the object. PowerBuilder does not have to know whether the
properties and functions are valid. This allows you to call methods and set properties for
the object that are known to the server application that created the object. If the functions or
properties do not exist during execution, you will get runtime errors.

Using an OLEObject variable involves these steps:

1. Declare the variable and instantiate it.

2. Connect to the OLE object.

Program Access Techniques

Page 315

3. Manipulate the object as appropriate using the OLE server's properties and functions.

4. Disconnect from the OLE object and destroy the variable.

These steps are described next.

Declaring an OLEObject variable

You need to declare an OLEObject variable and allocate memory for it:

OLEObject myoleobject
myoleobject = CREATE OLEObject

The Object property of the OLE container controls (OLEControl or OLECustomControl) has
a datatype of OLEObject.

Connecting to the server

You establish a connection between the OLEObject object and an OLE server with one of the
ConnectToObject functions. Connecting to an object starts the appropriate server:

Table 5.12: ConnectToObject functions

When you want to Choose this
function

Create a new object for an OLE server that you specify. Its purpose is
similar to InsertClass for a control.

ConnectToNewObject

Create a new OLE object in the specified remote server application
if security on the server allows it and associate the new object with a
PowerBuilder OLEObject variable.

ConnectToNewRemoteObject

Open an existing OLE object from a file. If you do not specify an OLE
class, PowerBuilder uses the file's extension to determine what server
to start.

ConnectToObject

Associate an OLE object with a PowerBuilder OLEObject variable and
start the remote server application.

ConnectToRemoteObject

After you establish a connection, you can use the server's command set for automation to
manipulate the object (see OLE objects in scripts).

You do not need to include application qualifiers for the commands. You already specified
those qualifiers as the application's class when you connected to the server. For example,
the following commands create an OLEObject variable, connect to Microsoft Word 's OLE
interface (word.application), open a document and display information about it, insert some
text, save the edited document, and shut down the server:

OLEObject o1
string s1
o1 = CREATE oleobject

o1.ConnectToNewObject("word.application")
o1.documents.open("c:\temp\temp.doc")

// Make the object visible and display the
// MS Word user name and file name
o1.Application.Visible = True
s1 = o1.UserName
MessageBox("MS Word User Name", s1)
s1 = o1.ActiveDocument.Name

Program Access Techniques

Page 316

MessageBox("MS Word Document Name", s1)

//Insert some text in a new paragraph
o1.Selection.TypeParagraph()
o1.Selection.typetext("Insert this text")
o1.Selection.TypeParagraph()

// Insert text at the first bookmark
o1.ActiveDocument.Bookmarks[1].Select
o1.Selection.typetext("Hail!")

// Insert text at the bookmark named End
o1.ActiveDocument.Bookmarks.item("End").Select
o1.Selection.typetext("Farewell!")

// Save the document and shut down the server
o1.ActiveDocument.Save()
o1.quit()
RETURN

For earlier versions of Microsoft Word, use word.basic instead of word.application. The
following commands connect to the Microsoft Word 7.0 OLE interface (word.basic), open a
document, go to a bookmark location, and insert the specified text:

myoleobject.ConnectToNewObject("word.basic")
myoleobject.fileopen("c:\temp\letter1.doc")
myoleobject.editgoto("NameAddress")
myoleobject.Insert("Text to insert")

Do not include word.application or word.basic (the class in ConnectToNewObject) as a
qualifier:

// Incorrect command qualifier
myoleobject.word.basic.editgoto("NameAddress")

Microsoft Word 7.0 implementation

For an OLEObject variable, word.basic is the class name of Word 7.0 as
a server application. For an object in a control, you must use the qualifier
application.wordbasic to tell Word how to traverse its object hierarchy and access its
wordbasic object.

Shutting down and disconnecting from the server

After your application has finished with the automation, you might need to tell the server
explicitly to shut down. You can also disconnect from the server and release the memory for
the object:

myoleobject.Quit()
rtncode = myoleobject.DisconnectObject()
DESTROY myoleobject

You can rely on garbage collection to destroy the OLEObject variable. Destroying the
variable automatically disconnects from the server.

It is preferable to use garbage collection to destroy objects, but if you want to release the
memory used by the variable immediately and you know that it is not being used by another
part of the application, you can explicitly disconnect and destroy the OLEObject variable, as
shown in the code above.

For more information, see Garbage collection and memory management.

Program Access Techniques

Page 317

5.3.5.2 Assignments among OLEControl, OLECustomControl, and OLEObject datatypes

You cannot assign an OLE control (object type OLEControl) or ActiveX control (object type
OLECustomControl) to an OLEObject.

If the vendor of the control exposes a programmatic identifier (in the form
vendor.application), you can specify this identifier in the ConnectToNewObject function to
connect to the programmable interface without the visual control. For an ActiveX control
with events, this technique makes the events unavailable. ActiveX controls are not meant to
be used this way and would not be useful in most cases.

You can assign the Object property of an OLE control to an OLEObject variable or use it as
an OLEObject in a function.

For example, if you have an OLEControl ole_1 and an OLECustomControl ole_2 in a
window and you have declared this variable:

OLEObject oleobj_automate

then you can make these assignments:

oleobj_automate = ole_1.Object
oleobj_automate = ole_2.Object

You cannot assign an OLEObject to the Object property of an OLE control because it is read-
only. You cannot make this assignment:

ole_1.Object = oleobj_automate //Error!

Events for OLEObjects

You can implement events for an OLEObject by creating a user object that is a descendant
of OLEObject. The SetAutomationPointer PowerScript function assigns an OLE automation
pointer to the descendant so that it can use OLE automation.

Suppose oleobjectchild is a descendant of OLEObject that implements events such as the
ExternalException and Error events. The following code creates an OLEObject and an
instance of oleobjectchild, which is a user object that is a descendant of OLEObject, connects
to Excel, then assigns the automation pointer to the oleobjectchild:

OLEObject ole1
oleobjectchild oleChild

ole1 = CREATE OLEObject
ole1.ConnectToNewObject("Excel.Application")

oleChild = CREATE oleobjectchild
oleChild.SetAutomationPointer(ole1)

You can now use olechild for automation.

5.3.5.3 Automation scenario

The steps involved in automation can be included in a single script or be the actions of
several controls in a window. If you want the user to participate in the automation, you
might:

• Declare an OLE object as an instance variable of a window

• Instantiate the variable and connect to the server in the window's Open event

Program Access Techniques

Page 318

• Send commands to the server in response to the user's choices and specifications in lists or
edit boxes

• Disconnect and destroy the object in the window's Close event

If the automation does not involve the user, all the work can be done in a single script.

5.3.5.3.1 Example: generating form letters using OLE

This example takes names and addresses from a DataWindow object and letter body from a
MultiLineEdit and creates and prints letters in Microsoft Word using VBA scripting.

To set up the form letter example:

1. Create a Word document called CONTACT.DOC with four bookmarks and save the file
in your PowerBuilder directory.

These are the bookmarks:

• name1 -- for the name in the return address

• name2 -- for the name in the salutation

• address1 -- for the street, city, state, and zip in the return address

• body -- for the body of the letter

The letter should have the following content:

Multimedia Promotions, Inc.
1234 Technology Drive
Westboro, Massachusetts
January 12, 2003

[bookmark name1]
[bookmark address1]

Dear [bookmark name2]:
[bookmark body]

Sincerely,
Harry Mogul
President

You could enhance the letter with a company and a signature logo. The important items
are the names and placement of the bookmarks.

2. In PowerBuilder, define a DataWindow object called d_maillist that has the following
columns:

id

first_name

last_name

street

city

Program Access Techniques

Page 319

state

zip

You can turn on Prompt for Criteria in the DataWindow object so the user can specify
the customers who will receive the letters.

3. Define a window that includes a DataWindow control called dw_mail, a MultiLineEdit
called mle_body, and a CommandButton or PictureButton:

4. Assign the DataWindow object d_maillist to the DataWindow control dw_mail.

5. Write a script for the window's Open event that connects to the database and retrieves
data for the DataWindow object. The following code connects to a SQL Anywhere
database. (When the window is part of a larger application, the connection is typically
done by the application Open script.)

/**
Set up the Transaction object from the INI file
**/
SQLCA.DBMS=ProfileString("myapp.ini", &
 "Database", "DBMS", " ")

SQLCA.DbParm=ProfileString("myapp.ini", &
 "Database", "DbParm", " ")
/**
Connect to the database and test whether the
connect succeeded
**/
CONNECT USING SQLCA;

Program Access Techniques

Page 320

IF SQLCA.SQLCode <> 0 THEN
 MessageBox("Connect Failed", "Cannot connect" &
 + "to database. " + SQLCA.SQLErrText)
 RETURN
END IF
/**
Set the Transaction object for the DataWindow control and retrieve data
**/
dw_mail.SetTransObject(SQLCA)
dw_mail.Retrieve()

6. Write the script for the Generate Letters button (the script is shown below).

The script does all the work, performing the following tasks:

• Creates the OLEObject variable

• Connects to the server (word.application)

• For each row in the DataWindow object, generates a letter

To do so, it uses VBA statements to perform the tasks in the following table.

Table 5.13: Script tasks

VBA
statements

Task

open Opens the document with the bookmarks

goto and
typetext

Extracts the name and address information from a row in the
DataWindow object and inserts it into the appropriate places in the
letter

goto and
typetext

Inserts the text the user types in mle_body into the letter

printout Prints the letter

close Closes the letter document without saving it

• Disconnects from the server

• Destroys the OLEObject variable

7. Write a script for the Close button. All it needs is one command:

Close(Parent)

Script for generating form letters

The following script generates and prints the form letters:

OLEObject contact_ltr
integer result, n
string ls_name, ls_addr
/***
Allocate memory for the OLEObject variable
***/
contact_ltr = CREATE oleObject
/***
Connect to the server and check for errors

Program Access Techniques

Page 321

***/
result = &
 contact_ltr.ConnectToNewObject("word.application")
IF result <> 0 THEN
 DESTROY contact_ltr
 MessageBox("OLE Error", &
 "Unable to connect to Microsoft Word. " &
 + "Code: " &
 + String(result))
 RETURN
END IF
/***
For each row in the DataWindow, send customer
data to Word and print a letter
***/
FOR n = 1 to dw_mail.RowCount()
/**
 Open the document that has been prepared with
 bookmarks
**/
 contact_ltr.documents.open("c:\pbdocs\contact.doc")
/**
 Build a string of the first and last name and
 insert it into Word at the name1 and name2
 bookmarks
**/
 ls_name = dw_mail.GetItemString(n, "first_name")&
 + " " + dw_mail.GetItemString(n, "last_name")
 contact_ltr.Selection.goto("name1")
 contact_ltr.Selection.typetext(ls_name)
 contact_ltr.Selection.goto("name2")
 contact_ltr.Selection.typetext(ls_name)
/**
 Build a string of the address and insert it into
 Word at the address1 bookmark
**/
 ls_addr = dw_mail.GetItemString(n, "street") &
 + "~r~n" &
 + dw_mail.GetItemString(n, "city") &
 + ", " &
 + dw_mail.GetItemString(n, "state") &
 + " " &
 + dw_mail.GetItemString(n, "zip")
 contact_ltr.Selection.goto("address1")
 contact_ltr.Selection.typetext(ls_addr)
/**
 Insert the letter text at the body bookmark
***/
 contact_ltr.Selection.goto("body")
 contact_ltr.Selection.typetext(mle_body.Text)
/**
 Print the letter
**/
 contact_ltr.Application.printout()
/**
 Close the document without saving
**/
 contact_ltr.Documents.close
 contact_ltr.quit()
NEXT
/***
Disconnect from the server and release the memory for the OLEObject variable
***/
contact_ltr.DisconnectObject()

Program Access Techniques

Page 322

DESTROY contact_ltr

Running the example

To run the example, write a script for the Application object that opens the window or use the
Run/Preview button on the PowerBar.

When the application opens the window, the user can specify retrieval criteria to select the
customers who will receive letters. After entering text in the MultiLineEdit for the letter
body, the user can click on the Generate Letters button to print letters for the listed customers.

5.3.6 OLE objects in scripts

This chapter has described the three ways to use OLE in a window or user object. You have
learned about:

• Inserting an object in an OLE control

• Placing an ActiveX control in an OLE custom control

• Declaring an OLEObject variable and connecting to an OLE object

In scripts, you can manipulate these objects by means of OLE automation, getting and setting
properties, and calling functions that are defined by the OLE server. There are examples of
automation commands in the preceding sections. This section provides more information
about the automation interface in PowerBuilder.

5.3.6.1 The automation interface

In PowerBuilder, an OLEObject is your interface to an OLE server or ActiveX control. When
you declare an OLEObject variable and connect to a server, you can use dot notation for that
variable and send instructions to the server. The instruction might be a property whose value
you want to get or set, or a function you want to call.

The general automation syntax for an OLEObject is:

oleobjectvar.serverinstruction

For OLE controls in a window, your interface to the server or ActiveX control is the control's
Object property, which has a datatype of OLEObject.

The general automation syntax for an OLE control is:

olecontrol.Object.serverinstruction

Compiling scripts that include commands to the OLE server

When you compile scripts that apply methods to an OLEObject (including a control's
Object property), PowerBuilder does not check the syntax of the rest of the command,
because it does not know the server's command set. You must ensure that the syntax
is correct to avoid errors during execution.

Make sure you give your applications a test run to ensure that your commands to the
server application are correct.

What does the server support?

A server's command set includes properties and methods (functions and events).

Program Access Techniques

Page 323

OLE server applications publish the command set they support for automation. Check your
server application's documentation for information.

For custom controls and programmable OLE objects, you can see a list of properties and
methods in the PowerBuilder Browser. For more information about OLE information in the
Browser, see OLE information in the Browser.

5.3.6.1.1 Setting properties

You access server properties for an OLE control through its Object property using the
following syntax:

olecontrolname.Object.{ serverqualifiers.}propertyname

If the OLE object is complex, there could be nested objects or properties within the object
that serve as qualifiers for the property name.

For example, the following commands for an Excel spreadsheet object activate the object and
set the value property of several cells:

double value
ole_1.Activate(InPlace!)
ole_1.Object.cells[1,1].value = 55
ole_1.Object.cells[2,2].value = 66
ole_1.Object.cells[3,3].value = 77
ole_1.Object.cells[4,4].value = 88

For an Excel 95 spreadsheet, enclose the cells' row and column arguments in parentheses
instead of square brackets. For example:

ole_1.Object.cells(1,1).value = 55

For properties of an OLEObject variable, the server qualifiers and property name follow the
variable name:

oleobjectvar.{ serverqualifiers.}propertyname

The qualifiers you need to specify depend on how you connect to the object. For more
information, see Qualifying server commands.

5.3.6.1.2 Calling functions

You can call server functions for an OLE control through its Object property using the
following syntax:

olecontrolname.Object.{ serverqualifiers.}functionname ({ arguments })

If the OLE object is complex, there could be nested properties or objects within the object
that serve as qualifiers for the function name.

Required parentheses

PowerScript considers all commands to the server either property settings or
functions. For statements and functions to be distinguished from property settings,
they must be followed by parentheses surrounding the parameters. If there are no
parameters, specify empty parentheses.

Arguments and return values and their datatypes

Program Access Techniques

Page 324

PowerBuilder converts OLE data to and from compatible PowerBuilder datatypes. The
datatypes of values you specify for arguments must be compatible with the datatypes
expected by the server, but they do not need to be an exact match.

When the function returns a value, you can assign the value to a PowerBuilder variable of a
compatible datatype.

Passing arguments by reference

If an OLE server expects an argument to be passed by reference so that it can pass a value
back to your script, include the keyword REF just before the argument. This is similar to the
use of REF in an external function declaration:

olecontrol.Object.functionname (REF argname)

In these generic examples, the server can change the values of ls_string and li_return because
they are passed by reference:

string ls_string
integer li_return
ole_1.Object.testfunc(REF ls_string, REF li_return)

This example illustrates the same function call using an OLEObject variable.

OLEObject ole_obj
ole_obj = CREATE OLEObject
ole_obj.ConnectToNewObject("servername")
ole_obj.testfunc(REF ls_string, REF li_return)

Setting the timeout period

Calls from a PowerBuilder client to a server time out after five minutes. You can use
the SetAutomationTimeout PowerScript function to change the default timeout period
if you expect a specific OLE request to take longer.

Word and automation

Microsoft Word 6.0 and 7.0 support automation with a command set similar to the
WordBasic macro language. The command set includes both statements and functions and
uses named parameters. Later versions of Microsoft Word use Visual Basic for Applications
(VBA), which consists of a hierarchy of objects that expose a specific set of methods and
properties.

WordBasic statements

WordBasic has both statements and functions. Some of them have the same name.
WordBasic syntax differentiates between statements and functions calls, but PowerBuilder
does not.

To specify that you want to call a statement, you can include AsStatement! (a value of the
OLEFunctionCallType enumerated datatype) as an argument. Using AsStatement! is the
only way to call WordBasic statements that have the same name as a function. Even when
the statement name does not conflict with a function name, specifying AsStatement! is more
efficient:

olecontrol.Object.application.wordbasic.statementname
 (argumentlist, AsStatement!)

For example, the following code calls the AppMinimize statement:

Program Access Techniques

Page 325

ole_1.Object.application.wordbasic. &
 AppMinimize("",1,AsStatement!)

Named parameters

PowerBuilder does not support named parameters that both WordBasic and Visual Basic use.
In the parentheses, specify the parameter values without the parameter names.

For example, the following statements insert text at a bookmark in a Word 6.0 or 7.0
document:

ole_1.Activate(InPlace!)
Clipboard(mle_nameandaddress.Text)
ole_1.Object.application.wordbasic.&
 fileopen("c:\msoffice\winword\doc1.doc")
ole_1.Object.application.wordbasic.&
 editgoto("NameandAddress", AsStatement!)
ole_1.Object.application.wordbasic.&
 editpaste(1, AsStatement!)

The last two commands in a WordBasic macro would look like this, where Destination is the
named parameter:

EditGoto.Destination = "NameandAddress"
EditPaste

In a PowerBuilder script, you would use this syntax to insert text in a Word 97 or later
document:

ole_1.Object.Selection.TypeText("insert this text")

In the corresponding Visual Basic statement, the named parameter Text contains the string to
be inserted:

Selection.TypeText Text:="insert this text"

Automation is not macro programming

You cannot send commands to the server application that declare variables or control
the flow of execution (for example, IF THEN). Automation executes one command
at a time independently of any other commands. Use PowerScript's conditional and
looping statements to control program flow.

Example of Word automation

To illustrate how to combine PowerScript with server commands, the following script counts
the number of bookmarks in a Microsoft Word OLE object and displays their names:

integer i, count
string bookmarklist, curr_bookmark
ole_1.Activate(InPlace!)

count = ole_1.Object.Bookmarks.Count
bookmarklist = "Bookmarks = " + String(count) + "~n"

FOR i = 1 to count
 curr_bookmark = ole_1.Object.Bookmarks[i].Name
 bookmarklist = bookmarklist + curr_bookmark + "~n"
END FOR

MessageBox("BookMarks", bookmarklist)

Program Access Techniques

Page 326

Word automation tip

You can check that you are using the correct syntax for Word automation with the
Word macro editor. Turn on macro recording in Word, perform the steps you want
to automate manually, then turn off macro recording. You can then type Alt+F11 to
open the macro editor and see the syntax that was built. Remember that PowerBuilder
uses square brackets for array indexes.

Example of Word 6.0 and 7.0 automation

The following script counts the number of bookmarks in a Microsoft Word 6.0 or 7.0 OLE
object and displays their names:

integer i, count
string bookmarklist, curr_bookmark
ole_1.Activate(InPlace!)

// Get the number of bookmarks
count = ole_1.Object. &
 application.wordbasic.countbookmarks
bookmarklist = "Bookmarks = " + String(count) + "~n"

// Get the name of each bookmark
FOR i = 1 to count
 curr_bookmark = ole_1.Object. &
 application.wordbasic.bookmarkname(i)
 bookmarklist = bookmarklist + curr_bookmark + "~n"
END FOR

MessageBox("BookMarks", bookmarklist)

5.3.6.1.3 Qualifying server commands

Whether to qualify the server command with the name of the application depends on the
server and how the object is connected. Each server implements its own version of an object
hierarchy, which needs to be reflected in the command syntax. For example, the Microsoft
Excel object hierarchy is shown in the following figure.

Figure: Microsoft Excel object hierarchy

When the server is Excel, the following commands appear to mean the same thing but can
have different effects (for an Excel 95 spreadsheet, the cells' row and column arguments are
in parentheses instead of square brackets):

Program Access Techniques

Page 327

ole_1.Object.application.cells[1,2].value = 55
ole_1.Object.cells[1,2].value = 55

The first statement changes a cell in the active document. It moves up Excel's object
hierarchy to the Application object and back down to an open sheet. It does not matter
whether it is the same one in the PowerBuilder control. If the user switches to Excel and
activates a different sheet, the script changes that one instead. You should avoid this syntax.

The second statement affects only the document in the PowerBuilder control. However, it
will cause a runtime error if the document has not been activated. It is the safer syntax to use,
because there is no danger of affecting the wrong data.

Microsoft Word 6.0 and 7.0 implement the application hierarchy differently and require the
qualifier application.wordbasic when you are manipulating an object in a control. (You must
activate the object.) For example:

ole_1.Object.application.wordbasic.bookmarkname(i)

Later versions of Microsoft Word do not require a qualifier, but it is valid to specify one. You
can use any of the following syntaxes:

ole_1.Object.Bookmarks.[i].Name
ole_1.Object.Bookmarks.item(i).Name
ole_1.Object.application.ActiveDocument. &
 Bookmarks.[i].Name

When you are working with PowerBuilder's OLEObject, rather than an object in a control,
you omit the application qualifiers in the commands because you have already specified
them when you connected to the object. (For more about the OLEObject object type, see
Programmable OLE Objects.)

5.3.6.2 Automation and the Any datatype

Because PowerBuilder knows nothing about the commands and functions of the server
application, it also knows nothing about the datatypes of returned information when it
compiles a program. Expressions that access properties and call functions have a datatype of
Any. You can assign the expression to an Any variable, which avoids datatype conversion
errors.

During execution, when data is assigned to the variable, it temporarily takes the datatype
of the value. You can use the ClassName function to determine the datatype of the Any
variable and make appropriate assignments. If you make an incompatible assignment with
mismatched datatypes, you will get a runtime error.

Do not use the Any datatype unnecessarily

If you know the datatype of data returned by a server automation function, do not use
the Any datatype. You can assign returned data directly to a variable of the correct
type.

The following sample code retrieves a value from Excel and assigns it to the appropriate
PowerBuilder variable, depending on the value's datatype. (For an Excel 95 spreadsheet, the
row and column arguments for cells are in parentheses instead of square brackets.)

string stringval
double dblval

Program Access Techniques

Page 328

date dateval
any anyval

anyval = myoleobject.application.cells[1,1].value
CHOOSE CASE ClassName(anyval)
 CASE "string"
 stringval = anyval
 CASE "double"
 dblval = anyval
 CASE "datetime"
 dateval = Date(anyval)
END CHOOSE

5.3.6.3 OLEObjects for efficiency

When your automation command refers to a deeply nested object with multiple server
qualifiers, it takes time to negotiate the object's hierarchy and resolve the object reference.
If you refer to the same part of the object hierarchy repeatedly, then for efficiency you can
assign that part of the object reference to an OLEObject variable. The reference is resolved
once and reused.

Instead of coding repeatedly for different properties:

ole_1.Object.application.wordbasic.propertyname

you can define an OLEObject variable to handle all the qualifiers:

OLEObject ole_wordbasic
ole_wordbasic = ole_1.Object.application.wordbasic
ole_wordbasic.propertyname1 = value
ole_wordbasic.propertyname2 = value

Example: resolving an object reference

This example uses an OLEObject variable to refer to a Microsoft Word object. Because it is
referred to repeatedly in a FOR loop, the resolved OLEObject makes the code more efficient.
The example destroys the OLEObject variable when it is done with it:

integer li_i, li_count
string ls_curr_bookmark
OLEObject ole_wb

ole_1.Activate(InPlace!)
ole_wb = ole_1.Object.application.wordbasic

// Get the number of bookmarks
li_count = ole_wb.countbookmarks
// Get the name of each bookmark
FOR li_i = 1 to count
 ls_curr_bookmark = ole_wb.bookmarkname(i)
 ... // code to save the bookmark name in a list
END FOR

5.3.6.4 Handling errors

Statements in scripts that refer to the OLE server's properties are not checked in the compiler
because PowerBuilder does not know what syntax the server expects. Because the compiler
cannot catch errors, runtime errors can occur when you specify property or function names
and arguments the OLE server does not recognize.

Chain of error events

Program Access Techniques

Page 329

When an error occurs that is generated by a call to an OLE server, PowerBuilder follows this
sequence of events:

1. If the error was generated by an ActiveX control that has defined a stock error event, the
ocx_error event for the PowerBuilder OLE control is triggered.

2. Otherwise, the ExternalException event for the OLE object occurs.

3. If the ExternalException event has no script or its action argument is set to ExceptionFail!
(the default), the Error event for the OLE object occurs.

4. If the Error event has no script or its action argument is set to ExceptionFail! (the default),
any active exception handler for a RuntimeError or its descendants is invoked.

5. If no exception handler exists, or if the existing exception handlers do not handle the
exception, the SystemError event for the Application object occurs.

6. If the SystemError has no script, an application runtime error occurs and the application is
terminated.

You can handle the error in any of these events or in a script using a TRY-CATCH block.
However, it is not a good idea to continue processing after the SystemError event occurs.

For more information about exception handling, see Handling exceptions.

Events for OLE errors

PowerBuilder OLE objects and controls all have two events for error handling:

• ExternalException

Triggered when the OLE server or control throws an exception or fires an error event (if
there is no ocx_error event). Information provided by the server can help diagnose the
error.

• Error

Triggered when the exception or error event is not handled. PowerBuilder error
information is available in the script.

If the OLE control defines a stock error event, the PowerBuilder OLE control container has
an additional event:

• ocx_error

Triggered when the OLE server fires an error event. Information provided by the server
can help diagnose the error.

The creator of an OLE control can generate the stock error event for the control using the
Microsoft Foundation Classes (MFC) Class Wizard. The arguments for the ocx_error event in
PowerBuilder map to the arguments defined for the stock error event.

Responding to the error

If the PowerBuilder OLE control has an ocx_error event script, you can get information about
the error from the event's arguments and take appropriate action. One of the arguments of

Program Access Techniques

Page 330

ocx_error is the boolean CancelDisplay. You can set CancelDisplay to TRUE to cancel the
display of any MFC error message. You can also supply a different description for the error.

In either the ExternalException or Error event script, you set the Action argument to an
ExceptionAction enumerated value. What you choose depends on what you know about the
error and how well the application will handle missing information.

Table 5.14: ExceptionAction enumerated values

ExceptionAction
value

Effect

ExceptionFail! Fail as if the event had no script. Failing triggers the next error event in
the order of event handling.

ExceptionIgnore! Ignore the error and return as if no error occurred.

Caution

If you are getting a property value or expecting a return value from a
function, a second error can occur during the assignment because of
mismatched datatypes.

ExceptionRetry! Send the command to the OLE server again (useful if the OLE server was
not ready).

Caution

If you keep retrying and the failure is caused by an incorrect name or
argument, you will set your program into an endless loop. You can set up
a counter to limit the number of retries.

ExceptionSubstituteReturnValue!Use the value specified in the ReturnValue argument instead of the value
returned by the OLE server (if any) and ignore the error condition.

You can set up an acceptable return value in an instance variable
before you address the OLE server and assign it to the ReturnValue
argument in the event script. The datatype of ReturnValue is Any, which
accommodates all possible datatypes.

With a valid substitute value, this choice is a safe one if you want to
continue the application after the error occurs.

Example: ExternalException event

The ExternalException event, like the ocx_error event, provides error information from the
OLE server that can be useful when you are debugging your application.

Suppose your window has two instance variables: one for specifying the exception action
and another of type Any for storing a potential substitute value. Before accessing the OLE
property, a script sets the instance variables to appropriate values:

ie_action = ExceptionSubstituteReturnValue!
ia_substitute = 0
li_currentsetting = ole_1.Object.Value

If the command fails, a script for the ExternalException event displays the Help topic named
by the OLE server, if any. It substitutes the return value you prepared and returns. The

Program Access Techniques

Page 331

assignment of the substitute value to li_currentsetting works correctly because their datatypes
are compatible:

string ls_context

// Command line switch for WinHelp numeric context ID
ls_context = "-n " + String(helpcontext)
IF Len(HelpFile) > 0 THEN
 Run("winhelp.exe " + ls_context + " " + HelpFile)
END IF

Action = ExceptionSubstituteReturnValue!
ReturnValue = ia_substitute

Because the event script must serve for every automation command for the control, you
would need to set the instance variables to appropriate values before each automation
command.

Error event

The Error event provides information about the PowerBuilder context for the error. You can
find out the PowerBuilder error number and message, as well as the object, script, and line
number of the error. This information is useful when debugging your application.

The same principles discussed in the ExceptionAction value table for setting the Action and
ReturnValue arguments apply to the Error event, as well as ExternalException.

For more information about the events for error handling, see Part I, “PowerScript
Reference”.

5.3.6.5 Creating hot links

Some OLE servers support property change notifications. This means that when a property is
about to be changed and again after it has been changed, the server notifies the client, passing
information about the change. These messages trigger the events PropertyRequestEdit and
PropertyChanged.

PropertyRequestEdit event

When a property is about to change, PowerBuilder triggers the PropertyRequestEdit event. In
that event's script you can:

• Find out the name of the property being changed by looking at the PropertyName
argument.

• Obtain the old property value and save it

The property still has its old value, so you can use the standard syntax to access the value.

• Cancel the change by changing the value of the CancelChange argument to TRUE

PropertyChanged event

When a property has changed, PowerBuilder triggers the PropertyChanged event. In that
event's script, you can:

• Find out the name of the property being changed by looking at the PropertyName argument

Program Access Techniques

Page 332

• Obtain the new property value

The value has already changed, so you cannot cancel the change.

Using the PropertyName argument

Because the PropertyName argument is a string, you cannot use it in dot notation to get the
value of the property:

value = This.Object.PropertyName // Will not work

Instead, use CHOOSE CASE or IF statements for the property names that need special
handling.

For example, in the PropertyChanged event, this code checks for three specific properties
and gets their new value when they are the property that changed. The value is assigned to a
variable of the appropriate datatype:

integer li_index, li_minvalue
long ll_color

CHOOSE CASE Lower(PropertyName)
 CASE "value"
 li_index = ole_1.Object.Value
 CASE "minvalue"
 li_minvalue = ole_1.Object.MinValue
 CASE "backgroundcolor"
 ll_color = ole_1.Object.BackgroundColor
 CASE ELSE
 ... // Other processing
END CHOOSE

If a larger change occurred

In some cases the value of the PropertyName argument is an empty string (""). This means a
more general change has occurred -- for example, a change that affects several properties.

If notification is not supported

If the OLE server does not support property change notification, then the
PropertyRequestEdit and PropertyChanged events are never triggered, and scripts you
write for them will not run. Check your OLE server documentation to see if notification is
supported.

If notifications are not supported and your application needs to know about a new property
value, you might write your own function that checks the property periodically.

For more information about the PropertyRequestEdit and PropertyChanged events, see
Section 2.3.103, “PropertyRequestEdit” in PowerScript Reference and Section 2.3.102,
“PropertyChanged” in PowerScript Reference.

5.3.6.6 Setting the language for OLE objects and controls

When you write automation commands, you generally use commands that match the locale
for your computer. If your locale and your users -- locale will differ, you can specify the
language you have used for automation with the SetAutomationLocale function.

You can call SetAutomationLocale for OLE controls, custom controls, and OLEObjects, and
you can specify a different locale for each automation object in your application.

Program Access Techniques

Page 333

For example, if you are developing your application in Germany and will deploy it all over
Europe, you can specify the automation language is German. Use this syntax for an OLE
control called ole_1:

ole_1.Object.SetAutomationLocale(LanguageGerman!)

Use this syntax for an OLEObject called oleobj_report:

oleobj_report.SetAutomationlocale(LanguageGerman!)

The users of your application must have the German automation interface for the OLE server
application.

What languages do your users' computers support?

When your users install an OLE server application (particularly an OLE application
from Microsoft), they get an automation interface in their native language and in
English. It might not be appropriate for you to write automation commands in your
native language if your users have a different language.

For more information, see Section 2.4.712, “SetAutomationLocale” in PowerScript
Reference.

5.3.6.7 Low-level access to the OLE object

If you need low-level access to OLE through a C or C++ DLL that you call from
PowerBuilder, you can use these functions:

• GetNativePointer (for OLEControl and OLECustomControl)

• GetAutomationNativePointer (for OLEObject)

When you have finished, you must use these functions to free the pointer:

• ReleaseNativePointer (for OLEControl and OLECustomControl)

• ReleaseAutomationNativePointer (for OLEObject)

For more information, see Section 2.4.305, “GetNativePointer” in PowerScript
Reference, Section 2.4.207, “GetAutomationNativePointer” in PowerScript Reference,
Section 2.4.630, “ReleaseNativePointer” in PowerScript Reference, and Section 2.4.629,
“ReleaseAutomationNativePointer” in PowerScript Reference.

5.3.6.8 OLE objects in DataWindow objects

The preceding sections discuss the automation interface to OLE controls and OLE objects.
You can also use scripts to change settings for an OLE object embedded in a DataWindow
object, and you can address properties of the external OLE object.

This section describes how to use the Object property in dot notation to set DataWindow
properties and issue automation commands for OLE objects in DataWindow objects.

Naming the OLE object

Program Access Techniques

Page 334

To use dot notation for the OLE object, give the object a name. You specify the name on the
General page in the object's property sheet.

Setting properties

You set properties of the OLE container object just as you do for any object in the
DataWindow object. The Object property of the control is an interface to the objects within
the DataWindow object.

For example, this statement sets the Pointer property of the object ole_word:

dw_1.Object.ole_word.Pointer = "Cross!"

It is important to remember that the compiler does not check syntax after the Object property.
Incorrect property references cause runtime errors.

For more information about setting properties, handling errors, and the list of properties for
the OLE DWObject, see Section 3.2.10, “Properties for OLE Object controls in DataWindow
objects” in DataWindow Reference.

OLE objects and the Modify function

You cannot create an OLE object in a DataWindow object dynamically using the
CREATE keyword of the Modify function. The binary data for the OLE object is not
compatible with Modify syntax.

Functions and properties

There are four functions you can call for the OLE DWObject. They have the same effect as
for the OLE control. They are:

• Activate

• Copy

• DoVerb

• UpdateLinksDialog

To call the functions, you use the Object property of the DataWindow control, just as you do
for DataWindow object properties:

dw_1.Object.ole_word.Activate(InPlace!)

Four properties that apply to OLE controls in a window also apply to the OLE DWObject.

Table 5.15: Properties that apply to OLE controls and DWObject

Property datatype Description

ClassLongNameString (Read-only) The long name for the server application
associated with the OLE DWObject.

ClassShortNameString (Read-only) The short name for the server application
associated with the OLE DWObject.

LinkItem String (Read-only) The entire link name of the item to which the
object is linked.

Program Access Techniques

Page 335

Property datatype Description
For example, if the object is linked to C:\FILENAME.XLS!
A1:B2, then LinkItem would contain C:\FILENAME.XLS!
A1:B2.

ObjectData Blob If the object is embedded, the object itself is stored as a blob in
the ObjectData property.

If the object is linked, this property contains the link
information and the cached image (for display).

Automation

You can send commands to the OLE server using dot notation. The syntax involves two
Object properties:

• The Object property of the DataWindow control

Gives you access to DataWindow objects, including the OLE container DWObject

• The Object property of the OLE DWObject

Gives you access to the automation object

The syntax is:

dwcontrol.Object.oledwobject.Object.{ serverqualifiers. }serverinstruction

For example, this statement uses the WordBasic Insert function to add a report title to the
beginning of the table of data in the Word document:

dw_1.Object.ole_word.Object.application.wordbasic.&
 Insert("Report Title " + String(Today()))

5.3.6.8.1 OLE columns in an application

OLE columns in a DataWindow object enable you to store, retrieve, and modify blob data
in a database. To use an OLE column in an application, place a DataWindow control in a
window and associate it with the DataWindow object.

For users of SQL Server

If you are using a SQL Server database, you must turn off transaction processing
to use OLE. In the Transaction object used by the DataWindow control, set
AutoCommit to TRUE.

For how to create an OLE column in a DataWindow object, see Section 6.14.3, “Using OLE
columns in a DataWindow object” in Users Guide.

Activating an OLE server application

Users can interact with the blob exactly as you did in preview in the DataWindow painter:
they can double-click a blob to invoke the server application, then view and edit the blob.
You can also use the OLEActivate function in a script to invoke the server application.
Calling OLEActivate simulates double-clicking a specified blob.

The OLEActivate function has this syntax:

Program Access Techniques

Page 336

dwcontrol.OLEActivate (row, columnnameornumber, verb)

Specifying the verb

When using OLEActivate, you need to know the action to pass to the OLE server application.
(Windows calls these actions verbs.) Typically, you want to edit the document, which for
most servers means you specify 0 as the verb.

To obtain the verbs supported by a particular OLE server application, use the advanced
interface of the Windows Registry Editor utility (run REGEDT32 /V).

For information about Registry Editor, see the Windows online Help file REGEDT32.HLP.

Example

For example, you might want to use OLEActivate in a Clicked script for a button to allow
users to use OLE without their having to know they can double-click the blob's icon.

The following statement invokes the OLE server application for the OLE column in the
current row of the DataWindow control dw_1 (assuming that the second column in the
DataWindow object is an OLE column):

dw_1.OLEActivate(dw_1.GetRow(), 2, 0)

For more information

For more information about using OLE in a DataWindow object, see Section 6.14.3, “Using
OLE columns in a DataWindow object” in Users Guide.

5.3.7 OLE information in the Browser

The system stores information about the OLE server applications and OLE custom controls
installed on your computer in the registry.

PowerBuilder reads the registry and displays the registration information for all registered
OLE servers and custom controls.

To view the OLE information:

1. Click the Browser button on the PowerBar.

2. Click the OLE tab in the Browser.

There are three categories of OLE object, as shown in the following table.

Table 5.16: OLE object categories

OLE object
category

Description

Insertable
objects

OLE servers that can link or embed objects in OLE containers. OLE servers
that support insertable objects must have a visual component.

Custom
controls

ActiveX controls that can be included in an OLE container. ActiveX controls
can also be insertable objects. If so, they will appear on both lists.

Programmable
objects

OLE servers to which you can send automation instructions. A
programmable object might not have a visual aspect, which means it supports
only automation and cannot support insertable objects.

Program Access Techniques

Page 337

When you expand each of these categories, you see the individual OLE servers that are
installed. Each OLE server can also be expanded. The information provided depends on the
category.

Class information

All the categories provide class information about the OLE server. You see a list of registry
keys. Some of the keys are meaningful in their own right and some have values. The values,
or simply the presence or absence of keys, tell you how to find the OLE server and what it
supports.

The following table lists some typical keys and what they mean.

Table 5.17: OLE registry keys

Registry key Value

GUID The global unique identifier for the OLE server.

TypeLib - GUID The global unique identifier for the type library for an ActiveX control.

ProgID A string that identifies the OLE server or ActiveX control. It usually
includes a version number.

VersionIndependentProgIDA string that identifies the OLE server or ActiveX control, but does not
include a version number.

InprocServer32 The name of the file for the 32-bit version of an ActiveX control.

ToolboxBitmap32 The name of a bitmap file for the 32-bit ActiveX control that can be
used to represent the ActiveX control in toolbars or toolboxes of a
development environment.

DefaultIcon The name of an icon file or executable containing an icon to be used for
an insertable icon that is being displayed as an icon.

Version The version number of the OLE server or ActiveX control.

Insertable No value -- specifies that the entry is an OLE server that supports
insertable object.

Control No value -- specifies that the entry is an ActiveX control.

Verb No value -- specifies that the entry accepts verbs as commands.

In addition to registry information, the Browser displays the properties and methods of
ActiveX controls and programmable objects. To provide the information, PowerBuilder uses
the registry information to query the ActiveX control for its properties and methods. The
information includes arguments and datatypes.

Browser as script-writing tool

Take advantage of the Browser when writing scripts. You can find property and function
names and paste them into your scripts. The Browser provides the full syntax for accessing
that property.

To paste OLE information into a script:

1. Open the Browser.

Program Access Techniques

Page 338

2. Click the OLE tab.

3. Expand the list to find what you want. For example, find the ActiveX control you want
and expand the list further to find a property.

4. Highlight the property and select Copy from the pop-up menu.

5. Position the insertion point in the Script view and select Paste from the pop-up menu.

The Browser inserts syntax like this into your script:

OLECustomControl.Object.NeedlePosition

After you change OLECustomControl to the actual name of your control, your script
correctly accesses the NeedlePosition property.

What the Browser pastes into your script depends on what you have selected. If you select an
object (a level above its properties in the hierarchy), PowerBuilder pastes the object's ProgID.
You can use the ProgID in the ConnectToNewObject function.

5.3.8 Advanced ways to manipulate OLE objects

In addition to OLE objects in controls and objects for automation, PowerBuilder provides an
interface to the underpinnings of OLE data storage.

OLE data is stored in objects called streams, which live in objects called storages. Streams
and storages are analogous to the files and directories of a file system. By opening, reading,
writing, saving, and deleting streams and storages, you can create, combine, and delete your
OLE objects. PowerBuilder provides access to storages and streams with the OLEStorage and
OLEStream object types.

When you define OLE controls and OLEObject variables, you have full access to the
functionality of server applications and automation, which already provide you with much of
OLE's power. You might never need to use PowerBuilder's storage and stream objects unless
you want to construct complex combinations of stored data.

Storage files from other applications

This section discusses OLE storage files that a PowerBuilder application has built.
Other PowerBuilder applications will be able to open the objects in a storage file built
by PowerBuilder. Although Excel, Word, and other server applications store their
native data in OLE storages, these files have their own special formats, and it is not
advisable to open them directly as storage files. Instead, you should always insert
them in a control (InsertFile) or connect to them for automation (ConnectToObject).

5.3.8.1 Structure of an OLE storage

An OLE storage is a repository of OLE data. A storage is like the directory structure on a
disk. It can be an OLE object and can contain other OLE objects, each contained within the
storage, or within a substorage within the storage. The substorages can be separate OLE
objects -- unrelated pieces like the files in a directory -- or they can form a larger OLE object,
such as a document that includes pictures as shown in the following figure.

Figure: OLE storage structure

Program Access Techniques

Page 339

A storage or substorage that contains an OLE object has identifying information that tags it as
belonging to a particular server application. Below that level, the individual parts should be
manipulated only by that server application. You can open a storage that is a server's object to
extract an object within the storage, but you should not change the storage.

A storage that is an OLE object has presentation information for the object. OLE does not
need to start the server in order to display the object, because a rendering is part of the
storage.

A storage might not contain an OLE object -- it might exist simply to contain other storages.
In this case, you cannot open the storage in a control (because there would be no object to
insert).

5.3.8.2 Object types for storages and streams

PowerBuilder has two object types that are the equivalent of the storages and streams stored
in OLE files. They are:

• OLEStorage

• OLEStream

These objects are class user objects, like a Transaction or Message object. You declare a
variable, instantiate it, and open the storage. When you are through with the storage, you
close it and destroy the variable, releasing the OLE server and the memory allocated for the
variable.

Opening a storage associates an OLEStorage variable with a file on disk, which can be a
temporary file for the current session or an existing file that already contains an OLE object.
If the file does not exist, PowerBuilder creates it.

You can put OLE objects in a storage with the SaveAs function. You can establish a
connection between an OLE control in a window and a storage by calling the Open function
for the OLE control.

Program Access Techniques

Page 340

A stream is not an OLE object and cannot be opened in a control. However, streams allow
you to put your own information in a storage file. You can open a stream within a storage or
substorage and read and write data to the stream, just as you might to a file.

Performance tip

Storages provide an efficient means of displaying OLE data. When you insert a file
created by a server application into a control, OLE has to start the server application
to display the object. When you open an object in an OLE storage, there is no
overhead for starting the server -- OLE uses the stored presentation information to
display the object. There is no need to start the server if the user never activates the
object.

5.3.8.3 Opening and saving storages

PowerBuilder provides several functions for managing storages. The most important are
Open, Save, and SaveAs.

Using the Open function

When you want to access OLE data in a file, call the Open function. Depending on the
structure of the storage file, you might need to call Open more than once.

This code opens the root storage in the file into the control. For this syntax of Open, the
root storage must be an OLE object, rather than a container that only holds other storages.
(Always check the return code to see if an OLE function succeeded.)

result = ole_1.Open("MYFILE.OLE")

If you want to open a substorage in the file into the control, you have to call Open twice: once
to open the file into an OLEStorage variable, and a second time to open the substorage into
the control. stg_data is an OLEStorage variable that has been declared and instantiated using
CREATE:

result = stg_data.Open("MYFILE.OLE")
result = ole_1.Open(stg_data, "mysubstorage")

Using the Save function

If the user activates the object in the control and edits it, then the server saves changes to the
data in memory and sends a DataChange event to your PowerBuilder application. Then your
application needs to call Save to make the changes in the storage file:

result = ole_1.Save()
IF result = 0 THEN result = stg_data.Save()

Using the SaveAs function

You can save an object in a control to another storage variable or file with the SaveAs
function. The following code opens a storage file into a control, then opens another storage
file, opens a substorage within that file, and saves the original object in the control as a
substorage nested at a third level:

OLEStorage stg_data, stg_subdata
stg_data = CREATE OLEStorage
stg_subdata = CREATE OLEStorage
ole_1.Open("FILE_A.OLE")
stg_data.Open("FILE_B.OLE")

Program Access Techniques

Page 341

stg_subdata.Open("subdata", stgReadWrite!, &
 stgExclusive!, stg_data)
ole_1.SaveAs(stg_subdata, "subsubdata")

The diagram illustrates how to open the nested storages so that you can perform the SaveAs.
If any of the files or storages do not exist, Open and SaveAs create them. Note that if you call
Save for the control before you call SaveAs, the control's object is saved in FILE_A. After
calling SaveAs, subsequent calls to Save save the object in subsubdata in FILE_B.

Figure: Nested OLE storages

The following example shows a simpler way to create a sublevel without creating a storage at
the third level. You do not need to nest storages at the third level, nor do you need to open the
substorage to save to it:

OLEStorage stg_data, stg_subdata
stg_data = CREATE OLEStorage
stg_subdata = CREATE OLEStorage
ole_1.Open("FILE_A.OLE")
stg_data.Open("FILE_B.OLE")
ole_1.SaveAs(stg_data, "subdata")

5.3.8.3.1 Getting information about storage members

When a storage is open, you can use one of the Member functions to get information about
the substorages and streams in that storage and change them.

Table 5.18: OLE storage Member functions

Function Result

MemberExistsChecks to see if the specified member exists in a storage.

Members can be either storages or streams. Names of members must be
unique -- you cannot have a storage and a stream with the same name. A
member can exist but be empty.

MemberDeleteDeletes a member from a storage.

Program Access Techniques

Page 342

Function Result

MemberRenameRenames a member in a storage.

This code checks whether the storage subdata exists in stg_data before it opens it. (The code
assumes that stg_data and stg_subdata have been declared and instantiated.)

boolean lb_exists
result = stg_data.MemberExists("subdata", lb_exists)
IF result = 0 AND lb_exists THEN
 result = stg_subdata.Open(stg_data, "subdata")
END IF

To use MemberExists with the storage member IOle10Native, use the following construction:

ole_storage.memberexists(char(1) + 'Ole10Native', &
 lb_boolean)

The char(1) is required because the "I" in IOle10Native is not an I, as you see if you look at
the storage with a utility such as Microsoft's DocFile Viewer.

You need to use a similar construction to open the stream. For example:

ole_stream.open(ole_storage, char(1) + 'Ole10Native', &
 StgReadWrite!, StgExclusive!)

5.3.8.3.2 Example: building a storage

Suppose you have several drawings of products and you want to display the appropriate
image for each product record in a DataWindow object. The database record has an identifier
for its drawing. In an application, you could call InsertFile using the identifier as the file
name. However, calling the server application to display the picture is relatively slow.

Instead you could create a storage file that holds all the drawings, as shown in the diagram.
Your application could open the appropriate substorage when you want to display an image.

Figure: OLE storage file

Program Access Techniques

Page 343

The advantage of using a storage file like this one (as opposed to inserting files from the
server application into the control) is both speed and the convenience of having all the
pictures in a single file. Opening the pictures from a storage file is fast, because a single file
is open and the server application does not need to start up to display each picture.

OLE objects in the storage

Although this example illustrates a storage file that holds drawings only, the storages
in a file do not have to belong to the same server application. Your storage file can
include objects from any OLE server application, according to your application's
needs.

This example is a utility application for building the storage file. The utility application is a
single window that includes a DataWindow object and an OLE control.

The DataWindow object, called dw_prodid, has a single column of product identifiers. You
should set up the database table so that the identifiers correspond to the file names of the
product drawings. The OLE control, called ole_product, displays the drawings.

List of scripts for the example

The example has three main scripts:

• The window's Open event script instantiates the storage variable, opens the storage file,
and retrieves data for the DataWindow object. (Note that the application's Open event
connects to the database.)

• The RowFocusChanged event of the DataWindow object opens the drawing and saves it in
the storage file.

• The window's Close event script saves the storage file and destroys the variable.

Add controls to the window

First, add the dw_prodid and ole_product controls to the window.

Application Open event script

In the application's Open event, connect to the database and open the window.

Instance variable

Declare an OLEStorage variable as an instance variable of the window:

OLEStorage stg_prod_pic

Window Open event script

The following code in the window's Open event instantiates an OLEStorage variable and
opens the file PICTURES.OLE in that variable:

integer result
stg_prod_pic = CREATE OLEStorage
result = stg_prod_pic.Open("PICTURES.OLE")
dw_prod.SetTransObject(SQLCA)
dw_prod.Retrieve()

Program Access Techniques

Page 344

Retrieve triggers the RowFocusChanged event

It is important that the code for creating the storage variable and opening the storage
file comes before Retrieve. Retrieve triggers the RowFocusChanged event, and the
RowFocusChanged event refers to the OLEStorage variable, so the storage must be
open before you call Retrieve.

RowFocusChanged event script

The InsertFile function displays the drawing in the OLE control. This code in the
RowFocusChanged event gets an identifier from the prod_id column in a DataWindow object
and uses that to build the drawing's file name before calling InsertFile. The code then saves
the displayed drawing in the storage:

integer result
string prodid
//Get the product identifier from the DataWindow.
prodid = this.Object.prod_id[currentrow]

// Use the id to build the file name. Insert the
// file's object in the control.
result = ole_product.InsertFile(&
 GetCurrentDirectory() + "\" + prodid + ".gif")

// Save the OLE object to the storage. Use the
// same identifier to name the storage.
result = ole_product.SaveAs(stg_prod_pic, prodid)

Close event script

This code in the window's Close event saves the storage, releases the OLE storage from the
server, and releases the memory used by the OLEStorage variable:

integer result
result = stg_prod_pic.Save()
DESTROY stg_prod_pic

Check the return values

Be sure to check the return values when calling OLE functions. Otherwise, your
application will not know if the operation succeeded. The sample code returns if a
function fails, but you can display a diagnostic message instead.

Running the utility application

After you have set up the database table with the identifiers of the product pictures and
created a drawing for each product identifier, run the application. As you scroll through the
DataWindow object, the application opens each file and saves the OLE object in the storage.

Using the storage file

To use the images in an application, you can include the prod_id column in a DataWindow
object and use the identifier to open the storage within the PICTURES.OLE file. The
following code displays the drawing for the current row in the OLE control ole_product
(typically, this code would be divided between several events, as it was in the sample utility
application above):

OLEStorage stg_prod_pic
//Instantiate the storage variable and open the file
stg_prod_pic = CREATE OLEStorage

Program Access Techniques

Page 345

result = stg_prod_pic.Open("PICTURES.OLE")

// Get the storage name from the DataWindow
// This assumes it has been added to the DataWindow's
// rowfocuschanging event
prodid = this.Object.prod_id[newrow]

//Open the picture into the control
result = ole_product.Open(stg_prod_pic, prodid)

The application would also include code to close the open storages and destroy the storage
variable.

5.3.8.4 Opening streams

Streams contain the raw data of an OLE object. You would not want to alter a stream created
by a server application. However, you can add your own streams to storage files. These
streams can store information about the storages. You can write streams that provide labels
for each storage or write a stream that lists the members of the storage.

To access a stream in an OLE storage file, you define a stream variable and instantiate it.
Then you open a stream from a storage that has already been opened. Opening a stream
establishes a connection between the stream variable and the stream data within a storage.

The following code declares and creates OLEStorage and OLEStream variables, opens the
storage, and then opens the stream:

integer result
OLEStorage stg_pic
OLEStream stm_pic_label
/***
Allocate memory for the storage and stream variables
***/
stg_pic = CREATE OLEStorage
stm_pic_label = CREATE OLEStream
/***
Open the storage and check the return value
***/
result = stg_prod_pic.Open("picfile.ole")
IF result <> 0 THEN RETURN
/***
Open the stream and check the return value
***/
result = stm_pic_label.Open(stg_prod_pic, &
 "pic_label", stgReadWrite!)
IF result <> 0 THEN RETURN

PowerBuilder has several stream functions for opening and closing a stream and for reading
and writing information to and from the stream.

Table 5.19: Stream functions

Function Result

Open Opens a stream into the specified OLEStream variable. You must have
already opened the storage that contains the stream.

Length Obtains the length of the stream in bytes.

Seek Positions the read/write pointer within the stream. The next read or write
operation takes place at the pointer.

Program Access Techniques

Page 346

Function Result

Read Reads data from the stream beginning at the read/write pointer.

Write Writes data to the stream beginning at the read/write pointer.

If the pointer is not at the end, Write overwrites existing data. If the data
being written is longer than the current length of the stream, the stream's
length is extended.

Close Closes the stream, breaking the connection between it and the OLEStream
variable.

Example: writing and reading streams

This example displays a picture of a product in the OLE control ole_product when the
DataWindow object dw_product displays that product's inventory data. It uses the file
constructed with the utility application described in the earlier example (see Example:
building a storage). The pictures are stored in an OLE storage file, and the name of each
picture's storage is also the product identifier in a database table. This example adds label
information for each picture, stored in streams whose names are the product ID plus the
suffix _lbl.

The following figure shows the structure of the file.

Figure: OLE storage file structure

Program Access Techniques

Page 347

The example has three scripts:

• The window's Open event script opens the storage file and retrieves data for the
DataWindow object. (Note that the application's Open event connects to the database.)

• The RowFocusChanged event of the DataWindow object displays the picture. It also opens
a stream with a label for the picture and displays that label in a StaticText. The name of the
stream is the product identifier plus the suffix _lbl.

If the label is empty (its length is zero), the script writes a label. To keep things simple,
the data being written is the same as the stream name. (Of course, you would probably
write the labels when you build the file and read them when you display it. For the sake of
illustration, reading and writing the stream are both shown here.)

• The window's Close event script saves the storage file and destroys the variable.

The OLEStorage variable stg_prod_pic is an instance variable of the window:

OLEStorage stg_prod_pic

The script for the window's Open event is:

integer result
stg_prod_pic = CREATE OLEStorage
result = stg_prod_pic.Open(is_ole_file)

The script for the RowFocusChanged event of dw_prod is:

integer result
string prodid, labelid, ls_data
long ll_stmlength
OLEStream stm_pic_label
/***
Create the OLEStream variable.
***/
stm_pic_label = CREATE OLEStream
/***
Get the product id from the DataWindow.
***/
this.Object.prod_id[currentrow]
/***
Open the picture in the storage file into the
control. The name of the storage is the product id.
***/
result = ole_prod.Open(stg_prod_pic, prodid)
IF result <> 0 THEN RETURN
/***
Construct the name of the product label stream and
open the stream.
***/

labelid = prodid + "_lbl"
result = stm_pic_label.Open(stg_prod_pic, &
 labelid, stgReadWrite!)
IF result <> 0 THEN RETURN
/***
Get the length of the stream. If there is data
(length > 0), read it. If not, write a label.
***/
result = stm_pic_label.Length(ll_stmlength)
IF ll_stmlength > 0 THEN

Program Access Techniques

Page 348

 result = stm_pic_label.Read(ls_data)
 IF result <> 0 THEN RETURN
 // Display the stream data in st_label
 st_label.Text = ls_data
ELSE
 result = stm_pic_label.Write(labelid)
 IF result < 0 THEN RETURN
 // Display the written data in st_label
 st_label.Text = labelid
END IF
/**
Close the stream and release the variable's memory.
***/
result = stm_pic_label.Close()
DESTROY stm_pic_label

The script for the window's Close event is:

integer result
result = stg_prod_pic.Save()
DESTROY stg_prod_pic

5.3.8.5 Strategies for using storages

Storing data in a storage is not like storing data in a database. A storage file does not enforce
any particular data organization; you can organize each storage any way you want. You can
design a hierarchical system with nested storages, or you can simply put several substorages
at the root level of a storage file to keep them together for easy deployment and backup. The
storages in a single file can be from the different OLE server applications.

If your DBMS does not support a blob datatype or if your database administrator does not
want large blob objects in a database log, you can use storages as an alternative way of
storing OLE data.

It is up to you to keep track of the structure of a storage. You can write a stream at the root
level that lists the member names of the storages and streams in a storage file. You can also
write streams that contain labels or database keys as a way of documenting the storage.

5.4 Building a Mail-Enabled Application
About this chapter

This chapter describes how to use the messaging application program interface (MAPI) with
PowerBuilder applications to send and receive electronic mail.

5.4.1 About MAPI

PowerBuilder supports MAPI (messaging application program interface), so you can enable
your applications to send and receive messages using any MAPI-compliant electronic mail
system.

For example, your PowerBuilder applications can:

• Send mail with the results of an analysis performed in the application

• Send mail when a particular action is taken by the user

• Send mail requesting information

Program Access Techniques

Page 349

• Receive mail containing information needed by the application's user

Both Extended MAPI and Simple MAPI are supported, with the exactly same set of mail
objects, properties, functions and events, except for very few difference. By default,
Extended MAPI is used, but if the Windows operating system being used does not support
Extended MAPI, PowerBuilder will use the legacy Simple MAPI.

To use Simple MAPI in PowerBuilder 2017 and later:

In the PowerBuilder IDE, add the following to the [PB] section of your pb.ini that PB uses
for initialization.

[PB]
UseSimpleMAPI=yes

Default location of pb.ini is C:\Users\[username]\AppData\Local\Appeon\PowerBuilder
[version].

For a deployed application, create a text file named pb.ini with the text above and deploy it
with your application executable.

64-bit PowerBuilder mail applications can only work with 64-bit Windows MAPI. 32-bit
PowerBuilder applications can only work with 32-bit Windows MAPI.

How MAPI support is implemented

To support MAPI, PowerBuilder provides the items listed in the following table.

Table 5.20: PowerBuilder MAPI support

Item Name

A mail-related system object MailSession

Mail-related structures MailFileDescription

MailMessage

MailRecipient

Object-level functions for the MailSession
object

MailAddress

MailDeleteMessage

MailGetMessages

MailHandle

MailLogoff

MailLogon

MailReadMessage

MailRecipientDetails

MailResolveRecipient

MailSaveMessage

MailSend

Enumerated datatypes MailFileType

MailLogonOption

Program Access Techniques

Page 350

Item Name
MailReadOption

MailRecipientType

MailReturnCode

5.4.2 Using MAPI

To use MAPI, you create a MailSession object, then use the MailSession functions to manage
it.

For example:

MailSession PBmail
PBmail = CREATE MailSession

PBmail.MailLogon(...)
... // Manage the session: send messages,
... // receive messages, and so on.
PBmail.MailLogoff()

DESTROY PBmail

You can use the Browser to get details about the attributes and functions of the MailSession
system object, the attributes of the mail-related structures, and the valid values of the mail-
related enumerated datatypes.

For information about using the Browser, see Section 4.3.4, “Browsing the class hierarchy”
in Users Guide. For complete information about the MailSession object functions, see
Section 2.56, “mailSession object” in Objects and Controls. For complete information about
MAPI, see the documentation for your MAPI-compliant mail application.

5.5 Using External Functions and Other Processing Extensions

About this chapter

This chapter describes how to use external functions and other processing extensions in
PowerBuilder.

5.5.1 Using external functions

External functions are functions that are written in languages other than PowerScript and
stored in dynamic libraries. External functions are stored in dynamic link libraries (DLLs).

You can use external functions written in any language that supports the standard calling
sequence for 32-bit platforms.

If you are calling functions in libraries that you have written yourself, remember that you
need to export the functions. Depending on your compiler, you can do this in the function
prototype or in a linker definition (DEF) file.

Use _stdcall convention

C and C++ compilers typically support several calling conventions, including _cdecl (the
default calling convention for C programs), _stdcall (the standard convention for Windows
API calls), _fastcall, and thiscall. PowerBuilder, like many other Windows development

Program Access Techniques

Page 351

tools, requires external functions to be exported using the WINAPI (_stdcall) format.
Attempting to use a different calling convention can cause an application crash.

When you create your own C or C++ DLLs containing functions to be used in PowerBuilder,
make sure that they use the standard convention for Windows API calls. For example, if you
are using a DEF file to export function definitions, you can declare the function like this:

LONG WINAPI myFunc()
{
...
};

Using PBNI

You can also call external functions in PowerBuilder extensions. PowerBuilder
extensions are built using the PowerBuilder Native Interface (PBNI). For more
information about building PowerBuilder extensions, see the PowerBuilder Native
Interface Programmers Guide and Reference. For more information about using
PowerBuilder extensions, see Part I, “PowerBuilder Extension Reference”.

5.5.1.1 Declaring external functions

Before you can use an external function in a script, you must declare it.

Two types

You can declare two types of external functions:

• Global external functions, which are available anywhere in the application

• Local external functions, which are defined for a particular type of window, menu, or user
object

These functions are part of the object's definition and can always be used in scripts for the
object itself. You can also choose to make these functions accessible to other scripts as
well.

Datatypes for external function arguments

When you declare an external function, the datatypes of the arguments must correspond with
the datatypes as declared in the function's source definition.

For a comparison of datatypes in external functions and datatypes in PowerBuilder, see
Section 1.3.4, “Declaring external functions” in PowerScript Reference.

To declare an external function:

1. If you are declaring a local external function, open the object for which you want to
declare it.

2. In the Script view, select Declare in the first drop-down list and either Global External
Functions or Local External Functions from the second list.

3. Enter the function declaration in the Script view.

Program Access Techniques

Page 352

For the syntax to use, see Section 1.3.4, “Declaring external functions” in PowerScript
Reference or the examples below.

4. Save the object.

PowerBuilder compiles the declaration. If there are syntax errors, an error window
opens, and you must correct the errors before PowerBuilder can save the declaration.

Modifying existing functions

You can also modify existing external function declarations in the Script view.

5.5.1.2 Sample declarations

Suppose you have created a C dynamic library, SIMPLE.DLL, that contains a function called
SimpleFunc that accepts two parameters: a character string and a structure. The following
statement declares the function in PowerBuilder, passing the arguments by reference:

FUNCTION int SimpleFunc(REF string lastname, &
 REF my_str pbstr) LIBRARY "simple.dll"

By default, PowerBuilder handles string arguments and return values as if they have Unicode
encoding. If SimpleFunc passes ANSI strings as arguments, you must use this syntax to
declare it:

FUNCTION int SimpleFunc(REF string lastname, &
 REF my_str pbstr) LIBRARY "simple.dll" &
 ALIAS FOR "SimpleFunc;ansi"

Declaring Windows API functions

The Windows API includes over a thousand functions that you can call from PowerBuilder.
The following examples show sample declarations for functions in the 32-bit Windows API
libraries KERNEL32.DLL, GDI32.DLL, and USER32.DLL.

Windows API calls

Some 32-bit function names end with A (for ANSI) or W (for wide). Use wide
function names in PowerBuilder.

For a complete list of Windows API functions, see the Microsoft Windows SDK
documentation.

The following statements declare a function that gets the handle of any window that is called
by name, and a function that releases the open object handle:

FUNCTION longptr FindWindowW(ulong classname, &
 string windowname) LIBRARY "User32.dll"
FUNCTION boolean CloseHandle(longptr w_handle) &
 LIBRARY "Kernel32.dll"

The following statement declares a function that draws a pie chart based on the coordinates
received:

FUNCTION boolean Pie(longptr hwnd,long x1,long y1, &
 long x2,long y2,long x3,long y3,long x4, &

Program Access Techniques

Page 353

 long y4) LIBRARY "Gdi32.dll"

The following statement declares an external C function named IsZoomed:

FUNCTION boolean IsZoomed(longptr handle) &
 LIBRARY "User32.DLL"

A script that uses IsZoomed is included as an example in Using utility functions to manage
information.

For more information about these functions, see the Microsoft documentation in the MSDN
Library at http://msdn.microsoft.com/en-us/library/ms674884(VS.85).aspx.

5.5.1.3 Passing arguments

In PowerBuilder, you can define external functions that expect arguments to be passed
by reference or by value. When you pass an argument by reference, the external function
receives a pointer to the argument and can change the contents of the argument and return
the changed contents to PowerBuilder. When you pass the argument by value, the external
function receives a copy of the argument and can change the contents of the copy of the
argument. The changes affect only the local copy; the contents of the original argument are
unchanged.

The syntax for an argument that is passed by reference is:

REF datatype arg

The syntax for an argument that is passed by value is:

datatype arg

5.5.1.3.1 Passing numeric datatypes

The following statement declares the external function TEMP in PowerBuilder. This function
returns an integer and expects an integer argument to be passed by reference:

FUNCTION int TEMP(ref int degree) LIBRARY "LibName.DLL"

The same statement in C would be:

int _stdcall TEMP(int * degree)

Since the argument is passed by reference, the function can change the contents of the
argument, and changes made to the argument within the function will directly affect the value
of the original variable in PowerBuilder. For example, the C statement *degree = 75 would
change the argument named degree to 75 and return 75 to PowerBuilder.

The following statement declares the external function TEMP2 in PowerBuilder. This
function returns an Integer and expects an Integer argument to be passed by value:

FUNCTION int TEMP2(int degree) LIBRARY "LibName.DLL"

The same statement in C would be:

int _stdcall TEMP2(int degree)

Since the argument is passed by value, the function can change the contents of the argument.
All changes are made to the local copy of the argument; the variable in PowerBuilder is not
affected.

http://msdn.microsoft.com/en-us/library/ms674884(VS.85).aspx

Program Access Techniques

Page 354

5.5.1.3.2 Passing strings

PowerBuilder assumes all string arguments and returned values use Unicode encoding. If
a function uses strings with ANSI encoding, you need to add an ALIAS FOR clause to the
function declaration and add a semicolon followed by the ansi keyword. For example:

FUNCTION string NAME(string CODE) LIBRARY "LibName.DLL" ALIAS FOR "NAME;ansi"

Passing by value

The following statement declares the external C function NAME in PowerBuilder. This
function expects a String argument with Unicode encoding to be passed by value:

FUNCTION string NAME(string CODE) LIBRARY "LibName.DLL"

The same statement in C would point to a buffer containing the String:

char * _stdcall NAME(char * CODE)

Since the String is passed by value, the C function can change the contents of its local copy
of CODE, but the original variable in PowerBuilder is not affected.

Passing by reference

PowerBuilder has access only to its own memory. Therefore, an external function cannot
return to PowerBuilder a pointer to a string. (It cannot return a memory address.)

When you pass a string to an external function, either by value or by reference, PowerBuilder
passes a pointer to the string. If you pass by value, any changes the function makes to the
string are not accessible to PowerBuilder. If you pass by reference, they are.

The following statement declares the external C function NAME2 in PowerBuilder. This
function returns a String and expects a String argument to be passed by reference:

FUNCTION string NAME2(ref string CODE) &
 LIBRARY "LibName.DLL"

In C, the statement would be the same as when the argument is passed by value, shown
above:

char * _stdcall NAME2(char * CODE)

The String argument is passed by reference, and the C function can change the contents of the
argument and the original variable in PowerBuilder. For example, Strcpy(CODE,STUMP)
would change the contents of CODE to STUMP and change the variable in the calling
PowerBuilder script to the contents of variable STUMP.

If the function NAME2 in the preceding example takes a user ID and replaces it with the
user's name, the PowerScript string variable CODE must be long enough to hold the returned
value. To ensure that this is true, declare the String and then use the Space function to fill the
String with blanks equal to the maximum number of characters you expect the function to
return.

If the maximum number of characters allowed for a user's name is 40 and the ID is always
five characters, you would fill the String CODE with 35 blanks before calling the external
function:

String CODE
CODE = ID + Space(35)

Program Access Techniques

Page 355

. . .
NAME2(CODE)

For information about the Space function, see Section 2.4.815, “Space” in PowerScript
Reference.

5.5.1.3.3 Passing characters

Passing chars to WinAPI

WinApi characters can have ANSI or Unicode values, while PowerBuilder characters have
only Unicode values. ANSI Char values passed to and from WinAPI calls are automatically
converted by PowerBuilder. Therefore, when defining character array length, you must
always use the PowerBuilder character length (two bytes per character).

Passing chars to C functions

Char variables passed to external C functions are converted to the C char type before passing.
Arrays of Char variables are converted to the equivalent C array of char variables.

An array of Char variables embedded in a structure produces an embedded array in the C
structure. This is different from an embedded String, which results in an embedded pointer to
a string in the C structure.

Recommendation

Whenever possible, pass String variables back to PowerBuilder as a return value from
the function.

5.5.2 Using utility functions to manage information

The utility functions provide a way to obtain and pass Windows information to external
functions and can be used as arguments in the PowerScript Send function. The following
table describes the PowerScript utility functions.

Five utility functions

Table 5.21: Utility functions

Function Return
value

Purpose

Handle UnsignedInt Returns the handle to a specified object.

IntHigh UnsignedInt Returns the high word of the specified Long value.

IntHigh is used to decode Windows values returned by external
functions or the LongParm attribute of the Message object.

IntLow UnsignedInt Returns the low word of the specified Long value.

IntLow is used to decode Windows values returned by external
functions or the LongParm attribute of the Message object.

Long Long Combines the low word and high word into a Long.

The Long function is used to pass values to external functions.

LongLong LongLong Combines the low word and high word into a LongLong.

Program Access Techniques

Page 356

Function Return
value

Purpose

The LongLong function is used to pass values to external
functions.

Examples

This script uses the external function IsZoomed to test whether the current window is
maximized. It uses the Handle function to pass a window handle to IsZoomed. It then
displays the result in a SingleLineEdit named sle_output:

boolean Maxed
Maxed = IsZoomed(Handle(parent))
if Maxed then sle_output.Text = "Is maxed"
if not Maxed then sle_output.Text = "Is normal"

This script passes the handle of a window object to the external function FlashWindow to
change the title bar of a window to inactive and then active:

// Declare loop counter and handle to window object
int nLoop
uint hWnd
// Get the handle to the PowerBuilder window.
hWnd = handle(This)
// Make the title bar inactive.
FlashWindow (hWnd, TRUE)
//Wait ...
For nLoop = 1 to 300
Next
// Return the title bar to its active color.
FlashWindow (hWnd, FALSE)

5.5.3 Sending Windows messages

To send Windows messages to a window that you created in PowerBuilder or to an external
window (such as a window you created using an external function), use the Post or Send
function. To trigger a PowerBuilder event, use the EVENT syntax or the TriggerEvent or
PostEvent function.

Using Post and Send

You usually use the Post and Send functions to trigger Windows events that are not
PowerBuilder-defined events. You can include these functions in a script for the window in
which the event will be triggered or in any script in the application.

Post is asynchronous: the message is posted to the message queue for the window or control.
Send is synchronous: the window or control receives the message immediately.

As of PowerBuilder 6.0, all events posted by PowerBuilder are processed by a separate
queue from the Windows system queue. PowerBuilder posted messages are processed before
Windows posted messages.

Obtaining the window's handle

To obtain the handle of the window, use the Handle function. To combine two
integers to form the Long value of the message, use the Long function. Handle and
Long are utility functions, which are discussed later in this chapter.

Program Access Techniques

Page 357

Triggering PowerBuilder events

To trigger a PowerBuilder event, you can use the techniques listed in the following table.

Table 5.22: Triggering PowerBuilder events

Technique Description

TriggerEvent
function

A synchronous function that triggers the event immediately in the
window or control

PostEvent function An asynchronous function: the event is posted to the event queue for
the window or control

Event call syntax A method of calling events directly for a control using dot notation

All three methods bypass the messaging queue and are easier to code than the Send and Post
functions.

Example

All three statements shown below click the CommandButton cb_OK and are in scripts for the
window that contains cb_OK.

The Send function uses the Handle utility function to obtain the handle of the window
that contains cb_OK, then uses the Long function to combine the handle of cb_OK with 0
(BN_CLICK) to form a Long that identifies the object and the event:

Send(Handle(Parent),273,0,Long(Handle(cb_OK),0))
cb_OK.TriggerEvent(Clicked!)
cb_OK.EVENT Clicked()

The TriggerEvent function identifies the object in which the event will be triggered and then
uses the enumerated datatype Clicked! to specify the clicked event.

The dot notation uses the EVENT keyword to trigger the Clicked event. TRIGGER is the
default when you call an event. If you were posting the clicked event, you would use the
POST keyword:

Cb_OK.EVENT POST Clicked()

5.5.4 The Message object

The Message object is a predefined PowerBuilder global object (like the default Transaction
object SQLCA and the Error object) that is used in scripts to process Microsoft Windows
events that are not PowerBuilder-defined events.

When a Microsoft Windows event occurs that is not a PowerBuilder-defined event,
PowerBuilder populates the Message object with information about the event.

Other uses of the Message object

The Message object is also used:

• To communicate parameters between windows when you open and close them

For more information, see the descriptions of OpenWithParm, OpenSheetWithParm,
and CloseWithReturn in Section 2.4.554, “OpenWithParm” in PowerScript Reference,
Section 2.4.545, “OpenSheetWithParm” in PowerScript Reference, and Section 2.4.81,
“CloseWithReturn” in PowerScript Reference.

Program Access Techniques

Page 358

• To pass information to an event if optional parameters were used in TriggerEvent or
PostEvent

For more information, see Section 2.4.857, “TriggerEvent” in PowerScript Reference and
Section 2.4.582, “PostEvent” in PowerScript Reference.

Customizing the Message object

You can customize the global Message object used in your application by defining a standard
class user object inherited from the built-in Message object. In the user object, you can add
additional properties (instance variables) and functions. You then populate the user-defined
properties and call the functions as needed in your application.

For more information about defining standard class user objects, see Section 4.7.3.3,
“Building a standard class user object” in Users Guide.

5.5.4.1 Message object properties

The first four properties of the Message object correspond to the first four properties of the
Microsoft Windows message structure.

Table 5.23: Message object properties

Property Datatype Use

Handle Integer The handle of the window or control.

Number Integer The number that identifies the event (this number comes from
Windows).

WordParm UnsignedIntThe word parameter for the event (this parameter comes from
Windows). The parameter's value and meaning are determined by
the event.

LongParm Long The long parameter for the event (this number comes from
Windows). The parameter's value and meaning are determined by
the event.

DoubleParmDouble A numeric or numeric variable.

StringParm String A string or string variable.

PowerObjectParmPowerObjectAny PowerBuilder object type including structures.

Processed Boolean A boolean value set in the script for the user-defined event:

• TRUE -- The script processed the event. Do not call the default
window Proc (DefWindowProc) after the event has been
processed.

• FALSE -- (Default) Call DefWindowProc after the event has
been processed.

ReturnValueLong The value you want returned to Windows when Message.Processed
is TRUE.

When Message.Processed is FALSE, this attribute is ignored.

Use the values in the Message object in the event script that caused the Message object
to be populated. For example, suppose the FileExists event contains the following script.

Program Access Techniques

Page 359

OpenWithParm displays a response window that asks the user if it is OK to overwrite the file.
The return value from FileExists determines whether the file is saved:

OpenWithParm(w_question, &
 "The specified file already exists. " + &
 "Do you want to overwrite it?")
IF Message.StringParm = "Yes" THEN
 RETURN 0 // File is saved
ELSE
 RETURN -1 // Saving is canceled
END IF

For information on Microsoft message numbers and parameters, see the Microsoft Software
Developer's Kit (SDK) documentation.

5.5.5 Context information

The PowerBuilder context feature allows applications to access certain host (non-
PowerBuilder) services. This is a PowerBuilder implementation of functionality similar to the
COM QueryInterface. PowerBuilder provides access to the following host services:

• Context information service

• Context keyword service

• CORBACurrent service (obsolete)

• Error logging service

• Internet service

• Transaction server service

PowerBuilder creates service objects appropriate for the current execution context (native
PowerBuilder or transaction server). This allows your application to take full advantage of
the execution environment.

The context feature uses seven PowerBuilder service objects: ContextInformation,
ContextKeyword, CORBACurrent, ErrorLogging, Inet, SSLServiceProvider, and
TransactionServer; it also uses the InternetResult object. (The context feature is sometimes
called the Context object, but it is not a PowerBuilder system object.)

For more information about these objects, see Part I, “Objects and Controls” or Section 4.3.4,
“Browsing the class hierarchy” in Users Guide.

Enabling a service

Before you use a service, you instantiate it by calling the GetContextService function. When
you call this function, PowerBuilder returns a reference to the instantiated service. Use this
reference in dot notation when calling the service's functions.

To enable a service:

1. Establish an instance variable of the appropriate type:

ContextInformation icxinfo_base
ContextKeyword icxk_base

Program Access Techniques

Page 360

CORBACurrent corbcurr_base
ErrorLogging erl_base
Inet iinet_base
SSLServiceProvider sslsp_base
TransactionServer ts_base

2. Instantiate the instance variable by calling the GetContextService function:

this.GetContextService("ContextInformation", &
 icxinfo_base)
this.GetContextService("ContextKeyword", icxk_base)
// Use Keyword instead of ContextKeyword
this.GetContextService("Keyword", icxk_base)
this.GetContextService("CORBACurrent", &
 corbcurr_base)
this.GetContextService("ErrorLogging", erl_base)
this.GetContextService("Internet", iinet_base)
this.GetContextService("SSLServiceProvider", &
 sslsp_base)
this.GetContextService("TransactionServer",ts_base)

Using a CREATE statement

You can instantiate a service object with a PowerScript CREATE statement. However,
this always creates an object for the default context (native PowerBuilder execution
environment), regardless of where the application is running.

5.5.5.1 Context information service

You use the context information service to obtain information about an application's
execution context. The service provides current version information, as well as whether the
application is running in the PowerBuilder execution environment.

Accessing context information

Using the context information service, you can access the information in the following table.

Table 5.24: Context information

Item Use this function Comment

Full context name GetName Value returned depends on
the context:

• Default: PowerBuilder
Runtime

Abbreviated context name GetShortName Value returned depends on
the context:

• Default: PBRUN

Company name GetCompanyName Returns Appeon.

Version GetVersionName Returns the full version
number (for example,
2019.0.1)

Major version GetMajorVersion Returns the major version
number (for example, 2019)

Program Access Techniques

Page 361

Item Use this function Comment

Minor version GetMinorVersion Returns the minor version
number (for example, 0)

Fix version GetFixesVersion Returns the fix version
number (for example, 1)

Using the ClassName function for context information

You can also use the ClassName function to determine the context of the object.

You can use this information to verify that the context supports the current version. For
example, if your application requires features or fixes from Version 2019.0.1, you can use the
context information service to check the version in the current execution context.

To access context information:

1. Declare an instance or global variable of type ContextInformation:

ContextInformation icxinfo_base

2. Create the context information service by calling the GetContextService function:

this.GetContextService("ContextInformation", &
 icxinfo_base)

3. Call context information service functions as necessary.

This example calls the GetShortName function to determine the current context and the
GetVersionName function to determine the current version:

String ls_name
String ls_version
Constant String ls_currver = "12.5.0.1"
icxinfo_base.GetShortName(ls_name)
IF ls_name <> "PBRun" THEN
 cb_close.visible = FALSE
END IF
icxinfo_base.GetVersionName(ls_version)
IF ls_version <> ls_currver THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
END IF

5.5.5.2 Context keyword service

Use the context keyword service to access environment information for the current context.
In the default environment, this service returns host workstation environment variables.

Accessing environment variables

When running in the PowerBuilder execution environment (the default context), you use this
service to return environment variables.

To access environment variables:

1. Declare an instance or global variable of type ContextKeyword. Also declare an
unbounded array of type String to contain returned values:

Program Access Techniques

Page 362

ContextKeyword icxk_base
String is_values[]

2. Create the context information service by calling the GetContextService function:

this.GetContextService("Keyword", icxk_base)

3. Call the GetContextKeywords function to access the environment variable you
want. This example calls the GetContextKeywords function to determine the current
application Path:

icxk_base.GetContextKeywords("Path", is_values)

4. Extract values from the returned array as necessary. When accessing environment
variables, the array should always have a single element:

MessageBox("Path", "Path is: " + is_values[1])

5.5.5.3 CORBACurrent service (obsolete)

Obsolete service

CORBACurrent service is obsolete because EAServer is no longer supported since
PowerBuilder 2017.

Client applications and EAServer components marked as OTS style can create, control,
and obtain information about EAServer transactions using functions of the CORBACurrent
context service object. The CORBACurrent object provides most of the methods defined for
the CORBA Current interface.

5.5.5.4 Error logging service

To record errors generated by PowerBuilder objects running in a transaction server to a log
file, create an instance of the ErrorLogging service object and invoke its log method. For
example:

ErrorLogging erlinfo_base
this.GetContextService("ErrorLogging", &
 erlinfo_base)
erlinfo_base.log("Write this string to log")

The errors are recorded in the Windows system application log if the component is running in
COM+.

5.5.5.5 Internet service

Note

Inet object is considered to be obsolete. Obsolete features are still available to use,
but are no longer eligible for technical support and will no longer be enhanced. You
can replace it by using the WebBrowser control or the HTTPClient object.

Use the Internet service to:

Program Access Techniques

Page 363

• Display a Web page in the default browser (HyperLinkToURL function, which starts the
default browser with the specified URL)

• Access the HTML for a specified page (GetURL function, which performs an HTTP Get)

• Send data to a CGI, ISAPI, or NSAPI program (PostURL function, which performs an
HTTP Post)

Hyperlinking to a URL

You call the Internet service's HyperLinkToURL function to start the default browser with a
specified URL.

To hyperlink to a URL:

1. Declare an instance or global variable of type Inet:

Inet iinet_base

2. Create the Internet service by calling the GetContextService function:

THIS.GetContextService("Inet", iinet_base)

3. Call the HyperLinkToURL function, passing the URL of the page to display when the
browser starts:

iinet_base.HyperlinkToURL &
 ("http://www.appeon.com")

Getting a URL

You call the Internet service's GetURL function to perform an HTTP Get, returning raw
HTML for a specified URL. This function returns the raw HTML using the InternetResult
object.

To perform an HTTP Get:

1. Declare an instance or global variable of type Inet. Also declare an instance or global
variable using the descendant InternetResult object as the datatype (n_ir_msgbox in this
example):

Inet iinet_base
n_ir_msgbox iir_msgbox

2. Create the Internet service by calling the GetContextService function:

THIS.GetContextService("Internet", iinet_base)

3. Create an instance of the descendant InternetResult object:

iir_msgbox = CREATE n_ir_msgbox

4. Call the GetURL function, passing the URL of the page to be returned and a reference to
the instance of the descendant InternetResult object:

iinet_base.GetURL &

Program Access Techniques

Page 364

 ("http://www.appeon.com", iir_msgbox)

When the GetURL function completes, it calls the InternetData function defined in the
descendant InternetResult object, passing the HTML for the specified URL.

Posting to a URL

You call the Internet service's PostURL function to perform an HTTP Post, sending data
to a CGI, ISAPI, or NSAPI program. This function returns the raw HTML using the
InternetResult object.

To perform an HTTP Post:

1. Declare an instance or global variable of type Inet. Also declare an instance or global
variable using the descendant InternetResult object as the datatype (n_ir_msgbox in this
example):

Inet iinet_base
n_ir_msgbox iir_msgbox

2. Create the Internet service by calling the GetContextService function:

THIS.GetContextService("Internet", iinet_base)

3. Create an instance of the descendant InternetResult object:

iir_msgbox = CREATE n_ir_msgbox

4. Establish the arguments to the PostURL function:

Blob lblb_args
String ls_headers
String ls_url
Long ll_length
ls_url = "http://coltrane.appeon.com/"
ls_url += "cgi-bin/pbcgi80.exe/"
ls_url += "myapp/n_cst_html/f_test?"
lblb_args = Blob("")
ll_length = Len(lblb_args)
ls_headers = "Content-Length: " &
 + String(ll_length) + "~n~n"

5. Call the PostURL function, passing the URL of the routine to be executed, the
arguments, the header, an optional server port specification, and a reference to the
instance of the descendant InternetResult object:

iinet_base.PostURL &
 (ls_url, lblb_args, ls_headers, 8080, iir_msgbox)

When the PostURL function completes, it calls the InternetData function defined in the
descendant InternetResult object, passing the HTML returned by the specified routine.

Using the InternetResult object

The GetURL and PostURL functions both receive data in an InternetResult object. This
object acts as a buffer, receiving and caching the asynchronous data as it is returned by means
of the Internet. When all data is received, the InternetResult object calls its InternetData
function, which you override to process the data as appropriate.

Program Access Techniques

Page 365

Implement in descendants of InternetResult

You implement this feature by creating standard class user objects of type
InternetResult. In each of these descendant user objects, define an InternetData
function to process the passed HTML as appropriate.

To implement a descendant InternetResult object:

1. Create a standard class user object of type InternetResult.

2. Declare a new user object function as follows:

• Name

InternetData

• Access

Public

• Returns

Integer

• Argument name

Data, passed by value

• Argument datatype

Blob

3. Add code to the InternetData function that processes the returned HTML as appropriate.
This example simply displays the HTML in a MessageBox:

MessageBox("Returned HTML", &
 String(data, EncodingANSI!))
Return 1

5.5.5.6 Transaction server service

Use the transaction server service to access information about the context of an object
running in a transaction server. You can use the TransactionServer object to influence
transaction behavior programmatically, and to access the methods of another component on
the transaction server.

Developing Distributed Applications

Page 366

6 Developing Distributed Applications
This part describes tools and techniques for building distributed applications with
PowerBuilder.

6.1 Distributed Application Development with PowerBuilder

About this chapter

This chapter gives an overview of distributed application development with PowerBuilder.

6.1.1 Distributed application architecture

Distributed application development, also called multitier development, offers a natural way
to separate the user interface components of an application from the business logic that the
application requires. By centralizing business logic on a middle-tier server, you can reduce
the workload on the client and control access to sensitive information.

In a distributed application, the client and server work together to perform tasks for the
business user. The client handles all interactions with the user while the middle-tier server
provides background services to the client. Typically, the middle-tier server performs most
of the processing and database access. To invoke the services of the server, the client calls a
method (or function) associated with a component (or object) that resides on the server.

Partitioned applications

Client-side logic for enterprise applications must be as small and efficient as possible to
conserve network bandwidth. To accomplish this goal, applications are partitioned into three
parts: presentation, business logic, and database access. The database resides on the bottom
tier of the enterprise system to maintain and secure the organization's information assets. The
business logic resides in the middle tier or server. The presentation is on the user's desktop, or
top tier, or is dynamically downloaded to the user's desktop.

The server is then responsible for executing and securing the vast majority of a corporation's
business logic. This makes it a critical component in the network-centric architecture. The
client communicates with the server, calling middle-tier components that perform business
logic.

Web application architecture

A Web application is a variation of the distributed architecture where the client is hosted in a
Web browser. PowerBuilder provides a couple of technologies for building Web applications.
The architecture of your application varies depending on which technologies you decide to
use.

For more information, see Web Application Development with PowerBuilder

6.1.2 Server support

PowerBuilder developers can build clients that invoke the services of COM+ and third-party
application servers, and build components (or objects) that execute business logic inside each
of these servers.

J2EE servers

Developing Distributed Applications

Page 367

J2EE, the Java 2 Platform, Enterprise Edition, is the official Java framework for enterprise
application development. A J2EE application is composed of separate components that are
installed on different computers in a multitiered system. The following figure shows three
tiers in this system: the client tier, middle tier, and Enterprise Information Systems (EIS) tier.
The middle tier is sometimes considered to be made up of two separate tiers: the Web tier and
the business tier.

Figure: J2EE client, middle, and EIS tiers

Client components, such as application clients and applets, run on computers in the client
tier. Web components, such as Java servlets and JavaServer Pages (JSP) components, run on
J2EE servers in the Web tier. The EIS tier is made up of servers running relational database
management systems, enterprise resource planning applications, mainframe transaction
processing, and other legacy information systems.

COM+

A PowerBuilder application can act as a client to a COM server. The server can be built
using any COM-compliant application development tool and it can run locally, on a remote
computer as an in-process server, or in COM+.

For more information, see Building a COM or COM+ Client

6.2 Building a COM or COM+ Client

About this chapter

This chapter explains how to build a PowerBuilder client that accesses a COM or COM+
server component.

Developing Distributed Applications

Page 368

6.2.1 About building a COM or COM+ client

A PowerBuilder application can act as a client to a COM server. The server can be built
using any COM-compliant application development tool and it can run locally, on a remote
computer as an in-process server, or in COM+.

Configuring a client computer to access a remote component

When a COM component is running on a remote computer, the client computer needs to be
able to access its methods transparently. To do this, the client needs a local proxy DLL for
the server and it needs registry entries that identify the remote server.

If the component is installed in COM+, the COM+ Component Services tool can create
a Microsoft Windows Installer (MSI) file that installs an application proxy on the client
computer.

If the server is not installed in COM+, the client and proxy files must be copied to the client
and the server must be configured to run in a surrogate process.

Remote server name written to registry

If the COM server is moved to a different computer, the registry entries on the client
must be updated.

6.2.2 Connecting to a COM server

To access a method associated with a component in the COM server, the PowerBuilder client
connects to the component using its programmatic identifier (ProgID) or its class identifier
(CLSID).

You can use a tool such as OLEVIEW or the OLE tab in the PowerBuilder Browser to view
the Program ID or CLSID and methods of registered COM objects.

To establish a connection to the COM server, you need to execute the PowerScript statements
required to perform these operations:

1. Declare a variable of type OLEObject and use the Create statement to instantiate it.

2. Connect to the object using its Program ID or CLSID.

3. Check that the connection was established.

Example

The following script instantiates the EmpObj OLEObject object, connects to the COM object
PBcom.Employee, and checks for errors:

OLEObject EmpObj
Integer li_rc
EmpObj = CREATE OLEObject
li_rc = EmpObj.ConnectToNewObject("PBcom.employee")
IF li_rc < 0 THEN
 DESTROY EmpObj
MessageBox("Connecting to COM Object Failed", &
 "Error: " + String(li_rc))
Return
END IF

Developing Distributed Applications

Page 369

6.2.3 Interacting with the COM component

Invoking component methods

Once a connection to a COM component has been established, the client application can
begin using the component methods.

Use the REF keyword for output parameters

You must use the REF keyword when you call a method on a COM object that has an
output parameter. For example: of_add(arg1, arg2, REF sum)

Example

Using the EmpObj object created in the previous example, this example calls two methods on
the component, then disconnects and destroys the instance:

Long units, time
Double avg, ld_retn
String ls_retn

ld_retn = EmpObj.f_calcdayavg(units, time, REF avg)
ls_retn = EmpObj.f_teststring()

EmpObj.DisconnectObject()
DESTROY EmpObj

Passing result sets

PowerBuilder provides three system objects to handle getting result sets from components
running in transaction server environments and returning result sets from PowerBuilder
user objects running as transaction server components. These system objects (ResultSet,
ResultSets, and ADOResultSet) are designed to simplify the conversion of transaction server
result sets to and from DataStore objects and do not contain any state information.

Handling runtime errors

Runtime error information from custom class user objects executing as OLE automation
objects, COM objects, or COM+ components is reported to the container holding the object
as exceptions (or, for automation objects, as exceptions or facility errors). Calls to the
PowerBuilder SignalError function are also reported to the container. To handle runtime
errors generated by PowerBuilder objects, code the ExternalException event of the OLE
client.

For more information about handling runtime errors in OLE or COM objects, see Handling
errors.

6.2.4 Controlling transactions from a client

PowerBuilder clients can exercise explicit control of a transaction on a COM+ server by
using a variable of type OleTxnObject instead of OLEObject to connect to the COM object.

Requires COM+ installation

The ConnectToNewObject call on an OleTxnObject fails if COM+ is not installed on
the client computer.

Developing Distributed Applications

Page 370

The OleTxnObject object, derived from the OLEObject object, provides two additional
functions (SetComplete and SetAbort) that enable the client to participate in transaction
control. When the client calls SetComplete, the transaction is committed if no other
participant in the transaction has called SetAbort or otherwise failed. If the client calls
SetAbort, the transaction is always aborted.

Example

In this example, the clicked event on a button creates a variable of type OleTxnObject,
connects to a COM object on a server, and calls some methods on the object. When all the
methods have returned, the client calls SetComplete and disconnects from the object.

integer li_rc
OleTxnObject lotxn_obj

lotxn_obj = CREATE OleTxnObject
li_rc = lotxn_obj.ConnectToNewObject("pbcom.n_test")
IF li_rc <> 0 THEN
 Messagebox("Connect Error", string(li_rc))
 HALT
END IF

lotxn_obj.f_dowork()
lotxn_obj.f_domorework()

lotxn_obj.SetComplete()
lotxn_obj.DisconnectObject()

This f_dowork function on the COM object on the server creates an instance of the
transaction context service and calls its DisableCommit method to prevent the transaction
from committing prematurely between method calls. After completing some work, the
function calls SetAbort if the work was not successfully completed and SetComplete if it
was.

TransactionServer txninfo_one
integer li_rc

li_rc = GetContextService("TransactionServer", &
 txninfo_one)
txninfo_one.DisableCommit()

// do some work and return a return code
IF li_rc <> 0 THEN
 txninfo_one.SetAbort()
 return -1
ELSE
 txninfo_one.SetComplete()
 return 1
END IF

The SetComplete call on the client commits the transaction if all of the methods in the
transaction called SetComplete or EnableCommit.

6.3 Building an EJB client (obsolete)

Enterprise JavaBeans components are obsolete technology, although the components operate
as usual in this release. An obsolete feature is no longer eligible for technical support and will
no longer be enhanced, although it is still available.

Developing Distributed Applications

Page 371

If you still want to build a PowerBuilder client for an Enterprise JavaBeans component, refer
to this section.

https://docs.appeon.com/pb2019r2/application_techniques/ch27.html

Developing Web Applications

Page 372

7 Developing Web Applications
This part presents tools and techniques for developing Web applications with PowerBuilder.

7.1 Web Application Development with PowerBuilder

About this chapter

This chapter provides an overview of the techniques you can use to develop Web applications
with PowerBuilder.

7.1.1 Building Web applications

PowerBuilder provides several tools that you can use to build Web applications. This section
provides a brief overview of these tools and points to where you can find more information.

Appeon PowerServer

Appeon PowerServer is a product that deploys existing PowerBuilder client/server
applications to the Web. For more information, see the PowerServer website at
https://www.appeon.com.

7.1.2 .NET Web components (obsolete)

.NET Assembly target and .NET Web Service target are considered to be obsolete. The
ability to use these techniques have been retained for backward compatibility.

You may consider using the Section 2.41, “HTTPClient object” object as a replacement.

7.1.3 Web services (obsolete)

Obsolete technique

Creating Web service proxy for connecting to SOAP server will no longer be eligible
for technical support. Developers who build Web service client that connects to
SOAP server can choose to either continue using the feature without support, or use
Section 2.41, “HTTPClient object” to call SOAP Web service. For more information,
refer to this article: Call SOAP Web Service Using HTTPClient Object.

Web services are loosely defined as the use of Internet technologies to make distributed
software components talk to each other without human intervention. The software
components might perform such business logic as getting a stock quote, searching the
inventory of a catalog on the Internet, or integrating the reservation services for an airline
and a car rental agency. You can reach across the Internet and use preexisting components,
instead of having to write them for your application.

A PowerBuilder application can act as a client consuming a Web service that is accessed
through the Internet. Through use of SOAP and WSDL, a collection of functions published
remotely as a single entity can become part of your PowerBuilder application. A Web service
accepts and responds to requests sent by applications or other Web services.

https://www.appeon.com/developers/get-help/knowledgebase/call-soap-web-service-using-httpclient-object.html

Developing Web Applications

Page 373

7.1.4 Web DataWindow (obsolete)

Obsolete technique

Web DataWindow is not recommended and is considered to be obsolete. The ability
to use this technique has been retained for backward compatibility.

An obsolete feature is no longer eligible for technical support and will no longer be
enhanced, although it is still available.

The Web DataWindow is a thin-client DataWindow implementation for Web applications.
It provides most of the data manipulation, presentation, and scripting capabilities of the
PowerBuilder DataWindow without requiring any PowerBuilder DLLs on the client.

The Web DataWindow uses the services of several software components that can run on
separate computers:

• Web DataWindow server component running in an application or transaction server

• Dynamic page server

• Web server

• Web browser

• Database

The server component is a nonvisual user object that uses a DataStore to handle retrieval
and updates and generate HTML. You can use the generic component provided with
PowerBuilder or a custom component.

You can take advantage of the capabilities of the Web DataWindow by:

• Hand coding against the Web DataWindow component

You can write server-side scripts that access the Web DataWindow component directly.

• Writing your own HTML generator

Using a sample PBL provided with PowerBuilder as a starting point, you can create your
own HTML generator that provides the methods you need for your application.

7.1.5 DataWindow Web control for ActiveX (obsolete)

Obsolete technique

DataWindow Web Control for ActiveX is not recommended and is considered to be
obsolete. An obsolete feature is no longer eligible for technical support and will no
longer be enhanced, although it is still available.

The ability to use this technique has been retained for backward compatibility.

The DataWindow Web control for ActiveX is a fully interactive DataWindow control for
use with Internet Explorer. It implements all the features of the PowerBuilder DataWindow
except rich text.

Developing Web Applications

Page 374

The DataWindow Web control for ActiveX supports data retrieval with retrieval arguments
and data update. You can use edit styles, display formats, and validation rules. Most of the
PowerBuilder methods for manipulating the DataWindow are available. Several functions
that involve file system interactions are not supported, allowing the Web ActiveX to be in the
safely scriptable category of ActiveX controls.

Included with the DataWindow Web control is the DataWindow Transaction Object control
for making database connections that can be shared by several DataWindow Web controls.

The Web ActiveX is provided as a CAB file, which allows the client browser to install and
register the control. When the user downloads a Web page that refers to the CAB file, the
browser also downloads the CAB file if necessary, unpacks it, and registers the control.

7.2 Building a Web Services Client (Obsolete)
Creating Web service proxy for connecting to SOAP server is no longer eligible for technical
support. Developers who build Web service client that connects to SOAP server can choose
to either continue using the feature without support, or use Section 2.41, “HTTPClient
object” to call SOAP Web service. For how to use HTTPClient to call SOAP Web service,
refer to this article: Call SOAP Web Service Using HTTPClient Object.

For users who still want to build a Web service client, refer to this section.

https://www.appeon.com/developers/get-help/knowledgebase/call-soap-web-service-using-httpclient-object.html
https://docs.appeon.com/pb2019r2/application_techniques/ch29.html

General Techniques

Page 375

8 General Techniques
This part describes techniques for handling internationalization, printing, accessibility
requirements, and the Windows registry. It explains how to build styles and actions for use in
InfoMaker.

8.1 Internationalizing an Application

About this chapter

This chapter describes some of the issues that arise when you develop and deploy
applications for multiple languages.

8.1.1 Developing international applications

When you develop an application for deployment in multiple languages, you can take
advantage of the Unicode support built into PowerBuilder. You also need to focus on two
phases of the development process:

• The first is the internationalization phase, when you deal with design issues before you
begin coding the application.

• The second is the localization phase, which starts once the development phase of
an internationalized application is complete, when you deal with the translation and
deployment of your application you enter the.

8.1.2 Using Unicode

Unicode is a character encoding scheme that enables text display for most of the world's
languages. Support for Unicode characters is built into PowerBuilder. This means that you
can display characters from multiple languages on the same page of your application, create
a flexible user interface suitable for deployment to different countries, and process data in
multiple languages.

8.1.2.1 About Unicode

Before Unicode was developed, there were many different encoding systems, many of
which conflicted with each other. For example, the same number could represent different
characters in different encoding systems. Unicode provides a unique number for each
character in all supported written languages. For languages that can be written in several
scripts, Unicode provides a unique number for each character in each supported script.

For more information about the supported languages and scripts, see the Unicode website at
http://www.unicode.org/cldr/charts/latest/supplemental/scripts_and_languages.html.

Encoding forms

There are three Unicode encoding forms: UTF-8, UTF-16, and UTF-32. Originally UTF
stood for Unicode Transformation Format. The acronym is used now in the names of these
encoding forms, which map from a character set definition to the actual code units that
represent the data, and to the encoding schemes, which are encoding forms with a specific
byte serialization.

http://www.unicode.org/cldr/charts/latest/supplemental/scripts_and_languages.html

General Techniques

Page 376

• UTF-8 uses an unsigned byte sequence of one to four bytes to represent each Unicode
character.

• UTF-16 uses one or two unsigned 16-bit code units, depending on the range of the scalar
value of the character, to represent each Unicode character.

• UTF-32 uses a single unsigned 32-bit code unit to represent each Unicode character.

Encoding schemes

An encoding scheme specifies how the bytes in an encoding form are serialized. When you
manipulate files, convert blobs and strings, and save DataWindow data in PowerBuilder, you
can choose to use ANSI encoding, or one of three Unicode encoding schemes:

• UTF-8 serializes a UTF-8 code unit sequence in exactly the same order as the code unit
sequence itself.

• UTF-16BE serializes a UTF-16 code unit sequence as a byte sequence in big-endian
format.

• UTF-16LE serializes a UTF-16 code unit sequence as a byte sequence in little-endian
format.

UTF-8 is frequently used in Web requests and responses. The big-endian format, where the
most significant value in the byte sequence is stored at the lowest storage address, is typically
used on UNIX systems. The little-endian format, where the least significant value in the
sequence is stored first, is used on Windows.

8.1.2.2 Unicode support in PowerBuilder

PowerBuilder uses UTF-16LE encoding internally. The source code in PBLs is encoded in
UTF-16LE, any text entered in an application is automatically converted to Unicode, and
the string and character PowerScript datatypes hold Unicode data only. Any ANSI or DBCS
characters assigned to these datatypes are converted internally to Unicode encoding.

Support for Unicode databases

Most PowerBuilder database interfaces support both ANSI and Unicode databases.

A Unicode database is a database whose character set is set to a Unicode format, such as
UTF-8 or UTF-16. All data in the database is in Unicode format, and any data saved to the
database must be converted to Unicode data implicitly or explicitly.

A database that uses ANSI (or DBCS) as its character set can use special datatypes to store
Unicode data. These datatypes are NChar, NVarChar, and NVarChar2. Columns with one of
these datatypes can store Unicode data, but data saved to such a column must be converted to
Unicode explicitly.

For more specific information about each interface, see Part I, “Connecting to Your
Database”.

String functions

PowerBuilder string functions, such as Fill, Len, Mid, and Pos, take characters instead of
bytes as parameters or return values and return the same results in all environments. These
functions have a "wide" version (such as FillW) that is obsolete and will be removed in a

General Techniques

Page 377

future version of PowerBuilder because it produces the same results as the standard version
of the function. Some of these functions also have an ANSI version (such as FillA). This
version is provided for backwards compatibility for users in DBCS environments who used
the standard version of the string function in previous versions of PowerBuilder to return
bytes instead of characters.

You can use the GetEnvironment function to determine the character set used in the
environment:

environment env
getenvironment(env)

choose case env.charset
case charsetdbcs!
 // DBCS processing
 ...
case charsetunicode!
 // Unicode processing
 ...
case charsetansi!
 // ANSI processing
 ...
case else
 // Other processing
 ...
end choose

Encoding enumeration

Several functions, including Blob, BlobEdit, FileEncoding, FileOpen, SaveAs, and String,
have an optional encoding parameter. These functions let you work with blobs and files with
ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding. If you do not specify this parameter, the
default encoding used for SaveAs and FileOpen is ANSI. For other functions, the default is
UTF-16LE.

The following examples illustrate how to open different kinds of files using FileOpen:

// Read an ANSI File
Integer li_FileNum
String s_rec
li_FileNum = FileOpen("Employee.txt")
// or:
// li_FileNum = FileOpen("Emplyee.txt", &
// LineMode!, Read!)
FileRead(li_FileNum, s_rec)

// Read a Unicode File
Integer li_FileNum
String s_rec
li_FileNum = FileOpen("EmployeeU.txt", LineMode!, &
 Read!, EncodingUTF16LE!)
FileRead(li_FileNum, s_rec)

// Read a Binary File
Integer li_FileNum
blob bal_rec
li_FileNum = FileOpen("Employee.imp", Stream Mode!, &
 Read!)
FileRead(li_FileNum, bal_rec)

Initialization files

General Techniques

Page 378

The SetProfileString function can write to initialization files with ANSI or UTF16-LE
encoding on Windows systems, and ANSI or UTF16-BE encoding on UNIX systems. The
ProfileInt and ProfileString PowerScript functions and DataWindow expression functions can
read files with these encoding schemes.

Exporting and importing source

The Export Library Entry dialog box lets you select the type of encoding for an exported file.
The choices are ANSI/DBCS, which lets you import the file into PowerBuilder 9 or earlier,
HEXASCII, UTF8, or Unicode LE.

The HEXASCII export format is used for source-controlled files. Unicode strings are
represented by hexadecimal/ASCII strings in the exported file, which has the letters HA at
the beginning of the header to identify it as a file that might contain such strings. You cannot
import HEXASCII files into PowerBuilder 9 or earlier.

If you import an exported file from PowerBuilder 9 or earlier, the source code in the file is
converted to Unicode before the object is added to the PBL.

External functions

When you call an external function that returns an ANSI string or has an ANSI string
argument, you must use an ALIAS clause in the external function declaration and add ;ansi to
the function name. For example:

FUNCTION int MessageBox(int handle, string content, string title, int showtype)
LIBRARY "user32.dll" ALIAS FOR "MessageBoxA;ansi"

The following declaration is for the "wide" version of the function, which uses Unicode
strings:

FUNCTION int MessageBox(int handle, string content, string title, int showtype)
LIBRARY "user32.dll" ALIAS FOR "MessageBoxW"

If you are upgrading an application from PowerBuilder 9 or earlier, PowerBuilder replaces
function declarations that use ANSI strings with the correct syntax automatically.

Setting fonts for multiple language support

The default font in the System Options and Design Options dialog boxes is Tahoma.

Setting the font in the System Options dialog box to Tahoma ensures that multiple languages
display correctly in the Layout and Properties views in the Window, User Object, and Menu
painters and in the wizards.

If the font on the Editor Font page in the Design Options dialog box is not set to Tahoma,
multiple languages cannot be displayed in Script views, the File and Source editors, the ISQL
view in the DataBase painter, and the Debug window.

You can select a different font for printing on the Printer Font tab page of the Design Options
dialog box for Script views, the File and Source editors, and the ISQL view in the DataBase
painter. If the printer font is set to Tahoma and the Tahoma font is not installed on the printer,
PowerBuilder downloads the entire font set to the printer when it encounters a multilanguage
character. If you need to print multilanguage characters, specify a printer font that is installed
on your printer.

To support multiple languages in DataWindow objects, set the font in every column and text
control to Tahoma.

General Techniques

Page 379

The default font for print functions is the system font. Use the PrintDefineFont and
PrintSetFont functions to specify a font that is available on users' printers and supports
multiple languages.

PBNI

The PowerBuilder Native Interface is Unicode based. PBNI extensions must be compiled
using the _UNICODE preprocessor directive in your C++ development environment.

Your extension's code must use TCHAR, LPTSTR, or LPCTSTR instead of char, char*, and
const char* to ensure that it works correctly in a Unicode environment. Alternatively, you can
use the MultiByteToWideChar function to map character strings to Unicode strings. For more
information about enabling Unicode in your application, see the documentation for your C++
development environment.

Unicode enabling for Web services

In a PowerScript target, the PBNI extension classes instantiated by Web service client
applications use Unicode for all internal processing. However, calls to component methods
are converted to ANSI for processing by EasySoap (obsolete), and data returned from these
calls is converted to Unicode.

XML string encoding

The XML parser cannot parse a string that uses an eight-bit character code such as
windows-1253. For example, a string with the following declaration cannot be parsed:

string ls_xml
ls_xml += '<?xml version="1.0" encoding="windows-1253"?>'

You must use a Unicode encoding value such as UTF16-LE.

8.1.3 Internationalizing the user interface

When you build an application for international deployment, there are two user interface
design issues you should consider:

• The physical design of the user interface

• The cultural standards of your application's audience

Physical design

The physical design of the user interface should include:

• Windows and objects with the flexibility to accommodate expanded string lengths required
when the text in menu items, lists, and labels is translated

For example, you could inherit a window from an English language ancestor window, and
change the language for a localized deployment. Generally, you can accommodate the
text for most languages if you allow for a menu item, list, or label size that is 1.3 times the
length of an English text string.

• Windows that can be easily used in RightToLeft versions of Windows

Cultural awareness

General Techniques

Page 380

The cultural design of your user interface requires you to be cognizant of what is and is not
acceptable or meaningful to your audience.

For example, an icon of a hand displaying an open palm might mean stop in one culture but
indicate an unacceptable gesture in another. Similarly, although the color yellow signifies
caution in some cultures, in other cultures it signifies happiness and prosperity.

8.1.4 Localizing the product

PowerBuilder provides resources for international developers that include localized runtime
files and the Translation Toolkit. The localized files become available after the general
release of a new version of PowerBuilder.

Localized runtime files

Localized runtime files are provided for French, German, Italian, Spanish, Dutch, Danish,
Norwegian, and Swedish. You can install localized runtime files in the development
environment or on the user's machine. If you install them on the development machine, you
can use them for testing purposes.

The localized PowerBuilder runtime files handle language-specific data at runtime. They are
required to display standard dialog boxes and user interface elements, such as day and month
names in spin controls, in the local language. They also provide the following features:

• DayName function manipulation

The DayName function returns a name in the language of the runtime files available on the
machine where the application is run.

• DateTime manipulation

When you use the String function to format a date and the month is displayed as text (for
example, the display format includes "mmm"), the month is in the language of the runtime
files available when the application is run.

• Error messages

PowerBuilder error messages are translated into the language of the runtime files.

Localized PFC libraries

The PFC is now available on the PowerBuilder Code Samples website at https://
www.appeon.com/developers/library/code-samples-for-pb.

In order to convert an English language PFC-based application to another language such
as Spanish, you need multiple components. You need to test the application on a computer
running the localized version of the operating system with appropriate regional settings.
You must also obtain or build localized PFC libraries and install the localized PowerBuilder
runtime files. When you deploy the application, you must deploy it to a computer running a
localized version of the operating system, and you must deploy the localized runtime files.

You can translate the PFC libraries with the Translation Toolkit. Localized PFC libraries
are the same as the original PFC libraries except that strings that occur in windows, menus,
DataWindow objects, dialog boxes, and other user interface elements, and in runtime

https://www.appeon.com/developers/library/code-samples-for-pb
https://www.appeon.com/developers/library/code-samples-for-pb

General Techniques

Page 381

error messages, are translated into the local language. These include, for example, day and
month names in the Calendar service. All services remain otherwise the same. In a Spanish
PFC application, error messages displayed by the PFC are in Spanish, month names in the
Calendar service are in Spanish, column headers in DataWindow objects and Menu items are
in Spanish, and so on.

The Translation Toolkit adds a string in the format %LANGUAGE% to the comment
associated with every object that contains a translated string. For example, if you look at a
PFC library that has been translated into Spanish in the List view in the Library painter, you
will notice the string %SPANISH% at the beginning of the comment for many objects.

The dictionaries used to translate the PFC libraries into each language are provided with
the Translation Toolkit. You can use the dictionaries to translate the rest of your application
into a local language using the Translation Toolkit, and you can view the dictionary in a text
editor to see which strings have been translated.

The localized PFC libraries work in coordination with the localized runtime files, regional
settings, and the localized operating system.

Regional settings

PowerBuilder always uses the system's regional settings, set in the Windows Control Panel,
to determine formats for the Date and Year functions, as well as date formats to be used
by the SaveAs function. The use of these regional settings is independent of the use of
PowerBuilder localized runtime files or PFC libraries.

The regional settings are also used to determine behavior when using Format and Edit masks.
For more information, see Section 6.5.4, “Defining display formats” in Users Guide.

Localized operating system

The localized operating system is required for references to System objects, such as icons and
buttons, that are referenced using enumerated types in PowerBuilder, such as OKCancel!,
YesNo!, Information!, and Error!. These enumerated types rely on API calls to the local
operating system, which passes back the appropriate button, icon or symbol for the local
language. For example, if you use the OKCancel! argument in a MessageBox function, the
buttons that display on the message box are labeled OK and Cancel if the application is not
running on a localized operating system.

8.1.4.1 About the Translation Toolkit

The Translation Toolkit is a set of tools designed to help you translate PowerBuilder
applications into other languages. It includes a standalone translator tool that is used by the
person or group translating the text of the application.

When you use the Toolkit to create a project, a copy of each of your application's source
libraries is created for each project. The application's original source libraries are not
changed.

How the Toolkit works

You work with the phrases (one or more words of text) in an application. These phrases are in
the application's object properties, controls, and scripts.

You use the tools to:

General Techniques

Page 382

• Extract phrases from the project libraries

• Present the phrases for translation

• Substitute translated phrases for the original phrases in the project libraries

Using the translated project libraries, you use PowerBuilder to build the translated
application.

For more information, see the online Help for the Translation Toolkit.

8.2 Building Accessible Applications

About this chapter

This chapter provides information about guidelines and requirements for making applications
accessible to users with disabilities. It explains what features PowerBuilder offers to support
the creation of accessible applications, and it includes pointers to additional sources of
information.

8.2.1 Understanding accessibility challenges

When designing and developing software applications and Web pages that you want to make
accessible to people with disabilities, there are four general types of impairments you need to
consider:

• Visual

• Hearing

• Mobility

• Cognitive or learning

Visual impairments

Application users who are blind require text equivalents for all graphic images and videos
available to the sighted user. The text needs to convey content that is conceptually equivalent
to the information provided in graphical form, so that assistive technologies such as screen
and braille readers can make the information fully accessible. All user interface (UI) elements
must have text or menu equivalents, and blind users need keyboard equivalents for entering
input that a sighted user would enter with a mouse.

To accommodate users who are color blind, you should avoid using color as the sole means
of conveying information. Using fill patterns in addition to colors in graphs and other images
is one strategy for supplementing information conveyed by color. Auditory cues can serve as
an alternative way of presenting warnings or other content signaled by color only.

By enabling high contrast support, you can allow color-blind users and users with low vision
to adjust default system colors and fonts to make areas of a window or Web page easier
to distinguish. Users with low vision also use hardware or software magnifiers to enlarge
the pixels on a display, and they depend on alternate text to get some of the information
presented in images.

General Techniques

Page 383

Hearing impairments

Users who are deaf or hard of hearing require visual representations of auditory information.
You might need to provide alternate visual cues in your application for audible warnings, for
example. Blinking text is one alternative, though the blink rate must be within a certain range
to avoid causing problems for users with seizure disorders. Audio tracks require transcripts,
and videos might require closed captioning.

Technology to assist with hearing impairments includes voice recognition products that can
convert auditory information to text or sign language. Important also are TTY/TDD modems
that connect computers with telephones and convert typed ASCII text output to Baudot code,
which is what deaf individuals commonly use to communicate over the telephone.

Limited mobility

Users with limited mobility often have difficulty handling hardware and media, but input
is typically their biggest challenge. Depending on the disability, mobility-impaired users
might need to use voice recognition or an on-screen keyboard with an electronic switch,
tracking ball, or joy stick. They might enter input at a slower pace, which means that timers
and response times should be adjustable. Systems with built-in intelligence can provide cues
to cut down the amount of input required. For Windows applications, the FilterKeys feature
is available to slow the keyboard repeat rate, and the Windows StickyKeys feature allows
users to enter multiple keystrokes such as Ctrl/Alt/Delete as key sequences.

Cognitive impairments

Reading difficulties, an inability to process visual or auditory information, problems with
text input, and short-term memory problems can all affect a user's access to the content of
software and Web applications. Use of clear, simple language, enforcement of consistent
design, and presentation of the same information in redundant format, such as both audio
and video, can all help users with cognitive impairments to access information. Providing
adjustable response times is important to those whose comprehension is slower than normal.
Making content available to screen readers to reinforce visual representation is another
strategy for aiding comprehension of people with cognitive impairments.

General suggestions

For Web display, it is important to use elements for all markup instead of manipulating text
features such as font size directly. Visual appearance should not be the only indicator of
function for text elements. Element markup allows assistive technologies such as screen
readers to announce text elements such as headings by their function.

Good design for accessibility benefits not only those with disabilities, but users in general.
By enforcing a consistent interface design, using simple language, ensuring ease of
navigation, and providing the same information in a variety of ways, you can make your
applications more usable for everyone.

For more information

For general information about making websites accessible, see the World Wide Web
Consortium website at http://www.w3.org/ and the Utah State University WebAim website at
http://www.webaim.org.

For information on how your users can adjust various browsers for better legibility, and
for ways to accommodate vision impairments in general, see the Lighthouse International
website at http://www.lighthouse.org/.

http://www.w3.org/
http://www.webaim.org
http://www.lighthouse.org/

General Techniques

Page 384

8.2.2 Accessibility requirements for software and Web applications

Organizations that want to make their applications accessible to the disabled might have to
comply with several sets of slightly different regulations and guidelines, depending on the
countries in which their products will be sold or used.

Section 508

Section 508, enacted in 1998, is an extension of the U.S. Government's Rehabilitation Act.
Section 508 requires that all electronic and information technology that U.S. Government
agencies develop, procure, maintain, and use must be accessible to members of the general
public who have disabilities. Many individual states in the U.S. have adopted these
requirements as well. Organizations that offer software applications for sale to the U.S.
Federal government and many state governments, as well as companies that use or sell
accessibility aids, must comply with these regulations to ensure that their products qualify for
purchase.

WCAG 1.0

The Section 508 guidelines are based on the accessibility guidelines published in May 1999
by the World Wide Web Consortium. These are known as the Web Content Accessibility
Guidelines (WCAG) version 1.0. The WCAG 1.0 is the common basis for most accessibility
guidelines and the standard for government enforcement of regulations in many countries
today. These guidelines have three priority levels. Priority 1 deals with features essential
for access to Web content; Priority 2 defines practices that make websites more usable
and comprehensible in general, and especially to those using accessibility tools; Priority 3
describes enhanced usability features that make use of the newest technology.

Section 508 includes most of the Priority 1 WCAG recommendations, several from
Priorities 2 and 3, and also a few other requirements that are not in the WCAG. The WCAG
recommends that organizations strive to meet the Priority 1 and 2 guidelines.

French legislation

The French government has also enacted legislation requiring Web accessibility for those
with disabilities and published criteria for conformance called AccessiWeb. AccessiWeb
includes three levels, Bronze, Silver, and Gold, that correspond roughly to the three priority
levels of the WCAG, but AccessiWeb promotes many level 2 and 3 requirements to higher
levels and includes more detail than some of the WCAG recommendations.

U.K. legislation

The United Kingdom has passed legislation called the Disability Discrimination Act that
requires websites targeting British residents to be accessible to those with disabilities.
Enforcement of the U.K. law currently is based on the WCAG 1.0 Priority 1 and 2 guidelines.

Other countries

Many other countries have enacted legislation requiring government or general-use websites
to be accessible to the disabled. Several of these countries explicitly require compliance with
Priorities 1 and 2 of the WCAG 1.0, but a few require only Priority 1 compliance. Many other
countries without legislated requirements use the WCAG standards in practice.

WCAG 2.0

The WCAG standards are currently being updated with the intention that they will become
a universally accepted set of international guidelines for Web accessibility. WCAG 2.0 will

General Techniques

Page 385

focus on general principles that set out the characteristics websites must have to be accessible
to users with disabilities. Separate documents will spell out the technical requirements so that
these can be updated easily as technology changes without requiring updates to the general
principles.

For more information

For information about the accessibility requirements of the U.S. Federal Government
for software applications and websites, see the Section 508 Standards for Electronic and
Information Technology at https://www.access-board.gov/guidelines-and-standards/
communications-and-it/about-the-section-508-standards/section-508-standards and the
Guide to Section 508 Standards at https://www.access-board.gov/guidelines-and-standards/
communications-and-it/about-the-section-508-standards/guide-to-the-section-508-standards.

For the generally accepted international recommendations for Web accessibility, see the
WCAG guidelines at http://www.w3.org/TR/WCAG10/. For the new guidelines under
development, see the WCAG 2.0 guidelines at http://www.w3.org/TR/WCAG20/.

For the Web accessibility criteria adopted by the French government, see the AccessiWeb
criteria at http://www.accessiweb.org.

8.2.3 Creating accessible software applications with PowerBuilder

PowerBuilder supports the following two technologies of Windows accessibility and
automation -- Microsoft Active Accessibility (MSAA) and Microsoft UI Automation.

MSAA is a legacy technology introduced in Windows 95; it supports the PowerBuilder
standard controls well; but it imposes major limitations on the PowerBuilder custom controls
such as DataWindows. Starting from PowerBuilder 2019 R3, PowerBuilder supports a
newer and more capable technology which overcomes the limitations of MSAA; this new
technology called Microsoft UI Automation offers a richer set of properties and extended
interfaces to manipulate not only standard controls but also custom controls (such as
PowerBuilder DataWindows and child controls in DataWindows).

The support for Microsoft Active Accessibility (MSAA) and Microsoft UI Automation is
enabled by default. You can disable the support using the Accessibility option in the PB.INI
file:

• Accessibility=0: Disable both MSAA and Microsoft UI Automation

• Accessibility=1: Enable both

• Accessibility=2: Enable Microsoft UI Automation only

• Accessibility=3: Enable MSAA only

For example,

[Data Window]
ACCESSIBILITY=0

It is recommended that you enable (value is 1) or disable (value is 0) both technologies; if
you set the value to 2 or 3 (enable only one of them), some testing tools may not work well
with only UIA or MSAA, and may cause the application to malfunction or crash.

https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/guide-to-the-section-508-standards
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/guide-to-the-section-508-standards
http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG20/
http://www.accessiweb.org
https://en.wikipedia.org/wiki/Microsoft_UI_Automation

General Techniques

Page 386

8.2.3.1 Microsoft UI Automation

With the Microsoft UI Automation technology, the UI elements of the PowerBuilder control
can be accessible to the screen reader (such as Windows Narrator), the accessibility tool
(such as Accessibility Insights, Inspect), and the automated testing tool (such as QTP) in
Windows 10 and Windows Server 2019.

The Microsoft UI Automation technology allows you not only to access and test the
PowerBuilder standard controls (see Table 1), but also the PowerBuilder DataWindow
controls (see Table 2 and 3).

Table 1: PowerBuilder controls/objects supported by Microsoft UI Automation

Table 8.1:

Animation

CheckBox

CommandButton

DataWindow

DatePicker

DropDownListBox

DropDownPictureListBox

EditMask

GroupBox

HProgressBar

HScrollBar

HTrackBar

ListBox

ListView

MonthCalendar

MultiLineEdit

Picture

PictureButton

PictureHyperText

PictureListBox

RadioButton

SingleLineEdit

StaticText

StaticHyperText

Tab

TreeView

UserObject

VProgressBar

VScrollBar

VTrackBar

The following PowerBuilder controls/objects are unsupported by Microsoft UI Automation:

• Graph

• InkEdit

• InkPicture

• Line

• OLE

• Oval

• Rectangle

• RibbonBar

• RoundRectangle

• RichTextEdit

• WebBrowser

Table 2: DataWindow presentation styles supported by Microsoft UI Automation

Table 8.2:

CrossTab Label

General Techniques

Page 387

FreeForm

Grid

Group

N-Up

Tabular

TreeView

DataWindow controls of the following presentation styles are unsupported:

• Graph

• OLE 2.0

• Composite

• RichText

Table 3: Controls in DataWindow supported by Microsoft UI Automation

Table 8.3:

Button

Column (and the following edit styles are
supported: CheckBox, DropDownListBox,
DropDownDataWindow, Edit box,
EditMask, and RadioButtons)

Computed Field

GroupBox

Text

The following controls in DataWindow are unsupported by Microsoft UI Automation:

• Graph

• InkPicture

• Line

• OLE Object

• Oval

• Rectangle

• RoundRectangle

• Picture

• Report

• TableBlob

Examples

To enable support for PowerBuilder controls/objects through Microsoft UI Automation, you
will need to set the AccessibleName and AccessibleDescription properties in the controls'
Property tab page. Note that AccessibleRole property is unsupported by Microsoft UI
Automation.

The following statements set the AccessibleName and AccessibleDescription properties for a
command button in a Window:

General Techniques

Page 388

cb_1.accessiblename = "Delete"
cb_1.accessibledescription = "Deletes selected text"

The following statement sets the AccessibleName property of a button in a DataWindow
object:

dw_1.Object.b_1.accessiblename = "Update"

Deployment

When you deploy an accessible application, you must deploy the pbacc.dll and
PBAccessibility.dll files.

For more information

For more information, refer to the PowerBuilder VPATs report, and also the Microsoft
general accessibility website at http://www.microsoft.com/enable. Also helpful is the
WebAim website at http://www.webaim.org.

8.2.3.2 Microsoft Active Accessibility (MSAA)

PowerBuilder provides the infrastructure and properties needed to build accessibility
features into your Windows and Web applications. Its features allow applications to conform
generally to Microsoft Active Accessibility (MSAA) Version 2. MSAA is a Windows
standard that defines the way accessibility aids obtain information about user interface
elements and the way programs expose information to the aids.

PowerBuilder standard controls support all required Microsoft Active Accessibility properties
as listed in the following table:

Table 8.4: MSAA properties and PowerBuilder support

Microsoft Active
Accessibility
property

PowerBuilder property support

Name objectname.AccessibleName

Some controls support the Name setting through the Text or Title
property. For all controls, Name is customizable through the
AccessibleName property.

Role objectname.AccessibleRole

Customizable through the AccessibleRole property.

State Default Active Accessibility support

Location Default Active Accessibility support

Parent Default Active Accessibility support

ChildCount Default Active Accessibility support

Keyboard Shortcut Default Active Accessibility support for "&" access key of the Text
property

Also, PowerBuilder Accelerator property setting if applicable to the
control.

DefaultAction Default Active Accessibility support

https://www.appeon.com/developers/Accessibility-Conformance-Report.html
http://www.microsoft.com/enable
http://www.webaim.org

General Techniques

Page 389

Microsoft Active
Accessibility
property

PowerBuilder property support

(For example, a selected check box has a default action of uncheck.)

Value Default Active Accessibility support

(For example, a selected check box has the value checked.)

Children Default Active Accessibility support

(For example, items in a list box.)

Focus Default Active Accessibility support

Selection Default Active Accessibility support

Description objectname.AccessibleDescription

Customizable through the AccessibleDescription property.

Help Not supported

HelpTopic Not supported

Visual controls

For PowerBuilder visual controls that inherit from DragObject, you can manipulate the
IAccessible Name, Role, and Description properties of each control by using PowerBuilder
dot notation or the Other page in the Properties view of the painters. You can also manipulate
the IAccessible property KeyboardShortcut using PowerBuilder properties wherever the
ampersand in text property and accelerator property are supported. Other IAccessible
properties are set automatically using Active Accessibility default support. (For example,
location is automatically updated with absolute screen coordinates for Windows controls at
runtime.)

The following table lists PowerBuilder visual controls that inherit from DragObject and their
default accessible roles:

Table 8.5: PowerBuilder visual controls and their default roles

PowerBuilder visual controls AccessibleRole enumerated value

Animation animationrole!

CheckBox checkbuttonrole!

CommandButton pushbuttonrole!

DataWindow clientrole!

DropDownListBox comboboxrole!

DropDownPictureListBox comboboxrole!

EditMask textrole!

Graph diagramrole!

GroupBox groupingrole!

HProgressBar, VProgressBar progressbarrole!

HScrollBar, VScrollBar scrollbarrole!

General Techniques

Page 390

PowerBuilder visual controls AccessibleRole enumerated value

HTrackBar, VTrackBar sliderrole!

ListBox listrole!

ListView listrole!

MonthCalendar clientrole!

MultiLineEdit textrole!

Picture graphicrole!

PictureButton pushbuttonrole!

PictureHyperLink linkrole!

PictureListBox listrole!

RadioButton radiobuttonrole!

RichTextEdit clientrole!

SingleLineEdit textrole!

StaticHyperLink linkrole!

StaticText statictextrole!

Tab control clientrole!

Tab page clientrole!

TreeView outlinerole!

The OLEControl control is set to pushbuttonrole! by default. You need to set this role
depending on content.

DataWindow control

PowerBuilder implements the MSAA standard for the DataWindow custom control and its
children.

The AccessibleName and AccessibleDescription properties take string values. The
AccessibleRole property takes the value of the AccessibleRole enumerated variable.

There are some limitations regarding accessibility support in the DataWindow:

• For the navigation function accNavigate, spatial navigation (navigation by keyboard
based on screen location) is not supported. Logical navigation, where keyboard navigation
follows a logical tab sequence, is supported only for columns in the detail band. Columns
that have a tab value set to 0 so that users cannot update them cannot be accessed from the
keyboard.

• The Composite, Label, N-Up, OLE 2.0, and RichText DataWindow styles are not
supported.

• Support for OLE objects, OLE database columns, and nested reports in DataWindows is
limited.

PowerBuilder cannot provide accessibility for control content. This must be provided by the
control vendor.

General Techniques

Page 391

Examples

The following statements set the IAccessible properties for a command button in a Window:

cb_1.accessiblename = "Delete"
cb_1.accessibledescription = "Deletes selected text"
cb_1.accessiblerole = pushbuttonrole!

The following statement sets the AccessibleName property of a button in a DataWindow
object:

dw_1.Object.b_1.accessiblename = "Update"

The following statements set the AccessibleRole property for a button in a DataWindow
object to 43 (the number associated with PushButtonRole!) and return the property to a string
variable:

string ls_data
dw_1.Object.b_1.AccessibleRole = 43
ls_data = dw_1.Describe("b_1.AccessibleRole")

Deployment

When you deploy an accessible application, you must deploy the pbacc.dll file.

For more information

For more information, refer to the PowerBuilder VPATs report, and also the Microsoft
general accessibility website at http://www.microsoft.com/enable. Also helpful is the
WebAim website at http://www.webaim.org.

8.2.4 About VPATs

A Voluntary Product Accessibility Template (VPAT) is a table designed to help U.S. Federal
officials make preliminary assessments of accessibility compliance for products offered to the
government for sale. A VPAT lists the criteria for compliance with accessibility requirements
for various types of products and provides columns where you can indicate and comment on
how your product meets them.

VPATs are available for software applications and operating systems, Web-based Internet
information and applications, and other types of products. Even if you do not need to
fill out a VPAT, reviewing the template for your type of product can give you a clearer
understanding of the requirements of Section 508 for software and Web applications.

To view the various VPATs, see the Information Technology Industry Council website at
http://www.itic.org.

You should read PowerBuilder VPATs carefully and assess the applicability of any defects or
exceptions listed for your particular application.

8.2.5 Testing product accessibility

The MSAA 2.0 Software Development Kit (SDK) includes several tools for verifying
the MSAA compliance of your application. They include AccExplorer, Accessible Event
Watcher, and Object Inspector. These tools are available on the Microsoft website at http://
www.microsoft.com/en-us/download/default.aspx.

To test the user experience of your application for those with disabilities directly, you can
use various methods. For example, try using a text-only browser; enter input using only the

https://www.appeon.com/developers/Accessibility-Conformance-Report.html
http://www.microsoft.com/enable
http://www.webaim.org
http://www.itic.org
https://www.appeon.com/developers/Accessibility-Conformance-Report.html
http://www.microsoft.com/en-us/download/default.aspx
http://www.microsoft.com/en-us/download/default.aspx

General Techniques

Page 392

keyboard; use the application with a screen reader such as JAWS, Window-Eyes, Hal, or
Supernova.

Several commercial applications are also available for testing Web sites for compliance with
Section 508 and the WCAG 1.0.

For more information

For a checklist for testing WCAG 1.0 compliance, see the appendix to the WCAG 1.0 on
the W3C website at http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/full-
checklist. The W3C website also lists and evaluates tools for testing accessibility.

8.3 Printing from an Application
About this chapter

This chapter describes how to use predefined functions to create printed lists and reports.

8.3.1 Printing functions

PowerScript provides predefined functions that you can use to generate simple and complex
lists and reports. Using only three functions, you can create a tabular report in your printer's
default font. Using additional functions, you can create a report with multiple text fonts,
character sizes, and styles, as well as lines and pictures.

The following table lists the functions for printing.

Table 8.6: PowerScript printing functions

Function Description

Print There are five Print function formats. You can specify a tab in all but two
formats, and in one you can specify two tabs.

PrintBitMap Prints the specified bitmap.

PrintCancel Cancels the specified print job.

PrintClose Sends the current page of a print job to the printer (or spooler) and closes the
print job.

PrintDataWindowPrints the specified DataWindow as a print job.

PrintDefineFontDefines one of the eight fonts available for a print job.

PrintGetPrinterGets the current printer name.

PrintGetPrintersGets the list of available printers.

PrintLine Prints a line of a specified thickness at a specified location.

PrintOpen Starts the print job and assigns it a print job number.

PrintOval Prints an oval (or circle) of a specified size at a specified location.

PrintPage Causes the current page to print and sets up a new blank page.

PrintRect Prints a rectangle of a specified size at a specified location.

PrintRoundRectPrints a round rectangle of a specified size at a specified location.

PrintScreen Prints the screen image as part of a print job.

PrintSend Sends a specified string directly to the printer.

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/full-checklist
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/full-checklist

General Techniques

Page 393

Function Description

PrintSetFont Sets the current font to one of the defined fonts for the current job.

PrintSetPrinter Sets the printer to use for the next print function call. This function does not
affect open jobs.

PrintSetSpacingSets a spacing factor to determine the space between lines.

PrintSetup Calls the printer Setup dialog box and stores the user's responses in the print
driver.

PrintSetupPrinterDisplays the printer setup dialog box.

PrintText Prints the specified text string at a specified location.

PrintWidth Returns the width (in thousandths of an inch) of the specified string in the
current font of the current print job.

PrintX Returns the x value of the print cursor.

PrintY Returns the y value of the print cursor.

For more information about printing functions, see the PowerScript Reference.

8.3.2 Printing basics

All printing is defined in terms of the print area. The print area is the physical page size less
any margins. For example, if the page size is 8.5 inches by 11 inches, and the top, bottom,
and side margins are all a half-inch, the print area is 7.5 inches by 10 inches.

Measurements

All measurements in the print area are in thousandths of an inch. For example, if the print
area is 7.5 inches by 10 inches, then:

The upper-left corner is 0,0
The upper-right corner is 7500,0
The lower-left corner is 0,10000
The lower-right corner is 7500,10000

Print cursor

When printing, PowerBuilder uses a print cursor to keep track of the print location. The print
cursor stores the coordinates of the upper-left corner of the location at which printing begins.
PowerBuilder updates the print cursor (including tab position if required) after each print
operation except PrintBitmap, PrintLine, PrintRectangle, or PrintRoundRect. To position
text, objects, lines, and pictures when you are creating complex reports, specify the cursor
position as part of each print function call.

8.3.3 Printing a job

PrintOpen must be the first function call in every print job. The PrintOpen function defines
a new blank page in memory, specifies that all printing be done in the printer's default font,
and returns an integer. The integer is the print job number that is used to identify the job in all
other function calls.

PrintOpen is followed by calls to one or more other printing functions, and then the job is
ended with a PrintClose (or PrintCancel) call. The functions you call between the PrintOpen

General Techniques

Page 394

call and the PrintClose call can be simple print functions that print a string with or without
tabs, or more complex functions that add lines and objects to the report or even include a
picture in the report.

Printing titles

To print a title at the top of each page, keep count of the number of lines printed, and
when the count reaches a certain number (such as 50), call the PrintPage function,
reset the counter, and print the title.

Here is a simple print request:

Int PrintJobNumber
// Start the print job and set PrintJobNumber to
// the integer returned by PrintOpen.
PrintJobNumber = PrintOpen()
// Print the string Atlanta.
Print(PrintJobNumber,"Atlanta")
// Close the job.
PrintClose(PrintJobNumber)

8.3.4 Using tabs

The Print function has several formats. The format shown in the previous example prints a
string starting at the left edge of the print area and then prints a new line. In other formats
of the Print function, you can use tabbing to specify the print cursor position before or after
printing, or both.

Specifying tab values

Tab values are specified in thousandths of an inch and are relative to the left edge of the
print area. If a tab value precedes the string in the Print call and no tab value follows the
string, PowerBuilder tabs, prints, then starts a new line. If a tab value follows the string,
PowerBuilder tabs after printing and does not start a new line; it waits for the next statement.

In these examples, Job is the integer print job number.

This statement tabs one inch from the left edge of the print area, prints Atlanta, and starts a
new line:

Print(Job,1000,"Atlanta")

This statement prints Boston at the current print position, tabs three inches from the left edge
of the print area, and waits for the next statement:

Print(Job,"Boston",3000)

This statement tabs one inch from the edge of the print area, prints Boston, tabs three inches
from the left edge of the print area, and waits for the next statement:

Print(Job,1000,"Boston",3000)

Tabbing and the print cursor

When PowerBuilder tabs, it sets the x coordinate of the print cursor to a larger print cursor
value (a specified value or the current cursor position). Therefore, if the specified value is
less than the current x coordinate of the print cursor, the cursor does not move.

General Techniques

Page 395

The first Print statement shown below tabs one inch from the left edge of the print area and
prints Appeon, but it does not move to the next tab. (0.5 inches from the left edge of the print
area is less than the current cursor position.) Since a tab was specified as the last argument,
the first Print statement does not start a new line even though the tab was ignored. The next
Print statement prints Inc. immediately after the n in Appeon (Appeon Inc.) and then starts a
new line:

Print(Job,1000,"Appeon",500)
Print(Job," Inc.")

8.3.5 Stopping a print job

There are two ways to stop a print job. The normal way is to close the job by calling the
PrintClose function at the end of the print job. The other way is to cancel the job by calling
PrintCancel.

Using PrintClose

PrintClose sends the current page to the printer or spooler, closes the print job, and activates
the window from which the printing started. After you execute a PrintClose function call, any
function calls that refer to the job number fail.

Using PrintCancel

PrintCancel ends the print job and deletes any output that has not been printed. The
PrintCancel function provides a way for the user to cancel printing before the process is
complete. A common way to use PrintCancel is to define a global variable and then check the
variable periodically while processing the print job.

Assume StopPrint is a boolean global variable. The following statements check the StopPrint
global variable and cancel the job when the value of StopPrint is TRUE:

IntJobNbr
JobNbr = PrintOpen()
//Set the initial value of the global variable.
StopPrint = FALSE
//Perform some print processing.
Do While ...
.
.
.
// Test the global variable.
// Cancel the print job if the variable is TRUE.
// Stop executing the script.
 If StopPrint then
 PrintCancel(JobNbr)
 Return
 End If
Loop

8.3.6 Advanced printing techniques

Creating complex reports in PowerBuilder requires the use of additional functions but is
relatively easy. You can use PowerScript functions to define fonts for a job, specify fonts and
line spacing, place objects on a page, and specify exactly where you want the text or object to
be placed.

Defining and setting fonts

General Techniques

Page 396

The examples so far have used the default font for the printer. However, you can define as
many as eight fonts for each print job and then switch among them during the job.

In addition, you can redefine the fonts as often as you want during the print job. This allows
you to use as many fonts as you have available on your printer during a print job. Since there
is a slight performance penalty for redefining fonts, you should define the fonts after the
PrintOpen call and leave them unchanged for the duration of the print job.

To define a font, set an integer variable to the value returned by a call to the PrintDefineFont
function and then use the PrintSetFont function to change the font in the job.

Example

Assume that JobNum is the integer print job number and that the current printer has a font
named Helv. The following statements define Helv18BU as the Helv font, 18 point bold and
underlined. The definition is stored as font 2 for JobNum. The company name is printed in
font 2:

IntJob, Helv18BU
JobNum = PrintOpen()
Helv18BU = PrintDefineFont(JobNum,2,"Helv",250,700, &
 Variable!,Swiss!,FALSE,TRUE)
PrintSetFont(JobNum,2)
Print(JobNum,"Appeon, Inc.")

For more information about PrintDefineFont and PrintSetFont, see Section 2.4.591,
“PrintDefineFont” in PowerScript Reference and Section 2.4.603, “PrintSetFont” in
PowerScript Reference.

Setting line spacing

PowerBuilder takes care of line spacing automatically when you use the Print function. For
example, after you print in an 18-point font and start a new line, PowerBuilder adds 1.2 times
the character height to the Y coordinate of the print cursor.

The spacing factor 1.2 is not fixed. You can use the PrintSetSpacing function to control the
amount of space between lines.

Examples

This statement results in tight single-line spacing. (Depending on the font and the printer, the
bottoms of the lowest characters may touch the tops of the tallest characters):

PrintSetSpacing(JobNum,1)

This statement causes one-and-a-half-line spacing:

PrintSetSpacing(JobNum,1.5)

This statement causes double spacing:

PrintSetSpacing(JobNum,2)

Printing drawing objects

You can use the following drawing objects in a print job.

• Lines

• Rectangles

General Techniques

Page 397

• Round rectangles

• Ovals

• Pictures

When you place drawing objects in a print job, place the objects first and then add the text.
For example, you should draw a rectangle inside the print area and then add lines and text
inside the rectangle. Although the objects appear as outlines, they are actually filled (contain
white space); if you place an object over text or another object, it hides the text or object.

Be careful: PowerBuilder does not check to make sure that you have placed all the text and
objects within the print area. PowerBuilder simply does not print anything that is outside the
print area.

Example

These statements draw a 1-inch by 3-inch rectangle and then print the company address in the
rectangle. The rectangle is at the top of the page and centered:

IntJob
JobNum = PrintOpen()
PrintRect(JobNum,2500,0,3000,1000,40)
Print(JobNum,2525,"")

Print(JobNum,2525,"25 Mountain Road")
Print(JobNum,2525,"Milton, MA 02186")
PrintClose(JobNum)

8.4 Managing Initialization Files and the Windows Registry
About this chapter

This chapter describes how to manage preferences and default settings for PowerBuilder
applications.

8.4.1 About preferences and default settings

Many PowerBuilder applications store user preferences and default settings across sessions.
For example, many applications keep track of settings that control the appearance and
behavior of the application, or store default parameters for connecting to the database.
PowerBuilder applications can manage this kind of information in initialization files or in the
Windows registry.

Database connection parameters

Often you need to set the values of the Transaction object from an external file. For example,
you might want to retrieve values from your PowerBuilder initialization file when you
are developing the application or from an application-specific initialization file when you
distribute the application.

For information about database connection parameters in an initialization file, see Reading
values from an external file.

For an example of how to save and restore database connection parameters in the Windows
registry, see Managing information in the Windows registry.

Toolbar settings

General Techniques

Page 398

PowerBuilder provides some functions you can use to retrieve information about your toolbar
settings and also modify these settings. By using these functions, you can save and restore the
current toolbar settings.

For more information, see Saving and restoring toolbar settings.

Other settings you may want to save

In addition to the database connection parameters and toolbar settings, you may want to store
a variety of other application-specific settings. For example, you might want to keep track of
user preferences for colors, fonts, and other display settings.

8.4.2 Managing information in initialization files

Functions for accessing initialization files

PowerBuilder provides several functions you can use to manage application settings in
initialization files.

Table 8.7: PowerBuilder initialization file functions

Function Description

ProfileInt Obtains the integer value of a setting in a
profile file

ProfileString Obtains the string value of a setting in a
profile file

SetProfileString Writes a value in a profile file

For complete information about these functions, see Part I, “PowerScript Reference”.

For how to use the ProfileString functions with the registry, see Managing information in the
Windows registry.

The format of APP.INI

The examples below manage application information in a profile file called APP.INI. This
file keeps track of user preferences that control the appearance of the application. It has a
Preferences section that stores four color settings:

[Preferences]
WindowColor=Silver
BorderColor=Red
BackColor=Black
TextColor=White

Reading values

The following script retrieves color settings from the APP.INI file:

wincolor = ProfileString("app.ini", "Preferences", "WindowColor", "")
brdcolor = ProfileString("app.ini", "Preferences", "BorderColor", "")
bckcolor = ProfileString("app.ini", "Preferences", "BackColor", "")
txtcolor = ProfileString("app.ini", "Preferences", "TextColor", "")

Setting values

The following script stores color settings in the APP.INI file:

SetProfileString("app.ini", "Preferences", "WindowColor", wincolor)
SetProfileString("app.ini", "Preferences", "BorderColor", brdcolor)

General Techniques

Page 399

SetProfileString("app.ini", "Preferences", "BackColor", bckcolor)
SetProfileString("app.ini", "Preferences", "TextColor", txtcolor)

8.4.3 Managing information in the Windows registry

Functions for accessing the Registry

PowerBuilder provides several functions you can use to manage application settings in the
Windows registry.

Table 8.8: PowerBuilder registry setting functions

Function Description

RegistryDelete Deletes a key or a value in a key in the Windows registry.

RegistryGet Gets a value from the Windows registry.

RegistryKeys Obtains a list of the keys that are child items (subkeys) one level below a
key in the Windows registry.

RegistrySet Sets the value for a key and value name in the Windows registry. If the
key or value name does not exist, RegistrySet creates a new key or value
name.

RegistryValues Obtains a list of named values associated with a key.

For the complete information for these functions, see the Part I, “PowerScript Reference”.

Overriding initialization files

You can use the ProfileString functions to obtain information from the registry instead of
from an initialization file. Create a new key called INIFILEMAPPING at the following
location:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion

To override the WIN.INI file, create a subkey in INIFILEMAPPING called WIN.INI with the
following value:

#usr:software\microsoft\windows\currentversion\extensions

The examples that follow use the registry to keep track of database connection parameters.
The connection parameters are maintained in the registry in the MyCo\MyApp\database
branch under HKEY_CURRENT_USER\Software.

Reading values from the registry

The following script retrieves values for the default Transaction object from the registry.

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "dbms", sqlca.DBMS)
RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "database", sqlca.database)
RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "userid", sqlca.userid)
RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "dbpass", sqlca.dbpass)
RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "logid", sqlca.logid)
RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "logpass", sqlca.logpass)
RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &

General Techniques

Page 400

 #servername", sqlca.servername)
RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "dbparm", sqlca.dbparm)

Setting values in the registry

The following script stores the values for the Transaction object in the registry:

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "dbms", sqlca.DBMS)
RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "database", sqlca.database)
RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "userid", sqlca.userid)
RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "dbpass", sqlca.dbpass)
RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "logid", sqlca.logid)
RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "logpass", sqlca.logpass)
RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "servername", sqlca.servername)
RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
 "dbparm", sqlca.dbparm)

8.5 Building InfoMaker Styles and Actions
About this chapter

This chapter explains how to build styles in PowerBuilder and provide them to InfoMaker
users.

8.5.1 About form styles

InfoMaker comes with built-in form styles with which users can build sophisticated forms.
You can create your own form styles in PowerBuilder and provide them to InfoMaker users.
With these custom form styles, you can enforce certain standards in your forms and provide
extra functionality to your InfoMaker users. For example, you might want to:

• Include your organization's logo in each form

You can do this by creating custom form styles that have the logo in place.

• Reconfigure the toolbar that is provided with the built-in form styles

You can do this by modifying a built-in form style and saving it as a custom form style.

• Use drag and drop in forms

• Include picture buttons, edit controls, and other controls in forms

Almost anything you can do in a PowerBuilder window you can do in a custom form style.

What a form style is

InfoMaker users use forms to maintain data. Users can view, add, delete, and update data in a
form. Each form is based on a form style, which specifies:

• The way the data is presented (for example, in a freeform, grid, or master/detail
presentation)

General Techniques

Page 401

• The menu and toolbar that are available when users run a form

• Actions that users can attach to command buttons in the form

How form styles are constructed

You build form styles in PowerBuilder. A form style consists of:

• A window

• A menu

Figure: PowerBuilder form style

About the window

The window serves as the foundation of the form. It contains one or more DataWindow
controls with special names. It is these DataWindow controls that are the heart of the form
style. The user views and changes data in the form through the special DataWindow controls.

This chapter refers to the special DataWindow controls as the central DataWindow controls.
You must name the central DataWindow controls using one of a set of supported names.

In addition to the central DataWindow controls, the window can contain any other controls
that you can place in a window in PowerBuilder (such as CommandButtons, RadioButtons,
user objects, and pictures).

About the menu

When users run forms, they can pick items off a menu. You build the menu in the Menu
painter and associate it with the window that the form style is based on.

When building the menu, you can specify which menu items should display in a toolbar when
a form is run. The toolbar works like all PowerBuilder toolbars.

About actions

Form styles contain actions that users can attach to command buttons in the form and that
you can call in scripts.

Each public window function you define in the window for the form style is available as an
action to users of the form style.

Looking at an example

For example, the built-in form style Freeform consists of:

• A window named w_pbstyle_freeform

• A menu named m_pbstyle_freeform

General Techniques

Page 402

About w_pbstyle_freeform

The window w_pbstyle_freeform contains a DataWindow control named dw_freeform and
contains no other controls.

The PowerBuilder window defines many window-level functions:

Each of these window functions is available as an action in InfoMaker to users of the
Freeform form style:

About m_pbstyle_freeform

The menu named m_pbstyle_freeform provides the menu items and toolbar items available to
users when they run forms based on the Freeform style.

General Techniques

Page 403

For example, m_pbstyle_freeform contains the item Specify Criteria on the Rows menu; the
item also displays on the toolbar:

When InfoMaker users run the form, they can select Specify Criteria to enter selection
criteria that are used in retrieving rows in the form.

8.5.2 Naming the DataWindow controls in a form style

Each form style you define contains one or more central DataWindow controls that are based
on DataWindow controls in one of the built-in InfoMaker form styles.

The best way to understand the behavior of these DataWindow controls is to build forms
in InfoMaker using each of the built-in styles. Then, when you want to build a form style,
choose the DataWindow controls from the built-in style that matches the type of presentation
you want in your form style.

For example, to create a basic freeform data entry form, base it on dw_freeform, the
DataWindow control found in w_pbstyle_freeform.

When building your form style, you must assign one of the following names to the central
DataWindow controls:

• dw_freeform

• dw_grid

• dw_master_12many

• dw_detail_12many

General Techniques

Page 404

• dw_master_many21

• dw_detail_many21

Valid combinations

You must use one of the four combinations of DataWindow controls in the following table in
a form style.

Table 8.9: PowerBuilder DataWindow controls

Use these
DataWindow control
names

To base your form style on this built-in style

dw_freeform only Freeform.

dw_grid and
dw_freeform

Grid.

dw_grid is the central DataWindow control; dw_freeform shares
the result set and serves as the background, allowing users to place
computed fields anywhere in the form.

dw_master_12many
and
dw_detail_12many

Master Detail/One-To-Many.

dw_master_many21
and
dw_detail_many21

Master Detail/Many-To-One.

8.5.3 Building and using a form style

To build and use a form style:

1. Do one of the following:

• Copy the window and menu from an existing form style to act as your starting point

• Begin from scratch by creating a new window and placing in it one or two
DataWindow controls that have the supported names

2. Save the window with a special comment that indicates that the window serves as the
basis for a form style.

3. Enhance the form style by adding controls to the window, modifying the menu, defining
window functions to serve as actions, and so on.

4. Copy all objects used in the form style (such as windows, user objects, and menus) to a
library that will be defined as a style library for InfoMaker users.

5. Add the style library to the search path for InfoMaker users.

When InfoMaker users create a new form, the form style you defined displays in the
New Form dialog box. Users can select the style to build a form based on the style you
built.

General Techniques

Page 405

The rest of this chapter describes these steps.

8.5.4 Modifying an existing style

The easiest way to get started building form styles is to copy an existing form style and work
with it. By examining its structure and making small changes, you can quickly understand
how form styles work.

To begin by modifying an existing form style:

1. Open the Library painter in PowerBuilder.

2. Copy the window and menu that serve as the foundation for a form style to a library that
is on your application's library search path.

Starting from a built-in form style

The windows and menus that serve as the basis for the built-in form styles are in
IMSTYLE190.PBL, which is shipped with InfoMaker and installed in the InfoMaker
directory. You can make a copy of this PBL and use it as the basis of your own form
styles.

3. Open the window in the Window painter and select File>Save As from the menu bar to
save it with a new name.

4. Give the window a new name.

You can use any name you want, except that names of windows that define form styles
must be unique across all style libraries that are used by an InfoMaker user.

5. Define a special comment for the window (for instructions, see Identifying the window
as the basis of a style).

6. Click OK to save the window.

7. Open the menu in the Menu painter and select File>Save As from the menu bar to save
it with a new name.

8. Provide a new name and an optional comment, then click OK to save the menu.

You do not need to provide a comment for the menu, but it is a good idea to identify it
as being used in the form style you are building.

9. Enhance the form style (for instructions, see Completing the style).

8.5.4.1 Identifying the window as the basis of a style

In order for InfoMaker to recognize that a window in a library serves as the basis for a form
style, you must specify a comment for the window that starts with the text Style:

Style: text that describes the style

The text that follows Style: is the text that displays below the icon for the form style in the
New Form dialog box in InfoMaker.

General Techniques

Page 406

For example, if you save a w_pbstyle_freeform window with the comment Style: Maintain
corporate data in a style library, InfoMaker users see this when they create a new form:

You can specify the comment either when first saving the window or in the Library painter.

For more information about designing windows, see Section 4.1, “Working with Windows”
in Users Guide.

8.5.5 Building a style from scratch

Once you understand how form styles work, you can build one from scratch.

To build a form style from scratch:

1. Create a new window.

2. Place a DataWindow control in the window.

3. In the Properties view for the control, name the control using one of the special names.

For the list of special names, see Naming the DataWindow controls in a form style.

4. Change properties for the control as desired.

For example, you can add vertical and horizontal scroll bars.

Do not associate the control with a DataWindow object

InfoMaker users specify the data for the control when they create a new form.

5. If the form style you are building uses two DataWindow controls, place another
DataWindow control in the window and name it to conform with the valid
combinations.

For the list of valid combinations, see Naming the DataWindow controls in a form style.

General Techniques

Page 407

6. Save the window and specify a comment for it.

For instructions, see Identifying the window as the basis of a style.

8.5.6 Completing the style

To complete your form style, enhance the window and menu to provide the processing you
want. For example, you can:

• Work with the central DataWindow control

• Add controls to the window

• Define actions (functions that appear as actions in your form style)

• Modify the menu and its associated toolbar

• Write scripts for the window, its controls, and menu items

• Add other capabilities, such as drag and drop, to the window

8.5.6.1 Working with the central DataWindow controls

The DataWindow controls with special names are the heart of a form. It is in these controls
that users manipulate the data in the form.

You need to understand:

• How the freeform DataWindow is sized in the form

• How to retrieve data into the control in the form

How the freeform DataWindow is sized

All form styles you build contain a freeform DataWindow (as do all the built-in styles).
Regardless of what size you specify for the freeform DataWindow control in the Window
painter in PowerBuilder, the freeform DataWindow fills the entire form in the Form painter
in InfoMaker. InfoMaker enlarges the freeform DataWindow so that users can place data
(such as computed fields) anywhere in the form.

This means that a window background color that you specify in PowerBuilder is ignored in
the form.

Retrieving rows into the central DataWindow control

When an InfoMaker user runs a form, InfoMaker automatically populates the SQLCA
Transaction object with the correct values, so you do not have to do that in a script. To
retrieve rows into the central DataWindow control, all you have to do is set the Transaction
object for the control and then retrieve rows.

For example, to retrieve data into the control named dw_freeform, code:

dw_freeform.SetTransObject(SQLCA)
dw_freeform.Retrieve()

You would code this in the window's Open event to present the data to the user when the
form opens.

General Techniques

Page 408

For more information about Transaction objects, see Using Transaction Objects.

8.5.6.2 Adding controls

All windows serving as the basis for a form style have at least one DataWindow control. In
addition, you can add any other controls that you can add to standard PowerBuilder windows,
such as command buttons, user objects, text, edit boxes, pictures, and drawing objects.

Users of the form can move the controls you place in the window, but they cannot delete
them.

Users can also add controls to the form in the Form painter. They make CommandButtons
and PictureButtons work by associating actions with them. Actions are described next.

8.5.6.3 Defining actions

Often users want to add buttons (CommandButtons or PictureButtons) to a form created
using a custom form style. When you create the form style, you specify what the added
buttons can do by defining actions for the form style. When users place a button, they select
the desired action from a list:

Actions are implemented as public window-level functions.

To define an action:

1. In the Script view in the Window painter, select Insert>Function from the menu bar.

2. Define the window-level function (for how, see Part I, “Users Guide”).

If you want the window function to be available to a form user as an action, be sure to
define the function as public. Function arguments you define are used as parameters of
the action. Each public window function you define is listed as an action in the Select
Action dialog box in the Form painter.

Defining functions not available as actions

If you want to define and use window functions that are not available as actions in
forms, define them as private.

General Techniques

Page 409

8.5.6.4 Using menus

You specify the menu and toolbar that display when users run a form by defining a menu in
the Menu painter and associating it with the window that serves as the basis for your form
style.

Each menu item in the menu you define displays when a form is run. In addition, InfoMaker
adds Window and Help menus to allow users to manipulate windows and get online Help
when running a form in the InfoMaker environment.

Providing online Help

You can define a Help item in the menu bar, then define menu items that display in
the Help drop-down menu. The Help items do not display when users run a form
within InfoMaker, but they do display when a form is run from an executable. For
more information about InfoMaker executable files, see the InfoMaker Users Guide.

Item in a toolbar

As with MDI applications, you can specify that a menu item should display as an item in a
toolbar when the form is run.

Scripting

You use the same scripting techniques for menus used in forms as you do for menus used in
standard windows. Typically you communicate between a window and its menu by defining
user events for the window, then triggering them from the menu using the menu object's
ParentWindow property to refer to the form window; this technique is used in the built-in
form styles.

For more information

For more information about using menus and user events, see Part I, “Users Guide”.

For more information about associating toolbars with menus, see Building an MDI
Application

8.5.6.5 Writing scripts

You write scripts for the window, its controls, and Menu objects the same way you write
them for standard windows and menus. When working with DataWindow controls, remember
that you do not have to set the properties of the SQLCA Transaction object -- InfoMaker does
that automatically when users run a form.

You can define global user-defined functions and structures to support the scripts you code,
but note that since InfoMaker does not have an application object, form styles cannot use
global variables or global external function declarations.

8.5.6.6 Adding other capabilities

You can make forms as sophisticated as you want. For example, you can implement drag and
drop features, and mail-enable your form.

For complete information about the features you can build into a window, see the Section 4.1,
“Working with Windows” in Users Guide.

General Techniques

Page 410

8.5.7 Using the style

Once you complete a form style (or at least have a version that you want to test), you can put
it to use.

To make a style available to InfoMaker users:

1. Make sure the window and menu that define the form style are in a library that is
accessible to InfoMaker users (the style library).

2. Add any other PowerBuilder objects that you use in the form style (such as windows,
user objects, global user-defined functions, and global structures) to the same library.

3. Add the style library to the path for an InfoMaker user.

For more information, see the InfoMaker Users Guide.

8.5.7.1 Building a form with the custom form style

When an InfoMaker user using the style library creates a new form, all custom form styles
display in the Form Style box in the New Form dialog box:

Custom styles display with a generic icon.

InfoMaker users simply select a data source and a custom style to start building a form based
on your form style. You should provide documentation to users of your form styles.

General Techniques

Page 411

Understanding inheritance

When users build a form, they are working with a window that is a descendant of the window
that you built for the form style. That is, the form style window you built in PowerBuilder is
the ancestor, and the form window used in InfoMaker is the descendant. This means that if
you change the form style, the changes are picked up the next time users work with a form
using that style.

For example, you can add controls to the form style and have the controls display
automatically when users later open existing forms using the style.

Caution

Be careful: do not make changes that invalidate forms already built using the style.

8.5.7.2 Managing the use of form styles

You can store style libraries on the network to make them readily available to all InfoMaker
users. You do this with a shared initialization file on a network: you place an InfoMaker
initialization file that references the shared style libraries out on the network, then set up
InfoMaker users so that they can access the initialization file.

To make style libraries available throughout your organization:

1. Place the style libraries on the network in a directory accessible to InfoMaker users.

2. Open InfoMaker, go to the Library painter, and make sure all style libraries are listed in
the search path.

3. Close InfoMaker.

4. Copy your InfoMaker initialization file to a directory on the network that is accessible to
all InfoMaker users.

This is the shared initialization file. It records all the style libraries in the StyleLib
variable in the [Application] section.

5. Set up InfoMaker users so that they can access the shared initialization file.

Each InfoMaker user needs to specify the location of the shared initialization file in
InfoMaker.

For more information, see Specifying the location of the shared InfoMaker initialization
file in InfoMaker.

Specifying the location of the shared InfoMaker initialization file in InfoMaker

Once the shared initialization file has been defined in a user's InfoMaker initialization file,
the user's style library search path consists of the style libraries defined in the user's local
InfoMaker initialization file plus all style libraries defined in the shared initialization file.
When the user creates a new form, the form styles defined in all the style libraries display in
the New Form dialog box.

Each InfoMaker user needs to tell InfoMaker where to find the shared initialization file.

General Techniques

Page 412

To specify the location of a shared InfoMaker initialization file:

1. Select Tools>System Options from the InfoMaker menu bar.

2. On the General property page, enter the path for the shared InfoMaker initialization file.

3. Click OK.

InfoMaker saves the path for InfoMaker initialization in the registry.

Preventing the use of built-in styles

You might not want the built-in form styles to be available to InfoMaker users. That is, you
might want all forms to be based on one of your organization's user-defined styles. You can
ensure this by suppressing the display of the built-in styles in the New Form dialog box.

To suppress the display of built-in styles:

1. Set up a shared initialization file on the network as described in the preceding section.

2. Add this line to the [Window] section of the shared initialization file:

ShowStandardStyles = 0

With this line specified in the shared initialization file, users can choose only from user-
defined form styles when creating a new form. (Note that a ShowStandardStyles line in
a user's local InfoMaker initialization file is ignored by InfoMaker.)

Deployment Techniques

Page 413

9 Deployment Techniques
This part explains how to package your application for deployment and what files you need
to deploy.

9.1 Packaging an Application for Deployment

About this chapter

This chapter tells you how to prepare a completed executable application for deployment to
users.

9.1.1 About deploying applications

PowerBuilder lets you develop and deploy applications for many application architectures.

Traditional client/server applications

The primary focus of this chapter is on building an executable file and packaging a single- or
two-tier application for deployment. The chapter helps you decide whether to use compiled
code or pseudocode, whether to use dynamic libraries (PBDs or DLLs) and how to organize
them, and whether to deploy resources such as bitmaps and icons separately or use a
PowerBuilder Resource file (PBR).

Internet and distributed applications

When you build a client in a multitier application, you need to make many of the same
choices as you do for a traditional client/server application.

For more information

For detailed information about the files you need to deploy with client/server, multitier, and
Web applications, see Deploying Applications and Components

9.1.2 Creating an executable version of your application

The next few sections tell you more about the packaging process and provide information to
help you make choices about the resulting application.

9.1.2.1 Compiler basics

When you plan an application, one of the fundamental topics to think about is the compiler
format in which you want that application generated. PowerBuilder offers two alternatives:
Pcode and machine code.

Pcode

Pcode (short for pseudocode) is an interpreted language that is supported on all PowerBuilder
platforms. This is the same format that PowerBuilder uses in libraries (PBL files) to store
individual objects in an executable state. Advantages of Pcode include its size, reliability, and
portability.

Machine code

PowerBuilder generates and compiles code to create a machine-code executable or dynamic
library. The key advantage of machine code is speed of execution.

Deployment Techniques

Page 414

PowerBuilder DLLs cannot be called

PowerBuilder machine code DLLs cannot be called from other applications.

Configuring PowerBuilder Runtime

Starting from version 2019 R3, a machine-code executable must add the location of
PowerBuilder Runtime to the path environment variable or copy the runtime files to
the same directory as the executable, before it can be run.

Deciding which one to use

Here are some guidelines to help you decide whether Pcode or machine code is right for your
project:

• Speed

If your application does intensive script processing, you might want to consider using
machine code. It will perform better than Pcode if your code makes heavy use of looping
constructs, floating point or integer arithmetic, or function calls. If your application does
not have these characteristics, machine code does not perform noticeably better than
Pcode. If you think your application might benefit from the use of machine code, perform
some benchmark testing to find out.

Pcode is faster to generate than machine code. Even if you plan to distribute your
application using machine code, you might want to use Pcode when you want to quickly
create an executable version of an application for testing.

• Size

The files generated for Pcode are smaller than those generated for machine code. If your
application is to be deployed on computers where file size is a major issue, or if you deploy
it using a Web download or file transfer, then you might decide to give up the speed of
machine code and choose Pcode instead.

9.1.2.2 Learning what can go in the package

No matter which compiler format you pick, an application that you create in PowerBuilder
can consist of one or more of the following pieces:

• An executable file

• Dynamic libraries

• Resources

To decide which of these pieces are required for your particular project, you need to know
something about them.

About the executable file

If you are building a single- or two-tier application that you will distribute to users as an
executable file, rather than as a Web application, you always create an executable (EXE) file.

Deployment Techniques

Page 415

At minimum, the executable file contains code that enables your application to run as a native
application on its target platform. That means, for example, that when users want to start your
application, they can double-click the executable file's icon on their desktop.

What else can go in the executable file

Depending on the packaging model you choose for your application, the executable file also
contains one or more of the following:

• Compiled versions of objects from your application's libraries

You can choose to put all of your objects in the executable file so that you have only one
file to deliver, or you can choose to split your application into one executable file and one
or more dynamic libraries. For more information, see About dynamic libraries.

• An execution library list that the PowerBuilder execution system uses to find objects and
resources in any dynamic libraries you have packaged for the application

• Resources that your application uses (such as bitmaps)

Figure: Executable file contents

About dynamic libraries

As an alternative to putting your entire application in one large executable file, you
can deliver some (or even all) of its objects in one or more dynamic libraries. The way
PowerBuilder implements dynamic libraries depends on the compiler format you choose.

Table 9.1: PowerBuilder dynamic libraries

If you are
generating

Your dynamic libraries will be

Machine code DLL files (dynamic link libraries).

Machine-code dynamic libraries are given the extension .dll. These
dynamic libraries are like any other standard shared libraries in your
operating environment. The only caveat is that they are not intended to be
called from external programs.

Pcode PBD files (PowerBuilder dynamic libraries).

Deployment Techniques

Page 416

If you are
generating

Your dynamic libraries will be

These dynamic libraries are similar to DLLs in that they are linked to your
application at runtime. They are not interchangeable with DLLs, however,
because they have a different internal format.

You cannot mix the two different kinds of dynamic libraries (DLLs and
PBDs) in one application.

As with an executable file, only compiled versions of objects (and not their sources) go into
dynamic libraries.

Figure: Compiled objects in dynamic libraries

What else can go in dynamic libraries

Unlike your executable file, dynamic libraries do not include any start-up code. They cannot
be executed independently. Instead, they are accessed as an application executes when it
cannot find the objects it requires in the executable file.

Dynamic libraries can include resources such as bitmaps. You might want to put any
resources needed by a dynamic library's objects in its DLL or PBD file. This makes the
dynamic library a self-contained unit that can easily be reused. If performance is your main
concern, however, be aware that resources are loaded faster at runtime when they are in the
executable file.

Figure: Resources in dynamic libraries

Deployment Techniques

Page 417

Why use them

The following table lists several reasons why you might want to use dynamic libraries.

Table 9.2: Reasons to use dynamic libraries

Reason Details

Modularity They let you break up your application into smaller, more modular files that
are easier to manage.

MaintainabilityThey enable you to deliver application components separately. To provide
users with a bug fix, you can often give them the particular dynamic library
that was affected.

Reusability They make it possible for multiple applications to reuse the same components
because dynamic libraries can be shared among applications as well as among
users.

Flexibility They enable you to provide your application with objects that it references
only dynamically at runtime (such as a window object referenced only through
a string variable).

You cannot put such objects in your executable file (unless they are
DataWindow objects).

Efficiency They can help a large application use memory efficiently because:

• PowerBuilder does not load an entire dynamic library into memory at once.
Instead, it loads individual objects from the dynamic library only when
needed.

• Your executable file can remain small, making it faster to load and less
obtrusive.

Organizing them

Once you decide to use a dynamic library, you need to tell PowerBuilder which library (PBL
file) to create it from. PowerBuilder then places compiled versions of all objects from that
PBL file into the DLL or PBD file.

If your application uses only some of those objects, you might not want the dynamic library
to include the superfluous ones, which only make the file larger. The solution is to:

1. Create a new PBL file and copy only the objects you want into it.

Deployment Techniques

Page 418

2. Use this new PBL file as the source of your dynamic library.

About resources

In addition to PowerBuilder objects such as windows and menus, applications also use
various resources. Examples of resources include:

• Bitmaps that you might display in Picture or PictureButton controls

• Custom pointers that you might assign to windows

• The UI theme files that you apply to your application

When you use resources, you need to deliver them as part of the application along with your
PowerBuilder objects.

What kinds there are

A PowerBuilder application can employ several different kinds of resources. The following
table lists resources according to the specific objects in which they might be needed.

Table 9.3: PowerBuilder objects and resources

These objects Can use these kinds of resources

Application "theme" folder*

Window objects and user objects Icons (ICO files)

Pictures (BMP, GIF, JPEG, PNG, RLE, and
WMF files)

Pointers (CUR files)

DataWindow objects Pictures (BMP, GIF, JPEG, PNG, RLE, and
WMF files)

Menu objects (when in an MDI application) Pictures (BMP, GIF, JPEG, PNG, RLE, and
WMF files)

Note

"theme" folder is unsupported to be referenced by a resource (PBR) file. You can
only manually copy it from the "%AppeonInstallPath%\PowerBuilder [version]\IDE"
directory to the root of the application installation directory, when creating the
application installation package.

Delivering them

When deciding how to package the resources that need to accompany your application, you
can choose from the following approaches:

• Include them in the executable file.

Whenever you create an executable file, PowerBuilder automatically examines the objects
it places in that file to see if they explicitly reference any resources (icons, pictures,
pointers). It then copies all such resources right into the executable file.

PowerBuilder does not automatically copy in resources that are dynamically referenced
(through string variables). To get such resources into the executable file, you must use a

Deployment Techniques

Page 419

resource (PBR) file. This is simply a text file in which you list existing ICO, BMP, GIF,
JPEG, PNG, RLE, WMF, and CUR files.

Once you have a PBR file, you can tell PowerBuilder to read from it when creating the
executable file to determine which additional resources to copy in. (This might even
include resources used by the objects in your dynamic libraries, if you decide to put most
or all resources in the executable file for performance reasons.)

• Include them in dynamic libraries.

You might often need to include resources directly in one or more dynamic libraries, but
PowerBuilder does not automatically copy any resources into a dynamic library that you
create even if they are explicitly referenced by objects in that file. You need to produce a
PBR file that tells PowerBuilder which resources you want in this particular DLL or PBD
file.

Use a different PBR file for each dynamic library in which you want to include resources.
(When appropriate, you can even use this approach to generate a dynamic library that
contains only resources and no objects. Simply start with an empty PBL file as the source.)

• Deliver them as separate files.

This means that when you deploy the application, you give users various image files in
addition to the application's executable file and any dynamic libraries. As long as you do
not mind delivering a lot of files, this can be useful if you expect to revise some of them in
the future.

Keep in mind that this is not the fastest approach at runtime, because it requires more
searching. Whenever your application needs a resource, it searches the executable file
and then the dynamic libraries. If the resource is not found, the application searches for a
separate file.

Make sure that your application can find where these separate files are stored, otherwise it
cannot display the corresponding resources.

You can use one of these approaches or any combination of them when packaging a
particular application.

Using a PBR file to include a dynamically referenced DataWindow object

You might occasionally want to include a dynamically referenced DataWindow
object (one that your application knows about only through a string variable) in the
executable file you are creating. To do that, you must list its name in a PBR file along
with the names of the resources you want PowerBuilder to copy into that executable
file.

You do not need to do this when creating a dynamic library, because PowerBuilder
automatically includes every DataWindow object from the source library (PBL file) in
your new DLL or PBD file.

9.1.2.3 Creating a PowerBuilder resource file

A PBR file is an ASCII text file in which you list resource names (such as BMP, CUR, ICO,
and so on) and DataWindow objects. To create a PBR file, use a text editor. List the name of

Deployment Techniques

Page 420

each resource, one resource on each line, then save the list as a file with the extension PBR.
Here is a sample PBR file:

ct_graph.ico
document.ico
codes.ico
button.bmp
next1.bmp
prior1.bmp

To create and use a PowerBuilder resource file:

1. Using a text editor, create a text file that lists all resource files referenced dynamically in
your application (see below for information about creating the file).

When creating a resource file for a dynamic library, list all resources used by the
dynamic library, not just those assigned dynamically in a script.

2. Specify the resource files in the Project painter. The executable file can have a resource
file attached to it, as can each of the dynamic libraries.

When PowerBuilder builds the project, it includes all resources specified in the PBR
file in the executable file or dynamic library. You no longer have to distribute your
dynamically assigned resources separately; they are in the application.

Naming resources

If the resource file is in the current directory, you can simply list the file, such as:

FROWN.BMP

If the resource file is in a different directory, include the path to the file, such as:

C:\BITMAPS\FROWN.BMP

Paths in PBR files and scripts must match exactly

The file name specified in the PBR file must exactly match the way the resource is
referenced in scripts.

If the reference in a script uses a path, you must specify the same path in the PBR file. If the
resource file is not qualified with a path in the script, it must not be qualified in the PBR file.

For example, if the script reads:

p_logo.PictureName = "FROWN.BMP"

then the PBR file must read:

FROWN.BMP

If the PBR file says something like:

C:\MYAPP\FROWN.BMP

and the script does not specify the path, PowerBuilder cannot find the resource at runtime.
That is because PowerBuilder does a simple string comparison at runtime. In the preceding
example, when PowerBuilder executes the script, it looks for the object identified by the

Deployment Techniques

Page 421

string FROWN.BMP in the executable file. It cannot find it, because the resource is identified
in the executable file as C:\MYAPP\FROWN.BMP.

In this case, the picture does not display at runtime; the control is empty in the window.

Including DataWindows objects in a PBR file

To include a DataWindow object in the list, enter the name of the library (with extension
PBL) followed by the DataWindow object name enclosed in parentheses. For example:

sales.pbl(d_emplist)

If the DataWindow library is not in the directory that is current when the executable is built,
fully qualify the reference in the PBR file. For example:

c:\myapp\sales.pbl(d_emplist)

9.1.2.4 Choosing a packaging model

As indicated in the previous section, you have many options for packaging an executable
version of an application. Here are several of the most common packaging models you might
consider.

A standalone executable file

In this model, you include everything (all objects and resources) in the executable file, so that
there is just one file to deliver.

Illustration

The following figure shows a sample of what this model can look like.

Figure: Standalone executable model

Use

This model is good for small, simple applications -- especially those that are likely not to
need a lot of maintenance. For such projects, this model ensures the best performance and the
easiest delivery.

An executable file and external resources

Deployment Techniques

Page 422

In this model, you include all objects and most resources in the executable file, but you
deliver separate files for particular resources.

Illustration

The following figure shows a sample of what this model can look like.

Figure: Executable with external resources model

Use

This model is also for small, simple applications, but it differs from the preceding model in
that it facilitates maintenance of resources that are subject to change. In other words, it lets
you give users revised copies of specific resources without forcing you to deliver a revised
copy of the executable file.

You can also use this model to deal with resources that must be shared by other applications
or that are large and infrequently needed.

An executable file and dynamic libraries

In this model, you split up your application into an executable file and one or more dynamic
library files (DLLs or PBDs). When doing so, you can organize your objects and resources in
various ways. The following table shows some of these techniques.

Table 9.4: Object and resource organization with dynamic libraries

To organize You can

Objects Place them all in dynamic libraries so that there are none in the executable
file, which facilitates maintenance, or

Place a few of the most frequently accessed ones in the executable file to
optimize access to them and place all the rest in dynamic libraries.

Resources Place most or all of them in dynamic libraries along with the objects that use
them, which facilitates reuse, or

Place most or all of them in the executable file to optimize access to them.

Illustration

The following figure shows a sample of what this model can look like.

Deployment Techniques

Page 423

Figure: Executable with dynamic libraries model

Use

This model is good for most substantial projects because it gives you flexibility in organizing
and maintaining your applications. For instance, it enables you to make revisions to a
particular part of an application in one dynamic library.

Note

Whenever you revise an application, Appeon recommends that you always perform
a full rebuild and distribute the executable file and all the application's dynamic
libraries. For example, changes to any of the following objects might affect other
objects:

• Property names and types

• Function names

• Function arguments and return values

• The sequence of functions or properties in objects or groups

• Anything that might affect inherited objects in other PBLs

An executable file, dynamic libraries, and external resources

Deployment Techniques

Page 424

This model is just like the preceding one except that you deliver separate files for particular
resources (instead of including all of them in your executable file and dynamic libraries).

Illustration

The following figure shows a sample of what this model can look like.

Figure: Executable with dynamic libraries and external resources model

Use

This model is good for substantial applications, particularly those that call for flexibility in
handling certain resources. Such flexibility may be needed if a resource:

• Might have to be revised

• Must be shared by other applications

• Is large and infrequently used

Deployment Techniques

Page 425

9.1.2.5 Implementing your packaging model

When you have decided which is the appropriate packaging model for your application,
you can use the packaging facilities in PowerBuilder to implement it. For the most part, this
involves working in the Project painter. You can use the Project painter to build components,
proxy libraries, and HTML files as well as executable applications.

Using the Project painter for executable applications

The Project painter for executable applications orchestrates all aspects of the packaging job
by enabling you to:

• Specify the executable file to create

• Specify any dynamic libraries (DLL or PBD files) to create

• Specify the resources you want included in the executable file or in each particular
dynamic library (by using appropriate PBR files that indicate where to get those resources)

• Choose machine code or Pcode as the compiler format to generate

With machine code, you can also specify a variety of code generation options (such as
optimization, trace information, and error context information).

• Choose build options, including whether you want the Project painter to do a full
or incremental rebuild of your application's objects when generating the executable
application

• Save all of these specifications as a project object that you can use whenever necessary to
rebuild the whole package

For more information on using the Project painter, see Section 7.3.2, “Using the Project
painter” in Users Guide.

Building individual dynamic libraries

When you make revisions to an existing application, your changes might not affect all its
dynamic libraries. You can rebuild individual dynamic libraries from the pop-up menu in the
System Tree or the Library painter.

If changes are isolated and do not affect inherited objects in other PBLs, you might be able to
distribute individual PBDs to your users to provide an upgrade or bug fix. However, Appeon
recommends that you always perform a full rebuild and distribute the executable file and all
the application's dynamic libraries whenever you revise an application.

9.1.2.6 Testing the executable application

Once you create the executable version of your application, test how it runs before
proceeding with delivery. You may have already executed the application many times
within the PowerBuilder development environment, but it is still very important to run the
executable version as an independent application -- just the way end users will.

To do this, you:

1. Leave PowerBuilder and go to your operating system environment.

Deployment Techniques

Page 426

2. Make sure that the PowerBuilder runtime libraries are accessible to the application.

You can do this by verifying that the location of the PowerBuilder virtual machine and
other runtime files is in your PATH environment variable, or you can create a registry
entry for the application that specifies the path.

3. Run the application's executable file as you run any native application.

Tracing the application's execution

To help you track down problems, PowerBuilder provides tracing and profiling facilities
that you can use in the development environment and when running the executable version
of an application. Even if your application's executable is problem free, you might consider
using this facility to generate an audit trail of its operation. For more information on tracing
execution, see the PowerBuilder Users Guide.

9.1.2.7 Digitally signing the executable application

You can digitally sign the application's executable file and DLL file compiled in
PowerBuilder. Signing a PowerBuilder EXE or DLL is no different from signing the
other EXE/DLL. You can contact one of the digital certificate suppliers (such as DigiCert,
GlobalSign, Entrust, VeriSign) and follow their instructions to sign the file. Or you may
look into related discussions on the website first, for example, How can I digitally sign an
executable?.

9.1.3 Delivering your application to end users

When you deliver the executable version of your application to users, you need to install all
of the various files and programs in the right places, such as on their computers or on the
network.

Automating the deployment process

If you want to automate the deployment process, you might want to use a software
distribution application such as InstallShield. Such applications typically install all the
executables, resource files, data sources, and configuration files your users need to run your
application. They also update the users' initialization files and registry.

9.1.3.1 Installation checklist

You can use the following checklist to make sure you install everything that is needed. For
easy reading, the checklist is divided into:

• Installing environmental pieces

• Installing application pieces

Installing environmental pieces

Table 9.5:

Checklist item Details

Install the
PowerBuilder
runtime DLLs.

You should install all of these DLL files (which contain the
PowerBuilder execution system) locally on each user computer. They
are needed to run PowerBuilder applications independently (outside

https://stackoverflow.com/questions/3128205/how-can-i-digitally-sign-an-executable
https://stackoverflow.com/questions/3128205/how-can-i-digitally-sign-an-executable

Deployment Techniques

Page 427

Checklist item Details
the development environment). This applies to applications generated
in machine code as well as those generated in Pcode.

For details on installing the runtime DLLs, see PowerBuilder runtime
files.

Handling maintenance releases

If you are using a maintenance release of PowerBuilder in your
development environment, make sure you provide users with the
runtime DLLs from that maintenance release.

Install the database
interface(s).

You should install on each user computer any database interfaces
required by the application, such as the ODBC interface and other
native database interfaces.

For details on installing any database interfaces you need, see
Deploying Applications and Components. For more information
about database interfaces, see Part I, “Connecting to Your Database”.

Configure any
ODBC drivers you
install.

If you install the ODBC interface (and one or more ODBC drivers)
on user computers, you must also configure the ODBC drivers. This
involves defining the specific data sources to be accessed through
each driver.

For details on configuring ODBC drivers, see Section 2.1, “Using the
ODBC Interface” in Connecting to Your Database.

Set up network
access if needed.

If the application needs to access any server databases or any
other network services, make sure each user computer is properly
connected.

Configure
the operating
(windowing) system.

A particular application might require some special adjustments
to the operating or windowing system for performance or other
reasons. If that is the case with your application, be sure to make
those adjustments to each user computer.

Installing application pieces

Table 9.6:

Checklist item Details

Copy the
executable
application.

Make copies of the files that make up your executable application and
install them on each user computer. These files can include:

• The executable (EXE) file

• Any dynamic libraries (DLL or PBD files)

• Any files for resources you are delivering separately (such as ICO,
BMP, GIF, JPEG, PNG, RLE, WMF, or CUR files)

Handling maintenance releases

Deployment Techniques

Page 428

Checklist item Details
If you plan to revise these files on a regular basis, you might want to
automate the process of copying the latest versions of them from a server
on your network to each user computer.

You might consider building this logic right into your application. You
might also make it copy updates of the PowerBuilder runtime DLLs to a
user's computer.

Copy any
additional files.

Make copies of any additional files that the application uses and install
them on each user computer. These files often include:

• Initialization (INI) files

• Help (CHM) files

• Possibly various others such as text or sound files

In some cases, you might want to install particular files on a server
instead of locally, depending on their use.

Copy any local
databases to be
accessed.

If the application needs to access a local database, copy the files that
comprise that database and install them on each user computer.

Make sure that you also install the appropriate database interface and
configure it properly if you have not already done so.

Install any other
programs to be
accessed.

If the application needs to access any external programs, install each one
in an appropriate location -- either on every user computer or on a server.

Also, perform any configuration required to make those programs work
properly. For example, you might need to register ActiveX controls. For
more information, see Deploying ActiveX controls.

Ensure that the
application can
find the files it
needs.

Make sure you install the various files that your application uses on
paths where it can find them:

• If the application refers to a file by a specific path, then install the file
on that path.

• If the application refers to a file by name only, then install the file on
some path that the application is able to search -- typically the current
one.

Update the
system registry
with values for
the application.

If you rely on the Windows registry to manage certain information
needed by the application, such as the application path, be sure to update
the registry with such values.

Set up the
application's icon.

To enable users to start the application, use the windowing system on
each user computer to display the executable file's icon where you want.

Alternatively, users can also start the application in any other manner
provided for native applications under their windowing system.

Deployment Techniques

Page 429

9.1.3.2 Starting the deployed application

Users can run your application just as they run other Windows applications. For example,
they can double-click the executable file in Explorer or create an application shortcut on the
desktop and double-click the shortcut.

If users create a shortcut, the Target text box on the Shortcut properties page should specify
the path to the executable, and the Start In text box should specify the location of the runtime
DLLs.

9.2 Deploying Applications and Components

About this chapter

This chapter provides the information required to deploy applications and components
to users' computers and servers. It describes a tool you can use to package PowerBuilder
runtime files, and lists the files you need to deploy with various kinds of targets.

These lists of files sometimes need to be updated, as, for example, when new database
interfaces become available. For information about such changes, see the Release Bulletin for
the version of PowerBuilder you are using.

9.2.1 Deploying applications, components, and supporting files

Regardless of the type of application you are deploying, you must include any supporting
files such as dynamic libraries, resources like BMP and ICO files, online Help files, and
initialization files. Each application type requires a different set of supporting files. The
PowerBuilder runtime files, such as pbvm.dll and pbdwe.dll, and PowerBuilder database
interfaces such as pbin9 and pbo10.dll, can be freely distributed with your application with no
licensing fee.

Planning for deployment

Packaging an Application for Deployment helps you make decisions about deploying a
PowerBuilder executable application, such as whether to use dynamic libraries, Pcode or
machine code, and resource files. It also provides a checklist to make sure you install all the
required pieces.

If you are deploying a Web application or a transaction server component, you will find the
information about PowerBuilder dynamic libraries (PBDs) and PowerBuilder resource files
(PBRs) in that chapter helpful. You should also read the documentation for specific types of
applications, components, or plug-ins.

Finding information in this chapter

This chapter is intended to help you write installation programs using a third-party software
package that creates installation configurations. It tells you which files each computer needs,
where you can find the files, where they should be installed, and what registry settings need
to be made. PowerBuilder also provides a tool, described in PowerBuilder Runtime Packager,
to help you package the files your application needs.

Use the following table to locate information about the specific files you need to deploy with
your application.

Deployment Techniques

Page 430

Table 9.7: PowerBuilder files required for deployment

Scenario See these sections

All PowerBuilder client applications PowerBuilder runtime files

PowerBuilder client application accessing
data on a database server

Database connections

PowerBuilder clients for EJBs (obsolete),
SOAP Web services (obsolete), and XML
services

PowerBuilder extensions

PowerBuilder clients that save data in PDF or
XSL-FO format

PDF and XSL-FO export

Installed and deployment paths

The Installed path listed after some of the tables in this chapter is the location where files are
installed when you install PowerBuilder and select the default installation location. When you
build an installation program for your application, you can copy files from this location to
your staging area.

The Deployment path tells you where these files can be installed on the computer on which
you install your application or component.

App Path registry key

Some tables are followed by a list of the Registry entries your installation program needs to
make so that your application or component can find the files it needs. When an application
runs on Windows, it looks for supporting files in these locations and in this order:

1. The directory where the executable file is installed.

2. The Windows system and Windows directories (for example, in C:\WINDOWS\system32,
C:\WINDOWS\system, and C:\WINDOWS).

3. In an application path that can be specified in the registry.

4. In the system path.

You do not need to specify an application path, but it is recommended.

Specifying an application path

To specify the path the application uses to locate supporting files, your installation program
should create an App Path key for your application in this registry location:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\App Paths

Set the data value of the (Default) string value to the directory where the application is
installed and create a new string value called Path that specifies the location of shared files.
The following example shows a typical registry entry for an application called myapp.exe
that uses SQL Anywhere. The registry key is enclosed in square brackets and is followed by
string values for the key in the format "Name"="Value":

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\myapp.exe]
"Default"="C:\Program Files\myapps\myapp.exe"
"Path"="C:\Program Files\myapps;C:\Program Files\Appeon\Common\PowerBuilder\Runtime
 19.2.0.2382;C:\Program Files\SQL Anywhere 16\Bin32\;"

Deployment Techniques

Page 431

About REG files

Registry update files that have a .REG extension can be used to import information
into the registry. The format used in registry key examples in this chapter is similar to
the format used in registry update files, but these examples are not intended to be used
as update files. The path names in data value strings in registry update files typically
use a pair of backslashes instead of a single backslash, and the "Default" string value
is represented by the at sign (@).

Use the examples to help determine which registry keys your installation program
should add or update.

Deploying ActiveX controls

If your application uses ActiveX controls, OLE controls, or OCX controls, you must:

• Deploy the control files with your application

• Make sure each control is registered

• Make sure required files are in the target computer's system directory

If your application uses a control that is not self registering, your setup program needs to
register it manually on each user's computer. To find out whether a control is self registering,
see the documentation provided with the control. Depending on the development and
deployment platforms and the controls you are deploying, you might need to copy additional
DLLs or license files to the Windows system directories on the target computer.

9.2.2 PowerBuilder Runtime Packager

The PowerBuilder Runtime Packager is a tool that packages the PowerBuilder files an
application needs at runtime into a Microsoft Windows Installer (MSI) package file or a
Microsoft merge module (MSM). Windows Installer is an installation and configuration
service that is installed with recent Microsoft Windows operating systems. The MSM file
must be incorporated into an application MSI file using a merge tool before the components it
contains can be installed on a client computer.

You can use the MSM or MSI file generated by the Runtime Packager as part of an
installation package that includes the other files that your application needs.

You must have Microsoft Windows Installer on your system in order to run the Runtime
Packager successfully.

To get more information about Windows Installer, see the Microsoft documentation at http://
msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx.

Note

You must have Microsoft Visual C++ 2010 Redistributable Package (32-bit or 64-bit)
installed, if you use the EXE file generated by the Runtime Packager. You must also
have Microsoft .NET Framework 4.0 installed, if the Runtime Packager will install
components such as ADO.NET, MS Excel12 Support, and OData which rely on .NET
Framework to install and run.

http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx

Deployment Techniques

Page 432

The Runtime Packager can be used with client applications installed on Windows systems
and applications deployed to the .NET Framework. It does not install most third-party
components. See Third-party components and deployment for more information.

Make sure that you read the sections referenced in Table: PowerBuilder files required for
deployment that apply to your application for more information about where files that are not
installed by the Runtime Packager should be installed.

To use the PowerBuilder Runtime Packager:

1. Select Programs>Appeon PowerBuilder [version]>PowerBuilder Runtime Packager
[version] from the Windows Start menu or launch the pbpack210.exe file in your
%AppeonInstallPath%\PowerBuilder [version]\IDE directory.

2. Select the PowerBuilder Base Components.

3. Select the PowerBuilder Runtime Version.

4. Select whether to generate the PowerBuilder runtime files in a standalone MSI file or in
an MSM merge module.

5. Select a location for the generated MSI or MSM file.

6. Select the database interfaces your application requires.

The DLLs for the database interfaces you select are added to the package. For ODBC
and OLE DB, the pbodb.ini file is also added. For JDBC, the pbjdbc12.jar and pbjvm.dll
files are also added. The Java Runtime Environment (JRE) is not added. See Third-party
components and deployment.

Deployment Techniques

Page 433

Other ODBC or OLE DB files your application may require are not added. For
information about deploying these files, see ODBC database drivers and supporting files
and OLE DB database providers.

7. If your application uses the the following Web integration features, such as HTTPClient
object, RESTClient object, OAuth 2.0, and WebBrowser control, select the
corresponding check box.

The Runtime Packager adds the files listed for HTTPClient object, RESTClient object,
OAuth 2.0, and WebBrowser control in Table: Additional PowerBuilder runtime files.

8. If your application uses the rich text control for the RichTextEdit control or RichText
DataWindow, select the corresponding check box.

For 32-bit, you can select from

• TX TextControl ActiveX 15.0

• TX TextControl ActiveX 28.0

• Rich Edit Control (TE Edit Control) (in the Obsolete Features section)

For 64-bit, you can select from

• TX TextControl ActiveX 28.0

• Microsoft RichEdit Control (in the Obsolete Features section)

The Runtime Packager adds the files listed for the rich text support in Table: Additional
PowerBuilder runtime files.

Rich Edit Control and Microsoft RichEdit Control are obsolete

Rich Edit Control and Microsoft RichEdit Control are obsolete features. Obsolete
features are still available to use, but are no longer eligible for technical support and
will no longer be enhanced.

If your application uses the old editor (TX Text Control ActiveX 24.0 Professional/
Enterprise) for a RichTextEdit control or RichText DataWindow, you should follow the
vendor's documentation to package the files required for running this editor.

To know more about the built-in editor and the old editor, see Rich text editors.

9. If your application uses the following features such as data compression, encryption and
decryption, JSON support, NativePDF, RibbonBar control, UI theme, XML support,
and .NET assembly calls, select the corresponding check boxes.

The Runtime Packager adds the files listed for these feature supports in Table:
Additional PowerBuilder runtime files.

10. If your application saves DataWindow or graph data in Microsoft Excel format, select
the MS Excel12 Support check box.

Deployment Techniques

Page 434

The Runtime Packager adds the PBDWExcel12Interop.dll and
Sybase.PowerBuilder.DataWindow.Excel12.dll files to the MSM or MSI package that
you generate. It does not add the .NET Framework that is also required for Microsoft
Excel support.

The Sybase.PowerBuilder.DataWindow.Excel12.dll file will be automatically
installed to the Windows GAC folder, for example, C:\Windows\Microsoft.NET
\assembly\GAC_MSIL\Sybase.PowerBuilder.DataWindow.Excel12, if you run
the MSM or MSI package. However, if you manually copy runtime DLLs to
the client (instead of using the MSM or MSI package), make sure to copy the
Sybase.PowerBuilder.DataWindow.Excel12.dll file to the same directory as the
application executable, as this file is a C# assembly DLL and cannot be loaded through
the environment variable.

11. If your application uses the XML services provided by the PowerBuilder Document
Object Model or if it is an EJB client (obsolete), select the EJB client or PB DOM check
boxes.

The Runtime Packager adds the DLLs, PBXs, and JAR files required by the selected
component.

EJB client is obsolete

EJB client is obsolete features. Obsolete features are still available to use, but are no
longer eligible for technical support and will no longer be enhanced.

12. If your application is a SOAP Web services client or if your application uses Web
service DataWindows, select the SOAP Client for Web Service or Web Service
DataWindow Support check boxes.

The Runtime Packager adds required files for both the EasySoap and .NET Web
service engines when you select the SOAP Client for Web Service check box. For more
information about required files for these services, see PowerBuilder extensions.

Web service DataWindows and SOAP client are obsolete

Web service DataWindows (OData and SOAP) and SOAP client are obsolete
features. Obsolete features are still available to use, but are no longer eligible for
technical support and will no longer be enhanced.

13. Click Create.

The Runtime Packager creates an MSI or MSM file that includes the files required by
the components you selected, as well as the runtime DLLs for standard PowerBuilder
applications listed in the following table.

Deployment Techniques

Page 435

Table 9.8: Base components

Base components
selected

Files

PowerBuilder
components (Default
file name for
runtime package is
PBCLTRT.msi)

libjcc.dll

libjutils.dll

libjtml.dll

libsybunic.dll

nlwnsck.dll

pbacc.dll

pbAccessibility.dll

pbcomrt.dll

pbdpl.dll

pbdwe.dll

pbdwr.pbd

pbjag.dll

pbjvm.dll

pbresource.dll

pbshr.dll

pbsysfunc.dll

pbtra.dll

pbtrs.dll

pbuis.dll

pbvm.dll

The MSI file is a compressed file that can be executed directly on any Windows platform.
It registers any self-registering DLLs, adds the installation destination path to the Windows
Registry, sets the system PATH environment variable, and adds information to the Registry
for the Install/Uninstall page in the Windows Control Panel. It can also be used in some third-
party installation software packages.

The MSI file generated by the PowerBuilder Runtime Packager tool has been enhanced, so
that runtime files of different builds at the same major version (starting from 2019 R3 GA)
can be installed and coexisting on the same computer, for example, 2019 R3 and 2019 R2
can coexist, multiple 2019 R3 MRs can coexist. And the MSI file no longer sets the runtime
file path in the system PATH environment variable; therefore, the user will need to decide
which build of runtime files will be loaded by the application executable file and place the
application executable and the runtime files in the same folder.

The MSM file is similar to an MSI file, but the MSM file must first be merged into an
installation package before its components can be installed on a client computer. A merge
tool is required to merge the MSM file into an MSI installation package.

9.2.3 Third-party components and deployment

PowerBuilder applications have some dependencies on third-party components that
are installed with PowerBuilder. Most of these components are not installed with the
PowerBuilder Runtime Packager. You may redistribute some of these components with your
application, but others must be obtained from the vendor.

For information about components that can be freely downloaded, see the free download
terms document. A copy of this document is located on the Appeon website at https://
docs.appeon.com/policies/PowerBuilder_Installer_2021_FreeDownloadTerms.pdf.

9.2.3.1 Apache files

You may redistribute Apache files included with PowerBuilder to your users. Any use or
distribution of the Apache code included with PowerBuilder 2017 and later must comply with
the terms of the Apache License which is located in the free download terms document for
PowerBuilder 2017 and later.

https://docs.appeon.com/policies/PowerBuilder_Installer_2021_FreeDownloadTerms.pdf
https://docs.appeon.com/policies/PowerBuilder_Installer_2021_FreeDownloadTerms.pdf

Deployment Techniques

Page 436

Version 0.20.5 of the Apache Formatting Objects Processor (FOP) is required if your
application uses XSL-FO to save files as PDF. For more information about FOP, see the
Apache FOP website at http://xmlgraphics.apache.org/fop/.

The Apache Xerces files xerces-c_2_8.dll and xerces-depdom_2_8.dll are required for XML
Web DataWindow support, XML support for DataWindows and DataStores, PBDOM,
and SOAP clients for Web services (obsolete). For more information about Xerces, see the
Xerces C++ Parser website at http://xerces.apache.org/xerces-c/.

9.2.3.2 Microsoft files

Visual C++ runtime, Active Template, and GDI+ libraries

When you deploy the core PowerBuilder runtime files, you must ensure that the msvcr100.dll
and msvcp100.dll Microsoft Visual C++ runtime libraries and the Microsoft .NET Active
Template Library (ATL) module atl100.dll, are present on the user's computer or server.
The PowerBuilder runtime files have a runtime dependency on these files and they are
required for all applications and components that require the PowerBuilder runtime.
You can obtain these DLL files from the %systemdrive%\Program Files (x86)\Appeon
\Common\PowerBuilder\Runtime [version]\ (for 32-bit) or %systemdrive%\Program Files
(x86)\Appeon\Common\PowerBuilder\Runtime [version]\x64 (for 64-bit) folder, or from the
DLL archive website. Make sure you obtain the same version (32-bit or 64-bit) of the these
DLL files as the version (32-bit or 64-bit) of the PowerBuilder application executable.

The PowerBuilder runtime files also have a runtime dependency on Microsoft Windows GDI
+ (gdiplus.dll). The GDI+ graphics design interface is included by default in the system paths
of all Windows platforms currently supported by PowerBuilder.

Files must be installed before running MSI or MSM file

Some files installed by the MSI or MSM file generated by the PowerBuilder Runtime
Packager have dependencies on these files. For example, atl100.dll and gdiplus.dll
must be installed on the user's computer before the pbjvm.dll file can be registered.
Make sure these files are on the target computer before you run the installation
module generated by the Runtime Packager.

Ink picture libraries

Microsoft.Ink, Microsoft.Ink.dll, and Microsoft.Ink.Resources.dll are required if your
application uses InkEdit and InkPicture controls. These files are part of the Microsoft .NET
Framework 3.5 and later, and are available at C:\Windows\winsxs and its sub-folders
after .NET framework is installed.

DirectX runtime

PowerBuilder applications can use DirectX 3D rendering to display 3D graphs (Pie3D,
Bar3D, Column3D, Line3D, and Area3D) with a more sophisticated look. You can use data
item or series transparency with the DirectX graph styles to improve the presentation of data.

The DirectX 3D rendering depends on the DirectX runtime. The first time you select the
Render3D check box on the General tab of the Properties view for a 3D graph, PowerBuilder
launches the DirectX installer. If you opt out of the installation, the Render3D property
is ignored. End users of PowerBuilder applications must also have the DirectX runtime
installed on their computers to view the DirectX graph styles. You can download a

http://xmlgraphics.apache.org/fop/
http://xerces.apache.org/xerces-c/

Deployment Techniques

Page 437

redistributable package containing the DirectX runtime from the Microsoft website at https://
www.microsoft.com/en-us/download/details.aspx?id=9894.

For computers with older graphics drivers, you can check whether DirectX is supported by
running dxdiag.exe. This file is typically installed in the Windows\System32 directory. The
Display tab of the DirectX Diagnostic Tool that opens when you run dxdiag.exe indicates
whether Direct3D is enabled.

9.2.3.3 Oracle files

The Java Runtime Environment (JRE) is required for EJB clients (obsolete), JDBC
connections, and saving as PDF using XSL-FO. For a copy of third-party terms and
conditions for the JRE, see the free download terms document.The JRE can be downloaded
from the Oracle Technology Network at http://www.oracle.com/technetwork/java/javase/
downloads/index.html.

9.2.3.4 Software used for SOAP clients for Web services (Obsolete)

Note

SOAP clients (including .NET Web service engine and EasySoap Web service
engine) for Web services are obsolete. Obsolete features are still available to use, but
are no longer eligible for technical support and will no longer be enhanced.

PowerBuilder includes the EasySoap++ library in executable form in EasySoap.dll, which
is dynamically linked to pbsoapclient.pbx. The EasySoap++ library and its use are covered
by the GNU Lesser General Public License (LGPL). For a copy of this license, see the free
download terms document.

You may distribute the EasySoap++ library to third parties subject to the terms and
conditions of the LGPL. Please read the LGPL prior to any such distribution.

The complete machine-readable source code for the EasySoap++ library is provided in the
EasySoap.zip file in the Support\WSExtn folder on the DVD. In addition, the object code and
Microsoft Visual C++ project file for the pbsoapclient.pbx are provided in the soapclient.zip
file in the same directory.

These files are provided under the terms of the LGPL so that you can modify the EasySoap
++ library and then relink to produce a modified EasySoap.dll. You can also relink
pbsoapclient.pbx with the modified EasySoap++ import library. According to the terms of the
LPGL, it is understood that you will not necessarily be able to recompile pbsoapclient.pbx to
use the definitions you have modified in the EasySoap++ library.

Follow the instructions in the Readme.txt file in the soapclient.zip file to build
pbsoapclient.pbx.

9.2.4 PowerBuilder runtime files

9.2.4.1 List of runtime files

All PowerBuilder runtime DLL files are digitally signed (starting from PowerBuilder 2019
R2).

https://www.microsoft.com/en-us/download/details.aspx?id=9894
https://www.microsoft.com/en-us/download/details.aspx?id=9894
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Deployment Techniques

Page 438

Database connectivity

Files required for database connectivity are listed separately in Database connections.

Core runtime files

The following table lists the core PowerBuilder runtime files.

Table 9.9: Core PowerBuilder runtime files

Name Required for

pbvm.dll All.

pbshr.dll All. pbvm.dll has dependencies on this file.

libjcc.dll All. pbvm.dll has dependencies on this file.

libsybunic.dll All. pbvm.dll has dependencies on this file.
Required in 32-bit only.

libjutils.dll All. libjcc.dll has dependencies on this file.
Required in 32-bit only.

libjtml.dll All. libjcc.dll has dependencies on this file.
Required in 32-bit only.

nlwnsck.dll All. libjcc.dll has dependencies on this file.
Required in 32-bit only.

pbuis.dll All. pbvm.dll has dependencies on this file.

pbdwe.dll, pbdwr.pbd DataWindows and DataStores.

pbsysfunc.dll System functions.

pbresource.dll PowerBuilder resource file.

pbacc.dll, PBAccessibility.dll * UI accessibility and automation support
(Section 508)

pbjvm.dll, pbjag.dll Java support

pbtra.dll, pbtrs.dll Database connection tracing

pbdpl.dll Data pipeline support

pbcomrt.dll COM/COM+ support

The UI accessibility and automation support (Section 508) is turned on by default through the
PowerBuilder initialization file. For more, see here.

Microsoft files

When you deploy the core PowerBuilder runtime files, you must also deploy the
msvcr100.dll and msvcp100.dll Microsoft Visual C++ runtime libraries and the
Microsoft .NET Active Template Library (ATL) module atl100.dll, if they are not present
on the user's computer. The PowerBuilder runtime files have a runtime dependency on these
files. See Third-party components and deployment for more information.

Additional runtime files

The following table lists additional runtime files that your application might not require. For
example, pbvm.dll is required for all deployed applications, but pbrtc.dll and its associated

Deployment Techniques

Page 439

runtime files are required only if your application uses Rich Text controls or RichText
DataWindow objects.

For more information about deploying applications that use the pbjvm.dll for Java support,
see Java support.

Table 9.10: Additional PowerBuilder runtime files

Name Required for

pbhttpclient.dll HTTPClient support

pboauth.dll OAuth 2.0 support

pbrestclient.dll, pbhttpclient.dll,
pboauth.dll, pbcompression.dll, pbjson.dll

RESTClient support

pbwebbrowser.dll (and its
dependent DLLs: chrome_elf.dll,
d3dcompiler_43.dll, d3dcompiler_47.dll,
libEGL.dll, libGLESv2.dll, libcef.dll,
swiftshader/libEGL.dll, swiftshader/
libGLESv2.dll) and "pbcef" folder

WebBrowser support

pbrtc.dll, PBTXTEXT.dll, podofo.dll,
tp4ole15.ocx, tp15.dll, tp15_bmp.flt,
tp15_css.dll, tp15_doc.dll, tp15_dox.dll,
tp15_gif.flt, tp15_htm.dll, tp15_ic.dll,
tp15_ic.ini, tp15_jpg.flt, tp15_obj.dll,
tp15_pdf.dll, tp15_png.flt, tp15_rtf.dll,
tp15_tif.flt, tp15_tls.dll, tp15_wmf.flt,
tp15_wnd.dll

TX Text Control ActiveX 15.0 (32-bit)

pbrtc.dll, PBTXTEXT.dll, podofo.dll,
tx4ole28.ocx, tx28.dll, tx28_tls.dll,
tx28_wnd.dll, tx28_obj.dll,
tx28_ic.dll, tx28_rtf.dll, tx28_htm.dll,
tx28_doc.dll, tx28_xml.dll, tx28_css.dll,
tx28_pdf.dll, tx28_dox.dll, tx28_xlx.dll,
mfc90u.dll, msvcr90.dll, msvcr120.dll,
Microsoft.VC90.CRT.manifest,
Microsoft.VC90.MFC.manifest

TX Text Control ActiveX 28.0 (32-bit)

pbrtc.dll, PBTXTEXT.dll, podofo.dll,
tx4ole28.ocx, tx28.dll, tx28_css.dll,
tx28_doc.dll, tx28_dox.dll,
tx28_htm.dll, tx28_ic.dll, tx28_obj.dll,
tx28_pdf.dll, tx28_rtf.dll, tx28_tls.dll,
tx28_wnd.dll, tx28_xlx.dll, tx28_xml.dll,
mfc90u.dll, msvcr90.dll, msvcr120.dll,
Microsoft.VC90.CRT.manifest,
Microsoft.VC90.MFC.manifest

TX Text Control ActiveX 28.0 (64-bit)

pbcompression.dll Compression and extraction support (used by
CompressorObject and ExtractorObject)

Deployment Techniques

Page 440

Name Required for

pbcrypt.dll Encryption and decryption support (used by
CoderObject and CrypterObject)

pbjson.dll JSON support

PBDWExcel12Interop.dll,
Sybase.PowerBuilder.DataWindow.Excel12.dll

MS Excel12 support

pbpdf.dll NativePDF support (Saving DataWindows as
PDF files using the NativePDF! method)

PBDOM.pbx PB DOM

PBRibbonBar.dll (and its dependent
DLLs: PBXerces.dll, xerces-c_2_8.dll,
xerces-depdom_2_8.dll, pbjson.dll)

RibbonBar support

pbtheme.dll, pbjson.dll, and "theme"
folder

("theme" folder must be manually
copied from the "%AppeonInstallPath%
\PowerBuilder [version]\IDE" directory)

UI theme support

PBXerces.dll, xerces-c_2_8.dll, xerces-
depdom_2_8.dll

XML support (for DataWindows\DataStores and
Web DataWindow)

PBDotNet.dll,
PBDotNetFrameworkInvoker.dll,
PBDotNetCoreInvoker.dll

.NET assembly calls

pblab.ini Label DataWindow presentation-style predefined
formats

pbejbclient.pbx, pbejbclient.jar EJB Client (Obsolete)

pbrtc.dll, PBMSText.dll Microsoft RichEdit Control (64-bit) (Obsolete)

pbrtc.dll, PBTCTEXT.dll, TER25.dll,
WRS9.dll, spell32.dll, PDC32.dll,
WRW9.dll, HTS20.DLL, ssts.dll,
SSGP.dll, TXML2.dll

Rich Edit Control (TE Edit Control) (32-bit)
(Obsolete)

Gnu--LGPL.txt, EasySoap.dll,
Thai Open License.txt, ExPat.dll,
LICENSE, libeay32.dll, ssleay32.dll,
pbsoapclient.pbx, pbwsclient.pbx,
pbNetWSRuntime.dll

SOAP Client for Web Service (Obsolete)

Sybase.PowerBuilder.WebService.Runtime.dll,
Sybase.PowerBuilder.WebService.RuntimeRemoteLoader.dll,
Sybase.PowerBuilder.WebService.WSDL.dll,
Sybase.PowerBuilder.WebService.WSDLRemoteLoader.dll

Web service DataWindows (Obsolete)

Installed path

%systemdrive%\Program Files (x86)\Appeon\Common\PowerBuilder\Runtime [version].

Deployment Techniques

Page 441

The Sybase DLLs are installed to %AppeonInstallPath%\PowerBuilder 21.0\DotNET\bin.

The Sybase.PowerBuilder.DataWindow.Excel12.dll file will be automatically installed to
the Windows GAC folder, for example, C:\Windows\Microsoft.NET\assembly\GAC_MSIL
\Sybase.PowerBuilder.DataWindow.Excel12, if you run the MSM or MSI package. However,
if you manually copy runtime DLLs to the client (instead of using the MSM or MSI
package), make sure to copy the Sybase.PowerBuilder.DataWindow.Excel12.dll file to the
same directory as the application executable, as this file is a C# assembly DLL and cannot be
loaded through the environment variable.

Deployment path

Same directory as the application, in a directory on the system path, or in the App Path
registry key.

Registry entries

See App Path registry key.

Localized runtime files

Localized runtime files are provided for French, German, Italian, Spanish, Dutch, Danish,
Norwegian, and Swedish. These files are usually available shortly after the general release
of a new version of PowerBuilder. The localized runtime files let you deploy PowerBuilder
applications with standard runtime dialog boxes in the local language. They handle language-
specific data when the application runs.

For more information, see Localizing the product.

9.2.4.2 Installing PowerBuilder Runtime

Starting from version 2019 R3, the PowerBuilder runtime files are provided as an installable
independent component in the PowerBuilder Installer. When you run the PowerBuilder
Installer, the latest Runtime and IDE can be selected and installed respectively; and you will
need to install Runtime before IDE if no runtime has been installed on the machine, because
IDE requires a runtime to start.

To install PowerBuilder Runtime:

1. Run the PowerBuilder Installer.

2. Click Install/Modify or Update and then select PowerBuilder Runtime in the
Components tab and then click Install or Update.

Multiple versions of "PowerBuilder Runtime" can be installed on the same machine.

"PowerBuilder Runtime" is always installed to %systemdrive%\Program Files (x86)\Appeon
\Common\PowerBuilder\Runtime [version], for example, C:\Program Files (x86)\Appeon
\Common\PowerBuilder\Runtime 19.2.0.2388 ("19.2" indicates 2019 R3); and its version
number and installation directory are recorded in the system registry path:

The 32-bit apps in 32-bit OS search for this registry: HKEY_LOCAL_MACHINE
\SOFTWARE\Sybase\PowerBuilder Runtime

The 32-bit apps in 64-bit OS search for this registry: HKEY_LOCAL_MACHINE
\SOFTWARE\Wow6432Node\Sybase\PowerBuilder Runtime

Deployment Techniques

Page 442

The 64-bit apps in 64-bit OS search for this registry: HKEY_LOCAL_MACHINE
\SOFTWARE\Sybase\PowerBuilder Runtime

If there are multiple versions of "PowerBuilder Runtime" installed, there will be multiple
"Runtime [version]" installation folders and multiple registry entries.

Note

Pay attention to the following major changes caused by the separation of Runtime
from IDE:

• All runtime DLLs that used to be installed to the "Shared" folder are now
separately installed to the "Runtime [version]" folder and the "IDE" folder instead,
in order to physically separate Runtime files from IDE files.

"Runtime [version]" folder contains the files required at runtime. Example location:
C:\Program Files (x86)\Appeon\Common\PowerBuilder\Runtime 19.2.0.2556.

"IDE" folder contains the support files required by IDE. Example location: C:
\Program Files (x86)\Appeon\PowerBuilder 21.0\IDE.

• The runtime file location is no longer recorded in the PATH environment variable;
it is recorded in the system registry instead.

• The runtime files (including .dll, .ini, .pbx, .pbd etc.) are renamed so that the
version number indicator (such as "170", "190") that used to be appended to the file
name is removed, for example, pbvm190.dll is renamed as pbvm.dll.

If any external program has called the runtime file, you may need to change the code
accordingly.

Download runtime files for 2017 R3, 2019, and 2019 R2

To help developers conveniently get the runtime files for versions earlier than
2019 R3, Appeon provides the runtime files as zip packages on the site: https://
www.appeon.com/developers/get-help/knowledgebase-for-pb. You can download
from here the runtime files for 2017 R3, 2019, and 2019 R2.

If you want to uninstall a runtime version which is currently used by the IDE, you will be
prompted to confirm the uninstall; and if you continue to uninstall, the IDE will automatically
find the best matching version (normally the latest) available on the machine, or will fail to
work if no compatible runtime version is found.

9.2.4.3 Selecting a version of PowerBuilder Runtime

When there are more than one version of PowerBuilder Runtime installed, you can determine
which version of PowerBuilder Runtime will be loaded by the PowerBuilder IDE or by the
application executable.

Selecting a version of PowerBuilder Runtime for the PowerBuilder IDE

By default, the latest PowerBuilder Runtime that is installed will be used by the
PowerBuilder IDE. If a newer version of PowerBuilder Runtime is installed, you will be
prompted to switch to the newer version and compile the PowerScripts with the newer

https://www.appeon.com/taxonomy/term/1074/1075
https://www.appeon.com/taxonomy/term/1074/1075

Deployment Techniques

Page 443

version when you open PowerBuilder IDE. Or you can manually change to use a different
PowerBuilder Runtime for the IDE. The PowerBuilder Runtime will be used by the IDE to
run, debug, compile, and build the application.

To manually change a PowerBuilder Runtime for the PowerBuilder IDE:

1. Select Tools>System Options.

2. On the General tab, select a version from the Switch PowerBuilder Runtime Version list.

3. Restart PowerBuilder IDE for the change to take effect.

If more than one instances of IDE are running, make sure to restart all instances.

The PowerBuilder IDE will load the runtime files according to the specified version. If the
specified version of runtime failed to load, IDE will load the latest version of runtime that is
installed and compatible with the IDE.

PowerBuilder IDE can work with PowerBuilder Runtime at the same or earlier versions, for
example:

Table 9.11:

IDE (including MRs) Supported Runtime
(including MRs)

Unsupported Runtime

2019 R3 2019 R3 2021 or later

2021 2019 R3, 2021 2022 or later

2022 2019 R3, 2021, 2022 2022 R2 or later

2022 R2 2019 R3, 2021, 2022, 2022
R2

2022 R3 or later

2022 R3 2019 R3, 2021, 2022, 2022
R2, 2022 R3

2023 or later

Selecting a version of PowerBuilder Runtime for the application executable

The application executable in this section refers to the native C/S application compiled using
Pcode only, excluding the application compiled using machine code and the application
deployed by PowerClient.

If the application is compiled using machine code, follow instructions in Compiler basics to
configure the runtime files.

If the application is deployed using PowerClient, it will not be able to select PowerBuilder
Runtime (the runtime version used by the IDE will be used by the application by default).

Note

Applications deployed using PowerClient cannot switch the runtime version like the
native C/S application. But developers can deploy the same application with different
application names and with different runtime versions (the runtime version used by
the IDE will be used for deployment, so developers can manually change the runtime
version in the IDE before deployment), and then run the application using different
names against the corresponding runtime version.

Deployment Techniques

Page 444

To configure which version of PowerBuilder Runtime will be used by the application
executable,

1. Specify the version of PowerBuilder Runtime in the configuration file (executable-
name.xml).

The configuration file is automatically created by default using the same name under the
same directory as the application executable, for example, if the application executable is
app1.exe, then the configuration file is app1.xml. (However, this file will not be generated
if the application is compiled using machine code.)

By default, the configuration file contains the runtime path and version which is specified
on the Run tab of the application project painter. You can open the configuration file in
an editor and change the runtime path and version that will be loaded by the application
executable.

If the PowerBuilder Runtime files are placed in the same directory as the application
executable, you could specify a relative path.

For example, if the "Runtime" folder is in the same folder as the executable file:

<RuntimePath>\Runtime\Runtime 19.2.0.2588</RuntimePath>

or if the "Runtime" folder is placed next to the folder which contains the executable file:

<RuntimePath>..\Runtime\Runtime 19.2.0.2588</RuntimePath>

2. Make sure to keep the configuration file in the same folder as the application executable
when you distribute the application package.

Note

If you want to use the configuration file to determine the runtime files, make sure no
runtime files exist under the same directory as the executable file, otherwise, these
runtime files will be loaded before the ones specified in the configuration file.

Make sure you have correctly specified the runtime path in the configuration file, otherwise,
the application will throw an error if it failed to load the runtime file. If you do not want to
use the configuration file, make sure to remove it, then the application will search for the
runtime DLLs in the following sequence:

1. the runtime version used during the application compilation

2. the best matching version recorded in the system registry (normally the latest compatible
version; and the application will not look for a version older than the one used for
compilation)

3. the runtime path listed in the PATH environment variable

Environment variable

The location of PowerBuilder Runtime is no longer listed in the environment variable
starting from version 2019 R3; instead it is recorded in the system registry by default.
But you can add the location to the PATH environment variable by yourself.

Deployment Techniques

Page 445

The application executable can run against PowerBuilder Runtime at the same or later
versions, for example:

Table 9.12:

Application executable
compiled with Runtime

Can run with Runtime Cannot run with Runtime

2019 R3 2019 R3 or later 2019 R2 or earlier

2021 2021 or later 2019 R3 or earlier

2022 2022 or later 2021, 2019 R3, or earlier

2022 R2 2022 R2 or later 2022, 2021, 2019 R3, or
earlier

2022 R3 2022 R3 or later 2022 R2, 2022, 2021, 2019
R3, or earlier

9.2.5 Database connections

If you are deploying an executable or component that accesses a database, your users need
access to the DBMS and to the database your application uses.

Where to install database connectivity files

You do not need to deploy database connectivity files with a client application
that relies on a middle-tier component on another computer to perform database
transactions. Database connectivity files must be deployed on the computer that
interacts with the database server.

You need to:

• If necessary, install the DBMS runtime (client) files in the application directory or in a
directory on the system path

If your application uses a standalone SQL Anywhere database, you can install the SQL
Anywhere Runtime Edition files on the user's computer. For more information, see SQL
Anywhere files. Otherwise follow the instructions and licensing rules specified by the
vendor.

• Make sure each user has access to the database the application uses

If your application uses a local database, install the database and any associated files, such
as a log file, on the user's computer.

If your application uses a server database, make sure the user's computer is set up to access
the database. This may be the task of a database administrator.

• Install any database interfaces your application uses on the user's computer

• If your application uses the ODBC interface, configure the ODBC database drivers and
data sources, as described in Configuring ODBC data sources and drivers

For more information about database drivers and interfaces, see:

Deployment Techniques

Page 446

• Native database drivers

• ODBC database drivers and supporting files

• OLE DB database providers

• ADO.NET database interface

• JDBC database interface

9.2.5.1 Native database drivers

The following table lists the native database drivers supplied with PowerBuilder. If an
application or component uses the database specified, the file is required on the computer.
The first two characters of the native database file name are PB, the next three characters
identify the database, and the last two identify the version of PowerBuilder.

Table 9.13: PowerBuilder native database drivers

Name Required for

pbin9.dll Informix v9.x Interface (IN9)

pbi10.dll Informix v10.x & v12.x Interface (I10)

pbo90.dll Oracle 9i (O90)

pbo10.dll Oracle 10g (O10)

pbora.dll Oracle 11g and later (ORA)

pbmsoledbsql.dll Microsoft OLE DB Driver for SQL Server

pbsnc.dll SQL Native Client for Microsoft SQL Server
(SNC)

pbdir.dll DirectConnect (DB)

pbase.dll Adaptive Server Enterprise CT-LIB for
Adaptive Server 15.x & 16.x (ASE)

pbsyc.dll Adaptive Server Enterprise CT-LIB (SYC)

pbodw.dll, pbodt.dll, pbCSI.dll,
Sybase.PowerBuilder.DataSource.OData.dll,
Sybase.PowerBuilder.ODataClient.dll,
Sybase.PowerBuilder.ODataWrapper.dll

OData database interface (ODT)

Installed path

%systemdrive%\Program Files (x86)\Appeon\Common\PowerBuilder\Runtime [version]\

Deployment path

Same directory as the application, in a directory on the system path, or in the App Path
registry key.

Registry entries

See App Path registry key.

Deployment Techniques

Page 447

9.2.5.2 ODBC database drivers and supporting files

This section lists files that are required for all ODBC database connections from
PowerBuilder or InfoMaker applications, as well as files required for a specific database
interface or DBMS.

PowerBuilder ODBC interface files

The following PowerBuilder ODBC interface files are required if your application uses
ODBC:

Table 9.14: PowerBuilder ODBC interface files

Name Description

pbodb.dll PowerBuilder ODBC interface

pbodb.ini PowerBuilder ODBC initialization file

Installed path

%systemdrive%\Program Files (x86)\Appeon\Common\PowerBuilder\Runtime [version]\

Deployment path

Same directory as the application, in a directory on the system path, or in the App Path
registry key.

Registry entries

See App Path registry key.

Notes

The PBODB.ini file must be in a directory defined by the HKEY_CURRENT_USER
\Software\sybase\PowerBuilder\21.0\InitPath registry setting or, in the absence of that key,
in the same directory as the DLL file. In most cases, the target deployment machine will not
have the registry setting and, therefore, the INI file should be in the same directory as the
DLL.

Microsoft ODBC files

The following table lists the Microsoft ODBC files that are required if your application uses
ODBC.

Table 9.15: Microsoft ODBC files

Name Description

DS16GT.dll

DS32GT.dll

ODBC32.dll

ODBC32GT.dll

ODBCAD32.exe

ODBCCP32.cpl

ODBCCP32.dll

ODBCCR32.dll

Microsoft ODBC driver
manager, DLLs, and Help files

Deployment Techniques

Page 448

Name Description
ODBCINST.cnt

ODBCINST.hlp

ODBCINT.dll

ODBCTRAC.dll

Installed path

Windows system directory.

Deployment path

Windows system directory.

Registry entries

None.

Notes

The Microsoft ODBC Driver Manager (ODBC32.dll) and supporting files are usually already
installed in the user's Windows system directory.

SQL Anywhere files

If your PowerBuilder application uses a SQL Anywhere database, you need to deploy the
SQL Anywhere DBMS as well as SQL Anywhere's ODBC database drivers.

Restrictions

PowerBuilder includes SQL Anywhere for use during the development process.
However, this product cannot be deployed royalty-free to your users.

If your application requires the data definition language (DDL), a transaction log,
stored procedures, or triggers, see your sales representative.

If your application uses a standalone database, you can deploy the SQL Anywhere Desktop
Runtime System to users' computers without incurring additional license fees. The runtime
system allows the user to retrieve and modify data in the database, but does not allow
modifications to the database schema. It does not support transaction logs, stored procedures,
or triggers.

A full installation for the SQL Anywhere driver, runtime engine, and supporting files is
available in the PowerBuilder setup program.

The following table lists some of the files that are installed. For more information see the
RuntimeEdition.html file in the installed SQL Anywhere directory. It contains a list of all the
SQL Anywhere files that can be freely deployed with PowerBuilder applications to end users'
computers.

Table 9.16: SQL Anywhere files

Name Description

dbodbc11.dll SQL Anywhere ODBC driver

Deployment Techniques

Page 449

Name Description

dbbackup.exe SQL Anywhere backup utility

dbcon11.dll Connection dialog box, required if you do not provide your own dialog
box and your end users are to create their own data sources, if they need to
enter user IDs and passwords when connecting to the database, or if they
need to display the Connection dialog box for any other purpose

dbisqlc.exe Interactive SQL utility

dblgen11.dll Language-specific string library (EN indicates the English version)

dblib11.dll Interface library

dbtool11.dll SQL Anywhere database tools

dbunlspt.exe SQL Anywhere unload utility

dbvalid.exe SQL Anywhere validation utility

rteng11.exe Restricted runtime engine

rteng11.lic License file for restricted runtime engine

dbctrs11.dll Performance utility

dbserv11.dll Server utility

Installed path

\Program Files\SQL Anywhere 16\bin32 or \bin64

Deployment path

Same directory as the application, in a directory on the system path, or in the App Path
registry key.

Registry entries

See App Path registry key and Configuring ODBC data sources and drivers.

Privilege requirements on Windows

When running under User Account Control, the SQL Anywhere restricted runtime engine
(rteng11.exe) and other SQL Anywhere executables require elevated privileges. For
Windows 8.1 and later versions of Windows, you can use the SQL Anywhere elevated
operations agent (dbelevate11.exe) to elevate the privileges of users running these
executables and allow non-elevated client processes to autostart elevated servers or database
engines. The following DLLs also require elevated privileges when they are registered and
unregistered: dbcon11.dll, dbctrs11.dll, dbodbc11.dll, dboledb11.dll, and dboledba11.dll.

Notes

Supporting files should be installed in the same directory as dbodbc11.dll. If you are
not using the English string library, make sure you deploy the appropriate version of the
language-specific string library.

Configuring ODBC data sources and drivers

ODBC.INI

To allow the user to connect to a particular data source, your installation program must
provide a definition for that data source in the ODBC.INI key in the registry on the

Deployment Techniques

Page 450

computer that accesses the data source, in HKEY_CURRENT_USER for a user DSN or
in HKEY_LOCAL_MACHINE for a system DSN. The data source definition specifies
the name and location of the database driver as well as the command required to start the
database engine. The data source in the ODBC Data Sources key must also be listed in
ODBC.INI.

The following shows typical registry entries for a data source called MyApp DB that uses
SQL Anywhere. Registry keys are enclosed in square brackets and are followed by string
values for that key in the format "Name"="Value":

[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI\MyApp DB]
"Driver"="C:\Program Files\SQL Anywhere 16\bin32\dbodbc16.dll"
"Start"="c:\program files\SQL Anywhere 16\bin32\dbeng16.exe -c9m"
"UID"="dba"
"PWD"="sql"
"Description"="Database for my application"
"DatabaseFile"="C:\Program Files\myapps\myapp.db"
"AutoStop"="Yes"

[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI\ODBC Data Sources]
"MyApp DB"="SQL Anywhere 16.0"

ODBCINST.INI

Your installation program needs to make two types of entry in the ODBCINST.INI key
in HKEY_LOCAL_MACHINE\SOFTWARE\ODBC for each driver that your deployed
application uses:

• Add a string value with the name of the driver and the data value "Installed" to the ODBC
DRIVERS key in ODBCINST.INI

• Add a new key for each driver to the ODBCINST.INI key with string values for Driver and
Setup

Some drivers require additional string values in ODBCINST.INI.

If the ODBC database driver files are not located in a directory on the system path, you also
need to add their location to the App Paths key for the executable file.

If you are using ODBC drivers obtained from a vendor, you can use the driver's setup
program to install the driver and create registry entries.

The following shows a typical registry entry for SQL Anywhere. A registry key is enclosed in
square brackets and is followed by string values for the key in the format "Name"="Value":

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\SQL Anywhere 16.0]
"Driver"="c:\program files\SQL Anywhere 16\bin32\dbodbc16.dll"
"Setup"="c:\program files\SQL Anywhere 16\bin32\dbodbc16.dll"

For more information about the contents of the registry entries for ODBC drivers and data
sources, see Section 2.1.3.1, “How PowerBuilder accesses the data source” in Connecting to
Your Database.

9.2.5.3 OLE DB database providers

If your application uses OLE DB to access data, you must install Microsoft's Data Access
Components software on each user's computer if it is not installed already.

Deployment Techniques

Page 451

The PowerBuilder OLE DB interface requires the functionality of the Microsoft Data Access
Components (MDAC) version 2.8 or later software.

To check the version of MDAC on a computer, users can download and run the MDAC
Component Checker utility from the MDAC Downloads page at https://msdn.microsoft.com/
en-us/data/aa937730.aspx.

On the Windows 8.1/10 operating systems, the Windows Data Access Components
(DAC) version 6.0 replaces MDAC, and implements the functionality requirements of the
PowerBuilder OLE DB interface.

OLE DB data providers

Several Microsoft OLE DB data providers are automatically installed with MDAC
and DAC, including the OLE DB Provider for SQL Server (SQLOLEDB) and OLE
DB Provider for ODBC (MSDASQL).

OLE DB Provider for SQL Server (SQLOLEDB) is not maintained any more and it is
not recommended to use it for new development work. Instead, use the new OLE DB
Driver for SQL Server (MSOLEDBSQL) which will be updated with the most recent
server features. The new OLE DB Driver for SQL Server (MSOLEDBSQL) must be
used with the "MSOLEDBSQL SQL Server" interface (instead of the "OLE Microsoft
OLE DB" interface) installed with PowerBuilder.

PowerBuilder OLE DB interface files

The PowerBuilder OLE DB interface file is required if your application uses OLE DB. The
ODBC initialization file is required if you have used it to customize OLE DB settings:

Table 9.17: PowerBuilder OLE DB interface files

Name Description

pbole.dll PowerBuilder OLE DB interface

pbodb.ini PowerBuilder ODBC initialization file

Installed path

%systemdrive%\Program Files (x86)\Appeon\Common\PowerBuilder\Runtime [version]\

Deployment path

Same directory as the application, in a directory on the system path, or in the App Path
registry key.

Registry entries

See App Path registry key.

Notes

The INI and DLL files must be in the same directory. If you have modified the pbodb.ini file,
make sure you deploy the modified version.

9.2.5.4 ADO.NET database interface

The PowerBuilder ADO.NET interface supports the OLE DB, Microsoft SQL Server .NET,
Oracle ODP.NET, and SAP ASE data providers. If you use ADO.NET, you must deploy

https://msdn.microsoft.com/en-us/data/aa937730.aspx
https://msdn.microsoft.com/en-us/data/aa937730.aspx

Deployment Techniques

Page 452

pbado.dll, pbrth.dll, sybase.PowerBuilder.Db.dll, sybase.PowerBuilder.DbExt.dll, and, for
OLE DB, the OLE DB data provider.

Table 9.18: PowerBuilder ADO.NET files

Name Description

pbado.dll

pbrth.dll

sybase.PowerBuilder.Db.dll

sybase.PowerBuilder.DbExt.dll

OLE DB data provider (for OLE DB)

PowerBuilder ADO.NET interface

The files pbado.dll and pbrth.dll are standard DLL files, and you can deploy them in
the same way as other PowerBuilder DLLs. However, sybase.PowerBuilder.Db.dll and
sybase.PowerBuilder.DbExt.dll are .NET assemblies. You can use one of three techniques to
deploy the files:

• Deploy sybase.PowerBuilder.Db.dll and sybase.PowerBuilder.DbExt.dll in the same
directory as the executable file that calls the ADO.NET driver.

• Use a .NET application configuration file to assign the path of sybase.PowerBuilder.Db.dll
and sybase.PowerBuilder.DbExt.dll. The file contains configuration settings that the
common language runtime (CLR) reads as well as settings that the application reads. For
an executable file, the configuration file has the same name as the executable file with the
extension .config. The pb190.exe.config file in your PowerBuilder 2019 R3 directory is an
example.

For more information about configuration files, see the Microsoft Visual Studio SDK
documentation.

• Add the sybase.PowerBuilder.Db.dll and sybase.PowerBuilder.DbExt.dll assemblies to the
Global Assembly Cache (GAC). For more information about the GAC, see the section on
the Global Assembly Cache in the Microsoft Visual Studio SDK documentation. If you use
the Runtime Packager, the assemblies are installed in the GAC.

9.2.5.5 JDBC database interface

The PowerBuilder JDB interface supports the Java Runtime Environment (JRE) versions 1.6
and later.

If your application or component uses JDBC connections, you must deploy the JDB driver
as well as the appropriate Java package for the Java VM you are using. The Java virtual
machine and a vendor-supplied JDBC-compliant driver, such as SAP Sybase jConnect for
JDBC, must also be installed and configured on the computer that accesses the data source.

For more information about the Java VM, see Java support.

Table 9.19: PowerBuilder JDB files

Name Description

pbjdb.dll PowerBuilder JDBC Driver (JDB) for JRE
1.6 or later

Deployment Techniques

Page 453

Name Description

pbjdbc12.jar Java package for PowerBuilder JDB driver
and JRE 1.6 or later

Installed path

%systemdrive%\Program Files (x86)\Appeon\Common\PowerBuilder\Runtime [version]\

Deployment path

Same directory as the application, in a directory on the system path, or in the App Path
registry key.

Registry entries

Make sure the CLASSPATH environment variable includes the PowerBuilder pbjdbc12.jar
file. For example:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Environment]
"CLASSPATH"="C:\Program Files\Appeon\Common\PowerBuilder\Runtime
 19.2.0.2382\pbjdbc12.jar;...

9.2.6 Java support

You must deploy the PowerBuilder pbjvm.dll file with any applications or components that
use the Java Runtime Environment (JRE), and there must be a JRE installed on the target
computer. The JRE is required for EJB clients (obsolete), JDBC connections, and saving as
PDF using XSL-FO. You can copy the JRE installed with PowerBuilder to the same directory
as the PowerBuilder runtime files on the target computer, or use an existing JRE whose
location is defined in the user's system PATH environment variable.

Locating the Java VM

When a PowerBuilder application requires a Java VM, the PowerBuilder runtime searches
for the jvm.dll file in a subdirectory of the directory where pbjvm.dll is installed on the user's
computer. The jvm.dll file is installed in the JRE\bin\client directory of JDK 1.6 and later
installations.

PowerBuilder adds the location of jvm.dll to the beginning of the path currently being used
by the PowerBuilder application. This path is a copy of the path defined in the user's PATH
system environment variable. PowerBuilder does not modify the environment variable
maintained in the Windows registry.

To locate the jvm.dll, PowerBuilder first determines where pbjvm.dll is installed. Suppose
pbjvm.dll is installed in C:\Program Files\Appeon\Common\PowerBuilder\Runtime
19.2.0.2382. Then PowerBuilder uses this search procedure to add the location of the jvm.dll
to the path currently in use:

1. Search for the directory structure JRE\bin\client in %AppeonInstallPath%\PowerBuilder
[version]\IDE\ and, if found, add it to the beginning of the path.

2. If not found, search for a JDK directory structure that contains JRE\bin\client in
%AppeonInstallPath%\PowerBuilder [version]\IDE\ and, if found, add it to the beginning
of the path.

Deployment Techniques

Page 454

If none of these directory structures is found, PowerBuilder uses the first jvm.dll whose
location is defined in the user's PATH environment variable. If no jvm.dll is found, the Java
VM does not start.

The runtime Java VM classpath

When PowerBuilder starts a Java VM, the Java VM uses internal path and class path
information to ensure that required Java classes are always available. At runtime, the Java
VM uses a class path constructed by concatenating these paths:

• The system JAVA_HOME environment variable.

• A class path added programmatically when the Java VM is started. For example, EJB
client applications can pass a class path to the CreateJavaVM method.

• The PowerBuilder runtime static registry class path. This is a path built into the pbjvm.dll
file that corresponds to the path in the Windows Registry that is used when you are
developing an application in PowerBuilder. It contains classes required at runtime for
features that use a Java VM.

• The system CLASSPATH environment variable.

• The current directory.

Overriding the runtime static registry classpath

If necessary, you can override the JVM settings and properties defined for runtime use
in the static registry. PowerBuilder uses the following algorithm to locate configuration
information:

1. When the first request is made for a JVM, PowerBuilder looks for registry entries for the
configuration information and properties to be passed to the function that creates the JVM.

2. If PowerBuilder finds a registry entry for the configuration information, it uses it instead
of the static registry. If it does not find a registry entry, it uses the static registry.

3. If PowerBuilder finds a registry entry for custom properties to be passed to the JVM, it
uses those instead of the static registry. If it does not find a registry entry, it uses the static
registry entries.

To override the default settings, create a new key named PBRTConfig in the
HKEY_LOCAL_MACHINE\Software\Sybase\PowerBuilder\2019\Java key, then add either
or both of the following subkeys: PBJVMconfig and PBJVMprops.

To duplicate the static registry entries, add the same string values to these subkeys that you
see in the PBIDEConfig key, that is:

Table 9.20:

Subkey String value name String value data

PBJVMconfig Count 1

 0 -verbose:jni,class

Deployment Techniques

Page 455

Subkey String value name String value data

PBJVMprops java.compiler NONE

You can override either the configuration or properties entries or both. If you make incorrect
entries, PowerBuilder attempts to recover by defaulting to the static registry. However, you
should be cautious about making any changes since you can cause incorrect behavior in the
JVM if you do not configure it correctly.

9.2.7 PowerBuilder extensions

Several PowerBuilder extension files are provided with PowerBuilder. If your application
uses one of these extensions, you must deploy the files listed in the following table.

Table 9.21: Files required for PowerBuilder built-in extensions

Extension Files

PowerBuilder
Document Object
Model

pbdom.pbx, PBXerces.dll, xerces-c_2_8.dll, xerces-depdom_2_8.dll

EJB client (Obsolete) pbejbclient.pbx, pbejbclient.jar

SOAP client for Web
services (Obsolete)

ExPat.dll, libeay32.dll, ssleay32.dll,

xerces-c_2_8.dll, xerces-depdom_2_8.dll,

EasySoap.dll, pbnetwsruntime.dll,

pbsoapclient.pbx, pbwsclient.pbx,

Sybase.PowerBuilder.WebService.Runtime.dll,

Sybase.PowerBuilder.WebService.RuntimeRemoteLoader.dll

In addition to the files listed in the table for EJB client, a Java Runtime Environment (JRE)
compatible with the JDK on the EJB server must be available on the client and listed in the
CLASSPATH.

For more information, see Java support.

9.2.8 PDF and XSL-FO export

PowerBuilder can save the DataWindow's data and presentation as a Portable Document
Format (PDF) file using three techniques. By default, PowerBuilder saves as PDF using a
distiller. PowerBuilder can also save to native PDF using PDFlib, or save to PDF or XSL
Formatting Objects (XSL-FO) format using the Apache XML Formatting Objects processor.

9.2.8.1 Using the Ghostscript distiller

In order for users to use the SaveAs method to save data as PDF with the distiller, they must
first download and install Ghostscript on their computers as described in the procedure that
follows.

The use of GPL Ghostscript is subject to the terms and conditions of the GNU General Public
License (GPL). Users should be asked to read the GPL before installing GPL Ghostscript on

Deployment Techniques

Page 456

their computers. A copy of the GPL is available on the GNU Project Web server at http://
www.gnu.org/licenses/gpl.html.

The use of AFPL Ghostscript is subject to the terms and conditions of the Aladdin Free
Public License (AFPL). Commercial distribution of AFPL Ghostscript generally requires
a written commercial license. For more information, see the Ghostscript website at https://
www.ghostscript.com.

To install Ghostscript:

1. Into a temporary directory on your computer, download the self-extracting executable
file for the version of Ghostscript you want from one of the sites listed on the
Ghostscript website at https://www.ghostscript.com/download/.

See the Release Bulletin for the version of Ghostscript that was used for testing.

2. Run the executable file to install Ghostscript on your system.

The default installation directory is C:\Program Files\gs. You can select a different
directory and/or choose to install shortcuts to the Ghostscript console and readme file.

After installing Ghostscript, you should read the readme.htm file in the doc subdirectory
in the Ghostscript installation directory to find out more about using Ghostscript and
distributing it with your application.

Save Rows As fails

To save as PDF in the DataWindow painter, select File>Save Rows As and select
PDF as the Save As type. If you do not install Ghostscript and use the default export
properties, PowerBuilder displays a pop-up window notifying you that Save Rows
As failed. If you install Ghostscript and then change the name of the directory where
Ghostscript is installed, Save Rows As PDF fails silently.

Location of files

When you save a DataWindow object as PDF using the Distill! method, PowerBuilder
searches in the following locations for an installation of GPL or AFPL Ghostscript:

• The Windows registry

• The relative path of the pbdwe.dll file (typically %systemdrive%\Program Files
(x86)\Appeon\Common\PowerBuilder\Runtime [version])

• The system PATH environment variable

If GPL or AFPL Ghostscript is installed using the Ghostscript executable file, the path is
added to the Windows registry.

If the Ghostscript files are in the relative path of the pbdwe.dll file, they must be installed in
this directory structure:

dirname\pbdwe.dll
dirname\gs\gsN.NN

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
https://www.ghostscript.com
https://www.ghostscript.com
https://www.ghostscript.com/download/

Deployment Techniques

Page 457

dirname\gs\fonts

where dirname is the directory that contains the runtime DLLs and N.NN represents the
release version number for Ghostscript.

You might not need to distribute all the fonts provided in the distribution. For
information about fonts, see Fonts and font facilities supplied with Ghostscript at https://
www.ghostscript.com/doc/current/Fonts.htm.

PostScript printer drivers

If your users have installed a PostScript printer on their computers, the PostScript
driver files required to create PDF files, PSCRIPT5.DLL, PS5UI.DLL, and pscript.ntf,
are already installed, typically in C:\Windows\System32\DriverStore\FileRepository
\ntprint.inf_1a216484\Amd64 on a 64-bit Windows system. Your users must use the version
of these files that is appropriate to the operating system where the PDF file is created. They
should copy the files to the dirname\drivers directory.

You must also deploy the related files that are installed in %AppeonInstallPath%
\PowerBuilder [version]\IDE\drivers. These files can be copied to or installed on users'
computers. They must be located in this directory structure:

dirname\pbdwe.dll
dirname\drivers

PostScript printer profile

Each user's computer must have a PostScript printer profile called Sybase DataWindow PS.
Users can add the profile manually using the Windows Add Printer wizard in one of the
following ways:

• By selecting a printer with PS in its name (such as "Apple Color LW 12/660 PS") from the
list of printers on the Install Printer Software page of the wizard, and changing the printer
name to "Sybase DataWindow PS" on the Name Your Printer page.

• (For 32-bit Windows only) By clicking the Have Disk button on the Install Printer
Software page of the wizard, browsing to the Adist5.inf file (installed with PowerBuilder
in the %AppeonInstallPath%\PowerBuilder [version]\IDE\drivers directory) or to another
PostScript driver file, and on the Name Your Printer page, changing the printer name to
"Sybase DataWindow PS".

For how to set properties for the Distill! method, see Section 6.2.3.1.2, “Saving as PDF using
the Distill! method with Ghostscript” in Users Guide.

9.2.8.2 Using the PDFlib generator

No drivers need to be installed in order to use the PDFlib generator to save DataWindow data
as a native PDF file.

The DLL file for PDFlib (PBPDF.dll) is automatically packaged into the PowerBuilder
application executable without requiring the developer to make any configuration or selection
during the building process.

By using the PDFlib generator, the DataWindow is first saved to EMF. Depending on the
size of the DataWindow and also the specified page size, there may be multiple EMFs. For
example, if a DataWindow has 8 columns that cannot fit in a page, maybe the first 3 columns

https://www.ghostscript.com/doc/current/Fonts.htm
https://www.ghostscript.com/doc/current/Fonts.htm

Deployment Techniques

Page 458

are in page #1, and the other 5 columns in page #2; if the DataWindow has more data, and the
data will go to page #3 (and page #4), page #5 (and page #6), and so on. The EMF files will
then be converted and combined into one PDF. The EMF files are memory-based and will be
deleted from memory after the successful generation of the PDF file.

During the PDF generation process, an "Appeon" folder (containing a "NativePDF" sub-
folder which contains a "Log" and a "Temp" sub-folders) will be generated in the temporary
directory; the temporary files in these folders will be deleted after the PDF file is created but
the folders will be kept for future use.

For how to set PDFLib as the default PDF method and the other properties, see
Section 6.2.3.1.1, “Saving as PDF using NativePDF! method with PDFlib” in Users Guide.

9.2.8.3 Using the Apache FO processor

If your application uses the Apache processor to save as PDF or XSL-FO, you must deploy
the fop-0.20.4 directory and the Java Runtime Environment (JRE) with your application.

They must be deployed in the same directory as the PowerBuilder runtime files. For example,
if you deploy your application and pbvm.dll and the other PowerBuilder runtime files in a
directory called MyApplication, the Apache processor must be deployed in MyApplication/
fop-0.20.4, and the JRE in MyApplication/jre. However, you do not need to place a copy
of the JRE in this location if the full JDK is installed on the target computer and is in the
classpath.

The following JAR files must be in the user's classpath:

fop-0.20.4\build\fop.jar
fop-0.20.4\lib\batik.jar
fop-0.20.4\lib\xalan-2.3.1.jar
fop-0.20.4\lib\xercesImpl-2.1.0.jar
fop-0.20.4\lib\xml-apis.jar
fop-0.20.4\lib\avalon-framework-cvs-20020315.jar

For more information about the JRE, see Java support.

On Windows DBCS platforms, you also need to deploy a file that supports DBCS characters
to the Windows font directory on the target computer, for example, C:\WINDOWS
\fonts. For more information about configuring fonts, see the Apache website at http://
xmlgraphics.apache.org/fop/1.1/fonts.html.

For how to set properties for the XSL-FO method, see Section 6.2.3.1.3, “Saving as PDF
using XSL-FO” in Users Guide.

9.3 Deploying 64-Bit Windows Applications

About this chapter

This chapter provides information for deploying 64-bit native applications.

9.3.1 Deploying 64-Bit Windows Applications

Create 64-bit native applications in PowerBuilder.

Usage

http://xmlgraphics.apache.org/fop/1.1/fonts.html
http://xmlgraphics.apache.org/fop/1.1/fonts.html

Deployment Techniques

Page 459

There is no special target for 64-bit native applications. To build a 64-bit application, select
the platform in the Project painter General tab. If you need to deliver both 32-bit and 64-bit
versions of your application, you should use separate projects and separate folders for the
deployed output.

There is no IDE for 64-bit development. Design time uses the same 32-bit interface and 64-
bit features display at runtime when you deploy the application. When you click the running
man button, the project runs as a 32-bit application.

32-bit remains the default for new and upgraded applications.

During the deploy process, PowerBuilder checks and reports unsupported features used in the
application.

New Property for Environment Object

The new ProcessBitness property identifies whether the application is a 32-bit or 64-bit
process.

• Datatype -- integer

• Values -- 32 stands for 32-bit, and 64 stands for 64-bit

See Section 2.29, “Environment object” in Objects and Controls for more about the
Environment object. See Section 2.4.253, “GetEnvironment” in PowerScript Reference to
read about the GetEnvironment function.

New Datatype

The longptr datatype is 4 bytes in the 32-bit platform and 8 bytes in the 64-bit platform.
In the 32-bit platform, longptr is the same as long; you can continue using long wherever
longptr is required in 32-bit applications. In 64-bit applications, however, using long to hold
longptr variables will lead to data truncation from 8 bytes to 4 bytes, or memory corruption if
you pass a long ref variable when a longptr ref is required. If you want to move to 64-bit, use
longptr wherever required. It does no harm to 32-bit.

Since PowerBuilder does not have a datatype corresponding to the C++ pointer type, and
there are no pointer operations in PowerBuilder, longptr is not a full-fledged PowerBuilder
datatype. You can use it to hold/pass window handles, database handles, and other objects
that are essentially memory addresses. Doing complex operations on longptr type might not
work. If you want to represent/compute 8-byte long integers, use longlong.

System Requirements

The design time environment requires:

• Windows SDK for Windows 8.1 or later

• .NET Framework 4.0 or later

• 64-bit Windows OS to test (development requires only 32-bit)

The runtime environment requires:

• 64-bit Windows OS

Deployment Techniques

Page 460

• PowerBuilder 64-bit runtime files

• 64-bit third-party libraries, such as database drivers and external DLLs

• Greater than 4 GB physical memory to avoid performance issues

Limitations

There are limitations to this feature:

• To consume Web services, you must use the PowerBuilder Section 2.41, “HTTPClient
object” object.

• You can use OLE and ActiveX components in your applications, but you must use the 32-
bit versions in the PowerBuilder Classic IDE. At runtime you must have the correct 64-bit
ActveX components installed.

Unsupported Features

These features are not supported:

• COM+ runtime

• Machine code generation

• TabletPC

• PBNI SDK for developing 64-bit PowerBuilder extensions

• Status bar

• Grid table

• Clear(true) function

• Application server support

PowerBuilder Native Interface (PBNI)

You can only use 32-bit PowerBuilder extensions in the PowerBuilder Classic IDE. For
runtime, package and distribute 64-bit extension libraries with your 64-bit applications. The
file names of your 64-bit extension should match the 32-bit file names, since the application
references it by file name.

OrcaScript

To build 64-bit native applications with OrcaScript, use the new X64 option to build
executable commands. For example:

build executable <exeName> <iconName> <pbrName> <pbdflags> <machinecode>
 <newvstylecontrols> x64

Index

Page 461

Index

Symbols
.NET Web components, 372
64-bit Windows applications, 458

A
accessibility, 382
ActiveX control

deploying, 429
using, 299

ADO.NET database interface, 451
ancestor and descendant variables, 34
ancestor scripts

return value, 32
Apache FO processor, 458

B
build MDI applications, 57

C
class definition object

get info about the class, 51
get info about the script, 53
get info about the variable, 55
get the object, 50
overview, 47

Code Examples application
browse, 12
find, 13
run, 14
use, 11

COM or COM+ client
build, 368
connect to a COM server, 368
control transactions from a client, 369
interact with the COM component, 369

compiler, 413
connection events, 163
consolidated databases, 163
constant declarations, 29
context feature

ContextInformation service, 360
ContextKeyword service, 361
ErrorLogging service, 362
Inet service, 362
TransactionServer service, 365

context information service, 360

context keyword service, 361
Context object, 359

D
data pipelines

abandon error rows, 251
about, 234
build a pipeline object, 235
build a supporting user object, 237
build a window, 239
build the object, 235
cancel execution, 247
commit updates to the database, 248
final cleanup, 252
handle row errors, 249
monitor the progress, 245
prepare for execution, 241
repair error rows, 250
start the execution, 243

DataStores
subclass, 26

DataWindow Web control for ActiveX, 373
DDE

about, 297
functions and events, 297

delegation
use, 24

deploy an application, 429
ADO.NET database interface, 451
database connections, 445
Java support, 453
JDBC database interface, 452
native database drivers, 446
ODBC database drivers and supporting
files, 447
OLE DB database providers, 450
PDF and XSL-FO export, 455
PowerBuilder extensions, 455
PowerBuilder runtime files, 437
PowerBuilder Runtime Packager, 431
third-party components and deployment,
435

deploy an component, 429
distributed application, 366

architecture, 366
server support, 366

dot notation
objects in a container object, 28

Index

Page 462

qualify a reference, 26
reference objects, 27

drag and drop
about, 119
identify the dragged control, 121
properties; events; and functions, 120

E
efficient compiling and performance, 45
EJB client, 370
encapsulation

implement, 19
Error event, 42
error logging service, 362
exception handling, 37

add flexibility, 41
basics, 37
Error events, 42
objects, 37
SystemError events, 42
user-defined exception, 40

external functions
declare, 351
pass arguments, 353
send Windows messages, 356
use utility functions, 355

F
files

DLL, 414
executable, 414
external; reading Transaction object values
from, 134
PBD, 414
PBR, 414
resource, 414
rich text, 218
runtime, 437
security and sharing violation, 437

function overloading
use, 21

functions and events
argument types, 33

G
garbage collection, 43
Ghostscript distiller, 455
graph

access data properties, 205

modify properties, 203
populate with data, 202
use point and click, 206
work with graph controls, 200

I
inheritance

implement, 18
INI files, 397
initialization files, 397
instance variables

access settings, 30
internationalize the user interface, 379
Internet service, 362

J
JDBC database interface, 452
JSON, 254

L
lists

about, 106
use DropDownListBoxes and
DropDownPictureListBoxes, 111
use ListBoxes and PictureListBoxes, 107
use ListView, 113
use report view, 118

localize the product, 380

M
MAPI

about, 348
use, 350

MDI application
build, 57
build an MDI frame, 59
customize toolbar behavior, 62
keyboard support, 69
provide MicroHelp, 62
save and restore toolbar settings, 64
size the client area, 67
use sheets, 60
use toolbars, 62

memory management, 43
Message object, 357
MLSync

create an instance, 155
MobiLink synchronization, 149

about, 150

Index

Page 463

auxiliary objects, 156
create remote databases, 169
prepare consolidated databases, 163
synchronization techniques, 174
work with synchronization objects, 154

N
naming conflicts, 30
native database drivers, 446

O
ODBC database drivers and supporting files,
447
OLE

activating object, 308
ambient properties, 312
arguments by reference, 323
automation, 314
browser, 336
columns in DataWindows, 335
compiler checking, 322
container applications, 299
data files, 308
embedding, 304
error handling, 328
form letters example, 318
functions for DataWindow object, 333
hot links, 331
in-place activation, 305
insertable object, 299
language for automation, 332
link maintenance, 304
linking, 304
linking and embedding compared, 304
low-level pointers, 333
menus for in-place activation, 307
named parameters, 323
object, 299
objects and assignment, 317
offsite activation, 305
OLE controls and insertable objects, 301
OLE controls in a window, 299
OLE custom controls, 312
OLE information in the browser, 336
OLE objects in scripts, 322
OLE support in PowerBuilder, 299
parentheses, 323
performance, 328
programmable OLE objects, 314

property change notifications, 331
server applications, 299, 299, 336
server command qualifiers, 314, 326
server memory allocation, 323
server methods and properties, 322
streams, 345
untyped variables, 327
verbs, 308, 335

OLE control
activating, 308
activating object, 301, 303
appearance, 301
automation, 322
behavior, 301, 304
blobs, 308
changing object, 304, 308
Contents property, 308
defining, 299
deleting object, 304
display of object, 301
DLL, 304
embedding, 301, 308
events, 311, 311
icon for object, 301
inserting object, 308
link broken, 305
linking, 301, 308
linking vs embedding, 304
menu, 307
menus for in-place activation, 307
modify an object in an OLE control, 308
Object property, 322
ObjectData property, 308
Offsite and in-place activation compared,
305
offsite or in-place activation, 305
property sheet, 301
saving embedded data, 308
server application, 308
set up, 301
updating link, 301
user interaction, 304

OLE custom controls
program the ActiveX control, 313
set up, 312

OLE DB database providers, 450
OLEObject object type, 314
online help

Index

Page 464

create, 122
provide for developers, 123
provide for users, 125

P
package an application, 413
packaging model, 421
PBDOM

about, 176
add pbdom.pbx, 190
handle exceptions, 195
node objects, 177
object hierarchy, 176
use, 191

pbdom.pbx, 190
PBDOM_ATTRIBUTE, 182
PBDOM_CDATA, 188
PBDOM_CHARACTERDATA, 185
PBDOM_COMMENT, 189
PBDOM_DOCTYPE, 180
PBDOM_DOCUMENT, 180
PBDOM_ELEMENT, 180
PBDOM_ENTITYREFERENCE, 185
PBDOM_OBJECT, 178
PBDOM_PROCESSINGINSTRUCTION,
189
PBDOM_TEXT, 186
PBR file, 419
PDF export, 455
PDFlib generator, 457
polymorphism

implement, 20
PowerBuilder Runtime Packager, 431
PowerServer, 372
printing

advanced techniques, 395
basics, 393
functions, 392
print a job, 393
stop a print job, 395
use tabs, 394

programming techniques, 18

R
read and write text or binary files, 46
remote databases, 169
RESTFul Web Services, 254
rich text

deploy, 214

language, 209
rich text editors, 209
sources, 208
use a RichText DataWindow object, 214
use a RichTextEdit control, 217

RichText DataWindow, 214
RichTextEdit control

cursor position, 228
formatting of rich text, 225
give the user control, 217
input fields, 226
preview and print, 229
text for the control, 218
use an ActiveX spell checking control, 224
use database data, 227

runtime files, 437

S
sample applications

about, 11
install, 11
open, 11
use Code Examples app, 11

SQLCA
about, 127
assigning values to, 134
calling stored procedure as property of,
146
creating and destroying prohibited, 136
customizing to call stored procedures, 140
database interfaces, 130
default transaction object, 133
description of properties, 128
error handling, 138
setting in Application painter, 144
user object inherited from, 140, 144

synchronization objects, 154
synchronization techniques, 174
SystemError event, 42

T
Tab controls

about, 76
create tab pages only when needed, 85
customize, 79
define and manage tab pages, 77
events for the parts, 87
keep track of tab pages, 85
open/close/hide tab pages, 84

Index

Page 465

refer to controls on tab pages, 84
refer to tab pages in scripts, 82

table events, 164
techniques, 18
transaction objects

about, 127
assign values to transaction objects, 134
connect to the database, 135
database interfaces, 130
DBMS features when calling stored
procedures, 147
default transaction object, 133
define for multiple database connections,
136
description of properties, 128
disconnect from the database, 136
error handle after a SQL statement, 138
pool database transactions, 139
read values from an external file, 134
transaction basics, 132
use the preview tab to connect, 135
use to call stored procedures, 140
work with, 132

transaction server service, 365
Translation Toolkit, 381
TreeView controls

about, 88
delete items, 97
functions for inserting items, 91
insert items at root level, 93
insert items below root level, 94
move items, 98
pictures for items, 102
populate by DataWindow, 104
rename items, 97
set up picture lists, 103
sort items, 100
use overlay pictures, 104

U
Unicode, 375

about, 375
Unicode support, 376

user objects
use as structures, 25

user preferences, 397
utility functions, 355

V
VPATs, 391

W
Web DataWindow, 373
Web services, 372
window arrays, 72
window instances

about, 70
declare, 71
reference entities in descendants, 75
use window arrays, 72

Windows messages, 356
Windows registry, 397

X
XML namespaces, 196
XML Services, 175
XSL-FO export, 455

	Application Techniques
	Contents
	1 Sample Applications
	1.1 Using Sample Applications
	1.1.1 About the sample applications
	1.1.2 Installing the sample applications
	1.1.3 Opening the sample applications
	1.1.4 Using the Code Examples application
	1.1.4.1 Browsing the examples
	1.1.4.2 Finding examples
	1.1.4.3 Running and examining examples

	2 Language Techniques
	2.1 Selected Object-Oriented Programming Topics
	2.1.1 Terminology review
	2.1.2 PowerBuilder techniques
	2.1.3 Other techniques

	2.2 Selected PowerScript Topics
	2.2.1 Dot notation
	2.2.2 Constant declarations
	2.2.3 Controlling access for instance variables
	2.2.4 Resolving naming conflicts
	2.2.5 Return values from ancestor scripts
	2.2.6 Types of arguments for functions and events
	2.2.7 Ancestor and descendant variables
	2.2.8 Optimizing expressions for DataWindow and external objects
	2.2.9 Exception handling in PowerBuilder
	2.2.9.1 Basics of exception handling
	2.2.9.2 Objects for exception handling support
	2.2.9.3 Handling exceptions
	2.2.9.4 Creating user-defined exception types
	2.2.9.5 Adding flexibility and facilitating object reuse
	2.2.9.6 Using the SystemError and Error events

	2.2.10 Garbage collection and memory management
	2.2.10.1 Configuring memory management

	2.2.11 Efficient compiling and performance
	2.2.12 Reading and writing text or binary files

	2.3 Getting Information About PowerBuilder Class Definitions
	2.3.1 Overview of class definition information
	2.3.1.1 Terminology
	2.3.1.2 Who uses PowerBuilder class definitions

	2.3.2 Examining a class definition
	2.3.2.1 Getting a class definition object
	2.3.2.2 Getting detailed information about the class
	2.3.2.3 Getting information about a class's scripts
	2.3.2.4 Getting information about variables

	3 User Interface Techniques
	3.1 Building an MDI Application
	3.1.1 About MDI
	3.1.2 Building an MDI frame window
	3.1.3 Using sheets
	3.1.4 Providing MicroHelp
	3.1.5 Using toolbars in MDI applications
	3.1.5.1 Customizing toolbar behavior
	3.1.5.2 Saving and restoring toolbar settings

	3.1.6 Sizing the client area
	3.1.7 About keyboard support in MDI applications

	3.2 Managing Window Instances
	3.2.1 About window instances
	3.2.2 Declaring instances of windows
	3.2.3 Using window arrays
	3.2.4 Referencing entities in descendants

	3.3 Using Tab Controls in a Window
	3.3.1 About Tab controls
	3.3.2 Defining and managing tab pages
	3.3.3 Customizing the Tab control
	3.3.4 Using Tab controls in scripts
	3.3.4.1 Referring to tab pages in scripts
	3.3.4.2 Referring to controls on tab pages
	3.3.4.3 Opening, closing, and hiding tab pages
	3.3.4.4 Keeping track of tab pages
	3.3.4.5 Creating tab pages only when needed
	3.3.4.6 Events for the parts of the Tab control

	3.4 Using TreeView Controls
	3.4.1 About TreeView controls
	3.4.2 Populating TreeViews
	3.4.2.1 Functions for inserting items
	3.4.2.2 Inserting items at the root level
	3.4.2.3 Inserting items below the root level

	3.4.3 Managing TreeView items
	3.4.3.1 Deleting items
	3.4.3.2 Renaming items
	3.4.3.3 Moving items using drag and drop
	3.4.3.4 Sorting items

	3.4.4 Managing TreeView pictures
	3.4.4.1 Pictures for items
	3.4.4.2 Setting up picture lists
	3.4.4.3 Using overlay pictures

	3.4.5 Using DataWindow information to populate a TreeView

	3.5 Using Lists in a Window
	3.5.1 About presenting lists
	3.5.2 Using lists
	3.5.3 Using drop-down lists
	3.5.4 Using ListView controls
	3.5.4.1 Using report view

	3.6 Using Drag and Drop in a Window
	3.6.1 About drag and drop
	3.6.2 Drag-and-drop properties, events, and functions
	3.6.3 Identifying the dragged control

	3.7 Providing Online Help for an Application
	3.7.1 Creating help files
	3.7.2 Providing online help for developers
	3.7.3 Providing online help for users

	4 Data Access Techniques
	4.1 Using Transaction Objects
	4.1.1 About Transaction objects
	4.1.1.1 Description of Transaction object properties
	4.1.1.2 Transaction object properties and supported PowerBuilder database interfaces

	4.1.2 Working with Transaction objects
	4.1.2.1 Transaction basics
	4.1.2.2 The default Transaction object
	4.1.2.3 Assigning values to the Transaction object
	4.1.2.4 Reading values from an external file
	4.1.2.5 Connecting to the database
	4.1.2.6 Using the Preview tab to connect in a PowerBuilder application
	4.1.2.7 Disconnecting from the database
	4.1.2.8 Defining Transaction objects for multiple database connections
	4.1.2.9 Error handling after a SQL statement
	4.1.2.10 Pooling database transactions

	4.1.3 Using Transaction objects to call stored procedures
	4.1.3.1 Step 1: define the standard class user object
	4.1.3.2 Step 2: declare the stored procedure as an external function
	4.1.3.3 Step 3: save the user object
	4.1.3.4 Step 4: specify the default global variable type for SQLCA
	4.1.3.5 Step 5: code your application to use the user object

	4.1.4 Supported DBMS features when calling stored procedures

	4.2 Using MobiLink Synchronization
	4.2.1 About MobiLink synchronization
	4.2.2 How the synchronization works
	4.2.3 Working with PowerBuilder synchronization objects
	4.2.3.1 Preparing to use the wizard
	4.2.3.2 What gets generated
	4.2.3.3 Creating an instance of MLSync
	4.2.3.4 Auxiliary objects for MobiLink synchronization
	4.2.3.5 Using the synchronization objects in your application
	4.2.3.6 Runtime requirements for synchronization on remote machines

	4.2.4 Preparing consolidated databases
	4.2.4.1 Connection events
	4.2.4.2 Table events
	4.2.4.3 Working with scripts and users in SQL Central

	4.2.5 Creating remote databases
	4.2.5.1 Creating and modifying publications
	4.2.5.2 Creating MobiLink users
	4.2.5.3 Adding subscriptions

	4.2.6 Synchronization techniques

	4.3 Using PowerBuilder XML Services
	4.3.1 About XML and PowerBuilder
	4.3.2 About PBDOM
	4.3.3 PBDOM object hierarchy
	4.3.4 PBDOM node objects
	4.3.4.1 PBDOM_OBJECT
	4.3.4.2 PBDOM_DOCUMENT
	4.3.4.3 PBDOM_DOCTYPE
	4.3.4.4 PBDOM_ELEMENT
	4.3.4.5 PBDOM_ATTRIBUTE
	4.3.4.6 PBDOM_ENTITYREFERENCE
	4.3.4.7 PBDOM_CHARACTERDATA
	4.3.4.8 PBDOM_TEXT
	4.3.4.9 PBDOM_CDATA
	4.3.4.10 PBDOM_COMMENT
	4.3.4.11 PBDOM_PROCESSINGINSTRUCTION

	4.3.5 Adding pbdom.pbx to your application
	4.3.6 Using PBDOM
	4.3.6.1 Validating the XML
	4.3.6.2 Creating an XML document from XML
	4.3.6.3 Creating an XML document from scratch
	4.3.6.4 Accessing node data
	4.3.6.5 Manipulating the node-tree hierarchy

	4.3.7 Handling PBDOM exceptions
	4.3.8 XML namespaces
	4.3.8.1 Setting the name and namespace of a PBDOM_ATTRIBUTE

	4.4 Manipulating Graphs
	4.4.1 Using graphs
	4.4.1.1 Working with graph controls in code

	4.4.2 Populating a graph with data
	4.4.3 Modifying graph properties
	4.4.3.1 How parts of a graph are represented
	4.4.3.2 Referencing parts of a graph

	4.4.4 Accessing data properties
	4.4.4.1 Getting information about the data
	4.4.4.2 Saving graph data
	4.4.4.3 Modifying colors, fill patterns, and other data

	4.4.5 Using point and click

	4.5 Implementing Rich Text
	4.5.1 Using rich text in an application
	4.5.1.1 Sources of rich text
	4.5.1.2 Language of rich text
	4.5.1.3 Rich text editors
	4.5.1.3.1 Feature difference between TX Text Control 28.0 (64-bit) and Microsoft RichEdit Control (64-bit)
	4.5.1.3.2 Feature difference between TE Edit Control and TX Text Control

	4.5.1.4 Deploying a rich text application

	4.5.2 Using a RichText DataWindow object
	4.5.3 Using a RichTextEdit control
	4.5.3.1 Giving the user control
	4.5.3.2 Text for the control
	4.5.3.2.1 Opening and saving files: an example

	4.5.3.3 Using an ActiveX spell checking control
	4.5.3.4 Formatting of rich text
	4.5.3.5 Input fields
	4.5.3.6 Using database data
	4.5.3.7 Cursor position in the RichTextEdit control
	4.5.3.8 Preview and printing

	4.5.4 Rich text and the end user

	4.6 Piping Data Between Data Sources
	4.6.1 About data pipelines
	4.6.2 Building the objects you need
	4.6.2.1 Building a Pipeline object
	4.6.2.2 Building a supporting user object
	4.6.2.3 Building a window

	4.6.3 Performing some initial housekeeping
	4.6.4 Starting the pipeline
	4.6.4.1 Monitoring pipeline progress
	4.6.4.2 Canceling pipeline execution
	4.6.4.3 Committing updates to the database

	4.6.5 Handling row errors
	4.6.5.1 Repairing error rows
	4.6.5.2 Abandoning error rows

	4.6.6 Performing some final housekeeping

	4.7 Using RESTFul Web Services with JSON
	4.7.1 Supported JSON formats
	4.7.1.1 Plain JSON
	4.7.1.2 DataWindow JSON
	4.7.1.3 Applicable methods

	4.7.2 Importing JSON data
	4.7.2.1 Example 1 (using RESTClient)
	4.7.2.2 Example 2 (using JSONPackage, HTTPClient, & ImportJson)
	4.7.2.3 Example 3 (using HTTPClient & JSONParser)

	4.7.3 Compressing and extracting data
	4.7.3.1 Example 1 (using HTTPClient)
	4.7.3.2 Example 2 (using RESTClient)
	4.7.3.3 Example 3 (using OAuthClient)

	4.8 Supporting OAuth 2.0 Authorization Server
	4.8.1 OAuth Grant Types
	4.8.1.1 Authorization Code
	4.8.1.2 Implicit Flow
	4.8.1.3 Client Credentials
	4.8.1.4 Extension (or Refresh Token)
	4.8.1.5 Resource Owner Password
	4.8.1.5.1 Example 1 (using OAuthClient) (recommended)
	4.8.1.5.2 Example 2 (using HTTPClient)
	4.8.1.5.3 Example 3 (using OAuthClient and HTTPClient)

	5 Program Access Techniques
	5.1 Calling .NET Assembly in an Application
	5.1.1 About .NET assembly
	5.1.2 C# language vs. PowerScript language
	5.1.2.1 Data types
	5.1.2.2 Classes
	5.1.2.3 Functions
	5.1.2.4 Properties
	5.1.2.5 Fields
	5.1.2.6 Transaction Objects

	5.1.3 Adding an adapter for unsupported features
	5.1.4 Importing the adapter
	5.1.5 Deploying .NET assembly
	5.1.6 Debugging .NET assembly

	5.2 Using DDE in an Application
	5.2.1 About DDE
	5.2.2 DDE functions and events

	5.3 Using OLE in an Application
	5.3.1 OLE support in PowerBuilder
	5.3.2 OLE controls in a window
	5.3.3 OLE controls and insertable objects
	5.3.3.1 Setting up the OLE control
	5.3.3.1.1 Activating the object in the painter
	5.3.3.1.2 Changing the object in the control
	5.3.3.1.3 How the user interacts with the control

	5.3.3.2 Linking versus embedding
	5.3.3.3 Offsite or in-place activation
	5.3.3.4 Menus for in-place activation
	5.3.3.5 Modifying an object in an OLE control
	5.3.3.5.1 Activating the OLE object
	5.3.3.5.2 Changing the object in an OLE control
	5.3.3.5.3 Events for the OLE control

	5.3.4 OLE custom controls
	5.3.4.1 Setting up the custom control
	5.3.4.2 Programming the ActiveX control

	5.3.5 Programmable OLE Objects
	5.3.5.1 OLEObject object type
	5.3.5.2 Assignments among OLEControl, OLECustomControl, and OLEObject datatypes
	5.3.5.3 Automation scenario
	5.3.5.3.1 Example: generating form letters using OLE

	5.3.6 OLE objects in scripts
	5.3.6.1 The automation interface
	5.3.6.1.1 Setting properties
	5.3.6.1.2 Calling functions
	5.3.6.1.3 Qualifying server commands

	5.3.6.2 Automation and the Any datatype
	5.3.6.3 OLEObjects for efficiency
	5.3.6.4 Handling errors
	5.3.6.5 Creating hot links
	5.3.6.6 Setting the language for OLE objects and controls
	5.3.6.7 Low-level access to the OLE object
	5.3.6.8 OLE objects in DataWindow objects
	5.3.6.8.1 OLE columns in an application

	5.3.7 OLE information in the Browser
	5.3.8 Advanced ways to manipulate OLE objects
	5.3.8.1 Structure of an OLE storage
	5.3.8.2 Object types for storages and streams
	5.3.8.3 Opening and saving storages
	5.3.8.3.1 Getting information about storage members
	5.3.8.3.2 Example: building a storage

	5.3.8.4 Opening streams
	5.3.8.5 Strategies for using storages

	5.4 Building a Mail-Enabled Application
	5.4.1 About MAPI
	5.4.2 Using MAPI

	5.5 Using External Functions and Other Processing Extensions
	5.5.1 Using external functions
	5.5.1.1 Declaring external functions
	5.5.1.2 Sample declarations
	5.5.1.3 Passing arguments
	5.5.1.3.1 Passing numeric datatypes
	5.5.1.3.2 Passing strings
	5.5.1.3.3 Passing characters

	5.5.2 Using utility functions to manage information
	5.5.3 Sending Windows messages
	5.5.4 The Message object
	5.5.4.1 Message object properties

	5.5.5 Context information
	5.5.5.1 Context information service
	5.5.5.2 Context keyword service
	5.5.5.3 CORBACurrent service (obsolete)
	5.5.5.4 Error logging service
	5.5.5.5 Internet service
	5.5.5.6 Transaction server service

	6 Developing Distributed Applications
	6.1 Distributed Application Development with PowerBuilder
	6.1.1 Distributed application architecture
	6.1.2 Server support

	6.2 Building a COM or COM+ Client
	6.2.1 About building a COM or COM+ client
	6.2.2 Connecting to a COM server
	6.2.3 Interacting with the COM component
	6.2.4 Controlling transactions from a client

	6.3 Building an EJB client (obsolete)

	7 Developing Web Applications
	7.1 Web Application Development with PowerBuilder
	7.1.1 Building Web applications
	7.1.2 .NET Web components (obsolete)
	7.1.3 Web services (obsolete)
	7.1.4 Web DataWindow (obsolete)
	7.1.5 DataWindow Web control for ActiveX (obsolete)

	7.2 Building a Web Services Client (Obsolete)

	8 General Techniques
	8.1 Internationalizing an Application
	8.1.1 Developing international applications
	8.1.2 Using Unicode
	8.1.2.1 About Unicode
	8.1.2.2 Unicode support in PowerBuilder

	8.1.3 Internationalizing the user interface
	8.1.4 Localizing the product
	8.1.4.1 About the Translation Toolkit

	8.2 Building Accessible Applications
	8.2.1 Understanding accessibility challenges
	8.2.2 Accessibility requirements for software and Web applications
	8.2.3 Creating accessible software applications with PowerBuilder
	8.2.3.1 Microsoft UI Automation
	8.2.3.2 Microsoft Active Accessibility (MSAA)

	8.2.4 About VPATs
	8.2.5 Testing product accessibility

	8.3 Printing from an Application
	8.3.1 Printing functions
	8.3.2 Printing basics
	8.3.3 Printing a job
	8.3.4 Using tabs
	8.3.5 Stopping a print job
	8.3.6 Advanced printing techniques

	8.4 Managing Initialization Files and the Windows Registry
	8.4.1 About preferences and default settings
	8.4.2 Managing information in initialization files
	8.4.3 Managing information in the Windows registry

	8.5 Building InfoMaker Styles and Actions
	8.5.1 About form styles
	8.5.2 Naming the DataWindow controls in a form style
	8.5.3 Building and using a form style
	8.5.4 Modifying an existing style
	8.5.4.1 Identifying the window as the basis of a style

	8.5.5 Building a style from scratch
	8.5.6 Completing the style
	8.5.6.1 Working with the central DataWindow controls
	8.5.6.2 Adding controls
	8.5.6.3 Defining actions
	8.5.6.4 Using menus
	8.5.6.5 Writing scripts
	8.5.6.6 Adding other capabilities

	8.5.7 Using the style
	8.5.7.1 Building a form with the custom form style
	8.5.7.2 Managing the use of form styles

	9 Deployment Techniques
	9.1 Packaging an Application for Deployment
	9.1.1 About deploying applications
	9.1.2 Creating an executable version of your application
	9.1.2.1 Compiler basics
	9.1.2.2 Learning what can go in the package
	9.1.2.3 Creating a PowerBuilder resource file
	9.1.2.4 Choosing a packaging model
	9.1.2.5 Implementing your packaging model
	9.1.2.6 Testing the executable application
	9.1.2.7 Digitally signing the executable application

	9.1.3 Delivering your application to end users
	9.1.3.1 Installation checklist
	9.1.3.2 Starting the deployed application

	9.2 Deploying Applications and Components
	9.2.1 Deploying applications, components, and supporting files
	9.2.2 PowerBuilder Runtime Packager
	9.2.3 Third-party components and deployment
	9.2.3.1 Apache files
	9.2.3.2 Microsoft files
	9.2.3.3 Oracle files
	9.2.3.4 Software used for SOAP clients for Web services (Obsolete)

	9.2.4 PowerBuilder runtime files
	9.2.4.1 List of runtime files
	9.2.4.2 Installing PowerBuilder Runtime
	9.2.4.3 Selecting a version of PowerBuilder Runtime

	9.2.5 Database connections
	9.2.5.1 Native database drivers
	9.2.5.2 ODBC database drivers and supporting files
	9.2.5.3 OLE DB database providers
	9.2.5.4 ADO.NET database interface
	9.2.5.5 JDBC database interface

	9.2.6 Java support
	9.2.7 PowerBuilder extensions
	9.2.8 PDF and XSL-FO export
	9.2.8.1 Using the Ghostscript distiller
	9.2.8.2 Using the PDFlib generator
	9.2.8.3 Using the Apache FO processor

	9.3 Deploying 64-Bit Windows Applications
	9.3.1 Deploying 64-Bit Windows Applications

	Index

