
Application Techniques

Appeon PowerBuilder®

2017

DOCUMENT ID: DC37774-01-1700-01

LAST REVISED: June 2017

Copyright © 2017 by Appeon Limited. All rights reserved.

This publication pertains to Appeon software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Appeon Limited.

Appeon and other Appeon products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of Appeon Limited.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP and SAP affiliate company.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Appeon Limited, 1/F, Shell Industrial Building, 12 Lee Chung Street, Chai Wan District, Hong Kong

Contents

Application Techniques iii

About This Book .. xvii

PART 1 SAMPLE APPLICATIONS

CHAPTER 1 Using Sample Applications.. 3
About the sample applications ... 3
Installing the sample applications .. 3
Opening the sample applications ... 4
Using the Code Examples application.. 4

Browsing the examples ... 5
Finding examples .. 5
Running and examining examples .. 6

PART 2 LANGUAGE TECHNIQUES

CHAPTER 2 Selected Object-Oriented Programming Topics 11
Terminology review .. 11
PowerBuilder techniques ... 13
Other techniques.. 16

CHAPTER 3 Selected PowerScript Topics... 21
Dot notation.. 21
Constant declarations .. 25
Controlling access for instance variables 26
Resolving naming conflicts... 27
Return values from ancestor scripts... 28
Types of arguments for functions and events 30
Ancestor and descendent variables ... 31
Optimizing expressions for DataWindow and external objects 33
Exception handling in PowerBuilder... 34

Basics of exception handling... 34

Contents

iv PowerBuilder

Objects for exception handling support 35
Handling exceptions .. 36
Creating user-defined exception types.................................... 38
Adding flexibility and facilitating object reuse 40
Using the SystemError and Error events................................. 41

Garbage collection and memory management 42
Configuring memory management .. 44

Efficient compiling and performance .. 45
Reading and writing text or binary files .. 45

CHAPTER 4 Getting Information About PowerBuilder Class Definitions...... 49
Overview of class definition information... 49

Terminology... 50
Who uses PowerBuilder class definitions................................ 52

Examining a class definition... 52
Getting a class definition object... 53
Getting detailed information about the class 53
Getting information about a class's scripts 56
Getting information about variables... 58

PART 3 USER INTERFACE TECHNIQUES

CHAPTER 5 Building an MDI Application ... 63
About MDI .. 63
Building an MDI frame window... 66
Using sheets .. 66
Providing MicroHelp ... 68
Using toolbars in MDI applications... 69

Customizing toolbar behavior.. 69
Saving and restoring toolbar settings 70

Sizing the client area.. 74
About keyboard support in MDI applications.................................. 77

CHAPTER 6 Managing Window Instances.. 79
About window instances... 79
Declaring instances of windows ... 80
Using window arrays .. 81
Referencing entities in descendants .. 84

CHAPTER 7 Using Tab Controls in a Window.. 87
About Tab controls ... 87

Contents

Application Techniques v

Defining and managing tab pages ... 88
Customizing the Tab control .. 91
Using Tab controls in scripts .. 94

Referring to tab pages in scripts.. 94
Referring to controls on tab pages .. 96
Opening, closing, and hiding tab pages 97
Keeping track of tab pages.. 98
Creating tab pages only when needed.................................... 99
Events for the parts of the Tab control 100

CHAPTER 8 Using TreeView Controls ... 103
About TreeView controls .. 103
Populating TreeViews .. 106

Functions for inserting items ... 107
Inserting items at the root level ... 109
Inserting items below the root level 109

Managing TreeView items.. 111
Deleting items.. 113
Renaming items .. 114
Moving items using drag and drop .. 115
Sorting items ... 118

Managing TreeView pictures.. 119
Pictures for items... 120
Setting up picture lists ... 122
Using overlay pictures ... 123

Using DataWindow information to populate a TreeView.............. 124

CHAPTER 9 Using Lists in a Window... 127
About presenting lists... 127
Using lists... 128
Using drop-down lists... 133
Using ListView controls .. 135

Using report view... 140

CHAPTER 10 Using Drag and Drop in a Window .. 143
About drag and drop .. 143
Drag-and-drop properties, events, and functions......................... 144
Identifying the dragged control ... 146

CHAPTER 11 Providing Online Help for an Application................................. 147
Creating help files .. 147
Providing online help for developers .. 150

Contents

vi PowerBuilder

Providing online help for users... 151

PART 4 DATA ACCESS TECHNIQUES

CHAPTER 12 Using Transaction Objects ... 155
About Transaction objects.. 155

Description of Transaction object properties 156
Transaction object properties and supported PowerBuilder

database interfaces .. 158
Working with Transaction objects .. 160

Transaction basics .. 160
The default Transaction object .. 162
Assigning values to the Transaction object 163
Reading values from an external file 163
Connecting to the database .. 164
Using the Preview tab to connect in a PowerBuilder application .

164
Disconnecting from the database.. 165
Defining Transaction objects for multiple database connections .

166
Error handling after a SQL statement.................................... 169
Pooling database transactions .. 170

Using Transaction objects to call stored procedures 170
Step 1: define the standard class user object 172
Step 2: declare the stored procedure as an external function 173
Step 3: save the user object.. 175
Step 4: specify the default global variable type for SQLCA... 175
Step 5: code your application to use the user object............. 177

Supported DBMS features when calling stored procedures 178

CHAPTER 13 Using MobiLink Synchronization ... 183
About MobiLink synchronization .. 183
How the synchronization works.. 187
Working with PowerBuilder synchronization objects.................... 189

Preparing to use the wizard... 189
What gets generated ... 189
Creating an instance of MLSync ... 190
Auxiliary objects for MobiLink synchronization...................... 192
Using the synchronization objects in your application........... 195
Runtime requirements for synchronization on remote machines .

197
Preparing consolidated databases... 200

Contents

Application Techniques vii

Connection events... 201
Table events.. 202
Working with scripts and users in SQL Central 205

Creating remote databases.. 207
Creating and modifying publications 208
Creating MobiLink users.. 210
Adding subscriptions ... 212

Synchronization techniques ... 213

CHAPTER 14 Using PowerBuilder XML Services ... 217
About XML and PowerBuilder .. 217
About PBDOM.. 218
PBDOM object hierarchy.. 219
PBDOM node objects... 220

PBDOM_OBJECT ... 220
PBDOM_DOCUMENT .. 223
PBDOM_DOCTYPE.. 223
PBDOM_ELEMENT .. 224
PBDOM_ATTRIBUTE ... 226
PBDOM_ENTITYREFERENCE .. 229
PBDOM_CHARACTERDATA ... 230
PBDOM_TEXT .. 231
PBDOM_CDATA ... 233
PBDOM_COMMENT... 234
PBDOM_PROCESSINGINSTRUCTION............................... 234

Adding pbdom170.pbx to your application 235
Using PBDOM.. 236

Validating the XML .. 236
Creating an XML document from XML 237
Creating an XML document from scratch.............................. 238
Accessing node data ... 240
Manipulating the node-tree hierarchy.................................... 241

Handling PBDOM exceptions... 242
XML namespaces .. 243

Setting the name and namespace of a PBDOM_ATTRIBUTE 245

CHAPTER 15 Manipulating Graphs .. 249
Using graphs .. 249

Working with graph controls in code 250
Populating a graph with data.. 251
Modifying graph properties... 253

How parts of a graph are represented................................... 254
Referencing parts of a graph... 254

Contents

viii PowerBuilder

Accessing data properties.. 255
Getting information about the data .. 256
Saving graph data ... 257
Modifying colors, fill patterns, and other data........................ 258

Using point and click .. 258

CHAPTER 16 Implementing Rich Text .. 261
Using rich text in an application ... 261

Sources of rich text.. 262
Selecting a rich text editor ... 262
Deploying a rich text application.. 263

Using a RichText DataWindow object.. 263
Using a RichTextEdit control .. 266

Giving the user control .. 266
Text for the control .. 268
Using an ActiveX spell checking control................................ 276
Formatting of rich text.. 277
Input fields ... 277
Using database data ... 279
Cursor position in the RichTextEdit control 280
Preview and printing.. 281

Rich text and the end user ... 283

CHAPTER 17 Piping Data Between Data Sources ... 287
About data pipelines... 287
Building the objects you need .. 288

Building a Pipeline object .. 289
Building a supporting user object .. 292
Building a window.. 293

Performing some initial housekeeping ... 295
Starting the pipeline ... 298

Monitoring pipeline progress ... 300
Canceling pipeline execution... 303
Committing updates to the database..................................... 304

Handling row errors.. 304
Repairing error rows.. 306
Abandoning error rows .. 307

Performing some final housekeeping... 308

PART 5 PROGRAM ACCESS TECHNIQUES

CHAPTER 18 Using DDE in an Application .. 313

Contents

Application Techniques ix

About DDE ... 313
DDE functions and events.. 314

CHAPTER 19 Using OLE in an Application.. 317
OLE support in PowerBuilder ... 317
OLE controls in a window... 318
OLE controls and insertable objects .. 320

Setting up the OLE control .. 320
Linking versus embedding... 324
Offsite or in-place activation .. 325
Menus for in-place activation... 326
Modifying an object in an OLE control................................... 328

OLE custom controls.. 333
Setting up the custom control .. 333
Programming the ActiveX control .. 334

Programmable OLE Objects .. 336
OLEObject object type .. 336
Assignments among OLEControl, OLECustomControl, and

OLEObject datatypes ... 339
Automation scenario.. 340

OLE objects in scripts .. 345
The automation interface... 346
Automation and the Any datatype ... 352
OLEObjects for efficiency.. 353
Handling errors.. 354
Creating hot links... 357
Setting the language for OLE objects and controls 359
Low-level access to the OLE object 360
OLE objects in DataWindow objects 360

OLE information in the Browser ... 363
Advanced ways to manipulate OLE objects................................. 366

Structure of an OLE storage.. 367
Object types for storages and streams.................................. 368
Opening and saving storages.. 369
Opening streams ... 375
Strategies for using storages... 379

CHAPTER 20 Building a Mail-Enabled Application... 381
About MAPI .. 381
Using MAPI .. 382

CHAPTER 21 Using External Functions and Other Processing Extensions 385

Contents

x PowerBuilder

Using external functions... 385
Declaring external functions .. 386
Sample declarations.. 387
Passing arguments.. 388

Using utility functions to manage information............................... 391
Sending Windows messages ... 393
The Message object... 394

Message object properties .. 395
Context information .. 397

Context information service... 398
Context keyword service ... 400
CORBACurrent service (obsolete) .. 401
Error logging service ... 401
Internet service.. 401
Transaction server service .. 404

PART 6 DEVELOPING DISTRIBUTED APPLICATIONS

CHAPTER 22 Distributed Application Development with PowerBuilder 407
Distributed application architecture .. 407
Server support.. 408

CHAPTER 23 Building a COM or COM+ Client ... 411
About building a COM or COM+ client ... 411
Connecting to a COM server.. 412
Interacting with the COM component... 412
Controlling transactions from a client ... 413

CHAPTER 24 Building an EJB client (obsolete)... 417
About building an EJB client .. 417
Adding pbejbclient170.pbx to your application............................. 418
Generating EJB proxy objects.. 419

Using an EJB Proxy project... 419
Using the ejb2pb170 tool... 423
Viewing the generated proxies .. 424
Datatype mappings ... 425

Creating a Java VM.. 426
Connecting to the server .. 429
Invoking component methods .. 430
Exception handling... 435
Client-managed transactions ... 436
Debugging the client .. 437

Contents

Application Techniques xi

PART 7 DEVELOPING WEB APPLICATIONS

CHAPTER 25 Web Application Development with PowerBuilder 441
Building Web applications .. 441
.NET Web components .. 441
Web services.. 442
Web DataWindow (obsolete) ... 442
DataWindow Web control for ActiveX (obsolete) 443

CHAPTER 26 Building a Web Services Client ... 445
About Web services ... 445

About building a Web services client..................................... 446
Choosing a Web service engine.. 446
Assigning firewall settings to access a Web service 448

Importing objects from an extension file....................................... 449
Generating Web service proxy objects .. 451
Connecting to a SOAP server .. 456
Invoking the Web service method .. 458
Using .NET Web services with custom headers 458
Using cookies with the Web service client 459
Exception handling... 460
Using the UDDI Inquiry API.. 461

PART 8 GENERAL TECHNIQUES

CHAPTER 27 Internationalizing an Application... 465
Developing international applications... 465
Using Unicode.. 465

About Unicode... 466
Unicode support in PowerBuilder .. 467

Internationalizing the user interface ... 471
Localizing the product .. 471

About the Translation Toolkit... 473

CHAPTER 28 Building Accessible Applications ... 475
Understanding accessibility challenges 475
Accessibility requirements for software and Web applications 477
Creating accessible software applications with PowerBuilder 479
About VPATs.. 483
Testing product accessibility .. 483

Contents

xii PowerBuilder

CHAPTER 29 Printing from an Application .. 485
Printing functions.. 485
Printing basics.. 487
Printing a job .. 487
Using tabs .. 488
Stopping a print job .. 489
Advanced printing techniques .. 490

CHAPTER 30 Managing Initialization Files and the Windows Registry 493
About preferences and default settings.. 493
Managing information in initialization files.................................... 494
Managing information in the Windows registry 495

CHAPTER 31 Building InfoMaker Styles and Actions 497
About form styles ... 497
Naming the DataWindow controls in a form style 500
Building and using a form style .. 501
Modifying an existing style ... 502

Identifying the window as the basis of a style 503
Building a style from scratch .. 504
Completing the style... 504

Working with the central DataWindow controls 505
Adding controls.. 506
Defining actions... 506
Using menus ... 507
Writing scripts.. 508
Adding other capabilities ... 508

Using the style.. 508
Building a form with the custom form style............................ 509
Managing the use of form styles ... 510

PART 9 DEPLOYMENT TECHNIQUES

CHAPTER 32 Packaging an Application for Deployment................................ 515
About deploying applications ... 515
Creating an executable version of your application 516

Compiler basics... 516
Learning what can go in the package.................................... 517
Creating a PowerBuilder resource file................................... 522
Choosing a packaging model .. 524
Implementing your packaging model..................................... 527
Testing the executable application .. 528

Contents

Application Techniques xiii

Delivering your application to end users 529
Installation checklist .. 529
Starting the deployed application .. 532

CHAPTER 33 Deploying Applications and Components................................ 533
Deploying applications, components, and supporting files 533
PowerBuilder Runtime Packager ... 536
Third-party components and deployment..................................... 540

Apache files... 540
Microsoft files .. 541
Oracle files .. 542
Software used for SOAP clients for Web services 542

PowerBuilder runtime files ... 543
Database connections.. 545

Native database drivers... 546
ODBC database drivers and supporting files 547
OLE DB database providers.. 551
ADO.NET database interface.. 552
JDBC database interface .. 553

Java support... 554
PowerBuilder extensions.. 556
PDF and XSL-FO export .. 556

Using the Ghostscript distiller .. 557
Using the PDFlib generator ... 559
Using the Apache FO processor ... 560

CHAPTER 34 Deploying 64-Bit Windows Applications 563
Deploying 64-Bit Windows Applications....................................... 563

Index ... 567

Contents

xiv PowerBuilder

Application Techniques xvii

About This Book

Audience You should read this book if you are involved in any phase of a
client/server, distributed, or Web application development project that
uses PowerBuilder®.

How to use this book This how-to book guides you through programming techniques used to
build and deploy PowerBuilder applications and components. It does this
by equipping you with collections of techniques for implementing many
common application features and advice for choosing those techniques
best suited to your requirements.

PowerBuilder is accompanied by sample applications that illustrate some
of the issues, features, and techniques you will read about. Examine the
components of these applications in PowerBuilder, read the comments in
the code, and experiment with real, working examples of what you are
trying to learn.

For where to find the sample applications, see Chapter 1, Using Sample
Applications.

Related documents For a description of all the books in the PowerBuilder documentation set,
see the preface of PowerBuilder Getting Started.

Other sources of
information

Use the Appeon Product Manuals web site to learn more about your
product. The Appeon Product Manuals web site is accessible using a
standard Web browser.

To access the Appeon Product Manuals web site, go to Product Manuals at
https://www.appeon.com/developers/library/product-manuals-for-pb.

The installation guide in PDF format can be accessed from the
PowerBuilder installation package. The release bulletin can be access
from Online Help at
https://www.appeon.com/support/documents/appeon_online_help/pb2017/r
elease_bulletin_for_pb.

Conventions The formatting conventions used in this manual are:

xviii PowerBuilder

If you need help All customers are entitled to standard technical support for reproducible
software defects. You can open a standard support ticket at the Appeon
support site: https://www.appeon.com/standardsupport/ (login required).
If your organization has purchased a premium support contract for this
product, then the designated authorized support contact(s) may seek
assistance with your technical issue or question at the Appeon support site:
https://support.appeon.com (login required).

Formatting example Indicates

Retrieve and Update When used in descriptive text, this font indicates:

• Command, function, and method names

• Keywords such as true, false, and null

• Datatypes such as integer and char

• Database column names such as emp_id and
f_name

• User-defined objects such as dw_emp or
w_main

variable or file name When used in descriptive text and syntax
descriptions, oblique font indicates:

• Variables, such as myCounter

• Parts of input text requiring substitution, such as
pblname.pbd

• File and path names

File>Save Menu names and menu items are displayed in plain
text. The greater than symbol (>) shows you how
to navigate menu selections. For example,
File>Save indicates “select Save from the File
menu.”

dw_1.Update() Monospace font indicates:

• Information that you enter in a dialog box or on
a command line

• Sample script fragments

• Sample output fragments

https://www.appeon.com/standardsupport/

P A R T 1 Sample Applications

This part introduces the sample applications provided with
PowerBuilder and explains how you use them to learn
programming techniques.

Application Techniques 3

C H A P T E R 1 Using Sample Applications

About this chapter This chapter describes how to use PowerBuilder sample applications.

Contents

About the sample applications
PowerBuilder provides sample applications with source code so you can
learn and reuse the techniques used in the samples.

These samples are contributed by Appeon employees and users and are
updated frequently. They include standalone applications that illustrate
specific features of PowerBuilder, including features such as using Web
services, and writing visual and nonvisual extensions using the
PowerBuilder Native Interface. Most samples include a readme document
that explains which features a sample demonstrates and how to download
and use it.

Installing the sample applications
To install the samples from the PowerBuilder setup program, select Code
Examples from the list of components. To install Code Examples
applications, select Example Application.

Topic Page

About the sample applications 3

Installing the sample applications 3

Opening the sample applications 4

Using the Code Examples application 4

Opening the sample applications

4 PowerBuilder

The setup program installs all samples in Code Examples subdirectories. Most
Code Examples applications use a sample SQL Anywhere® database called
PB Demo DB. The Code Examples subdirectories and PB Demo DB databases
are installed in the C:\Users\Public\Documents\Appeon\PowerBuilder 17.0
directory on Windows 2008, and in the C:\Users\Public\Public
Documents\Appeon\PowerBuilder 17.0 directory on Windows 7/8.1/10.

If you cannot find the Code Examples directory or the PBDEMO2017.DB file,
the sample applications and the database may not have been installed.

Opening the sample applications
To open a sample application, select Programs>Appeon>PowerBuilder
2017>Code Samples from the Start menu, then select the sample application
that you want to open.

The next section contains a procedure that steps you through opening and
running the Code Examples application.

Using the Code Examples application
You run the Code Examples application from the development environment.

 To run the Code Examples application:

1 Select File > New from the menu bar, select Workspace from the
Workspace tab, and click OK.

2 Navigate to the PowerBuilder 17.0\Code Examples\Example App folder,
type a name for the workspace, and click Save.

3 Select Add Target from the pop-up menu for the workspace you just
created, navigate to the PowerBuilder 17.0\Code Examples\Example App
folder, select the PB Examples target file, and click Open.

If you expand the target, you will see that the PBL that contains the
application and all its supporting PBLs have been added to the workspace.

4 Click the Run button on the PowerBar.

CHAPTER 1 Using Sample Applications

Application Techniques 5

Browsing the examples
When the Code Examples application opens, the left pane contains an
expandable tree view listing the categories of examples available. Some
examples appear in more than one category. For example, the Business Class
example is listed under Inheritance and User Objects. If you are looking for
examples showing how to work with a specific feature, such as DataStores or
DataWindows, expand that category and look at the example names.

When you select an example in the left pane, a description of the example and
the techniques it demonstrates displays on the right:

Finding examples
If you are looking for ways to work with a specific PowerBuilder object class
or feature, you can use the categories in the Examples pane and the descriptions
to locate examples. If you are looking for examples using a specific event,
function, or user-defined object, use the Search pane.

 To search for a function, event, or object:

1 Click the Search tab in the Code Examples main window.

Using the Code Examples application

6 PowerBuilder

2 Select a radio button in the Search On group box.

3 Select the item you want in the drop-down list and click Perform Search.

The names of all the examples that use the function, event, or object you
searched for display:

Running and examining examples
Once you have located an example that performs some processing you want to
learn about, you can run it to examine how it works and look at the code (and
copy it if you want to).

Running an example To run the highlighted example, double-click it or click Run!. You can get Help
on how to use the example and what it does by clicking the Help button on the
example’s main window.

CHAPTER 1 Using Sample Applications

Application Techniques 7

Examining the code To see all the objects used in an example, click the Related Objects tab on the
right pane and click the plus signs to expand items:

Double-click the icon for a script or function to examine it.

Using examples in the
development
environment

Running the Code Examples application and looking at the code for an
example gives you a lot of information, but if you open objects in the examples
in the development environment, you can examine them in more depth.

For example, you can open any object in a painter, examine the inheritance
hierarchy in the Browser, and step through an example in the Debugger. You
can even copy objects to your own application in the Library painter or copy
code fragments to the Script view.

The libraries in the Code Examples application are organized by object type.
For example, pbexamd1.pbl and pbexamd2.pbl contain DataWindow objects.
This makes it easy to find the objects that are referenced as examples later in
this book. If you expand the sample libraries in the List view in the Library
painter, the comments tell you what each object is used for.

Using the Code Examples application

8 PowerBuilder

P A R T 2 Language Techniques

This part presents a collection of programming techniques
you can use to take advantage of PowerBuilder object-
oriented features and PowerScript® language elements,
including the ClassDefinition object.

Application Techniques 11

C H A P T E R 2 Selected Object-Oriented
Programming Topics

About this chapter This chapter describes how to implement selected object-oriented
programming techniques in PowerBuilder.

Contents

Terminology review
Classes, properties, and
methods

In object-oriented programming, you create reusable classes to perform
application processing. These classes include properties and methods
that define the class’s behavior. To perform application processing, you
create instances of these classes. PowerBuilder implements these
concepts as follows:

• Classes PowerBuilder objects (such as windows, menus, window
controls, and user objects)

• Properties Object variables and instance variables

• Methods Events and functions

The remaining discussions in this chapter use this PowerBuilder
terminology.

Fundamental principles Object-oriented programming tools support three fundamental principles:
inheritance, encapsulation, and polymorphism.

Inheritance Objects can be derived from existing objects, with access to
their visual component, data, and code. Inheritance saves coding time,
maximizes code reuse, and enhances consistency. A descendent object is
also called a subclass.

Topic Page

Terminology review 11

PowerBuilder techniques 13

Other techniques 16

Terminology review

12 PowerBuilder

Encapsulation An object contains its own data and code, allowing outside
access as appropriate. This principle is also called information hiding.
PowerBuilder enables and supports encapsulation by giving you tools that can
enforce it, such as access and scope. However, PowerBuilder itself does not
require or automatically enforce encapsulation.

Polymorphism Functions with the same name behave differently, depending
on the referenced object. Polymorphism enables you to provide a consistent
interface throughout the application and within all objects.

Visual objects Many current applications make heavy use of object-oriented features for
visual objects such as windows, menus, and visual user objects. This allows an
application to present a consistent, unified look and feel.

Nonvisual objects To fully benefit from PowerBuilder’s object-oriented capabilities, consider
implementing class user objects, also known as nonvisual user objects:

Standard class user objects Inherit their definitions from built-in
PowerBuilder system objects, such as Transaction, Message, or Error. The
nvo_transaction Transaction object in the Code Examples sample application is
an example of a subclassed standard class user object. Creating customized
standard class user objects allows you to provide powerful extensions to
built-in PowerBuilder system objects.

Custom class user objects Inherit their definitions from the PowerBuilder
NonVisualObject class. Custom class user objects encapsulate data and code.
This type of class user object allows you to define an object class from scratch.
The u_business_object user object in the Code Examples sample application is
an example of a custom class user object. To make the most of PowerBuilder’s
object-oriented capabilities, you must use custom class user objects. Typical
uses include:

• Global variable container The custom class user object contains
variables and functions for use across your application. You encapsulate
these variables as appropriate for your application, allowing access
directly or through object functions.

• Service object The custom class user object contains functions and
variables that are useful either in a specific context (such as a
DataWindow) or globally (such as a collection of string-handling
functions).

• Business rules The custom class user object contains functions and
variables that implement business rules. You can either create one object
for all business rules or create multiple objects for related groups of
business rules.

CHAPTER 2 Selected Object-Oriented Programming Topics

Application Techniques 13

• Distributed computing The custom class user object contains functions
that run on a server or cluster of servers.

For more information, see Part 6, “Distributed Application Techniques.”

PowerBuilder techniques
PowerBuilder provides full support for inheritance, encapsulation, and
polymorphism in both visual and nonvisual objects.

Creating reusable objects
In most cases, the person developing reusable objects is not the same person
using the objects in applications. This discussion describes defining and
creating reusable objects. It does not address usage.

Implementing
inheritance

PowerBuilder makes it easy to create descendent objects. You implement
inheritance in PowerBuilder by using a painter to inherit from a specified
ancestor object.

For examples of inheritance in visual objects, see the w_employee window and
u_employee_object in the Code Examples sample application.

Example of ancestor service object One example of using inheritance in
custom class user objects is creating an ancestor service object that performs
basic services and several descendent service objects. These descendent
objects perform specialized services, as well as having access to the ancestor’s
services:

PowerBuilder techniques

14 PowerBuilder

Figure 2-1: Ancestor service object

Example of virtual function in ancestor object Another example of using
inheritance in custom class user objects is creating an ancestor object
containing functions for all platforms and then creating descendant objects that
perform platform-specific functions. In this case, the ancestor object contains
a virtual function (uf_change_dir in this example) so that developers can
create descendent objects using the ancestor’s datatype.

Figure 2-2: Virtual function in ancestor object

For more on virtual functions, see Other techniques on page 16.

Implementing
encapsulation

Encapsulation allows you to insulate your object’s data, restricting access by
declaring instance variables as private or protected. You then write object
functions to provide selective access to the instance variables.

One approach One approach to encapsulating processing and data is as
follows:

• Define instance variables as public, private, or protected, depending on the
desired degree of outside access. To ensure complete encapsulation, define
instance variables as either private or protected.

• Define object functions to perform processing and provide access to the
object’s data.

CHAPTER 2 Selected Object-Oriented Programming Topics

Application Techniques 15

Table 2-1: Defining object functions

Another approach Another approach to encapsulating processing and data
is to provide a single entry point, in which the developer specifies the action to
be performed:

• Define instance variables as private or protected, depending on the desired
degree of outside access

• Define private or protected object functions to perform processing

• Define a single public function whose arguments indicate the type of
processing to perform

Figure 2-3: Defining a public function for encapsulation

For an example, see the uo_sales_order user object in the Code Examples
sample application.

Implementing
polymorphism

Polymorphism refers to a programming language's ability to process objects
differently depending on their datatype or class. Polymorphism means that
functions with the same name behave differently depending on the referenced
object. Although there is some discussion over an exact definition for
polymorphism, many people find it helpful to think of it as follows:

Operational polymorphism Separate, unrelated objects define functions
with the same name. Each function performs the appropriate processing for its
object type:

To do this Provide this function Example

Perform processing uf_do_operation uf_do_retrieve (which retrieves
rows from the database)

Modify instance
variables

uf_set_variablename uf_set_style (which modifies
the is_style string variable)

Read instance
variables

uf_get_variablename uf_get_style (which returns the
is_style string variable)

(Optional) Read
boolean instance
variables

uf_is_variablename uf_is_protected (which returns
the ib_protected boolean
variable)

Other techniques

16 PowerBuilder

Figure 2-4: Operational polymorphism

For an example, see the u_external_functions user object and its descendants in
the Code Examples sample application.

Inclusional polymorphism Various objects in an inheritance chain define
functions with the same name.

With inclusional polymorphism PowerBuilder determines which version of a
function to execute, based on where the current object fits in the inheritance
hierarchy. When the object is a descendant, PowerBuilder executes the
descendent version of the function, overriding the ancestor version:

Figure 2-5: Inclusional polymorphism

For an example, see the u_employee_object user object in the Code Examples
sample application.

Other techniques
PowerBuilder allows you to implement a wide variety of object-oriented
techniques. This section discusses selected techniques and relates them to
PowerBuilder.

Using function
overloading

In function overloading, the descendent function (or an identically named
function in the same object) has different arguments or argument datatypes.
PowerBuilder determines which version of a function to execute, based on the
arguments and argument datatypes specified in the function call:

CHAPTER 2 Selected Object-Oriented Programming Topics

Application Techniques 17

Figure 2-6: Function overloading

Global functions
Global functions cannot be overloaded.

Dynamic versus static
lookup

Dynamic lookup In certain situations, such as when insulating your
application from cross-platform dependencies, you create separate descendent
objects, each intended for a particular situation. Your application calls the
platform-dependent functions dynamically:

Figure 2-7: Dynamic lookup

Instantiate the appropriate object at runtime, as shown in the following code
example:

// This code works with both dynamic and
// static lookup.
// Assume these instance variables
u_platform iuo_platform
Environment ienv_env
...
GetEnvironment(ienv_env)
choose case ienv_env.ostype

case windows!
iuo_platform = CREATE u_platform_win

Other techniques

18 PowerBuilder

case windowsnt!
iuo_platform = CREATE u_platform_win

case else
iuo_platform = CREATE u_platform_unix

end choose

Although dynamic lookup provides flexibility, it also slows performance.

Static lookup To ensure fast performance, static lookup is a better option.
However, PowerBuilder enables object access using the reference variable’s
datatype (not the datatype specified in a CREATE statement).

Figure 2-8: Static lookup

When using static lookup, you must define default implementations for
functions in the ancestor. These ancestor functions return an error value (for
example, -1) and are overridden in at least one of the descendant objects.

Figure 2-9: Ancestor functions overridden in descendant functions

By defining default implementations for functions in the ancestor object, you
get platform independence as well as the performance benefit of static lookup.

Using delegation Delegation occurs when objects offload processing to other objects.

CHAPTER 2 Selected Object-Oriented Programming Topics

Application Techniques 19

Aggregate relationship In an aggregate relationship (sometimes called a
whole-part relationship), an object (called an owner object) associates itself
with a service object designed specifically for that object type.

For example, you might create a service object that handles extended row
selection in DataWindow objects. In this case, your DataWindow objects
contain code in the Clicked event to call the row selection object.

 To use objects in an aggregate relationship:

1 Create a service object (u_sort_dw in this example).

2 Create an instance variable (also called a reference variable) in the owner
(a DataWindow control in this example):

u_sort_dw iuo_sort

3 Add code in the owner object to create the service object:

iuo_sort = CREATE u_sort_dw

4 Add code to the owner’s system events or user events to call service object
events or functions. This example contains the code you might place in a
ue_sort user event in the DataWindow control:

IF IsValid(iuo_sort) THEN
Return iuo_sort.uf_sort()

ELSE
Return -1

END IF

5 Add code to call the owner object’s user events. For example, you might
create a CommandButton or Edit>Sort menu item that calls the ue_sort
user event on the DataWindow control.

6 Add code to the owner object’s Destructor event to destroy the service
object:

IF IsValid(iuo_sort) THEN
DESTROY iuo_sort

END IF

Associative relationship In an associative relationship, an object associates
itself with a service to perform a specific type of processing.

For example, you might create a string-handling service that can be enabled by
any of your application’s objects.

The steps you use to implement objects in an associative relationship are the
same as for aggregate relationships.

Other techniques

20 PowerBuilder

Using user objects as
structures

When you enable a user object’s AutoInstantiate property, PowerBuilder
instantiates the user object along with the object, event, or function in which it
is declared. You can also declare instance variables for a user object. By
combining these two capabilities, you create user objects that function as
structures. The advantages of creating this type of user object are that you can:

• Create descendent objects and extend them.

• Create functions to access the structure all at once.

• Use access modifiers to limit access to certain instance variables.

 To create a user object to be used as a structure:

1 Create the user object, defining instance variables only.

2 Enable the user object’s AutoInstantiate property by checking
AutoInstantiate on the General property page.

3 Declare the user object as a variable in objects, functions, or events as
appropriate.

PowerBuilder creates the user object when the object, event, or function is
created and destroys it when the object is destroyed or the event or
function ends.

Subclassing
DataStores

Many applications use a DataWindow visual user object instead of the standard
DataWindow window control. This allows you to standardize error checking
and other, application-specific DataWindow behavior. The u_dwstandard
DataWindow visual user object found in the tutorial library TUTOR_PB.PBL
provides an example of such an object.

Since DataStores function as nonvisual DataWindow controls, many of the
same application and consistency requirements apply to DataStores as to
DataWindow controls. Consider creating a DataStore standard class user object
to implement error checking and application-specific behavior for DataStores.

Application Techniques 21

C H A P T E R 3 Selected PowerScript Topics

About this chapter This chapter describes how to use elements of the PowerScript language
in an application.

Contents

Dot notation
Dot notation lets you qualify the item you are referring to—instance
variable, property, event, or function—with the object that owns it.

Dot notation is for objects. You do not use dot notation for global variables
and functions, because they are independent of any object. You do not use
dot notation for shared variables either, because they belong to an object
class, not an object instance.

Qualifying a reference Dot notation names an object variable as a qualifier to the item you want
to access:

objectvariable.item

The object variable name is a qualifier that identifies the owner of the
property or other item.

Topic Page

Dot notation 21

Constant declarations 25

Controlling access for instance variables 26

Resolving naming conflicts 27

Return values from ancestor scripts 28

Types of arguments for functions and events 30

Ancestor and descendent variables 31

Optimizing expressions for DataWindow and external objects 33

Exception handling in PowerBuilder 34

Garbage collection and memory management 42

Efficient compiling and performance 45

Reading and writing text or binary files 45

Dot notation

22 PowerBuilder

Adding a parent qualifier To fully identify an object, you can use additional
dot qualifiers to name the parent of an object, and its parent, and so on:

parent.objectvariable.item

A parent object contains the child object. It is not an ancestor-descendent
relationship. For example, a window is a control’s parent. A Tab control is the
parent of the tab pages it contains. A Menu object is the parent of the Menu
objects that are the items on that menu.

Many parent levels You can use parent qualifiers up to the level of the
application. You typically need qualifiers only up to the window level.

For example, if you want to call the Retrieve function for a DataWindow
control on a tab page, you might qualify the name like this:

w_choice.tab_alpha.tabpage_a.dw_names.Retrieve()

Menu objects often need several qualifiers. Suppose a window w_main has a
menu object m_mymenu, and m_mymenu has a File menu with an Open item.
You can trigger the Open item’s Selected event like this:

w_main.m_mymenu.m_file.m_open.EVENT Selected()

As you can see, qualifying a name gets complex, particularly for menus and tab
pages in a Tab control.

How many qualifiers? You need to specify as many qualifiers as are
required to identify the object, function, event, or property.

A parent object knows about the objects it contains. In a window script, you do
not need to qualify the names of the window’s controls. In scripts for the
controls, you can also refer to other controls in the window without a qualifier.

For example, if the window w_main contains a DataWindow control dw_data
and a CommandButton cb_close, a script for the CommandButton can refer to
the DataWindow control without a qualifier:

dw_data.AcceptText()
dw_data.Update()

If a script in another window or a user object refers to the DataWindow control,
the DataWindow control needs to be qualified with the window name:

w_main.dw_data.AcceptText()

Referencing objects There are three ways to qualify an element of an object in the object’s own
scripts:

• Unqualified:

li_index = SelectItem(5)

CHAPTER 3 Selected PowerScript Topics

Application Techniques 23

An unqualified name is unclear and might result in ambiguities if there are
local or global variables and functions with the same name.

• Qualified with the object’s name:

li_index = lb_choices.SelectItem(5)

Using the object name in the object’s own script is unnecessarily specific.

• Qualified with a generic reference to the object:

li_index = This.SelectItem(5)

The pronoun This shows that the item belongs to the owning object.

This pronoun In a script for the object, you can use the pronoun This as a
generic reference to the owning object:

This.property

This.function

Although the property or function could stand alone in a script without a
qualifier, someone looking at the script might not recognize the property or
function as belonging to an object. A script that uses This is still valid if you
rename the object. The script can be reused with less editing.

You can also use This by itself as a reference to the current object. For example,
suppose you want to pass a DataWindow control to a function in another user
object:

uo_data.uf_retrieve(This)

This example in a script for a DataWindow control sets an instance variable of
type DataWindow so that other functions know the most recently used
DataWindow control:

idw_currentdw = This

Parent pronoun The pronoun Parent refers to the parent of an object. When
you use Parent and you rename the parent object or reuse the script in other
contexts, it is still valid.

For example, in a DataWindow control script, suppose you want to call the
Resize function for the window. The DataWindow control also has a Resize
function, so you must qualify it:

// Two ways to call the window function
w_main.Resize(400, 400)
Parent.Resize(400, 400)

// Three ways to call the control's function
Resize(400, 400)

Dot notation

24 PowerBuilder

dw_data.Resize(400, 400)
This.Resize(400, 400)

GetParent function The Parent pronoun works only within dot notation. If
you want to get a reference to the parent of an object, use the GetParent
function. You might want to get a reference to the parent of an object other than
the one that owns the script, or you might want to save the reference in a
variable:

window w_save
w_save = dw_data.GetParent()

For example, in another CommandButton’s Clicked event script, suppose you
wanted to pass a reference to the control’s parent window to a function defined
in a user object. Use GetParent in the function call:

uo_winmgmt.uf_resize(This.GetParent(), 400, 600)

ParentWindow property and function Other tools for getting the parent of
an object include:

• ParentWindow property – used in a menu script to refer to the window
that is the parent of the menu

• ParentWindow function – used in any script to get a reference to the
window that is the parent of a particular window

For more about these pronouns and functions, see the PowerScript Reference.

Objects in a container
object

Dot notation also allows you to reach inside an object to the objects it contains.
To refer to an object inside a container, use the Object property in the dot
notation. The structure of the object in the container determines how many
levels are accessible:

control.Object.objectname.property

control.Object.objectname.Object.qualifier.qualifier.property

Objects that you can access using the Object property are:

• DataWindow objects in DataWindow controls

• External OLE objects in OLE controls

These expressions refer to properties of the DataWindow object inside a
DataWindow control:

dw_data.Object.emp_lname.Border
dw_data.Object.nestedrpt[1].Object.salary.Border

CHAPTER 3 Selected PowerScript Topics

Application Techniques 25

No compiler checking For objects inside the container, the compiler cannot
be sure that the dot notation is valid. For example, the DataWindow object is
not bound to the control and can be changed at any time. Therefore, the names
and properties after the Object property are checked for validity during
execution only. Incorrect references cause an execution error.

For more information For more information about runtime checking, see
Optimizing expressions for DataWindow and external objects on page 33.

For more information about dot notation for properties and data of
DataWindow objects and handling errors, see the DataWindow Reference.

For more information about OLE objects and dot notation for OLE automation,
see Chapter 19, Using OLE in an Application.

Constant declarations
To declare a constant, add the keyword CONSTANT to a standard variable
declaration:

CONSTANT { access } datatype constname = value

Only a datatype that accepts an assignment in its declaration can be a constant.
For this reason, blobs cannot be constants.

Even though identifiers in PowerScript are not case sensitive, the declarations
shown here use uppercase as a convention for constant names:

CONSTANT integer GI_CENTURY_YEARS = 100
CONSTANT string IS_ASCENDING = "a"

Advantages of
constants

If you try to assign a value to the constant anywhere other than in the
declaration, you get a compiler error. A constant is a way of assuring that the
declaration is used the way you intend.

Constants are also efficient. Because the value is established during
compilation, the compiled code uses the value itself, rather than referring to a
variable that holds the value.

Controlling access for instance variables

26 PowerBuilder

Controlling access for instance variables
Instance variables have access settings that provide control over how other
objects’ scripts access them.

You can specify that a variable is:

• Public Accessible to any other object

• Protected Accessible only in scripts for the object and its descendants

• Private Accessible in scripts for the object only

For example:

public integer ii_currentvalue
CONSTANT public integer WARPFACTOR = 1.2
protected string is_starship

// Private values used in internal calculations
private integer ii_maxrpm
private integer ii_minrpm

You can further qualify access to public and protected variables with the
modifiers PRIVATEREAD, PRIVATEWRITE, PROTECTEDREAD, or
PROTECTEDWRITE:

public privatewrite ii_averagerpm

Private variables for
encapsulation

One use of access settings is to keep other scripts from changing a variable
when they should not. You can use PRIVATE or PUBLIC PRIVATEWRITE to
keep the variable from being changed directly. You might write public
functions to provide validation before changing the variable.

Private variables allow you to encapsulate an object’s functionality. This
technique means that an object’s data and code are part of the object itself and
the object determines the interface it presents to other objects.

If you generate a component from a custom class user object, you can choose
to expose its instance variables in the component’s interface, but private and
protected instance variables are never exposed.

For more information For more about access settings, see the chapter about declarations in the
PowerScript Reference.

For more about encapsulation, see Chapter 2, Selected Object-Oriented
Programming Topics.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 27

Resolving naming conflicts
There are two areas in which name conflicts occur:

• Variables that are defined within different scopes can have the same name.
For example, a global variable can have the same name as a local or
instance variable. The compiler warns you of these conflicts, but you do
not have to change the names.

• A descendent object has functions and events that are inherited from the
ancestor and have the same names.

If you need to refer to a hidden variable or an ancestor’s event or function, you
can use dot notation qualifiers or the scope operator.

Hidden instance
variables

If an instance variable has the same name as a local, shared, or global variable,
qualify the instance variable with its object’s name:

objectname.instancevariable

If a local variable and an instance variable of a window are both named
birthdate, then qualify the instance variable:

w_main.birthdate

If a window script defines a local variable x, the name conflicts with the X
property of the window. Use a qualifier for the X property. This statement
compares the two:

IF x > w_main.X THEN

Hidden global
variables

If a global variable has the same name as a local or shared variable, you can
access the global variable with the scope operator (::) as follows:

::globalvariable

This expression compares a local variable with a global variable, both named
total:

IF total < ::total THEN ...

Use prefixes to avoid naming conflicts
If your naming conventions include prefixes that identify the scope of the
variable, then variables of different scopes always have different names and
there are no conflicts.

For more information about the search order that determines how name
conflicts are resolved, see the chapters about declarations and calling functions
and events in the PowerScript Reference.

Return values from ancestor scripts

28 PowerBuilder

Overridden functions
and events

When you change the script for a function that is inherited, you override the
ancestor version of the function. For events, you can choose to override or
extend the ancestor event script in the painter.

You can use the scope operator to call the ancestor version of an overridden
function or event. The ancestor class name, not a variable, precedes the colons:

result = w_ancestor:: FUNCTION of_func(arg1, arg2)

You can use the Super pronoun instead of naming an ancestor class. Super
refers to the object’s immediate ancestor:

result = Super:: EVENT ue_process()

In good object-oriented design, you would not call ancestor scripts for other
objects. It is best to restrict this type of call to the current object’s immediate
ancestor using Super.

For how to capture the return value of an ancestor script, see "Return values
from ancestor scripts" next.

Overloaded functions When you have several functions of the same name for the same object, the
function name is considered to be overloaded. PowerBuilder determines which
version of the function to call by comparing the signatures of the function
definitions with the signature of the function call. The signature includes the
function name, argument list, and return value.

Overloading
Events and global functions cannot be overloaded.

Return values from ancestor scripts
If you want to perform some processing in an event in a descendent object, but
that processing depends on the return value of the ancestor event script, you
can use a local variable called AncestorReturnValue that is automatically
declared and assigned the return value of the ancestor event.

The first time the compiler encounters a CALL statement that calls the ancestor
event of a script, the compiler implicitly generates code that declares the
AncestorReturnValue variable and assigns to it the return value of the ancestor
event.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 29

The datatype of the AncestorReturnValue variable is always the same as the
datatype defined for the return value of the event. The arguments passed to the
call come from the arguments that are passed to the event in the descendent
object.

Extending event
scripts

The AncestorReturnValue variable is always available in extended event
scripts. When you extend an event script, PowerBuilder generates the
following syntax and inserts it at the beginning of the event script:

CALL SUPER::event_name

You see the statement only if you export the syntax of the object.

Overriding event
scripts

The AncestorReturnValue variable is available only when you override an
event script after you call the ancestor event using the CALL syntax explicitly:

CALL SUPER::event_name

or

CALL ancestor_name::event_name

The compiler does not differentiate between the keyword SUPER and the name
of the ancestor. The keyword is replaced with the name of the ancestor before
the script is compiled.

The AncestorReturnValue variable is declared and a value assigned only when
you use the CALL event syntax. It is not declared if you use the new event
syntax:

ancestor_name::EVENT event_name ()

Example You can put code like the following in an extended event script:

IF AncestorReturnValue = 1 THEN
 // execute some code
ELSE
 // execute some other code
END IF

You can use the same code in a script that overrides its ancestor event script,
but you must insert a CALL statement before you use the AncestorReturnValue
variable:

// execute code that does some preliminary processing
CALL SUPER::ue_myevent
IF AncestorReturnValue = 1 THEN
…

Types of arguments for functions and events

30 PowerBuilder

Types of arguments for functions and events
When you define a function or user event, you specify its arguments, their
datatypes, and how they are passed.

There are three ways to pass an argument:

• By value Is the default

PowerBuilder passes a copy of a by-value argument. Any changes affect
the copy, and the original value is unaffected.

• By reference Tells PowerBuilder to pass a pointer to the passed variable

The function script can change the value of the variable because the
argument points back to the original variable. An argument passed by
reference must be a variable, not a literal or constant, so that it can be
changed.

• Read-only Passes the argument by value without making a copy of the
data

Read-only provides a performance advantage for some datatypes because
it does not create a copy of the data, as with by value. Datatypes for which
read-only provides a performance advantage are String, Blob, Date, Time,
and DateTime.

For other datatypes, read-only provides documentation for other
developers by indicating something about the purpose of the argument.

Matching argument
types when overriding
functions

If you define a function in a descendant that overrides an ancestor function, the
function signatures must match in every way: the function name, return value,
argument datatypes, and argument passing methods must be the same.

For example, this function declaration has two long arguments passed by value
and one passed by reference:

uf_calc(long a_1, long a_2, ref long a_3) &
returns integer

If the overriding function does not match, then when you call the function,
PowerBuilder calculates which function matches more closely and calls that
one, which might give unexpected results.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 31

Ancestor and descendent variables
All objects in PowerBuilder are descendants of PowerBuilder system
objects—the objects you see listed on the System page in the Browser.

Therefore, whenever you declare an object instance, you are declaring a
descendant. You decide how specific you want your declarations to be.

As specific as
possible

If you define a user object class named uo_empdata, you can declare a variable
whose type is uo_empdata to hold the user object reference:

uo_empdata uo_emp1
uo_emp1 = CREATE uo_empdata

You can refer to the variables and functions that are part of the definition of
uo_empdata because the type of uo_emp1 is uo_empdata.

When the application
requires flexibility

Suppose the user object you want to create depends on the user’s choices. You
can declare a user object variable whose type is UserObject or an ancestor class
for the user object. Then you can specify the object class you want to instantiate
in a string variable and use it with CREATE:

uo_empdata uo_emp1
string ls_objname
ls_objname = ... // Establish the user object to open
uo_emp1 = CREATE USING ls_objname

This more general approach limits your access to the object’s variables and
functions. The compiler knows only the properties and functions of the
ancestor class uo_empdata (or the system class UserObject if that is what you
declared). It does not know which object you will actually create and cannot
allow references to properties defined on that unknown object.

Abstract ancestor object In order to address properties and functions of the
descendants you plan to instantiate, you can define the ancestor object class to
include the properties and functions that you will implement in the
descendants. In the ancestor, the functions do not need code other than a return
value—they exist so that the compiler can recognize the function names. When
you declare a variable of the ancestor class, you can reference the functions.
During execution, you can instantiate the variable with a descendant, where
that descendant implements the functions as appropriate:

uo_empdata uo_emp1
string ls_objname
// Establish which descendant of uo_empdata to open
ls_objname = ...
uo_emp1 = CREATE USING ls_objname

Ancestor and descendent variables

32 PowerBuilder

// Function is declared in the ancestor class
result = uo_emp1.uf_special()

This technique is described in more detail in Dynamic versus static lookup on
page 17.

Dynamic function calls Another way to handle functions that are not
defined for the declared class is to use dynamic function calls.

When you use the DYNAMIC keyword in a function call, the compiler does not
check whether the function call is valid. The checking happens during
execution when the variable has been instantiated with the appropriate object:

// Function not declared in the ancestor class
result = uo_emp1.DYNAMIC uf_special()

Performance and errors
You should avoid using the dynamic capabilities of PowerBuilder when your
application design does not require them. Runtime evaluation means that work
the compiler usually does must be done at runtime, making the application
slower when dynamic calls are used often or used within a large loop. Skipping
compiler checking also means that errors that might be caught by the compiler
are not found until the user is executing the program.

Dynamic object
selection for windows
and visual user
objects

A window or visual user object is opened with a function call instead of the
CREATE statement. With the Open and OpenUserObject functions, you can
specify the class of the window or object to be opened, making it possible to
open a descendant different from the declaration’s object type.

This example displays a user object of the type specified in the string s_u_name
and stores the reference to the user object in the variable u_to_open. Variable
u_to_open is of type DragObject, which is the ancestor of all user objects. It
can hold a reference to any user object:

DragObject u_to_open
string s_u_name
s_u_name = sle_user.Text
w_info.OpenUserObject(u_to_open, s_u_name, 100, 200)

For a window, comparable code looks like this. The actual window opened
could be the class w_data_entry or any of its descendants:

w_data_entry w_data
string s_window_name
s_window_name = sle_win.Text
Open(w_data, s_window_name)

CHAPTER 3 Selected PowerScript Topics

Application Techniques 33

Optimizing expressions for DataWindow and external
objects
No compiler validation
for container objects

When you use dot notation to refer to a DataWindow object in a DataWindow
control or DataStore, the compiler does not check the validity of the
expression:

dw_data.Object.column.property

Everything you specify after the Object property passes the compiler and is
checked during execution.

The same applies to external OLE objects. No checking occurs until execution:

ole_1.Object.qualifier.qualifier.property.Value

Establishing partial
references

Because of the runtime syntax checking, using many expressions like these can
impact performance. To improve efficiency when you refer repeatedly to the
same DataWindow component object or external object, you can define a
variable of the appropriate type and assign a partial reference to the variable.
The script evaluates most of the reference only once and reuses it.

The datatype of a DataWindow component object is DWObject:

DWObject dwo_column
dwo_column = dw_data.Object.column
dwo_column.SlideLeft = ...
dwo_column.SlideUp = ...

The datatype of a partially resolved automation expression is OLEObject:

OLEObject ole_wordbasic
ole_wordbasic = ole_1.Object.application.wordbasic
ole_wordbasic.propertyname1 = value
ole_wordbasic.propertyname2 = value

Handling errors The Error and (for automation) ExternalException events are triggered when
errors occur in evaluating the DataWindow and OLE expressions. If you write
a script for these events, you can catch an error before it triggers the
SystemError event. These events allow you to ignore an error or substitute an
appropriate value. However, you must be careful to avoid setting up conditions
that cause another error. You can also use try-catch blocks to handle exceptions
as described in "Exception handling in PowerBuilder" next.

For information For information about DataWindow data expressions and property expressions
and DWObject variables, see the DataWindow Reference. For information
about using OLEObject variables in automation, see Chapter 19, Using OLE in
an Application.

Exception handling in PowerBuilder

34 PowerBuilder

Exception handling in PowerBuilder
When a runtime error occurs in a PowerBuilder application, unless that error is
trapped, a single application event (SystemError) fires to handle the error no
matter where in the application the error happened. Although some errors can
be handled in the system error event, catching the error closer to its source
increases the likelihood of recovery from the error condition.

You can use exception-handling classes and syntax to handle context-sensitive
errors in PowerBuilder applications. This means that you can deal with errors
close to their source by embedding error-handling code anywhere in your
application. Well-designed exception-handling code can give application users
a better chance to recover from error conditions and run the application without
interruption.

Exception handling allows you to design an application that can recover from
exceptional conditions and continue execution. Any exceptions that you do not
catch are handled by the runtime system and can result in the termination of the
application.

Exception handling can be found in such object-oriented languages as Java and
C++. The implementation for PowerBuilder is similar to the implementation of
exception handling in Java. In PowerBuilder, the TRY, CATCH, FINALLY,
THROW, and THROWS reserved words are used for exception handling. There
are also several PowerBuilder objects that descend from the Throwable object.

Basics of exception handling
Exceptions are objects that are thrown in the event of some exceptional (or
unexpected) condition or error and are used to describe the condition or error
encountered. Standard errors, such as null object references and division by
zero, are typically thrown by the runtime system. These types of errors could
occur anywhere in an application and you can include catch clauses in any
executable script to try to recover from these errors.

User-defined
exceptions

There are also exceptional conditions that do not immediately result in runtime
errors. These exceptions typically occur during execution of a function or a
user-event script. To signal these exceptions, you create user objects that
inherit from the PowerScript Exception class. You can associate a user-defined
exception with a function or user event in the prototype for the method.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 35

For example, a user-defined exception might be created to indicate that a file
cannot be found. You could declare this exception in the prototype for a
function that is supposed to open the file. To catch this condition, you must
instantiate the user-defined exception object and then throw the exception
instance in the method script.

Objects for exception handling support
Several system objects support exception handling within PowerBuilder.

Throwable object type The object type Throwable is the root datatype for all user-defined exception
and system error types. Two other system object types, RuntimeError and
Exception, derive from Throwable.

RuntimeError and its
descendants

PowerBuilder runtime errors are represented in the RuntimeError object type.
For more robust error-handling capabilities, the RuntimeError type has its own
system-defined descendants; but the RuntimeError type contains all
information required for dealing with PowerBuilder runtime errors.

One of the descendants of RuntimeError is the NullObjectError type that is
thrown by the system whenever a null object reference is encountered. This
allows you to handle null-object-reference errors explicitly without having to
differentiate them from other runtime errors that might occur.

Error types that derive from RuntimeError are typically used by the system to
indicate runtime errors. RuntimeErrors can be caught in a try-catch block, but
it is not necessary to declare where such an error condition might occur.
(PowerBuilder does that for you, since a system error can happen anywhere
anytime the application is running.) It is also not a requirement to catch these
types of errors.

Exception object type The system object Exception also derives from Throwable and is typically
used as an ancestor object for user-defined exception types. It is the root class
for all checked exceptions. Checked exceptions are user-defined exceptions
that must be caught in a try-catch block when thrown, or that must be declared
in the prototype of a method when thrown outside of a try-catch block.

The PowerScript compiler checks the local syntax where you throw checked
exceptions to make sure you either declare or catch these exception types.
Descendants of RuntimeError are not checked by the compiler, even if they are
user defined or if they are thrown in a script rather than by the runtime system.

Exception handling in PowerBuilder

36 PowerBuilder

Handling exceptions
Whether an exception is thrown by the runtime system or by a THROW
statement in an application script, you handle the exception by catching it. This
is done by surrounding the set of application logic that throws the exception
with code that indicates how the exception is to be dealt with.

TRY-CATCH-FINALLY
block

To handle an exception in PowerScript, you must include some set of your
application logic inside a try-catch block. A try-catch block begins with a TRY
clause and ends with the END TRY statement. It must also contain either a
CATCH clause or a FINALLY clause. A try-catch block normally contains a
FINALLY clause for error condition cleanup. In between the TRY and FINALLY
clauses you can add any number of CATCH clauses.

CATCH clauses are not obligatory, but if you do include them you must follow
each CATCH statement with a variable declaration. In addition to following all
of the usual rules for local variable declarations inside a script, the variable
being defined must derive from the Throwable system type.

You can add a TRY-CATCH-FINALLY, TRY-CATCH, or TRY-FINALLY block
using the Script view Paste Special feature for PowerScript statements. If you
select the Statement Templates check box on the AutoScript tab of the Design
Options dialog box, you can also use the AutoScript feature to insert these
block structures.

Example Example catching a system error This is an example of a TRY-CATCH-
FINALLY block that catches a system error when an arccosine argument, entered
by the application user (in a SingleLineEdit) is not in the required range. If you
do not catch this error, the application goes to the system error event, and
eventually terminates:

Double ld_num
ld_num = Double (sle_1.text)
TRY

sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

MessageBox("Runtime Error", er.GetMessage())
FINALLY

// Add cleanup code here
of_cleanup()
Return

END TRY
MessageBox("After", "We are finished.")

CHAPTER 3 Selected PowerScript Topics

Application Techniques 37

The system runtime error message might be confusing to the end user, so for
production purposes, it would be better to catch a user-defined exception—see
the example in Creating user-defined exception types on page 38—and set the
message to something more understandable.

The TRY reserved word signals the start of a block of statements to be executed
and can include more than one CATCH clause. If the execution of code in the
TRY block causes an exception to be thrown, then the exception is handled by
the first CATCH clause whose variable can be assigned the value of the
exception thrown. The variable declaration after a CATCH statement indicates
the type of exception being handled (a system runtime error, in this case).

CATCH order It is important to order your CATCH clauses in such a way that one clause does
not hide another. This would occur if the first CATCH clause catches an
exception of type Exception and a subsequent CATCH clause catches a
descendant of Exception. Since they are processed in order, any exception
thrown that is a descendant of Exception would be handled by the first CATCH
clause and never by the second. The PowerScript compiler can detect this
condition and signals an error if found.

If an exception is not dealt with in any of the CATCH clauses, it is thrown up
the call stack for handling by other exception handlers (nested try-catch blocks)
or by the system error event. But before the exception is thrown up the stack,
the FINALLY clause is executed.

FINALLY clause The FINALLY clause is generally used to clean up after execution of a TRY or
CATCH clause. The code in the FINALLY clause is guaranteed to execute if any
portion of the try-catch block is executed, regardless of how the code in the
try-catch block completes.

If no exceptions occur, the TRY clause completes, followed by the execution of
the statements contained in the FINALLY clause. Then execution continues on
the line following the END TRY statement.

In cases where there are no CATCH clauses but only a FINALLY clause, the code
in the FINALLY clause is executed even if a return is encountered or an
exception is thrown in the TRY clause.

If an exception occurs within the context of the TRY clause and an applicable
CATCH clause exists, the CATCH clause is executed, followed by the FINALLY
clause. But even if no CATCH clause is applicable to the exception thrown, the
FINALLY clause still executes before the exception is thrown up the call stack.

If an exception or a return is encountered within a CATCH clause, the FINALLY
clause is executed before execution is transferred to the new location.

Exception handling in PowerBuilder

38 PowerBuilder

FINALLY clause restriction
Do not use RETURN statements in the FINALLY clause of a TRY-CATCH block.
This can prevent the exception from being caught by its invoker.

Creating user-defined exception types
You can create your own user-defined exception types from standard class user
objects that inherit from Exception or RuntimeError or that inherit from an
existing user object deriving from Exception or RuntimeError.

Inherit from Exception
object type

Normally, user-defined exception types should inherit from the Exception type
or a descendant, since the RuntimeError type is used to indicate system errors.
These user-defined objects are no different from any other nonvisual user
object in the system. They can contain events, functions, and instance
variables.

This is useful, for example, in cases where a specific condition, such as the
failure of a business rule, might cause application logic to fail. If you create a
user-defined exception type to describe such a condition and then catch and
handle the exception appropriately, you can prevent a runtime error.

Throwing exceptions Exceptions can be thrown by the runtime engine to indicate an error condition.
If you want to signal a potential exception condition manually, you must use
the THROW statement.

Typically, the THROW statement is used in conjunction with some user-defined
exception type. Here is a simple example of the use of the THROW statement:

Exception le_ex
le_ex = create Exception
Throw le_ex
MessageBox ("Hmm", "We would never get here if" &

+ "the exception variable was not instantiated")

In this example, the code throws the instance of the exception le_ex. The
variable following the THROW reserved word must point to a valid instance of
the exception object that derives from Throwable. If you attempt to throw an
uninstantiated Exception variable, a NullObjectError is thrown instead,
indicating a null object reference in this routine. That could only complicate the
error handling for your application.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 39

Declaring exceptions
thrown from functions

If you signal an exception with the THROW statement inside a method script—
and do not surround the statement with a try-catch block that can deal with that
type of exception—you must also declare the exception as an exception type
(or as a descendant of an exception type) thrown by that method. However, you
do not need to declare that a method can throw runtime errors, since
PowerBuilder does that for you.

The prototype window in the Script view of most PowerBuilder painters allows
you to declare what user-defined exceptions, if any, can be thrown by a
function or a user-defined event. You can drag and drop exception types from
the System Tree or a Library painter view to the Throws box in the prototype
window, or you can type in a comma-separated list of the exception types that
the method can throw.

Example Example catching a user-defined exception This code displays a
user-defined error when an arccosine argument, entered by the application user,
is not in the required range. The try-catch block calls a method, wf_acos, that
catches the system error and sets and throws the user-defined error:

TRY
wf_acos()

CATCH (uo_exception u_ex)
MessageBox("Out of Range", u_ex.GetMessage())

END TRY

This code in the wf_acos method catches the system error and sets and throws
the user-defined error:

uo_exception lu_error
Double ld_num
ld_num = Double (sle_1.text)
TRY

sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

lu_error = Create uo_exception
lu_error.SetMessage("Value must be between -1" &

+ "and 1")
Throw lu_error

END TRY

Exception handling in PowerBuilder

40 PowerBuilder

Adding flexibility and facilitating object reuse
You can use exception handling to add flexibility to your PowerBuilder
applications, and to help in the separation of business rules from presentation
logic. For example, business rules can be stored in a non-visual object (nvo)
that has:

• An instance variable to hold a reference to the presentation object:

powerobject my_presenter

• A function that registers the presentation object

The registration function could use the following syntax:

SetObject (string my_purpose, powerobject myobject)

• Code to call a dynamic function implemented by the presentation object,
with minimal assumptions about how the data is displayed

The dynamic function call should be enclosed in a try-catch block, such as:

TRY
my_presenter.Dynamic nf_displayScreen(" ")

CATCH (Throwable lth_exception)
Throw lth_exception

END TRY

This try-catch block catches all system and user-defined errors from the
presentation object and throws them back up the calling chain (to the
object that called the nvo). In the above example, the thrown object in the
CATCH statement is an object of type Throwable, but you could also
instantiate and throw a user exception object:

uo_exception luo_exception

TRY
my_presenter.Dynamic nf_displayScreen(" ")

CATCH (Throwable lth_exception)
luo_exception = Create uo_exception
luo_exception.SetMessage & +
(lth_exception.GetMessage())
Throw luo_exception

END TRY

CHAPTER 3 Selected PowerScript Topics

Application Techniques 41

Code for data processing could be added to the presentation object, to the
business rules nvo, or to processing objects called by the nvo. The exact design
depends on your business objectives, but this code should also be surrounded
by try-catch blocks. The actions to take and the error messages to report (in
case of code processing failure) should be as specific as possible in the
try-catch blocks that surround the processing code.

There are significant advantages to this type of approach, since the business
nvo can be reused more easily, and it can be accessed by objects that display
the same business data in many different ways. The addition of exception
handling makes this approach much more robust, giving the application user a
chance to recover from an error condition.

Using the SystemError and Error events
Error event If a runtime error occurs, an error structure that describes the error is created.

If the error occurs in the context of a connection to a remote server then the
Error event on the Connection, DataWindow, or OLE control object is
triggered, with the information in the error structure as arguments.

The error can be handled in this Error event by use of a special reference
argument that allows the error to be ignored. If the error does not occur in the
context described above, or if the error in that context is not dealt with, then the
error structure information is used to populate the global error variable and the
SystemError event on the Application object is triggered.

SystemError event In the SystemError event, unexpected error conditions can be dealt with in a
limited way. In general, it is not a good idea to continue running the application
after the SystemError event is triggered. However, error-handling code can and
should be added to this event. Typically you could use the SystemError event
to save data before the application terminates and to perform last-minute
cleanup (such as closing files or database connections).

Precedence of
exception handlers
and events

If you write code in the Error event, then that code is executed first in the event
of a thrown exception.

If the exception is not thrown in any of the described contexts or the object’s
Error event does not handle the exception or you do not code the Error event,
then the exception is handled by any active exception handlers (CATCH
clauses) that are applicable to that type of exception. Information from the
exception class is copied to the global error variable and the SystemError event
on the Application object is fired only if there are no exception handlers to
handle the exception.

Garbage collection and memory management

42 PowerBuilder

Error handling for new
applications

For new PowerBuilder applications, the recommended approach for handling
errors is to use a try-catch block instead of coding the Error event on
Connection, DataWindow, or OLE control objects. You should still have a
SystemError event coded in your Application object to handle any uncaught
exceptions. The SystemError event essentially becomes a global exception
handler for a PowerBuilder application.

Garbage collection and memory management
The PowerBuilder garbage collection mechanism checks memory
automatically for unreferenced and orphaned objects and removes any it finds,
thus taking care of most memory leaks. You can use garbage collection to
destroy objects instead of explicitly destroying them using the DESTROY
statement. This lets you avoid runtime errors that occur when you destroy an
object that was being used by another process or had been passed by reference
to a posted event or function.

A reference to an object is any variable whose value is the object. When the
variable goes out of scope, or when it is assigned a different value,
PowerBuilder removes a reference to the object and counts the remaining
references, and the garbage collection process destroys the object if no
references remain.

Garbage collection occurs:

• When the garbage collection interval has been exceeded and the
PowerBuilder application becomes idle and

• When you explicitly call the GarbageCollect function.

When PowerBuilder completes the execution of a system-triggered event, it
makes a garbage collection pass if the set interval between garbage collection
passes has been exceeded. The default interval is 0.5 seconds. Note that this
system-triggered garbage collection pass only occurs when the PowerBuilder
application is idle, therefore if a long computation or process is in progress
when the interval is exceeded, garbage collection does not occur immediately.

You can force immediate garbage collection by invoking the GarbageCollect
function. When you use dot notation and OLEObjects, temporary variables are
created. These temporary variables are released only during the garbage
collection process. You might want to invoke GarbageCollect inside a loop that
appears to be causing memory leaks.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 43

The garbage collection pass removes any objects and classes that cannot be
referenced, including those containing circular references (otherwise
unreferenced objects that reference each other).

Posting events and functions
When you post an event or function and pass an object reference, PowerBuilder
adds an internal reference to the object to prevent its memory from being
reclaimed by the garbage collector between the time of the post and the actual
execution of the event or function. This reference is removed when the event
or function is executed.

Exceptions to garbage
collection

There are a few objects that are prevented from being collected:

• Visual objects Any object that is visible on your screen is not collected
because when the object is created and displayed on your screen, an
internal reference is added to the object. When any visual object is closed,
it is explicitly destroyed.

• Timing objects Any Timing object that is currently running is not
collected because the Start function for a Timing object adds an internal
reference. The Stop function removes the reference.

• Shared objects Registered shared objects are not collected because the
SharedObjectRegister function adds an internal reference.
SharedObjectUnregister removes the internal reference.

Controlling when
garbage collection
occurs

Garbage collection occurs automatically in PowerBuilder, but you can use
functions to force immediate garbage collection or to change the interval
between reference count checks. Three functions let you control when garbage
collection occurs: GarbageCollect, GarbageCollectGetTimeLimit, and
GarbageCollectSetTimeLimit.

For information about these functions, see the PowerScript Reference. For an
example illustrating their use, see the Code Examples sample application,
described in Chapter 1, Using Sample Applications.

Performance
concerns

You can use tracing and profiling to examine the effect of changing the garbage
collection interval on performance.

For information about tracing and profiling, see the PowerBuilder Users
Guide.

Garbage collection and memory management

44 PowerBuilder

Configuring memory management
You can set the PB_POOL_THRESHOLD environment variable to specify the
threshold at which the PowerBuilder memory manager switches to a different
memory allocation strategy.

When most windows, DataWindows, DataStores, or other PowerBuilder
objects are destroyed or reclaimed by the garbage collector, the PowerBuilder
heap manager returns the memory allocated for each object to a global memory
pool and records its availability on a global free list. The freed memory is not
returned to the operating system. When a new object is created, PowerBuilder
allocates blocks of memory from the global memory pool (if sufficient memory
is available in the global free list) or from the operating system (if it is not) to
a memory pool for the object.

When the memory required by an object exceeds 256KB, PowerBuilder uses a
different strategy. It allocates subsequent memory requirements from the
operating system in large blocks, and returns the physical memory to the
operating system when the object is destroyed. It retains the virtual memory to
reduce fragmentation of the virtual address space.

For most applications and components, the threshold of 256KB at which
PowerBuilder switches to the “large blocks” strategy works well and reduces
the memory required by an application when it is working at its peak level of
activity. However, if you want to keep the overall physical memory usage of
your application as low as possible, you can try setting a lower threshold.

The advantage of setting a low threshold is that the size of the global memory
pool is reduced. The application does not retain a lot of memory when it is
inactive. The disadvantage is that large blocks of memory are allocated for
objects that require more memory than the threshold value, so that when the
application is running at its peak of activity, it might use more virtual memory
than it would with the default threshold.

Setting a low threshold can be beneficial for long-running client applications
that use many short-lived objects, where the client application’s memory usage
varies from low (when idle) to high (when active). For multithreaded
applications, such as servers, a higher threshold usually results in lower virtual
memory utilization.

Logging heap
manager output

You can record diagnostic ouput from the PowerBuilder heap manager in a file
to help you troubleshoot memory allocation issues in your application. The
PB_HEAP_LOGFILENAME environment variable specifies the name and
location of the file.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 45

If you specify a file name but not a directory, the file is saved in the same
directory as the PowerBuilder executable.

If you specify a directory that does not exist, the file is not created.

By default, the log file is overwritten when you restart PowerBuilder. If you
want diagnostic output to be appended to the file, set
PB_HEAP_LOGFILE_OVERWRITE to false.

You can set the variables in a batch file that launches the application, or as
system or user environment variables on the computer or server on which the
application or component runs.

Efficient compiling and performance
The way you write functions and define variables affects your productivity and
your application’s performance.

Short scripts for faster
compiling

If you plan to build machine code dynamic libraries for your deployed
application, keep scripts for functions and events short. Longer scripts take
longer to compile. Break the scripts up so that instead of one long script, you
have a script that makes calls to several other functions. Consider defining
functions in user objects so that other objects can call the same functions.

Local variables for
faster performance

The scope of variables affects performance. When you have a choice, use local
variables, which provide the fastest performance. Global variables have the
biggest negative impact on performance.

Reading and writing text or binary files
You use PowerScript text file functions to read and write text in line mode or
text mode, or to read and write binary files in stream mode:

• In line mode, you can read a file a line at a time until either a carriage return
or line feed (CR/LF) or the end-of-file (EOF) is encountered. When
writing to the file after the specified string is written, PowerScript appends
a CR/LF.

Reading and writing text or binary files

46 PowerBuilder

• In stream mode, you can read the entire contents of the file, including any
CR/LFs. When writing to the file, you must write out the specified blob
(but not append a CR/LF).

• In text mode, you can read the entire contents of the file, including any
CR/LFs. When writing to the file, you must write out the specified string
(but not append a CR/LF).

Reading a file into a MultiLineEdit
You can use stream mode to read an entire file into a MultiLineEdit, and then
write it out after it has been modified.

Understanding the
position pointer

When PowerBuilder opens a file, it assigns the file a unique integer and sets the
position pointer for the file to the position you specify—the beginning, after the
byte-order mark, if any, or end of the file. You use the integer to identify the
file when you want to read the file, write to it, or close it. The position pointer
defines where the next read or write will begin. PowerBuilder advances the
pointer automatically after each read or write.

You can also set the position pointer with the FileSeek or FileSeek64 function.

File functions These are the built-in PowerScript functions that manipulate files:

CHAPTER 3 Selected PowerScript Topics

Application Techniques 47

Table 3-1: PowerScript functions that manipulate files

Encoding The last argument in the FileOpen function lets you create an ANSI, UTF-8,
UTF-16LE (Little Endian), or UTF16-BE (Big Endian) file.

The encoding argument, like all arguments of the FileOpen function except the
file name, is optional. You need only specify it if you want to create a new text
file with Unicode encoding. If the filename argument refers to a file that does
not exist, the FileOpen function creates the file and sets the character encoding
specified in the encoding argument.

By default, if the file does not exist and the encoding argument is not specified,
PowerBuilder opens a file with ANSI encoding. This ensures compatibility
with earlier versions of PowerBuilder.

The FileRead and FileWrite functions cannot read more than 32,766 bytes at a
time. The FileReadEx and FileWriteEx functions can write an unlimited number
of bytes at a time.

Function
Datatype
returned Action

FileClose Integer Closes the specified file

FileDelete Boolean Deletes the specified file

FileEncoding Encoding
enumerated type

Returns the encoding used in the file

FileExists Boolean Determines whether the specified file exists

FileLength Long Obtains the length of a file with a file size of 2GB
or less

FileLength64 LongLong Obtains the length of a file of any size

FileOpen Integer Opens the specified file

FileRead Integer Reads from the specified file (deprecated)

FileReadEx Long Reads from the specified file

FileSeek Long Seeks to a position in a file with a file size of
2GB or less

FileSeek64 LongLong Seeks to a position in a file of any size

FileWrite Integer Writes to the specified file (deprecated)

FileWriteEx Long Writes to the specified file

Reading and writing text or binary files

48 PowerBuilder

Application Techniques 49

C H A P T E R 4 Getting Information About
PowerBuilder Class Definitions

About this chapter This chapter explains what class definition information is and how it is
used, and presents some sample code. Developers of tools and object
frameworks can use class definition information for tasks such as
producing reports or defining objects with similar characteristics. You do
not need to use class definition information if you are building typical
business applications.

Contents

Overview of class definition information
A ClassDefinition object is a PowerBuilder object that provides
information about the class of another PowerBuilder object. You can
examine a class in a PowerBuilder library or the class of an instantiated
object. By examining the properties of its ClassDefinition object, you can
get details about how a class fits in the PowerBuilder object hierarchy.

From the ClassDefinition object, you can discover:

• The variables, functions, and events defined for the class

• The class’s ancestor

• The class’s parent

• The class’s children (nested classes)

Topic Page

Overview of class definition information 49

Examining a class definition 52

Overview of class definition information

50 PowerBuilder

Related objects
The ClassDefinition object is a member of a hierarchy of objects, including the
TypeDefinition, VariableDefinition, and ScriptDefinition objects, that provide
information about datatypes or about the variables, properties, functions, and
event scripts associated with a class definition.

For more information, see the Browser or Objects and Controls.

Definitions for instantiated objects For each object instance, a
ClassDefinition property makes available a ClassDefinition object to describe
its definition. The ClassDefinition object does not provide information about
the object instance, such as the values of its variables. You get that information
by addressing the instance directly.

Definitions for objects in libraries An object does not have to be
instantiated to get class information. For an object in a PowerBuilder library,
you can call the FindClassDefinition function to get its ClassDefinition object.

Performance Class definition objects may seem to add a lot of overhead, but
the overhead is incurred only when you refer to the ClassDefinition object. The
ClassDefinition object is instantiated only when you call FindClassDefinition or
access the ClassDefinition property of a PowerBuilder object. Likewise, for
properties of the ClassDefinition object that are themselves ClassDefinition or
VariableDefinition objects, the objects are instantiated only when you refer to
those properties.

Terminology
The class information includes information about the relationships between
objects. These definitions will help you understand what the information
means.

object instance A realization of an object. The instance exists in memory and has values
assigned to its properties and variables. Object instances exist only when you
run an application.

class A definition of an object, containing the source code for creating an object
instance. When you use PowerBuilder painters and save an object in a PBL,
you are creating class definitions for objects. When you run your application,
the class is the datatype of object instances based on that class. In
PowerBuilder, the term object usually refers to an instance of the object. It
sometimes refers to an object’s class.

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 51

system class A class defined by PowerBuilder. An object you define in a painter is a
descendant of a system class, even when you do not explicitly choose to use
inheritance for the object you define.

parent The object that contains the current object or is connected to the object in a way
other than inheritance. This table lists classes of objects and the classes that can
be the parents of those objects:

Table 4-1: Classes of objects and their parents

child A class that is contained within another parent class. Also called a nested class.
For the types of objects that have a parent and child relationship, see parent.

ancestor A class from whose definition another object is inherited. See also descendant.

descendant An object that is inherited from another object and that incorporates the
specifics of that object: its properties, functions, events, and variables. The
descendant can use these values or override them with new definitions. All
objects you define in painters and store in libraries are descendants of
PowerBuilder system classes.

inheritance hierarchy An object and all its ancestors.

collapsed hierarchy A view of an object class definition that includes information from all the
ancestors in the object’s inheritance tree, not just items defined at the current
level of inheritance.

scalar A simple datatype that is not an object or an array. For example, Integer,
Boolean, Date, Any, and String.

Object Parent

Window The window that opened the window.

A window might not have a parent. The parent is
determined during execution and is not part of the
class definition.

Menu item The menu item on the prior level in the menu.

The item on the menu bar is the parent of all the items
on the associated drop-down menu.

Control on a window The window.

Control on user object The user object.

TabPage The Tab control in which the TabPage is defined or in
which it was opened.

ListViewItem or
TreeViewItem

The ListView or TreeView control.

Visual user object The window or user object on which the user object is
placed.

Examining a class definition

52 PowerBuilder

instance variable and
property

Built-in properties of PowerBuilder system objects are called properties, but
they are treated as instance variables in the class definition information.

Who uses PowerBuilder class definitions
Most business applications do not need to use class definition information.
Code that uses class definition information is written by groups that write class
libraries, application frameworks, and productivity tools.

Although your application might not include any code that uses class definition
information, tools that you use for design, documentation, and class libraries
will. These tools examine class definitions for your objects so that they can
analyze your application and provide feedback to you.

Scenarios Class information might be used when developing:

• A custom object browser

• A tool that needs to know the objects of an application and their
relationships

The purpose might be to document the application or to provide a logical
way to select and work with the objects.

• A CASE tool that deconstructs PowerBuilder objects, allows the user to
redesign them, and reconstructs them

To do the reconstruction, the CASE tool needs both class definition
information and a knowledge of PowerBuilder object source code syntax.

• A class library in which objects need to determine the class associated with
an instantiated object, or a script needs to know the ancestor of an object
in order to make assumptions about available methods and variables

Examining a class definition
This section illustrates how to access a class definition object and how to
examine its properties to get information about the class, its scripts, and its
variables.

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 53

Getting a class definition object
To work with class information, you need a class definition object. There are
two ways to get a ClassDefinition object containing class definition
information.

For an instantiated
object in your
application

Use its ClassDefinition property.

For example, in a script for a button, this code gets the class definition for the
parent window:

ClassDefinition cd_windef
cd_windef = Parent.ClassDefinition

For an object stored in
a PBL

Call FindClassDefinition.

For example, in a script for a button, this code gets the class definition for the
window named w_genapp_frame from a library on the application’s library list:

ClassDefinition cd_windef
cd_windef = FindClassDefinition("w_genapp_frame")

Getting detailed information about the class
This section has code fragments illustrating how to get information from a
ClassDefinition object called cd_windef.

For examples of assigning a value to cd_windef, see Getting a class definition
object.

Library The LibraryName property reports the name of the library a class has been
loaded from:

s = cd_windef.LibraryName

Ancestor The Ancestor property reports the name of the class from which this class is
inherited. All objects are inherited from PowerBuilder system objects, so the
Ancestor property can hold a ClassDefinition object for a PowerBuilder class.
The Ancestor property contains a null object reference when the
ClassDefinition is for PowerObject, which is the top of the inheritance
hierarchy.

This example gets a ClassDefinition object for the ancestor of the class
represented by cd_windef:

ClassDefinition cd_ancestorwindef
cd_ancestorwindef = cd_windef.Ancestor

Examining a class definition

54 PowerBuilder

This example gets the ancestor name. Note that this code would cause an error
if cd_windef held the definition of PowerObject, because the Ancestor property
would be NULL:

ls_name = cd_windef.Ancestor.Name

Use the IsValid function to test that the object is not NULL.

This example walks back up the inheritance hierarchy for the window
w_genapp_frame and displays a list of its ancestors in a MultiLineEdit:

string s, lineend
ClassDefinition cd
lineend = "~r~n"

cd = cd_windef
s = "Ancestor tree:" + lineend

DO WHILE IsValid(cd)
s = s + cd.Name + lineend
cd = cd.Ancestor

LOOP

mle_1.Text = s

The list might look like this:

Ancestor tree:
w_genapp_frame
window
graphicobject
powerobject

Parent The ParentClass property of the ClassDefinition object reports the parent (its
container) specified in the object’s definition:

ClassDefinition cd_parentwindef
cd_parentwindef = cd_windef.ParentClass

If the class has no parent, ParentClass is a null object reference. This example
tests that ParentClass is a valid object before checking its Name property:

IF IsValid(cd_windef.ParentClass) THEN
ls_name = cd_windef.ParentClass.Name

END IF

Nested or child
classes

The ClassDefinition object’s NestedClassList array holds the classes the object
contains.

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 55

NestedClassList array includes ancestors and descendants
The NestedClassList array can include classes of ancestor objects. For
example, a CommandButton defined on an ancestor window and modified in a
descendent window appears twice in the array for the descendent window, once
for the window and once for its ancestor.

This script produces a list of the controls and structures defined for the window
represented in cd_windef.

string s, lineend
integer li
lineend = "~r~n"

s = s + "Nested classes:" + lineend

FOR li = 1 to UpperBound(cd_windef.NestedClassList)
s = s + cd_windef.NestedClassList[li].Name &

+ lineend
NEXT
mle_1.Text = s

This script searches the NestedClassList array in the ClassDefinition object
cd_windef to find a nested DropDownListBox control:

integer li
ClassDefinition nested_cd

FOR li = 1 to UpperBound(cd_windef.NestedClassList)
IF cd_windef.NestedClassList[li].DataTypeOf &

= "dropdownlistbox" THEN
nested_cd = cd_windef.NestedClassList[li]
EXIT

END IF
NEXT

Class definitions for object instances as distinct from object references

Getting a ClassDefinition object for an instantiated object, such as an ancestor
or nested object, does not give you a reference to instances of the parent or
child classes. Use standard PowerBuilder programming techniques to get and
store references to your instantiated objects.

Examining a class definition

56 PowerBuilder

Getting information about a class's scripts
This section has code fragments illustrating how to get script information from
a ClassDefinition object called cd_windef.

For examples of assigning a value to cd_windef, see Getting a class definition
object on page 53.

List of scripts The ScriptList array holds ScriptDefinition objects for all the functions and
events defined for a class. If a function is overloaded, it will appear in the array
more than once with different argument lists. If a function or event has code at
more than one level in the hierarchy, it will appear in the array for each coded
version.

This example loops through the ScriptList array and builds a list of script
names. All objects have a few standard functions, such as ClassName and
PostEvent, because all objects are inherited from PowerObject:

string s, lineend
integer li
ScriptDefinition sd
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.ScriptList)
sd = cd_windef.ScriptList[li]
s = s + sd.Name + " " + lineend

NEXT
mle_1.Text = s

This example amplifies on the previous one and accesses various properties in
the ScriptDefinition object. It reports whether the script is a function or event,
whether it is scripted locally, what its return datatype and arguments are, and
how the arguments are passed:

string s, lineend
integer li, lis, li_bound
ScriptDefinition sd
lineend = "~r~n"
FOR li = 1 to UpperBound(cd_windef.ScriptList)

sd = cd_windef.ScriptList[li]
s = s + sd.Name + " "

CHOOSE CASE sd.Kind
CASE ScriptEvent!

// Events have three relevant properties
// regarding where code is defined
s = s + "Event, "

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 57

IF sd.IsScripted = TRUE then
s = s + "scripted, "

END If
IF sd.IsLocallyScripted = TRUE THEN

s = s + "local, "
END IF
IF sd.IsLocallyDefined = TRUE THEN

s = s + "local def,"
END IF

CASE ScriptFunction!
// Functions have one relevant property
// regarding where code is defined
s = s + "Function, "
IF sd.IsLocallyScripted = TRUE THEN

s = s + "local, "
END IF

END CHOOSE

s = s + "returns " + &
 sd.ReturnType.DataTypeOf + "; "
s = s + "Args: "

li_bound = UpperBound(sd.ArgumentList)
IF li_bound = 0 THEN s = s + "None"

FOR lis = 1 to li_bound
CHOOSE CASE sd.ArgumentList[lis]. &

CallingConvention
CASE ByReferenceArgument!
s = s + "REF "
CASE ByValueArgument!
s = s + "VAL "
CASE ReadOnlyArgument!
s = s + "READONLY "
CASE ELSE
s = s + "BUILTIN "

END CHOOSE

s = s + sd.ArgumentList[lis].Name + ", "
NEXT

s = s + lineend
NEXT
mle_1.text = s

Examining a class definition

58 PowerBuilder

Where the code is in the inheritance hierarchy You can check the
IsLocallyScripted property to find out whether a script has code at the class’s
own level in the inheritance hierarchy. By walking back up the inheritance
hierarchy using the Ancestor property, you can find out where the code is for a
script.

This example looks at the scripts for the class associated with the
ClassDefinition cd_windef, and if a script’s code is defined at this level, the
script’s name is added to a drop-down list. It also saves the script’s position in
the ScriptList array in the instance variable ii_localscript_idx. The
DropDownListBox is not sorted, so the positions in the list and the array stay
in sync:

integer li_pos, li

FOR li = 1 to UpperBound(cd_windef.ScriptList)
IF cd_windef.ScriptList[li].IsLocallyScripted &

= TRUE
THEN

li_pos = ddlb_localscripts.AddItem(&
cd_windef.ScriptList[li].Name)

ii_localscript_idx[li_pos] = li
END IF

NEXT

Matching function
signatures

When a class has overloaded functions, you can call FindMatchingFunction to
find out what function is called for a particular argument list.

For an example, see FindMatchingFunction in the PowerScript Reference.

Getting information about variables
This section has code fragments illustrating how to get information about
variables from a ClassDefinition object called cd_windef. For examples of
assigning a value to cd_windef, see Getting a class definition object on page 53.

List of variables Variables associated with a class are listed in the
VariableList array of the ClassDefinition object. When you examine that array,
you find not only variables you have defined explicitly but also PowerBuilder
object properties and nested objects, which are instance variables.

This example loops through the VariableList array and builds a list of variable
names. PowerBuilder properties appear first, followed by nested objects and
your own instance and shared variables:

string s, lineend

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 59

integer li
VariableDefinition vard
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.VariableList)
vard = cd_windef.VariableList[li]
s = s + vard.Name + lineend

NEXT
mle_1.Text = s

Details about
variables

This example looks at the properties of each variable in the VariableList array
and reports its datatype, cardinality, and whether it is global, shared, or
instance. It also checks whether an instance variable overrides an ancestor
declaration:

string s
integer li
VariableDefinition vard
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.VariableList)
vard = cd_windef.VariableList[li]
s = s + vard.Name + ", "
s = s + vard.TypeInfo.DataTypeOf

CHOOSE CASE vard.Cardinality.Cardinality
CASE ScalarType!

s = s + ", scalar"
CASE UnboundedArray!, BoundedArray!

s = s + ", array"
END CHOOSE

CHOOSE CASE vard.Kind
CASE VariableGlobal!

s = s + ", global"
CASE VariableShared!

s = s + ", shared"
CASE VariableInstance!

s = s + ", instance"
IF vard.OverridesAncestorValue = TRUE THEN

s = s + ", override"
END IF

END CHOOSE
s = s + lineend

NEXT
mle_1.text = s

Examining a class definition

60 PowerBuilder

P A R T 3 User Interface Techniques

This part presents a collection of techniques you can use
to implement user interface features in the applications
you develop with PowerBuilder. It includes building an MDI
application, using drag and drop in a window, and
providing online Help for an application.

Application Techniques 63

C H A P T E R 5 Building an MDI Application

About this chapter This chapter describes how to build a Multiple Document Interface (MDI)
application in PowerBuilder.

Contents

About MDI
Multiple Document Interface (MDI) is an application style you can use
to open multiple windows (called sheets) in a single window and move
among the sheets. To build an MDI application, you define a window
whose type is MDI Frame and open other windows as sheets within the
frame.

Most large-scale Windows applications are MDI applications. For
example, PowerBuilder is an MDI application: the PowerBuilder window
is the frame and the painters are the sheets.

If you expect your users to want to open several windows and easily move
from window to window, you should make your application an MDI
application.

Topic Page

About MDI 63

Building an MDI frame window 66

Using sheets 66

Providing MicroHelp 68

Using toolbars in MDI applications 69

Sizing the client area 74

About keyboard support in MDI applications 77

About MDI

64 PowerBuilder

Using the Template Application feature
When you create a new application, you can select the Template Application
Start wizard and then choose to create an SDI or MDI application. If you select
MDI application, PowerBuilder generates the shell of an MDI application that
includes an MDI frame (complete with window functions that do such things
as open or close a sheet), a sheet manager object and several sheets, an About
dialog box, menus, toolbars, and scripts.

MDI frame windows An MDI frame window is a window with several parts: a menu bar, a frame, a
client area, sheets, and (usually) a status area, which can display MicroHelp (a
short description of the current menu item or current activity).

The frame The MDI frame is the outside area of the MDI window that contains the client
area. There are two types of MDI frames:

• Standard

• Custom

Standard frames A standard MDI frame window has a menu bar and
(usually) a status area for displaying MicroHelp. The client area is empty,
except when sheets are open. Sheets can have their own menus, or they can
inherit their menus from the MDI frame. Menu bars in MDI applications
always display in the frame, never in a sheet. The menu bar typically has an
item that lists all open sheets and lets the user tile, cascade, or layer the open
sheets.

CHAPTER 5 Building an MDI Application

Application Techniques 65

Custom frames Like a standard frame, a custom frame window usually has
a menu bar and a status area. The difference between standard and custom
frames is in the client area: in standard frames, the client area contains only
open sheets; in custom frames, the client area contains the open sheets as well
as other objects, such as buttons and StaticText. For example, you might want
to add a set of buttons with some explanatory text in the client area.

Client area In a standard frame window, PowerBuilder sizes the client area automatically
and the open sheets display within the client area. In custom frame windows
containing objects in the client area, you must size the client area yourself. If
you do not size the client area, the sheets will open, but may not be visible.

The MDI_1 control When you build an MDI frame window, PowerBuilder
creates a control named MDI_1, which it uses to identify the client area of the
frame window. In standard frames, PowerBuilder manages MDI_1
automatically. In custom frames, you write a script for the frame’s Resize event
to size MDI_1 appropriately.

Displaying information about MDI_1
You can see the properties and functions for MDI_1 in the Browser. Create a
window of type MDI and select the Window tab in the Browser. Select the MDI
frame window and select Expand All from the pop-up menu. MDI_1 is listed as
a window control, and you can examine its properties, functions, and so forth
in the right pane of the Browser.

MDI sheets Sheets are windows that can be opened in the client area of an MDI frame. You
can use any type of window except an MDI frame as a sheet in an MDI
application. To open a sheet, use either the OpenSheet or OpenSheetWithParm
function.

Toolbars Often you want to provide a toolbar for users of an MDI application. You can
have PowerBuilder automatically create and manage a toolbar that is based on
the current menu, or you can create your own custom toolbar (generally as a
user object) and size the client area yourself.

For information on providing a toolbar, see the chapter on menus and toolbars
in the Users Guide. For more information on sizing the client area, see Sizing
the client area on page 74.

Building an MDI frame window

66 PowerBuilder

Building an MDI frame window
When you create a new window in PowerBuilder, its default window type is
Main. Select mdi! or mdihelp! on the General property page to change the
window to an MDI frame window.

Using menus When you change the window type to MDI, you must associate a menu with
the frame. Menus usually provide a way to open sheets in the frame and to close
the frame if the user has closed all the sheets.

About menus and sheets
A sheet can have its own menu but is not required to. When a sheet without a
menu is opened, it uses the frame’s menu.

Using sheets
In an MDI frame window, users can open windows (sheets) to perform
activities. For example, in an electronic mail application, an MDI frame might
have sheets that users open to create and send messages and read and reply to
messages. All sheets can be open at the same time and the user can move
among the sheets, performing different activities in each sheet.

About menus and sheets
A sheet can have its own menu but is not required to. When a sheet without a
menu is opened, it uses the frame’s menu.

Opening sheets To open a sheet in the client area of an MDI frame, use the OpenSheet function
in a script for an event in a menu item, an event in another sheet, or an event in
any object in the frame.

For more information about OpenSheet, see the PowerScript Reference.

Opening instances of windows
Typically in an MDI application, you allow users to open more than one
instance of a particular window type. For example, in an order entry
application, users can probably look at several different orders at the same
time. Each of these orders displays in a separate window (sheet).

CHAPTER 5 Building an MDI Application

Application Techniques 67

Listing open sheets When you open a sheet in the client area, you can display the title of the
window (sheet) in a list at the end of a drop-down menu. This menu lists two
open sheets:

 To list open sheets in a drop-down menu:

• Specify the number of the menu bar item in which you want the open
sheets listed when you call the OpenSheet function. Typically you list the
open sheets in the Windows menu. In a menu bar with four items in the
order File, Edit, Windows, and Help, you specify the Windows menu with
the number 3.

If more than nine sheets are open at one time, only nine sheets are listed in the
menu and More Windows displays in the tenth position. To display the rest of
the sheets in the list, click More Windows.

Arranging sheets After you open sheets in an MDI frame, you can change the way they are
arranged in the frame with the ArrangeSheets function.

To allow arrangement of sheets
To allow the user to arrange the sheets, create a menu item (typically on a menu
bar item named Window) and use the ArrangeSheets function to arrange the
sheets when the user selects a menu item.

Maximizing sheets If sheets opened in an MDI window have a control menu, users can maximize
the sheets. When the active sheet is maximized:

Providing MicroHelp

68 PowerBuilder

• If another sheet becomes the active sheet, that sheet is maximized (the
sheet inherits the state of the previous sheet).

• If a new sheet is opened, the current sheet is restored to its previous size
and the new sheet is opened in its original size.

Closing sheets Active sheet To close the active window (sheet), users can press CTRL+F4.
You can write a script for a menu item that closes the parent window of the
menu (make sure the menu is associated with the sheet, not the frame.) For
example:

Close(ParentWindow)

All sheets To close all sheets and exit the application, users can press
ALT+F4. You can write a script to keep track of the open sheets in an array and
then use a loop structure to close them.

Providing MicroHelp
MDI provides a MicroHelp facility that you can use to display information to
the user in the status area at the bottom of the frame. For example, when the
user selects a menu item, the MicroHelp facility displays a description of the
selected item in the status area.

You can define MicroHelp for menu items and for controls in custom frame
windows.

Providing MicroHelp
for menu items

You specify the text for the MicroHelp associated with a menu item on the
General property page in the Menu painter. To change the text of the
MicroHelp in a script for a menu item, use the SetMicroHelp function.

Providing MicroHelp
for controls

You can associate MicroHelp with a control in a custom frame window by
using the control’s Tag property. For example, say you have added a Print
button to the client area. To display MicroHelp for the button, write a script for
the button’s GetFocus event that sets the Tag property to the desired text and
then uses SetMicroHelp to display the text. For example:

cb_print.Tag="Prints information about current job"
w_genapp_frame.SetMicroHelp(This.Tag)

You can also set a control’s Tag property in the control’s property sheet.

In the LoseFocus event, you should restore the MicroHelp:

w_genapp_frame.SetMicroHelp("Ready")

CHAPTER 5 Building an MDI Application

Application Techniques 69

Using toolbars in MDI applications
This section describes some techniques you can use to customize the behavior
of your toolbars and save and restore toolbar settings. For information about
how to define and use menus and toolbars, see the Users Guide.

Customizing toolbar behavior
Disabling toolbar
buttons

To disable a toolbar button, you need to disable the menu item with which it is
associated. Disabling the menu item disables the toolbar button automatically.

To disable a menu item, you need to set the Enabled property of the menu item:

m_test.m_file.m_new.Enabled = FALSE

Using alternate icons
The enabled and disabled states of each toolbar button are normally indicated
by a pair of contrasting color and greyscale icons. For greater contrast between
the enabled and disabled states, you can apply an alternate set of icons to the
toolbar buttons, by setting the PBTOOLBARDISABLEMODE environment
variable on your system to 1 .

Hiding toolbar buttons To hide a menu item, you set the Visible property of the item:

m_test.m_file.m_open.Visible = FALSE

Hiding a menu item does not cause its toolbar button to disappear or be
disabled. To hide a toolbar button, you need to set the ToolbarItemVisible
property of the menu item:

m_test.m_file.m_open.ToolBarItemVisible = FALSE

Hiding a menu item does not cause the toolbar buttons for the drop-down or
cascading menu items at the next level to disappear or be disabled. You need
to hide or disable these buttons individually.

Setting the current
item in a drop-down
toolbar

When a user clicks on a toolbar button in a drop-down toolbar, PowerBuilder
makes the selected button the current item. This makes it easy for the user to
perform a particular toolbar action repeatedly. You can also make a particular
button the current item programmatically by setting the CurrentItem property
of the MenuCascade object. For example, to set the current item to the toolbar
button for the New option on the File menu, you could execute this line in a
script:

m_test.m_file.currentitem = m_test.m_file.m_new

Using toolbars in MDI applications

70 PowerBuilder

In order for this to work, you would need to specify MenuCascade as the object
type for the File menu in the Menu painter.

Testing for whether a
toolbar is moved

Whenever a toolbar moves in an MDI frame window, PowerBuilder triggers
the ToolBarMoved event for the window. In the script for this event, you can
test to see which toolbar has moved and perform some processing. When the
user moves the FrameBar or SheetBar, the ToolbarMoved event is triggered
and the Message.WordParm and Message.LongParm properties are populated
with values that indicate which toolbar was moved:

Table 5-1: Values of Message.WordParm and Message.LongParm
properties

Saving and restoring toolbar settings
You can save and restore the current toolbar settings using functions that
retrieve information about your toolbar settings, and you can modify these
settings.

GetToolbar and GetToolbarPos allow you to retrieve the current toolbar settings.
SetToolbar and SetToolbarPos allow you to change the toolbar settings. The
syntax you use for the GetToolbarPos and SetToolbarPos functions varies
depending on whether the toolbar you are working with is floating or docked.

Floating toolbars The position of a floating toolbar is determined by its x and y coordinates. The
size of a floating toolbar is determined by its width and height.

When you code the GetToolbarPos and SetToolbarPos functions for a floating
toolbar, you need to include arguments for the x and y coordinates and the
width and height.

Docked toolbars The position of a docked toolbar is determined by its docking row and its offset
from the beginning of the docking row. For toolbars at the top or bottom, the
offset for a docked toolbar is measured from the left edge. For toolbars at the
left or right, the offset is measured from the top.

Property Value Meaning

Message.WordParm 0 FrameBar moved

1 SheetBar moved

Message.LongParm 0 Moved to left

1 Moved to top

2 Moved to right

3 Moved to bottom

4 Set to floating

CHAPTER 5 Building an MDI Application

Application Techniques 71

By default, the docking row for a toolbar is the same as its bar index. If you
align the toolbar with a different border in the window, its docking row may
change depending on where you place it.

When you code the GetToolbarPos and SetToolbarPos functions for a docked
toolbar, you need to include arguments for the docking row and the offset.

Example The example below shows how to use a custom class user object to manage
toolbar settings. The user object has two functions, one for saving the current
settings and the other for restoring the settings later on. Because the logic
required to save and restore the settings is handled in the user object (instead
of in the window itself), this logic can easily be used with any window.

The sample code shown below supports both fixed and floating toolbars.

Script for the window’s Open event When the window opens, the
following script restores the toolbar settings from an initialization file. To
restore the settings, it creates a custom class user object called u_toolbar and
calls the Restore function:

// Create the toolbar NVO
u_toolbar = create u_toolbar
// Restore the toolbar positions
u_toolbar.Restore(this,"toolbar.ini", this.ClassName
())

Script for the window’s Close event When the window closes, the
following script saves the toolbar settings by calling the Save function. Once
the settings have been saved, it destroys the user object:

// Save the toolbar
stateu_toolbar.Save(this, "toolbar.ini", ClassName())
// Destroy the toolbar NVOdestroy u_toolbar

Script for the Save function The Save function has three arguments:

• Win – provides the window reference

• File – provides the name of the file where the settings should be saved

• Section – identifies the section where the settings should be saved

The Save function uses the GetToolbar and GetToolbarPos functions to retrieve
the current toolbar settings. To write the settings to the initialization file, it uses
the SetProfileString function.

The Save function can handle multiple toolbars for a single menu. It uses the
bar index to keep track of information for each toolbar:

// Store the toolbar settings for the passed window

Using toolbars in MDI applications

72 PowerBuilder

integer index, row, offset, x, y, w, h
boolean visible
string visstring, alignstring, title
toolbaralignment alignmentFOR index = 1 to 16

// Try to get the attributes for the bar.
IF win.GetToolbar(index, visible, alignment, &

title)= 1 THEN
// Convert visible to a string
CHOOSE CASE visible
CASE true

visstring = "true"
CASE false

visstring = "false"
END CHOOSE// Convert alignment to a string

CHOOSE CASE alignment
CASE AlignAtLeft!

alignstring = "left"
CASE AlignAtTop!

alignstring = "top"
CASE AlignAtRight!

alignstring = "right"
CASE AlignAtBottom!

alignstring = "bottom"
CASE Floating!

alignstring = "floating"
END CHOOSE

// Save the basic attributes
SetProfileString(file, section + &

String(index), "visible", visstring)
SetProfileString(file, section + &

String(index), "alignment", alignstring)
SetProfileString(file, section + &

String(index), "title", title)

// Save the fixed position
win.GetToolbarPos(index, row, offset)
SetProfileString(file, section + &

String(index), "row", String(row))
SetProfileString(file, section + &

String(index), "offset", String(offset))

// Save the floating position
win.GetToolbarPos(index, x, y, w, h)
SetProfileString(file, section + &

CHAPTER 5 Building an MDI Application

Application Techniques 73

String(index), "x", String(x))
SetProfileString(file, section + &

String(index), "y", String(y))
SetProfileString(file, section + &

String(index), "w", String(w))

SetProfileString(file, section + &
String(index), "h", String(h))

END IF
NEXT

Script for the Restore function The Restore function has the same three
arguments as the Save function. It uses the ProfileString function to retrieve
toolbar settings from the initialization file. Once the settings have been
retrieved, it uses the SetToolbar and SetToolbarPos functions to restore the
toolbar settings.

Like the Save function, the Restore function can handle multiple toolbars for a
single menu. It uses the bar index to keep track of information for each toolbar:

// Restore toolbar settings for the passed window

integer index, row, offset, x, y, w, h
boolean visible
string visstring, alignstring, title
toolbaralignment alignment

FOR index = 1 to 16
// Try to get the attributes for the bar.
IF win.GetToolbar(index, visible, alignment, &

title)= 1 THEN
// Try to get the attributes from the .ini
// file
visstring = ProfileString(file, section + &

String(index), "visible", "")
IF visstring > "" THEN

// Get all of the attributes
alignstring = ProfileString(file, section + &
String(index), "alignment", "left")

title = ProfileString(file, section + &
String(index), "title", "(Untitled)")

row = Integer(ProfileString(file, section + &
String(index), "row", "1"))

offset = Integer(ProfileString(file, &
section + String(index), "offset", "0"))

x = Integer(ProfileString(file, section + &
String(index), "x", "0"))

Sizing the client area

74 PowerBuilder

y = Integer(ProfileString(file, section + &
String(index), "y", "0"))

w = Integer(ProfileString(file, section + &
String(index), "w", "0"))

h = Integer(ProfileString(file, section + &
String(index), "h", "0"))

// Convert visstring to a boolean
CHOOSE CASE visstring
CASE "true"

visible = true
CASE "false"

visible = false
END CHOOSE

// Convert alignstring to toolbaralignment
CHOOSE CASE alignstring
CASE "left"

alignment = AlignAtLeft!
CASE "top"

alignment = AlignAtTop!
CASE "right"

alignment = AlignAtRight!
CASE "bottom"

alignment = AlignAtBottom!
CASE "floating"

alignment = Floating!
END CHOOSE

// Set the new position
win.SetToolbar(index, visible, alignment, title)
win.SetToolbarPos(index, row, offset, false)
win.SetToolbarPos(index, x, y, w, h)

END IF
END IF

NEXT

Sizing the client area
PowerBuilder sizes the client area in a standard MDI frame window
automatically and displays open sheets unclipped within the client area. It also
sizes the client area automatically if you have defined a toolbar based on menu
items, as described in the preceding section.

CHAPTER 5 Building an MDI Application

Application Techniques 75

However, in a custom MDI frame window—where the client area contains
controls in addition to open sheets—PowerBuilder does not size the client area;
you must size it. If you do not size the client area, the sheets open but may not
be visible and are clipped if they exceed the size of the client area.

If you plan to use an MDI toolbar with a custom MDI frame, make sure the
controls you place in the frame’s client area are far enough away from the client
area’s borders so that the toolbar does not obscure them when displayed.

Scroll bars display when a sheet is clipped
If you selected HScrollBar and VScrollBar when defining the window, the
scroll bars display when a sheet is clipped. This means not all the information
in the sheet is displayed. The user can then scroll to display the information.

When you create a custom MDI frame window, PowerBuilder creates a control
named MDI_1 to identify the client area of the frame. If you have enabled
AutoScript, MDI_1 displays in the list of objects in the AutoScript pop-up
window when you create a script for the frame.

 To size or resize the client area when the frame is opened or resized:

• Write a script for the frame’s Open or Resize event that:

• Determines the size of the frame

• Sizes the client area (MDI_1) appropriately

For example, the following script sizes the client area for the frame
w_genapp_frame. The frame has a series of buttons running across the frame
just below the menu, and MicroHelp at the bottom:

int li_width, li_height

//Get the width and height of the frame's workspace.
//

Sizing the client area

76 PowerBuilder

//Note that if the frame displays any MDI toolbars,
//those toolbars take away from the size of the
//workspace as returned by the WorkSpaceWidth and
//WorkSpaceHeight functions. Later, you see how to
//to adjust for this.
//
li_width = w_genapp_frame.WorkSpaceWidth()

li_height = w_genapp_frame.WorkSpaceHeight()

//Next, determine the desired height of the client
//area by doing the following:
//
// 1) Subtract from the WorkSpaceHeight value: the
// height of your control and the Y coordinate of
// the control (which is the distance between the
// top of the frame's workspace -- as if no
// toolbars were there -- and the top of your
// control).
//
// 2) Then subtract: the height of the frame's
// MicroHelp bar (if present)
//
// 3) Then add back: the height of any toolbars that
// are displayed (to adjust for the fact that the
// original WorkSpaceHeight value we started with
// is off by this amount). The total toolbar
// height is equal to the Y coordinate returned
// by the WorkspaceY function.

li_height = li_height - (cb_print.y + cb_print.height)

li_height = li_height - MDI_1.MicroHelpHeight

li_height = li_height + WorkspaceY()

//Now, move the client area to begin just below your
//control in the workspace.

mdi_1.Move (WorkspaceX (), cb_print.y + &
cb_print.height)

//Finally, resize the client area based on the width
//and height you calculated earlier.

mdi_1.Resize (li_width, li_height)

CHAPTER 5 Building an MDI Application

Application Techniques 77

About MicroHelpHeight
MicroHelpHeight is a property of MDI_1 that PowerBuilder sets when you
select a window type for your MDI window. If you select MDI Frame, there is
no MicroHelp and MicroHelpHeight is 0; if you select MDI Frame with
MicroHelp, MicroHelpHeight is the height of the MicroHelp.

About keyboard support in MDI applications
PowerBuilder MDI applications automatically support arrow keys and shortcut
keys.

Arrow keys In an MDI frame, how the pointer moves when the user presses an arrow key
depends on where focus is when the key is pressed:

Table 5-2: Arrow key focus changes

Shortcut keys PowerBuilder automatically assigns two shortcut keys to every MDI frame:

Key If focus is in Focus moves to

Left The menu bar The menu item to the left of the item
that has focus

The first menu bar item The control menu of the active sheet

The control menu of the active
sheet

The control menu of the frame

The control menu of the frame The last menu item

Right The menu bar The menu item to the right of the item
that has focus

The last menu bar item The control menu of the frame

The control menu of the frame The control menu of the active sheet

The control menu of the active
sheet

The first item in the menu bar

Down A drop-down or cascading menu The menu item below the current
item

The last menu item in the
drop-down or cascading menu

The first item in the menu

Up A drop-down or cascading menu The menu item above the current
item

The first menu item in a drop-down
or cascading menu

The last item in the menu

About keyboard support in MDI applications

78 PowerBuilder

Table 5-3: MDI frame shortcut keys

Key Use to

Ctrl+F4 Close the active sheet and make the previous sheet active. The previous
sheet is the sheet that was active immediately before the sheet that was
closed.

Ctrl+F6 Make the previous sheet the active sheet.

Application Techniques 79

C H A P T E R 6 Managing Window Instances

About this chapter This chapter describes how to manage several instances of the same
window.

Contents

About window instances
When you build an application, you may want to display several windows
that are identical in structure but have different data values.

For example, you may have a w_employee window and want to display
information for two or more employees at the same time by opening
multiple copies (instances) of the w_employee window.

You can do that, but you need to understand how PowerBuilder stores
window definitions.

How PowerBuilder stores
window definitions

When you save a window, PowerBuilder actually generates two entities in
the library:

• A new datatype The name of the datatype is the same as the name
of the window.

For example, when you save a window named w_employee,
PowerBuilder internally creates a datatype named w_employee.

• A new global variable of the new datatype The name of the
global variable is the same as the name of the window.

For example, when you save the w_employee window, you are also
implicitly defining a global variable named w_employee of type
w_employee.

Topic Page

About window instances 79

Declaring instances of windows 80

Using window arrays 81

Referencing entities in descendants 84

Declaring instances of windows

80 PowerBuilder

It is as if you had made the following declaration:

Figure 6-1: Variable declaration

By duplicating the name of the datatype and variable, PowerBuilder allows
new users to access windows easily through their variables while ignoring the
concept of datatype.

What happens when
you open a window

To open a window, you use the Open function, such as:

Open(w_employee)

This actually creates an instance of the datatype w_employee and assigns it a
reference to the global variable, also named w_employee.

As you have probably noticed, when you open a window that is already open,
PowerBuilder simply activates the existing window; it does not open a new
window. For example, consider this script for a CommandButton’s Clicked
event:

Open(w_employee)

No matter how many times this button is clicked, there is still only one window
w_employee. It is pointed to by the global variable w_employee.

To open multiple instances of a window, you declare variables of the window’s
type.

Declaring instances of windows
Because a window is actually a datatype, you can declare variables of that
datatype, just as you can declare integers, strings, and so on. You can then refer
to those variables in code.

For example:

w_employee mywin

declares a variable named mywin of type w_employee.

CHAPTER 6 Managing Window Instances

Application Techniques 81

Limitation of using variables
When you declare a window instance, you cannot reference it from another
window. For example, if there are three windows open, you cannot explicitly
refer to the first one from the second or third. There is no global handle for
windows opened using reference variables. To maintain references to window
instances using a script, see Using window arrays on page 81.

Opening an instance To open a window instance, you refer to the window variable in the Open
function:

w_employee mywin
Open(mywin)

Here the Open function determines that the datatype of the variable mywin is
w_employee. It then creates an instance of w_employee and assigns a reference
to the mywin variable.

If you code the above script for the Clicked event for a CommandButton, each
time the button is clicked, a new instance of w_employee is created. In other
words, a new window is opened each time the button is clicked.

By creating variables whose datatype is the name of a window, you can open
multiple instances of a window. This is easy and straightforward.
PowerBuilder manages the windows for you—for example, freeing memory
when you close the windows.

Closing an instance A common way to close the instances of a window is to put a CommandButton
in the window with this script for the Clicked event:

Close(Parent)

This script closes the parent of the button (the window in which the button
displays). Continuing the example above, if you put a CommandButton in
w_employee, the script closes the current instance of w_employee. If you click
the CommandButton in the mywin instance of w_employee, mywin closes.

Using window arrays
To create an array of windows, declare an array of the datatype of the window.
For example, the following statement declares an array named myarray, which
contains five instances of the window w_employee:

w_employee myarray[5]

Using window arrays

82 PowerBuilder

You can also create unbounded arrays of windows if the number of windows
to be opened is not known at compile time.

Opening an instance
using an array

To open an instance of a window in an array, use the Open function and pass it
the array index. Continuing the example above, the following statements open
the first and second instances of the window w_employee:

Open(myarray[1]) // Opens the first instance
// of the window w_employee.

Open(myarray[2]) // Opens the second instance.

Moving first instance opened
The statements in this example open the second instance of the window at the
same screen location as the first instance. Therefore, you should call the Move
function in the script to relocate the first instance before the second Open
function call.

Manipulating arrays Using arrays of windows, you can manipulate particular instances by using the
array index. For example, the following statement hides the second window in
the array:

myarray[2].Hide()

You can also reference controls in windows by using the array index, such as:

myarray[2].st_count.text = "2"

Opening many windows
When you open or close a large number of instances of a window, you may
want to use a FOR...NEXT control structure in the main window to open or close
the instances. For example:

w_employee myarray[5]
for i = 1 to 5

Open(myarray[i])
next

Creating mixed arrays In the previous example, all windows in the array are the same type. You can
also create arrays of mixed type. Before you can understand this technique, you
need to know one more thing about window inheritance: all windows you
define are actually descendants of the built-in datatype window.

Suppose you have a window w_employee that is defined from scratch, and
w_customer that inherits from w_employee. The complete inheritance
hierarchy is the following:

CHAPTER 6 Managing Window Instances

Application Techniques 83

Figure 6-2: Window inheritance hierarchy

The system-defined object named window is the ancestor of all windows you
define in PowerBuilder. The built-in object named window defines properties
that are used in all windows (such as X, Y, and Title).

If you declare a variable of type window, you can reference any type of window
in the application. This is because all user-defined windows are a kind of
window.

The following code creates an array of three windows. The array is named
newarray. The array can reference any type of window, because all user-defined
windows are derived from the window datatype:

window newarray[3]
string win[3]
int iwin[1] = "w_employee"
win[2] = "w_customer"
win[3] = "w_sales"

for i = 1 to 3
Open(newarray[i], win[i])

next

The code uses this form of the Open function:

Open (windowVariable, windowType)

where windowVariable is a variable of type window (or a descendant of
window) and windowType is a string that specifies the type of window.

The preceding code opens three windows: an instance of w_employee, an
instance of w_customer, and an instance of w_sales.

Using arrays versus
reference variables

Table 6-1 shows when you use reference variables and when you use arrays to
manipulate window instances.

Referencing entities in descendants

84 PowerBuilder

Table 6-1: Arrays as opposed to reference variables

Suppose you use w_employee to provide or modify data for individual
employees. You may want to prevent a second instance of w_employee opening
for the same employee, or to determine for which employees an instance of
w_employee is open. To do this kind of management, you must use an array. If
you do not need to manage specific window instances, use reference variables
instead to take advantage of their ease of use.

Referencing entities in descendants
When you declare a variable whose datatype is a kind of object, such as a
window, you can use the variable to reference any entity defined in the object,
but not in one of its descendants. Consider the following code:

w_customer mycust

Open(mycust)
// The following statement is legal if
// w_customer window has a st_name control.
mycust.st_name.text = "Joe"

mycust is declared as a variable of type w_customer (mycust is a w_customer
window). If w_customer contains a StaticText control named st_name, then the
last statement shown above is legal.

However, consider the following case:

window newwin
string winname = "w_customer"
Open(newwin, winname)
// Illegal because objects of type Window

Item Advantages Disadvantages

Arrays You can refer to
particular instances.

Arrays are more difficult to use. For example,
if the user closes the second window in an
array, then wants to open a new window, your
code must determine whether to add a window
to the end of the array (thereby using more
memory than needed) or find an empty slot in
the existing array for the new window.

Reference
variables

Easy to use—
PowerBuilder manages
them automatically.

You cannot manipulate particular instances of
windows created using reference variables.

CHAPTER 6 Managing Window Instances

Application Techniques 85

// do not have a StaticText control st_name
newwin.st_name.text = "Joe"

Here, newwin is defined as a variable of type window. PowerBuilder rejects the
above code because the compiler uses what is called strong type checking: the
PowerBuilder compiler does not allow you to reference any entity for an object
that is not explicitly part of the variable’s compile-time datatype.

Because objects of type window do not contain a st_name control, the
statement is not allowed. You would need to do one of the following:

• Change the declaration of newwin to be a w_customer (or an ancestor
window that also contains a st_name control), such as:

w_customer newwin
string winname = "w_customer"

Open(newwin, winname)
// Legal now
newwin.st_name.text = "Joe"

• Define another variable, of type w_customer, and assign it to newwin, such
as:

window newwin
w_customer custwin
string winname = "w_customer"

Open(newwin, winname)
custwin = newwin
// Legal now
custwin.st_name.text = "Joe"

Referencing entities in descendants

86 PowerBuilder

Application Techniques 87

C H A P T E R 7 Using Tab Controls in a Window

About this chapter This chapter describes how to use Tab controls in your application.

Contents

About Tab controls
A Tab control is a container for tab pages that display other controls. One
page at a time fills the display area of the Tab control. Each page has a tab
like an index card divider. The user can click the tab to switch among the
pages:

The Tab control allows you to present many pieces of information in an
organized way. You add, resize, and move Tab controls just as you do any
control. The PowerBuilder Users Guide describes how to add controls to
a window or custom visual user object.

Tab terms You need to know these definitions:

Topic Page

About Tab controls 87

Defining and managing tab pages 88

Customizing the Tab control 91

Using Tab controls in scripts 94

Defining and managing tab pages

88 PowerBuilder

Tab control A control that you place in a window or user object that contains
tab pages. Part of the area in the Tab control is for the tabs associated with the
tab pages. Any space that is left is occupied by the tab pages themselves.

Tab page A user object that contains other controls and is one of several
pages within a Tab control. All the tab pages in a Tab control occupy the same
area of the control and only one is visible at a time. The active tab page covers
the other tab pages.

You can define tab pages right in the Tab control or you can define them in the
User Object painter and insert them into the Tab control, either in the painter
or during execution.

Tab The visual handle for a tab page. The tab displays a label for the tab page.
When a tab page is hidden, the user clicks its tab to bring it to the front and
make the tab page active.

Defining and managing tab pages
A tab page is a user object.

Two methods There are different ways to approach tab page definition. You can define:

• An embedded tab page In the painter, insert tab pages in the Tab
control and add controls to those pages. An embedded tab page is of class
UserObject, but is not reusable.

• An independent user object In the User Object painter, create a custom
visual user object and add the controls that will display on the tab page.
You can use the user object as a tab page in a Tab control, either in the
painter or by calling OpenTab in a script. A tab page defined as an
independent user object is reusable.

You can mix and match the two methods—one Tab control can contain both
embedded tab pages and independent user objects.

Creating tab pages When you create a new Tab control, it has one embedded tab page. You can use
that tab page or you can delete it.

 To create a new tab page within the Tab control:

1 Right-click in the tab area of the Tab control. Do not click a tab page.

2 Select Insert TabPage from the pop-up menu.

3 Add controls to the new page.

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 89

 To define a tab page independent of a Tab control:

1 Select Custom Visual on the Object tab in the New dialog box.

2 In the User Object painter, size the user object to match the size of the
display area of the Tab control in which you will use it.

3 Add the controls that will appear on the tab page to the user object and
write scripts for their events.

4 On the user object’s property sheet, click the TabPage tab and fill in
information to be used by the tab page.

 To add a tab page that exists as an independent user object to a Tab
control:

1 Right-click in the tab area of the Tab control. Do not click a tab page.

2 Select Insert User Object from the pop-up menu.

3 Select a user object.

The tab page is inherited from the user object you select. You can set tab
page properties and write scripts for the inherited user object just as you
do for tab pages defined within the Tab control.

Editing the controls on the tab page user object
You cannot edit the content of the user object within the Tab control. If you
want to edit or write scripts for the controls, close the window or user
object containing the Tab control and go back to the User Object painter
to make changes.

Managing tab pages You can view, reorder, and delete the tab pages on a Tab control.

 To view a different tab page:

• Click the page’s tab.

The tab page comes to the front and becomes the active tab page. The tabs
are rearranged according to the Tab position setting you have chosen.

 To reorder the tabs within a Tab control:

1 Click the Page Order tab on the Tab control’s property sheet.

2 Drag the names of the tab pages to the desired order.

 To delete a tab page from a Tab control:

1 Click the page’s tab.

2 Right-click the tab page and select Cut or Clear from the pop-up menu.

Defining and managing tab pages

90 PowerBuilder

Selecting tab controls and tab pages
As you click on various areas within a tab control, you will notice the
Properties view changing to show the properties of the tab control itself, one of
the tab pages, or a control on a tab page. Before you select an item such as Cut
from the pop-up menu, make sure that you have selected the right object.

Clicking anywhere in the tab area of a tab control selects the tab control. When
you click the tab for a specific page, that tab page becomes active, but the
selected object is still the tab control. To select the tab page, click its tab to
make it active and then click anywhere on the background of the page except
on the tab itself.

Controls on tab pages The real purpose of a Tab control is to display other controls on its pages. You
can think of the tab page as a miniature window. You add controls to it just as
you do to a window.

When you are working on a Tab control, you can add controls only to a tab page
created within the Tab control.

Adding controls to an independent user object tab page
To add controls to an independent user object tab page, open it in the User
Object painter.

 To add a control to an embedded tab page:

• Choose a control from the toolbar or the Insert menu and click the tab
page, just as you do to add a control to a window.

When you click inside the tab page, the tab page becomes the control’s
parent.

 To move a control from one tab page to another:

• Cut or copy the control and paste it on the destination tab page.

The source and destination tab pages must both be embedded tab pages, not
independent user objects.

 To move a control between a tab page and the window containing the
Tab control:

• Cut or copy the control and paste it on the destination window or tab page.

You cannot drag the control out of the Tab control onto the window.

Moving the control between a tab page and the window changes the control’s
parent, which affects scripts that refer to the control.

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 91

Customizing the Tab control
The Tab control has settings for controlling the position and appearance of the
tabs. Each tab can have its own label, picture, and background color.

All tabs share the same font settings, which you set on the Tab control’s Font
property page.

Pop-up menus and
property sheets for
Tab controls and tab
pages

A Tab control has several elements, each with its own pop-up menu and
property sheet. To open the property sheet, double-click or select Properties on
the pop-up menu.

Where you click determines what element you access.

Table 7-1: Accessing Tab control elements

Position and size of
tabs

The General tab in the Tab control’s property sheet has several settings for
controlling the position and size of the tabs.

To access the pop-up menu
or property sheet for a Do this

Tab control Right-click or double-click in the tab area of the
Tab control.

Tab page Click the tab to make the tab page active, then
right-click or double-click somewhere in the tab
page but not on a control on the page.

Control on a tab page Click the tab to make the tab page active and
right-click or double-click the control.

Customizing the Tab control

92 PowerBuilder

Table 7-2: Controlling size and position of tabs

Fixed Width and Ragged Right
When Fixed Width is checked, the tabs are all the same size. This is different
from turning Ragged Right off, which stretches the tabs to fill the edge of the
Tab control, like justified text. The effect is the same if all the tab labels are
short, but if you have a mix of long and short labels, justified labels can be
different sizes unless Fixed Width is on.

This figure illustrates the effect of combining some of these settings. Tab
Position is Top:

To change Change the value for

The side(s) of the Tab control on which the tabs
appear

Tab Position

The size of the tabs relative to the size of the Tab
control

Ragged Right, MultiLine,
Fixed Width

The orientation of the text relative to the side of the
Tab control (use this setting with caution—only
TrueType fonts support perpendicular text)

Perpendicular Text

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 93

This sample Tab control is set up like an address book. It has tabs that flip
between the left and right sides. With the Bold Selected Text setting on and the
changing tab positions, it is easy to see which tab is selected:

Tab labels You can change the appearance of the tab using the property sheets of both the
Tab control and the Tab page.

Table 7-3: Changing the appearance of a tab

If you are working in the User Object painter on an object you will use as a tab
page, you can make the same settings on the TabPage page of the user object’s
property sheet that you can make in the tab page’s property sheet.

This example has a picture and text assigned to each tab page. Each tab has a
different background color. The Show Picture and Show Text settings are both
on:

Property
sheet

Property
page Setting Affects

Tab control General PictureOnRight,
ShowPicture,
ShowText

All tabs in the control

Tab page General Text,
BackColor

The label on the tab and the
background color of the tab
page

Tab page TabPage PictureName,
TabTextColor,
TabBackColor,
PictureMaskColor

The color of the text and
picture on the tab and the
background color of the tab
itself (not the tab page)

Using Tab controls in scripts

94 PowerBuilder

Changing tab
appearance in scripts

All these settings in the painter have equivalent properties that you can set in a
script, allowing you to change the appearance of the Tab control dynamically
during execution.

Using Tab controls in scripts
This section provides examples of tabs in scripts:

• Referring to tab pages in scripts

• Referring to controls on tab pages

• Opening, closing, and hiding tab pages

• Keeping track of tab pages

• Creating tab pages only when needed

• Events for the parts of the Tab control

Referring to tab pages in scripts
Dot notation allows you to refer to individual tab pages and controls on those
tab pages:

• The window or user object containing the Tab control is its parent:

window.tabcontrol

• The Tab control is the parent of the tab pages contained in it:

window.tabcontrol.tabpageuo

• The tab page is the parent of the control contained in it:

window.tabcontrol.tabpageuo.controlonpage

For example, this statement refers to the PowerTips property of the Tab control
tab_1 within the window w_display:

w_display.tab_1.PowerTips = TRUE

This example sets the PowerTipText property of tab page tabpage_1:

w_display.tab_1.tabpage_1.PowerTipText = &
"Font settings"

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 95

This example enables the CommandButton cb_OK on the tab page
tabpage_doit:

w_display.tab_1.tabpage_doit.cb_OK.Enabled = TRUE

Generic coding You can use the Parent pronoun and GetParent function to make a script more
general.

Parent pronoun In a script for any tab page, you can use the Parent pronoun
to refer to the Tab control:

Parent.SelectTab(This)

GetParent function If you are in an event script for a tab page, you can call
the GetParent function to get a reference to the tab page’s parent, which is the
Tab control, and assign the reference to a variable of type Tab.

In an event script for a user object that is used as a tab page, you can use code
like the following to save a reference to the parent Tab control in an instance
variable.

This is the declaration of the instance variable. It can hold a reference to any
Tab control:

tab itab_settings

This code saves a reference to the tab page’s parent in the instance variable:

// Get a reference to the Tab control
// "This" refers to the tab page user object
itab_settings = This.GetParent()

In event scripts for controls on the tab page, you can use GetParent twice to
refer to the tab page user object and its Tab control:

tab tab_mytab
userobject tabpage_generic

tabpage_generic = This.GetParent()
tab_mytab = tabpage_generic.GetParent()

tabpage_generic.PowerTipText = &
"Important property page"

tab_mytab.PowerTips = TRUE

tab_mytab.SelectTab(tabpage_generic)

Generic variables for controls have limitations The type of these
variables is the basic PowerBuilder object type—a variable of type Tab has no
knowledge of the tab pages in a specific Tab control and a variable of type
UserObject has no knowledge of the controls on the tab page.

Using Tab controls in scripts

96 PowerBuilder

In this script for a tab page event, a local variable is assigned a reference to the
parent Tab control. You cannot refer to specific pages in the Tab control
because tab_settings does not know about them. You can call Tab control
functions and refer to Tab control properties:

tab tab_settings
tab_settings = This.GetParent()
tab_settings.SelectTab(This)

User object variables If the tab page is an independent user object, you can
define a variable whose type is that specific user object. You can now refer to
controls defined on the user object, which is the ancestor of the tab page in the
control.

In this script for a Tab control’s event, the index argument refers to a tab page
and is used to get a reference to a user object from the Control property array.
The example assumes that all the tab pages are derived from the same user
object uo_emprpt_page:

uo_emprpt_page tabpage_current
tabpage_current = This.Control[index]
tabpage_current.dw_emp.Retrieve &

(tabpage_current.st_name.Text)

The Tab control’s Control property
The Control property array contains references to all the tab pages in the
control, including both embedded and independent user objects. New tab pages
are added to the array when you insert them in the painter and when you open
them in a script.

Referring to controls on tab pages
If you are referring to a control on a tab page in another window, you must fully
qualify the control’s name up to the window level.

The following example shows a fully qualified reference to a static text control:

w_activity_manager.tab_fyi.tabpage_today. &
st_currlogon_time.Text = ls_current_logon_time

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 97

This example from the PowerBuilder Code Examples sets the size of a
DataWindow control on the tab page to match the size of another DataWindow
control in the window. Because all the tab pages were inserted in the painter,
the Control property array corresponds with the tab page index. All the pages
are based on the same user object u_tab_dir:

u_tab_dir luo_Tab
luo_Tab = This.Control[newindex]
luo_Tab.dw_dir.Height = dw_list.Height
luo_Tab.dw_dir.Width = dw_list.Width

In scripts and functions for the tab page user object, the user object knows
about its own controls. You do not need to qualify references to the controls.
This example in a function for the u_tab_dir user object retrieves data for the
dw_dir DataWindow control:

IF NOT ib_Retrieved THEN
dw_dir.SetTransObject(SQLCA)
dw_dir.Retrieve(as_Parm)
ib_Retrieved = TRUE

END IF

RETURN dw_dir.RowCount()

Opening, closing, and hiding tab pages
You can open tab pages in a script. You can close tab pages that you opened,
but you cannot close tab pages that were inserted in the painter. You can hide
any tab page.

This example opens a tab page of type tabpage_listbox and stores the object
reference in an instance variable i_tabpage. The value 0 specifies that the tab
page becomes the last page in the Tab control. You need to save the reference
for closing the tab later.

This is the instance variable declaration for the tab page’s object reference:

userobject i_tabpage

This code opens the tab page:

li_rtn = tab_1.OpenTab &
(i_tabpage, "tabpage_listbox", 0)

This statement closes the tab page:

tab_1.CloseTab(i_tabpage)

Using Tab controls in scripts

98 PowerBuilder

Keeping track of tab pages
To refer to the controls on a tab page, you need the user object reference, not
just the index of the tab page. You can use the tab page’s Control property array
to get references to all your tab pages.

Control property for
tab pages

The Control property of the Tab control is an array with a reference to each tab
page defined in the painter and each tab page added in a script. The index
values that are passed to events match the array elements of the Control
property.

You can get an object reference for the selected tab using the SelectedTab
property:

userobject luo_tabpage
luo_tabpage = tab_1.Control[tab_1.SelectedTab]

In an event for the Tab control, like SelectionChanged, you can use the index
value passed to the event to get a reference from the Control property array:

userobject tabpage_generic
tabpage_generic = This.Control[newindex]

Adding a new tab
page

When you call OpenTab, the control property array grows by one element. The
new element is a reference to the newly opened tab page. For example, the
following statement adds a new tab in the second position in the Tab control:

tab_1.OpenTab(uo_newtab, 2)

The second element in the control array for tab_1 now refers to uo_newtab, and
the index into the control array for all subsequent tab pages becomes one
greater.

Closing a tab page When you call CloseTab, the size of the array is reduced by one and the
reference to the user object or page is destroyed. If the closed tab was not the
last element in the array, the index for all subsequent tab pages is reduced by
one.

Moving a tab page The MoveTab function changes the order of the pages in a Tab control and also
reorders the elements in the control array to match the new tab order.

Control property array for user objects
The Control property array for controls in a user object works in the same way.

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 99

Creating tab pages only when needed
The user might never look at all the tab pages in your Tab control. You can
avoid the overhead of creating graphical representations of the controls on all
the tab pages by checking Create on Demand on the Tab control’s General
property page or setting the CreateOnDemand property to TRUE.

The controls on all the tab pages in a Tab control are always instantiated when
the Tab control is created. However, when Create on Demand is checked, the
Constructor event for controls on tab pages is not triggered and graphical
representations of the controls are not created until the user views the tab page.

Constructor events on the selected tab page
Constructor events for controls on the selected tab page are always triggered
when the Tab control is created.

Tradeoffs for Create
on Demand

A window will open more quickly if the creation of graphical representations
is delayed for tab pages with many controls. However, scripts cannot refer to a
control on a tab page until the control’s Constructor event has run and a
graphical representation of the control has been created. When Create on
Demand is checked, scripts cannot reference controls on tab pages that the user
has not viewed.

Whether a tab page
has been created

You can check whether a tab page has been created with the PageCreated
function. Then, if it has not been created, you can trigger the constructor event
for the tab page using the CreatePage function:

IF tab_1.tabpage_3.PageCreated() = FALSE THEN
tab_1.tabpage_3.CreatePage()

END IF

You can check whether a control on a tab page has been created by checking
whether the control’s handle is nonzero. If so, the control has been created.

IF Handle(tab_1.tabpage_3.dw_list) > 0 THEN ...

Changing
CreateOnDemand
during execution

If you change the CreateOnDemand property to FALSE in a script, graphical
representations of any tab pages that have not been created are created
immediately.

It does not do any good to change CreateOnDemand to TRUE during execution,
because graphical representations of all the tab pages have already been
created.

Using Tab controls in scripts

100 PowerBuilder

Creating tab pages
dynamically

If CreateOnDemand is FALSE, you can set the label for a dynamically created
tab page in its Constructor event, using the argument to OpenTabWithParm
that is passed to the Message object. If CreateOnDemand is TRUE, you need to
set the label when the tab page is instantiated, because the Constructor event is
not triggered until the tab is selected. The following script in a user event that
is posted from a window’s open event opens five tab pages and sets the label
for each tab as it is instantiated:

int li_ctr
string is_title
THIS.setredraw(false)

FOR li_ctr = 1 to 5
is_title = "Tab#" + string(li_ctr)
tab_test.opentabwithparm(iuo_tabpage[li_ctr], &

is_title, 0)
iuo_tabpage[li_ctr].text = is_title //set tab label
NEXT

THIS.setredraw(true)
RETURN 1

Events for the parts of the Tab control
With so many overlapping pieces in a Tab control, you need to know where to
code scripts for events.

Table 7-4: Coding scripts for Tab control events

For example, if the user drags to a tab and you want to do something to the tab
page associated with the tab, you need to code the DragDrop event for the Tab
control, not the tab page.

Examples This code in the DragDrop event of the tab_1 control selects the tab page when
the user drops something onto its tab. The index of the tab that is the drop target
is an argument for the DragDrop event:

This.SelectTab(index)

To respond to actions in the Write a script for events belonging to

Tab area of the Tab control, including
clicks or drag actions on tabs

The Tab control

Tab page (but not the tab) The tab page (for embedded tab pages) or
the user object (for independent tab pages)

Control on a tab page That control

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 101

The following code in the DragDrop event for the Tab control lets the user drag
DataWindow information to a tab and then inserts the dragged information in
a list on the tab page associated with the tab.

A user object of type tabpage_listbox that contains a ListBox control, lb_list, has
been defined in the User Object painter. The Tab control contains several
independent tab pages of type tabpage_listbox.

You can use the index argument for the DragDrop event to get a tab page
reference from the Tab control’s Control property array. The user object
reference lets the script access the controls on the tab page.

The Parent pronoun in this script for the Tab control refers to the window:

long ll_row
string ls_name
tabpage_listbox luo_tabpage

IF TypeOf(source) = DataWindow! THEN
l_row = Parent.dw_2.GetRow()
ls_name = Parent.dw_2.Object.lname.Primary[ll_row]

// Get a reference from the Control property array
luo_tabpage = This.Control[index]

// Make the tab page the selected tab page
This.SelectTab(index)

// Insert the dragged information
luo_tabpage.lb_list.InsertItem(ls_name, 0)

END IF

If the tab page has not been created
If the CreateOnDemand property for the Tab control is TRUE, the Constructor
events for a tab page and its controls are not triggered until the tab page is
selected. In the previous example, making the tab page the selected tab page
triggers the Constructor events. You could also use the CreatePage function to
trigger them:

IF luo_tabpage.PageCreated() = FALSE THEN &
luo_tabpage.CreatePage()

Using Tab controls in scripts

102 PowerBuilder

Application Techniques 103

C H A P T E R 8 Using TreeView Controls

About this chapter This chapter describes how to use TreeView controls to present
hierarchical information in an expandable list.

Contents

About TreeView controls
TreeView controls provide a way to represent hierarchical relationships
within a list. The TreeView provides a standard interface for expanding
and collapsing branches of a hierarchy:

Topic Page

About TreeView controls 103

Populating TreeViews 106

Managing TreeView items 111

Managing TreeView pictures 119

Using DataWindow information to populate a TreeView 124

About TreeView controls

104 PowerBuilder

When to use a
TreeView

You use TreeViews in windows and custom visual user objects. Choose a
TreeView instead of a ListBox or ListView when your information is more
complex than a list of similar items and when levels of information have a
one-to-many relationship. Choose a TreeView instead of a DataWindow
control when your user will want to expand and collapse the list using the
standard TreeView interface.

Hierarchy of items Although items in a TreeView can be a single, flat list like the report view of a
ListView, you tap the power of a TreeView when items have a one-to-many
relationship two or more levels deep. For example, your list might have one or
several parent categories with child items within each category. Or the list
might have several levels of subcategories before getting to the end of a branch
in the hierarchy:

Root
Category 1

Subcategory 1a
Detail
Detail

Subcategory 1b
Detail
Detail

Category 2
Subcategory 2a

Detail

Number of levels in
each branch

You do not have to have the same number of levels in every branch of the
hierarchy if your data requires more levels of categorization in some branches.
However, programming for the TreeView is simpler if the items at a particular
level are the same type of item, rather than subcategories in some branches and
detail items in others.

For example, in scripts you might test the level of an item to determine
appropriate actions. You can call the SetLevelPictures function to set pictures
for all the items at a particular level.

Content sources for a
TreeView

For most of the list types in PowerBuilder, you can add items in the painter or
in a script, but for a TreeView, you have to write a script. Generally, you will
populate the first level (the root level) of the TreeView when its window opens.
When the user wants to view a branch, a script for the TreeView’s ItemPopulate
event can add items at the next levels.

The data for items can be hard-coded in the script, but it is more likely that you
will use the user’s own input or a database for the TreeView’s content. Because
of the one-to-many relationship of an item to its child items, you might use
several tables in a database to populate the TreeView.

CHAPTER 8 Using TreeView Controls

Application Techniques 105

For an example using DataStores, see Using DataWindow information to
populate a TreeView on page 124.

Pictures for items Pictures are associated with individual items in a TreeView. You identify
pictures you want to use in the control’s picture lists and then associate the
index of the picture with an item. Generally, pictures are not unique for each
item. Pictures provide a way to categorize or mark items within a level. To help
the user understand the data, you might:

• Use a different picture for each level

• Use several pictures within a level to identify different types of items

• Use pictures on some levels only

• Change the picture after the user clicks on an item

Pictures are not required You do not have to use pictures if they do not
convey useful information to the user. Item labels and the levels of the
hierarchy may provide all the information the user needs.

Appearance of the
TreeView

You can control the appearance of the TreeView by setting property values.
Properties that affect the overall appearance are shown in Table 8-1.

Table 8-1: TreeView properties

For more information about these properties, see Objects and Controls.

Properties Effect when set

HasButtons Puts + and - buttons before items that have children, showing
the user whether the item is expanded or collapsed

HasLines and
LinesAtRoot

Display lines connecting items within a branch and connecting
items at the root level

Checkboxes Replaces the state image with checked and unchecked check
boxes

TrackSelect Changes the appearance of an item as the mouse moves over it

FullRowSelect Highlights the entire row of a selected item

SingleExpand Expands the selected item and collapses the previously
selected item automatically

Indent Sets the amount an item is indented

Font properties Specifies the font for all the labels

Various picture
properties

Controls the pictures and their size

LayoutRTL and
RightToLeft

Display elements and characters in the control from right to left

Populating TreeViews

106 PowerBuilder

User interaction Basic TreeView functionality allows users to edit labels, delete items, expand
and collapse branches, and sort alphabetically, without any scripting on your
part. For example, the user can click a second time on a selected item to edit it,
or press the Delete key to delete an item. If you do not want to allow these
actions, properties let you disable them.

You can customize any of these basic actions by writing scripts. Events
associated with the basic actions let you provide validation or prevent an action
from completing. You can also implement other features such as adding items,
dragging items, and performing customized sorting.

Using custom events In PowerBuilder 7 and later releases, PowerBuilder uses Microsoft controls for
ListView and Treeview controls. The events that fire when the right mouse
button is clicked are different from earlier releases.

When you release the right mouse button, the pbm_rbuttonup event does not
fire. The stock RightClicked! event for a TreeView control,
pbm_tvnrclickedevent, fires when the button is released.

When you click the right mouse button on an unselected TreeView item, focus
returns to the previously selected TreeView item when you release the button.
To select the new item, insert this code in the pbm_tvnrclickedevent script
before any code that acts on the selected item:

this.SelectItem(handle)

When you right double-click, only the pbm_rbuttondblclk event fires. In
previous releases, both the pbm_rbuttondblclk and pbm_tvnrdoubleclick
events fired.

Populating TreeViews
You must write a script to add items to a TreeView. You cannot add items in the
painter as with other list controls. Although you can populate all the levels of
the TreeView at once, TreeView events allow you to populate only branches
the user looks at, which saves unnecessary processing.

Typically, you populate the first level of the TreeView when the control is
displayed. This code might be in a window’s Open event, a user event triggered
from the Open event, or the TreeView’s Constructor event. Then a script for the
control’s ItemPopulate event would insert an item’s children when the user
chooses to expand it.

CHAPTER 8 Using TreeView Controls

Application Techniques 107

The ItemPopulate event is triggered when the user clicks on an item’s plus
button or double-clicks the item, but only if the item’s Children property is
TRUE. Therefore, when you insert an item that will have children, you must set
its Children property to TRUE so that it can be populated with child items when
the user expands it.

You are not restricted to adding items in the ItemPopulate event. For example,
you might let the user insert items by dragging from a ListBox or filling in a
text box.

Functions for inserting items
There are several functions for adding items to a TreeView control, as shown
in Table 8-2.

Table 8-2: Functions for adding items to TreeView control

For all the InsertItem functions, the SortType property can also affect the
position of the added item.

There are two ways to supply information about the item you add, depending
on the item properties that need to be set.

Method 1: specifying
the label and picture
index only

You can add an item by supplying the picture index and label. All the other
properties of the item will have default values. You can set additional
properties later as needed, using the item’s handle.

Example This example inserts a new item after the currently selected item on
the same level as that item. First it gets the handles of the currently selected
item and its parent, and then it inserts an item labeled Hindemith after the
currently selected item. The item’s picture index is 2:

long ll_tvi, ll_tvparent

ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
ll_tvparent = tv_list.FindItem(ParentTreeItem!, &

ll_tvi)

This function Adds an item here

InsertItem After a sibling item for the specified parent.

If no siblings exist, you must use one of the other insertion
functions.

InsertItemFirst First child of the parent item.

InsertItemLast Last child of the parent item.

InsertItemSort As a child of the parent item in alphabetic order, if possible.

Populating TreeViews

108 PowerBuilder

tv_list.InsertItem(ll_tvparent, ll_tvi, &
"Hindemith", 2)

Method 2: setting item
properties in a
TreeViewItem
structure

You can add items by supplying a TreeViewItem structure with properties set
to specific values. The only required property is a label. Properties you might
set are shown in Table 8-3.

Table 8-3: TreeViewItem properties

Example This example sets all these properties in a TreeViewItem structure
before adding the item to the TreeView control. The item is inserted as a child
of the current item:

treeviewitem tvi
long h_item = 0, h_parent = 0

h_parent = tv_1.FindItem(CurrentTreeItem!, 0)
tvi.Label = "Choral"
tvi.PictureIndex = 1
tvi.SelectedPictureIndex = 2
tvi.Children = true
tvi.StatePictureIndex = 0
h_item = tv_1.InsertItemSort(h_parent, tvi)

For more information about inserting items into a TreeView control, see the
PowerScript Reference.

Property Value

Label The text that is displayed for the item.

PictureIndex A value from the regular picture list.

SelectedPictureIndex A value from the regular picture list, specifying a picture
that is displayed only when the item is selected. If 0, no
picture is displayed for the item when selected.

StatePictureIndex A value from the State picture list. The picture is displayed
to the left of the regular picture.

Children Must be TRUE if you want double-clicking to trigger the
ItemPopulate event. That event script can insert child items.

Data An optional value of any datatype that you want to associate
with the item. You might use the value to control sorting or
to make a database query.

CHAPTER 8 Using TreeView Controls

Application Techniques 109

Inserting items at the root level
The very first item you insert does not have any sibling for specifying a relative
position, so you cannot use the InsertItem function—you must use
InsertItemFirst or InsertItemLast. For an item inserted at the root level, you
specify 0 as its parent.

This sample code is in a user event triggered from the Open event of the
window containing the TreeView. It assumes two instance variable arrays:

• A string array called item_label that contains labels for all the items that
will be inserted at the root level (here composer names)

• An integer array that has values for the Data property (the century for each
composer); the century value is for user-defined sorting:

int ct
long h_item = 0
treeviewitem tvi

FOR ct = 1 TO UpperBound(item_label)
tvi.Label = item_label[ct]
tvi.Data = item_data[ct]
tvi.PictureIndex = 1
tvi.SelectedPictureIndex = 2
tvi.Children = TRUE
tvi.StatePictureIndex = 0
tvi.DropHighlighted = TRUE
h_item = tv_1.InsertItemSort(0, tvi)

NEXT

After inserting all the items, this code scrolls the TreeView back to the top and
makes the first item current:

// Scroll back to top
h_item = tv_1.FindItem(RootTreeItem!, 0)
tv_1.SetFirstVisible(h_item)
tv_1.SelectItem(h_item)

Inserting items below the root level
The first time a user tries to expand an item to see its children, PowerBuilder
triggers the ItemPopulate event if and only if the value of the item’s Children
property is TRUE. In the ItemPopulate event, you can add child items for the
item being expanded.

Populating TreeViews

110 PowerBuilder

Parent item’s Children property
If the ItemPopulate event does not occur when you expect, make sure the
Children property for the expanding item is TRUE. It should be set to TRUE for
any item that will have children.

Inserting items not restricted to the ItemPopulate event The
ItemPopulate event helps you design an efficient program. It will not populate
an item that the user never looks at. However, you do not have to wait until the
user wants to view an item’s children. You can add children in any script, just
as you added items at the root level.

For example, you might fully populate a small TreeView when its window
opens and use the ExpandAll function to display its items fully expanded.

Has an item been populated? You can check an item’s ExpandedOnce
property to find out if the user has looked at the item’s children. If the user is
currently looking at an item’s children, the Expanded property is also TRUE.

Example This TreeView lists composers and their music organized into
categories. The script for its ItemPopulate event checks whether the item being
expanded is at level 1 (a composer) or level 2 (a category). Level 3 items are
not expandable.

For a level 1 item, the script adds three standard categories. For a level 2 item,
it adds pieces of music to the category being expanded, in this pattern:

Mozart
Orchestral

Symphony No. 33
Overture to the Magic Flute

Chamber
Quintet in Eb for Horn and Strings
Eine Kleine Nachtmusik

Vocal
Don Giovanni
Idomeneo

This is the script for ItemPopulate:

TreeViewItem tvi_current, tvi_child, tvi_root
long hdl_root
Integer ct
string categ[]

// The current item is the parent for the new
itemsThis.GetItem(handle, tvi_current)

CHAPTER 8 Using TreeView Controls

Application Techniques 111

IF tvi_current.Level = 1 THEN
// Populate level 2 with some standard categories
categ[1] = "Orchestral"
categ[2] = "Chamber"
categ[3] = "Vocal"

tvi_child.StatePictureIndex = 0
tvi_child.PictureIndex = 3
tvi_child.SelectedPictureIndex = 4
tvi_child.OverlayPictureIndex = 0
tvi_child.Children = TRUE

FOR ct = 1 to UpperBound(categ)
tvi_child.Label = categ[ct]
This.InsertItemLast(handle, tvi_child)

NEXT
END IF

// Populate level 3 with music titles
IF tvi_current.Level = 2 THEN

// Get parent of current item - it's the root of
// this branch and is part of the key for choosing
// the children

hdl_root = This.FindItem(ParentTreeItem!, handle)
This.GetItem(hdl_root, tvi_root)

FOR ct = 1 to 4
// This statement constructs a label -
// it is more realistic to look up data in a
// table or database or accept user input
This.InsertItemLast(handle, &
tvi_root.Label + " Music " &
+ tvi_current.Label + String(ct), 3)

NEXT
END IF

Managing TreeView items
An item in a TreeView is a TreeViewItem structure. The preceding section
described how to set the item’s properties in the structure and then insert it into
the TreeView.

Managing TreeView items

112 PowerBuilder

This code declares a TreeViewItem structure and sets several properties:

TreeViewItem tvi_defined

tvi_defined.Label = "Symphony No. 3 Eroica"
tvi_defined.StatePictureIndex = 0
tvi_defined.PictureIndex = 3
tvi_defined.SelectedPictureIndex = 4
tvi_defined.OverlayPictureIndex = 0
tvi_defined.Children = TRUE

For information about Picture properties, see Managing TreeView pictures on
page 119.

When you insert an item, the inserting function returns a handle to that item.
The TreeViewItem structure is copied to the TreeView control, and you no
longer have access to the item’s properties:

itemhandle = This.InsertItemLast(parenthandle, &
tvi_defined)

Procedure for items:
get, change, and set

If you want to change the properties of an item in the TreeView, you:

1 Get the item, which assigns it to a TreeViewItem structure.

2 Make the changes, by setting TreeViewItem properties.

3 Set the item, which copies it back into the TreeView.

When you work with items that have been inserted in the TreeView, you work
with item handles. Most TreeView events pass one or two handles as
arguments. The handles identify the items the user is interacting with.

This code for the Clicked event uses the handle of the clicked item to copy it
into a TreeViewItem structure whose property values you can change:

treeviewitem tvi
This.GetItem(handle, tvi)
tvi.OverlayPictureIndex = 1
This.SetItem(handle, tvi)

Important
Remember to call the SetItem function after you change an item’s property
value. Otherwise, nothing happens in the TreeView.

Items and the
hierarchy

You can use item handles with the FindItem function to navigate the TreeView
and uncover its structure. The item’s properties tell you what its level is, but not
which item is its parent. The FindItem function does:

CHAPTER 8 Using TreeView Controls

Application Techniques 113

long h_parent
h_parent = This.FindItem(ParentTreeItem!, handle)

You can use FindItem to find the children of an item or to navigate through
visible items regardless of level.

For more information, see the FindItem function in the PowerScript Reference.

Enabling TreeView
functionality in scripts

By setting TreeView properties, you can enable or disable user actions like
deleting or renaming items without writing any scripts. You can also enable
these actions by calling functions. You can:

• Delete items

• Rename items

• Move items using drag and drop

• Sort items

Deleting items
To allow the user to delete items, enable the TreeView’s DeleteItems property.
When the user presses the Delete key, the selected item is deleted and the
DeleteItem event is triggered. Any children are deleted too.

If you want more control over deleting, such as allowing deleting of detail
items only, you can call the DeleteItem function instead of setting the property.
The function also triggers the DeleteItem event.

Example This script is for a TreeView user event. Its event ID is pbm_keydown and it is
triggered by key presses when the TreeView has focus. The script checks
whether the Delete key is pressed and whether the selected item is at the detail
level. If both are TRUE, it deletes the item.

The value of the TreeView’s DeleteItems property is FALSE. Otherwise, the
user could delete any item, despite this code:

TreeViewItem tvi
long h_item

IF KeyDown(KeyDelete!) = TRUE THEN
h_item = This.FindItem(CurrentTreeItem!, 0)
This.GetItem(h_item, tvi)
IF tvi.Level = 3 THEN

This.DeleteItem(h_item
) END IF
END IF

Managing TreeView items

114 PowerBuilder

RETURN 0

Renaming items
If you enable the TreeView’s EditLabels property, the user can edit an item
label by clicking twice on the text.

Events There are two events associated with editing labels.

The BeginLabelEdit event occurs after the second click when the EditLabels
property is set or when the EditLabel function is called. You can disallow
editing with a return value of 1.

This script for BeginLabelEdit prevents changes to labels of level 2 items:

TreeViewItem tvi
This.GetItem(handle, tvi)
IF tvi.Level = 2 THEN

RETURN 1
ELSE

RETURN 0
END IF

The EndLabelEdit event occurs when the user finishes editing by pressing
ENTER, clicking on another item, or clicking in the text entry area of another
control. A script you write for the EndLabelEdit event might validate the user’s
changes—for example, it could invoke a spelling checker.

EditLabel function For control over label editing, the BeginLabelEdit event can prohibit editing of
a label, as shown above. Or you can set the EditLabels property to FALSE and
call the EditLabel function when you want to allow a label to be edited.

When you call the EditLabel function, the BeginLabelEdit event occurs when
editing begins and the EndLabelEdit event occurs when the user presses enter
or the user clicks another item.

This code for a CommandButton puts the current item into editing mode:

long h_tvi
h_tvi = tv_1.findItem(CurrentTreeItem!, 0)
tv_1.EditLabel(h_tvi)

CHAPTER 8 Using TreeView Controls

Application Techniques 115

Moving items using drag and drop
At the window level, PowerBuilder provides functions and properties for
dragging controls onto other controls. Within the TreeView, you can also let the
user drag items onto other items. Users might drag items to sort them, move
them to another branch, or put child items under a parent.

When you implement drag and drop as a way to move items, you decide
whether the dragged item becomes a sibling or child of the target, whether the
dragged item is moved or copied, and whether its children get moved with it.

There are several properties and events that you need to coordinate to
implement drag and drop for items, as shown in Table 8-4.

Table 8-4: Drag-and-drop properties and events

Example The key to a successful drag-and-drop implementation is in the details. This
section illustrates one way of moving items. In the example, the dragged item
becomes a sibling of the drop target, inserted after it. All children of the item
are moved with it and the original item is deleted.

A function called recursively moves the children, regardless of the number of
levels. To prevent an endless loop, an item cannot become a child of itself. This
means a drop target that is a child of the dragged item is not allowed.

BeginDrag event The script saves the handle of the dragged item in an
instance variable:

ll_dragged_tvi_handle = handle

If you want to prevent some items from being dragged—such as items at a
particular level—that code goes here too:

TreeViewItem tvi

Property or event Setting or purpose

DragAuto property TRUE or FALSE

If FALSE, you must call the Drag function in the BeginDrag
event.

DisableDragDrop
property

FALSE

DragIcon property An appropriate icon
or
None!, which means the user drags an image of the item

BeginDrag event Script for saving the handle of the dragged item and
optionally preventing particular items from being dragged

DragWithin event Script for highlighting drop targets

DragDrop event Script for implementing the result of the drag operation

Managing TreeView items

116 PowerBuilder

This.GetItem(handle, tvi)
IF tvi.Level = 3 THEN This.Drag(Cancel!)

DragWithin event The script highlights the item under the cursor so the user
can see each potential drop target. If only some items are drop targets, your
script should check an item’s characteristics before highlighting it. In this
example, you could check whether an item is a parent of the dragged item and
highlight it only if it is not:

TreeViewItem tvi
This.GetItem(handle, tvi)
tvi.DropHighlighted = TRUE
This.SetItem(handle, tvi)

DragDrop event This script does all the work. It checks whether the item can
be inserted at the selected location and inserts the dragged item in its new
position—a sibling after the drop target. Then it calls a function that moves the
children of the dragged item too:

TreeViewItem tvi_src, tvi_child
long h_parent, h_gparent, h_moved, h_child
integer rtn

// Get TreeViewItem for dragged item
This.GetItem(ll_dragged_tvi_handle, tvi_src)
// Don't allow moving an item into its own branch,
// that is, a child of itself
h_gparent = This.FindItem(ParentTreeItem!, handle)

DO WHILE h_gparent <> -1
IF h_gparent = ll_dragged_tvi_handle THEN

MessageBox("No Drag", &
"Can't make an item a child of itself.")
RETURN 0

END IF

h_gparent=This.FindItem(ParentTreeItem!, h_gparent)
LOOP

// Get item parent for inserting
h_parent = This.FindItem(ParentTreeItem!, handle)

// Use 0 if no parent because target is at level 1
IF h_parent = -1 THEN h_parent = 0

// Insert item after drop target
h_moved = This.InsertItem(h_parent, handle, tvi_src)

CHAPTER 8 Using TreeView Controls

Application Techniques 117

IF h_moved = -1 THEN
MessageBox("No Dragging", "Could not move item.")
RETURN 0

ELSE
// Args: old parent, new parent
rtn = uf_movechildren(ll_dragged_tvi_handle, &

h_moved)

/ If all children are successfully moved,
// delete original item
IF rtn = 0 THEN

This.DeleteItem(ll_dragged_tvi_handle)
END IF

END IF

The DragDrop event script shown above calls the function uf_movechildren.
The function calls itself recursively so that all the levels of children below the
dragged item are moved:

// Function: uf_movechildren
// Arguments:
// oldparent - Handle of item whose children are
// being moved. Initially, the dragged item in its
// original position
//
// newparent - Handle of item to whom children are
// being moved. Initially, the dragged item in its
// new position.

long h_child, h_movedchild
TreeViewItem tvi

// Return -1 if any Insert action fails

// Are there any children?
h_child = tv_2.FindItem(ChildTreeItem!, oldparent)
IF h_child <> -1 THEN

tv_2.GetItem(h_child, tvi)
h_movedchild = tv_2.InsertItemLast(newparent, tvi)
IF h_movedchild = -1 THEN RETURN -1

// Move the children of the child that was found
uf_movechildren(h_child, h_movedchild)

// Check for more children at the original level
h_child = tv_2.FindItem(NextTreeItem!, h_child)

Managing TreeView items

118 PowerBuilder

DO WHILE h_child <> -1
tv_2.GetItem(h_child, tvi)
h_movedchild= tv_2.InsertItemLast(newparent,tvi)
IF h_movedchild = -1 THEN RETURN -1
uf_movechildren(h_child, h_movedchild)

// Any more children at original level?
h_child = tv_2.FindItem(NextTreeItem!, h_child)

LOOP
END IF
RETURN 0 // Success, all children moved

Sorting items
A TreeView can sort items automatically, or you can control sorting manually.
Manual sorting can be alphabetic by label text, or you can implement a
user-defined sort to define your own criteria. The SortType property controls
the way items are sorted. Its values are of the enumerated datatype grSortType.

Automatic alphabetic sorting To enable sorting by the text label, set the
SortType property to Ascending! or Descending!. Inserted items are sorted
automatically.

Manual alphabetic sorting For more control over sorting, you can set
SortType to Unsorted! and sort by calling the functions in Table 8-5.

Table 8-5: TreeView sorting functions

If users will drag items to organize the list, you should disable sorting.

Sorting by other criteria To sort items by criteria other than their labels,
implement a user-defined sort by setting the SortType property to
UserDefinedSort! and writing a script for the Sort event. The script specifies
how to sort items.

PowerBuilder triggers the Sort event for each pair of items it tries to reorder.
The Sort script returns a value reporting which item is greater than the other.
The script can have different rules for sorting based on the type of item. For
example, level 2 items can be sorted differently from level 3. The TreeView is
sorted whenever you insert an item.

Use this function To do this

InsertItemSort Insert an item at the correct alphabetic position, if possible

Sort Sort the immediate children of an item

SortAll Sort the whole branch below an item

CHAPTER 8 Using TreeView Controls

Application Techniques 119

Example of Sort event This sample script for the Sort event sorts the first level by the value of the Data
property and other levels alphabetically by their labels. The first level displays
composers chronologically, and the Data property contains an integer
identifying a composer’s century:

//Return values
//-1 Handle1 is less than handle2
// 0 Handle1 is equal to handle2
// 1 Handle1 is greater than handle2

TreeViewItem tvi1, tvi2

This.GetItem(handle1, tvi1)
This.GetItem(handle2, tvi2)

IF tvi1.Level = 1 THEN
// Compare century values stored in Data property
IF tvi1.data > tvi2.Data THEN

RETURN 1
ELSEIF tvi1.data = tvi2.Data THEN

RETURN 0
ELSE

RETURN -1
END IF
ELSE
// Sort other levels in alpha order
IF tvi1.Label > tvi2.Label THEN

RETURN 1
ELSEIF tvi1.Label = tvi2.Label THEN

RETURN 0
ELSE

RETURN -1
END IF

END IF

Managing TreeView pictures
PowerBuilder stores TreeView images in three image lists:

• Picture list (called the regular picture list here)

• State picture list

• Overlay picture list

Managing TreeView pictures

120 PowerBuilder

You add pictures to these lists and associate them with items in the TreeView.

Pictures for items
There are several ways to use pictures in a TreeView. You associate a picture
in one of the picture lists with an item by setting one of the item’s picture
properties, described in Table 8-6.

CHAPTER 8 Using TreeView Controls

Application Techniques 121

Table 8-6: TreeView picture properties

How to set pictures You can change the pictures for all items at a particular
level with the SetLevelPictures function, or you can set the picture properties
for an individual item.

If you do not want pictures Your TreeView does not have to use pictures for
items. If an item’s picture indexes are 0, no pictures are displayed. However,
the TreeView always leaves room for the regular picture. You can set the
PictureWidth property to 0 to eliminate that space:

tv_2.DeletePictures()

Property Purpose

PictureIndex The primary picture associated with the item is displayed
just to the left of the item’s label.

StatePictureIndex A state picture is displayed to the left of the regular picture.
The item moves to the right to make room for the state
picture. If the Checkboxes property is TRUE, the state
picture is replaced by a pair of check boxes.

Because a state picture takes up room, items without state
pictures will not align with items that have pictures. So that
all items have a state picture and stay aligned, you could use
a blank state picture for items that do not have a state to be
displayed.

A use for state pictures might be to display a check mark
beside items the user has chosen.

OverlayPictureIndex An overlay picture is displayed on top of an item’s regular
picture.

You set up the overlay picture list in a script by designating
a picture in the regular picture list for the overlay picture
list.

An overlay picture is the same size as a regular picture, but
it often uses a small portion of the image space so that it only
partially covers the regular picture. A typical use of overlay
pictures is the arrow marking shortcut items in the Windows
Explorer.

SelectedPictureIndex A picture from the regular picture list that is displayed
instead of the regular picture when the item is the current
item. When the user selects another item, the first item gets
its regular picture and the new item displays its selected
picture.

If you do not want a different picture when an item is
current, set SelectedPictureIndex to the same value as
PictureIndex.

Managing TreeView pictures

122 PowerBuilder

tv_2.PictureWidth = 0

Setting up picture lists
You can add pictures to the regular and state picture lists in the painter or during
execution. During execution, you can assign pictures in the regular picture list
to the overlay list.

Mask color The mask color is a color used in the picture that becomes transparent when the
picture is displayed. Usually you should pick the picture’s background color so
that the picture blends with the color of the TreeView.

Before you add a picture, in the painter or in a script, you can set the mask color
to a color appropriate for that picture. This statement sets the mask color to
white, which is right for a picture with a white background:

tv_1.PictureMaskColor = RGB(255, 255, 255)

Each picture can have its own mask color. A picture uses the color that is in
effect when the picture is inserted. To change a picture’s mask color, you have
to delete the picture and add it again.

Image size In the painter you can change the image size at any time by setting the Height
and Width properties on each picture tab. All the pictures in the list are scaled
to the specified size.

During execution, you can change the image size for a picture list only when
that list is empty. The DeletePictures and DeleteStatePictures functions let you
clear the lists.

Example This sample code illustrates how to change properties and add pictures to the
regular picture list during execution. Use similar code for state pictures:

tv_list.DeletePictures()
tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

tv_list.PictureMaskColor = RGB(255,255,255)
tv_list.AddPicture("c:\apps_pb\kelly.bmp")
tv_list.PictureMaskColor = RGB(255,0,0)
tv_list.AddPicture("Custom078!")
tv_list.PictureMaskColor = RGB(128,128,128)
tv_list.AddPicture("Custom044!")

CHAPTER 8 Using TreeView Controls

Application Techniques 123

Deleting pictures and
how it affects existing
items

Deleting pictures from the picture lists can have an unintended effect on item
pictures being displayed. When you delete pictures, the remaining pictures in
the list are shifted to remove gaps in the list. The remaining pictures get a
different index value. This means items that use these indexes get new images.

Deleting pictures from the regular picture list also affects the overlay list, since
the overlay list is not a separate list but points to the regular pictures.

To avoid unintentional changes to item pictures, it is best to avoid deleting
pictures after you have begun using picture indexes for items.

Using overlay pictures
The pictures in the overlay list come from the regular picture list. First you
must add pictures to the regular list, either in the painter or during execution.
Then during execution you specify pictures for the overlay picture list. After
that you can assign an overlay picture to items, individually or with the
SetLevelPictures function.

This code adds a picture to the regular picture list and then assigns it to the
overlay list:

integer idx
idx = tv_1.AddPicture("Custom085!")
IF tv_1.SetOverlayPicture(1, idx) <> 1 THEN

sle_get.Text = "Setting overlay picture failed"
END IF

This code for the Clicked event turns the overlay picture on or off each time the
user clicks an item:

treeviewitem tvi
This.GetItem(handle, tvi)
IF tvi.OverlayPictureIndex = 0 THEN

tvi.OverlayPictureIndex = 1
ELSE

tvi.OverlayPictureIndex = 0
END IF
This.SetItem(handle, tvi)

Using DataWindow information to populate a TreeView

124 PowerBuilder

Using DataWindow information to populate a TreeView
A useful implementation of the TreeView control is to populate it with
information that you retrieve from a DataWindow. To do this your application
must:

• Declare and instantiate a DataStore and assign a DataWindow object

• Retrieve information as needed

• Use the retrieved information to populate the TreeView

• Destroy the DataStore instance when you have finished

Because a TreeView can display different types of information at different
levels, you will probably define additional DataWindows, one for each level.
Those DataWindows usually refer to different but related tables. When an item
is expanded, the item becomes a retrieval argument for getting child items.

Populating the first
level

This example populates a TreeView with a list of composers. The second level
of the TreeView displays music by each composer. In the database there are
two tables: composer names and music titles (with composer name as a foreign
key).

This example declares two DataStore instance variables for the window
containing the TreeView control:

datastore ids_data, ids_info

This example uses the TreeView control’s Constructor event to:

• Instantiate the DataStore

• Associate it with a DataWindow and retrieve information

• Use the retrieved data to populate the root level of the TreeView:

//Constructor event for tv_1
treeviewitem tvi1, tvi2
long ll_lev1, ll_lev2, ll_rowcount, ll_row

//Create instance variable datastore
ids_data = CREATE datastore
ids_data.DataObject = "d_composers"
ids_data.SetTransObject(SQLCA)
ll_rowcount = ids_data.Retrieve()

//Create the first level of the TreeView
tvi1.PictureIndex = 1
tvi1.Children = TRUE

CHAPTER 8 Using TreeView Controls

Application Techniques 125

//Populate the TreeView with
//data retrieved from the datastore
FOR ll_row = 1 to ll_rowcount

tvi1.Label = ids_data.GetItemString(ll_row, &
'name')
This.InsertItemLast(0, tvi1)

NEXT

Populating the second
level

When the user expands a root level item, the ItemPopulate event occurs. This
script for the event:

• Instantiates a second DataStore

Its DataWindow uses the composer name as a retrieval argument for the
music titles table.

• Inserts music titles as child items for the selected composer

The handle argument of ItemPopulate will be the parent of the new items:

//ItemPopulate event for tv_1
TreeViewItem tvi1, tvi2
long ll_row, ll_rowcount

//Create instance variable datastore
ids_info = CREATE datastore
ids_info.DataObject = "d_music"
ids_info.SetTransObject(SQLCA)

//Use the label of the item being populated
// as the retrieval argument
This.GetItem(handle, tvi1)
ll_rowcount = ids_info.Retrieve(tvi1.Label)

//Use information retrieved from the database
//to populate the expanded item
FOR ll_row = 1 to ll_rowcount

This.InsertItemLast(handle, &
ids_info.GetItemString(ll_row, &
music_title'), 2)

NEXT

Destroying DataStore
instances

When the window containing the TreeView control closes, this example
destroys the DataStore instances:

//Close event for w_treeview
DESTROY ids_data
DESTROY ids_info

Using DataWindow information to populate a TreeView

126 PowerBuilder

Application Techniques 127

C H A P T E R 9 Using Lists in a Window

About this chapter This chapter describes how to use lists to present information in an
application.

Contents

About presenting lists
You can choose a variety of ways to present lists in your application:

• ListBoxes and PictureListBoxes display available choices that can be
used for invoking an action or viewing and displaying data.

• DropDownListBoxes and DropDownPictureListBoxes also display
available choices to the user. However, you can make them editable
to the user. DropDownListBoxes are text-only lists;
DropDownPictureListBoxes display a picture associated with each
item.

• ListView controls present lists in a combination of graphics and text.
You can allow the user to add, delete, edit, and rearrange ListView
items, or you can use them to invoke an action.

Topic Page

About presenting lists 127

Using lists 128

Using drop-down lists 133

Using ListView controls 135

Using lists

128 PowerBuilder

TreeView controls
TreeView controls also combine graphics and text in lists. The difference is that
TreeView controls show the hierarchical relationship among the TreeView
items. As with ListView controls, you can allow the user to add, delete, edit,
and rearrange TreeView items. You can also use them to invoke actions.

For more information on TreeViews, see Chapter 8, Using TreeView Controls.

Using lists
You can use lists to present information to the user in simple lists with scroll
bars. You can present this information with text and pictures (in a
PictureListBox) or with text alone (using a ListBox).

Depending on how you design your application, the user can select one or more
list items to perform an action based on the list selection.

You add ListBox and PictureListBox controls to windows in the same way you
add other controls: select ListBox or PictureListBox from the Insert>Control
menu and click the window.

Adding items to list
controls

In the painter Use the Item property page for the control to add new items.

 To add items to a ListBox or PictureListBox:

1 Select the Items tab in the Properties view for the control.

2 Enter the name of the items for the ListBox. For a PictureListBox, also
enter a picture index number to associate the item with a picture.

For instructions on adding pictures to a PictureListBox, see Adding
pictures to PictureListBox controls on page 129.

In a script Use the AddItem and InsertItem functions to dynamically add
items to a ListBox or PictureListBox at runtime. AddItem adds items to the end
of the list. However, if the list is sorted, the item will then be moved to its
position in the sort order. Use InsertItem if you want to specify where in the list
the item will be inserted.

CHAPTER 9 Using Lists in a Window

Application Techniques 129

Table 9-1: Using the InsertItem and AddItem functions

For example, this script adds items to a ListBox:

This.AddItem ("Vaporware")
This.InsertItem ("Software",2)
This.InsertItem ("Hardware",2)
This.InsertItem ("Paperware",2)

This script adds items and images to a PictureListBox:

This.AddItem ("Monitor",2)
This.AddItem ("Modem", 3)
This.AddItem ("Printer",4)
This.InsertItem ("Scanner",5,1)

Using the Sort property

You can set the control’s sort property to TRUE or check the Sorted check box
on the General property page to ensure that the items in the list are always
arranged in ascending alphabetical order.

Adding pictures to
PictureListBox
controls

In the painter Use the Pictures and Items property pages for the control to
add pictures.

 To add pictures to a PictureListBox:

1 Select the Pictures tab in the Properties view for the control.

2 Select an image from the stock image list, or use the Browse button to
select a bitmap, cursor, or icon image.

3 Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask will appear transparent in the
PictureListBox.

4 Select a picture height and width.

This will control the size of the images in the PictureListBox.

Function You supply

InsertItem Item name

Position in which the item will be inserted

Picture index (for a PictureListBox)

AddItem Item name

Picture index (for a PictureListBox)

Using lists

130 PowerBuilder

Dynamically changing image size

You can use a script to change the image size at runtime by setting the
PictureHeight and PictureWidth properties before you add any pictures
when you create a PictureListBox.

For more information about PictureHeight and PictureWidth, see the
PowerScript Reference.

5 Repeat the procedure for the number of images you plan to use in your
PictureListBox.

6 Select the Items tab and change the Picture Index for each item to the
appropriate number.

In a script Use the AddPicture function to dynamically add pictures to a
PictureListBox at runtime. For example, the script below sets the size of the
picture, adds a BMP file to the PictureListBox, and adds an item to the control:

This.PictureHeight = 75
This.PictureWidth = 75
This.AddPicture ("c:\ArtGal\bmps\butterfly.bmp")
This.AddItem("Aine Minogue",8)

Deleting pictures from
picture list controls

Use the DeletePicture and DeletePictures functions to delete pictures from
either a PictureListBox or a DropDownPictureListBox.

When you use the DeletePicture function, you must supply the picture index of
the picture you want to delete.

For example:

This.DeletePicture (1)

deletes the first Picture from the control, and

This.DeletePictures ()

deletes all the pictures in a control.

CHAPTER 9 Using Lists in a Window

Application Techniques 131

Example The following window contains a ListBox control and a
PictureListBox. The ListBox control contains four items, and the
PictureListBox has one:

When the user double-clicks an item in the ListBox, a script executes to:

• Delete all the items in the PictureListBox

• Add new items to the PictureListBox that are related to the ListBox item
that was double-clicked

This is the script used in the ListBox DoubleClicked event:

int li_count
//Find out the number of items
//in the PictureListBox
li_count = plb_1.totalItems()

// Find out which item was double-clicked
// Then:
// * Delete all the items in the PictureListBox
// * Add the items associated with the
// double-clicked item

Using lists

132 PowerBuilder

CHOOSE CASE index
CASE 1

DO WHILE plb_1.totalitems() > 0
plb_1.DeleteItem(plb_1.totalitems())
LOOP
plb_1.AddItem("Monitor",2)
plb_1.AddItem("Modem",3)
plb_1.AddItem("Printer",4)
plb_1.InsertItem("Scanner",5,1)

CASE 2
DO WHILE plb_1.totalitems() > 0
plb_1.DeleteItem(plb_1.totalitems())
LOOP
plb_1.InsertItem("GreenBar",6,1)
plb_1.InsertItem("LetterHead",7,1)
plb_1.InsertItem("Copy",8,1)
plb_1.InsertItem("50 lb.",9,1)

CASE 3
DO WHILE plb_1.totalitems() > 0
plb_1.DeleteItem(plb_1.totalitems())
LOOP
plb_1.InsertItem("SpreadIt!",10,1)
plb_1.InsertItem("WriteOn!",11,1)
plb_1.InsertItem("WebMaker!",12,1)
plb_1.InsertItem("Chessaholic",13,1)

CASE 4
DO WHILE plb_1.totalitems() > 0
plb_1.DeleteItem(plb_1.totalitems())
LOOP
plb_1.InsertItem("AlnaWarehouse",14,1)
plb_1.InsertItem("AlnaInfo",15,1)
plb_1.InsertItem("Info9000",16,1)
plb_1.InsertItem("AlnaThink",17,1)

END CHOOSE

CHAPTER 9 Using Lists in a Window

Application Techniques 133

Using drop-down lists
Drop-down lists are another way to present simple lists of information to the
user. You can present your lists with just text (in a DropDownListBox) or with
text and pictures (in a DropDownPictureListBox). You add DropDownListBox
and DropDownPictureListBox controls to windows in the same way you add
other controls: select DropDownListBox or DropDownPictureListBox from
the Insert>Control menu and click the window.

Adding items to drop-
down list controls

In the painter Use the Items property page for the control to add items.

 To add items to a DropDownListBox or DropDownPictureListBox:

1 Select the Items tab in the Properties view for the control.

2 Enter the name of the items for the ListBox. For a PictureListBox, also
enter a picture index number to associate the item with a picture.

For how to add pictures to a DropDownPictureListBox, see Adding
pictures to DropDownPicture ListBox controls on page 134.

In a script Use the AddItem and InsertItem functions to dynamically add
items to a DropDownListBox or DropDownPictureListBox at runtime.

AddItem adds items to the end of the list. However, if the list is sorted, the item
will then be moved to its position in the sort order. Use InsertItem if you want
to specify where in the list the item will be inserted.

Table 9-2: Using the InsertItem and AddItem functions

This example inserts three items into a DropDownPictureListBox in the first,
second, and third positions:

This.InsertItem ("Atropos", 2, 1)
This.InsertItem ("Clotho", 2, 2)
This.InsertItem ("Lachesis", 2, 3)

This example adds two items to a DropDownPictureListBox:

this.AddItem ("Plasma", 2)
this.AddItem ("Platelet", 2)

Function You supply

InsertItem Item name
Picture index (for a DropDownPictureListBox)
Position in which the item will be inserted

AddItem Item name
Picture index (for a DropDownPictureListBox)

Using drop-down lists

134 PowerBuilder

Using the Sort property

You can set the control’s sort property to TRUE to ensure that the items in the
list are always arranged in ascending sort order.

Adding pictures to
DropDownPicture
ListBox controls

In the painter Use the Pictures and Items property pages for the control to
add pictures.

 To add pictures to a DropDownPictureListBox:

1 Select the Pictures tab in the Properties view for the control.

2 Select an image from the stock image list, or use the Browse button to
select a bitmap, cursor, or icon image.

3 Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask will appear transparent in the
DropDownPictureListBox.

4 Select a picture height and width for your image.

This will control the size of the image in the DropDownPictureListBox.

Dynamically changing image size

The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties before you add any pictures when you create a
DropDownPictureListBox. For more information about PictureHeight and
PictureWidth, see the PowerScript Reference.

5 Repeat the procedure for the number of images you plan to use in your
DropDownPictureListBox.

6 Select the Items tab and change the Picture Index for each item to the
appropriate number.

In a script Use the AddPicture function to dynamically add pictures to a
PictureListBox at runtime. For instance, this example adds two BMP files to
the PictureListBox:

This.AddPicture ("c:\images\justify.bmp")
This.AddPicture ("c:\images\center.bmp")

Deleting pictures from
DropDownPicture
ListBox controls

For instructions on deleting pictures from DropDownPictureListBox controls,
see Deleting pictures from picture list controls on page 130.

CHAPTER 9 Using Lists in a Window

Application Techniques 135

Using ListView controls
A ListView control allows you to display items and icons in a variety of
arrangements. You can display large icon or small icon freeform lists, or you
can display a vertical static list. You can also display additional information
about each list item by associating additional columns with each list item:

ListView controls consist of ListView items, which are stored in an array. Each
ListView item consists of a:

• Label The name of the ListView item

• Index The position of the ListView item in the control

• Picture index The number that associates the ListView item with an
image

Depending on the style of the presentation, an item could be associated
with a large picture index and a small picture index.

• Overlay picture index The number that associates the ListView item
with an overlay picture

• State picture index The number that associates the ListView item with
a state picture

For more information about ListView items, picture indexes, and presentation
style, see the PowerBuilder Users Guide.

Creating ListView
controls

You add ListView controls to windows in the same way you add other controls:
select ListView from the Insert>Control menu and click the window.

Adding ListView items In the painter Use the Items property page for the control to add items.

 To add items to a ListView:

1 Select the Items tab in the Properties view for the control.

Using ListView controls

136 PowerBuilder

2 Enter a name and a picture index number for each of the items you want
to add to the ListView.

Clearing all entries on the Items tab page

Setting the picture index for the first item to zero clears all the settings on
the tab page.

For more information about adding pictures to a ListView control, see
Adding pictures to ListView controls on page 136.

In a script Use the AddItem and InsertItem functions to add items to a
ListView dynamically at runtime. There are two levels of information you
supply when you add items to a ListView using AddItem or InsertItem.

You can add an item by supplying the picture index and label, as this example
shows:

lv_1.AddItem ("Item 1", 1)

or you can insert an item by supplying the item’s position in the ListView, label,
and picture index:

lv_1.InsertItem (1,"Item 2", 2)

You can add items by supplying the ListView item itself. This example in the
ListView’s DragDrop event inserts the dragged object into the ListView:

listviewitem lvi
This.GetItem(index, lvi)
lvi.label = "Test"
lvi.pictureindex = 1
This.AddItem (lvi)

You can insert an item by supplying the ListView position and ListView item:

listviewitem l_lvi
//Obtain the information for the
//second listviewitem
lv_list.GetItem(2, l_lvi)
//Change the item label to Entropy
//Insert the second item into the fifth position
lv_list.InsertItem (5, l_lvi)
lv_list.DeleteItem(2)

Adding pictures to
ListView controls

PowerBuilder stores ListView images in four image lists:

• Small picture index

• Large picture index

CHAPTER 9 Using Lists in a Window

Application Techniques 137

• State picture index

• Overlay picture index

You can associate a ListView item with these images when you create a
ListView in the painter or use the AddItem and InsertItem at runtime.

However, before you can associate pictures with ListView items, they must be
added to the ListView control.

In the painter Use the Pictures and Items property pages for the control to
add pictures.

 To add pictures to a ListView control:

1 Select the Large Picture, Small Picture, or State tab in the Properties view
for the control.

Overlay images

You can add overlay images only to a ListView control in a script.

2 Select an image from the stock image list, or use the Browse button to
select a bitmap, cursor, or icon image.

3 Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask appears transparent in the
ListView.

4 Select a picture height and width for your image.

This controls the size of the image in the ListView.

Dynamically changing image size

The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties before you add any pictures when you create a
ListView. For more information about PictureHeight and PictureWidth,
see the PowerScript Reference.

5 Repeat the procedure for the:

• Number of image types (large, small, and state) you plan to use in
your ListView

• Number of images for each type you plan to use in your ListView

In a script Use the functions in Table 9-3 to add pictures to a ListView
image.

Using ListView controls

138 PowerBuilder

Table 9-3: Functions that add pictures to a ListView image

Adding large and small pictures This example sets the height and width for
large and small pictures and adds three images to the large picture image list
and the small picture image list:

//Set large picture height and width
lv_1.LargePictureHeight=32
lv_1.LargePictureWidth=32

//Add large pictures
lv_1.AddLargePicture("c:\ArtGal\bmps\celtic.bmp")
lv_1.AddLargePicture("c:\ArtGal\bmps\list.ico")
lv_1.AddLargePicture("Custom044!")

//Set small picture height and width
lv_1.SmallPictureHeight=16
lv_1.SmallPictureWidth=16

//Add small pictures
lv_1.AddSmallPicture("c:\ArtGal\bmps\celtic.bmp")
lv_1.AddSmallPicture("c:\ArtGal\bmps\list.ico")
lv_1.AddSmallPicture("Custom044!")

//Add items to the ListView
lv_1.AddItem("Item 1", 1)
lv_1.AddItem("Item 2", 1)
lv_1.AddItem("Item 3", 1)

Adding overlay pictures Use the SetOverLayPicture function to use a large
picture or small picture as an overlay for an item. This example adds a large
picture to a ListView, and then uses it for an overlay picture for a ListView
item:

listviewitem lvi_1
int li_index

//Add a large picture to a ListView
li_index = lv_list.AddLargePicture &

("c:\ArtGal\bmps\dil2.ico")

//Set the overlay picture to the

Function Adds a picture to this list

AddLargePicture Large image

AddSmallPicture Small image

AddStatePicture State image

CHAPTER 9 Using Lists in a Window

Application Techniques 139

//large picture just added
lv_list.SetOverlayPicture (3, li_index)

//Use the overlay picture with a ListViewItem
lv_list.GetItem(lv_list.SelectedIndex (), lvi_1)
lvi_1.OverlayPictureIndex = 3
lv_list.SetItem(lv_list.SelectedIndex (), lvi_1)

Adding state pictures This example uses an item’s state picture index
property to set the state picture for the selected ListView item:

listviewitem lvi_1

lv_list.GetItem(lv_list.SelectedIndex (), lvi_1)
lvi_1.StatePictureIndex = 2
lv_list.SetItem(lv_list.SelectedIndex (), lvi_1)

Deleting ListView
items and pictures

You can delete items from a ListView one at a time with the DeleteItem
function, or you can use the DeleteItems function to purge all the items in a
ListView. Similarly, you can delete pictures one at a time with the
DeleteLargePicture, DeleteSmallPicture, and DeleteStatePicture functions, or
purge all pictures of a specific type by using the DeleteLargePictures,
DeleteSmallPictures, and DeleteStatePictures functions.

This example deletes one item and all the small pictures from a ListView:

int li_index
li_index = This.SelectedIndex()
This.DeleteItem (li_index)
This.DeleteSmallPictures ()

Hot tracking and one-
or two-click activation

Hot tracking changes the appearance of items in the Listview control as the
mouse moves over them and, if the mouse pauses, selects the item under the
cursor automatically. You can enable hot tracking by setting the TrackSelect
property to TRUE.

Setting either OneClickActivate or TwoClickActivate to TRUE also enables
hot tracking. When OneClickActivate is TRUE, you can specify that either
selected or unselected items are underlined by setting the UnderlineHot or
UnderlineCold properties. All these properties can be set on the control’s
general properties page or in a script.

The settings for OneClickActivate and TwoClickActivate shown in Table 9-4
affect when the ItemActivate event is fired.

Using ListView controls

140 PowerBuilder

Table 9-4: OneClickActivate and TwoClickActivate settings

Using custom events In PowerBuilder 7 and later releases, PowerBuilder uses Microsoft controls for
ListView and Treeview controls, and the events that fire when the right mouse
button is clicked are different than in earlier releases. These are the events that
fire when the right mouse button is clicked in a ListView control:

Table 9-5: ListView control events fired by right mouse button

Using report view
ListView report view requires more information than the large icon, small icon,
and list view. To enable report view in a ListView control, you must write a
script that establishes columns with the AddColumn and SetColumn functions,
and then populate the columns using the SetItem function.

Populating columns Use AddColumn to create columns in a ListView. When you use the AddColumn
function, you specify the:

• Column label The name that will display in the column header

• Column alignment Whether the text will be left-aligned, right-aligned,
or centered

• Column size The width of the column in PowerBuilder units

This example creates three columns in a ListView:

This.AddColumn("Name", Left!, 1000)

OneClickActivate TwoClickActivate ItemActivate is fired when you

TRUE TRUE or FALSE Click any item

FALSE TRUE Click a selected item

FALSE FALSE Double-click any item

Location Action Events fired

On an item in
the ListView

Press right mouse
button

pbm_rbuttondown

Release right
mouse button

pbm_lvnrclicked (stock RightClicked! event)

pbm_contextmenu

On white space
in the ListView

Press right mouse
button

pbm_rbuttondown

pbm_lvnrclicked (stock RightClicked! event)

pbm_contextmenu

Release right
mouse button

pbm_rbuttonup

pbm_contextmenu

CHAPTER 9 Using Lists in a Window

Application Techniques 141

This.AddColumn("Size", Left!, 400)
This.AddColumn("Date", Left!, 300)

Setting columns Use SetColumn to set the column number, name, alignment, and size:

This.SetColumn (1, "Composition", Left!, 860)
This.SetColumn (2, "Album", Left!, 610)
This.SetColumn (3, "Artist", Left!, 710)

Setting column items Use SetItem to populate the columns of a ListView:

This.SetItem (1, 1, "St.Thomas")
This.SetItem (1, 2, "Saxophone Colossus")
This.SetItem (1, 3, "Sonny Rollins")
This.SetItem (2, 1, "So What")
This.SetItem (2, 2, "Kind of Blue")
This.SetItem (2, 3, "Miles Davis")
This.SetItem (3, 1, "Good-bye, Porkpie Hat")
This.SetItem (3, 2, "Mingus-ah-um")
This.SetItem (3, 3, "Charles Mingus")

For more information about adding columns to a ListView control, see the
PowerScript Reference.

Using ListView controls

142 PowerBuilder

Application Techniques 143

C H A P T E R 1 0 Using Drag and Drop in a
Window

About this chapter This chapter describes how to make applications graphical by dragging
and dropping controls.

Contents

About drag and drop
Drag and drop allows users to initiate activities by dragging a control and
dropping it on another control. It provides a simple way to make
applications graphical and easy to use. For example, in a manufacturing
application you might allow the user to pick parts from a bin for an
assembly by dragging a picture of the part and dropping it in the picture
of the finished assembly.

Drag and drop involves at least two controls: the control that is being
dragged (the drag control) and the control to which it is being dragged
(the target). In PowerBuilder, all controls except drawing objects (lines,
ovals, rectangles, and rounded rectangles) can be dragged.

Automatic drag mode When a control is being dragged, it is in drag mode. You can define a
control so that PowerBuilder puts it automatically in drag mode whenever
a Clicked event occurs in the control, or you can write a script to put a
control into drag mode when an event occurs in the window or the
application.

Topic Page

About drag and drop 143

Drag-and-drop properties, events, and functions 144

Identifying the dragged control 146

Drag-and-drop properties, events, and functions

144 PowerBuilder

Drag icons When you define the style for a draggable object in the Window painter, you
can specify a drag icon for the control. The drag icon displays when the control
is dragged over a valid drop area (an area in which the control can be dropped).
If you do not specify a drag icon, a rectangle the size of the control displays.

Drag events Window objects and all controls except drawing objects have events that occur
when they are the drag target. When a dragged control is within the target or
dropped on the target, these events can trigger scripts. The scripts determine the
activity that is performed when the drag control enters, is within, leaves, or is
dropped on the target.

Drag-and-drop properties, events, and functions
Drag-and-drop
properties

Each PowerBuilder control has two drag-and-drop properties:

• DragAuto

• DragIcon

The DragAuto property DragAuto is a boolean property.

Table 10-1: DragAuto property values

 To specify automatic drag mode for a control in the Window painter:

1 Select the Other property page in the Properties view for the control.

2 Check the Drag Auto check box.

The DragIcon property Use the DragIcon property to specify the icon you
want displayed when the control is in drag mode. The DragIcon property is a
stock icon or a string identifying the file that contains the icon (the ICO file).
The default icon is a box the size of the control.

When the user drags a control, the icon displays when the control is over an
area in which the user can drop it (a valid drop area). When the control is over
an area that is not a valid drop area (such as a window scroll bar), the No-Drop
icon displays.

Value Meaning

TRUE When the object is clicked, the control is placed automatically in drag
mode

FALSE When the object is clicked, the control is not placed automatically in
drag mode; you have to put the object in drag mode manually by using
the Drag function in a script

CHAPTER 10 Using Drag and Drop in a Window

Application Techniques 145

 To specify a drag icon:

1 Select the Other property page in the Properties view for the control.

2 Choose the icon you want to use from the list of stock icons or use the
Browse button to select an ICO file and click OK.

Creating icons
To create icons, use a drawing application that can save files in the Microsoft
Windows ICO format.

Drag-and-drop events There are six drag-and-drop events.

Table 10-2: Drag-and-drop events

Drag-and-drop
functions

Each PowerBuilder control has two functions you can use to write scripts for
drag-and-drop events.

Table 10-3: Drag-and-drop event functions

For more information about these events and functions, see the PowerScript
Reference.

Event Occurs

BeginDrag When the user presses the left mouse button in a ListView or
TreeView control and begins dragging

BeginRightDrag When the user presses the right mouse button in a ListView or
TreeView control and begins dragging

DragDrop When the hot spot of a drag icon (usually its center) is over a
target (a PowerBuilder control or window to which you drag a
control) and the mouse button is released

DragEnter When the hot spot of a drag icon enters the boundaries of a
target

DragLeave When the hot spot of a drag icon leaves the boundaries of a
target

DragWithin When the hot spot of a drag icon moves within the boundaries
of a target

Function Action

Drag Starts or ends the dragging of a control

DraggedObject Returns the control being dragged

Identifying the dragged control

146 PowerBuilder

Identifying the dragged control
To identify the type of control that was dropped, use the source argument of the
DragDrop event.

This script for the DragDrop event in a picture declares two variables, then
determines the type of object that was dropped:

CommandButton lcb_button
StaticText lst_info

IF source.TypeOf() = CommandButton! THEN
lcb_button = source
lcb_button.Text = "You dropped a Button!"

ELSEIF source.TypeOf() = StaticText! THEN
lst_info = source
lst_info.Text = "You dropped the text!"

END IF

Using CHOOSE CASE
If your window has a large number of controls that can be dropped, use a
CHOOSE CASE statement.

Application Techniques 147

C H A P T E R 1 1 Providing Online Help for an
Application

About this chapter This chapter describes how to provide online help for other PowerBuilder
developers and for end users on Windows.

Contents

Creating help files
About help authoring tools There are many authoring tools and related products available for creating

online help files on Windows. All of the authoring tools for Microsoft
HTML Help files use the Microsoft HTML Help compiler (hhc.exe) to
generate a finished help file.

What to include The source files for any help system typically include:

• Topic files (HTML) contain the text of your help system as well as
footnote codes and commands that serve to identify the topics and
provide navigation and other features.

• Graphics files contain images associated with specific topics.

• Project file (HHP) defines a single help collection and contains
instructions for the compiler.

• Contents file (HHC) provides the entries that populate the Contents
tab of the help window.

• Index file (HHK) provides index keywords that the author provides,
similar to a traditional book index, that link to specific topics.

For each project, the compiler generates a single CHM file that can be
opened in an HTML Help window.

Topic Page

Creating help files 147

Providing online help for developers 150

Providing online help for users 151

Creating help files

148 PowerBuilder

How to proceed If you are using a full-featured Help authoring tool, follow its instructions for
creating the necessary source files and compiling them. The HTML Help
Workshop, available from Microsoft with the HTML Help compiler, also has
help describing how to author help and how to implement it in a Windows
application.

Sample project file For your convenience, the text of a sample project file is provided here. (It is
also in one of the topics of the PBUSR170.CHM file that is installed with
PowerBuilder.)

CHAPTER 11 Providing Online Help for an Application

Application Techniques 149

;***
; Sample HTML Help project file
; Use a semicolon (;) to start a comment
; Replace filenames and other options with values
; for your project.
;***

[OPTIONS]
Binary TOC=No
Binary Index=Yes
Compiled File=project.chm
Contents File=project.hhc
Index File=project.hhk
Default Window=main
Default Topic=doc/html/welcome.html
Default Font=
Flat=No
Full-text search=Yes
Auto Index=Yes
Language=
Title=Our Application Help
Create CHI file=No
Compatibility=1.1 or later
Error log file=project.log
Full text search stop list file=
Display compile progress=Yes
Display compile notes=Yes

[WINDOWS]
main="Our Application Help","project.hhc","project.hhk",
"doc/html/welcome.html","doc/html/welcome.html",,,,,
0x23520,222,0x1846,[10,10,640,450],0xB0000,,,,,,0

[FILES]
doc/html/pbusr.html
doc/styles/main.css
doc/images/logo.png

To use the sample project file:

1 Copy the help project code to the Windows clipboard.

2 Open a text editor (like Notepad, not a word processor like Word or
Wordpad) and paste the clipboard text into a blank document.

Providing online help for developers

150 PowerBuilder

Alternatively, open the project file in your favorite HTML Help authoring
tool.

3 Save the document in text format as PBUSR170.HHP.

Edit your project file to specify the details of your help development
environment, such as source file names and directory path names. For details,
see the instructions in the HTML Help Workshop or your help authoring tool.

Providing online help for developers
You can provide your own online help for your user-defined functions, user
events, and user objects into the PowerBuilder development environment.

How context-sensitive
help for user-defined
functions works

When you select the name of a function or place the cursor in the function name
in the Script view and press Shift + F1:

1 PowerBuilder looks for the standard prefix (the default is uf_) in the
function name.

2 If the standard prefix is found, PowerBuilder looks for the help topic in the
help file containing your user-defined function help topics (instead of
looking in PBUSR170.CHM, its own main help file). The default file name
for help on user-defined functions is PBUSR170.CHM.

PowerBuilder determines the name of the help file to look in by reading
the UserHelpFile variable in PB.INI. For information on changing the
value of this variable, see Advanced procedures on page 151.

3 If PowerBuilder finds the variable, it looks in the specified help file for the
name of the selected function. If there is no UserHelpFile variable in
PB.INI, PowerBuilder looks for the keyword in the PBUSR170.CHM file
in the PowerBuilder Help directory.

Simplest approach If you work within the PowerBuilder defaults:

• Compile all of your online help for your user-defined functions, user
events, and user objects into a single file named PBUSR170.CHM

• Prefix the name of each user-defined function you create with uf_ (for
example, uf_calculate)

Basic procedures Here are details on how to build online help into the PowerBuilder
environment.

CHAPTER 11 Providing Online Help for an Application

Application Techniques 151

 To create context-sensitive help for user-defined functions:

1 When you create a user-defined function, give the name of the function a
standard prefix. The default prefix is uf_ (for example, uf_calculate).

2 For each user-defined function help topic, assign a search keyword (a K
footnote entry) identical to the function name.

For example, in the help topic for the user-defined function uf_CutBait,
create a keyword footnote uf_CutBait. PowerBuilder uses the keyword to
locate the correct topic to display in the help window.

3 Compile the help file and save it in the PowerBuilder Help directory.

Advanced procedures You can specify a different file name for context-sensitive help:

 To specify a different file name for context-sensitive help:

1 Open your PB.INI file in a text editor.

2 In the [PB] section, add a UserHelpFile variable, specifying the name of
the help file that contains your context-sensitive topics. Your help file must
be in the PowerBuilder Help directory. The format of the variable is:

UserHelpFile = helpfile.chm

Specify only the file name. A full path name designation will not be
recognized.

You can change the prefix of your user-defined functions:

 To use a different prefix for user-defined functions:

1 Open your PB.INI file in a text editor.

2 In the [PB] section, add a UserHelpPrefix variable, specifying the value of
your prefix. Use this format:

UserHelpPrefix = yourprefix_

The prefix must end with an underscore character.

Providing online help for users
Two ways to call help
from an application

PowerBuilder provides two principal ways of calling an online help file from
a PowerBuilder application:

Providing online help for users

152 PowerBuilder

• Use the ShowHelp and ShowPopupHelp PowerScript functions in your
application scripts to call help topics.

• Declare the HTML Help API as an external function and use the
HTMLHelp function in your application scripts to call help topics.

Using ShowHelp ShowHelp is simpler to implement than the HTML Help API. You can use the
ShowHelp PowerScript function to search for help topics by help context ID,
by keyword, and by accessing the help file Contents topic (the topic defined in
the project file as the Help Contents topic). ShowHelp can also be used with
compiled WinHelp (.hlp) files.

ShowPopupHelp displays pop-up help for a control. Typically, you use
ShowPopupHelp in the Help event of a response window with the Context Help
property enabled. Events relating to movement of the cursor over a control or
to the dragging of a control or object are also logical places for a
ShowPopupHelp call.

For more information on the ShowHelp and ShowPopupHelp functions as well
as the Help event, see the PowerScript Reference.

Using the HTML Help
API

Declaring and using the HTML Help API allows access to the full range of
HTMLHelp functions, many of which are not available in ShowHelp. For
example, using the HTMLHelp function, you can easily specify a window type
or window name in which to present a help topic.

 To declare the HTML Help API as an external function:

1 Select Declare>Global External Functions from the menu bar of any
painter that accesses the Script view.

2 Enter the function declaration in the text box and click OK.

This example declares the HTML Help API:

FUNCTION long HtmlHelpW(long hWndMain, &
 string lpszHelp, long uCommand, &
 long dwData) &

LIBRARY "hhctrl.ocx"

For more information about the HTML Help API, see the online help for the
Microsoft Help Workshop or the documentation for your help authoring tool.
For more information about declaring and using global external functions, see
the PowerScript Reference and Using external functions on page 385.

P A R T 4 Data Access Techniques

This part presents a collection of techniques you can use
to implement data access features in the applications you
develop with PowerBuilder. It includes using Transaction
objects, XML processing, graphs, rich text, and piping of
data between data sources. The use of DataWindow
objects and DataStores for data access is described in the
DataWindow Programmers Guide.

Application Techniques 155

C H A P T E R 1 2 Using Transaction Objects

About this chapter This chapter describes Transaction objects and how to use them in
PowerBuilder applications.

Contents

About Transaction objects
In a PowerBuilder database connection, a Transaction object is a special
nonvisual object that functions as the communications area between a
PowerBuilder application and the database. The Transaction object
specifies the parameters that PowerBuilder uses to connect to a database.
You must establish the Transaction object before you can access the
database from your application, as shown in Figure 12-1:

Figure 12-1: Transaction object to access database

Communicating with the
database

In order for a PowerBuilder application to display and manipulate data,
the application must communicate with the database in which the data
resides.

 To communicate with the database from your PowerBuilder application:

1 Assign the appropriate values to the Transaction object.

Topic Page

About Transaction objects 155

Working with Transaction objects 160

Using Transaction objects to call stored procedures 170

Supported DBMS features when calling stored procedures 178

About Transaction objects

156 PowerBuilder

2 Connect to the database.

3 Assign the Transaction object to the DataWindow control.

4 Perform the database processing.

5 Disconnect from the database.

For information about setting the Transaction object for a DataWindow control
and using the DataWindow to retrieve and update data, see the DataWindow
Programmers Guide.

Default Transaction
object

When you start executing an application, PowerBuilder creates a global default
Transaction object named SQLCA (SQL Communications Area). You can use
this default Transaction object in your application or define additional
Transaction objects if your application has multiple database connections.

Transaction object
properties

Each Transaction object has 15 properties, of which:

• Ten are used to connect to the database.

• Five are used to receive status information from the database about the
success or failure of each database operation. (These error-checking
properties all begin with SQL.)

Description of Transaction object properties
Table 12-1 describes each Transaction object property. For each of the ten
connection properties, it also lists the equivalent field in the Database Profile
Setup dialog box that you complete to create a database profile in the
PowerBuilder development environment.

Transaction object properties for your PowerBuilder database interface
For the Transaction object properties that apply to your PowerBuilder database
interface, see Transaction object properties and supported PowerBuilder
database interfaces on page 158.

For information about the values you should supply for each connection
property, see the section for your PowerBuilder database interface in
Connecting to Your Database.

CHAPTER 12 Using Transaction Objects

Application Techniques 157

Table 12-1: Transaction object properties

Property Datatype Description
In a database
profile

DBMS String The DBMS identifier for your connection. For a complete list
of the identifiers for the supported database interfaces, see the
online Help.

DBMS

Database String The name of the database to which you are connecting. Database Name

UserID String The name or ID of the user who connects to the database. User ID

DBPass String The password used to connect to the database. Password

Lock String For those DBMSs that support the use of lock values and
isolation levels, the isolation level to use when you connect to
the database. For information about the lock values you can set
for your DBMS, see the description of the Lock DBParm
parameter in the online Help.

Isolation Level

LogID String The name or ID of the user who logs in to the database server. Login ID

LogPass String The password used to log in to the database server. Login Password

ServerName String The name of the server on which the database resides. Server Name

AutoCommit Boolean For those DBMSs that support it, specifies whether
PowerBuilder issues SQL statements outside or inside the
scope of a transaction. Values you can set are:

• True PowerBuilder issues SQL statements outside the
scope of a transaction; that is, the statements are not part of
a logical unit of work (LUW). If the SQL statement
succeeds, the DBMS updates the database immediately as if
a COMMIT statement had been issued.

• False (Default) PowerBuilder issues SQL statements
inside the scope of a transaction. PowerBuilder issues a
BEGIN TRANSACTION statement at the start of the
connection. In addition, PowerBuilder issues another
BEGIN TRANSACTION statement after each COMMIT or
ROLLBACK statement is issued.

For more information, see the AutoCommit description in the
online Help.

AutoCommit
Mode

DBParm String Contains DBMS-specific connection parameters that support
particular DBMS features. For a description of each DBParm
parameter that PowerBuilder supports, see the chapter on
setting additional connection parameters in Connecting to Your
Database.

DBPARM

SQLReturnData String Contains DBMS-specific information. For example, after you
connect to an Informix database and execute an embedded
SQL INSERT statement, SQLReturnData contains the serial
number of the inserted row.

—

About Transaction objects

158 PowerBuilder

Transaction object properties and supported PowerBuilder
database interfaces

The Transaction object properties required to connect to the database are
different for each PowerBuilder database interface. Except for
SQLReturnData, the properties that return status information about the success
or failure of a SQL statement apply to all PowerBuilder database interfaces.

Table 12-2 lists each supported PowerBuilder database interface and the
Transaction object properties you can use with that interface.

SQLCode Long The success or failure code of the most recent SQL operation.
For details, see Error handling after a SQL statement on page
169.

—

SQLNRows Long The number of rows affected by the most recent SQL
operation. The database vendor supplies this number, so the
meaning may be different for each DBMS.

—

SQLDBCode Long The database vendor’s error code. For details, see Error
handling after a SQL statement on page 169.

—

SQLErrText String The text of the database vendor’s error message corresponding
to the error code. For details, see Error handling after a SQL
statement on page 169.

—

Property Datatype Description
In a database
profile

CHAPTER 12 Using Transaction Objects

Application Techniques 159

Table 12-2: PowerBuilder database interfaces

Database interface Transaction object properties

Informix DBMS
UserID
DBPass
Database
ServerName
DBParm
Lock

AutoCommit
SQLReturnData
SQLCode
SQLNRows
SQLDBCode
SQLErrText

JDBC DBMS
LogID
LogPass
DBParm
Lock

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

Microsoft SQL Server DBMS
Database
ServerName
LogID
LogPass
DBParm
Lock

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

ODBC DBMS
UserID*

LogID#

LogPass#

DBParm
Lock

AutoCommit
SQLReturnData
SQLCode
SQLNRows
SQLDBCode
SQLErrText

OLE DB DBMS
LogID
LogPass
DBParm

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

Oracle DBMS
ServerName
LogID
LogPass
DBParm

SQLReturnData
SQLCode
SQLNRows
SQLDBCode
SQLErrText

SAP Sybase
DirectConnect

DBMS
Database
ServerName
LogID
LogPass
DBParm
Lock

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

Working with Transaction objects

160 PowerBuilder

* UserID is optional for ODBC. (Be careful specifying the UserID property; it overrides the
connection’s UserName property returned by the ODBC SQLGetInfo call.)

PowerBuilder uses the LogID and LogPass properties only if your ODBC driver does not
support the SQL driver CONNECT call.

Working with Transaction objects
PowerBuilder uses a basic concept of database transaction processing called
logical unit of work (LUW). LUW is synonymous with transaction. A
transaction is a set of one or more SQL statements that forms an LUW. Within
a transaction, all SQL statements must succeed or fail as one logical entity.

There are four PowerScript transaction management statements:

• COMMIT

• CONNECT

• DISCONNECT

• ROLLBACK

Transaction basics
CONNECT and
DISCONNECT

A successful CONNECT starts a transaction, and a DISCONNECT terminates
the transaction. All SQL statements that execute between the CONNECT and
the DISCONNECT occur within the transaction.

Before you issue a CONNECT statement, the Transaction object must exist and
you must assign values to all Transaction object properties required to connect
to your DBMS.

SAP Adaptive Server
Enterprise

DBMS
Database
ServerName
LogID
LogPass
DBParm
Lock

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

Database interface Transaction object properties

CHAPTER 12 Using Transaction Objects

Application Techniques 161

COMMIT and
ROLLBACK

When a COMMIT executes, all changes to the database since the start of the
current transaction (or since the last COMMIT or ROLLBACK) are made
permanent, and a new transaction is started. When a ROLLBACK executes, all
changes since the start of the current transaction are undone and a new
transaction is started.

When a transactional component is deployed to an application server, you can
use the TransactionServer context object to control transactions. See
Transaction server deployment on page 161.

AutoCommit setting You can issue a COMMIT or ROLLBACK only if the AutoCommit property of
the Transaction object is set to False (the default) and you have not already
started a transaction using embedded SQL.

For more about AutoCommit, see Description of Transaction object properties
on page 156.

Automatic COMMIT when disconnected

When a transaction is disconnected, PowerBuilder issues a COMMIT statement.

Transaction pooling To optimize database processing, you can code your PowerBuilder application
to take advantage of transaction pooling.

For information, see Pooling database transactions on page 170.

Transaction server
deployment

Components that you develop in PowerBuilder can participate in transactions
in application servers. You can mark components to indicate that they will
provide transaction support. When a component provides transaction support,
the transaction server ensures that the component’s database operations
execute as part of a transaction and that the database changes performed by the
participating components are all committed or rolled back. By defining
components to use transactions, you can ensure that all work performed by
components that participate in a transaction occurs as intended.

PowerBuilder provides a transaction service context object called
TransactionServer that gives you access to the transaction state primitives that
influence whether the transaction server commits or aborts the current
transaction. COM+ clients can also use the OleTxnObject object to control
transactions. If you use the TransactionServer context object and set the
UseContextObject DBParm parameter to Yes, COMMIT and ROLLBACK
statements called in the Transaction object will result in a database error.

Working with Transaction objects

162 PowerBuilder

By default, the TransactionServer context object is not used. Instead you can
use COMMIT and ROLLBACK statements to manage transactions. In this case,
COMMIT is interpreted as a SetComplete function and ROLLBACK is interpreted
as a SetAbort function.

The default Transaction object
SQLCA Since most applications communicate with only one database, PowerBuilder

provides a global default Transaction object called SQLCA (SQL
Communications Area).

PowerBuilder creates the Transaction object before the application’s Open
event script executes. You can use PowerScript dot notation to reference the
Transaction object in any script in your application.

You can create additional Transaction objects as you need them (such as when
you are using multiple database connections at the same time). But in most
cases, SQLCA is the only Transaction object you need.

Example This simple example uses the default Transaction object SQLCA to connect to
and disconnect from an ODBC data source named Sample:

// Set the default Transaction object properties.
SQLCA.DBMS="ODBC"
SQLCA.DBParm="ConnectString='DSN=Sample'"
// Connect to the database.
CONNECT USING SQLCA;
IF SQLCA.SQLCode < 0 THEN &

MessageBox("Connect Error", SQLCA.SQLErrText,&
Exclamation!)

...
// Disconnect from the database.
DISCONNECT USING SQLCA;
IF SQLCA.SQLCode < 0 THEN &

MessageBox("Disconnect Error", SQLCA.SQLErrText,&
Exclamation!)

Semicolons are SQL statement terminators

When you use embedded SQL in a PowerBuilder script, all SQL statements
must be terminated with a semicolon (;). You do not use a continuation
character for multiline SQL statements.

CHAPTER 12 Using Transaction Objects

Application Techniques 163

Assigning values to the Transaction object
Before you can use a default (SQLCA) or nondefault (user-defined)
Transaction object, you must assign values to the Transaction object
connection properties. To assign the values, use PowerScript dot notation.

Example The following PowerScript statements assign values to the properties of
SQLCA required to connect to an SAP Adaptive Server Enterprise database
through the PowerBuilder Adaptive Server Enterprise database interface:

sqlca.DBMS="SYC"
sqlca.database="testdb"
sqlca.LogId="CKent"
sqlca.LogPass="superman"
sqlca.ServerName="Dill"

Reading values from an external file
Using external files Often you want to set the Transaction object values from an external file. For

example, you might want to retrieve values from your PowerBuilder
initialization file when you are developing the application or from an
application-specific initialization file when you distribute the application.

ProfileString function You can use the PowerScript ProfileString function to retrieve values from a
text file that is structured into sections containing variable assignments, like a
Windows INI file. The PowerBuilder initialization file is such a file, consisting
of several sections including PB, Application, and Database:

[PB]
variables and their values
...
[Application]
variables and their values
...
[Database]
variables and their values
...

The ProfileString function has this syntax:

ProfileString (file, section, key, default)

Example This script reads values from an initialization file to set the Transaction object
to connect to a database. Conditional code sets the variable startupfile to the
appropriate value for each platform:

sqlca.DBMS = ProfileString(startupfile, "database",&

Working with Transaction objects

164 PowerBuilder

"dbms", "")
sqlca.database = ProfileString(startupfile,&

"database", "database", "")
sqlca.userid = ProfileString(startupfile, "database",&

"userid", "")
sqlca.dbpass = ProfileString(startupfile, "database",&

"dbpass", "")
sqlca.logid = ProfileString(startupfile, "database",&

"logid", "")
sqlca.logpass = ProfileString(startupfile, "database",&

"LogPassWord","")
sqlca.servername = ProfileString(startupfile,&

"database", "servername","")
sqlca.dbparm = ProfileString(startupfile, "database",&

"dbparm", "")

Connecting to the database
Once you establish the connection parameters by assigning values to the
Transaction object properties, you can connect to the database using the SQL
CONNECT statement:

// Transaction object values have been set.
CONNECT;

Because CONNECT is a SQL statement—not a PowerScript statement—you
need to terminate it with a semicolon.

If you are using a Transaction object other than SQLCA, you must include the
USING TransactionObject clause in the SQL syntax:

CONNECT USING TransactionObject;

For example:

CONNECT USING ASETrans;

Using the Preview tab to connect in a PowerBuilder application
The Preview tab page in the Database Profile Setup dialog box makes it easy
to generate accurate PowerScript connection syntax in the development
environment for use in your PowerBuilder application script.

CHAPTER 12 Using Transaction Objects

Application Techniques 165

As you complete the Database Profile Setup dialog box, the correct
PowerScript connection syntax for each selected option is generated on the
Preview tab. PowerBuilder assigns the corresponding DBParm parameter or
SQLCA property name to each option and inserts quotation marks, commas,
semicolons, and other characters where needed. You can copy the syntax you
want from the Preview tab directly into your script.

 To use the Preview tab to connect in a PowerBuilder application:

1 In the Database Profile Setup dialog box for your connection, supply
values for basic options (on the Connection tab) and additional DBParm
parameters and SQLCA properties (on the other tabbed pages) as required
by your database interface.

For information about connection parameters for your interface and the
values you should supply, click Help.

2 Click Apply to save your settings without closing the Database Profile
Setup dialog box.

3 Click the Preview tab.

The correct PowerScript connection syntax for each selected option
displays in the Database Connection Syntax box on the Preview tab.

4 Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PowerBuilder copies the selected text to the clipboard. You can then paste
this syntax into your script, modifying the default Transaction object name
(SQLCA) if necessary.

5 Click OK.

Disconnecting from the database
When your database processing is completed, you disconnect from the
database using the SQL DISCONNECT statement:

DISCONNECT;

If you are using a Transaction object other than SQLCA, you must include the
USING TransactionObject clause in the SQL syntax:

DISCONNECT USING TransactionObject;

For example:

Working with Transaction objects

166 PowerBuilder

DISCONNECT USING ASETrans;

Automatic COMMIT when disconnected

When a transaction is disconnected, PowerBuilder issues a COMMIT statement
by default.

Defining Transaction objects for multiple database connections
Use one Transaction
object per connection

To perform operations in multiple databases at the same time, you need to use
multiple Transaction objects, one for each database connection. You must
declare and create the additional Transaction objects before referencing them,
and you must destroy these Transaction objects when they are no longer
needed.

Caution

PowerBuilder creates and destroys SQLCA automatically. Do not attempt to
create or destroy it.

Creating the
nondefault
Transaction object

To create a Transaction object other than SQLCA, you first declare a variable
of type transaction:

transaction TransactionObjectName

You then instantiate the object:

TransactionObjectName = CREATE transaction

For example, to create a Transaction object named DBTrans, code:

transaction DBTrans
DBTrans = CREATE transaction
// You can now assign property values to DBTrans.
DBTrans.DBMS = "ODBC"
...

Assigning property
values

When you assign values to properties of a Transaction object that you declare
and create in a PowerBuilder script, you must assign the values one property at
a time, like this:

// This code produces correct results.
transaction ASETrans
ASETrans = CREATE TRANSACTION
ASETrans.DBMS = "SYC"
ASETrans.Database = "Personnel"

CHAPTER 12 Using Transaction Objects

Application Techniques 167

You cannot assign values by setting the nondefault Transaction object equal to
SQLCA, like this:

// This code produces incorrect results.
transaction ASETrans
ASETrans = CREATE TRANSACTION
ASETrans = SQLCA // ERROR!

Specifying the
Transaction object in
SQL statements

When a database statement requires a Transaction object, PowerBuilder
assumes the Transaction object is SQLCA unless you specify otherwise. These
CONNECT statements are equivalent:

CONNECT;
CONNECT USING SQLCA;

However, when you use a Transaction object other than SQLCA, you must
specify the Transaction object in the SQL statements in Table 12-3 with the
USING TransactionObject clause.

Table 12-3: SQL statements that require USING TransactionObject

 To specify a user-defined Transaction object in SQL statements:

• Add the following clause to the end of any of the SQL statements in the
preceding list:

USING TransactionObject

For example, this statement uses a Transaction object named ASETrans to
connect to the database:

CONNECT USING ASETrans;

Always code the Transaction object

Although specifying the USING TransactionObject clause in SQL statements is
optional when you use SQLCA and required when you define your own
Transaction object, it is good practice to code it for any Transaction object,
including SQLCA. This avoids confusion and ensures that you supply USING
TransactionObject when it is required.

COMMIT INSERT

CONNECT PREPARE (dynamic SQL)

DELETE ROLLBACK

DECLARE Cursor SELECT

DECLARE Procedure SELECTBLOB

DISCONNECT UPDATEBLOB

EXECUTE (dynamic SQL) UPDATE

Working with Transaction objects

168 PowerBuilder

Example The following statements use the default Transaction object (SQLCA) to
communicate with a SQL Anywhere database and a nondefault Transaction
object named ASETrans to communicate with an Adaptive Server Enterprise
database:

// Set the default Transaction object properties.
SQLCA.DBMS = "ODBC"
SQLCA.DBParm = "ConnectString='DSN=Sample'"
// Connect to the SQL Anywhere database.
CONNECT USING SQLCA;
// Declare the ASE Transaction object.
transaction ASETrans
// Create the ASE Transaction object.
ASETrans = CREATE TRANSACTION
// Set the ASE Transaction object properties.
ASETrans.DBMS = "SYC"
ASETrans.Database = "Personnel"
ASETrans.LogID = "JPL"
ASETrans.LogPass = "JPLPASS"
ASETrans.ServerName = "SERVER2"

// Connect to the ASE database.
CONNECT USING ASETrans;

// Insert a row into the SQL Anywhere database
INSERT INTO CUSTOMER
VALUES ('CUST789', 'BOSTON')
USING SQLCA;
// Insert a row into the ASE database.
INSERT INTO EMPLOYEE
VALUES ("Peter Smith", "New York")
USING ASETrans;

// Disconnect from the SQL Anywhere database
DISCONNECT USING SQLCA;
// Disconnect from the ASE database.
DISCONNECT USING ASETrans;
// Destroy the ASE Transaction object.
DESTROY ASETrans

Using error checking

An actual script would include error checking after the CONNECT, INSERT,
and DISCONNECT statements.

For details, see "Error handling after a SQL statement" next.

CHAPTER 12 Using Transaction Objects

Application Techniques 169

Error handling after a SQL statement
When to check for
errors

You should always test the success or failure code (the SQLCode property of
the Transaction object) after issuing one of the following statements in a script:

• Transaction management statement (such as CONNECT, COMMIT, and
DISCONNECT)

• Embedded or dynamic SQL

Not in DataWindows

Do not do this type of error checking following a retrieval or update made in a
DataWindow.

For information about handling errors in DataWindows, see the DataWindow
Programmers Guide.

SQLCode return
values

Table 12-4 shows the SQLCode return values.

Table 12-4: SQLCode return values

Using SQLErrText and
SQLDBCode

The string SQLErrText in the Transaction object contains the database
vendor-supplied error message. The long named SQLDBCode in the
Transaction object contains the database vendor-supplied status code. You can
reference these variables in your script.

Example To display a message box containing the DBMS error number and
message if the connection fails, code the following:

CONNECT USING SQLCA;
IF SQLCA.SQLCode = -1 THEN

MessageBox("SQL error " + String(SQLCA.SQLDBCode),&
SQLCA.SQLErrText)

END IF

Value Meaning

0 Success

100 Fetched row not found

-1 Error (the statement failed)

Use SQLErrText or SQLDBCode to obtain the details.

Using Transaction objects to call stored procedures

170 PowerBuilder

Pooling database transactions
Transaction pooling To optimize database processing, an application can pool database

transactions. Transaction pooling maximizes database throughput while
controlling the number of database connections that can be open at one time.
When you establish a transaction pool, an application can reuse connections
made to the same data source.

How it works When an application connects to a database without using transaction pooling,
PowerBuilder physically terminates each database transaction for which a
DISCONNECT statement is issued.

When transaction pooling is in effect, PowerBuilder logically terminates the
database connections and commits any database changes, but does not
physically remove them. Instead, the database connections are kept open in the
transaction pool so that they can be reused for other database operations.

When to use it Transaction pooling can enhance the performance of an application that
services a high volume of short transactions to the same data source.

How to use it To establish a transaction pool, you use the SetTransPool function. You can
code SetTransPool anywhere in your application, as long as it is executed
before the application connects to the database. A logical place to execute
SetTransPool is in the application Open event.

Example This statement specifies that up to 16 database connections will be supported
through this application, and that 12 connections will be kept open once
successfully connected. When the maximum number of connections has been
reached, each subsequent connection request will wait for up to 10 seconds for
a connection in the pool to become available. After 10 seconds, the application
will return an error:

myapp.SetTransPool (12,16,10)

For more information For more information about the SetTransPool function, see the PowerScript
Reference.

Using Transaction objects to call stored procedures
SQLCA is a built-in global variable of type transaction that is used in all
PowerBuilder applications. In your application, you can define a specialized
version of SQLCA that performs certain processing or calculations on your
data.

CHAPTER 12 Using Transaction Objects

Application Techniques 171

If your database supports stored procedures, you might already have defined
remote stored procedures to perform these operations. You can use the remote
procedure call (RPC) technique to define a customized version of the
Transaction object that calls these database stored procedures in your
application.

Result sets

You cannot use the RPC technique to access result sets returned by stored
procedures. If the stored procedure returns one or more result sets,
PowerBuilder ignores the values and returns the output parameters and return
value. If your stored procedure returns a result set, you can use the embedded
SQL DECLARE Procedure statement to call it.

For information about the DECLARE Procedure statement, see the chapter on
SQL statements in the PowerScript Reference.

Overview of the RPC
procedure

To call database stored procedures from within your PowerBuilder application,
you can use the remote procedure call technique and PowerScript dot notation
(object.function) to define a customized version of the Transaction object that
calls the stored procedures.

 To call database stored procedures in your application:

1 From the Objects tab in the New dialog box, define a standard class user
object inherited from the built-in Transaction object.

2 In the Script view in the User Object painter, use the RPCFUNC keyword
to declare the stored procedure as an external function or subroutine for the
user object.

3 Save the user object.

4 In the Application painter, specify the user object you defined as the
default global variable type for SQLCA.

5 Code your PowerBuilder application to use the user object.

For instructions on using the User Object and Application painters and the
Script view in PowerBuilder, see the PowerBuilder Users Guide.

Understanding the
example

u_trans_database user object The following sections give step-by-step
instructions for using a Transaction object to call stored procedures in your
application. The example shows how to define and use a standard class user
object named u_trans_database.

Using Transaction objects to call stored procedures

172 PowerBuilder

The u_trans_database user object is a descendant of (inherited from) the
built-in Transaction object SQLCA. A descendant is an object that inherits
functionality (properties, variables, functions, and event scripts) from an
ancestor object. A descendent object is also called a subclass.

GIVE_RAISE stored procedure The u_trans_database user object calls an
Oracle database stored procedure named GIVE_RAISE that calculates a five
percent raise on the current salary. Here is the Oracle syntax to create the
GIVE_RAISE stored procedure:

SQL terminator character

The syntax shown here for creating an Oracle stored procedure assumes that
the SQL statement terminator character is ` (backquote).

// Create GIVE_RAISE function for Oracle
// SQL terminator character is ` (backquote).
CREATE OR REPLACE FUNCTION give_raise
(salary IN OUT NUMBER)
return NUMBER
IS rv NUMBER;
BEGIN

salary := salary * 1.05;
rv := salary;
return rv;

END; `
// Save changes.
COMMIT WORK`
// Check for errors.
SELECT * FROM all_errors`

Step 1: define the standard class user object

 To define the standard class user object:

1 Start PowerBuilder.

2 Connect to a database that supports stored procedures.

The rest of this procedure assumes you are connected to an Oracle
database that contains remote stored procedures on the database server.

For instructions on connecting to an Oracle database in PowerBuilder and
using Oracle stored procedures, see Connecting to Your Database.

CHAPTER 12 Using Transaction Objects

Application Techniques 173

3 Click the New button in the PowerBar, or select File>New from the menu
bar.

The New dialog box displays.

4 On the Object tab, select the Standard Class icon and click OK to define a
new standard class user object.

The Select Standard Class Type dialog box displays:

5 Select transaction as the built-in system type that you want your user
object to inherit from, and click OK.

The User Object painter workspace displays so that you can assign
properties (instance variables) and functions to your user object:

Step 2: declare the stored procedure as an external function
FUNCTION or
SUBROUTINE
declaration

You can declare a non-result-set database stored procedure as an external
function or external subroutine in a PowerBuilder application. If the stored
procedure has a return value, declare it as a function (using the FUNCTION
keyword). If the stored procedure returns nothing or returns VOID, declare it as
a subroutine (using the SUBROUTINE keyword).

RPCFUNC and ALIAS
FOR keywords

You must use the RPCFUNC keyword in the function or subroutine declaration
to indicate that this is a remote procedure call (RPC) for a database stored
procedure rather than for an external function in a dynamic library. Optionally,
you can use the ALIAS FOR "spname" expression to supply the name of the
stored procedure as it appears in the database if this name differs from the one
you want to use in your script.

For complete information about the syntax for declaring stored procedures as
remote procedure calls, see the chapter on calling functions and events in the
PowerScript Reference.

Using Transaction objects to call stored procedures

174 PowerBuilder

 To declare stored procedures as external functions for the user object:

1 In the Script view in the User Object painter, select [Declare] from the first
list and Local External Functions from the second list.

2 Place your cursor in the Declare Local External Functions view. From the
pop-up menu or the Edit menu, select Paste Special>SQL>Remote Stored
Procedures.

PowerBuilder loads the stored procedures from your database and displays
the Remote Stored Procedures dialog box. It lists the names of stored
procedures in the current database.

3 Select the names of one or more stored procedures that you want to declare
as functions for the user object, and click OK.

PowerBuilder retrieves the stored procedure declarations from the
database and pastes each declaration into the view.

For example, here is the declaration that displays on one line when you
select sp_addlanguage:

function long sp_addlanguage()
RPCFUNC ALIAS FOR "dbo.sp_addlanguage"

4 Edit the stored procedure declaration as needed for your application.

Use either of the following syntax formats to declare the database remote
procedure call (RPC) as an external function or external subroutine (for
details about the syntax, see the PowerScript Reference):

FUNCTION rtndatatype functionname ({ { REF } datatype1 arg1, ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

SUBROUTINE functionname ({ { REF } datatype1 arg1 , ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

CHAPTER 12 Using Transaction Objects

Application Techniques 175

Here is the edited RPC function declaration for sp_addlanguage:

FUNCTION long sp_addlanguage()
RPCFUNC ALIAS FOR "addlanguage_proc"

Step 3: save the user object

 To save the user object:

1 In the User Object painter, click the Save button, or select File>Save from
the menu bar.

The Save User Object dialog box displays.

2 Specify the name of the user object, comments that describe its purpose,
and the library in which to save the user object.

3 Click OK to save the user object.

PowerBuilder saves the user object with the name you specified in the
selected library.

Step 4: specify the default global variable type for SQLCA
In the Application painter, you must specify the user object you defined as the
default global variable type for SQLCA. When you execute your application,
this tells PowerBuilder to use your standard class user object instead of the
built-in system Transaction object.

Using your own Transaction object instead of SQLCA

This procedure assumes that your application uses the default Transaction
object SQLCA, but you can also declare and create an instance of your own
Transaction object and then write code that calls the user object as a property
of your Transaction object. For instructions, see the chapter on working with
user objects in the PowerBuilder Users Guide.

 To specify the default global variable type for SQLCA:

1 Click the Open button in the PowerBar, or select File>Open from the menu
bar.

The Open dialog box displays.

Using Transaction objects to call stored procedures

176 PowerBuilder

2 Select Applications from the Object Type drop-down list. Choose the
application where you want to use your new user object and click OK.

The Application painter workspace displays.

3 Select the General tab in the Properties view. Click the Additional
Properties button.

The Additional Properties dialog box displays.

4 Click the Variable Types tab to display the Variable Types property page.

5 In the SQLCA box, specify the name of the standard class user object you
defined in Steps 1 through 3:

6 Click OK or Apply.

When you execute your application, PowerBuilder will use the specified
standard class user object instead of the built-in system object type it
inherits from.

CHAPTER 12 Using Transaction Objects

Application Techniques 177

Step 5: code your application to use the user object
What you have done so far In the previous steps, you defined the
GIVE_RAISE remote stored procedure as an external function for the
u_trans_database standard class user object. You then specified
u_trans_database as the default global variable type for SQLCA. These steps
give your PowerBuilder application access to the properties and functions
encapsulated in the user object.

What you do now You now need to write code that uses the user object to
perform the necessary processing.

In your application script, you can use PowerScript dot notation to call the
stored procedure functions you defined for the user object, just as you do when
using SQLCA for all other PowerBuilder objects. The dot notation syntax is:

object.function (arguments)

For example, you can call the GIVE_RAISE stored procedure with code similar
to the following:

SQLCA.give_raise(salary)

 To code your application to use the user object:

1 Open the object or control for which you want to write a script.

2 Select the event for which you want to write the script.

For instructions on using the Script view, see the PowerBuilder Users
Guide.

3 Write code that uses the user object to do the necessary processing for your
application.

Here is a simple code example that connects to an Oracle database, calls
the GIVE_RAISE stored procedure to calculate the raise, displays a
message box with the new salary, and disconnects from the database:

// Set Transaction object connection properties.
SQLCA.DBMS="OR7"
SQLCA.LogID="scott"
SQLCA.LogPass="xxyyzz"
SQLCA.ServerName="@t:oracle:testdb"
SQLCA.DBParm="sqlcache=24,pbdbms=1"

// Connect to the Oracle database.
CONNECT USING SQLCA ;

// Check for errors.

Supported DBMS features when calling stored procedures

178 PowerBuilder

IF SQLCA.sqlcode <> 0 THEN
MessageBox ("Connect Error",SQLCA.SQLErrText)
return

END IF

// Set 20,000 as the current salary.
DOUBLE val = 20000
DOUBLE rv

// Call the GIVE_RAISE stored procedure to
// calculate the raise.
// Use dot notation to call the stored procedure
rv = SQLCA.give_raise(val)

// Display a message box with the new salary.
MessageBox("The new salary is",string(rv))

// Disconnect from the Oracle database.
DISCONNECT USING SQLCA;

4 Compile the script to save your changes.

Using error checking

An actual script would include error checking after the CONNECT statement,
DISCONNECT statement, and call to the GIVE_RAISE procedure. For details,
see Error handling after a SQL statement on page 169.

Supported DBMS features when calling stored
procedures

When you define and use a custom Transaction object to call remote stored
procedures in your application, the features supported depend on the DBMS to
which your application connects.

The following sections describe the supported features for some of the DBMSs
that you can access in PowerBuilder. Read the section for your DBMS to
determine what you can and cannot do when using the RPC technique in a
PowerBuilder application.

CHAPTER 12 Using Transaction Objects

Application Techniques 179

Result sets

You cannot use the remote procedure call technique to access result sets
returned by stored procedures. If the stored procedure returns one or more
result sets, PowerBuilder ignores the values and returns the output parameters
and return value.

If your stored procedure returns a result set, you can use the embedded SQL
DECLARE Procedure statement to call it. For information about the DECLARE
Procedure statement, see the chapter on SQL statements in the PowerScript
Reference.

Informix If your application connects to an Informix database, you can use simple
nonarray datatypes. You cannot use binary large objects (blobs).

ODBC If your application connects to an ODBC data source, you can use the
following ODBC features if the back-end driver supports them. (For
information, see the documentation for your ODBC driver.)

• IN, OUT, and IN OUT parameters, as shown in Table 12-5.

Table 12-5: ODBC IN, OUT, and IN OUT parameters

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

• Integer return codes.

Oracle If your application connects to an Oracle database, you can use the following
Oracle PL/SQL features:

• IN, OUT, and IN OUT parameters, as shown in Table 12-6.

Parameter What happens

IN An IN variable is passed by value and indicates a value being
passed to the procedure.

OUT An OUT variable is passed by reference and indicates that the
procedure can modify the PowerScript variable that was passed.
Use the PowerScript REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

Supported DBMS features when calling stored procedures

180 PowerBuilder

Table 12-6: Oracle IN, OUT, and IN OUT parameters

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

• PL/SQL tables as parameters. You can use PowerScript arrays.

• Function return codes.

Microsoft SQL Server
or SAP Adaptive
Server Enterprise

If your application connects to a Microsoft SQL Server or SAP Adaptive
Server Enterprise database, you can use the following Transact-SQL features:

• IN, OUT, and IN OUT parameters, as shown in Table 12-7.

Table 12-7: Adaptive Server Enterprise and Microsoft SQL Server IN,
OUT, and IN OUT parameters

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

• Integer return codes.

SQL Anywhere If your application connects to a SQL Anywhere database, you can use the
following SQL Anywhere features:

• IN, OUT, and IN OUT parameters, as shown in Table 12-8.

Parameter What happens

IN An IN variable is passed by value and indicates a value being
passed to the procedure.

OUT An OUT variable is passed by reference and indicates that the
procedure can modify the PowerScript variable that was passed.
Use the PowerScript REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

Parameter What happens

IN An IN variable is passed by value and indicates a value being
passed to the procedure.

OUT An OUT variable is passed by reference and indicates that the
procedure can modify the PowerScript variable that was passed.
Use the PowerScript REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

CHAPTER 12 Using Transaction Objects

Application Techniques 181

Table 12-8: SQL Anywhere IN, OUT, and IN OUT parameters

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

Parameter What happens

IN An IN variable is passed by value and indicates a value being
passed to the procedure.

OUT An OUT variable is passed by reference and indicates that the
procedure can modify the PowerScript variable that was passed.
Use the PowerScript REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

Supported DBMS features when calling stored procedures

182 PowerBuilder

Application Techniques 183

C H A P T E R 1 3 Using MobiLink Synchronization

About this chapter This chapter supplements the introduction to MobiLink synchronization
presented in the database management chapter of the Users Guide. It
provides additional background on the synchronization process and the
use of objects generated by the MobiLink synchronization wizard. It also
discusses how to create synchronization objects without using the wizard.

Contents

About MobiLink synchronization
MobiLink is a session-based synchronization system that allows two-way
synchronization between a main database, called the consolidated
database, and many remote databases.

This section introduces some MobiLink terms and concepts.

Where to find additional information

Detailed information about MobiLink synchronization is provided in the
MobiLink Getting Started, the MobiLink - Client Administration, and the
Mobilink - Server Administration books. These books are available online
on the SQL Anywhere Product Manuals Web site at
http://dcx.sap.com/index.html.

If you are already familiar with MobiLink, go to Working with
PowerBuilder synchronization objects on page 189 to learn about
PowerBuilder integration with MobiLink.

Topic Page

About MobiLink synchronization 183

Working with PowerBuilder synchronization objects 189

Preparing consolidated databases 200

Creating remote databases 207

Synchronization techniques 213

About MobiLink synchronization

184 PowerBuilder

Data movement and
synchronization

Data movement occurs when shared data is distributed over multiple databases
on multiple nodes and changes to data in one database are applied to the
corresponding data in other databases. Data can be moved using replication or
synchronization.

Data replication moves all transactions from one database to another, whereas
data synchronization moves only the net result of transactions. Both techniques
get their information by scanning transaction log files, but synchronization
uses only updated log file segments instead of the full log file, making data
movement much faster and more efficient.

With synchronization, data is available locally and can be modified without a
connection to a server. MobiLink synchronization uses a loose consistency
model, which means that all changes are synchronized with each site over time
in a consistent manner, but different sites might have different copies of data at
any instant. Only successful transactions are synchronized.

Consolidated and
remote databases

The consolidated database, which can be any ODBC-compliant database, such
as SQL Anywhere, SAP Adaptive Server Enterprise, Oracle, IBM DB2 UDB,
or Microsoft SQL Server, holds the master copy of all the data.

The remote database contains a subset of the consolidated data. Although
MobiLink can synchronize SQL Anywhere and UltraLite databases, for
PowerBuilder applications, remote databases must be SQL Anywhere
databases.

The MobiLink
synchronization server

The MobiLink synchronization server, mlsrv11, manages the synchronization
process and provides the interface between remote databases and the
consolidated database server. All communication between the MobiLink
synchronization server and the consolidated database occurs through an ODBC
connection.The consolidated database and synchronization server often reside
on the same machine, but that is not a requirement.

The MobiLink server must be running before a synchronization process is
launched. You can start the MobiLink synchronization server from the Utilities
folder in the Objects view in the Database painter.

For information about starting the server from the command line, see “Running
the MobiLink server” in the online MobiLink - Server Administration book.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 185

MobiLink hierarchy MobiLink typically uses a hierarchical configuration. The nodes in the
hierarchy can reside on servers, desktop computers, and handheld or embedded
devices. A simple hierarchy might consist of a consolidated database on a
server and multiple remote databases on mobile devices. A more complex
hierarchy might contain multiple levels in which some sites act as both remote
and consolidated databases. For PowerBuilder applications, any consolidated
database that also acts as a remote database must be a SQL Anywhere database.

For example, suppose remote sites A1, A2, and A3 synchronize with a
consolidated database A on a local server, and remote sites B1, B2, and B3
synchronize with a consolidated database B on another local server. A and B in
turn act as remote sites and synchronize with a consolidated database C on a
master server. C can be any ODBC-compliant database, but A and B must both
be SQL Anywhere databases.

Figure 13-1: MobiLink hierarchy

Synchronization
scripts

MobiLink synchronization is an event-driven process. When a MobiLink client
initiates a synchronization, a number of synchronization events occur inside
the MobiLink server. When an event occurs, MobiLink looks for a script to
match the synchronization event. If you want the MobiLink server to take an
action, you must provide a script for the event.

About MobiLink synchronization

186 PowerBuilder

You can write synchronization scripts for connection-level events and for
events for each table in the remote database. You save these scripts in the
consolidated database.

You can write scripts using SQL, Java, or .NET. For more information about
event scripts and writing them in the MobiLink Synchronization plug-in in
SQL Central, see Preparing consolidated databases on page 200.

The MobiLink
synchronization client

SQL Anywhere clients at remote sites initiate synchronization by running a
command-line utility called dbmlsync. This utility synchronizes one or more
subscriptions in a remote database with the MobiLink synchronization server.
Subscriptions are described in Publications, articles, users, and subscriptions
next. For more information about the dbmlsync utility and its options, see
“dbmlsync utility” in the index of the SQL Anywhere online books.

In PowerBuilder, synchronization objects that you create with the ASA
MobiLink Synchronization wizard manage the dbmlsync process. For more
information, see Working with PowerBuilder synchronization objects on page
189.

Publications, articles,
users, and
subscriptions

A publication is a database object on the remote database that identifies tables
and columns to be synchronized. Each publication can contain one or more
articles. An article is a database object that represents a whole table, or a subset
of the columns and rows in a table.

A user is a database object in the remote database describing a unique
synchronization client. There is one MobiLink user name for each remote
database in the MobiLink system. The ml_user MobiLink system table, located
in the consolidated database, holds a list of MobiLink user names. These names
are used for authentication.

A subscription associates a user with one or more publications. It specifies the
synchronization protocol (such as TCP/IP, HTTP, or HTTPS), address (such as
myserver.acmetools.com), and additional optional connection and extended
options.

Users, publications, and subscriptions are created in the remote database. You
can create them in SQL Central with the SQL Anywhere plug-in (not the
MobiLink Synchronization plug-in). For information about creating users,
publications, and subscriptions, see Creating remote databases on page 207.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 187

The synchronization
process

Dbmlsync connects to the remote database using TCP/IP, HTTP, or HTTPS, and
prepares a stream of data (the upload stream) to be uploaded to the consolidated
database. Dbmlsync uses information contained in the transaction log of the
remote database to build the upload stream. The upload stream contains the
MobiLink user name and password, the version of synchronization scripts to
use, the last synchronization timestamp, the schema of tables and columns in
the publication, and the net result of all inserts, updates, and deletes since the
last synchronization.

After building the upload stream, dbmlsync uses information stored in the
specified publication and subscription to connect to the MobiLink
synchronization server and to exchange data.

When the MobiLink synchronization server receives data, it updates the
consolidated database, then builds a download stream that contains all relevant
changes and sends it back to the remote site. At the end of each successful
synchronization, the consolidated and remote databases are consistent. Either
a whole transaction is synchronized, or none of it is synchronized. This ensures
transactional integrity at each database.

How the synchronization works
How MLSync events
are implemented

The MLSync object in a PowerBuilder application and the dbmlsync process
communicate with each other by sending messages between two windows, as
shown in Figure 13-2. The window that the MLSync object creates uses an
internal function, MlSyncControlWindowProc, to process these messages.

The Synchronize function adds a “-wh window_handle” argument to the end
of the command line string that launches dbmlsync. This lets dbmlsync send
WM_COPYDATA messages to this window handle.
MlSyncControlWindowProc then triggers the appropriate event in the
MLSync object.

How the synchronization works

188 PowerBuilder

Figure 13-2: How the synchronization process works

How progress window
events are triggered

The MobiLink Synchronization Wizard generates an instance of an MLSync
object that contains PowerScript code in each of its events. When appropriate,
this code triggers an event of the same name in the progress window that is
either generated by the wizard or customized for your applications.

How the CancelSync
function is
implemented

On the dbmlsync command string, there is a “-wc window_class” argument that
specifies the class name of a communications window that dbmlsync registers
and creates. If the PowerBuilder application needs to cancel the
synchronization process during any of its event processing logic, it calls
CancelSync. This function finds the window handle associated with the -wc
window class and sends a WM_CLOSE message.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 189

Working with PowerBuilder synchronization objects
When you run the ASA MobiLink Synchronization wizard from the Database
page in the New dialog box, the wizard generates objects that let you initiate
and control MobiLink synchronization requests from a PowerBuilder
application. These objects let you obtain feedback during the synchronization
process, code PowerScript events at specific points during synchronization,
and cancel the process programmatically.

For more information about the MobiLink synchronization wizard, see
“Managing the Database” in the Users Guide.

Preparing to use the wizard
Before you use the wizard in a production application, you need to complete
the following tasks:

• Set up a consolidated database and write synchronization scripts as
described in Preparing consolidated databases on page 200

• Create a remote database on the desktop and set up one or more
publications, users, and subscriptions as described in Creating remote
databases on page 207

• Register the database with the ODBC manager on all remote machines, or
create a file DSN for the remote database, as described in Connecting to
Your Database in the PowerBuilder online Help and in Using a file DSN
instead of a registry DSN on page 199

• Make sure all remote machines have the required supporting files, as
described in Runtime requirements for synchronization on remote
machines on page 197

• (Optional) Create a database connection profile for the remote database, as
described in Connecting to Your Database in the PowerBuilder online
Help. This allows the wizard to retrieve a list of publications in the remote
database for which MobiLink subscriptions have been entered

What gets generated
The wizard generates two sets of objects.

Working with PowerBuilder synchronization objects

190 PowerBuilder

Objects that initiate
and monitor
synchronization

The first set of objects lets the end user initiate and monitor synchronization:

• nvo_appname_mlsync – a custom class user object that controls the
MobiLink client (appname is the name of your application)

• gf_appname_sync – a global function that instantiates the user object and
calls a function to launch a synchronization request

• w_appname_syncprogress – an optional status window that reports the
progress of the synchronization process

In the wizard, you can choose whether the application uses the status window.
The generated status window includes an OK button that lets the user view the
status before dismissing the window, and a Cancel button that lets the user
cancel synchronization before it completes. You can also customize the
window to fit your application’s needs.

Objects that modify
synchronization
options

The second set of objects is generated only if you select Prompt User for
Password and Runtime Changes in the wizard. It lets the end user change
synchronization options before initiating synchronization:

• w_appname_sync_options – an options window that lets the end user
modify the MobiLink user name and password, the host name and port of
the MobiLink server, and other options for dbmlsync, and choose how to
display status

• gf_appname_configure_sync – a global function that opens the options
window and, if the user clicked OK, calls gf_appname_sync to initiate
synchronization

Most applications that use the options window provide two menu items or
command buttons to launch synchronization: one to open the options window
so that users can set up or modify dbmlsync options before requesting a
synchronization, and one to request a synchronization with the preset options.

Creating an instance of MLSync
You do not have to use the MobiLink Synchronization Wizard to create a
nonvisual object that launches Dbmlsync.exe. You can include an MLSync
system object in your applications:

• Programmatically with PowerScript

• By selecting it from the New dialog box

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 191

Adding an MLSync
object programatically

The code fragment below creates an instance of an MLSync object and
programmatically populates all of the necessary properties—as well as some
optional properties—using an instance of the system SyncParm structure.
Then it calls the Synchronize function to start the database synchronization.

SyncParm Parms
MLSync mySync
Long rc

mySync = CREATE MLSync
mySync.MLServerVersion = 11// required property
mySync.Publication = 'salesapi'// required property
mySync.UseLogFile = TRUE// optional
mySync.LogFileName = "C:\temp\sync.log"// optional
mySync.Datasource = 'salesdb_remote'// required
Parms.MLUser = '50'// required
Parms.MLPass = 'xyz123'// required

//The following values are required if they are not
//set by the DSN
Parms.DBUser = 'dba'
Parms.DBPass = 'sql'

// Apply the property values to the sync object
mySync.SetParm(Parms)
// Launch the synchronization process
rc = mySync.Synchronize()
destroy mySync

Adding an MLSync
object from the New
dialog box

You can add an MLSync object to a target PBL using the New dialog box: from
the PowerBuilder menu, choose File>New, go to the PB Object tab, select
Standard Class, then MLSync. This opens a new MLSync object in the User
Object painter, where you can initialize all or some of the properties. When you
are finished, you can save it as a new object in your target PBL.

Since all of the properties are already initialized, including userids and
passwords, it is ready for immediate use. To launch a synchronization requires
very little coding, as this example for an MLsync object that you save as
“nvo_my_mlsync” illustrates:

nvo_my_mlsync mySync
Long rc
mySync = CREATE nvo_my_mlsync
mySync.Synchronize()
destroy mySync

You would typically add the above code to the Clicked event for a menu item
or a command button on one of the application windows.

Working with PowerBuilder synchronization objects

192 PowerBuilder

For more information For more information on system objects related to synchronization, and their
functions, events, and properties, see MLSynchronization, MLSync, and
SyncParm in the online Help.

Auxiliary objects for MobiLink synchronization
If you create an instance of MLSync by PowerScript code or from the New
dialog box, you should also consider using auxiliary objects that are generated
automatically by the wizard that you can customize in the PowerBuilder
Window painter.

Using an existing
synchronization
progress window

After you instantiate an MLSync object and call SetParm to enable an end user
to set authentication properties at runtime, you can call a Response! type
window to document the progress of a database synchronization. You open the
progress window with an OpenWithParm call, using the window name and the
MLSync object name as arguments. By default, the wizard generates a progress
window named w_appname_syncprogress and adds the OpenWithParm call for
you.

In the Properties view for an MLSync object, you can select a customized
progress window to document the progress of a synchronization call. If you
customize a wizard-generated progress window—typically to hide some of the
fields on its tab pages, or even to hide one or two of the tab pages—you can
select the customized progress window for all of your MobiLink applications.

Changing the
connection arguments
at runtime

To allow a user to override authentication parameters at runtime, you can call
a customized options window or the synchronization options window
generated by the wizard. The options window can, in turn, call an instance of
the SyncParm object that can be initialized with authentication values from a
highly secure persistent store, such as a remote database table. You can choose
to make some or all of the authentication values writeable, allowing the end
user to override them at runtime.

Maintaining property settings in the MLSync object

Normally when you call SetParm(SyncParm) from an MLSync object, you
automatically override any authentication values (AuthenticationParms,
DBUser, DBPass, EncryptionKey, MLUser, and MLPass) that you set for
properties of the MLSync object—even when the value of a particular
SyncParm property is an empty string. However, if you call SetNull to set a
particular property of the SyncParm object to NULL before you call SetParm,
the property value in the MLSync object will be used instead.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 193

The default synchronization options window, w_appname_sync_options,
returns a SyncParm structure to its caller through the PowerObjectParm
property of the Message object. This allows the caller to save the highly
sensitive authentication property values in a secure location. It also sets the
SyncParm ReturnCode property with an integer value that indicates whether to
proceed with the actual synchronization.

Default tab pages of
the options window

The default synchronization options window has four tab pages: Subscriptions,
SQL Anywhere, MobiLink Server, and Settings.

Subscriptions page When you used the MobiLink wizard, you selected one
or more publications from the list of available publications. The selected
publications display on the Subscriptions page, but cannot be edited at runtime.

Each remote user can supply a MobiLink synchronization user name on this
page. The name must be associated in a subscription with the publications
displayed on the page. If the application is always used by the same MobiLink
user, this information never needs to be supplied again. The name is saved in
the registry and used by default every time synchronization is launched from
the application on this device.

The MobiLink password and authentication parameters are never saved to the
user’s registry. They can either be entered each time by the user or provided
from a secure database.

SQL Anywhere page Remote users can supply a DSN file name on this page
to pass all the arguments needed to connect to a remote database.

If a DSN file is not used, or if the DSN file does not include a user name and
password, each remote user can supply a remote database user name. The name
is saved in the registry and used by default every time synchronization is
launched from the application on this device.

Figure 13-3 displays the options window SQL Anywhere tab page with DSN,
DBUser, DBPass, and Encryption Key fields. The database password and
encryption key are never saved in the registry.

Working with PowerBuilder synchronization objects

194 PowerBuilder

Figure 13-3: Synchronization options window

MobiLink Server page When you create a subscription, you specify a
protocol, host, port, and other connection options. For ease of testing, the
default protocol is TCP/IP and the default host is localhost. The default port is
2439 for TCP/IP, 80 for HTTP, and 443 for HTTPS.

You might need to change these defaults when you are testing, and your users
might need to change them when your application is in use if the server is
moved to another host or the port changes. If you did not enter values for the
host and port at design time, and the user does not make any changes on this
page, dbmlsync uses the values in the subscription.

For more information about subscriptions, see Adding subscriptions on page
212.

Settings page The Settings page displays logging options, and any other
dbmlsync options you specified at design time and lets the user change any of
these options at runtime. It also gives the user a choice of displaying or not
displaying a synchronization progress window.

Extended options

Extended options are added to the dbmlsync command line with the -e switch.
You do not need to type the -e switch in the text box.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 195

Using the synchronization objects in your application
Before you use the generated objects, you should examine them in the
PowerBuilder painters to understand how they interact. Many of the function
and event scripts contain comments that describe their purpose.

All the source code is provided so that you have total control over how your
application manages synchronization. You can use the objects as they are,
modify them, or use them as templates for your own objects.

Properties of the user
object

The nvo_appname_mlsync user object contains properties that represent
specific dbmlsync arguments, including the publication name, the MobiLink
server host name and port, and the user name and password for a connection to
the remote database.

When you run the wizard, the values that you specify for these properties are
set as default values in the script for the constructor event of the user object.
They are also set in the Windows registry on the development computer in
HKEY_CURRENT_USER\Software\Sybase\PowerBuilder\17.0\appname\Mo
biLink, where appname is the name of your application.

At runtime, the constructor event script gets the values of the properties from
the registry on the remote machine. If they cannot be obtained from the
registry, or if you override the registry settings, the default value supplied in the
script is used instead and is written to the registry.

You can change the default values in the event script, and you can let the user
change the registry values at runtime by providing a menu item that opens the
w_appname_sync_options window.

Launching dbmlsync To enable the user to launch a synchronization process, code a button or menu
event script to call the gf_appname_sync global function. This function creates
an instance of the nvo_appname_mlsync user object, and the user object’s
constructor event script sets the appname\MobiLink key in the registry of the
remote machine.

If you specified in the wizard that the progress window should display, the
global function opens the progress window, whose ue_postopen event calls the
nvo_appname_mlsync user object’s synchronize function; otherwise, the
global function calls the synchronize function. The synchronize function
launches dbmlsync as an external process.

Working with PowerBuilder synchronization objects

196 PowerBuilder

Supplying a MobiLink
user name and
password

The global function takes a structure for its only argument. You can pass a
system SyncParm structure that you instantiate. The structure includes six
variables with string datatypes (one each for MobiLink and remote database
user names and passwords, as well as variables for the authentication
parameters and the encryption key) and another variable that takes a long
datatype for a return code.

If you assign valid values to the structure that you pass as an argument, the
global function passes these values to the user object to enable MobiLink
server and remote database connections.

The options window (described in Default tab pages of the options window on
page 193) provides a mechanism to store certain of these values in the registry
the first time a user starts a synchronization. (Sensitive password and
encryption information is never saved to the registry.) Subsequent
synchronizations can be started without the user having to reenter the
information, however, the options window can still be used to override and
reset the registry values.

Retrieving data after
synchronization

After synchronizing, you would typically test for synchronization errors, then
retrieve data from the newly synchronized database. For example:

if gf_myapp_sync(s_opt) <> 0 then
MessageBox("Error", "MobiLink error")

else
dw_1.Retrieve()

end if

Capturing dbmlsync
messages

The PowerBuilder VM traps messages from the dbmlsync process and triggers
events in the user object as the synchronization process runs.

These events are triggered before synchronization begins as the upload stream
is prepared:

ue_begin_logscan (long rescan_log)
ue_progress_info (long progress_index, long progress_max)
ue_end_logscan ()

These events correspond to events on the synchronization server, as described
in Connection events on page 201:

ue_begin_sync (string user_name, string pub_names)
ue_connect_MobiLink ()
ue_begin_upload ()
ue_end_upload ()
ue_begin_download ()
ue_end_download (long upsert_rows, long delete_rows)
ue_disconnect_MobiLink()

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 197

ue_end_sync (long status_code)

These events are triggered after ue_end_upload and before ue_begin_download:

ue_wait_for_upload_ack ()
ue_upload_ack (long upload_status)

These events are triggered when various messages are sent by the server:

ue_error_msg (string error_msg)
ue_warning_msg (string warning_msg)
ue_file_msg (string file_msg)
ue_display_msg (string display_msg)

The default event scripts created by the wizard trigger corresponding events in
the optional progress window, if it exists. The window events write the
progress to the multiline edit control in the progress window. Some window
events also update a static text control that displays the phase of the
synchronization operation that is currently running (log scan, upload, or
download) and control a horizontal progress bar showing what percentage of
the operation has completed.

You can also add code to the user object or window events that will execute at
the point in the synchronization process when the corresponding MobiLink
events are triggered. The dbmlsync process sends the event messages to the
controlling PowerBuilder application and waits until PowerBuilder event
processing is completed before continuing.

Cancelling
synchronization

The Cancel button on the progress window calls the cancelsync user object
function to cancel the synchronization process. If your application does not use
the progress window, you can call this function in an event script elsewhere in
your application.

Runtime requirements for synchronization on remote machines
Support files required
on remote machine

If you do not install PowerBuilder or SQL Anywhere on remote machines, you
must copy the files listed in Table 13-1 to use MobiLink synchronization with
a PowerBuilder application. These files must be copied to the system path on
the remote machine or the directory where you copy your PowerBuilder
applications.

Working with PowerBuilder synchronization objects

198 PowerBuilder

Table 13-1: Required runtime files on system path of remote machine

Registry requirements
for a remote machine

If you install SQL Anywhere on all remote machines that you use with
MobiLink synchronization, the required registry entries are assigned
automatically. If you copy SQL Anywhere and MobiLink files to a remote
machine, you must create the
HKEY_CURRENT_USER\SOFTWARE\Sybase\SQL Anywhere\12.0 registry
key and add a “Location” string value that points to the parent directory of the
bin32 or bin64 subdirectory where you copied SQL Anywhere and MobiLink
files. (The code in the uf_runsync function of the nvo_appname_sync user
object appends “\bin32\dbmlsync.exe” to the path that you assign to this
registry value.)

Objects generated by the MobiLink Synchronization wizard also require
registry entries to define the ODBC data source for a remote SQL Anywhere
connection. Table 13-2 lists the required registry entries. You can create a REG
file that installs these registry entries.

Required files Description

PBDPL170.DLL, PBVM170.DLL,
PBDWE170.DLL, PBSHR170.DLL,
PBODB170.DLL, PBODB170.INI,
LIBJCC.DLL, LIBJUTILS.DLL,
LIBJTML.DLL, NLWNSCK.DLL

PowerBuilder files that you can copy from
the Shared\PowerBuilder directory of the
development machine.

GDIPLUS.DLL, MSVCP100.DLL,
MSVCR100.DLL, MSVCP71.DLL,
MSVCR71.DLL

Microsoft files that ship with PowerBuilder.
For restrictions on distributing these files
with client applications, see Microsoft files
on page 541.

DBENG11.EXE, DBMLSYNC.EXE,
DBSERV11.DLL, DBTOOL11.DLL,
DBODBC11.DLL, DBLIB11.DLL,
DBLGEN11.DLL, DBCON11.DLL,
DBCTRS11.DLL, DBICU11.DLL,
DBICUDT11.DLL

SQL Anywhere and MobiLink files that
you can copy from the SAP\SQL
Anywhere 12\bin32 (or bins64) directory of
the development machine. You should copy
these files to a “bin32” subdirectory of the
location where you copy the PowerBuilder
application and supporting runtime files.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 199

Table 13-2: Required registry entries on remote machine

Using a file DSN
instead of a registry
DSN

You can use a file DSN or a registry DSN for your remote database
connections. To avoid having to specify a fully qualified path, you can copy
file DSNs to a path specified by the ODBC registry key (typically c:\program
files\common files\ODBC\data sources).

The following is an example of the contents of a valid file DSN:

[ODBC]
DRIVER=SQL Anywhere 12.0
UID=dba
Compress=NO
AutoStop=YES
Start=dbeng11 -c 8M -zl -ti 0
EngineName=SalesDB_Remote
DBN=SalesDB_Remote
DatabaseFile=C:\work\salesdb\salesdb_remote.db
DatabaseName=SalesDB_remote

The Datasource property of the MLSync object distinguishes a file DSN from
a registry DSN using these rules:

• If the Datasource name ends with a .dsn file extension, it is a file DSN

Registry key
Name of string value and data
to assign it

HKEY_LOCAL_MACHINE\SOFTWARE\O
DBC\ODBCINST.INI\SQL Anywhere 12.0

Driver = full path to
DBODBC11.DLL
Setup = full path to DBODBC11.DLL

HKEY_LOCAL_MACHINE\SOFTWARE\O
DBC\ODBCINST.INI\ODBC Drivers

SQL Anywhere 12.0 = “Installed”

HKEY_LOCAL_MACHINE\SOFTWARE\O
DBC\ODBC.INI\ODBC Data Sources

dataSourceName = “SQL Anywhere
12.0”

HKEY_LOCAL_MACHINE\SOFTWARE\O
DBC\ODBC.INI\dataSourceName

Driver = full path to
DBODBC11.DLL Userid = user
name for remote database Password
= password for remote database
DatabaseName =
remoteDatabaseName DatabaseFile
= full path to remote database
ServerName =
remoteDatabaseName Start =
“dbeng11 -c 8M”
CommLinks = “shmem”

Preparing consolidated databases

200 PowerBuilder

• If the Datasource name begins with “drive:\” prefix where drive is any
alphabetic character, then it is a file DSN

File DSN location before EBFs are applied to older DBMS versions

If you have not applied the latest EBFs to SQL Anywhere 10.0.0 or Adaptive
Server Anywhere 9, dbmlsync looks in the current directory for file DSNs when
a full path is not specified—not in the path specified by the ODBC registry key.
The registry key is used by SQL Anywhere 10.0.1 and later to locate file DSNs
when their paths are not fully qualified.

Preparing consolidated databases
Whether you are designing a new database or preparing an existing one to be
used as a MobiLink consolidated database, you must install the MobiLink
system tables in that database. SQL Anywhere provides setup scripts for SAP
Adaptive Server Enterprise, Oracle, Microsoft SQL Server, and IBM DB2. A
setup script is not required for SQL Anywhere databases.

MobiLink system tables store information for MobiLink users, tables, scripts,
and script versions in the consolidated database. You will probably not directly
access these tables, but you alter them when you perform actions such as
adding synchronization scripts.

ODBC connections
and drivers

To carry out synchronization, the MobiLink synchronization server needs an
ODBC connection to the consolidated database. You must have an ODBC
driver for your server and you must create an ODBC data source for the
database on the machine on which your MobiLink synchronization server is
running. For a list of supported drivers, see Recommended ODBC Drivers for
MobiLink at https://archive.sap.com/documents/docs/DOC-67711.

Writing
synchronization
scripts

There are two types of events that occur during synchronization and for which
you need to write synchronization scripts:

• Connection events that perform global tasks required during every
synchronization

• Table events that are associated with a specific table and perform tasks
related to modifying data in that table

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 201

Connection events
At the connection level, the sequence of major events is as follows:

begin_connection
begin_synchronization

begin_upload
end_upload
prepare_for_download
begin_download
end_download

end_synchronization
end_connection

When a synchronization request occurs, the begin_connection event is fired.
When all synchronization requests for the current script version have been
completed, the end_connection event is fired. Typically you place initialization
and cleanup code in the scripts for these events, such as variable declaration
and database cleanup.

Apart from begin_connection and end_connection, all of these events take the
MobiLink user name stored in the ml_user table in the consolidated database as
a parameter. You can use parameters in your scripts by placing question marks
where the parameter value should be substituted.

To make scripts in SQL Anywhere databases easier to read, you might declare
a variable in the begin_connection script, then set it to the value of ml_username
in the begin_synchronization script.

For example, in begin_connection:

CREATE VARIABLE @sync_user VARCHAR(128);

In begin_synchronization:

SET @sync_user = ?

The begin_synchronization and end_synchronization events are fired before and
after changes are applied to the remote and consolidated databases.

The begin_upload event marks the beginning of the upload transaction.
Applicable inserts and updates to the consolidated database are performed for
all remote tables, then rows are deleted as applicable for all remote tables. After
end_upload, upload changes are committed.

If you do not want to delete rows from the consolidated database, do not write
scripts for the upload_delete event, or use the STOP SYNCHRONIZATION
DELETE statement in your PowerScript code. For more information, see
Deleting rows from the remote database only on page 214.

Preparing consolidated databases

202 PowerBuilder

The begin_download event marks the beginning of the download transaction.
Applicable deletes are performed for all remote tables, and then rows are added
as applicable for all remote tables in the download_cursor. After end_download,
download changes are committed. These events have the date of the last
download as a parameter.

Other connection-level events can also occur, such as handle_error,
report_error, and synchronization_statistics. For a complete list of events and
examples of their use, see the chapter on synchronization events in the
MobiLink Administration Guide.

Table events
Many of the connection events that occur between the begin_synchronization
and end_synchronization events, such as begin_download and end_upload, also
have table equivalents. These and other overall table events might be used for
tasks such as creating an intermediate table to hold changes or printing
information to a log file.

You can also script table events that apply to each row in the table. For
row-level events, the order of the columns in your scripts must match the order
in which they appear in the CREATE TABLE statement in the remote database,
and the column names in the scripts must refer to the column names in the
consolidated database.

Generating default
scripts

Although there are several row-level events, most tables need scripts for three
upload events (for INSERT, UPDATE, and DELETE) and one download event.
To speed up the task of creating these four scripts for every table, you can
generate scripts for them automatically by running the “create a
synchronization model” task from the MobiLink plug-in in SQL Central.

For information on the MobiLink plug-in, see the online MobiLink Getting
Started book.

The MobiLink plug-in allows you to add more functionality to default scripts
than default scripts generated in earlier versions of MobiLink. However, if you
are using ASA 8 or ASA 9 instead of SQL Anywhere 10, 11, 12, 16, or 17, you
can still generate default synchronization scripts by starting the MobiLink
synchronization server with the -za switch and setting the SendColumnNames
extended option for dbmlsync.

The following procedure describes how to generate ASA 8 or 9
synchronizations scripts from the PowerBuilder UI.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 203

 To generate ASA 8 or 9 synchronization scripts automatically from
PowerBuilder:

1 Expand the ODBC Utilities folder in the Database painter and
double-click the MobiLink Synchronization Server item.

The MobiLink Synchronize Server Options dialog box displays.

2 Select Adaptive Server Anywhere 8 or 9 from the MobiLink Version
drop-down list.

You enable the Automatic Script Generation check box.

3 Select the Automatic Script Generation check box in the MobiLink
Synchronize Server Options dialog box and click OK to start the server.

You can open this dialog box from the Utilities folder in the Database
painter or the Database Profiles dialog box.

4 In your application, enter SendColumnNames=ON in the Extended text box
on the Settings page of the w_appname_sync_options window.

You must have at least one publication, user, and subscription defined in
the remote database. If you have more than one publication or user, you
must use the -n and/or -u switches to specify which subscription you want
to work with.

If there are existing scripts in the consolidated database, MobiLink does
nothing. If there are no existing scripts, MobiLink generates them for all
tables specified in the publication. The scripts control the upload and
download of data to and from your client and consolidated databases.

If the column names on the remote and consolidated database differ, the
generated scripts must be modified to match the names on the consolidated
database.

You can also generate ASA 8 or 9 synchronization scripts from a command
prompt. Start the server using the -za switch, then run dbmlsync and set the
SendColumnNames extended option to on. For example:

dbmlsrv9 -c "dsn=masterdb" -za
dbmlsync -c "dsn=remotedb" -e SendColumnNames=ON

Generated scripts Table 13-3 shows sample default scripts generated by the MobiLink plug-in in
SQL Central. The scripts are generated for a table named emp with the columns
emp_id, emp_name, and dept_id. The primary key is emp_id. The generated
download scripts use a timestamp based download.

Preparing consolidated databases

204 PowerBuilder

Table 13-3: Sample default synchronization scripts from MobiLink
plug-in

The scripts that you generate with the MobiLink plug-in constitute a
synchronization model. After you create a synchronization model, you must
use the “Deploy the synchronization model” task of the plug-in to deploy the
scripts to consolidated and remote databases or to SQL files.

Table 13-4 shows the scripts that are generated for the same table using the -za
command switch for the ASA 9 MobiLink synchronization server. The scripts
generated for downloading data perform “snapshot” synchronization. A
complete image of the table is downloaded to the remote database. Typically
you need to edit these scripts to limit the data transferred.

For more information, see Limiting data downloads on page 213.

Script name Script

upload_insert INSERT INTO "GROUP1"."emp" ("emp_id",
"emp_name", "dept_id")

VALUES ({ml r."emp_id"}, {ml r."emp_name"},
{ml r."dept_id"})

upload_update UPDATE "GROUP1"."emp" SET "emp_name" =
{ml r."emp_name"}, "dept_id" =
{ml r."dept_id"}
WHERE "emp_id" = {ml r."emp_id"}

upload_delete DELETE FROM "GROUP1"."emp"
WHERE "emp_id" = {ml r."emp_id"}

download_cursor SELECT "GROUP1"."emp"."emp_id",
"GROUP1"."emp"."emp_name",
"GROUP1"."emp"."dept_id"
FROM "GROUP1"."emp"
WHERE "GROUP1"."emp"."last_modified" >= {ml
s.last_table_download}

download_delete_
cursor

SELECT "emp_del"."emp_id
FROM "emp_del"
WHERE "emp_del"."last_modified" >= {ml
s.last_table_download}

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 205

Table 13-4: Sample default scripts generated by dbmlsrv9 -za

Before modifying any scripts, you should test the synchronization process to
make sure that the generated scripts behave as expected. Performing a test after
each modification will help you narrow down errors.

Working with scripts and users in SQL Central
You can view and modify existing scripts and write new ones in the MobiLink
Synchronization plug-in in SQL Central (formerly known as Sybase Central).
These procedures describe how to connect to the plug-in and write scripts, and
how to add a user to the consolidated database.

 To connect to a consolidated database in SQL Central:

1 Start SQL Central and select Connections>Connect with MobiLink 11
from the menu bar.

2 On the Identification page in the Connect to Consolidated Database dialog
box, select or browse to a data source name or file, and click OK.

When you expand the node for a consolidated database in the MobiLink
Synchronization plug-in, you see folders with the following labels: Tables,
Connection Scripts, Synchronized Tables, Users, Versions, and Notifications.
All the procedures in this section begin by opening one of these folders.

Script versions Scripts are organized into groups called script versions. By specifying a
particular version, MobiLink clients can select which set of synchronization
scripts is used to process the upload stream and prepare the download stream.
If you want to define different versions for scripts, you must add a script
version to the consolidated database before you add scripts for it.

If you create two different versions, make sure that you have scripts for all
required events in both versions.

Script name Script

upload_insert INSERT INTO emp (emp_id, emp_name, dept_id)
VALUES (?,?,?)

upload_update UPDATE emp SET emp_name = ?, dept_id = ?
WHERE emp_id=?

upload_delete DELETE FROM emp
WHERE emp_id=?

download_cursor SELECT emp_id, emp_name, dept_id FROM emp

Preparing consolidated databases

206 PowerBuilder

 To add a script version:

1 Open the Versions folder, then select File>New>Version from the SQL
Central menu bar.

2 In the Create Script Version wizard, provide a name for the version and
optionally a description, then click Finish.

SQL Central creates the new version and gives it a unique integer
identifier.

Adding synchronized
tables and scripts

Scripts added for connection events are executed for every synchronization.
Scripts added for table events are executed when a specific table has been
modified. You must specify that a table is synchronized before you can add
scripts for it.

 To add a table for synchronization:

1 Open the Synchronized Tables folder and select File>New>Synchronized
Table.

2 Specify a remote table name you want to synchronize or select a table in
the consolidated database that has the same name as a table in the remote
database.

3 Click Finish.

 To add a script to a synchronized table:

1 Double-click a table name in the Synchronized Tables folder, then select
File>New>Table Script.

2 In the Create Table Script wizard, select the version for which you want to
add a script, select the event you want to cause the script to execute, and
click Next.

3 Choose to create a new script definition and the language (SQL, Java, or
.NET) in which you want to write the definition, or select an existing script
version that you want to share for the new script.

4 Click Finish.

5 Type your script in the editor that displays, then save and close the file.

For example, if you want to remove rows that have been shipped from the
Order table in a remote database, you can place the following SELECT
statement in the download_delete_cursor event, where order_id is the
primary key column. The first parameter to this event is the last_download
timestamp. It is used here to supply the value for a last_modified column:

SELECT order_id

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 207

FROM Order
WHERE status = 'Shipped'

AND last_modified >= ?

For more information about using the download_delete_cursor event, see
the section on “Writing download_delete_cursor scripts” in the online
MobiLink - Server Administration book.

 To add a connection-level script:

1 Open the Connection Scripts folder and select File>New>Connection
Script from the menu bar.

2 Follow steps 2 to 5 in the previous procedure.

Adding users You can add users directly to the ml_user table in the consolidated database,
then provide the user names and optional passwords to your users. To add a
user, open the Users folder, select File>New>User, and complete the Create
User wizard.

You also have to add at least one user name to each remote database, as
described in Creating MobiLink users on page 210.

Creating remote databases
Any SQL Anywhere database can be converted for use as a remote database in
a MobiLink installation. You can also create a new SQL Anywhere remote
database that uses all or part of the schema of the consolidated SQL Anywhere
database.

You create the database on your desktop using the SQL Central SQL Anywhere
plug-in, the Create SA Database utility in the Database painter, or another tool.
If your database uses an English character set, use the 1252 Latin1 collation
sequence.

To use a database as a remote database for MobiLink synchronization, you
need to create at least one publication and MobiLink user, then add a
subscription to the publication for the user. See Creating and modifying
publications on page 208, Creating MobiLink users on page 210, and Adding
subscriptions on page 212.

Creating remote databases

208 PowerBuilder

Remote database
schemas

Tables in a remote database need not be identical to those in the consolidated
database, but you can often simplify your design by using a table structure in
the remote database that is a subset of the one in the consolidated database.
Using this method ensures that every table in the remote database exists in the
consolidated database. Corresponding tables have the same structure and
foreign key relationships as those in the consolidated database.

Tables in the consolidated database frequently contain extra columns that are
not synchronized. Extra columns can even aid synchronization. For example, a
timestamp column can identify new or updated rows in the consolidated
database. In other cases, extra columns or tables in the consolidated database
might hold information that is not required at remote sites.

Creating and modifying publications
You create publications using SQL Central or the SQL CREATE PUBLICATION
statement. In SQL Central, all publications and articles appear in the
Publications folder. This section describes how to create publications in SQL
Central. For information about creating and modifying publications using
SQL, see the online MobiLink - Client Administration book.

Connecting to the
database in SQL
Central

You use the SQL Anywhere plug-in in SQL Central, not the MobiLink
Synchronization plug-in, to work with MobiLink clients and remote databases.
For information on starting SQL Central from the PowerBuilder design time
environment, see the Users Guide.

You must have DBA authority to create or modify publications, MobiLink
users, and subscriptions.

 To connect to the database in SQL Central:

1 Start SQL Central, select Connections>Connect with SQL Anywhere 12
from the SQL Central menu bar.

2 On the Identification page in the Connect dialog box, enter DBA as the
user name and SQL as the password, select or browse to the data source
name or file and click OK.

Publishing all the rows
and columns in a table

The simplest publication you can create is a single article that consists of all
rows and columns of one or more tables. The tables must already exist.

 To publish one or more entire tables in SQL Central:

1 Connect to SQL Central as described in Connecting to the database in
SQL Central on page 208.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 209

2 Open the Publications folder and select File>New>Publication from the
SQL Central menu.

3 Type a name for the new publication and click Next.

4 On the Specify Tables page, select a table from the list of available tables
and click Add.

The table appears in the list of selected tables on the right.

5 Optionally, add more tables. The order of the tables is not important.

6 Click Finish.

Publishing only some
columns in a table

You can create a publication that contains all the rows but only some of the
columns of a table.

 To publish only some columns in a table in SQL Central:

1 Follow the first four steps of the procedure in Publishing all the rows and
columns in a table on page 208.

2 Click Next. On the Specify Columns page, double-click the table's icon to
expand the list of available columns, select each column you want to
publish, and click Add.

The selected columns appear on the right.

3 Click Finish.

Publishing only some
rows in a table

You can create a publication that contains some or all of the columns in a table,
but only some of the rows. You do so by writing a search condition that
matches only the rows you want to publish.

In MobiLink, you can use the WHERE clause to exclude the same set of rows
from all subscriptions to a publication. All subscribers to the publication
upload any changes to the rows that satisfy the search condition.

 To create a publication using a WHERE clause in SQL Central:

1 Follow the first four steps of the procedure in Publishing all the rows and
columns in a table on page 208, and optionally the first two steps of the
procedure in Publishing only some columns in a table on page 209.

2 Click Next. On the Specify Where Clauses page, select the table and type
the search condition in the lower box.

Optionally, you can use the Insert dialog box to help you format the search
condition.

3 Click Finish.

Creating remote databases

210 PowerBuilder

Adding articles You can add articles to existing publications.

 To add articles in SQL Central:

1 Connect to SQL Central as described in Connecting to the database in
SQL Central on page 208.

2 Open the Publications folder and double-click the name of the publication
to which you want to add an article.

3 Select File>New>Article from the SQL Central menu.

4 In the Create Article wizard, select a table and click Next.

5 If you want only some columns to be synchronized, select the Selected
Columns radio button and select the columns.

6 If you want to add a WHERE clause, click Next and enter the clause.

7 Click Finish.

Modifying and
removing publications
and articles

You can modify or drop existing publications in SQL Central by navigating to
the location of the publication and selecting Properties or Delete from its pop-
up menu. You can modify and remove articles in the same way.

Publications can be modified only by the DBA or the publication's owner. You
must have DBA authority to drop a publication. If you drop a publication, all
subscriptions to that publication are automatically deleted as well.

Avoid altering publications in a running MobiLink setup

Altering publications in a running MobiLink setup is likely to cause replication
errors and can lead to loss of data unless carried out with care.

Creating MobiLink users
MobiLink users are not the same as database users. Each type of user resides
in a different namespace. MobiLink user IDs can match the names of database
users, but there is no requirement that they match.

 To add a MobiLink user to a remote database in SQL Central:

1 Connect to SQL Central as described in Connecting to the database in
SQL Central on page 208.

2 Open the MobiLink Users folder and select File>New>User from the SQL
Central menu.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 211

3 Enter a name for the MobiLink user.

The name is supplied to the MobiLink synchronization server during
synchronization. In production databases, each user name is usually added
to the consolidated database, then provided to the individual user.

4 Click Finish.

 To configure MobiLink user properties in SQL Central:

1 Connect to SQL Central as described in Connecting to the database in
SQL Central on page 208.

2 Open the MobiLink Users folder, right-click the MobiLink user, and select
Properties from the pop-up menu

3 Change the properties as needed.

 To drop a MobiLink user in SQL Central:

1 Connect to SQL Central as described in Connecting to the database in
SQL Central on page 208.

2 Open the MobiLink Users folder, right-click the MobiLink user, and select
Delete from the pop-up menu.

Dropping MobiLink users

You must drop all subscriptions for a MobiLink user before you drop the user
from a remote database.

Adding MobiLink
users to the
consolidated database

The consolidated database contains a table called ml_user that is used to
authenticate the names of MobiLink users when a synchronization is requested.
When you add a user to a remote database, you need to be sure that the user is
also added to the ml_user table.

You can add users automatically by selecting the Automatic Addition of Users
check box in the MobiLink Synchronization Server Options dialog box and
then starting the server. You open this dialog box from the Utilities folder in the
Database painter or Database Profiles dialog box. You can also start the server
from a command prompt, passing it the -zu+ switch.

Any users defined in the remote database are added to the ml_user table in the
consolidated database, as long as the script for the authenticate_user
connection event is undefined. Typically the -zu+ switch is not used in a
production environment. Names are usually added to the ml_user table in the
consolidated database, then added to each of the remote databases. Each user
is given a unique name and optional password.

Creating remote databases

212 PowerBuilder

Adding subscriptions
A synchronization subscription links a particular MobiLink user with a
publication. You must have at least one publication and one user to create a
subscription.

A subscription can also carry other information needed for synchronization.
For example, you can specify the address of the MobiLink server and other
connection options. Values for a specific subscription override those set for
individual MobiLink users.

Overriding options in the wizard

You can override the MobiLink server name and port set for the subscription
and user with settings in the ASA MobiLink Synchronization wizard in
PowerBuilder.

Synchronization subscriptions are required in MobiLink SQL Anywhere
remote databases. Server logic is implemented through synchronization
scripts, stored in the MobiLink system tables in the consolidated database.

A single SQL Anywhere database can synchronize with more than one
MobiLink synchronization server. To allow synchronization with multiple
servers, create different subscriptions for each server.

 To add a subscription for a MobiLink user in SQL Central:

1 Connect to SQL Central as described in Connecting to the database in
SQL Central on page 208.

2 Open the Publications folder, select the publication for which you want to
enter a subscription, select the Synchronization Subscriptions tab in the
right pane of SQL Central, then select File>New>Synchronization
Subscription from the menu bar.

Instead of creating a new subscription in the Publications folder, you can
create one in the MobiLink Users folder by double-clicking the user for
whom you want to create a subscription, and then selecting
File>New>Synchronization Subscription from the menu bar.

3 In the Create Synchronization Subscription wizard, select the user for
whom you want to enter a subscription and click Finish.

If you started the wizard from the MobiLink Users folder, the wizard
prompts you to select the publication to which you want to subscribe. In
this case, select the publication and click Finish.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 213

 To modify a subscription in SQL Central:

1 Connect to SQL Central as described in Connecting to the database in
SQL Central on page 208.

2 Open the MobiLink Users folder and double-click the name of the
MobiLink user who owns the subscription you want to modify.

3 On the Synchronization Subscriptions tab, right-click the subscription you
want to modify and select Properties from the pop-up menu.

4 Change the properties as needed on the Connection and Extended Options
pages of the Synchronization Subscription Properties dialog box.

 To delete a synchronization subscription in SQL Central:

1 Connect to SQL Central as described in Connecting to the database in
SQL Central on page 208.

2 Open the MobiLink Users folder and double-click the name of the
MobiLink user who owns the subscription you want to delete.

3 On the Synchronization Subscriptions tab, right-click the subscription you
want to delete and click Delete.

4 Click Yes in the Confirm Delete dialog box.

Synchronization techniques
This section highlights some issues that you need to consider when designing
an application that uses MobiLink synchronization.

Limiting data
downloads

One of the major goals of synchronization is to increase the speed and
efficiency of data movement by restricting the amount of data moved. To limit
the data transferred by the download_cursor script, you can partition data based
on its timestamp, the MobiLink user name, or both.

Timestamp partitioning One way to limit downloads to data changed since
the last download is to add a last_modified column to each table in the
consolidated database (or, if the table itself cannot be changed, to a shadow
table that holds the primary key and that is joined to the original table in the
download_cursor script). The last_modified column need only be added to the
consolidated database.

Synchronization techniques

214 PowerBuilder

In SQL Anywhere, you can use built-in DEFAULT TIMESTAMP datatypes for
this column. In other DBMSs, you need to provide an update trigger to set the
timestamp of the last_modified column.

The timestamp is generated on the consolidated database and downloaded
unmodified to the remote database during synchronization; the time zone of the
remote database does not affect it.

User-based partitioning The download_cursor script has two parameters:
last_download, of datatype datetime, and ml_username, of type varchar(128).
You can use these parameters to restrict the download not only to rows that
have changed since the last synchronization, but also to rows that belong to the
current user.

In this sample download_cursor script, only those rows are downloaded that
have been modified since the last synchronization, and that apply to the sales
representative whose ID matches the MobiLink user ID:

SELECT order_id, cust_id, order_date
FROM Sales_Order

WHERE last_modified >= ?
AND sales_rep = ?

For this to work correctly, the MobiLink user ID must match the sales_rep ID.
If this is not the case, you might need to join a table that associates these two
IDs.

Primary key
uniqueness

In a conventional client/server environment where clients are always
connected, referential integrity is directly imposed. In a mobile environment,
you must ensure that primary keys are unique and that they are never updated.
There are several techniques for achieving this, such as using primary key
pools.

Handling conflicts You need to handle conflicts that arise when, for example, two remote users
update the same rows but synchronize at different intervals, so that the latest
synchronization might not be the latest update. MobiLink provides
mechanisms to detect and resolve conflicts.

Deleting rows from the
remote database only

By default, when a user starts a synchronization, the net result of all the
changes made to the database since the last synchronization is uploaded to the
consolidated database. However, sometimes a remote user deletes certain rows
from the remote database to recapture space, perhaps because the data is old or
a customer has transferred to another sales agent. Usually, those deleted rows
should not be deleted from the consolidated database.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 215

One way to handle this is to use the command STOP SYNCHRONIZATION
DELETE in a script in your PowerBuilder application to hide the SQL DELETE
statements that follow it from the transaction log. None of the subsequent
DELETE operations on the connection will be synchronized until the START
SYNCHRONIZATION DELETE statement is executed.

For example, you might provide a menu item called Delete Local where the
code that handles the delete is wrapped, as in this example:

STOP SYNCHRONIZATION DELETE;
// call code to perform delete operation
START SYNCHRONIZATION DELETE;
COMMIT;

There are other approaches to handling deletes. For more information, see the
chapter on synchronization techniques in the online MobiLink - Server
Administration book.

Synchronization techniques

216 PowerBuilder

Application Techniques 217

C H A P T E R 1 4 Using PowerBuilder XML
Services

About this chapter This chapter presents an overview of XML services in PowerBuilder. It
describes the PowerBuilder Document Object Model (PBDOM), and
describes how to use it in a PowerBuilder application.

Contents

About XML and PowerBuilder
PowerBuilder provides several features that enable you to work with the
Extensible Markup Language (XML). You can:

• Export the data in a DataWindow object to XML, and import data in
an XML document or string into a DataWindow object

• Determine whether an XML document or string is well-formed or
conforms to a schema or DTD using the XMLParseFile and
XMLParseString PowerScript functions

• Build applications and components that can produce and process
XML documents

For an overview of XML and information about the export and import
capabilities in the DataWindow, see the chapter on exporting and
importing XML in the PowerBuilder Users Guide.

Topic Page

About XML and PowerBuilder 217

About PBDOM 218

PBDOM object hierarchy 219

PBDOM node objects 220

Adding pbdom170.pbx to your application 235

Using PBDOM 236

Handling PBDOM exceptions 242

XML namespaces 243

About PBDOM

218 PowerBuilder

For information about the XML parsing functions, see their descriptions in the
online Help.

This chapter describes how you can produce and process XML documents
using the PowerBuilder Document Object Model.

About PBDOM
PBDOM is the PowerBuilder implementation of the Document Object Model
(DOM), a programming interface defining the means by which XML
documents can be accessed and manipulated.

Although PBDOM is not an implementation of the World Wide Web
Consortium (W3C) DOM API, it is very similar. The PBDOM PowerBuilder
API can be used for reading, writing, and manipulating standard-format XML
from within PowerScript code. PBDOM portrays an XML document as a
collection of interconnected objects and provides intuitive methods indicating
the use and functionality of each object.

PBDOM is also similar to JDOM, which is a Java-based document object
model for XML files.

For information on the W3C DOM and JDOM objects and hierarchies, refer to
their respective specifications. The W3C DOM specification is available at
http://www.w3.org/DOM/. The JDOM specification, or a link to it, is available at
http://www.jdom.org/docs/.

With PBDOM, your applications can parse existing XML documents and
extract the information contained as part of a business process or in response
to an external request. Applications can also produce XML documents that
conform to the type or schema required by other applications, processes, or
systems. Existing XML documents can be read and modified by manipulating
or transforming the PBDOM tree of objects instead of having to edit XML
strings directly.

You can also build components that can produce or process XML documents
for use in multitier applications or as part of a Web service.

Node trees PBDOM interacts with XML documents according to a tree-view model
consisting of parent and child nodes. A document element represents the
top-level node of an XML document. Each child node of the document element
has one or many child nodes that represent the branches of the tree. Nodes in
the tree are accessible through PBDOM class methods.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 219

XML parser The PBDOM XML parser is used to load and parse an XML document, and
also to generate XML documents based on user-specified DOM nodes.

PBDOM provides all the methods you need to traverse the node tree, access the
nodes and attribute values (if any), insert and delete nodes, and convert the
node tree to an XML document so that it can be used by other systems.

PBDOM object hierarchy
The following figure shows the PBDOM object hierarchy:

Figure 14-1: The PBDOM object hierarchy

PBDOM_OBJECT
and its descendants

The base class for PBDOM objects that represent XML nodes,
PBDOM_OBJECT, inherits from the PowerBuilder NonVisualObject class.
Each of the node types is represented by a PBDOM class whose methods you
use to access objects in a PBDOM node tree. PBDOM_OBJECT and its
descendants are described in "PBDOM node objects" next. You can also find
some information about XML node types in the chapter on exporting and
importing XML data in the PowerBuilder Users Guide.

PBDOM_BUILDER The PBDOM_BUILDER class also inherits from NonVisualObject. It serves
as a factory class that creates a PBDOM_DOCUMENT from various XML
input sources including a string, a file, and a DataStore.

Building a PBDOM_DOCUMENT from scratch

To build a PBDOM_DOCUMENT without a source that contains existing
XML, use the PBDOM_DOCUMENT NewDocument methods.

PBDOM node objects

220 PowerBuilder

PBDOM_EXCEPTION The PBDOM_EXCEPTION class inherits from the PowerBuilder Exception
class. It extends the Exception class with a method that returns a predefined
exception code when an exception is raised in a PBDOM application. For more
information about this class, see Handling PBDOM exceptions on page 242.

PBDOM node objects
This section describes the PBDOM_OBJECT class and all of the classes that
descend from it:

• PBDOM_OBJECT

• PBDOM_DOCUMENT

• PBDOM_DOCTYPE

• PBDOM_ELEMENT

• PBDOM_ATTRIBUTE

• PBDOM_ENTITYREFERENCE

• PBDOM_CHARACTERDATA

• PBDOM_TEXT

• PBDOM_CDATA

• PBDOM_COMMENT

• PBDOM_PROCESSINGINSTRUCTION

For detailed descriptions of PBDOM class methods, see the PowerBuilder
Extension Reference.

PBDOM_OBJECT
The PBDOM_OBJECT class represents any node in an XML node tree and
serves as the base class for specialized PBDOM classes that represent specific
node types. The DOM class that corresponds to PBDOM_OBJECT is the Node
object. PBDOM_OBJECT contains all the basic features required by derived
classes. A node can be an element node, a document node, or any of the node
types listed above that derive from PBDOM_OBJECT.

Methods The PBDOM_OBJECT base class has the following methods:

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 221

• AddContent, GetContent, InsertContent, RemoveContent, and SetContent to
allow you to manipulate the children of the PBDOM_OBJECT

• Clone to allow you to make shallow or deep clones of the
PBDOM_OBJECT

• Detach to detach the PBDOM_OBJECT from its parent

• Equals to test for equality with another PBDOM_OBJECT

• GetName and SetName to get and set the name of the PBDOM_OBJECT

• GetObjectClass and GetObjectClassString to identify the class of the
PBDOM_OBJECT

• GetOwnerDocumentObject to identify the owner PBDOM_DOCUMENT
of the current PBDOM_OBJECT

• GetParentObject and SetParentObject to get and set the parent of the
PBDOM_OBJECT

• GetText, GetTextNormalize, and GetTextTrim to obtain the text data of the
PBDOM_OBJECT

• HasChildren to determine whether the PBDOM_OBJECT has any children

• IsAncestorObjectOf to determine whether the PBDOM_OBJECT is the
ancestor of another PBDOM_OBJECT

PBDOM_OBJECT
inheritance

The PBDOM_OBJECT class is similar to a virtual class in C++ in that it is not
expected to be directly instantiated and used. For example, although a
PBDOM_OBJECT can be created using the PowerScript CREATE statement,
its methods cannot be used directly:

PBDOM_OBJECT pbdom_obj
pbdom_obj = CREATE PBDOM_OBJECT
pbdom_obj.SetName("VIRTUAL_PBDOM_OBJ") //exception!

The third line of code above throws an exception because it attempts to directly
access the SetName method for the base class PBDOM_OBJECT. A similar
implementation is valid, however, when the SetName method is accessed from
a derived class, such as PBDOM_ELEMENT:

PBDOM_OBJECT pbdom_obj
pbdom_obj = CREATE PBDOM_ELEMENT
pbdom_obj.SetName ("VIRTUAL_PBDOM_OBJ")

Using the base
PBDOM_OBJECT as
a placeholder

The PBDOM_OBJECT class can be used as a placeholder for an object of a
derived class:

PBDOM_DOCUMENT pbdom_doc

PBDOM node objects

222 PowerBuilder

PBDOM_OBJECT pbdom_obj

pbdom_doc = CREATE PBDOM_DOCUMENT
pbdom_doc.NewDocument ("", "", &

"Root_Element_From_Doc_1", "", "")
pbdom_obj = pbdom_doc.GetRootElement
pbdom_obj.SetName &

("Root_Element_From_Doc_1_Now_Changed")

The instantiated PBDOM_OBJECT pbdom_obj is assigned to a
PBDOM_DOCUMENT object, which holds the return value of the
GetRootElement method. Here, pbdom_obj holds a reference to a
PBDOM_ELEMENT and can be operated on legally like any object of a class
derived from PBDOM_OBJECT.

Standalone objects A PBDOM_OBJECT can be created as a self-contained object independent of
any document or parent PBDOM_OBJECT. Such a PBDOM_OBJECT is
known as a standalone object. For example:

PBDOM_ELEMENT pbdom_elem_1
pbdom_elem_1 = Create PBDOM_ELEMENT
pbdom_elem_1.SetName("pbdom_elem_1")

pbdom_elem_1 is instantiated in the derived class PBDOM_ELEMENT using
the Create keyword. The SetName method can then be invoked from the
pbdom_elem_1 object, which is a standalone object not contained within any
document.

Standalone objects can perform any legal PBDOM operations, but standalone
status does not give the object any special advantages or disadvantages.

Parent-owned and
document-owned
objects

A PBDOM_OBJECT can be assigned a parent by appending it to another
standalone PBDOM_OBJECT, as in the following example:

PBDOM_ELEMENT pbdom_elem_1
PBDOM_ELEMENT pbdom_elem_2

pbdom_elem_1 = Create PBDOM_ELEMENT
pbdom_elem_2 = Create PBDOM_ELEMENT

pbdom_elem_1.SetName("pbdom_elem_1")
pbdom_elem_2.SetName("pbdom_elem_2")
pbdom_elem_1.AddContent(pbdom_elem_2)

Two PBDOM_ELEMENT objects, pbdom_elem_1 and pbdom_elem_2, are
instantiated. The pbdom_elem_2 object is appended as a child object of
pbdom_elem_1 using the AddContent method.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 223

In this example, neither pbdom_elem_1 nor pbdom_elem_2 is owned by any
document, and the pbdom_elem_1 object is still standalone. If pbdom_elem_1
were assigned to a parent PBDOM_OBJECT owned by a document,
pbdom_elem_1 would cease to be a standalone object.

PBDOM_DOCUMENT
The PBDOM_DOCUMENT class derives from PBDOM_OBJECT and
represents an XML DOM document. The PBDOM_DOCUMENT methods
allow access to the root element, processing instructions, and other
document-level information.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_DOCUMENT class has the following methods:

• DetachRootElement, GetRootElement, HasRootElement, and
SetRootElement to manipulate the root element of the
PBDOM_DOCUMENT

• GetDocType and SetDocType to get and set the DOCTYPE declaration of
the XML document

• NewDocument to build a new PBDOM_DOCUMENT from scratch

• SaveDocument to save the content of the DOM tree in the
PBDOM_DOCUMENT to a file

PBDOM_DOCTYPE
The PBDOM_DOCTYPE class represents the document type declaration
object of an XML DOM document. The PBDOM_DOCTYPE methods allow
access to the root element name, the internal subset, and the system and public
IDs.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_DOCTYPE class has the following methods:

• GetPublicID, SetPublicID, GetSystemID, and SetSystemID to get and set the
public and system IDs of an externally-referenced ID declared in the
PBDOM_DOCTYPE

• GetInternalSubset and SetInternalSubset to get and set the internal subset
data of the PBDOM_DOCTYPE

PBDOM node objects

224 PowerBuilder

PBDOM_ELEMENT
The PBDOM_ELEMENT represents an XML element modeled in
PowerScript. The PBDOM_ELEMENT methods allow access to element
attributes, children, and text.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_ELEMENT class has the following methods:

• AddNamespaceDeclaration and RemoveNamespaceDeclaration to add
namespace declarations to and remove them from the
PBDOM_ELEMENT

• GetAttribute, GetAttributes, GetAttributeValue, HasAttributes,
RemoveAttribute, SetAttribute, and SetAttributes to manipulate the
attributes of the PBDOM_ELEMENT

• GetChildElement, GetChildElements, HasChildElements,
RemoveChildElement, and RemoveChildElements to manipulate the
children of the PBDOM_ELEMENT

• GetNamespacePrefix and GetNamespaceURI to get the prefix and URI of
the namespace associated with the PBDOM_ELEMENT

• GetQualifiedName to get the full name of the PBDOM_ELEMENT
including the prefix (if any)

• SetDocument to set a PBDOM_DOCUMENT as the parent of the
PBDOM_ELEMENT

• SetNamespace to set the namespace of the PBDOM_ELEMENT

• SetText to set the text content of the PBDOM_ELEMENT

The relationship
between
PBDOM_ELEMENT
and
PBDOM_ATTRIBUTE

In PBDOM, an XML element's attributes are not its children. They are
properties of elements rather than having a separate identity from the elements
they are associated with.

Consider the following simple XML document :

<root attr="value1">
<child attr_1="value1" attr_2="value2"/>

</root>

The equivalent PBDOM tree is shown in Figure 14-2:

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 225

Figure 14-2: Relationship between PBDOM_ELEMENTs and
PBDOM_ATTRIBUTEs

The solid line joining root with child represents a parent-child relationship. The
dashed lines represent a "property-of" relationship between an attribute and its
owner element.

The PBDOM_ELEMENT content management methods do not apply to
PBDOM_ATTRIBUTE objects. There are separate get, set, and remove
methods for attributes.

Because they are not children of their owner elements, PBDOM does not
consider attributes as part of the overall PBDOM document tree, but they are
linked to it through their owner elements.

An attribute can contain child objects (XML text and entity reference nodes),
so an attribute forms a subtree of its own.

Because an element's attributes are not considered its children, they have no
sibling relationship among themselves as child objects do. In the sample XML
document and in Figure 14-2, attr_1 and attr_2 are not siblings. The order of
appearance of attributes inside its owner element has no significance.

Attribute setting and
creation

In PBDOM, an XML element's attribute is set using the PBDOM_ELEMENT
SetAttribute and SetAttributes methods. These methods always attempt to create
new attributes for the PBDOM_ELEMENT and attempt to replace existing
attributes with the same name and namespace URI.

If the PBDOM_ELEMENT already contains an existing attribute with the
same name and namespace URI, these methods first remove the existing
attribute and then insert a new attribute into the PBDOM_ELEMENT. Calling
the SetAttribute method can cause a PBDOM_ATTRIBUTE (representing an
existing attribute of the PBDOM_ELEMENT) to become detached from its
owner PBDOM_ELEMENT.

For example, consider the following element:

<an_element an_attr="some_value"/>

PBDOM node objects

226 PowerBuilder

If a PBDOM_ELEMENT object pbdom_an_elem represents the element
an_element and the following statement is issued, the method first attempts to
create a new attribute for the an_element element:

pbdom_an_elem.SetAttribute("an_attr",
"some_other_value")

Then, because an_element already contains an attribute with the name an_attr,
the attribute is removed. If there is an existing PBDOM_ATTRIBUTE object
that represents the original an_attr attribute, this PBDOM_ATTRIBUTE is
detached from its owner element (an_element).

For more information about attributes and namespaces, see XML namespaces
on page 243.

PBDOM_ATTRIBUTE
The PBDOM_ATTRIBUTE class represents an XML attribute modeled in
PowerScript. The PBDOM_ATTRIBUTE methods allow access to element
attributes and namespace information.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_ATTRIBUTE class has the following methods:

• GetBooleanValue, SetBooleanValue, GetDateValue, SetDateValue,
GetDateTimeValue, SetDateTimeValue, GetDoubleValue, SetDoubleValue,
GetIntValue, SetIntValue, GetLongValue, SetLongValue, GetRealValue,
SetRealValue, GetTimeValue, SetTimeValue, GetUIntValue, SetUintValue,
GetULongValue,and SetULongValue to get and set the value of the
PBDOM_ATTRIBUTE as the specified datatype

• GetNamespacePrefix and GetNamespaceURI to get the prefix and URI of
the namespace associated with the PBDOM_ATTRIBUTE

• GetOwnerElementObject and SetOwnerElementObject to get and set the
owner PBDOM_ELEMENT of the PBDOM_ATTRIBUTE

• GetQualifiedName to get the full name of the PBDOM_ATTRIBUTE
including the prefix, if any

• SetNamespace to set the namespace of the PBDOM_ATTRIBUTE

• SetText to set the text content of the PBDOM_ATTRIBUTE

Child
PBDOM_OBJECTs

A PBDOM_ATTRIBUTE contains a subtree of child PBDOM_OBJECTs. The
child objects can be a combination of PBDOM_TEXT and
PBDOM_ENTITYREFERENCE objects.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 227

The following example produces a PBDOM_ELEMENT named elem that
contains a PBDOM_ATTRIBUTE named attr:

PBDOM_ATTRIBUTE pbdom_attr
PBDOM_TEXT pbdom_txt
PBDOM_ENTITYREFERENCE pbdom_er
PBDOM_ELEMENT pbdom_elem

pbdom_elem = Create PBDOM_ELEMENT
pbdom_elem.SetName ("elem")

pbdom_attr = Create PBDOM_ATTRIBUTE
pbdom_attr.SetName("attr")
pbdom_attr.SetText("Part 1 ")

pbdom_txt = Create PBDOM_TEXT
pbdom_txt.SetText (" End.")

pbdom_er = Create PBDOM_ENTITYREFERENCE
pbdom_er.SetName("ER")

pbdom_attr.AddContent(pbdom_er)
pbdom_attr.AddContent(pbdom_txt)

pbdom_elem.SetAttribute(pbdom_attr)

The element tag in the XML looks like this:

<elem attr="Part 1 &ER; End.">

In Figure 14-3, the arrows indicate a parent-child relationship between the
PBDOM_ATTRIBUTE and the other PBDOM_OBJECTs:

PBDOM node objects

228 PowerBuilder

Figure 14-3: PBDOM_ATTRIBUTE subtree example

The Default
PBDOM_TEXT child

A PBDOM_ATTRIBUTE generally always contains at least one
PBDOM_TEXT child that might contain an empty string. This is the case
unless the RemoveContent method has been called to remove all contents of the
PBDOM_ATTRIBUTE.

The following examples show how a PBDOM_TEXT object with an empty
string can become the child of a PBDOM_ATTRIBUTE.

Example 1 The following example uses the PBDOM_ELEMENT
SetAttribute method. The name of the PBDOM_ATTRIBUTE is set to attr but
the text value is an empty string. The PBDOM_ATTRIBUTE will have one
child PBDOM_TEXT that will contain an empty string:

PBDOM_DOCUMENT pbdom_doc
PBDOM_ATTRIBUTE pbdom_attr
PBDOM_OBJECT pbdom_obj_array[]

try

pbdom_doc = Create PBDOM_DOCUMENT
pbdom_doc.NewDocument("root")

// Note that the name of the attribute is set to
// "attr" and its text value is the empty string ""
pbdom_doc.GetRootElement().SetAttribute("attr", "")

pbdom_attr = &
pbdom_doc.GetRootElement().GetAttribute("attr")

MessageBox ("HasChildren", &
string(pbdom_attr.HasChildren()))

catch(PBDOM_EXCEPTION pbdom_except)
MessageBox ("PBDOM_EXCEPTION", &

pbdom_except.GetMessage())

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 229

end try

When you use the SaveDocument method to render pbdom_doc as XML, it
looks like this:

<root attr="" />

Example 2 The following example creates a PBDOM_ATTRIBUTE and sets
its name to attr. No text value is set, but a PBDOM_TEXT object is
automatically created and attached to the PBDOM_ATTRIBUTE. This is the
default behavior for every PBDOM_ATTRIBUTE created in this way:

PBDOM_DOCUMENT pbdom_doc
PBDOM_ATTRIBUTE pbdom_attr

try
pbdom_doc = Create PBDOM_DOCUMENT
pbdom_doc.NewDocument("root")

// Create a PBDOM_ATTRIBUTE and set its name to "attr"
pbdom_attr = Create PBDOM_ATTRIBUTE
pbdom_attr.SetName("attr")

pbdom_doc.GetRootElement().SetAttribute(pbdom_attr)

MessageBox ("HasChildren", &
string(pbdom_attr.HasChildren()))

catch(PBDOM_EXCEPTION pbdom_except)
MessageBox ("PBDOM_EXCEPTION", &

pbdom_except.GetMessage())
end try

When you call the SetText method (or any of the other Set* methods except
SetNamespace), the default PBDOM_TEXT is replaced by a new
PBDOM_TEXT. If you call the SetContent method, you can replace the default
PBDOM_TEXT by a combination of PBDOM_TEXT and
PBDOM_ENTITYREFERENCE objects.

PBDOM_ENTITYREFERENCE
The PBDOM_ENTITYREFERENCE class defines behavior for an XML
entity reference node. It is a simple class intended primarily to help you insert
entity references within element nodes as well as attribute nodes.

PBDOM node objects

230 PowerBuilder

When the PBDOM_BUILDER class parses an XML document and builds up
the DOM tree, it completely expands entities as they are encountered in the
DTD. Therefore, immediately after a PBDOM_DOCUMENT object is built
using any of the PBDOM_BUILDER build methods, there are no entity
reference nodes in the resulting document tree.

A PBDOM_ENTITYREFERENCE object can be created at any time and
inserted into any document whether or not there is any corresponding DOM
entity node representing the referenced entity in the document.

Methods The PBDOM_ENTITYREFERENCE class has only methods that are inherited
from PBDOM_OBJECT.

PBDOM_CHARACTERDATA
The PBDOM_CHARACTERDATA class derives from PBDOM_OBJECT
and represents character-based content (not markup) within an XML
document. The PBDOM_CHARACTERDATA class extends
PBDOM_OBJECT with methods specifically designed for manipulating
character data.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_CHARACTERDATA class has the following methods:

• Append to append a text string or the text data of a
PBDOM_CHARACTERDATA object to the text in the current object

• SetText to set the text content of the PBDOM_CHARACTERDATA object

Parent of three
classes

The PBDOM_CHARACTERDATA class is the parent class of three other
PBDOM classes:

• PBDOM_TEXT

• PBDOM_CDATA

• PBDOM_COMMENT

The PBDOM_CHARACTERDATA class, like its parent class
PBDOM_OBJECT, is a "virtual" class (similar to a virtual C++ class) in that it
is not expected to be directly instantiated and used. For example, creating a
PBDOM_CHARACTERDATA with the CREATE statement is legal in
PowerScript, but operating on it directly by calling its SetText method is not.
The last line in this code raises an exception:

PBDOM_CHARACTERDATA pbdom_chrdata
pbdom_chrdata = CREATE PBDOM_CHARACTERDATA

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 231

pbdom_chrdata.SetText("character string") //exception!

In this example, pbdom_chrdata is declared as a
PBDOM_CHARACTERDATA but is instantiated as a PBDOM_TEXT.
Calling SetText on pbdom_chrdata is equivalent to calling the PBDOM_TEXT
SetText method:

PBDOM_CHARACTERDATA pbdom_chrdata
pbdom_chrdata = CREATE PBDOM_TEXT

pbdom_chrdata.SetText("character string")

PBDOM_TEXT
The PBDOM_TEXT class derives from PBDOM_CHARACTERDATA and
represents a DOM text node in an XML document.

Methods The PBDOM_TEXT class has no methods that are not inherited from
PBDOM_OBJECT or PBDOM_CHARACTERDATA.

Using PBDOM_TEXT
objects

PBDOM_TEXT objects are commonly used to represent the textual content of
a PBDOM_ELEMENT or a PBDOM_ATTRIBUTE. Although
PBDOM_TEXT objects are not delimited by angle brackets, they are objects
and do not form the value of a parent PBDOM_ELEMENT.

A PBDOM_TEXT object represented in graphical form in a PBDOM tree is a
leaf node and contains no child objects. For example, Figure 14-4 represents
the following PBDOM_ELEMENT:

<parent_element>some text</parent_element>

Figure 14-4: PBDOM_TEXT parent-child relationship

The arrow indicates a parent-child relationship.

PBDOM node objects

232 PowerBuilder

Occurrence of
PBDOM_TEXTs

When an XML document is first parsed, if there is no markup inside an
element's content, the text within the element is represented as a single
PBDOM_TEXT object. This PBDOM_TEXT object is the only child of the
element. If there is markup, it is parsed into a list of PBDOM_ELEMENT
objects and PBDOM_TEXT objects that form the list of children of the
element.

For example, parsing the following XML produces one PBDOM_ELEMENT
that represents <element_1> and one PBDOM_TEXT that represents the
textual content Some Text:

<root>
<element_1>Some Text</element_1>

</root>

The <element_1> PBDOM_ELEMENT has the PBDOM_TEXT object as
its only child.

Consider this document:

<root>
<element_1>
Some Text

<element_1_1>Sub Element Text</element_1_1>
More Text
<element_1_2/>

Yet More Text
</element_1>

</root>

Parsing this XML produces a PBDOM_ELEMENT that represents
<element_1> and its five children:

• A PBDOM_TEXT representing Some Text

• A PBDOM_ELEMENT representing <element_1_1/>

• A PBDOM_TEXT representing More Text

• A PBDOM_ELEMENT representing <element_1_2/>

• A PBDOM_TEXT representing Yet More Text

Adjacent
PBDOM_TEXT
objects

You can create adjacent PBDOM_TEXT objects that represent the contents of
a given element without any intervening markup. For example, suppose you
start with this document:

<root>
<element_1>Some Text</element_1>

</root>

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 233

Calling AddContent("More Text") on the element_1 PBDOM_ELEMENT
produces the following result:

<root>
<element_1>Some TextMore Text</element_1>

</root>

There are now two PBDOM_TEXT objects representing "Some Text" and
"More Text" that are adjacent to each other. There is nothing between them, and
there is no way to represent the separation between them.

Persistence of
PBDOM_TEXT
objects

The separation of adjacent PBDOM_TEXT objects does not usually persist
between DOM editing sessions. When the document produced by adding
"More Text" shown in the preceding example is reopened and reparsed, only
one PBDOM_TEXT object represents "Some TextMore Text".

PBDOM_CDATA
The PBDOM_CDATA class derives from PBDOM_TEXT and represents an
XML DOM CDATA section.

Methods The PBDOM_CDATA class has no methods that are not inherited from
PBDOM_OBJECT or PBDOM_CHARACTERDATA.

Using CDATA objects You can think of a PBDOM_CDATA object as an extended PBDOM_TEXT
object. A PBDOM_CDATA object is used to hold text that can contain
characters that are prohibited in XML, such as < and &. Their primary purpose
is to allow you to include these special characters inside a large block of text
without using entity references.

This example contains a PBDOM_CDATA object:

<some_text>
<![CDATA[(x < y) & (y < z) => x < z]]>
</some_text>

To express the same textual content as a PBDOM_TEXT object, you would
need to write this:

<some_text>
(x < y) & (y < z) => x < z
</some_text>

Although the PBDOM_CDATA class is derived from PBDOM_TEXT, a
PBDOM_CDATA object cannot always be inserted where a PBDOM_TEXT
can be inserted. For example, a PBDOM_TEXT object can be added as a child
of a PBDOM_ATTRIBUTE, but a PBDOM_CDATA object cannot.

PBDOM node objects

234 PowerBuilder

PBDOM_COMMENT
The PBDOM_COMMENT class represents a DOM comment node within an
XML document. The PBDOM_COMMENT class is derived from the
PBDOM_CHARACTERDATA class.

Methods The PBDOM_COMMENT class has no methods that are not inherited from
PBDOM_OBJECT or PBDOM_CHARACTERDATA.

Using comments Comments are useful for annotating parts of an XML document with
user-readable information.

When a document is parsed, any comments found within the document persist
in memory as part of the DOM tree. A PBDOM_COMMENT created at
runtime also becomes part of the DOM tree.

An XML comment does not usually form part of the content model of a
document. The presence or absence of comments has no effect on a document's
validity, and there is no requirement that comments be declared in a DTD.

PBDOM_PROCESSINGINSTRUCTION
The PBDOM_PROCESSINGINSTRUCTION class represents an XML
processing instruction (PI). The PBDOM_PROCESSINGINSTRUCTION
methods allow access to the processing instruction target and its data. The data
can be accessed as a string or, where appropriate, as name/value pairs.

The actual processing instruction of a PI is a string. This is so even if the
instruction is cut up into separate name="value" pairs. PBDOM, however,
does support such a PI format. If the PI data does contain these pairs, as is
commonly the case, then PBDOM_PROCESSINGINSTRUCTION parses
them into an internal list of name/value pairs.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_PROCESSINGINSTRUCTION class has the following methods:

• GetData and SetData to get and set the raw data of the
PBDOM_PROCESSINGINSTRUCTION object

• GetNames to get a list of names taken from the part of the
PBDOM_PROCESSINGINSTRUCTION data that is separated into
name="value" pairs

• GetValue, RemoveValue, and SetValue to get, remove, and set the value of
a specified name/value pair in the
PBDOM_PROCESSINGINSTRUCTION object

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 235

• GetTarget to get the target of a PBDOM_PROCESSINGINSTRUCTION.
For example, the target of the XML declaration, which is a special
processing instruction, is the string xml.

Adding pbdom170.pbx to your application
The PBDOM classes are implemented in a DLL file with the suffix PBX (for
PowerBuilder extension). The simplest way to add the PBDOM classes to a
PowerBuilder target is to import the object descriptions in the pbdom170.pbx
PBX file into a library in the PowerBuilder System Tree. You can also the add
pbdom170.pbd file, which acts as a wrapper for the classes, to the target’s
library search path.

The pbdom170.pbx and pbdom170.pbd files are placed in the
Shared\PowerBuilder directory when you install PowerBuilder. When you are
building a PBDOM application, you do not need to copy pbdom170.pbx to
another location, but you do need to deploy it with the application in a directory
in the application’s search path.

 To import the descriptions in an extension into a library:

1 In the System Tree, expand the target in which you want to use the
extension, right-click a library, and select Import PB Extension from the
pop-up menu.

2 Navigate to the location of the PBX file and click Open.

Each class in the PBX displays in the System Tree so that you can expand
it, view its properties, events, and methods, and drag and drop to add them
to your scripts.

Using PBDOM

236 PowerBuilder

After you import pbdom170.pbx, the PBDOM objects display in the System
Tree:

Using PBDOM
This section describes how to accomplish basic tasks using PBDOM classes
and methods. To check for complete code samples that you can download and
test, select Programs>Appeon>PowerBuilder 2017>Code Samples from the
Windows Start menu.

Validating the XML
Before you try to build a document from a file or string, you can test whether
the XML is well formed or, optionally, whether it conforms to a DTD or
Schema using the XMLParseFile or XMLParseString PowerScript functions. For
example, this code tests whether the XML in a file is well formed:

long ll_ret
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ValNever!)

By default, these functions display a message box if errors occur. You can also
provide a parsingerrors string argument to handle them yourself. For more
information about these functions, see their descriptions in the PowerScript
Reference or the online Help.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 237

Creating an XML document from XML
The PBDOM_BUILDER class provides three methods for creating a
PBDOM_DOCUMENT from an existing XML source. It also provides the
GetParseErrors method to get a list of any parsing errors that occur.

Using BuildFromString The following example uses an XML string and the PBDOM_BUILDER class
to create a PBDOM_DOCUMENT. First the objects are declared:

PBDOM_BUILDER pbdom_builder_new
PBDOM_DOCUMENT pbdom_doc

The objects are then instantiated using the constructor and the
PBDOM_BUILDER BuildFromString method:

pbdombuilder_new = Create PBDOM_Builder
pbdom_doc = pbdombuilder_new.BuildFromString(Xml_doc)

XML can also be loaded directly into a string variable, as in the following
example:

string Xml_str
Xml_str = "<?xml version="1.0" ?>"
Xml_str += "<WHITEPAPER>"
Xml_str += "<TITLE>Document Title</TITLE>"
Xml_str += "<AUTHOR>Author Name</AUTHOR>"
Xml_str += "<PARAGRAPH>Document text.</PARAGRAPH>"
Xml_str += "</WHITEPAPER>"

Using BuildFromFile You can create an XML file using the BuildFromFile method and a string
containing the path to a file from which to create a PBDOM_DOCUMENT:

PBDOM_BUILDER pbdombuilder_new
PBDOM_DOCUMENT pbdom_doc
pbdombuilder_new = Create PBDOM_Builder
pbdom_doc = pbdombuilder_new.BuildFromFile &

("c:\pbdom_doc_1.xml")

Using
BuildFromDataStore

The following PowerScript code fragment demonstrates how to use the
BuildFromDataStore method with a referenced DataStore object.

PBDOM_Builder pbdom_bldr
pbdom_document pbdom_doc
datastore ds

ds = Create datastore
ds.DataObject = "d_customer"
ds.SetTransObject (SQLCA)
ds.Retrieve

Using PBDOM

238 PowerBuilder

pbdom_doc = pbdom_bldr.BuildFromDataStore(ds)

Using GetParseErrors After a call to any of the Build methods, you can obtain a list of parsing and
validating errors encountered by the Build methods with the GetParseErrors
method:

PBDOM_Builder pbdom_bldr
pbdom_document pbdom_doc
string strParseErrors[]
BOOLEAN bRetTemp = FALSE

pbdom_buildr = Create PBDOM_BUILDER
pbdom_doc = pbdom_buildr.BuildFromFile("D:\temp.xml")
bRetTemp = pbdom_buildr.GetParseErrors(strParseErrors)
if bRetTemp = true then

for l = 1 to UpperBound(strParseErrors)
MessageBox ("Parse Error", strParseErrors[l])

next
end if

Parsing errors

If parsing errors are found and GetParseErrors returns true, a complete
PBDOM node tree that can be inspected might still be created.

Creating an XML document from scratch
You can create an XML document in a script using the appropriate
PBDOM_OBJECT subclasses and methods. The following code uses the
PBDOM_ELEMENT and PBDOM_DOCUMENT classes and some of their
methods to create a simple XML document.

First, the objects are declared and instantiated:

PBDOM_ELEMENT pbdom_elem_1
PBDOM_ELEMENT pbdom_elem_2
PBDOM_ELEMENT pbdom_elem_3
PBDOM_ELEMENT pbdom_elem_root
PBDOM_DOCUMENT pbdom_doc1

pbdom_elem_1 = Create PBDOM_ELEMENT
pbdom_elem_2 = Create PBDOM_ELEMENT
pbdom_elem_3 = Create PBDOM_ELEMENT

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 239

The instantiated objects are assigned names. Note that the
PBDOM_DOCUMENT object pbdom_doc1 is not named:

pbdom_elem_1.SetName("pbdom_elem_1")
pbdom_elem_2.SetName("pbdom_elem_2")
pbdom_elem_3.SetName("pbdom_elem_3")

The objects are arranged into a node tree using the AddContent method. The
AddContent method adds the referenced object as a child node under the object
from which AddContent is invoked:

pbdom_elem_1.AddContent(pbdom_elem_2)
pbdom_elem_2.AddContent(pbdom_elem_3)

Use the NewDocument method to create a new XML document. The parameter
value supplied to the NewDocument method becomes the name of the root
element. This name is then accessed from the PBDOM_DOCUMENT object
pbdom_doc1 and assigned to the PBDOM_ELEMENT object
pbdom_elem_root using the GetRootElement method:

pbdom_doc1.NewDocument("Root_Element_From_Doc_1")
pbdom_elem_root = pbdom_doc1.GetRootElement()

The ELEMENT object pbdom_elem_1 and all its child nodes are placed in the
new XML document node tree under the root element using the AddContent
method. Note that as the ancestor node pbdom_elem_1 is placed in the node
tree, all its child nodes move as well:

pbdom_elem_root.AddContent(pbdom_elem_1)

The XML document created looks like this:

<!DOCTYPE Root_Element_From_Doc_1>
<Root_Element_From_Doc_1>

<pbdom_elem_1>
<pbdom_elem_2>

<pbdom_elem_3/>
</pbdom_elem_2>

</pbdom_elem_1>
</Root_Element_From_Doc_1>

Using PBDOM

240 PowerBuilder

Accessing node data
An XML document can be read by accessing the elements of its node tree using
the appropriate PBDOM_OBJECT subclasses and methods. The following
code uses an array, the PBDOM_OBJECT, and its descendant class
PBDOM_DOCUMENT, and the GetContent and GetRootElement methods of
the PBDOM_DOCUMENT class to access node data on an XML document.

A PBDOM_DOCUMENT object named pbdom_doc contains the following
XML document:

<Root>
<Element_1>

<Element_1_1/>
<Element_1_2/>
<Element_1_3/>

</Element_1>
<Element_2/>
<Element_3/>

</Root>

The following code declares an array to hold the elements returned from the
GetContent method, which reads the PBDOM_DOCUMENT object named
pbdom_doc:

PBDOM_OBJECT pbdom_obj_array[]
...
pbdom_doc.GetContent(ref pbdom_obj_array)

The pbdom_obj_array array now contains one value representing the root
element of pbdom_doc: <Root>.

To access the other nodes in pbdom_doc, the GetRootElement method is used
with the GetContent method.

pbdom_doc.GetRootElement().GetContent &
(ref pbdom_obj_array)

The pbdom_obj_array array now contains three values corresponding to the
three child nodes of the root element of pbdom_doc: <Element_1>,
<Element_2>, and <Element_3>.

PBDOM provides other methods for accessing data, including InsertContent,
AddContent, RemoveContent, and SetContent.

Changing node
content with arrays

You can use the AddContent method to change node content:

pbdom_obj_array[3].AddContent("This is Element 3.")

This line of code changes the node tree as follows:

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 241

<Root>
<Element_1>

<Element_1_1/>
<Element_1_2/>
<Element_1_3/>

</Element_1>
<Element_2/>
<Element_3>This is Element 3.</Element_3>

</Root>

Arrays and object references

When you use a method such as the GetContent method of the
PBDOM_DOCUMENT class to return an array of PBDOM_OBJECT
references, the references are to instantiated PBDOM objects. If you modify
any of these objects through its array item, the changes are permanent and are
reflected in any other arrays that hold the same object reference.

Manipulating the node-tree hierarchy
You can restructure an XML node tree by rearranging its nodes. One means of
manipulating nodes involves detaching a child node from its parent node. This
can be accomplished with the Detach method, as in the following example.

The root element of a PBDOM_DOCUMENT object named pbdom_doc is
obtained using the GetRootElement method:

pbdom_obj = pbdom_doc.GetRootElement()

The root element is detached from the PBDOM_DOCUMENT object, which
is the parent node of the root element:

pbdom_obj.Detach()

PBDOM provides the SetParentObject method to make an object a child of
another object.

Checking for parent
node

The GetParentObject method can be used to determine whether an element has
a parent object, as in the following example:

pbdom_parent_obj = pbdom_obj.GetParentObject()
if not IsValid(pbdom_parent_obj) then

MessageBox ("Invalid", "Root Element has no Parent")
end if

Handling PBDOM exceptions

242 PowerBuilder

If the object on which GetParentObject is called has no parent object, the
function returns NULL.

PBDOM provides similar methods that return information about an element’s
place in an XML node tree. These methods include HasChildren, which returns
a boolean indicating whether an object has child objects, and
IsAncestorObjectOf, which indicates whether an object is the ancestor of
another object.

Handling PBDOM exceptions
PBDOM defines an exception class, PBDOM_EXCEPTION, derived from the
standard PowerBuilder Exception class. The standard Text property of the
Exception class can be used to obtain more detail on the nature of the exception
being thrown. The class extends the PowerBuilder Exception class with one
method, GetExceptionCode, that returns the unique code that identifies the
exception being thrown.

For a list of exception codes, see the PowerBuilder Extension Reference or the
topic PBDOM exceptions in the online Help.

PBDOM is a PowerBuilder extension, built using PBNI. The extension itself
might throw a PBXRuntimeError exception. In the following example, the
try-catch block checks first for a PBDOM exception, then for a
PBXRuntimeError.

The example builds a PBDOM_DOCUMENT from a passed-in file name and
uses a user-defined function called ProcessData to handle the DOM nodes.
ProcessData could be a recursive function that extracts information from the
DOM elements for further processing:

Long ll_ret

ll_ret = XMLParseFile(filename, ValNever!)
if ll_ret < 0 then return

PBDOM_Builder domBuilder

TRY
domBuilder = CREATE PBDOM_Builder
PBDOM_Document domDoc
PBDOM_Element root
domDoc = domBuilder.BuildFromFile(filename)

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 243

IF IsValid(domDoc) THEN
IF domDoc.HasChildren() THEN

PBDOM_Object data[]
IF domDoc.GetContent(data) THEN

Long ll_index, ll_count
ll_count = UpperBound(data)
FOR ll_index = 1 TO ll_count

ProcessData(data[ll_index], 0)
NEXT

END IF
END IF

END IF

CATCH (PBDOM_Exception pbde)
MessageBox("PBDOM Exception", pbde.getMessage())

CATCH (PBXRuntimeError re)
MessageBox("PBNI Exception", re.getMessage())

END TRY

XML namespaces
XML namespaces provide a way to create globally unique names to distinguish
between elements and attributes with the same name but of different
terminologies. For example, in an XML invoice document for a bookstore, the
name "date" could be used by accounting for the date of the order and by order
fulfillment for the date of publication.

An XML namespace is identified by a Uniform Resource Identifier (URI), a
short string that uniquely identifies resources on the Web. The elements and
attributes in each namespace can be uniquely identified by prefixing the
element or attribute name (the local name) with the URI of the namespace.

Associating a prefix
with a namespace

You declare an XML namespace using xmlns as part of a namespace
declaration attribute. With the namespace declaration attribute, you can
associate a prefix with the namespace.

For example, the following namespace declaration attribute declares the
http://www.pre.com namespace and associates the prefix pre with this
namespace:

xmlns:pre="http://www.pre.com"

XML namespaces

244 PowerBuilder

Default XML
namespace

If an XML namespace declaration does not specify a prefix, the namespace
becomes a default XML namespace. For example, the following element,
digicom, declares the namespace http://www.digital_software.com:

<digicom xmlns="http://www.digital_software.com" />

The namespace http://www.digital_software.com is the in-scope default
namespace for the element digicom and any child elements that digicom might
contain. The child elements of digicom will automatically be in this namespace.

The NONAMESPACE
declaration

The following namespace declaration is known as the NONAMESPACE
declaration:

xmlns=""

The containing element and its child elements are declared to be in no
namespace. An element that is in the NONAMESPACE namespace has its
namespace prefix and URI set to empty strings.

Initial state When a PBDOM_ELEMENT or a PBDOM_ATTRIBUTE is first created, it
has no name, and the namespace information is by default set to the
NONAMESPACE namespace (that is, its namespace prefix and URI are both
empty strings). The SetName method is used to set the local name and the
SetNamespace method is used to set the namespace prefix and URI.

The name is required

The name is a required property of a PBDOM_ELEMENT and
PBDOM_ATTRIBUTE, but the namespace information is not.

Retrieving from a
parsed document

If a PBDOM_ELEMENT or PBDOM_ATTRIBUTE is retrieved
programmatically from a parsed document, then its name and namespace
information are inherited from the Element or Attribute contained in the parsed
document. However, even after parsing, the name and namespace information
of the PBDOM_ELEMENT and PBDOM_ATTRIBUTE can be further
modified with the SetName and SetNamespace methods.

The name and namespace information are stored separately internally.
Changing the name of a PBDOM_ELEMENT or PBDOM_ATTRIBUTE does
not affect its namespace information, and changing its namespace information
has no effect on its name.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 245

Setting the name and namespace of a PBDOM_ATTRIBUTE
The W3C "Namespaces in XML" specification (in section 5.3) places
restrictions on setting the name and namespace of a PBDOM_ATTRIBUTE.
No tag can contain two attributes with identical names, or with qualified names
that have the same local name and have prefixes that are bound to identical
namespace names.

The specification provides the following examples of illegal and legal
attributes:

<!-- http://www.w3.org is bound to n1 and n2 -->
<x xmlns:n1="http://www.w3.org"

xmlns:n2="http://www.w3.org" >
<bad a="1" a="2" />
<bad n1:a="1" n2:a="2" />

</x>

<!-- http://www.w3.org is bound to n1 and is the default
-->
<x xmlns:n1="http://www.w3.org"

xmlns="http://www.w3.org" >
<good a="1" b="2" />
<good a="1" n1:a="2" />

</x>

In the first example, <bad a="1" a="2" /> violates the rule that no tag can
contain two attributes with identical names. In the second tag, the attributes
have the same local name but different prefixes, so that their names are
different. However, their prefixes point to the same namespace URI,
http://www.w3.org, so it is illegal to place them inside the same owner element.

PBDOM scenarios The following scenarios illustrate how PBDOM conforms to these
requirements.

• When the PBDOM_ATTRIBUTE SetName method is invoked:

If the PBDOM_ATTRIBUTE pbdom_attr1 has an owner
PBDOM_ELEMENT that contains an existing PBDOM_ATTRIBUTE
with the same name that is to be set for pbdom_attr1 and has the same
namespace URI as pbdom_attr1, the EXCEPTION_INVALID_NAME
exception is thrown.

• When the PBDOM_ATTRIBUTE SetNamespace method is invoked:

XML namespaces

246 PowerBuilder

If the PBDOM_ATTRIBUTE pbdom_attr1 has an owner
PBDOM_ELEMENT that contains an existing PBDOM_ATTRIBUTE
with the same name as pbdom_attr1 and the same namespace URI that is
to be set for pbdom_attr1, the EXCEPTION_INVALID_NAME exception
is thrown.

• When the PBDOM_ELEMENT SetAttribute(pbdom_attribute
pbdom_attribute_ref) method is invoked:

If the PBDOM_ELEMENT already contains an attribute that has the same
name and namespace URI as the input PBDOM_ATTRIBUTE, the
existing attribute is replaced by the input PBDOM_ATTRIBUTE. The
existing attribute is thus removed (detached) from the owner element.

• When the PBDOM_ELEMENT SetAttributes(pbdom_attribute
pbdom_attribute_array[]) method is invoked:

If any two PBDOM_ATTRIBUTE objects in the array have the same
name and namespace URI, the EXCEPTION_INVALID_NAME
exception is thrown. If there is no name or namespace conflict within the
array, all the existing attributes of the PBDOM_ELEMENT are replaced
by the PBDOM_ATTRIBUTE objects in the array.

Note

All the above scenarios apply to PBDOM_ATTRIBUTE objects that are
contained in the NONAMESPACE namespace.

• When the PBDOM_ELEMENT SetAttribute(string strName, string
strValue) method is invoked:

A new PBDOM_ATTRIBUTE with the specified name and value is
created and set into the PBDOM_ELEMENT. If the PBDOM_ELEMENT
already contains an attribute that has the same name and that is contained
within the NONAMESPACE namespace, it is removed (detached) from
the PBDOM_ELEMENT.

• When the PBDOM_ELEMENT SetAttribute(string strName, string
strValue, string strNamespacePrefix, string strNamespaceUri, boolean
bVerifyNamespace) method is invoked:

A new PBDOM_ATTRIBUTE with the specified name, value, and
namespace information is created and set into the PBDOM_ELEMENT. If
the PBDOM_ELEMENT already contains a PBDOM_ATTRIBUTE that
has the same name and namespace URI as the input namespace URI, it is
removed (detached) from the PBDOM_ELEMENT.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 247

Example The following example demonstrates the impact of setting a
PBDOM_ATTRIBUTE for a PBDOM_ELEMENT where the
PBDOM_ELEMENT already contains an attribute of the same name and
namespace URI as the input PBDOM_ATTRIBUTE.

The example creates a PBDOM_DOCUMENT based on the following
document:

<root xmlns:pre1="http://www.pre.com"
xmlns:pre2="http://www.pre.com">

<child1 pre1:a="123"/>
</root>

Then it creates a PBDOM_ATTRIBUTE object and set its name to a and its
prefix and URI to pre2 and http://www.pre.com. The bVerifyNamespace
argument is set to FALSE because this PBDOM_ATTRIBUTE has not been
assigned an owner PBDOM_ELEMENT yet, so that the verification for a
predeclared namespace would fail. The text value is set to 456.

The child1 element already contains an attribute named a that belongs to the
namespace http://www.pre.com, as indicated by the prefix pre1. The new
PBDOM_ATTRIBUTE uses the prefix pre2, but it represents the same
namespace URI, so setting the new PBDOM_ATTRIBUTE to child1
successfully replaces the existing pre1:a with the new PBDOM_ATTRIBUTE
pre2:a.

PBDOM_BUILDER pbdom_buildr
PBDOM_DOCUMENT pbdom_doc
PBDOM_ATTRIBUTE pbdom_attr

string strXML = "<root
xmlns:pre1=~"http://www.pre.com~"
xmlns:pre2=~"http://www.pre.com~"><child1
pre1:a=~"123~"/></root>"

try

pbdom_buildr = Create PBDOM_BUILDER
pbdom_doc = pbdom_buildr.BuildFromString (strXML)

// Create a PBDOM_ATTRIBUTE and set its properties
pbdom_attr = Create PBDOM_ATTRIBUTE
pbdom_attr.SetName ("a")
pbdom_attr.SetNamespace ("pre2", &

"http://www.pre.com", false)
pbdom_attr.SetText("456")

XML namespaces

248 PowerBuilder

// Attempt to obtain the child1 element and
// set the new attribute to it
pbdom_doc.GetRootElement(). &

GetChildElement("child1").SetAttribute(pbdom_attr)

pbdom_doc.SaveDocument &
("pbdom_elem_set_attribute_1.xml")

catch (PBDOM_EXCEPTION except)
MessageBox ("PBDOM_EXCEPTION", except.GetMessage())

end try

The XML output from SaveDocument looks like the following :

<root xmlns:pre1="http://www.pre.com"
xmlns:pre2="http://www.pre.com">

<child1 pre2:a="456"/>
</root>

Application Techniques 249

C H A P T E R 1 5 Manipulating Graphs

About this chapter This chapter describes how to write code that allows you to access and
change a graph in your application at runtime.

Contents

Using graphs
In PowerBuilder, there are two ways to display graphs:

• In a DataWindow, using data retrieved from the DataWindow data
source

• In a graph control in a window or user object, using data supplied by
your application code

This chapter discusses the graph control and describes how your
application code can supply data for the graph and manipulate its
appearance.

For information about graphs in DataWindows, see the DataWindow
Programmers Guide and the DataWindow Reference.

To learn about designing graphs and setting graph properties in the
painters, see the PowerBuilder Users Guide.

Topic Page

Using graphs 249

Populating a graph with data 251

Modifying graph properties 253

Accessing data properties 255

Using point and click 258

Using graphs

250 PowerBuilder

Working with graph controls in code
Graph controls in a window can be enabled or disabled, visible or invisible, and
can be used in drag and drop. You can also write code that uses events of graph
controls and additional graph functions.

Properties of graph
controls

You can access (and optionally modify) a graph by addressing its properties in
code at runtime. There are two kinds of graph properties:

• Properties of the graph definition itself These properties are initially
set in the painter when you create a graph. They include a graph’s type,
title, axis labels, whether axes have major divisions, and so on. For 3D
graphs, this includes the Render 3D property that uses transparency rather
than overlays to enhance a graph’s appearence and give it a more
sophisticated look.

• Properties of the data These properties are relevant only at runtime,
when data has been loaded into the graph. They include the number of
series in a graph (series are created at runtime), colors of bars or columns
for a series, whether the series is an overlay, text that identifies the
categories (categories are created at runtime), and so on.

Events of graph
controls

Graph controls have the events listed in Table 15-1.

Table 15-1: Graph control events

So, for example, you can write a script that is invoked when a user clicks a
graph or drags an object on a graph (as long as the graph is enabled).

Functions for graph
controls

You use the PowerScript graph functions in Table 15-2 to manipulate data in a
graph.

Clicked DragLeave

Constructor DragWithin

Destructor GetFocus

DoubleClicked LoseFocus

DragDrop Other

DragEnter RButtonDown

CHAPTER 15 Manipulating Graphs

Application Techniques 251

Table 15-2: PowerScript graph functions

Populating a graph with data
This section shows how you can populate an empty graph with data.

Using AddSeries You use AddSeries to create a series. AddSeries has this syntax:

graphName.AddSeries (seriesName)

AddSeries returns an integer that identifies the series that was created. The first
series is numbered 1, the second is 2, and so on. Typically you use this number
as the first argument in other graph functions that manipulate the series.

So to create a series named Stellar, code:

int SNum
SNum = gr_1.AddSeries("Stellar")

Using AddData You use AddData to add data points to a specified series. AddData has this
syntax:

graphName.AddData (seriesNumber, value, categoryLabel)

The first argument to AddData is the number assigned by PowerBuilder to the
series. So to add two data points to the Stellar series, whose number is stored
by the variable SNum (as shown above), code:

Function Action

AddCategory Adds a category

AddData Adds a data point

AddSeries Adds a series

DeleteCategory Deletes a category

DeleteData Deletes a data point

DeleteSeries Deletes a series

ImportClipboard Copies data from the clipboard to a graph

ImportFile Copies the data in a text file to a graph

ImportString Copies the contents of a string to a graph

InsertCategory Inserts a category before another category

InsertData Inserts a data point before another data point in a series

InsertSeries Inserts a series before another series

ModifyData Changes the value of a data point

Reset Resets the graph’s data

Populating a graph with data

252 PowerBuilder

gr_1.AddData(SNum, 12, "Q1") // Category is Q1
gr_1.AddData(SNum, 14, "Q2") // Category is Q2

Getting a series number

You can use the FindSeries function to determine the number PowerBuilder has
assigned to a series. FindSeries returns the series number. This is useful when
you write general-purpose functions to manipulate graphs.

An example Say you want to graph quarterly printer sales. Here is a script that populates the
graph with data:

gr_1.Reset(All!) // Resets the graph.
// Create first series and populate with data.

int SNum
SNum = gr_1.AddSeries("Stellar")
gr_1.AddData(SNum, 12, "Q1") // Category is Q1.
gr_1.AddData(SNum, 14, "Q2") // Category is Q2.
gr_1.Adddata(SNum, 18, "Q3") // Category is Q3.
gr_1.AddData(SNum, 25, "Q4") // Category is Q4.
// Create second series and populate with data.
SNum = gr_1.AddSeries("Cosmic")

// Use the same categories as for series 1 so the data
// appears next to the series 1 data.
gr_1.AddData(SNum, 18, "Q1")
gr_1.AddData(SNum, 24, "Q2")
gr_1.Adddata(SNum, 38, "Q3")
gr_1.AddData(SNum, 45, "Q4")

// Create third series and populate with data.
SNum = gr_1.AddSeries("Galactic")
gr_1.AddData(SNum, 44, "Q1")
gr_1.AddData(SNum, 44, "Q2")
gr_1.Adddata(SNum, 58, "Q3")
gr_1.AddData(SNum, 65, "Q4")

CHAPTER 15 Manipulating Graphs

Application Techniques 253

Here is the resulting graph:

You can add, modify, and delete data in a graph in a window through graph
functions anytime during execution.

For more information For complete information about each graph function, see the PowerScript
Reference.

Modifying graph properties
When you define a graph in the Window or User Object painter, you specify its
behavior and appearance. For example, you might define a graph as a column
graph with a certain title, divide its Value axis into four major divisions, and so
on. Each of these entries corresponds to a property of a graph. For example, all
graphs have an enumerated attribute GraphType, which specifies the type of
graph.

When dynamically changing the graph type

If you change the graph type, be sure to change other properties as needed to
define the new graph properly.

You can change these graph properties at runtime by assigning values to the
graph’s properties in scripts. For example, to change the type of the graph
gr_emp to Column, you could code:

gr_emp.GraphType = ColGraph!

To change the title of the graph at runtime, you could code:

gr_emp.Title = "New title"

Modifying graph properties

254 PowerBuilder

How parts of a graph are represented
Graphs consist of parts: a title, a legend, and axes. Each of these parts has a set
of display properties. These display properties are themselves stored as
properties in a subobject (structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies the title’s text.
Graphs also have a property TitleDispAttr, of type grDispAttr, which itself
contains properties that specify all the characteristics of the title text, such as
the font, size, whether the text is italicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These
properties are stored in a subobject (structure) of Graph called grAxis. For
example, graphs have a property Values of type grAxis, which contains
properties that specify the Value axis’s properties, such as whether to use
autoscaling of values, the number of major and minor divisions, the axis label,
and so on.

Here is a representation of the properties of a graph:

Graph
int Height
int Depth
grGraphType GraphType
boolean Border
string Title
…

grDispAttr TitleDispAttr, LegendDispAttr, PieDispAttr
string FaceName
int TextSize
boolean Italic
…

grAxis Values, Category, Series
boolean AutoScale
int MajorDivisions
int MinorDivisions
string Label
…

Referencing parts of a graph
You use dot notation to reference these display properties. For example, one of
the properties of a graph’s title is whether the text is italicized or not. That
information is stored in the boolean Italic property in the TitleDispAttr
property of the graph.

CHAPTER 15 Manipulating Graphs

Application Techniques 255

For example, to italicize title of graph gr_emp, code:

gr_emp.TitleDispAttr.Italic = TRUE

Similarly, to turn on autoscaling of a graph’s Values axis, code:

gr_emp.Values.Autoscale = TRUE

To change the label text for the Values axis, code:

gr_emp.Values.Label = "New label"

To change the alignment of the label text in the Values axis, code:

gr_emp.Values.LabelDispAttr.Alignment = Left!

For a complete list of graph properties, see Objects and Controls or use the
Browser.

For more about the Browser, see the PowerBuilder Users Guide.

Accessing data properties
To access properties related to a graph’s data during execution, you use
PowerScript graph functions. The graph functions related to data fall into
several categories:

• Functions that provide information about a graph’s data

• Functions that save data from a graph

• Functions that change the color, fill patterns, and other visual properties of
data

How to use the
functions

To call functions for a graph in a graph control, use the following syntax:

graphControlName.FunctionName (Arguments)

For example, to get a count of the categories in the window graph gr_printer,
code:

Ccount = gr_printer.CategoryCount()

Different syntax for graphs in DataWindows

The syntax for the same functions is more complex when the graph is in a
DataWindow, like this:

Accessing data properties

256 PowerBuilder

DataWindowName.FunctionName ("graphName", otherArguments…)

For more information, see the DataWindow Programmers Guide.

Getting information about the data
The PowerScript functions in Table 15-3 allow you to get information about
data in a graph at runtime.

CHAPTER 15 Manipulating Graphs

Application Techniques 257

Table 15-3: PowerScript functions for information at runtime

Saving graph data
The PowerScript functions in Table 15-4 allow you to save data from the graph.

Function Information provided

CategoryCount The number of categories in a graph

CategoryName The name of a category, given its number

DataCount The number of data points in a series

FindCategory The number of a category, given its name

FindSeries The number of a series, given its name

GetData The value of a data point, given its series and position
(superseded by GetDataValue, which is more flexible)

GetDataLabelling Indicates whether the data at a given data point is labeled
in a DirectX 3D graph

GetDataieExplode The percentage by which a pie slice is exploded

GetDataStyle The color, fill pattern, or other visual property of a
specified data point

GetDataTransparency Indicates the transparency value of a given data point in a
DirectX 3D graph

GetDataValue The value of a data point, given its series and position

GetSeriesLabelling Indicates whether a data series has a label in a DirectX 3D
graph

GetSeriesStyle The color, fill pattern, or other visual property of a
specified series

GetSeriesTransparency Indicates the transparency value of a data series in a
DirectX 3D graph

ObjectAtPointer The graph element over which the mouse was positioned
when it was clicked

SeriesCount The number of series in a graph

SeriesName The name of a series, given its number

Using point and click

258 PowerBuilder

Table 15-4: PowerScript functions for saving graph data

Modifying colors, fill patterns, and other data
The PowerScript functions in Table 15-5 allow you to modify the appearance
of data in a graph.

Table 15-5: PowerScript functions for changing appearance of data

Using point and click
Users can click graphs during execution. PowerScript provides a function
called ObjectAtPointer that stores information about what was clicked. You can
use this function in a number of ways in Clicked scripts. For example, you can
provide the user with the ability to point and click on a data value in a graph
and see information about the value in a message box. This section shows you
how.

Function Action

Clipboard Copies a bitmap image of the specified graph to the
clipboard

SaveAs Saves the data in the underlying graph to the clipboard or to
a file in one of a number of formats

Function Action

ResetDataColors Resets the color for a specific data point

SetDataLabelling Sets the label for a data point in a DirectX 3D graph

SetDataPieExplode Explodes a slice in a pie graph

SetDataStyle Sets the color, fill pattern, or other visual property for a
specific data point

SetDataTransparency Sets the transparency value for a data point in a DirectX
3D graph

SetSeriesLabelling Sets the label for a series in a DirectX 3D graph

SetSeriesStyle Sets the color, fill pattern, or other visual property for a
series

SetSeriesTransparency Sets the transparency value for a series in a DirectX 3D
graph

CHAPTER 15 Manipulating Graphs

Application Techniques 259

Clicked events and
graphs

To cause actions when a user clicks a graph, you write a Clicked script for the
graph control. The control must be enabled. Otherwise, the Clicked event does
not occur.

Using ObjectAtPointer ObjectAtPointer has the following syntax.

graphName.ObjectAtPointer (seriesNumber, dataNumber)

You should call ObjectAtPointer in the first statement of a Clicked script.

When called, ObjectAtPointer does three things:

• It returns the kind of object clicked on as a grObjectType enumerated
value. For example, if the user clicks on a data point, ObjectAtPointer
returns TypeData!. If the user clicks on the graph’s title, ObjectAtPointer
returns TypeTitle!.

For a complete list of the enumerated values of grObjectType, open the
Browser and click the Enumerated tab.

• It stores the number of the series the pointer was over in the variable
seriesNumber, which is an argument passed by reference.

• It stores the number of the data point in the variable dataNumber, also an
argument passed by reference.

After you have the series and data point numbers, you can use other graph
functions to get or provide information. For example, you might want to report
to the user the value of the clicked data point.

Example Assume there is a graph gr_sale in a window. The following script for its
Clicked event displays a message box:

• If the user clicks on a series (that is, if ObjectAtPointer returns
TypeSeries!), the message box shows the name of the series clicked on.
The script uses the function SeriesName to get the series name, given the
series number stored by ObjectAtPointer.

• If the user clicks on a data point (that is, if ObjectAtPointer returns
TypeData!), the message box lists the name of the series and the value
clicked on. The script uses GetData to get the data’s value, given the data’s
series and data point number:

int SeriesNum, DataNum
double Value
grObjectType ObjectType
string SeriesName, ValueAsString

// The following function stores the series number
// clicked on in SeriesNum and stores the number

Using point and click

260 PowerBuilder

// of the data point clicked on in DataNum.
ObjectType = &

gr_sale.ObjectAtPointer (SeriesNum, DataNum)

IF ObjectType = TypeSeries! THEN
SeriesName = gr_sale.SeriesName (SeriesNum)
MessageBox("Graph", &

"You clicked on the series " + SeriesName)

ELSEIF ObjectType = TypeData! THEN
Value = gr_sale. GetData (SeriesNum, DataNum)
ValueAsString = String(Value)
MessageBox("Graph", &

gr_sale. SeriesName (SeriesNum) + &
" value is " + ValueAsString)

END IF

Application Techniques 261

C H A P T E R 1 6 Implementing Rich Text

About this chapter This chapter explains how to use rich text in an application, either in a
RichText DataWindow object or in a RichTextEdit control.

Contents

Before you begin This chapter assumes you know how to create RichText DataWindow
objects and RichTextEdit controls, as described in the PowerBuilder
Users Guide. For information about using the RichText edit style in
DataWindow objects that do not have the RichText presentation style, see
the chapter on “Displaying and Validating Data” in the Users Guide.

Using rich text in an application
Rich text format (RTF) is a standard for specifying formatting instructions
and document content in a single ASCII document. An editor that supports
rich text format interprets the formatting instructions and displays the text
with formatting.

In an application, you may want to:

• Provide a window for preparing rich text documents

Although not a full-fledged word processor, the RichTextEdit control
allows the user to apply formatting to paragraphs, words, and
characters.

• Create a mail-merge application

You or the user can set up boilerplate text with input fields associated
with database data.

• Display reports with formatted text

Topic Page

Using rich text in an application 261

Using a RichText DataWindow object 263

Using a RichTextEdit control 266

Rich text and the end user 283

Using rich text in an application

262 PowerBuilder

A RichText DataWindow object is designed for viewing data, rather than
entering data. It does not have the edit styles of other DataWindow
presentation styles.

• Store rich text as a string in a database and display it in a RichTextEdit
control

Sources of rich text
Any word processor You can prepare rich text in any word processor that can save or export rich text

format.

Input fields in
PowerBuilder only

Although many word processors support some kinds of fields, the fields are
usually incompatible with other rich text interpreters. If you want to specify
input fields for a PowerBuilder application, you will have to insert them using
the PowerBuilder RichTextEdit control.

Rich text in the
database

Since rich text is represented by ASCII characters, you can also store rich text
in a string database column or string variable. You can retrieve rich text from
a string database column and use the PasteRTF function to display the text with
formatting in a RichTextEdit control.

Selecting a rich text editor
Two rich text editors You can select from the two rich text editors provided by Appeon

PowerBuilder. The selected rich text editor will be applicable to the
RichTextEdit control, the RichText DataWindow object, and the RichText edit
style.

• The built-in rich text editor (default editor)

Starting from PowerBuilder 2017, a new built-in rich text editor is
provided for free use by the PowerBuilder developer and the InfoMaker
developer. This new editor provides the same functions/events/properties
as the old one.

• The old rich text editor (TX Text Control editor)

This is the editor used in PowerBuilder 12.6 and earlier versions. If you
want to continue using and distributing this editor in PowerBuilder 2017,
you will have to purchase it separately from the vendor
(http://www.textcontrol.com) and follow the vendor’s documentation to
package and distribute it to your users.

CHAPTER 16 Implementing Rich Text

Application Techniques 263

Only TX Text Control ActiveX X14 (Professional or Enterprise edition) is
supported by PowerBuilder 2017. Standard edition is not supported.

 To select a rich text editor:

1 In the Application painter, select the General tab page.

2 On the General tab page, click the Additional Properties button to display
the Application properties dialog box.

3 In the Application properties dialog box, select the RichTextEdit Control
tab, and then select a rich text editor.

Built-in Control is selected by default.

4 Input a valid serial number if you selected to use the TX Text Control
ActiveX editor.

5 Click OK.

Deploying a rich text application
To deploy a rich text application to a server or client machine:

• If using the built-in text editor, you can use the PowerBuilder Runtime
Packager to deploy the required rich text files with your application.

For more information on the runtime packager, see PowerBuilder
Runtime Packager on page 536.

• If using the old editor (TX Text Control ActiveX), you must follow the
vendor’s documentation to deploy the required files with your application.

Using a RichText DataWindow object
This section discusses:

• How scrolling differs from other DataWindow styles

• Problems you may encounter with default values for new rows

• What happens when the user makes changes

Using a RichText DataWindow object

264 PowerBuilder

Scrolling In a RichText DataWindow object, the rich text can consist of more than one
page. A row of data can be associated with several pages, making a row larger
than a page. In other DataWindow styles, a page consists of one or more than
one row—a page is larger than a row.

For a RichText DataWindow object, the scrolling functions behave differently
because of this different meaning for a page:

• ScrollNextRow and ScrollPriorRow still scroll from row to row so that
another row’s data is displayed within the document template.

• ScrollNextPage and ScrollPriorPage scroll among pages of the document
rather than pages of rows.

Page flow As you scroll, the pages appear to flow from one row to the next.
Scrolling to the next page when you are on the last page of the document takes
you to the first page for the next row. The user gets the effect of scrolling
through many instances of the document.

New rows: default
data and validation
rules

Input fields are invisible when they have no value. Before data is retrieved,
PowerBuilder displays question marks (??) in fields to make them visible. For
new rows, PowerBuilder assigns an initial value based on the datatype.

If you have specified an initial value for the column, PowerBuilder uses that
value; if no value is specified, PowerBuilder uses spaces for string columns or
zero for numeric columns.

Possible validation errors If the default initial value provided by
PowerBuilder does not satisfy the validation rule, the user gets a validation
error as soon as the new row is inserted. To avoid this, you should specify
initial values that meet your validation criteria.

When the user makes
changes

Display only When you check Display Only on the General property page
for the Rich Text Object, the user cannot make any changes to the data or the
rich text.

If you leave the pop-up menu enabled, the user can turn off the display-only
setting and make the DataWindow object editable.

Input fields In an editable DataWindow object, users change the value of a
column input field by displaying the input field’s property sheet and editing the
Data Value text box. For a computed field input field, the Data Value text box
is read-only.

CHAPTER 16 Implementing Rich Text

Application Techniques 265

You can let the user display input field names instead of data. You might do this
if you were providing an editing environment in which users were developing
their own RichText DataWindow object. However, the RichTextEdit control is
better suited to a task like this, because you have more scripting control over
the user’s options.

Rich text If users edit the text or formatting, they are changing the document
template. The changes are seen for every row.

The changes apply to that session only, unless you take extra steps to save the
changes and restore them.

To save the changes, you can write a script that uses the CopyRTF function to
get all the text, including the named input fields but not the row data, and save
the contents of that string in a file or database. Whenever users view the
RichText DataWindow object, you can restore their latest version or let them
return to the original definition of the DataWindow object’s text.

Functions for RichText
DataWindow objects

The DataWindow control has many functions.

Functions that behave the same DataWindow control functions that
operate on data, such as Update or Retrieve, have the same behavior for all
types of DataWindow objects.

When the object in the control is a RichText DataWindow object, some of the
functions do not apply or they behave differently.

Functions that do not apply Some functions are not applicable when the
object is a RichText DataWindow object. The following functions return an
error or have no effect:

• Functions for graph and crosstab DataWindow objects

• Functions for grouping: GroupCalc, FindGroupChange

• Functions for code tables: GetValue, SetValue

• Functions for selecting rows: SelectRow, SetRowFocusIndicator,
GetSelectedRow

• Functions that affect column and detail band appearance: SetBorderStyle,
SetDetailHeight

• ObjectAtPointer

• OLEActivate

Functions that behave differently Some functions have different behavior
when the object is a RichText DataWindow object:

• Functions for the clipboard: Copy, Clear, and so on

Using a RichTextEdit control

266 PowerBuilder

• Functions for editable text (they apply to the edit control in other
DataWindow styles): LineCount, Position, SelectText, and so on

• Find and FindNext (the arguments you specify for Find determine whether
you want the general DataWindow Find function or the RichText version)

• Scrolling

Using a RichTextEdit control
A RichTextEdit control in a window or user object lets the user view or edit
formatted text. Functions allow you to manipulate the contents of the control
by inserting text, getting the selected text, managing input fields, and setting
properties for all or some of the contents.

You define RichTextEdit controls in the Window painter or the User Object
painter.

Giving the user control
In the Window or User Object painter, on the Document page of the
RichTextEdit control’s property sheet, you can enable or disable the features in
Table 16-1.

CHAPTER 16 Implementing Rich Text

Application Techniques 267

Table 16-1: RichTextEdit control features

You can also specify a name for the document that is displayed in the print
queue. The document name has nothing to do with a text file you might insert
in the control.

Users can change the
available tools

When users display the property sheet for the rich text document, they can
change the tools that are available to them, which you might not want. For
example, they might:

• Remove the display-only setting so that they can begin editing a document
you set up as protected

• Turn off the tool, ruler, or status bars

• View input fields’ names instead of data

• Disable the pop-up menu so that they cannot restore tools they turn off

You might want to guard against some of these possibilities. You can reset the
property values for these settings in a script. For example, this statement
restores the pop-up menu when triggered in an event script:

rte_1.PopMenu = TRUE

Undoing changes The user can press Ctrl+Z to undo a change. You can also program a button or
menu item that calls the Undo function.

Features Details

Editing bars A toolbar for text formatting, a ruler bar, and a status bar.

Pop-up menu Provides access to the InsertFile and clipboard
commands, as well as the property sheet.

Display of nonprinting
characters

Carriage returns, tabs, and spaces.

Display of fields Whether fields are visible at all, or whether the field name
or data displays. You can also change the background
color for fields.

Wordwrap Affects newly entered text only.

If the user enters new text in an existing paragraph, word
wrap is triggered when the text reaches the right edge of
the control. To get existing text to wrap within the
display, the user can tweak the size of the control (if it is
resizable).

Print margins Print margins can be set relative to the default page size.

Using a RichTextEdit control

268 PowerBuilder

If Undo is called repeatedly, it continues to undo changes to a maximum of 50
changes. The script can check whether there are changes that can be undone
(meaning the maximum depth has not been reached) by calling the CanUndo
function:

IF rte_1.CanUndo() THEN
rte_1.Undo()

ELSE
MessageBox("Stop", "Nothing to undo.")

END IF

Text for the control
In the Window painter, you do not enter text in the control. Instead, in your
application you can programmatically insert text or let the user enter text using
the editing tools.

Setting a default font

The Font tab page in the Properties view for a RichTextEdit control lets you set
default font characteristics for the control. When the control first displays at
runtime, and you include the toolbar with a RichTextEdit control, the toolbar
indicates the default font characteristics that you selected on the Font tab page
at design time. Although the application user can change fonts at runtime, or
you can use PowerScript to change the font style, you can set the default font
at design time only.

Inserting text From a file If you have prepared a text file for your application, you can
insert it with the InsertDocument function. The file can be rich text or ASCII:

li_rtn = rte_1.InsertDocument &
("c:\mydir\contacts.rtf", FALSE, FileTypeRichText!)

The boolean clearflag argument lets you specify whether to insert the file into
existing text or replace it. If you want to include headers and footers from a
document that you insert, you must replace the existing text by setting the
clearflag argument to TRUE. (The InsertFile command on the runtime pop-up
menu is equivalent to the InsertDocument function with the clearflag argument
set to FALSE.)

CHAPTER 16 Implementing Rich Text

Application Techniques 269

DisplayOnly property must be set to false

You cannot insert a document into a rich text control when the control’s
DisplayOnly property is set to true. If you try to do this, PowerBuilder displays
a runtime error message.

From a database If you have saved rich text as a string in a database, you
can use a DataStore to retrieve the text.

After retrieving data, paste the string into the RichTextEdit control:

ls_desc = dw_1.Object.prod_desc.Primary[1]
rte_1.PasteRTF(ls_desc)

Rich text and the clipboard

The CopyRTF and PasteRTF functions let you get rich text with formatting
instructions and store it in a string. If you use the clipboard by means of the
Copy, Cut, and Paste functions, you get the text only—the formatting is lost.

Example of saving
rich text in a database

Suppose you have a database table that records tech support calls. Various
fields record each call’s date, support engineer, and customer. Another field
stores notes about the call. You can let the user record notes with bold and italic
formatting for emphasis by storing rich text instead of plain text.

The window for editing call information includes these controls:

• A DataWindow control that retrieves all the data and displays everything
except the call notes

• A RichTextEdit control that displays the call notes

• A button for updating the database

RowFocusChanged event As row focus changes, the notes for the current
row are pasted into the RichTextEdit control. The RowFocusChanged event
has this script:

string ls_richtext

// Get the string from the call_notes column
ls_richtext = dw_1.Object.call_notes[currentrow]

// Prevent flicker
rte_1.SetRedraw(FALSE)

// Replace the old text with text for the current row

Using a RichTextEdit control

270 PowerBuilder

rte_1.SelectTextAll()
rte_1.Clear()
rte_1.PasteRTF(ls_richtext)
rte_1.SetRedraw(TRUE)

LoseFocus event When the user makes changes, the changes are transferred
to the DataWindow control. It is assumed that the user will click on the button
or the DataWindow control when the user is through editing, triggering the
LoseFocus event, which has this script:

string ls_richtext
long l_currow
GraphicObject l_control

// Check whether RichTextEdit still has focus
// If so, don't transfer the text
l_control = GetFocus()

IF TypeOf(l_control) = RichTextEdit! THEN RETURN 0

// Prevent flicker
rte_1.SetRedraw(FALSE)

// Store all the text in string ls_richtext
ls_richtext = rte_1.CopyRTF()

// Assign the rich text to the call_notes column
// in the current row
l_currow = dw_1.GetRow()
dw_1.Object.call_notes[l_currow] = ls_richtext
rte_1.SetRedraw(TRUE)

LoseFocus and the toolbars

A LoseFocus event occurs for the RichTextEdit control even when the user
clicks a RichTextEdit toolbar. Technically, this is because the toolbars are in
their own windows. However, the RichTextEdit control still has focus, which
you can check with the GetFocus function.

Saving rich text in a
file

You can save the rich text in the control, with the input field definitions, with
the SaveDocument function. You have the choice of rich text format (RTF) or
ASCII:

rte_1.SaveDocument("c:\...\contacts.rtf", &
FileTypeRichText!)

CHAPTER 16 Implementing Rich Text

Application Techniques 271

SaveDocument does not save the data in the input fields. It saves the document
template.

Does the file exist? If the file exists, calling SaveDocument triggers the
FileExists event. In the event script, you might ask users if they want to
overwrite the file.

To cancel the saving process, specify a return code of 1 in the event script.

Are there changes that need saving? The Modified property indicates
whether any changes have been made to the contents of the control. It indicates
that the contents are in an unsaved state. When the first change occurs,
PowerBuilder triggers the Modified event and sets the Modified property to
TRUE. Calling SaveDocument sets Modified to FALSE, indicating that the
document is clean.

Opening a file triggers the Modified event and sets the property because the
control’s contents changed. Usually, though, what you really want to know is
whether the contents of the control still correspond to the contents of the file.
Therefore, in the script that opens the file, you can set the Modified property to
FALSE yourself. Then when the user begins editing, the Modified event is
triggered again and the property is reset to TRUE.

Using a RichTextEdit control

272 PowerBuilder

Opening and saving files: an example

This example consists of several scripts that handle opening and saving files.
Users can open existing files and save changes. They can also save the contents
to another file. If users save the file they opened, saving proceeds without
interrupting the user. If users save to a file name that exists, but is not the file
they opened, they are asked whether to overwrite the file:

The example includes instance variable declarations, scripts, functions, and
events.

Instance variable
declarations

ib_saveas A flag for the FileExists event. When FALSE, the user is saving to
the file that was opened, so overwriting is expected:

boolean ib_saveas=FALSE

is_filename The current file name for the contents, initially set to "Untitled":

string is_filename

Open Document script This script opens a file chosen by the user. Since opening a file triggers the
Modified event and sets the Modified property, the script resets Modified to
FALSE. The Checked property of the Modified check box is set to FALSE too:

integer li_answer, li_result
string ls_name, ls_path

li_answer = GetFileOpenName("Open File", ls_path, &
ls_name, "rtf", &
"Rich Text(*.RTF),*.RTF, Text files(*.TXT),*.TXT")

CHAPTER 16 Implementing Rich Text

Application Techniques 273

IF li_answer = 1 THEN
// User did not cancel
li_result = rte_1.InsertDocument(ls_path, TRUE)

IF li_result = 1 THEN // Document open successful
// Save and display file name
is_filename = ls_path
st_filename.Text = is_filename

// Save and display modified status
rte_1.Modified = FALSE

cbx_modified.Checked = rte_1.Modified
ELSE

MessageBox("Error", "File not opened.")
END IF

END IF
RETURN 0

Scripts that save the
document

The user might choose to save the document to the same name or to a new
name. These scripts could be assigned to menu items as well as buttons. The
Save button script checks whether the instance variable is_filename holds a
valid name. If so, it passes that file name to the of_save function. If not, it
triggers the SaveAs button’s script instead:

integer li_result
string ls_name

// If not associated with file, get file name
IF is_filename = "Untitled" THEN

cb_saveas.EVENT Clicked()

ELSE
li_result = Parent.of_save(is_filename)

END IF
RETURN 0

The SaveAs script sets the instance variable ib_saveas so that the FileExists
event, if triggered, knows to ask about overwriting the file. It calls
of_getfilename to prompt for a file name before passing that file name to the
of_save function.

integer li_result
string ls_name

Using a RichTextEdit control

274 PowerBuilder

ib_saveas = TRUE

ls_name = Parent.of_getfilename()
// If the user canceled or an error occurred, abort
IF ls_name = "" THEN RETURN -1

li_result = Parent.of_save(ls_name)

ib_saveas = FALSE
RETURN 0

Functions for saving
and getting a file
name

of_save function This function accepts a file name argument and saves the
document. It updates the file name instance variable with the new name and
sets the check box to correspond with the Modified property, which is
automatically set to FALSE after you call SaveDocument successfully:

integer li_result

MessageBox("File name", as_name)

// Don't need a file type because the extension
// will trigger the correct type of save
li_result = rte_1.SaveDocument(as_name)

IF li_result = -1 THEN
MessageBox("Warning", "File not saved.")
RETURN -1

ELSE
// File saved successfully
is_filename = as_name
st_filename.Text = is_filename
cbx_modified.Checked = rte_1.Modified
RETURN 1

END IF

of_getfilename function The function prompts the user for a name and
returns the file name the user selects. It is called when a file name has not yet
been specified or when the user chooses Save As. It returns a file name:

integer li_answer
string ls_name, ls_path

li_answer = GetFileSaveName("Document Name", ls_path, &
ls_name, "rtf", &
"Rich Text(*.RTF),*.RTF,Text files(*.TXT),*.TXT")

IF li_answer = 1 THEN
// Return specified file name

CHAPTER 16 Implementing Rich Text

Application Techniques 275

RETURN ls_path
ELSE

RETURN ""
END IF

Events for saving and
closing

FileExists event When the user has selected a file name and the file already
exists, this script warns the user and allows the save to be canceled. The event
occurs when SaveDocument tries to save a file and it already exists. The script
checks whether ib_saveas is TRUE and, if so, asks if the user wants to proceed
with overwriting the existing file:

integer li_answer

// If user asked to Save to same file,
// don't prompt for overwriting
IF ib_saveas = FALSE THEN RETURN 0

li_answer = MessageBox("FileExists", &
filename + " already exists. Overwrite?", &
Exclamation!, YesNo!)

// Returning a non-zero value cancels save
IF li_answer = 2 THEN RETURN 1

Modified event This script sets a check box so the user can see that changes
have not been saved. The Modified property is set automatically when the
event occurs. The event is triggered when the first change is made to the
contents of the control:

cbx_modified.Checked = TRUE

CloseQuery event This script for the window’s CloseQuery event checks
whether the control has unsaved changes and asks whether to save the
document before the window closes:

integer li_answer

// Are there unsaved changes? No, then return.
IF rte_1.Modified = FALSE THEN RETURN 0

// Ask user whether to save
li_answer = MessageBox("Document not saved", &

"Do you want to save " + is_filename + "?", &
Exclamation!, YesNo!)

IF li_answer = 1 THEN
// User says save. Trigger Save button script.
cb_save.EVENT Clicked()

Using a RichTextEdit control

276 PowerBuilder

END IF
RETURN 0

Using an ActiveX spell checking control
ActiveX controls can be used to spell check text in a RichTextEdit control. The
supported ActiveX spell checking controls include VSSpell from
ComponentOne and WSpell from Wintertree Software.

You can use the SelectedStartPos and SelectedTextLength properties of the
RichTextEdit control to highlight the current position of a misspelled word in
a text string that you are parsing with a supported ActiveX spell checking
control. The following procedure uses an ActiveX control to spell check the
entire text of the current band of a RichTextEdit control.

 To spell check selected text in a RichTextEdit control:

1 On a window with a RichTextEdit control, select Insert>Control>OLE
from the window menu.

2 Click the Insert Control tab of the Insert Object dialog box, select the
installed ActiveX spell checking control, and click OK.

3 Click inside the window in the Window painter to insert the ActiveX
control.

By default, the name of the inserted control is ole_n, where n = 1 when
there are no other OLE controls on the window.

4 Add a menu item to a menu that you associate with the current window and
change its Text label to Check Spelling.

5 Add the following code the the Clicked event of the menu item, where
windowName is the name of the window containing the RichTextEdit and
ActiveX controls:

string ls_selected
//get the current band context, and leave select mode
windowName.rte_1.selecttext(0,0,0,0)
windowName.rte_1.SelectTextAll()
ls_selected = windowName.rte_1.SelectedText()
windowName.rte_1.SelectedTextLength = 0
//assign the string content to the ActiveX control
windowName.ole_1.object.text = ls_selected
windowName.ole_1.object.start()

CHAPTER 16 Implementing Rich Text

Application Techniques 277

6 Select the ActiveX control in the Window painter and select ReplaceWord
from the event list for the control.

7 Add the following code to the ReplaceWord event script:

string str
str = this.object.MisspelledWord
rte_1.SelectedStartPos = this.object.WordOffset
rte_1.SelectedTextLength = Len(str)
rte_1.ReplaceText(this.object.ReplacementWord)
messagebox("misspelled word", "replaced")

The next time you run the application, you can click the Check Spelling
menu item to spell check the entire contents of the current band of the
RichTextEdit control.

Formatting of rich text
In a RichText control, there are several user-addressable objects:

• The whole document

• Selected text and paragraphs

• Input fields

• Pictures

The user can make selections, use the toolbars, and display the property sheets
for these objects.

Input fields get values either because the user or you specify a value or because
you have called DataSource to associate the control with a DataWindow object
or DataStore.

Input fields
An input field is a named value. You name it and you determine what it means
by setting its value. The value is associated with the input field name. You can
have several fields with the same name and they all display the same value. If
the user edits one of them, they all change.

In this sample text, an input field for the customer’s name is repeated
throughout:

Hello {customer}!

Using a RichTextEdit control

278 PowerBuilder

We know that you, {customer}, will be excited about our new deal. Please
call soon, {customer}, and save money now.

In a script, you can set the value of the customer field:

rte_1.InputFieldChangeData("customer", "Mary")

Then the text would look like this:

Hello Mary!
We know that you, Mary, will be excited about our new deal. Please call
soon, Mary, and save money now.

The user can also set the value. There are two methods:

• Selecting it and typing a new value

• Displaying the Input Field property sheet and editing the Data Value text
box

Inserting input fields in a script The InputFieldInsert function inserts a field
at the insertion point:

rtn = rte_1.InputFieldInsert("datafield")

In a rich text editing application, you might want the user to insert input fields.
The user needs a way to specify the input field name.

In this example, the user selects a name from a ListBox containing possible
input field names. The script inserts an input field at the insertion point using
the selected name:

string ls_field
integer rtn

ls_field = lb_fields.SelectedItem()
IF ls_field <> "" THEN

rtn = rte_1.InputFieldInsert(ls_field)
IF rtn = -1 THEN
MessageBox("Error", "Cannot insert field.")
END IF

ELSE
MessageBox("No Selection", &

"Please select an input field name.")
END IF

Input fields for dates
and page numbers

To display a date or a page number in a printed document, you define an input
field and set the input field’s value.

CHAPTER 16 Implementing Rich Text

Application Techniques 279

 To include today’s date in the opening of a letter, you might:

1 Create an input field in the text. Name it anything you want.

2 In the script that opens the window or some other script, set the value of
the input field to the current date.

For example, if the body of the letter included an input field called TODAY, you
would write a script like the following to set it:

integer li_rtn
li_rtn = rte_1.InputFieldChangeData("today", &

String(Today()))

For information about setting page number values see What the user sees on
page 284.

Using database data
You can make a connection between a RichTextEdit control and a DataWindow
control or DataStore object. When an input field in the RichTextEdit control
has the same name as a column or computed column in the DataWindow
object, it displays the associated data.

Whether or not the RichTextEdit control has a data source, there is always only
one copy of the rich text content. While editing, you might visualize the
RichTextEdit contents as a template into which row after row of data can be
inserted. While scrolling from row to row, you might think of many instances
of the document in which the text is fixed but the input field data changes.

To share data between a DataWindow object or DataStore, use the DataSource
function:

rte_1.DataSource(ds_empdata)

Example of sharing
data

If the DataWindow object associated with the DataStore ds_empdata has the
four columns emp_id, emp_lname, emp_fname, and state, the RichTextEdit
content might include text and input fields like this:

Sample letter with columns from the employee table

ID: {emp_id}

Dear {emp_fname} {emp_lname}:

We are opening a new plant in Mexico. If you would like to transfer from
{state} to Mexico, the company will cover all expenses.

Using a RichTextEdit control

280 PowerBuilder

Navigating rows and
pages

For the RichTextEdit control, navigation keys let the user move among the
pages of the document. However, you must provide scrolling controls so that
the user can move from row to row.

You should provide Prior Row and Next Row buttons. The scripts for the
buttons are simple. For Next Row:

rte_1.ScrollNextRow()

For Prior Row:

rte_1.ScrollPriorRow()

If you also provide page buttons, then when the user is on the last page of the
document for one row, scrolling to the next page moves to the first page for the
next row:

rte_1.ScrollNextPage()

Cursor position in the RichTextEdit control
Functions provide several ways to find out what is selected and to select text in
the RichTextEdit control.

Where is the insertion
point or what is
selected?

The text always contains an insertion point and it can contain a selection, which
is shown as highlighted text. When there is a selection, the position of the
insertion point can be at the start or the end of the selection, depending on how
the selection is made. If the user drags from beginning to end, the insertion
point is at the end. If the user drags from end to beginning, the insertion point
is at the beginning.

The Position function provides information about the selection and the
insertion point.

For more information, see Position in the PowerScript Reference.

Changing the cursor
image

The Pointer page of the Rich Text Object property sheet has a list box with
stock pointers that can be used to indicate cursor position in a RichTextEdit
control or RichText DataWindow. Users can change the cursor image at
runtime by selecting one of these pointers and clicking OK in the Rich Text
Object property sheet.

Selecting text
programmatically

There are several functions that select portions of the text relative to the
position of the insertion point:

• SelectTextWord

• SelectTextLine

CHAPTER 16 Implementing Rich Text

Application Techniques 281

• SelectTextAll

A more general text selection function is SelectText. You specify the line and
character number of the start and end of the selection.

Passing values to SelectText Because values obtained with Position
provide more information than simply a selection range, you cannot pass the
values directly to SelectText. In particular, zero is not a valid character position
when selecting text, although it is meaningful in describing the selection.

For more information, see Position in the PowerScript Reference.

For an example of selecting words one by one for the purposes of spell
checking, see the SelectTextWord function in the PowerScript Reference.

Tab order, focus, and
the selection

Tab order For a window or user object, you include the RichTextEdit control
in the tab order of controls. However, after the user tabs to the RichTextEdit
control, pressing the TAB key inserts tabs into the text. The user cannot tab out
to other controls. Keep this in mind when you design the tab order for a
window.

Focus and the selection When the user tabs to the RichTextEdit control, the
control gets focus and the current insertion point or selection is maintained. If
the user clicks the RichTextEdit control to set focus, the insertion point moves
to the place the user clicks.

LoseFocus event When the user clicks on a RichTextEdit toolbar, a
LoseFocus event occurs. However, the RichTextEdit control still has focus.
You can check whether the control has lost focus with the GetFocus function.

Preview and printing
The user can preview the layout and print the contents of the RichTextEdit
control. In print preview mode, users see a view of the document reduced so
that it fits inside the control. However, you must set the print margins and page
size before you display the control in print preview mode.

There are two ways to enter print preview mode:

• The user can press CTRL+F2 to switch between editing and print preview
mode

• You can call the Preview function in a script:

rte_1.Preview(TRUE)

Using a RichTextEdit control

282 PowerBuilder

Users can page through the control contents in print preview mode by using the
up arrow and down arrow keys or the Page Up and Page Down keys.

Adjusting the print
margins

If you set page margins at design time, or enable headers and footers for a rich
text control, application users can adjust the margins of the control at runtime.
Users can do this by opening the property sheet for the RichTextEdit control to
the Print Specifications tab and modifying the left, right, top, or bottom
margins, or by triggering an event that changes the margins in PowerScript
code. Adjusting the margins in the Rich Text Object dialog box also affects the
display of the RichTextEdit control content in print preview mode.

If you do not set page margins at design time or leave them at 0, any changes
the user makes to the margins at runtime are visible in print preview mode only.

Setting page size and orientation

You cannot set the default page size and page orientation at design time.
However, users can set these properties at runtime from the Print Specifications
tab of the Rich Text Object dialog box. This dialog box is available from the
standard view only. You must also enable the pop-up menu on a RichTextEdit
control to enable application users to display this dialog box.

CHAPTER 16 Implementing Rich Text

Application Techniques 283

Printing If the RichTextEdit is using DataWindow object data, you can limit the number
of rows printed by setting the Print.Page.Range property for the DataWindow
control. Its value is a string that lists the page numbers that you want to print.
A dash indicates a range.

Example of a page range Suppose your RichTextEdit control has a data
source in the control dw_source. Your rich text document is three pages and
you want to print the information for rows 2 and 5. You can set the page range
property before you print:

dw_source.Object.DataWindow.Print.Page.Range = &
"4-6,13-15"

You can also filter or discard rows so that they are not printed.

For more information, see the SetFilter, Filter, RowsMove, and RowsDiscard
functions in the PowerScript Reference and the Print DataWindow object
property in the DataWindow Reference.

Inserting footer text
programmatically

This sample code sets the insertion point in the footer and inserts two blank
lines, text, and two input fields:

rte_1.SelectText(1, 1, 0, 0, Footer!)
rte_1.ReplaceText("~r~n~r~nRow ")
rte_1.InputFieldInsert("row")
rte_1.ReplaceText(" Page ")
rte_1.InputFieldInsert("page")
rte_1.SetAlignment(Center!)

Rich text and the end user
All the editing tools described throughout this chapter and in the chapter on
working with rich text in the PowerBuilder Users Guide can be made available
to your users.

What users can do Users can:

• Use the toolbars for text formatting

• Use the pop-up menu, which includes using the clipboard and opening
other rich text and ASCII files

• Edit the contents of input fields

• Turn the editing tools on and off

Rich text and the end user

284 PowerBuilder

What you can make
available to users in
your code

You can program an application to allow users to:

• Insert and delete input fields

• Insert pictures

• Switch to header and footer editing

• Preview the document for printing

If a RichTextEdit control shares data with a DataWindow object or DataStore,
you can program:

• Scrolling from row to row (you do not need to program page-to-page
scrolling, although you can)

• Updating the database with changes made in input fields

The best way for you to prepare rich text for use in your application is to
become a user yourself and edit the text in an application designed for the
purpose. During execution, all the tools for text preparation are available.

What the user sees The default view is the body text. You can also show header and footer text and
a print preview. To show header and footer text, you must select the
HeaderFooter property in the rich text control's Properties view at design time.
This value cannot be changed during execution, although if you select it at
design time, you can programmatically show the header and footer text at
runtime.

Header and footer text For either a RichText DataWindow object or the
RichTextEdit control, you can call the ShowHeadFoot function in a menu or
button script. To display the header editing panel, you can call:

dw_1.ShowHeadFoot(TRUE)

To display the footer editing panel, you must call:

dw_1.ShowHeadFoot(TRUE, FALSE)

Inserting the current page number in a footer

The following script inserts the current page number in the footer, then returns
the focus to the body of the document in the rich text control. The PAGENO
field name that you insert must be entered in capital letters only:

rte_1.ShowHeadFoot(true,false)
rte_1.SetAlignment (Center!)
rte_1.InputFieldInsert("PAGENO")

CHAPTER 16 Implementing Rich Text

Application Techniques 285

rte_1.ShowHeadFoot(false,false)

You cannot change the PAGENO field with an InputFieldChangeData call.

In the overloaded function ShowHeadFoot, the second argument defaults to
TRUE if a value is not provided. Call the function again to return to normal
view.

dw_1.ShowHeadFoot(FALSE)

The document as it would be printed The user can press CTRL+F2 to
switch print preview mode on and off. You can also control print preview mode
programmatically.

For a RichTextEdit control, call the Preview function:

rte_1.Preview(TRUE)

For a RichText DataWindow object, set the Preview property:

dw_1.Object.DataWindow.Print.Preview = TRUE

Text elements and
formatting

The user can specify formatting for:

• Selected text

• Paragraphs

• Pictures

• The whole rich text document

 To display the property sheet for an object, the user can:

1 Select the object. For example:

• Drag or use editing keys to select text

• Click on a picture

• Set an insertion point (nothing selected) for the rich text document

2 Right-click in the workspace and select Properties from the pop-up menu.

 To make settings for the paragraphs in the selection:

• Double-click on the ruler bar
or
Type Ctrl+Shift+S.

Modifying input fields Unless you have made the rich text object display only, the user can modify the
values of input fields.

Rich text and the end user

286 PowerBuilder

 To modify the value of an input field:

1 Click the input field to select it.

2 Right-click in the workspace and choose Properties from the pop-up
menu.

The Input Field Object property sheet displays.

3 On the Input Field page, edit the Data Value text box.

Text formatting for input fields There are several ways to select the input
field and apply text formatting. When the input field is selected, the Font page
of the property sheet and the toolbar affect the text. When the input field is part
of a text selection, changes affect all the text, including the input field.

The user cannot apply formatting to individual characters or words within the
field. When the user selects the input field, the entire field is selected.

Inserting and deleting input fields You write scripts that let the user insert
and delete input fields. The user can also copy and paste existing input fields.
All copies of an input field display the same data.

Formatting keys and
toolbars

When the toolbar is visible, users can use its buttons to format text, or they can
use designated keystrokes to format text in the RichTextEdit control.

For a list of keystrokes for formatting rich text, see the chapter on working with
rich text in the PowerBuilder Users Guide.

Application Techniques 287

C H A P T E R 1 7 Piping Data Between Data
Sources

About this chapter This chapter tells you how you can use a Pipeline object in your
application to pipe data from one or more source tables to a new or
existing destination table.

Contents

Sample applications This chapter uses a simple order entry application to illustrate the use of a
data pipeline. To see working examples using data pipelines, look at the
examples in the Data Pipeline category in the Code Examples sample
application.

For information on how to use the sample applications, see Chapter 1,
Using Sample Applications.

About data pipelines
PowerBuilder provides a feature called the data pipeline that you can use
to migrate data between database tables. This feature makes it possible to
copy rows from one or more source tables to a new or existing destination
table—either within a database, or across databases, or even across
DBMSs.

Two ways to use data
pipelines

You can take advantage of data pipelines in two different ways:

• As a utility service for developers

Topic Page

About data pipelines 287

Building the objects you need 288

Performing some initial housekeeping 295

Starting the pipeline 298

Handling row errors 304

Performing some final housekeeping 308

Building the objects you need

288 PowerBuilder

While working in the PowerBuilder development environment, you might
occasionally want to migrate data for logistical reasons (such as to create
a small test table from a large production table). In this case, you can use
the Data Pipeline painter interactively to perform the migration
immediately.

For more information on using the Data Pipeline painter this way, see the
PowerBuilder Users Guide.

• To implement data migration capabilities in an application

If you are building an application whose requirements call for migrating
data between tables, you can design an appropriate data pipeline in the
Data Pipeline painter, save it, and then enable users to execute it from
within the application.

This technique can be useful in many different situations, such as: when
you want the application to download local copies of tables from a
database server to a remote user, or when you want it to roll up data from
individual transaction tables to a master transaction table.

Walking through the
basic steps

If you determine that you need to use a data pipeline in your application, you
must determine what steps this involves. At the most general level, there are
five basic steps that you typically have to perform.

 To pipe data in an application:

1 Build the objects you need.

2 Perform some initial housekeeping.

3 Start the pipeline.

4 Handle row errors.

5 Perform some final housekeeping.

The remainder of this chapter gives you the details of each step.

Building the objects you need
To implement data piping in an application, you need to build a few different
objects:

• A Pipeline object

• A supporting user object

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 289

• A window

Building a Pipeline object
You must build a Pipeline object to specify the data definition and access
aspects of the pipeline that you want your application to execute. Use the Data
Pipeline painter in PowerBuilder to create this object and define the
characteristics you want it to have.

Characteristics to
define

Among the characteristics you can define in the Data Pipeline painter are:

• The source tables to access and the data to retrieve from them (you can
also access database stored procedures as the data source)

• The destination table to which you want that data piped

• The piping operation to perform (create, replace, refresh, append, or
update)

• The frequency of commits during the piping operation (after every n rows
are piped, or after all rows are piped, or not at all—if you plan to code your
own commit logic)

• The number of errors to allow before the piping operation is terminated

• Whether or not to pipe extended attributes to the destination database
(from the PowerBuilder repository in the source database)

For full details on using the Data Pipeline painter to build your Pipeline object,
see the PowerBuilder Users Guide.

Example Here is an example of how you would use the Data Pipeline painter to define a
Pipeline object named pipe_sales_extract1 (one of two Pipeline objects
employed by the w_sales_extract window in a sample order entry application).

Building the objects you need

290 PowerBuilder

The source data to pipe This Pipeline object joins two tables (Sales_rep
and Sales_summary) from the company’s sales database to provide the source
data to be piped. It retrieves just the rows from a particular quarter of the year
(which the application must specify by supplying a value for the retrieval
argument named quarter):

Notice that this Pipeline object also indicates specific columns to be piped from
each source table (srep_id, srep_lname, and srep_fname from the Sales_rep
table, as well as ssum_quarter and ssum_rep_team from the Sales_summary
table). In addition, it defines a computed column to be calculated and piped.
This computed column subtracts the ssum_rep_quota column of the
Sales_summary table from the ssum_rep_actual column:

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 291

How to pipe the data The details of how pipe_sales_extract1 is to pipe its
source data are specified here:

Notice that this Pipeline object is defined to create a new destination table
named Quarterly_extract. A little later you will learn how the application
specifies the destination database in which to put this table (as well as how it
specifies the source database in which to look for the source tables).

Also notice that:

• A commit will be performed only after all appropriate rows have been
piped (which means that if the pipeline’s execution is terminated early, all
changes to the Quarterly_extract table will be rolled back).

• No error limit is to be imposed by the application, so any number of rows
can be in error without causing the pipeline’s execution to terminate early.

• No extended attributes are to be piped to the destination database.

• The primary key of the Quarterly_extract table is to consist of the srep_id
column and the ssum_quarter column.

• The computed column that the application is to create in the
Quarterly_extract table is to be named computed_net.

Building the objects you need

292 PowerBuilder

Building a supporting user object
So far you have seen how your Pipeline object defines the details of the data
and access for a pipeline, but a Pipeline object does not include the logistical
supports—properties, events, and functions—that an application requires to
handle pipeline execution and control.

About the Pipeline
system object

To provide these logistical supports, you must build an appropriate user object
inherited from the PowerBuilder Pipeline system object. Table 17-1 shows
some of the system object’s properties, events, and functions that enable your
application to manage a Pipeline object at runtime.

Table 17-1: Pipeline system object properties, events, and functions

A little later in this chapter you will learn how to use most of these properties,
events, and functions in your application.

 To build the supporting user object for a pipeline:

1 Select Standard Class from the PB Object tab of the New dialog box.

The Select Standard Class Type dialog box displays, prompting you to
specify the name of the PowerBuilder system object (class) from which
you want to inherit your new user object:

2 Select pipeline and click OK.

Properties Events Functions

DataObject

RowsRead

RowsWritten

RowsInError

Syntax

PipeStart

PipeMeter

PipeEnd

Start

Repair

Cancel

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 293

3 Make any changes you want to the user object (although none are
required). This might involve coding events, functions, or variables for use
in your application.

To learn about one particularly useful specialization you can make to your
user object, see Monitoring pipeline progress on page 300.

Planning ahead for reuse

As you work on your user object, keep in mind that it can be reused in the
future to support any other pipelines you want to execute. It is not
automatically tied in any way to a particular Pipeline object you have built
in the Data Pipeline painter.

To take advantage of this flexibility, make sure that the events, functions,
and variables you code in the user object are generic enough to
accommodate any Pipeline object.

4 Save the user object.

For more information on working with the User Object painter, see the
PowerBuilder Users Guide.

Building a window
One other object you need when piping data in your application is a window.
You use this window to provide a user interface to the pipeline, enabling people
to interact with it in one or more ways. These include:

• Starting the pipeline’s execution

• Displaying and repairing any errors that occur

• Canceling the pipeline’s execution if necessary

Required features for
your window

When you build your window, you must include a DataWindow control that the
pipeline itself can use to display error rows (that is, rows it cannot pipe to the
destination table for some reason). You do not have to associate a DataWindow
object with this DataWindow control—the pipeline provides one of its own at
runtime.

To learn how to work with this DataWindow control in your application, see
Starting the pipeline on page 298 and Handling row errors on page 304.

Building the objects you need

294 PowerBuilder

Optional features for
your window

Other than including the required DataWindow control, you can design the
window as you like. You will typically want to include various other controls,
such as:

• CommandButton or PictureButton controls to let the user initiate actions
(such as starting, repairing, or canceling the pipeline)

• StaticText controls to display pipeline status information

• Additional DataWindow controls to display the contents of the source
and/or destination tables

If you need assistance with building a window, see the PowerBuilder Users
Guide.

Example The following window handles the user-interface aspect of the data piping in
the order entry application. This window is named w_sales_extract:

Several of the controls in this window are used to implement particular
pipeline-related capabilities. Table 17-2 provides more information about
them.

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 295

Table 17-2: Window controls to implement pipeline capabilities

Performing some initial housekeeping
Now that you have the basic objects you need, you are ready to start writing
code to make your pipeline work in the application. To begin, you must take
care of some setup chores that will prepare the application to handle pipeline
execution.

Control type Control name Purpose

RadioButton rb_create Selects pipe_sales_extract1 as the
Pipeline object to execute

rb_insert Selects pipe_sales_extract2 as the
Pipeline object to execute

CommandButton cb_write Starts execution of the selected pipeline

cb_stop Cancels pipeline execution or applying of
row repairs

cb_applyfixes Applies row repairs made by the user (in
the dw_pipe_errors DataWindow control)
to the destination table

cb_forgofixes Clears all error rows from the
dw_pipe_errors DataWindow control (for
use when the user decides not to make
repairs)

DataWindow dw_review_extract Displays the current contents of the
destination table (Quarterly_extract)

dw_pipe_errors (Required) Used by the pipeline itself to
automatically display the PowerBuilder
pipeline-error DataWindow (which lists
rows that cannot be piped due to some
error)

StaticText st_status_read Displays the count of rows that the
pipeline reads from the source tables

st_status_written Displays the count of rows that the
pipeline writes to the destination table or
places in dw_pipe_errors

st_status_error Displays the count of rows that the
pipeline places in dw_pipe_errors
(because they are in error)

Performing some initial housekeeping

296 PowerBuilder

 To get the application ready for pipeline execution:

1 Connect to the source and destination databases for the pipeline.

To do this, write the usual connection code in an appropriate script. Just
make sure you use one Transaction object when connecting to the source
database and a different Transaction object when connecting to the
destination database (even if it is the same database).

For details on connecting to a database, see Chapter 12, Using Transaction
Objects.

2 Create an instance of your supporting user object (so that the application
can use its properties, events, and functions).

To do this, first declare a variable whose type is that user object. Then, in
an appropriate script, code the CREATE statement to create an instance of
the user object and assign it to that variable.

3 Specify the particular Pipeline object you want to use.

To do this, code an Assignment statement in an appropriate script; assign a
string containing the name of the desired Pipeline object to the DataObject
property of your user-object instance.

For more information on coding the CREATE and Assignment statements, see
the PowerScript Reference.

Example The following sample code takes care of these pipeline setup chores in the
order entry application.

Connecting to the source and destination database In this case, the
company’s sales database (ABNCSALE.DB) is used as both the source and the
destination database. To establish the necessary connections to the sales
database, write code in a user event named uevent_pipe_setup (which is posted
from the Open event of the w_sales_extract window).

The following code establishes the source database connection:

// Create a new instance of the Transaction object
// and store it in itrans_source (a variable
// declared earlier of type transaction).
itrans_source = CREATE transaction

// Next, assign values to the properties of the
// itrans_source Transaction object.
...

// Now connect to the source database.

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 297

CONNECT USING itrans_source;

The following code establishes the destination database connection:

// Create a new instance of the Transaction object
// and store it in itrans_destination (a variable
// declared earlier of type transaction).

itrans_destination = CREATE transaction

// Next, assign values to the properties of the
// itrans_destination Transaction object.
...
// Now connect to the destination database.

CONNECT USING itrans_destination;

Setting USERID for native drivers

When you execute a pipeline in the Pipeline painter, if you are using a native
driver, PowerBuilder automatically qualifies table names with the owner of the
table. When you execute a pipeline in an application, if you are using a native
driver, you must set the USERID property in the Transaction object so that the
table name is properly qualified.

Failing to set the USERID property in the Transaction object for the destination
database causes pipeline execution errors. If the source database uses a native
driver, extended attributes are not piped if USERID is not set.

Creating an instance of the user object Earlier you learned how to
develop a supporting user object named u_sales_pipe_logistics. To use
u_sales_pipe_logistics in the application, first declare a variable of its type:

// This is an instance variable for the
// w_sales_extract window.

u_sales_pipe_logistics iuo_pipe_logistics

Then write code in the uevent_pipe_setup user event to create an instance of
u_sales_pipe_logistics and store this instance in the variable iuo_pipe_logistics:

iuo_pipe_logistics = CREATE u_sales_pipe_logistics

Specifying the Pipeline object to use The application uses one of two
different Pipeline objects, depending on the kind of piping operation the user
wants to perform:

Starting the pipeline

298 PowerBuilder

• pipe_sales_extract1 (which you saw in detail earlier) creates a new
Quarterly_extract table (and assumes that this table does not currently
exist)

• pipe_sales_extract2 inserts rows into the Quarterly_extract table (and
assumes that this table does currently exist)

To choose a Pipeline object and prepare to use it, write the following code in
the Clicked event of the cb_write CommandButton (which users click when
they want to start piping):

// Look at which radio button is checked in the
// w_sales_extract window. Then assign the matching
// Pipeline object to iuo_pipe_logistics.

IF rb_create.checked = true THEN
 iuo_pipe_logistics.dataobject =

"pipe_sales_extract1"
ELSE
 iuo_pipe_logistics.dataobject =

"pipe_sales_extract2"
END IF

This code appears at the beginning of the script, before the code that starts the
chosen pipeline.

Deploying Pipeline objects for an application

Because an application must always reference its Pipeline objects dynamically
at runtime (through string variables), you must package these objects in one or
more dynamic libraries when deploying the application. You cannot include
Pipeline objects in an executable (EXE) file.

For more information on deployment, see Part 9, “Deployment Techniques.”

Starting the pipeline
With the setup chores taken care of, you can now start the execution of your
pipeline.

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 299

 To start pipeline execution:

1 Code the Start function in an appropriate script. In this function, you
specify:

• The Transaction object for the source database

• The Transaction object for the destination database

• The DataWindow control in which you want the Start function to
display any error rows

The Start function automatically associates the PowerBuilder
pipeline-error DataWindow object with your DataWindow control
when needed.

• Values for retrieval arguments you have defined in the Pipeline object

If you omit these values, the Start function prompts the user for them
automatically at runtime.

2 Test the result of the Start function.

For more information on coding the Start function, see the PowerScript
Reference.

Example The following sample code starts pipeline execution in the order entry
application.

Calling the Start function When users want to start their selected pipeline,
they click the cb_write CommandButton in the w_sales_extract window:

This executes the Clicked event of cb_write, which contains the Start function:

// Now start piping.
integer li_start_result
li_start_result = iuo_pipe_logistics.Start &

(itrans_source,itrans_destination,dw_pipe_errors)

Starting the pipeline

300 PowerBuilder

Notice that the user did not supply a value for the pipeline’s retrieval argument
(quarter). As a consequence, the Start function prompts the user for it:

Testing the result The next few lines of code in the Clicked event of cb_write
check the Start function’s return value. This lets the application know whether
it succeeded or not (and if not, what went wrong):

CHOOSE CASE li_start_result

CASE -3
Beep (1)
MessageBox("Piping Error", &

"Quarterly_Extract table already exists ...
RETURN

CASE -4
Beep (1)
MessageBox("Piping Error", &

"Quarterly_Extract table does not exist ...
RETURN
...

END CHOOSE

Monitoring pipeline progress
Testing the Start function’s return value is not the only way to monitor the status
of pipeline execution. Another technique you can use is to retrieve statistics
that your supporting user object keeps concerning the number of rows
processed. They provide a live count of:

• The rows read by the pipeline from the source tables

• The rows written by the pipeline to the destination table or to the error
DataWindow control

• The rows in error that the pipeline has written to the error DataWindow
control (but not to the destination table)

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 301

By retrieving these statistics from the supporting user object, you can
dynamically display them in the window and enable users to watch the
pipeline’s progress.

 To display pipeline row statistics:

1 Open your supporting user object in the User Object painter.

The User Object painter workspace displays, enabling you to edit your
user object.

2 Declare three instance variables of type StaticText:

statictext ist_status_read, ist_status_written, &
ist_status_error

You will use these instance variables later to hold three StaticText controls
from your window. This will enable the user object to manipulate those
controls directly and make them dynamically display the various pipeline
row statistics.

3 In the user object’s PipeMeter event script, code statements to assign the
values of properties inherited from the pipeline system object to the Text
property of your three StaticText instance variables.

ist_status_read.text = string(RowsRead)
ist_status_written.text = string(RowsWritten)
ist_status_error.text = string(RowsInError)

4 Save your changes to the user object, then close the User Object painter.

5 Open your window in the Window painter.

6 Insert three StaticText controls in the window:

One to display the RowsRead value
One to display the RowsWritten value
One to display the RowsInError value

7 Edit the window’s Open event script (or some other script that executes
right after the window opens).

Starting the pipeline

302 PowerBuilder

In it, code statements to assign the three StaticText controls (which you
just inserted in the window) to the three corresponding StaticText instance
variables you declared earlier in the user object. This enables the user
object to manipulate these controls directly.

In the sample order entry application, this logic is in a user event named
uevent_pipe_setup (which is posted from the Open event of the
w_sales_extract window):

iuo_pipe_logistics.ist_status_read =
st_status_read

iuo_pipe_logistics.ist_status_written = &
st_status_written

iuo_pipe_logistics.ist_status_error = &
st_status_error

8 Save your changes to the window. Then close the Window painter.

When you start a pipeline in the w_sales_extract window of the order entry
application, the user object’s PipeMeter event triggers and executes its
code to display pipeline row statistics in the three StaticText controls:

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 303

Canceling pipeline execution
In many cases you will want to provide users (or the application itself) with the
ability to stop execution of a pipeline while it is in progress. For instance, you
may want to give users a way out if they start the pipeline by mistake or if
execution is taking longer than desired (maybe because many rows are
involved).

 To cancel pipeline execution:

1 Code the Cancel function in an appropriate script

Make sure that either the user or your application can execute this function
(if appropriate) once the pipeline has started. When Cancel is executed, it
stops the piping of any more rows after that moment.

Rows that have already been piped up to that moment may or may not be
committed to the destination table, depending on the Commit property you
specified when building your Pipeline object in the Data Pipeline painter.
You will learn more about committing in the next section.

2 Test the result of the Cancel function

For more information on coding the Cancel function, see the PowerScript
Reference.

Example The following example uses a command button to let users cancel pipeline
execution in the order entry application.

Providing a CommandButton When creating the w_sales_extract window,
include a CommandButton control named cb_stop. Then write code in a few of
the application’s scripts to enable this CommandButton when pipeline
execution starts and to disable it when the piping is done.

Calling the Cancel function Next write a script for the Clicked event of
cb_stop. This script calls the Cancel function and tests whether or not it worked
properly:

IF iuo_pipe_logistics.Cancel() = 1 THEN
Beep (1)
MessageBox("Operation Status", &
"Piping stopped (by your request).")

ELSE
Beep (1)
MessageBox("Operation Status", &
"Error when trying to stop piping.", &
Exclamation!)

END IF

Handling row errors

304 PowerBuilder

Together, these features let a user of the application click the cb_stop
CommandButton to cancel a pipeline that is currently executing.

Committing updates to the database
When a Pipeline object executes, it commits updates to the destination table
according to your specifications in the Data Pipeline painter. You do not need
to write any COMMIT statements in your application’s scripts (unless you
specified the value None for the Pipeline object’s Commit property).

Example For instance, both of the Pipeline objects in the order entry application
(pipe_sales_extract1 and pipe_sales_extract2) are defined in the Data Pipeline
painter to commit all rows. As a result, the Start function (or the Repair
function) will pipe every appropriate row and then issue a commit.

You might want instead to define a Pipeline object that periodically issues
commits as rows are being piped, such as after every 10 or 100 rows.

If the Cancel function
is called

A related topic is what happens with committing if your application calls the
Cancel function to stop a pipeline that is currently executing. In this case too,
the Commit property in the Data Pipeline painter determines what to do, as
shown in Table 17-3.

Table 17-3: Commit property values

This is the same commit/rollback behavior that occurs when a pipeline reaches
its Max Errors limit (which is also specified in the Data Pipeline painter).

For more information on controlling commits and rollbacks for a Pipeline
object, see the PowerBuilder Users Guide.

Handling row errors
When a pipeline executes, it may be unable to write particular rows to the
destination table. For instance, this could happen with a row that has the same
primary key as a row already in the destination table.

If your Commit value is Then Cancel does this

All Rolls back every row that was piped by the current
Start function (or Repair function)

A particular number of rows
(such as 1, 10, or 100)

Commits every row that was piped up to the
moment of cancellation

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 305

Using the pipeline-
error DataWindow

To help you handle such error rows, the pipeline places them in the
DataWindow control you painted in your window and specified in the Start
function. It does this by automatically associating its own special DataWindow
object (the PowerBuilder pipeline-error DataWindow) with your DataWindow
control.

Consider what happens in the order entry application. When a pipeline
executes in the w_sales_extract window, the Start function places all error rows
in the dw_pipe_errors DataWindow control. It includes an error message
column to identify the problem with each row:

Making the error messages shorter

If the pipeline’s destination Transaction object points to an ODBC data source,
you can set its DBParm MsgTerse parameter to make the error messages in the
DataWindow shorter. Specifically, if you type:

MsgTerse = 'Yes'

then the SQLSTATE error number does not display.

For more information on the MsgTerse DBParm, see the online Help.

Deciding what to do
with error rows

Once there are error rows in your DataWindow control, you need to decide
what to do with them. Your alternatives include:

• Repairing some or all of those rows

• Abandoning some or all of those rows

Handling row errors

306 PowerBuilder

Repairing error rows
In many situations it is appropriate to try fixing error rows so that they can be
applied to the destination table. Making these fixes typically involves
modifying one or more of their column values so that the destination table will
accept them. You can do this in a couple of different ways:

• By letting the user edit one or more of the rows in the error DataWindow
control (the easy way for you, because it does not require any coding
work)

• By executing script code in your application that edits one or more of the
rows in the error DataWindow control for the user

In either case, the next step is to apply the modified rows from this
DataWindow control to the destination table.

 To apply row repairs to the destination table:

1 Code the Repair function in an appropriate script. In this function, specify
the Transaction object for the destination database.

2 Test the result of the Repair function.

For more information on coding the Repair function, see the PowerScript
Reference.

Example In the following example, users can edit the contents of the dw_pipe_errors
DataWindow control to fix error rows that appear. They can then apply those
modified rows to the destination table.

Providing a CommandButton When painting the w_sales_extract window,
include a CommandButton control named cb_applyfixes. Then write code in a
few of the application’s scripts to enable this CommandButton when
dw_pipe_errors contains error rows and to disable it when no error rows appear.

Calling the Repair function Next write a script for the Clicked event of
cb_applyfixes. This script calls the Repair function and tests whether or not it
worked properly:

IF iuo_pipe_logistics.Repair(itrans_destination) &
<> 1 THEN
Beep (1)
MessageBox("Operation Status", "Error when &
trying to apply fixes.", Exclamation!)

END IF

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 307

Together, these features let a user of the application click the cb_applyfixes
CommandButton to try updating the destination table with one or more
corrected rows from dw_pipe_errors.

Canceling row repairs Earlier in this chapter you learned how to let users (or the application itself)
stop writing rows to the destination table during the initial execution of a
pipeline. If appropriate, you can use the same technique while row repairs are
being applied.

For details, see Canceling pipeline execution on page 303.

Committing row
repairs

The Repair function commits (or rolls back) database updates in the same way
the Start function does.

For details, see Committing updates to the database on page 304.

Handling rows that still
are not repaired

Sometimes after the Repair function has executed, there may still be error rows
left in the error DataWindow control. This may be because these rows:

• Were modified by the user or application but still have errors

• Were not modified by the user or application

• Were never written to the destination table because the Cancel function
was called (or were rolled back from the destination table following the
cancellation)

At this point, the user or application can try again to modify these rows and
then apply them to the destination table with the Repair function. There is also
the alternative of abandoning one or more of these rows. You will learn about
that technique next.

Abandoning error rows
In some cases, you may want to enable users or your application to completely
discard one or more error rows from the error DataWindow control. This can
be useful for dealing with error rows that it is not desirable to repair.

Table 17-4 shows some techniques you can use for abandoning such error
rows.

Performing some final housekeeping

308 PowerBuilder

Table 17-4: Abandoning error rows

For more information on coding these functions, see the PowerScript
Reference.

Example In the following example, users can choose to abandon all error rows in the
dw_pipe_errors DataWindow control.

Providing a CommandButton When painting the w_sales_extract window,
include a CommandButton control named cb_forgofixes. Write code in a few of
the application’s scripts to enable this CommandButton when dw_pipe_errors
contains error rows and to disable it when no error rows appear.

Calling the Reset function Next write a script for the Clicked event of
cb_forgofixes. This script calls the Reset function:

dw_pipe_errors.Reset()

Together, these features let a user of the application click the cb_forgofixes
CommandButton to discard all error rows from dw_pipe_errors.

Performing some final housekeeping
When your application has finished processing pipelines, you need to make
sure it takes care of a few cleanup chores. These chores basically involve
releasing the resources you obtained at the beginning to support pipeline
execution.

Garbage collection

You should avoid using the DESTROY statement to clean up resources unless
you are sure that the objects you are destroying are not used elsewhere.
PowerBuilder’s garbage collection mechanism automatically removes
unreferenced objects. For more information, see Garbage collection and
memory management on page 42.

If you want to abandon Use

All error rows in the error DataWindow control The Reset function

One or more particular error rows in the error
DataWindow control

The RowsDiscard function

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 309

 To clean up when you have finished using pipelines:

1 Destroy the instance that you created of your supporting user object.

To do this, code the DESTROY statement in an appropriate script and
specify the name of the variable that contains that user-object instance.

2 Disconnect from the pipeline’s source and destination databases.

To do this, code two DISCONNECT statements in an appropriate script. In
one, specify the name of the variable that contains your source
transaction-object instance. In the other, specify the name of the variable
that contains your destination transaction-object instance.

Then test the result of each DISCONNECT statement.

3 Destroy your source transaction-object instance and your destination
transaction-object instance.

To do this, code two DESTROY statements in an appropriate script. In one,
specify the name of the variable that contains your source
transaction-object instance. In the other, specify the name of the variable
that contains your destination transaction-object instance.

For more information on coding the DESTROY and DISCONNECT statements,
see the PowerScript Reference.

Example The following code in the Close event of the w_sales_extract window takes
care of these cleanup chores.

Destroying the user-object instance At the beginning of the Close event
script, code the following statement to destroy the instance of the user object
u_sales_pipe_logistics (which is stored in the iuo_pipe_logistics variable):

DESTROY iuo_pipe_logistics

Disconnecting from the source database Next, code these statements to
disconnect from the source database, test the result of the disconnection, and
destroy the source transaction-object instance (which is stored in the
itrans_source variable):

DISCONNECT USING itrans_source;

// Check result of DISCONNECT statement.
IF itrans_source.SQLCode = -1 THEN

Beep (1)
MessageBox("Database Connection Error", &
"Problem when disconnecting from the source " &
+ "database. Please call technical support. " &
+ "~n~r~n~rDetails follow: " + &

Performing some final housekeeping

310 PowerBuilder

String(itrans_source.SQLDBCode) + " " + &
itrans_source.SQLErrText, Exclamation!)

END IF

DESTROY itrans_source

Disconnecting from the destination database Finally, code these
statements to disconnect from the destination database, test the result of the
disconnection, and destroy their destination transaction-object instance (which
is stored in the itrans_destination variable):

DISCONNECT USING itrans_destination;

// Check result of DISCONNECT statement.
IF itrans_destination.SQLCode = -1 THEN

Beep (1)
MessageBox("Database Connection Error", &
"Problem when disconnecting from " + &
"the destination (Sales) database. " + &
"Please call technical support." + &
"~n~r~n~rDetails follow: " + &
String(itrans_destination.SQLDBCode) + " " + &

itrans_destination.SQLErrText, Exclamation!)
END IF

DESTROY itrans_destination

P A R T 5 Program Access
Techniques

This part presents a collection of techniques you can use
to implement program access features in the applications
you develop with PowerBuilder. It includes using DDE in
an application, using OLE in an application, building a
mail-enabled application, and adding other processing
extensions.

Application Techniques 313

C H A P T E R 1 8 Using DDE in an Application

About this chapter This chapter describes how PowerBuilder supports DDE.

Contents

About DDE
Dynamic Data Exchange (DDE) makes it possible for two Windows
applications to communicate with each other by sending and receiving
commands and data. Using DDE, the applications can share data, execute
commands remotely, and check error conditions.

PowerBuilder supports DDE by providing PowerScript events and
functions that enable a PowerBuilder application to send messages to
other DDE-supporting applications and to respond to DDE requests from
other DDE applications.

Clients and servers A DDE-supporting application can act as either a client or a server.

About the terminology

Used in connection with DDE, these terms are not related to client/server
architecture, in which a PC or workstation client communicates with a
database server.

A client application makes requests of another DDE-supporting
application (called the server). The requests can be commands (such as
open, close, or save) or requests for data.

A server application is the opposite of a client application. It responds to
requests from another DDE-supporting application (called the client). As
with client applications, the requests can be commands or requests for
specific data.

Topic Page

About DDE 313

DDE functions and events 314

DDE functions and events

314 PowerBuilder

A PowerBuilder application can function as a DDE client or as a DDE server.

In PowerBuilder, DDE clients and servers call built-in functions and process
events. DDE events occur when a command or data is sent from a client to a
server (or from a server to a client).

DDE functions and events
The following tables list the DDE functions and events separated into those
functions and events used by DDE clients and those used by DDE servers. For
more information on DDE support, see the PowerScript Reference.

Return values

Every DDE function returns an integer.

CHAPTER 18 Using DDE in an Application

Application Techniques 315

DDE client Table 18-1: DDE client functions

Table 18-2: DDE client event

DDE server Table 18-3: DDE server functions

Function Action

CloseChannel Closes a channel to a DDE server application that was opened
using OpenChannel.

ExecRemote Asks a DDE server application to execute a command.

GetDataDDE Obtains the new data from a hot-linked DDE server
application and moves it into a specified string.

GetDataDDEOrigin Determines the origin of data that has arrived from a hot-
linked DDE server application.

GetRemote Asks a DDE server application for data. This function has two
formats: one that uses a channel and one that does not.

OpenChannel Opens a DDE channel to a specified DDE server application.

RespondRemote Indicates to the DDE server application whether the
command or data received from the DDE application was
acceptable to the DDE client.

SetRemote Asks a DDE server application to set an item such as a cell in
a worksheet or a variable to a specific value. This function has
two formats: one that uses a DDE channel and one that does
not.

StartHotLink Initiates a hot link to a DDE server application so that
PowerBuilder is immediately notified of specific data
changes in the DDE server application.

StopHotLink Ends a hot link with a DDE server application.

Event Occurs when

HotLinkAlarm A DDE server application has sent new (changed) data.

Function Action

GetCommandDDE Obtains the command sent by a DDE client application

GetCommandDDEOrigin Determines the origin of a command from a DDE client

GetDataDDE Gets data that a DDE client application has sent and
moves it into a specified string

GetDataDDEOrigin Determines the origin of data that has arrived from a
hot-linked DDE client application

RespondRemote Indicates to the sending DDE client application whether
the command or data received from the DDE
application was acceptable to the DDE server

SetDataDDE Sends specified data to a DDE client application

DDE functions and events

316 PowerBuilder

Table 18-4: DDE server events

StartServerDDE Causes a PowerBuilder application to begin acting as a
DDE server

StopServerDDE Causes a PowerBuilder application to stop acting as a
DDE server

Event Occurs when

RemoteExec A DDE client application has sent a command

RemoteHotLinkStart A DDE client application wants to start a hot link

RemoteHotLinkStop A DDE client application wants to end a hot link

RemoteRequest A DDE client application has requested data

RemoteSend A DDE client application has sent data

Function Action

Application Techniques 317

C H A P T E R 1 9 Using OLE in an Application

About this chapter This chapter describes several ways of implementing OLE in your
PowerBuilder applications.

Contents

OLE support in PowerBuilder
OLE, originally an acronym for Object Linking and Embedding, is a
facility that allows Windows programs to share data and program
functionality. PowerBuilder OLE controls are containers that can call
upon OLE server applications to display and manipulate OLE objects.

OLE control The OLE control in the Window painter allows you to link or embed
components from several applications in a window. For most servers, you
can also control the server application using functions and properties
defined by that server.

In PowerBuilder, the OLE control is a container for an OLE object. The
user can activate the control and edit the object using functionality
supplied by the server application. You can also automate OLE
interactions by programmatically activating the object and sending
commands to the server. OLE servers might be either DLLs or separate
EXE files. They could be running on a different computer.

Topic Page

OLE support in PowerBuilder 317

OLE controls in a window 318

OLE controls and insertable objects 320

OLE custom controls 333

Programmable OLE Objects 336

OLE objects in scripts 345

OLE information in the Browser 363

Advanced ways to manipulate OLE objects 366

OLE controls in a window

318 PowerBuilder

You can use PowerScript automation on an OLE control that is visible in a
window, or use it invisibly on an object whose reference is stored in an
OLEObject variable. The OLEObject datatype lets you create an OLE object
without having an OLE container visible in a window.

OLECustomControl A second control, OLECustomControl, is a container for an ActiveX control
(also called an OLE custom control or OCX control). ActiveX controls are
DLLs (sometimes with the extension OCX) that always run in the same process
as the application that contains them.

Managing OLE
objects

You can manage OLE objects by storing them in variables and saving them in
files. There are two object types for this purpose: OLEStorage and OLEStream.
Most applications will not require these objects, but if you need to do
something complicated (such as combining several OLE objects into a single
data structure), you can use these objects and their associated functions.

Other areas of OLE
support

For information about OLE objects in a DataWindow object, see the
PowerBuilder Users Guide.

OLE controls in a window
You can add OLE objects and ActiveX controls to a window or user object. To
do so, you use one of the PowerBuilder OLE controls, which acts as an OLE
container. This section explains how you select the control you want by
choosing whether it holds an OLE object (also called an insertable object) or
an ActiveX control:

• An insertable OLE object is a document associated with a server
application. The object can be activated and the server provides
commands and toolbars for modifying the object.

• An ActiveX control or OLE custom control is itself a server that
processes user actions according to scripts you program in PowerBuilder.
You can write scripts for ActiveX control events and for events of the
PowerBuilder container. Those scripts call functions and set properties
that belong to the ActiveX control. When appropriate, the ActiveX control
can present its own visual interface for user interaction.

ActiveX controls range from simple visual displays (such as a meter or a
gauge) to single activities that are customizable (spellchecking words or
phrases) to working environments (image acquisition with annotation and
editing).

CHAPTER 19 Using OLE in an Application

Application Techniques 319

OLE control container
features

All OLE control containers support a set of required interfaces. PowerBuilder
provides some additional support:

• Extended control An OLE control can determine and modify its
location at runtime using its extended control properties. PowerBuilder
supports the X (Left), Y (Top), Width, and Height properties, all of which
are measured in PowerBuilder units. The control writer can access these
properties using the IDispatch-based interface returned from the
GetExtendedControl method on the IOleControlSite interface.

• Window as OLE container PowerBuilder implements the
IOleContainer class at the window level, so that all OLE controls on a
window are siblings and can obtain information about each other. The
control writer can access this information using the OLE EnumObjects
method. Information about siblings is useful when the controls are part of
a suite of controls. Unlike other controls, the OLE controls on a window
are stored in a flat hierarchy.

OLE objects and controls only

Only OLE objects and controls are visible to this object enumerator. You
cannot use this technique to manipulate other controls on the window.

• Message reflection If a control container does not support message
reflection, a reflector window is created when an OLE control sends a
message to its parent. The reflector window reflects the message back to
the control so that the control can process the message itself. If the
container supports message reflection, the need for a reflector window,
and the associated runtime overhead, is eliminated. PowerBuilder OLE
control containers perform message reflection for a specific set of
messages.

Defining the control This procedure describes how to create an OLE control and select its contents.

 To place an OLE control in a window or user object:

1 Open the window or user object that will contain the OLE control.

2 Select Insert>Control>OLE from the menu bar.

PowerBuilder displays the Insert Object dialog box. There are three tabs
to choose from.

3 Choose a server application or a specific object for the control (which
embeds or links an object in the control), select a custom control, or leave
the control empty for now:

OLE controls and insertable objects

320 PowerBuilder

• To create and embed a new object, click the Create New tab. After you
have chosen a server application, click OK.

• To choose an existing object for the control, click the Create From File
tab. After you have specified the file, click OK.

• To insert a custom control (ActiveX control), click the Insert Control
tab. After you have chosen an ActiveX control, click OK.

• To leave the control empty, click Cancel.

If you click Cancel, the control becomes an OLE control rather than
an OLE custom control, and you can choose to link or embed an OLE
object in it at any time; you cannot insert an ActiveX control later.

4 Click where you want the control.

If you inserted an object, PowerBuilder opens the server application so
you can view and edit the object. ActiveX controls cannot be opened.

If you want to insert an object that belongs to an OLE server application that is
not in the list, see the server documentation to find out how to install it.

For more information about using the Insert Object dialog box, see the section
on inserting OLE objects in DataWindow objects in the PowerBuilder Users
Guide.

OLE controls and insertable objects
The OLE control contains an insertable OLE object. You can change the object
in the control in the painter or in a script. You specify what is allowed in the
control by setting PowerBuilder properties.

Setting up the OLE control
When you create an OLE control and insert an object, PowerBuilder activates
the server application to allow you to modify the object. After you deactivate
it (by clicking outside the object’s borders in the Layout view), you can use the
control’s property sheets to set up the control.

CHAPTER 19 Using OLE in an Application

Application Techniques 321

 To specify the control’s appearance and behavior:

1 Double-click the control, or select Properties from the control’s pop-up
menu.

2 In the Properties view, give the control a name that is relevant to your
application.

You will use this name in scripts. The default name is ole_ followed by a
number.

3 Specify a value for Display Name for use by the OLE server. The OLE
server can use this name in window title bars.

4 Specify the control’s appearance and behavior by choosing appropriate
settings in the Properties view.

In addition to the standard Visible, Enabled, Focus Rectangle, and Border
properties, which are available for most controls, there are several options
that control the object’s interaction with the server:

Option Meaning

Activation How the user activates the control.

Options are:

• Double Click – When the user double-clicks the control, the
server application is activated.

• Get Focus – When the user clicks or tabs to the control, the
server is activated. If you also write a script for the
GetFocus event, do not call MessageBox or any function
that results in a change in focus.

• Manual – The control can be activated only
programmatically with the Activate function.

The control can always be activated programmatically,
regardless of the Activation setting.

Display Type What the control displays.

Options are:

• Contents – Display a representation of the object, reduced
to fit within the control.

• Icon – Display the icon associated with the data. This is
usually an icon provided by the server application.

• ActiveX document – Display as an ActiveX document.
ActiveX documents fill the space of the container and have
access to all the features of the server application.

OLE controls and insertable objects

322 PowerBuilder

Activating the object in the painter

The object in the OLE control needs to be activated so that the server
application can manipulate it. For the user, double-clicking is the default
method for activating the object. You can choose other methods by setting the
control’s Activation property, as described in the preceding table. During
development, you activate the object in the Window painter.

 To activate an OLE object in the Window painter:

1 Select Open from the control’s pop-up menu.

If the control is empty, Open is unavailable. You must select Insert to
assign an object to the control first.

Contents What the user can insert in the control at runtime.

Options are:

• Any – The user can insert either a linked or embedded
object.

• Embedded – The user can insert an embedded object.

• Linked – The user can insert a linked object.

Setting Contents changes the value of the ContentsAllowed
property.

Link Update When the object in the control is linked, the method for
updating link information.

Options are:

• Automatic – If the link is broken and PowerBuilder cannot
find the linked file, it displays a dialog box in which the
user can specify the file.

• Manual – If the link is broken, the object cannot be
activated. You can re-establish the link in a script using the
LinkTo or UpdateLinksDialog function.

Setting Link Update changes the value of the
LinkUpdateOptions property.

Size Mode How the object is displayed in the container.

Options are:

• Clip – The object’s image displays full size. If it is larger
than the OLE control, it is clipped by the control’s borders.

• Stretch – The object’s image is resized to fit into and fill the
OLE control (default).

Option Meaning

CHAPTER 19 Using OLE in an Application

Application Techniques 323

PowerBuilder invokes the server application and activates the object
offsite.

2 Use the server application to modify the object.

3 When you have finished, deactivate the object by clicking outside its
hatched border.

You can also choose Exit or Return on the server’s File menu, if available.

Changing the object in the control

In the painter, you can change or remove the object in the control.

 To delete the object in the control:

• Select Delete from the control’s pop-up menu.

The control is now empty and cannot be activated. Do not select Clear—
it deletes the control from the window.

 To insert a different object in the control:

1 Select Insert from the control’s pop-up menu.

PowerBuilder displays the Insert Object dialog box.

2 Select Create New and select a server application, or select Create from
File and specify a file, as you did when you defined the control.

3 Click OK.

During execution You can insert a different object in the control by calling the InsertObject,
InsertFile, InsertClass, or LinkTo function. You can delete the object in the
control by calling Cut or Clear.

How the user interacts with the control

When the window containing the OLE control opens, the data is displayed
using the information stored with the control in the PBL (or PBD or EXE file
if the application has been built).

When the object is activated, either because the user double-clicks or tabs to it
or because a script calls Activate, PowerBuilder starts the server application and
enables in-place editing if possible. If not, it enables offsite editing.

OLE controls and insertable objects

324 PowerBuilder

As the user changes the object, the data in the control is kept up to date with
the changes. This is obvious when the object is being edited in place, but it is
also true for offsite editing. Because some server applications update the object
periodically, rather than continually, the user might see only periodic changes
to the contents of the control. Most servers also do a final update automatically
when you end the offsite editing session. However, to be safe, the user should
select the server’s Update command before ending the offsite editing session.

Linking versus embedding
An OLE object can be linked or embedded in your application. The method
you choose depends on how you want to maintain the data.

Embedding data The data for an embedded object is stored in your application. During
development, it is stored in your application’s PBL. When you build your
application, it is stored in the EXE or PBD file. This data is a template or a
starting point for the user. Although the user can edit the data during a session,
the changes cannot be saved because the embedded object is stored as part of
your application.

Embedding is suitable for data that will not change (such as the body of a form
letter) or as a starting point for data that will be changed and stored elsewhere.

To save the data at runtime, you can use the SaveAs and Open functions to save
the user’s data to a file or OLE storage.

Linking data When you link an object, your application contains a reference to the data, not
the data itself. The application also stores an image of the data for display
purposes. The server application handles the actual data, which is usually saved
in a file. Other applications can maintain links to the same data. If any
application changes the data, the changes appear in all the documents that have
links to it.

Linking is useful for two reasons:

• More than one application can access the data.

• The server manages the saving of the data, which is useful even if your
PowerBuilder application is the only one using the data.

CHAPTER 19 Using OLE in an Application

Application Techniques 325

Maintaining link information The server, not PowerBuilder, maintains the
link information. Information in the OLE object tells PowerBuilder what server
to start and what data file and item within the file to use. From then on, the
server services the data: updating it, saving it back to the data file, updating
information about the item (for example, remembering that you inserted a row
in the middle of the range of linked rows).

Fixing a broken link Because the server maintains the link, you can move
and manipulate an OLE object within your application without worrying about
whether it is embedded or linked.

If the link is broken because the file has been moved, renamed, or deleted, the
Update setting of the control determines how the problem is handled. When
Update is set to Automatic, PowerBuilder displays a dialog box that prompts
the user to find the file. You can call the UpdateLinksDialog function in a script
to display the same dialog box. You can establish a link in a script without
involving the user by calling the LinkTo function.

PowerBuilder displays a control with a linked object with the same shading
that is used for an open object.

Offsite or in-place activation
During execution, when a user activates the object in the OLE control,
PowerBuilder tries to activate an embedded object in place, meaning that the
user interacts with the object inside the PowerBuilder window. The menus
provided by the server application are merged with the PowerBuilder
application’s menus. You can control how the menus are merged in the Menu
painter (see Menus for in-place activation on page 326).

When the control is active in place, it has a wide hatched border:

OLE controls and insertable objects

326 PowerBuilder

Offsite activation means that the server application opens and the object
becomes an open document in the server’s window. All the server’s menus are
available. The control itself is displayed with shading, indicating that the object
is open in the server application.

Limits to in-place activation

The server’s capabilities determine whether PowerBuilder can activate the
object in place. OLE 1.0 objects cannot be activated in place. In addition, the
OLE 2.0 standards specify that linked objects are activated offsite, not in place.

From the Window painter, the object is always activated offsite.

Changing the default
behavior

You can change the default behavior in a script by calling the Activate function
and choosing whether to activate an object in place or offsite. If you set the
control’s Activation setting to Manual, you can write a script that calls the
Activate function for the DoubleClicked event (or some other event):

ole_1.Activate(Offsite!)

When the control will not activate

You cannot activate an empty control (a control that does not have an OLE
object assigned to it). If you want the user to choose the OLE object, you can
write a script that calls the InsertObject function.

If the object in the control is linked and the linked file is missing, the user
cannot activate the control. If the Update property is set to Automatic,
PowerBuilder displays a dialog box so that the user can find the file.

If the Update property is set to Manual, a script can call the UpdateLinksDialog
function to display the dialog box, or call LinkTo to replace the contents with
another file.

Menus for in-place activation
When an object is activated in place, menus for its server application are
merged with the menus in your PowerBuilder application. The Menu Merge
Option settings in the Menu painter let you control how the menus of the two
applications are merged. The values are standard menu names, as well as the
choices Merge and Exclude.

CHAPTER 19 Using OLE in an Application

Application Techniques 327

 To control what happens to a menu in your application when an OLE
object is activated:

1 Open the menu in the Menu painter.

2 Select a menu item that appears on the menu bar. Menu Merge Option
settings apply only to items on the menu bar, not items on drop-down
menus.

3 On the Style property page, choose the appropriate Menu Merge Option
setting. Table 19-1 lists these settings.

Table 19-1: Menu Merge Option settings

4 Repeat steps 2 and 3 for each item on the menu bar.

Standard assignments
for standard menus

In general, you should assign the File, Edit, Window, and Help Menu Merge
options to the File, Edit, Window, and Help menus. Because the actual menu
names might be different in an international application, you use the Menu
Merge Option settings to make the correct associations.

Resulting menu bar
for activated object

The effect of the Menu Merge Option settings is that the menu bar displays the
container’s File and Window menus and the server’s Edit and Help menus. Any
menus that you label as Merge are included in the menu bar at the appropriate
place. The menu bar also includes other menus that the server has decided are
appropriate.

You can
choose Meaning

Source of menu in
resulting menu bar

File The menu from the container application
(your PowerBuilder application) that will
be leftmost on the menu bar. The server’s
File menu never displays.

Container

Edit The menu identified as Edit never
displays. The server’s Edit menu
displays.

Server

Window The menu from the container application
that has the list of open sheets. The
server’s Window menu never displays.

Container

Help The menu identified as Help never
displays. The server’s Help menu
displays.

Server

Merge The menu will be displayed after the first
menu of the server application.

Container

Exclude The menu will be removed while the
object is active.

OLE controls and insertable objects

328 PowerBuilder

Modifying an object in an OLE control
When an OLE object is displayed in the OLE control, the user can interact with
that object and the application that created it (the server). You can also program
scripts that do the same things the user might do. This section describes how to:

• Activate the OLE object and send general commands to the server

• Change and save the object in the control

• Find out when data or properties have changed by means of events

For information about automation for the control, see OLE objects in scripts
on page 345.

Activating the OLE object

Generally, the OLE control is set so that the user can activate the object by
double-clicking. You can also call the Activate function to activate the object in
a script. If the control’s Activation property is set to Manual, you have to call
Activate to start a server editing session:

ole_1.Activate(InPlace!)

You can initiate general OLE actions by calling the DoVerb function. A verb is
an integer value that specifies an action to be performed. The server determines
what each integer value means. The default action, specified as 0, is usually
Edit, which also activates the object.

For example, if ole_1 contains a Microsoft Excel spreadsheet, the following
statement activates the object for editing:

ole_1.DoVerb(0)

Check the server’s documentation to see what verbs it supports. OLE verbs are
a relatively limited means of working with objects; automation provides a more
flexible interface. OLE 1.0 servers support verbs but not automation.

Changing the object in an OLE control

PowerBuilder provides several functions for changing the object in an OLE
control. The function you choose depends on whether you want the user to
choose an object and whether the object should be linked or embedded, as
shown in Table 19-2.

CHAPTER 19 Using OLE in an Application

Application Techniques 329

Table 19-2: Functions for changing object in OLE control

Figure 19-1 illustrates the behavior of the three functions that do not allow a
choice of linking or embedding.

Figure 19-1: Functions that do not allow a choice of linking or
embedding

You can also assign OLE object data stored in a blob to the ObjectData
property of the OLE control:

blob myblob
... // Code to assign OLE data to the blob
ole_1.ObjectData = myblob

When you want to Choose this function

Let the user choose an object and, if the control’s
Contents property is set to Any, whether to link or embed
it.

InsertObject

Create a new object for a specified server and embed it in
the control.

InsertClass

Embed a copy of an existing object in the control. InsertFile

Link to an existing object in the control. LinkTo

Open an existing object from a file or storage.
Information in the file determines whether the object is
linked or embedded.

Open

OLE controls and insertable objects

330 PowerBuilder

The Contents property of the control specifies whether the control accepts
embedded and/or linked objects. It determines whether the user can choose to
link or embed in the InsertObject dialog box. It also controls what the functions
can do. If you call a function that chooses a method that the Contents property
does not allow, the function will fail.

OLE information in the
Browser

Use the Browser to find out the registered names of the OLE server
applications installed on your system. You can use any of the names listed in
the Browser as the argument for the InsertClass function, as well as the
ConnectToObject and ConnectToNewObject functions (see Programmable OLE
Objects on page 336).

For more information about OLE and the Browser, see OLE information in the
Browser on page 363.

Using the clipboard Using the Cut, Copy, and Paste functions in menu scripts lets you provide
clipboard functionality for your user. Calling Cut or Copy for the OLE control
puts the OLE object it contains on the clipboard. The user can also choose Cut
or Copy in the server application to place data on the clipboard. (Of course, you
can use these functions in any script, not just those associated with menus.)

There are several Paste functions that can insert an object in the OLE control.
The difference is whether the pasted object is linked or embedded.

Table 19-3: Paste functions

If you have a general Paste function, you can use code like the following to
invoke PasteSpecial (or PasteLink) when the target of the paste operation is the
OLE control:

graphicobject lg_obj
datawindow ldw_dw
olecontrol lole_ctl

// Get the object with the focus
lg_obj = GetFocus()

// Insert clipboard data based on object type
CHOOSE CASE TypeOf(lg_obj)

CASE DataWindow!
ldw_dw = lg_obj

When you want to Choose this function

Embed the object on the clipboard in the control Paste

Paste and link the object on the clipboard PasteLink

Allow the user to choose whether to embed or link the
pasted object

PasteSpecial

CHAPTER 19 Using OLE in an Application

Application Techniques 331

ldw_dw.Paste()
...
CASE OLEControl!
lole_ctl = lg_obj
lole_ctl.PasteSpecial()

END CHOOSE

Saving an embedded
object

If you embed an OLE object when you are designing a window, PowerBuilder
saves the object in the library with the OLE control. However, when you embed
an object during execution, that object cannot be saved with the control
because the application’s executable and libraries are read-only. If you need to
save the object, you save the data in a file or in the database.

For example, the following script uses SaveAs to save the object in a file. It
prompts the user for a file name and saves the object in the control as an OLE
data file, not as native data of the server application. You can also write a script
to open the file in the control in another session:

string myf
ilename, mypathname
integer result
GetFileSaveName("Select File", mypathname, &

myfilename, "OLE", &
"OLE Files (*.OLE),*.OLE")

result = ole_1.SaveAs(myfilename)

When you save OLE data in a file, you will generally not be able to open that
data directly in the server application. However, you can open the object in
PowerBuilder and activate the server application.

When you embed an object in a control, the actual data is stored as a blob in
the control’s ObjectData property. If you want to save an embedded object in a
database for later retrieval, you can save it as a blob. To transfer data between
a blob variable and the control, assign the blob to the control’s ObjectData
property or vice versa:

blob myblob
myblob = ole_1.ObjectData

You can use the embedded SQL statement UPDATEBLOB to put the blob data
in the database (see the PowerScript Reference).

You can also use SaveAs and Save to store OLE objects in PowerBuilder’s
OLEStorage variables (see Opening and saving storages on page 369).

OLE controls and insertable objects

332 PowerBuilder

When the user saves a linked object in the server, the link information is not
affected and you do not need to save the open object. However, if the user
renames the object or affects the range of a linked item, you need to call the
Save function to save the link information.

Events for the OLE control

There are several events that let PowerBuilder know when actions take place
in the server application that affect the OLE object.

Events for data Events that have to do with data are:

• DataChange The data has been changed

• Rename The object has been renamed

• Save, SaveObject The data has been saved

• ViewChange The user has changed the view of the data

When these events occur, the changes are reflected automatically in the
control. If you need to perform additional processing when the object is
renamed, saved, or changed, you can write the appropriate scripts.

Because of the architecture of OLE, you often cannot interact with the OLE
object within these events. Trying to do so can generate a runtime error. A
common workaround is to use the PostEvent function to post the event to an
asynchronous event handler. You do not need to post the SaveObject event,
which is useful if you want to save the data in the object to a file whenever the
server application saves the object.

Events for properties If the server supports property notifications, then when values for properties of
the server change, the PropertyRequestEdit and PropertyChanged events will
occur. You can write scripts that cancel changes, save old values, or read new
values.

For more information about property notification, see Creating hot links on
page 357.

CHAPTER 19 Using OLE in an Application

Application Techniques 333

OLE custom controls
The OLE control button in the Controls menu gives you the option of inserting
an object or a custom control in an OLE container. When you select an OLE
custom control (ActiveX control), you fix the container’s type and contents.
You cannot choose later to insert an object and you cannot select a different
custom control.

Each ActiveX control has its own properties, events, and functions. Preventing
the ActiveX control from being changed helps avoid errors later in scripts that
address the properties and methods of a particular ActiveX control.

Setting up the custom control
The PowerBuilder custom control container has properties that apply to any
ActiveX control. The ActiveX control itself has its own properties. This section
describes the purpose of each type of property and how to set them.

PowerBuilder
properties

For OLE custom controls, PowerBuilder properties have two purposes:

• To specify appearance and behavior of the container, as you do for any
control

You can specify position, pointer, and drag-and-drop settings, as well as
the standard settings on the General property page (Visible, Enabled, and
so on).

• To provide default information that the ActiveX control can use

Font information and the display name are called ambient properties in
OLE terminology. PowerBuilder does not display text for the ActiveX
control, so it does not use these properties directly. If the ActiveX control
is programmed to recognize ambient properties, it can use the values
PowerBuilder provides when it displays text or needs a name to display in
a title bar.

 To modify the PowerBuilder properties for the custom control:

1 Double-click the control, or select Properties from the control’s pop-up
menu.

The OLE Custom Control property sheet displays.

2 Give the control a name that is relevant to your application. You will use
this name in scripts. The default name is ole_ followed by a number.

OLE custom controls

334 PowerBuilder

3 Specify values for other properties on the General property page and other
pages as appropriate.

4 Click OK when you are done.

Documenting the control

Put information about the ActiveX control you are using in a comment for the
window or in the control’s Tag property. Later, if another developer works with
your window and does not have the ActiveX control installed, that developer
can easily find out what ActiveX control the window was designed to use.

ActiveX control
properties

An ActiveX control usually has its own properties and its own property sheet
for setting property values. These properties control the appearance and
behavior of the ActiveX control, not the PowerBuilder container.

 To set property values for the ActiveX control in the control:

1 Select OLE Control Properties from the control’s pop-up menu or from the
General property page.

2 Specify values for the properties and click OK when done.

The OLE control property sheet might present only a subset of the properties
of the ActiveX control. You can set other properties in a script.

For more information about the ActiveX control’s properties, see the
documentation for the ActiveX control.

Programming the ActiveX control
You make an ActiveX control do its job by programming it in scripts, setting
its properties, and calling its functions. Depending on the interface provided by
the ActiveX control developer, a single function call might trigger a whole
series of activities or individual property settings, and function calls may let
you control every aspect of its actions.

An ActiveX control is always active—it does not contain an object that needs
to be opened or activated. The user does not double-click and start an OLE
server. However, you can program the DoubleClicked or any other event to call
a function that starts ActiveX control processing.

Setting properties in
scripts

Programming an ActiveX control is the same as programming automation for
insertable objects. You use the container’s Object property to address the
properties and functions of the ActiveX control.

CHAPTER 19 Using OLE in an Application

Application Techniques 335

This syntax accesses a property value. You can use it wherever you use an
expression. Its datatype is Any. When the expression is evaluated, its value has
the datatype of the control property:

olecontrol.Object.ocxproperty

This syntax calls a function. You can capture its return value in a variable of
the appropriate datatype:

{ value } = olecontrol.Object.ocxfunction ({ argumentlist })

Errors when
accessing properties

The PowerBuilder compiler does not know the correct syntax for accessing
properties and functions of an ActiveX control, so it does not check any syntax
after the Object property. This provides the flexibility you need to program any
ActiveX control. But it also leaves an application open to runtime errors if the
properties and functions are misnamed or missing.

PowerBuilder provides two events (ExternalException and Error) for handling
OLE errors. If the ActiveX control defines a stock error event, the
PowerBuilder OLE control container has an additional event, ocx_event.
These events allow you to intercept and handle errors without invoking the
SystemError event and terminating the application. You can also use a
TRY-CATCH exception handler.

For more information, see Handling errors on page 354.

Using events of the
ActiveX control

An ActiveX control has its own set of events, which PowerBuilder merges with
the events for the custom control container. The ActiveX control events appear
in the Event List view with the PowerBuilder events. You write scripts for
ActiveX control events in PowerScript and use the Object property to refer to
ActiveX control properties and methods, just as you do for PowerBuilder event
scripts.

The only difference between ActiveX control events and PowerBuilder events
is where to find documentation about when the events get triggered. The
ActiveX control provider supplies the documentation for its events, properties,
and functions.

The PowerBuilder Browser provides lists of the properties and methods of the
ActiveX control. For more information, see OLE information in the Browser
on page 363.

Programmable OLE Objects

336 PowerBuilder

New versions of the ActiveX control

If you install an updated version of an ActiveX control and it has new events,
the event list in the Window painter does not add the new events. To use the
new events, you have to delete and recreate the control, along with the scripts
for existing events. If you do not want to use the new events, you can leave the
control as is—it will use the updated ActiveX control with the pre-existing
events.

Programmable OLE Objects
You do not need to place an OLE control on a window to manipulate an OLE
object in a script. If the object does not need to be visible in your PowerBuilder
application, you can create an OLE object independent of a control, connect to
the server application, and call functions and set properties for that object. The
server application executes the functions and changes the object’s properties,
which changes the OLE object.

For some applications, you can specify whether the application is visible. If it
is visible, the user can activate the application and manipulate the object using
the commands and tools of the server application.

OLEObject object type
PowerBuilder’s OLEObject object type is designed for automation.
OLEObject is a dynamic object type, which means that the compiler will
accept any property names, function names, and parameter lists for the object.
PowerBuilder does not have to know whether the properties and functions are
valid. This allows you to call methods and set properties for the object that are
known to the server application that created the object. If the functions or
properties do not exist during execution, you will get runtime errors.

Using an OLEObject variable involves these steps:

1 Declare the variable and instantiate it.

2 Connect to the OLE object.

3 Manipulate the object as appropriate using the OLE server’s properties
and functions.

CHAPTER 19 Using OLE in an Application

Application Techniques 337

4 Disconnect from the OLE object and destroy the variable.

These steps are described next.

Declaring an
OLEObject variable

You need to declare an OLEObject variable and allocate memory for it:

OLEObject myoleobject
myoleobject = CREATE OLEObject

The Object property of the OLE container controls (OLEControl or
OLECustomControl) has a datatype of OLEObject.

Connecting to the
server

You establish a connection between the OLEObject object and an OLE server
with one of the ConnectToObject functions. Connecting to an object starts the
appropriate server:

Table 19-4: ConnectToObject functions

After you establish a connection, you can use the server’s command set for
automation to manipulate the object (see OLE objects in scripts on page 345).

You do not need to include application qualifiers for the commands. You
already specified those qualifiers as the application’s class when you connected
to the server. For example, the following commands create an OLEObject
variable, connect to Microsoft Word ’s OLE interface (word.application), open
a document and display information about it, insert some text, save the edited
document, and shut down the server:

OLEObject o1
string s1
o1 = CREATE oleobject

o1.ConnectToNewObject("word.application")

When you want to Choose this function

Create a new object for an OLE server that you
specify. Its purpose is similar to InsertClass for a
control.

ConnectToNewObject

Create a new OLE object in the specified remote
server application if security on the server allows it
and associate the new object with a PowerBuilder
OLEObject variable.

ConnectToNewRemoteObject

Open an existing OLE object from a file. If you do
not specify an OLE class, PowerBuilder uses the
file’s extension to determine what server to start.

ConnectToObject

Associate an OLE object with a PowerBuilder
OLEObject variable and start the remote server
application.

ConnectToRemoteObject

Programmable OLE Objects

338 PowerBuilder

o1.documents.open("c:\temp\temp.doc")

// Make the object visible and display the
// MS Word user name and file name
o1.Application.Visible = True
s1 = o1.UserName
MessageBox("MS Word User Name", s1)
s1 = o1.ActiveDocument.Name
MessageBox("MS Word Document Name", s1)

//Insert some text in a new paragraph
o1.Selection.TypeParagraph()
o1.Selection.typetext("Insert this text")
o1.Selection.TypeParagraph()

// Insert text at the first bookmark
o1.ActiveDocument.Bookmarks[1].Select
o1.Selection.typetext("Hail!")

// Insert text at the bookmark named End
o1.ActiveDocument.Bookmarks.item("End").Select
o1.Selection.typetext("Farewell!")

// Save the document and shut down the server
o1.ActiveDocument.Save()
o1.quit()
RETURN

For earlier versions of Microsoft Word, use word.basic instead of
word.application. The following commands connect to the Microsoft Word 7.0
OLE interface (word.basic), open a document, go to a bookmark location, and
insert the specified text:

myoleobject.ConnectToNewObject("word.basic")
myoleobject.fileopen("c:\temp\letter1.doc")
myoleobject.editgoto("NameAddress")
myoleobject.Insert("Text to insert")

Do not include word.application or word.basic (the class in
ConnectToNewObject) as a qualifier:

// Incorrect command qualifier
myoleobject.word.basic.editgoto("NameAddress")

CHAPTER 19 Using OLE in an Application

Application Techniques 339

Microsoft Word 7.0 implementation

For an OLEObject variable, word.basic is the class name of Word 7.0 as a
server application. For an object in a control, you must use the qualifier
application.wordbasic to tell Word how to traverse its object hierarchy and
access its wordbasic object.

Shutting down and
disconnecting from
the server

After your application has finished with the automation, you might need to tell
the server explicitly to shut down. You can also disconnect from the server and
release the memory for the object:

myoleobject.Quit()
rtncode = myoleobject.DisconnectObject()
DESTROY myoleobject

You can rely on garbage collection to destroy the OLEObject variable.
Destroying the variable automatically disconnects from the server.

It is preferable to use garbage collection to destroy objects, but if you want to
release the memory used by the variable immediately and you know that it is
not being used by another part of the application, you can explicitly disconnect
and destroy the OLEObject variable, as shown in the code above.

For more information, see Garbage collection and memory management on
page 42.

Assignments among OLEControl, OLECustomControl, and
OLEObject datatypes

You cannot assign an OLE control (object type OLEControl) or ActiveX
control (object type OLECustomControl) to an OLEObject.

If the vendor of the control exposes a programmatic identifier (in the form
vendor.application), you can specify this identifier in the ConnectToNewObject
function to connect to the programmable interface without the visual control.
For an ActiveX control with events, this technique makes the events
unavailable. ActiveX controls are not meant to be used this way and would not
be useful in most cases.

You can assign the Object property of an OLE control to an OLEObject
variable or use it as an OLEObject in a function.

For example, if you have an OLEControl ole_1 and an OLECustomControl
ole_2 in a window and you have declared this variable:

Programmable OLE Objects

340 PowerBuilder

OLEObject oleobj_automate

then you can make these assignments:

oleobj_automate = ole_1.Object
oleobj_automate = ole_2.Object

You cannot assign an OLEObject to the Object property of an OLE control
because it is read-only. You cannot make this assignment:

ole_1.Object = oleobj_automate //Error!

Events for
OLEObjects

You can implement events for an OLEObject by creating a user object that is a
descendant of OLEObject. The SetAutomationPointer PowerScript function
assigns an OLE automation pointer to the descendant so that it can use OLE
automation.

Suppose oleobjectchild is a descendant of OLEObject that implements events
such as the ExternalException and Error events. The following code creates an
OLEObject and an instance of oleobjectchild, which is a user object that is a
descendant of OLEObject, connects to Excel, then assigns the automation
pointer to the oleobjectchild:

OLEObject ole1
oleobjectchild oleChild

ole1 = CREATE OLEObject
ole1.ConnectToNewObject("Excel.Application")

oleChild = CREATE oleobjectchild
oleChild.SetAutomationPointer(ole1)

You can now use olechild for automation.

Automation scenario
The steps involved in automation can be included in a single script or be the
actions of several controls in a window. If you want the user to participate in
the automation, you might:

• Declare an OLE object as an instance variable of a window

• Instantiate the variable and connect to the server in the window’s Open
event

• Send commands to the server in response to the user’s choices and
specifications in lists or edit boxes

CHAPTER 19 Using OLE in an Application

Application Techniques 341

• Disconnect and destroy the object in the window’s Close event

If the automation does not involve the user, all the work can be done in a single
script.

Example: generating form letters using OLE

This example takes names and addresses from a DataWindow object and letter
body from a MultiLineEdit and creates and prints letters in Microsoft Word
using VBA scripting.

 To set up the form letter example:

1 Create a Word document called CONTACT.DOC with four bookmarks and
save the file in your PowerBuilder directory.

These are the bookmarks:

• name1 – for the name in the return address

• name2 – for the name in the salutation

• address1 – for the street, city, state, and zip in the return address

• body – for the body of the letter

The letter should have the following content:

Multimedia Promotions, Inc.
1234 Technology Drive
Westboro, Massachusetts
January 12, 2003

[bookmark name1]
[bookmark address1]

Dear [bookmark name2]:
[bookmark body]

Sincerely,
Harry Mogul
President

You could enhance the letter with a company and a signature logo. The
important items are the names and placement of the bookmarks.

2 In PowerBuilder, define a DataWindow object called d_maillist that has the
following columns:

id

Programmable OLE Objects

342 PowerBuilder

first_name
last_name
street
city
state
zip

You can turn on Prompt for Criteria in the DataWindow object so the user
can specify the customers who will receive the letters.

3 Define a window that includes a DataWindow control called dw_mail, a
MultiLineEdit called mle_body, and a CommandButton or PictureButton:

4 Assign the DataWindow object d_maillist to the DataWindow control
dw_mail.

5 Write a script for the window’s Open event that connects to the database
and retrieves data for the DataWindow object. The following code
connects to a SQL Anywhere database. (When the window is part of a
larger application, the connection is typically done by the application
Open script.)

/**
Set up the Transaction object from the INI file
**/
SQLCA.DBMS=ProfileString("myapp.ini", &

"Database", "DBMS", " ")

SQLCA.DbParm=ProfileString("myapp.ini", &
"Database", "DbParm", " ")

/**
Connect to the database and test whether the

CHAPTER 19 Using OLE in an Application

Application Techniques 343

connect succeeded
**/
CONNECT USING SQLCA;
IF SQLCA.SQLCode <> 0 THEN

MessageBox("Connect Failed", "Cannot connect" &
+ "to database. " + SQLCA.SQLErrText)

RETURN
END IF
/**
Set the Transaction object for the DataWindow
control and retrieve data
**/
dw_mail.SetTransObject(SQLCA)
dw_mail.Retrieve()

6 Write the script for the Generate Letters button (the script is shown below).

The script does all the work, performing the following tasks:

• Creates the OLEObject variable

• Connects to the server (word.application)

• For each row in the DataWindow object, generates a letter

To do so, it uses VBA statements to perform the tasks in Table 19-5.

Table 19-5: Script tasks

• Disconnects from the server

• Destroys the OLEObject variable

7 Write a script for the Close button. All it needs is one command:

Close(Parent)

Script for generating
form letters

The following script generates and prints the form letters:

OLEObject contact_ltr

VBA statements Task

open Opens the document with the bookmarks

goto and typetext Extracts the name and address information from
a row in the DataWindow object and inserts it
into the appropriate places in the letter

goto and typetext Inserts the text the user types in mle_body into
the letter

printout Prints the letter

close Closes the letter document without saving it

Programmable OLE Objects

344 PowerBuilder

integer result, n
string ls_name, ls_addr
/***
Allocate memory for the OLEObject variable
***/
contact_ltr = CREATE oleObject
/***
Connect to the server and check for errors
***/
result = &

contact_ltr.ConnectToNewObject("word.application")
IF result <> 0 THEN

DESTROY contact_ltr
MessageBox("OLE Error", &

"Unable to connect to Microsoft Word. " &
+ "Code: " &
+ String(result))
RETURN

END IF
/***
For each row in the DataWindow, send customer
data to Word and print a letter
***/
FOR n = 1 to dw_mail.RowCount()
/**

Open the document that has been prepared with
bookmarks

**/
contact_ltr.documents.open("c:\pbdocs\contact.doc")

/**
Build a string of the first and last name and
insert it into Word at the name1 and name2
bookmarks

**/
ls_name = dw_mail.GetItemString(n, "first_name")&
+ " " + dw_mail.GetItemString(n, "last_name")
contact_ltr.Selection.goto("name1")
contact_ltr.Selection.typetext(ls_name)
contact_ltr.Selection.goto("name2")
contact_ltr.Selection.typetext(ls_name)

/**
Build a string of the address and insert it into
Word at the address1 bookmark

**/
ls_addr = dw_mail.GetItemString(n, "street") &

+ "~r~n" &

CHAPTER 19 Using OLE in an Application

Application Techniques 345

+ dw_mail.GetItemString(n, "city") &
+ ", " &
+ dw_mail.GetItemString(n, "state") &
+ " " &
+ dw_mail.GetItemString(n, "zip")

contact_ltr.Selection.goto("address1")
contact_ltr.Selection.typetext(ls_addr)

/**
Insert the letter text at the body bookmark

***/
contact_ltr.Selection.goto("body")
contact_ltr.Selection.typetext(mle_body.Text)

/**
Print the letter

**/
contact_ltr.Application.printout()

/**
Close the document without saving

**/
contact_ltr.Documents.close
contact_ltr.quit()

NEXT
/***
Disconnect from the server and release the memory for
the OLEObject variable
***/
contact_ltr.DisconnectObject()
DESTROY contact_ltr

Running the example To run the example, write a script for the Application object that opens the
window or use the Run/Preview button on the PowerBar.

When the application opens the window, the user can specify retrieval criteria
to select the customers who will receive letters. After entering text in the
MultiLineEdit for the letter body, the user can click on the Generate Letters
button to print letters for the listed customers.

OLE objects in scripts
This chapter has described the three ways to use OLE in a window or user
object. You have learned about:

• Inserting an object in an OLE control

OLE objects in scripts

346 PowerBuilder

• Placing an ActiveX control in an OLE custom control

• Declaring an OLEObject variable and connecting to an OLE object

In scripts, you can manipulate these objects by means of OLE automation,
getting and setting properties, and calling functions that are defined by the OLE
server. There are examples of automation commands in the preceding sections.
This section provides more information about the automation interface in
PowerBuilder.

The automation interface
In PowerBuilder, an OLEObject is your interface to an OLE server or ActiveX
control. When you declare an OLEObject variable and connect to a server, you
can use dot notation for that variable and send instructions to the server. The
instruction might be a property whose value you want to get or set, or a function
you want to call.

The general automation syntax for an OLEObject is:

oleobjectvar.serverinstruction

For OLE controls in a window, your interface to the server or ActiveX control
is the control’s Object property, which has a datatype of OLEObject.

The general automation syntax for an OLE control is:

olecontrol.Object.serverinstruction

Compiling scripts that include commands to the OLE server

When you compile scripts that apply methods to an OLEObject (including a
control’s Object property), PowerBuilder does not check the syntax of the rest
of the command, because it does not know the server’s command set. You must
ensure that the syntax is correct to avoid errors during execution.

Make sure you give your applications a test run to ensure that your commands
to the server application are correct.

What does the server
support?

A server’s command set includes properties and methods (functions and
events).

OLE server applications publish the command set they support for automation.
Check your server application’s documentation for information.

CHAPTER 19 Using OLE in an Application

Application Techniques 347

For custom controls and programmable OLE objects, you can see a list of
properties and methods in the PowerBuilder Browser. For more information
about OLE information in the Browser, see OLE information in the Browser
on page 363.

Setting properties

You access server properties for an OLE control through its Object property
using the following syntax:

olecontrolname.Object.{ serverqualifiers.}propertyname

If the OLE object is complex, there could be nested objects or properties within
the object that serve as qualifiers for the property name.

For example, the following commands for an Excel spreadsheet object activate
the object and set the value property of several cells:

double value
ole_1.Activate(InPlace!)
ole_1.Object.cells[1,1].value = 55
ole_1.Object.cells[2,2].value = 66
ole_1.Object.cells[3,3].value = 77
ole_1.Object.cells[4,4].value = 88

For an Excel 95 spreadsheet, enclose the cells’ row and column arguments in
parentheses instead of square brackets. For example:

ole_1.Object.cells(1,1).value = 55

For properties of an OLEObject variable, the server qualifiers and property
name follow the variable name:

oleobjectvar.{ serverqualifiers.}propertyname

The qualifiers you need to specify depend on how you connect to the object.
For more information, see Qualifying server commands on page 351.

Calling functions

You can call server functions for an OLE control through its Object property
using the following syntax:

olecontrolname.Object.{ serverqualifiers.}functionname ({ arguments })

If the OLE object is complex, there could be nested properties or objects within
the object that serve as qualifiers for the function name.

OLE objects in scripts

348 PowerBuilder

Required parentheses

PowerScript considers all commands to the server either property settings or
functions. For statements and functions to be distinguished from property
settings, they must be followed by parentheses surrounding the parameters. If
there are no parameters, specify empty parentheses.

Arguments and return
values and their
datatypes

PowerBuilder converts OLE data to and from compatible PowerBuilder
datatypes. The datatypes of values you specify for arguments must be
compatible with the datatypes expected by the server, but they do not need to
be an exact match.

When the function returns a value, you can assign the value to a PowerBuilder
variable of a compatible datatype.

Passing arguments by
reference

If an OLE server expects an argument to be passed by reference so that it can
pass a value back to your script, include the keyword REF just before the
argument. This is similar to the use of REF in an external function declaration:

olecontrol.Object.functionname (REF argname)

In these generic examples, the server can change the values of ls_string and
li_return because they are passed by reference:

string ls_string
integer li_return
ole_1.Object.testfunc(REF ls_string, REF li_return)

This example illustrates the same function call using an OLEObject variable.

OLEObject ole_obj
ole_obj = CREATE OLEObject
ole_obj.ConnectToNewObject("servername")
ole_obj.testfunc(REF ls_string, REF li_return)

Setting the timeout period

Calls from a PowerBuilder client to a server time out after five minutes. You
can use the SetAutomationTimeout PowerScript function to change the default
timeout period if you expect a specific OLE request to take longer.

Word and automation Microsoft Word 6.0 and 7.0 support automation with a command set similar to
the WordBasic macro language. The command set includes both statements
and functions and uses named parameters. Later versions of Microsoft Word
use Visual Basic for Applications (VBA), which consists of a hierarchy of
objects that expose a specific set of methods and properties.

CHAPTER 19 Using OLE in an Application

Application Techniques 349

WordBasic statements WordBasic has both statements and functions. Some
of them have the same name. WordBasic syntax differentiates between
statements and functions calls, but PowerBuilder does not.

To specify that you want to call a statement, you can include AsStatement! (a
value of the OLEFunctionCallType enumerated datatype) as an argument. Using
AsStatement! is the only way to call WordBasic statements that have the same
name as a function. Even when the statement name does not conflict with a
function name, specifying AsStatement! is more efficient:

olecontrol.Object.application.wordbasic.statementname
 (argumentlist, AsStatement!)

For example, the following code calls the AppMinimize statement:

ole_1.Object.application.wordbasic. &
AppMinimize("",1,AsStatement!)

Named parameters PowerBuilder does not support named parameters that
both WordBasic and Visual Basic use. In the parentheses, specify the parameter
values without the parameter names.

For example, the following statements insert text at a bookmark in a Word 6.0
or 7.0 document:

ole_1.Activate(InPlace!)
Clipboard(mle_nameandaddress.Text)
ole_1.Object.application.wordbasic.&

fileopen("c:\msoffice\winword\doc1.doc")
ole_1.Object.application.wordbasic.&

editgoto("NameandAddress", AsStatement!)
ole_1.Object.application.wordbasic.&

editpaste(1, AsStatement!)

The last two commands in a WordBasic macro would look like this, where
Destination is the named parameter:

EditGoto.Destination = "NameandAddress"
EditPaste

In a PowerBuilder script, you would use this syntax to insert text in a Word 97
or later document:

ole_1.Object.Selection.TypeText("insert this text")

In the corresponding Visual Basic statement, the named parameter Text
contains the string to be inserted:

Selection.TypeText Text:="insert this text"

OLE objects in scripts

350 PowerBuilder

Automation is not macro programming

You cannot send commands to the server application that declare variables or
control the flow of execution (for example, IF THEN). Automation executes
one command at a time independently of any other commands. Use
PowerScript’s conditional and looping statements to control program flow.

Example of Word automation To illustrate how to combine PowerScript
with server commands, the following script counts the number of bookmarks
in a Microsoft Word OLE object and displays their names:

integer i, count
string bookmarklist, curr_bookmark
ole_1.Activate(InPlace!)

count = ole_1.Object.Bookmarks.Count
bookmarklist = "Bookmarks = " + String(count) + "~n"

FOR i = 1 to count
curr_bookmark = ole_1.Object.Bookmarks[i].Name
bookmarklist = bookmarklist + curr_bookmark + "~n"

END FOR

MessageBox("BookMarks", bookmarklist)

Word automation tip

You can check that you are using the correct syntax for Word automation with
the Word macro editor. Turn on macro recording in Word, perform the steps
you want to automate manually, then turn off macro recording. You can then
type Alt+F11 to open the macro editor and see the syntax that was built.
Remember that PowerBuilder uses square brackets for array indexes.

Example of Word 6.0 and 7.0 automation The following script counts the
number of bookmarks in a Microsoft Word 6.0 or 7.0 OLE object and displays
their names:

integer i, count
string bookmarklist, curr_bookmark
ole_1.Activate(InPlace!)

// Get the number of bookmarks
count = ole_1.Object. &

 application.wordbasic.countbookmarks
bookmarklist = "Bookmarks = " + String(count) + "~n"

CHAPTER 19 Using OLE in an Application

Application Techniques 351

// Get the name of each bookmark
FOR i = 1 to count

curr_bookmark = ole_1.Object. &
application.wordbasic.bookmarkname(i)
bookmarklist = bookmarklist + curr_bookmark +

"~n"
END FOR

MessageBox("BookMarks", bookmarklist)

Qualifying server commands

Whether to qualify the server command with the name of the application
depends on the server and how the object is connected. Each server implements
its own version of an object hierarchy, which needs to be reflected in the
command syntax. For example, the Microsoft Excel object hierarchy is shown
in Figure 19-2.

Figure 19-2: Microsoft Excel object hierarchy

When the server is Excel, the following commands appear to mean the same
thing but can have different effects (for an Excel 95 spreadsheet, the cells’ row
and column arguments are in parentheses instead of square brackets):

ole_1.Object.application.cells[1,2].value = 55

ole_1.Object.cells[1,2].value = 55

The first statement changes a cell in the active document. It moves up Excel’s
object hierarchy to the Application object and back down to an open sheet. It
does not matter whether it is the same one in the PowerBuilder control. If the
user switches to Excel and activates a different sheet, the script changes that
one instead. You should avoid this syntax.

OLE objects in scripts

352 PowerBuilder

The second statement affects only the document in the PowerBuilder control.
However, it will cause a runtime error if the document has not been activated.
It is the safer syntax to use, because there is no danger of affecting the wrong
data.

Microsoft Word 6.0 and 7.0 implement the application hierarchy differently
and require the qualifier application.wordbasic when you are manipulating an
object in a control. (You must activate the object.) For example:

ole_1.Object.application.wordbasic.bookmarkname(i)

Later versions of Microsoft Word do not require a qualifier, but it is valid to
specify one. You can use any of the following syntaxes:

ole_1.Object.Bookmarks.[i].Name
ole_1.Object.Bookmarks.item(i).Name

ole_1.Object.application.ActiveDocument. &
Bookmarks.[i].Name

When you are working with PowerBuilder’s OLEObject, rather than an object
in a control, you omit the application qualifiers in the commands because you
have already specified them when you connected to the object. (For more about
the OLEObject object type, see Programmable OLE Objects on page 336.)

Automation and the Any datatype
Because PowerBuilder knows nothing about the commands and functions of
the server application, it also knows nothing about the datatypes of returned
information when it compiles a program. Expressions that access properties
and call functions have a datatype of Any. You can assign the expression to an
Any variable, which avoids datatype conversion errors.

During execution, when data is assigned to the variable, it temporarily takes the
datatype of the value. You can use the ClassName function to determine the
datatype of the Any variable and make appropriate assignments. If you make an
incompatible assignment with mismatched datatypes, you will get a runtime
error.

Do not use the Any datatype unnecessarily

If you know the datatype of data returned by a server automation function, do
not use the Any datatype. You can assign returned data directly to a variable of
the correct type.

CHAPTER 19 Using OLE in an Application

Application Techniques 353

The following sample code retrieves a value from Excel and assigns it to the
appropriate PowerBuilder variable, depending on the value’s datatype. (For an
Excel 95 spreadsheet, the row and column arguments for cells are in
parentheses instead of square brackets.)

string stringval
double dblval
date dateval
any anyval

anyval = myoleobject.application.cells[1,1].value
CHOOSE CASE ClassName(anyval)

CASE "string"
stringval = anyval

CASE "double"
dblval = anyval

CASE "datetime"
dateval = Date(anyval)

END CHOOSE

OLEObjects for efficiency
When your automation command refers to a deeply nested object with multiple
server qualifiers, it takes time to negotiate the object’s hierarchy and resolve
the object reference. If you refer to the same part of the object hierarchy
repeatedly, then for efficiency you can assign that part of the object reference
to an OLEObject variable. The reference is resolved once and reused.

Instead of coding repeatedly for different properties:

ole_1.Object.application.wordbasic.propertyname

you can define an OLEObject variable to handle all the qualifiers:

OLEObject ole_wordbasic
ole_wordbasic = ole_1.Object.application.wordbasic
ole_wordbasic.propertyname1 = value
ole_wordbasic.propertyname2 = value

Example: resolving an
object reference

This example uses an OLEObject variable to refer to a Microsoft Word object.
Because it is referred to repeatedly in a FOR loop, the resolved OLEObject
makes the code more efficient. The example destroys the OLEObject variable
when it is done with it:

integer li_i, li_count
string ls_curr_bookmark

OLE objects in scripts

354 PowerBuilder

OLEObject ole_wb

ole_1.Activate(InPlace!)
ole_wb = ole_1.Object.application.wordbasic

// Get the number of bookmarks
li_count = ole_wb.countbookmarks
// Get the name of each bookmark
FOR li_i = 1 to count

ls_curr_bookmark = ole_wb.bookmarkname(i)
... // code to save the bookmark name in a list

END FOR

Handling errors
Statements in scripts that refer to the OLE server’s properties are not checked
in the compiler because PowerBuilder does not know what syntax the server
expects. Because the compiler cannot catch errors, runtime errors can occur
when you specify property or function names and arguments the OLE server
does not recognize.

Chain of error events When an error occurs that is generated by a call to an OLE server,
PowerBuilder follows this sequence of events:

1 If the error was generated by an ActiveX control that has defined a stock
error event, the ocx_error event for the PowerBuilder OLE control is
triggered.

2 Otherwise, the ExternalException event for the OLE object occurs.

3 If the ExternalException event has no script or its action argument is set to
ExceptionFail! (the default), the Error event for the OLE object occurs.

4 If the Error event has no script or its action argument is set to ExceptionFail!
(the default), any active exception handler for a RuntimeError or its
descendants is invoked.

5 If no exception handler exists, or if the existing exception handlers do not
handle the exception, the SystemError event for the Application object
occurs.

6 If the SystemError has no script, an application runtime error occurs and
the application is terminated.

CHAPTER 19 Using OLE in an Application

Application Techniques 355

You can handle the error in any of these events or in a script using a
TRY-CATCH block. However, it is not a good idea to continue processing after
the SystemError event occurs.

For more information about exception handling, see Handling exceptions on
page 36.

Events for OLE errors PowerBuilder OLE objects and controls all have two events for error handling:

• ExternalException Triggered when the OLE server or control throws an
exception or fires an error event (if there is no ocx_error event).
Information provided by the server can help diagnose the error.

• Error Triggered when the exception or error event is not handled.
PowerBuilder error information is available in the script.

If the OLE control defines a stock error event, the PowerBuilder OLE control
container has an additional event:

• ocx_error Triggered when the OLE server fires an error event.
Information provided by the server can help diagnose the error.

The creator of an OLE control can generate the stock error event for the control
using the Microsoft Foundation Classes (MFC) Class Wizard. The arguments
for the ocx_error event in PowerBuilder map to the arguments defined for the
stock error event.

Responding to the
error

If the PowerBuilder OLE control has an ocx_error event script, you can get
information about the error from the event’s arguments and take appropriate
action. One of the arguments of ocx_error is the boolean CancelDisplay. You
can set CancelDisplay to TRUE to cancel the display of any MFC error
message. You can also supply a different description for the error.

In either the ExternalException or Error event script, you set the Action
argument to an ExceptionAction enumerated value. What you choose depends
on what you know about the error and how well the application will handle
missing information.

OLE objects in scripts

356 PowerBuilder

Table 19-6: ExceptionAction enumerated values

Example:
ExternalException
event

The ExternalException event, like the ocx_error event, provides error
information from the OLE server that can be useful when you are debugging
your application.

Suppose your window has two instance variables: one for specifying the
exception action and another of type Any for storing a potential substitute
value. Before accessing the OLE property, a script sets the instance variables
to appropriate values:

ie_action = ExceptionSubstituteReturnValue!
ia_substitute = 0
li_currentsetting = ole_1.Object.Value

ExceptionAction
value Effect

ExceptionFail! Fail as if the event had no script. Failing triggers the next error
event in the order of event handling.

ExceptionIgnore! Ignore the error and return as if no error occurred.

Caution
If you are getting a property value or expecting a return value
from a function, a second error can occur during the
assignment because of mismatched datatypes.

ExceptionRetry! Send the command to the OLE server again (useful if the OLE
server was not ready).

Caution
If you keep retrying and the failure is caused by an incorrect
name or argument, you will set your program into an endless
loop. You can set up a counter to limit the number of retries.

ExceptionSubstitute
ReturnValue!

Use the value specified in the ReturnValue argument instead
of the value returned by the OLE server (if any) and ignore the
error condition.

You can set up an acceptable return value in an instance
variable before you address the OLE server and assign it to the
ReturnValue argument in the event script. The datatype of
ReturnValue is Any, which accommodates all possible
datatypes.

With a valid substitute value, this choice is a safe one if you
want to continue the application after the error occurs.

CHAPTER 19 Using OLE in an Application

Application Techniques 357

If the command fails, a script for the ExternalException event displays the Help
topic named by the OLE server, if any. It substitutes the return value you
prepared and returns. The assignment of the substitute value to
li_currentsetting works correctly because their datatypes are compatible:

string ls_context

// Command line switch for WinHelp numeric context ID
ls_context = "-n " + String(helpcontext)
IF Len(HelpFile) > 0 THEN

Run("winhelp.exe " + ls_context + " " + HelpFile)
END IF

Action = ExceptionSubstituteReturnValue!
ReturnValue = ia_substitute

Because the event script must serve for every automation command for the
control, you would need to set the instance variables to appropriate values
before each automation command.

Error event The Error event provides information about the PowerBuilder context for the
error. You can find out the PowerBuilder error number and message, as well as
the object, script, and line number of the error. This information is useful when
debugging your application.

The same principles discussed in the ExceptionAction value table for setting
the Action and ReturnValue arguments apply to the Error event, as well as
ExternalException.

For more information about the events for error handling, see the PowerScript
Reference.

Creating hot links
Some OLE servers support property change notifications. This means that
when a property is about to be changed and again after it has been changed, the
server notifies the client, passing information about the change. These
messages trigger the events PropertyRequestEdit and PropertyChanged.

PropertyRequestEdit
event

When a property is about to change, PowerBuilder triggers the
PropertyRequestEdit event. In that event’s script you can:

• Find out the name of the property being changed by looking at the
PropertyName argument.

• Obtain the old property value and save it

OLE objects in scripts

358 PowerBuilder

The property still has its old value, so you can use the standard syntax to
access the value.

• Cancel the change by changing the value of the CancelChange argument
to TRUE

PropertyChanged
event

When a property has changed, PowerBuilder triggers the PropertyChanged
event. In that event’s script, you can:

• Find out the name of the property being changed by looking at the
PropertyName argument

• Obtain the new property value

The value has already changed, so you cannot cancel the change.

Using the
PropertyName
argument

Because the PropertyName argument is a string, you cannot use it in dot
notation to get the value of the property:

value = This.Object.PropertyName // Will not work

Instead, use CHOOSE CASE or IF statements for the property names that need
special handling.

For example, in the PropertyChanged event, this code checks for three specific
properties and gets their new value when they are the property that changed.
The value is assigned to a variable of the appropriate datatype:

integer li_index, li_minvalue
long ll_color

CHOOSE CASE Lower(PropertyName)
CASE "value"
li_index = ole_1.Object.Value
CASE "minvalue"
li_minvalue = ole_1.Object.MinValue
CASE "backgroundcolor"
ll_color = ole_1.Object.BackgroundColor
CASE ELSE
... // Other processing

END CHOOSE

If a larger change
occurred

In some cases the value of the PropertyName argument is an empty string ("").
This means a more general change has occurred—for example, a change that
affects several properties.

If notification is not
supported

If the OLE server does not support property change notification, then the
PropertyRequestEdit and PropertyChanged events are never triggered, and
scripts you write for them will not run. Check your OLE server documentation
to see if notification is supported.

CHAPTER 19 Using OLE in an Application

Application Techniques 359

If notifications are not supported and your application needs to know about a
new property value, you might write your own function that checks the
property periodically.

For more information about the PropertyRequestEdit and PropertyChanged
events, see the PowerScript Reference.

Setting the language for OLE objects and controls
When you write automation commands, you generally use commands that
match the locale for your computer. If your locale and your users’ locale will
differ, you can specify the language you have used for automation with the
SetAutomationLocale function.

You can call SetAutomationLocale for OLE controls, custom controls, and
OLEObjects, and you can specify a different locale for each automation object
in your application.

For example, if you are developing your application in Germany and will
deploy it all over Europe, you can specify the automation language is German.
Use this syntax for an OLE control called ole_1:

ole_1.Object.SetAutomationLocale(LanguageGerman!)

Use this syntax for an OLEObject called oleobj_report:

oleobj_report.SetAutomationlocale(LanguageGerman!)

The users of your application must have the German automation interface for
the OLE server application.

What languages do your users’ computers support?

When your users install an OLE server application (particularly an OLE
application from Microsoft), they get an automation interface in their native
language and in English. It might not be appropriate for you to write
automation commands in your native language if your users have a different
language.

For more information, see the SetAutomationLocale function in the
PowerScript Reference.

OLE objects in scripts

360 PowerBuilder

Low-level access to the OLE object
If you need low-level access to OLE through a C or C++ DLL that you call
from PowerBuilder, you can use these functions:

• GetNativePointer (for OLEControl and OLECustomControl)

• GetAutomationNativePointer (for OLEObject)

When you have finished, you must use these functions to free the pointer:

• ReleaseNativePointer (for OLEControl and OLECustomControl)

• ReleaseAutomationNativePointer (for OLEObject)

For more information, see the PowerScript Reference.

OLE objects in DataWindow objects
The preceding sections discuss the automation interface to OLE controls and
OLE objects. You can also use scripts to change settings for an OLE object
embedded in a DataWindow object, and you can address properties of the
external OLE object.

This section describes how to use the Object property in dot notation to set
DataWindow properties and issue automation commands for OLE objects in
DataWindow objects.

Naming the OLE
object

To use dot notation for the OLE object, give the object a name. You specify the
name on the General page in the object’s property sheet.

Setting properties You set properties of the OLE container object just as you do for any object in
the DataWindow object. The Object property of the control is an interface to
the objects within the DataWindow object.

For example, this statement sets the Pointer property of the object ole_word:

dw_1.Object.ole_word.Pointer = "Cross!"

It is important to remember that the compiler does not check syntax after the
Object property. Incorrect property references cause runtime errors.

For more information about setting properties, handling errors, and the list of
properties for the OLE DWObject, see the DataWindow Reference.

CHAPTER 19 Using OLE in an Application

Application Techniques 361

OLE objects and the Modify function

You cannot create an OLE object in a DataWindow object dynamically using
the CREATE keyword of the Modify function. The binary data for the OLE
object is not compatible with Modify syntax.

Functions and
properties

There are four functions you can call for the OLE DWObject. They have the
same effect as for the OLE control. They are:

• Activate

• Copy

• DoVerb

• UpdateLinksDialog

To call the functions, you use the Object property of the DataWindow control,
just as you do for DataWindow object properties:

dw_1.Object.ole_word.Activate(InPlace!)

Four properties that apply to OLE controls in a window also apply to the OLE
DWObject.

Table 19-7: Properties that apply to OLE controls and DWObject

Automation You can send commands to the OLE server using dot notation. The syntax
involves two Object properties:

Property datatype Description

ClassLongName String (Read-only) The long name for the server
application associated with the OLE DWObject.

ClassShortName String (Read-only) The short name for the server
application associated with the OLE DWObject.

LinkItem String (Read-only) The entire link name of the item to
which the object is linked.

For example, if the object is linked to
C:\FILENAME.XLS!A1:B2, then LinkItem would
contain C:\FILENAME.XLS!A1:B2.

ObjectData Blob If the object is embedded, the object itself is stored
as a blob in the ObjectData property.

If the object is linked, this property contains the
link information and the cached image (for
display).

OLE objects in scripts

362 PowerBuilder

• The Object property of the DataWindow control Gives you access to
DataWindow objects, including the OLE container DWObject

• The Object property of the OLE DWObject Gives you access to the
automation object

The syntax is:

dwcontrol.Object.oledwobject.Object.{ serverqualifiers. }serverinstruction

For example, this statement uses the WordBasic Insert function to add a report
title to the beginning of the table of data in the Word document:

dw_1.Object.ole_word.Object.application.wordbasic.&
Insert("Report Title " + String(Today()))

OLE columns in an application

OLE columns in a DataWindow object enable you to store, retrieve, and
modify blob data in a database. To use an OLE column in an application, place
a DataWindow control in a window and associate it with the DataWindow
object.

For users of SQL Server

If you are using a SQL Server database, you must turn off transaction
processing to use OLE. In the Transaction object used by the DataWindow
control, set AutoCommit to TRUE.

For how to create an OLE column in a DataWindow object, see the
PowerBuilder Users Guide.

Activating an OLE
server application

Users can interact with the blob exactly as you did in preview in the
DataWindow painter: they can double-click a blob to invoke the server
application, then view and edit the blob. You can also use the OLEActivate
function in a script to invoke the server application. Calling OLEActivate
simulates double-clicking a specified blob.

The OLEActivate function has this syntax:

dwcontrol.OLEActivate (row, columnnameornumber, verb)

Specifying the verb When using OLEActivate, you need to know the action to pass to the OLE
server application. (Windows calls these actions verbs.) Typically, you want to
edit the document, which for most servers means you specify 0 as the verb.

To obtain the verbs supported by a particular OLE server application, use the
advanced interface of the Windows Registry Editor utility (run REGEDT32 /V).

CHAPTER 19 Using OLE in an Application

Application Techniques 363

For information about Registry Editor, see the Windows online Help file
REGEDT32.HLP.

Example For example, you might want to use OLEActivate in a Clicked script for a button
to allow users to use OLE without their having to know they can double-click
the blob’s icon.

The following statement invokes the OLE server application for the OLE
column in the current row of the DataWindow control dw_1 (assuming that the
second column in the DataWindow object is an OLE column):

dw_1.OLEActivate(dw_1.GetRow(), 2, 0)

For more information For more information about using OLE in a DataWindow object, see the
PowerBuilder Users Guide.

OLE information in the Browser
The system stores information about the OLE server applications and OLE
custom controls installed on your computer in the registry.

PowerBuilder reads the registry and displays the registration information for
all registered OLE servers and custom controls.

 To view the OLE information:

1 Click the Browser button on the PowerBar.

2 Click the OLE tab in the Browser.

There are three categories of OLE object, as shown in Table 19-8.

OLE information in the Browser

364 PowerBuilder

Table 19-8: OLE object categories

When you expand each of these categories, you see the individual OLE servers
that are installed. Each OLE server can also be expanded. The information
provided depends on the category.

Class information All the categories provide class information about the OLE server. You see a
list of registry keys. Some of the keys are meaningful in their own right and
some have values. The values, or simply the presence or absence of keys, tell
you how to find the OLE server and what it supports.

Table 19-9 lists some typical keys and what they mean.

OLE object category Description

Insertable objects OLE servers that can link or embed objects in OLE
containers. OLE servers that support insertable objects
must have a visual component.

Custom controls ActiveX controls that can be included in an OLE
container. ActiveX controls can also be insertable objects.
If so, they will appear on both lists.

Programmable objects OLE servers to which you can send automation
instructions. A programmable object might not have a
visual aspect, which means it supports only automation
and cannot support insertable objects.

CHAPTER 19 Using OLE in an Application

Application Techniques 365

Table 19-9: OLE registry keys

In addition to registry information, the Browser displays the properties and
methods of ActiveX controls and programmable objects. To provide the
information, PowerBuilder uses the registry information to query the ActiveX
control for its properties and methods. The information includes arguments and
datatypes.

Browser as script-
writing tool

Take advantage of the Browser when writing scripts. You can find property and
function names and paste them into your scripts. The Browser provides the full
syntax for accessing that property.

 To paste OLE information into a script:

1 Open the Browser.

2 Click the OLE tab.

3 Expand the list to find what you want. For example, find the ActiveX
control you want and expand the list further to find a property.

Registry key Value

GUID The global unique identifier for the OLE server.

TypeLib - GUID The global unique identifier for the type library for an
ActiveX control.

ProgID A string that identifies the OLE server or ActiveX
control. It usually includes a version number.

VersionIndependentProgID A string that identifies the OLE server or ActiveX
control, but does not include a version number.

InprocServer32 The name of the file for the 32-bit version of an
ActiveX control.

ToolboxBitmap32 The name of a bitmap file for the 32-bit ActiveX
control that can be used to represent the ActiveX
control in toolbars or toolboxes of a development
environment.

DefaultIcon The name of an icon file or executable containing an
icon to be used for an insertable icon that is being
displayed as an icon.

Version The version number of the OLE server or ActiveX
control.

Insertable No value – specifies that the entry is an OLE server
that supports insertable object.

Control No value – specifies that the entry is an ActiveX
control.

Verb No value – specifies that the entry accepts verbs as
commands.

Advanced ways to manipulate OLE objects

366 PowerBuilder

4 Highlight the property and select Copy from the pop-up menu.

5 Position the insertion point in the Script view and select Paste from the
pop-up menu.

The Browser inserts syntax like this into your script:

OLECustomControl.Object.NeedlePosition

After you change OLECustomControl to the actual name of your control,
your script correctly accesses the NeedlePosition property.

What the Browser pastes into your script depends on what you have selected.
If you select an object (a level above its properties in the hierarchy),
PowerBuilder pastes the object’s ProgID. You can use the ProgID in the
ConnectToNewObject function.

Advanced ways to manipulate OLE objects
In addition to OLE objects in controls and objects for automation,
PowerBuilder provides an interface to the underpinnings of OLE data storage.

OLE data is stored in objects called streams, which live in objects called
storages. Streams and storages are analogous to the files and directories of a
file system. By opening, reading, writing, saving, and deleting streams and
storages, you can create, combine, and delete your OLE objects. PowerBuilder
provides access to storages and streams with the OLEStorage and OLEStream
object types.

When you define OLE controls and OLEObject variables, you have full access
to the functionality of server applications and automation, which already
provide you with much of OLE’s power. You might never need to use
PowerBuilder’s storage and stream objects unless you want to construct
complex combinations of stored data.

CHAPTER 19 Using OLE in an Application

Application Techniques 367

Storage files from other applications

This section discusses OLE storage files that a PowerBuilder application has
built. Other PowerBuilder applications will be able to open the objects in a
storage file built by PowerBuilder. Although Excel, Word, and other server
applications store their native data in OLE storages, these files have their own
special formats, and it is not advisable to open them directly as storage files.
Instead, you should always insert them in a control (InsertFile) or connect to
them for automation (ConnectToObject).

Structure of an OLE storage
An OLE storage is a repository of OLE data. A storage is like the directory
structure on a disk. It can be an OLE object and can contain other OLE objects,
each contained within the storage, or within a substorage within the storage.
The substorages can be separate OLE objects—unrelated pieces like the files
in a directory—or they can form a larger OLE object, such as a document that
includes pictures as shown in Figure 19-3.

Figure 19-3: OLE storage structure

A storage or substorage that contains an OLE object has identifying
information that tags it as belonging to a particular server application. Below
that level, the individual parts should be manipulated only by that server
application. You can open a storage that is a server’s object to extract an object
within the storage, but you should not change the storage.

A storage that is an OLE object has presentation information for the object.
OLE does not need to start the server in order to display the object, because a
rendering is part of the storage.

Advanced ways to manipulate OLE objects

368 PowerBuilder

A storage might not contain an OLE object—it might exist simply to contain
other storages. In this case, you cannot open the storage in a control (because
there would be no object to insert).

Object types for storages and streams
PowerBuilder has two object types that are the equivalent of the storages and
streams stored in OLE files. They are:

• OLEStorage

• OLEStream

These objects are class user objects, like a Transaction or Message object. You
declare a variable, instantiate it, and open the storage. When you are through
with the storage, you close it and destroy the variable, releasing the OLE server
and the memory allocated for the variable.

Opening a storage associates an OLEStorage variable with a file on disk, which
can be a temporary file for the current session or an existing file that already
contains an OLE object. If the file does not exist, PowerBuilder creates it.

You can put OLE objects in a storage with the SaveAs function. You can
establish a connection between an OLE control in a window and a storage by
calling the Open function for the OLE control.

A stream is not an OLE object and cannot be opened in a control. However,
streams allow you to put your own information in a storage file. You can open
a stream within a storage or substorage and read and write data to the stream,
just as you might to a file.

Performance tip

Storages provide an efficient means of displaying OLE data. When you insert
a file created by a server application into a control, OLE has to start the server
application to display the object. When you open an object in an OLE storage,
there is no overhead for starting the server—OLE uses the stored presentation
information to display the object. There is no need to start the server if the user
never activates the object.

CHAPTER 19 Using OLE in an Application

Application Techniques 369

Opening and saving storages
PowerBuilder provides several functions for managing storages. The most
important are Open, Save, and SaveAs.

Using the Open
function

When you want to access OLE data in a file, call the Open function. Depending
on the structure of the storage file, you might need to call Open more than once.

This code opens the root storage in the file into the control. For this syntax of
Open, the root storage must be an OLE object, rather than a container that only
holds other storages. (Always check the return code to see if an OLE function
succeeded.)

result = ole_1.Open("MYFILE.OLE")

If you want to open a substorage in the file into the control, you have to call
Open twice: once to open the file into an OLEStorage variable, and a second
time to open the substorage into the control. stg_data is an OLEStorage
variable that has been declared and instantiated using CREATE:

result = stg_data.Open("MYFILE.OLE")
result = ole_1.Open(stg_data, "mysubstorage")

Using the Save
function

If the user activates the object in the control and edits it, then the server saves
changes to the data in memory and sends a DataChange event to your
PowerBuilder application. Then your application needs to call Save to make
the changes in the storage file:

result = ole_1.Save()
IF result = 0 THEN result = stg_data.Save()

Using the SaveAs
function

You can save an object in a control to another storage variable or file with the
SaveAs function. The following code opens a storage file into a control, then
opens another storage file, opens a substorage within that file, and saves the
original object in the control as a substorage nested at a third level:

OLEStorage stg_data, stg_subdata
stg_data = CREATE OLEStorage
stg_subdata = CREATE OLEStorage
ole_1.Open("FILE_A.OLE")
stg_data.Open("FILE_B.OLE")
stg_subdata.Open("subdata", stgReadWrite!, &

stgExclusive!, stg_data)
ole_1.SaveAs(stg_subdata, "subsubdata")

Advanced ways to manipulate OLE objects

370 PowerBuilder

The diagram illustrates how to open the nested storages so that you can perform
the SaveAs. If any of the files or storages do not exist, Open and SaveAs create
them. Note that if you call Save for the control before you call SaveAs, the
control’s object is saved in FILE_A. After calling SaveAs, subsequent calls to
Save save the object in subsubdata in FILE_B.

Figure 19-4: Nested OLE storages

The following example shows a simpler way to create a sublevel without
creating a storage at the third level. You do not need to nest storages at the third
level, nor do you need to open the substorage to save to it:

OLEStorage stg_data, stg_subdata
stg_data = CREATE OLEStorage
stg_subdata = CREATE OLEStorage
ole_1.Open("FILE_A.OLE")
stg_data.Open("FILE_B.OLE")
ole_1.SaveAs(stg_data, "subdata")

Getting information about storage members

When a storage is open, you can use one of the Member functions to get
information about the substorages and streams in that storage and change them.

CHAPTER 19 Using OLE in an Application

Application Techniques 371

Table 19-10: OLE storage Member functions

This code checks whether the storage subdata exists in stg_data before it opens
it. (The code assumes that stg_data and stg_subdata have been declared and
instantiated.)

boolean lb_exists
result = stg_data.MemberExists("subdata", lb_exists)
IF result = 0 AND lb_exists THEN

result = stg_subdata.Open(stg_data, "subdata")
END IF

To use MemberExists with the storage member IOle10Native, use the following
construction:

ole_storage.memberexists(char(1) + 'Ole10Native', &
lb_boolean)

The char(1) is required because the “I” in IOle10Native is not an I, as you see
if you look at the storage with a utility such as Microsoft's DocFile Viewer.

You need to use a similar construction to open the stream. For example:

ole_stream.open(ole_storage, char(1) + 'Ole10Native', &
StgReadWrite!, StgExclusive!)

Example: building a storage

Suppose you have several drawings of products and you want to display the
appropriate image for each product record in a DataWindow object. The
database record has an identifier for its drawing. In an application, you could
call InsertFile using the identifier as the file name. However, calling the server
application to display the picture is relatively slow.

Instead you could create a storage file that holds all the drawings, as shown in
the diagram. Your application could open the appropriate substorage when you
want to display an image.

Function Result

MemberExists Checks to see if the specified member exists in a storage.

Members can be either storages or streams. Names of
members must be unique—you cannot have a storage and a
stream with the same name. A member can exist but be empty.

MemberDelete Deletes a member from a storage.

MemberRename Renames a member in a storage.

Advanced ways to manipulate OLE objects

372 PowerBuilder

Figure 19-5: OLE storage file

The advantage of using a storage file like this one (as opposed to inserting files
from the server application into the control) is both speed and the convenience
of having all the pictures in a single file. Opening the pictures from a storage
file is fast, because a single file is open and the server application does not need
to start up to display each picture.

OLE objects in the storage

Although this example illustrates a storage file that holds drawings only, the
storages in a file do not have to belong to the same server application. Your
storage file can include objects from any OLE server application, according to
your application’s needs.

This example is a utility application for building the storage file. The utility
application is a single window that includes a DataWindow object and an OLE
control.

The DataWindow object, called dw_prodid, has a single column of product
identifiers. You should set up the database table so that the identifiers
correspond to the file names of the product drawings. The OLE control, called
ole_product, displays the drawings.

List of scripts for the
example

The example has three main scripts:

• The window’s Open event script instantiates the storage variable, opens
the storage file, and retrieves data for the DataWindow object. (Note that
the application’s Open event connects to the database.)

• The RowFocusChanged event of the DataWindow object opens the
drawing and saves it in the storage file.

• The window’s Close event script saves the storage file and destroys the
variable.

CHAPTER 19 Using OLE in an Application

Application Techniques 373

Add controls to the
window

First, add the dw_prodid and ole_product controls to the window.

Application Open
event script

In the application’s Open event, connect to the database and open the window.

Instance variable Declare an OLEStorage variable as an instance variable of the window:

OLEStorage stg_prod_pic

Window Open event
script

The following code in the window’s Open event instantiates an OLEStorage
variable and opens the file PICTURES.OLE in that variable:

integer result
stg_prod_pic = CREATE OLEStorage
result = stg_prod_pic.Open("PICTURES.OLE")
dw_prod.SetTransObject(SQLCA)
dw_prod.Retrieve()

Retrieve triggers the RowFocusChanged event

It is important that the code for creating the storage variable and opening the
storage file comes before Retrieve. Retrieve triggers the RowFocusChanged
event, and the RowFocusChanged event refers to the OLEStorage variable, so
the storage must be open before you call Retrieve.

RowFocusChanged
event script

The InsertFile function displays the drawing in the OLE control. This code in
the RowFocusChanged event gets an identifier from the prod_id column in a
DataWindow object and uses that to build the drawing’s file name before
calling InsertFile. The code then saves the displayed drawing in the storage:

integer result
string prodid
//Get the product identifier from the DataWindow.
prodid = this.Object.prod_id[currentrow]

// Use the id to build the file name. Insert the
// file's object in the control.
result = ole_product.InsertFile(&

GetCurrentDirectory() + "\" + prodid + ".gif")

// Save the OLE object to the storage. Use the
// same identifier to name the storage.
result = ole_product.SaveAs(stg_prod_pic, prodid)

Close event script This code in the window’s Close event saves the storage, releases the OLE
storage from the server, and releases the memory used by the OLEStorage
variable:

Advanced ways to manipulate OLE objects

374 PowerBuilder

integer result
result = stg_prod_pic.Save()
DESTROY stg_prod_pic

Check the return values

Be sure to check the return values when calling OLE functions. Otherwise,
your application will not know if the operation succeeded. The sample code
returns if a function fails, but you can display a diagnostic message instead.

Running the utility
application

After you have set up the database table with the identifiers of the product
pictures and created a drawing for each product identifier, run the application.
As you scroll through the DataWindow object, the application opens each file
and saves the OLE object in the storage.

Using the storage file To use the images in an application, you can include the prod_id column in a
DataWindow object and use the identifier to open the storage within the
PICTURES.OLE file. The following code displays the drawing for the current
row in the OLE control ole_product (typically, this code would be divided
between several events, as it was in the sample utility application above):

OLEStorage stg_prod_pic
//Instantiate the storage variable and open the file
stg_prod_pic = CREATE OLEStorage
result = stg_prod_pic.Open("PICTURES.OLE")

// Get the storage name from the DataWindow
// This assumes it has been added to the DataWindow's
// rowfocuschanging event
prodid = this.Object.prod_id[newrow]

//Open the picture into the control
result = ole_product.Open(stg_prod_pic, prodid)

The application would also include code to close the open storages and destroy
the storage variable.

CHAPTER 19 Using OLE in an Application

Application Techniques 375

Opening streams
Streams contain the raw data of an OLE object. You would not want to alter a
stream created by a server application. However, you can add your own
streams to storage files. These streams can store information about the
storages. You can write streams that provide labels for each storage or write a
stream that lists the members of the storage.

To access a stream in an OLE storage file, you define a stream variable and
instantiate it. Then you open a stream from a storage that has already been
opened. Opening a stream establishes a connection between the stream variable
and the stream data within a storage.

The following code declares and creates OLEStorage and OLEStream
variables, opens the storage, and then opens the stream:

integer result
OLEStorage stg_pic
OLEStream stm_pic_label
/***
Allocate memory for the storage and stream variables
***/
stg_pic = CREATE OLEStorage
stm_pic_label = CREATE OLEStream
/***
Open the storage and check the return value
***/
result = stg_prod_pic.Open("picfile.ole")
IF result <> 0 THEN RETURN
/***
Open the stream and check the return value
***/
result = stm_pic_label.Open(stg_prod_pic, &

"pic_label", stgReadWrite!)
IF result <> 0 THEN RETURN

PowerBuilder has several stream functions for opening and closing a stream
and for reading and writing information to and from the stream.

Advanced ways to manipulate OLE objects

376 PowerBuilder

Table 19-11: Stream functions

Example: writing and
reading streams

This example displays a picture of a product in the OLE control ole_product
when the DataWindow object dw_product displays that product’s inventory
data. It uses the file constructed with the utility application described in the
earlier example (see Example: building a storage on page 371). The pictures
are stored in an OLE storage file, and the name of each picture’s storage is also
the product identifier in a database table. This example adds label information
for each picture, stored in streams whose names are the product ID plus the
suffix _lbl.

Figure 19-6 shows the structure of the file.

Function Result

Open Opens a stream into the specified OLEStream variable. You must
have already opened the storage that contains the stream.

Length Obtains the length of the stream in bytes.

Seek Positions the read/write pointer within the stream. The next read or
write operation takes place at the pointer.

Read Reads data from the stream beginning at the read/write pointer.

Write Writes data to the stream beginning at the read/write pointer.

If the pointer is not at the end, Write overwrites existing data. If the
data being written is longer than the current length of the stream, the
stream’s length is extended.

Close Closes the stream, breaking the connection between it and the
OLEStream variable.

CHAPTER 19 Using OLE in an Application

Application Techniques 377

Figure 19-6: OLE storage file structure

The example has three scripts:

• The window’s Open event script opens the storage file and retrieves data
for the DataWindow object. (Note that the application’s Open event
connects to the database.)

• The RowFocusChanged event of the DataWindow object displays the
picture. It also opens a stream with a label for the picture and displays that
label in a StaticText. The name of the stream is the product identifier plus
the suffix _lbl.

If the label is empty (its length is zero), the script writes a label. To keep
things simple, the data being written is the same as the stream name. (Of
course, you would probably write the labels when you build the file and
read them when you display it. For the sake of illustration, reading and
writing the stream are both shown here.)

• The window’s Close event script saves the storage file and destroys the
variable.

The OLEStorage variable stg_prod_pic is an instance variable of the window:

OLEStorage stg_prod_pic

The script for the window’s Open event is:

integer result
stg_prod_pic = CREATE OLEStorage
result = stg_prod_pic.Open(is_ole_file)

The script for the RowFocusChanged event of dw_prod is:

Advanced ways to manipulate OLE objects

378 PowerBuilder

integer result
string prodid, labelid, ls_data
long ll_stmlength
OLEStream stm_pic_label
/***
Create the OLEStream variable.
***/
stm_pic_label = CREATE OLEStream
/***
Get the product id from the DataWindow.
***/
this.Object.prod_id[currentrow]
/***
Open the picture in the storage file into the
control. The name of the storage is the product id.
***/
result = ole_prod.Open(stg_prod_pic, prodid)
IF result <> 0 THEN RETURN
/***
Construct the name of the product label stream and
open the stream.
***/

labelid = prodid + "_lbl"
result = stm_pic_label.Open(stg_prod_pic, &

labelid, stgReadWrite!)
IF result <> 0 THEN RETURN
/***
Get the length of the stream. If there is data
(length > 0), read it. If not, write a label.
***/
result = stm_pic_label.Length(ll_stmlength)
IF ll_stmlength > 0 THEN

result = stm_pic_label.Read(ls_data)
IF result <> 0 THEN RETURN
// Display the stream data in st_label
st_label.Text = ls_data

ELSE
result = stm_pic_label.Write(labelid)
IF result < 0 THEN RETURN
// Display the written data in st_label
st_label.Text = labelid

END IF
/**
Close the stream and release the variable's memory.
***/

CHAPTER 19 Using OLE in an Application

Application Techniques 379

result = stm_pic_label.Close()
DESTROY stm_pic_label

The script for the window’s Close event is:

integer result
result = stg_prod_pic.Save()
DESTROY stg_prod_pic

Strategies for using storages
Storing data in a storage is not like storing data in a database. A storage file
does not enforce any particular data organization; you can organize each
storage any way you want. You can design a hierarchical system with nested
storages, or you can simply put several substorages at the root level of a storage
file to keep them together for easy deployment and backup. The storages in a
single file can be from the different OLE server applications.

If your DBMS does not support a blob datatype or if your database
administrator does not want large blob objects in a database log, you can use
storages as an alternative way of storing OLE data.

It is up to you to keep track of the structure of a storage. You can write a stream
at the root level that lists the member names of the storages and streams in a
storage file. You can also write streams that contain labels or database keys as
a way of documenting the storage.

Advanced ways to manipulate OLE objects

380 PowerBuilder

Application Techniques 381

C H A P T E R 2 0 Building a Mail-Enabled
Application

About this chapter This chapter describes how to use the messaging application program
interface (MAPI) with PowerBuilder applications to send and receive
electronic mail.

Contents

About MAPI
PowerBuilder supports MAPI (messaging application program interface),
so you can enable your applications to send and receive messages using
any MAPI-compliant electronic mail system.

For example, your PowerBuilder applications can:

• Send mail with the results of an analysis performed in the application

• Send mail when a particular action is taken by the user

• Send mail requesting information

• Receive mail containing information needed by the application’s user

Both Extended MAPI and Simple MAPI are supported, with the exactly
same set of mail objects, properties, functions and events, except for very
few difference. By default, Extended MAPI is used, but if the Windows
operating system being used does not support Extended MAPI,
PowerBuilder 2017 will use the legacy Simple MAPI.

To use Simple MAPI in PowerBuilder 2017:

In the PowerBuilder IDE, add the following to the [PB] section of your
pb.ini that PB uses for initialization.

[PB]

Topic Page

About MAPI 381

Using MAPI 382

Using MAPI

382 PowerBuilder

UseSimpleMAPI=yes

Default location of pb.ini is
C:\Users\<username>\AppData\Local\Appeon\PowerBuilder 170.

For a deployed application, create a text file named pb.ini with the text above
and deploy it with your application executable.

64-bit PowerBuilder mail applications can only work with 64-bit Windows
MAPI. 32-bit PowerBuilder applications can only work with 32-bit Windows
MAPI.

How MAPI support is
implemented

To support MAPI, PowerBuilder provides the items listed in Table 20-1.

Table 20-1: PowerBuilder MAPI support

Using MAPI
To use MAPI, you create a MailSession object, then use the MailSession
functions to manage it.

For example:

Item Name

A mail-related system object MailSession

Mail-related structures MailFileDescription
MailMessage
MailRecipient

Object-level functions for the
MailSession object

MailAddress
MailDeleteMessage
MailGetMessages
MailHandle
MailLogoff
MailLogon
MailReadMessage
MailRecipientDetails
MailResolveRecipient
MailSaveMessage
MailSend

Enumerated datatypes MailFileType
MailLogonOption
MailReadOption
MailRecipientType
MailReturnCode

CHAPTER 20 Building a Mail-Enabled Application

Application Techniques 383

MailSession PBmail
PBmail = CREATE MailSession

PBmail.MailLogon(...)
... // Manage the session: send messages,
... // receive messages, and so on.
PBmail.MailLogoff()

DESTROY PBmail

You can use the Browser to get details about the attributes and functions of the
MailSession system object, the attributes of the mail-related structures, and the
valid values of the mail-related enumerated datatypes.

For information about using the Browser, see the PowerBuilder Users Guide.
For complete information about the MailSession functions, see the
PowerScript Reference. For complete information about MAPI, see the
documentation for your MAPI-compliant mail application.

Using MAPI

384 PowerBuilder

Application Techniques 385

C H A P T E R 2 1 Using External Functions and
Other Processing Extensions

About this chapter This chapter describes how to use external functions and other processing
extensions in PowerBuilder.

Contents

Using external functions
External functions are functions that are written in languages other than
PowerScript and stored in dynamic libraries. External functions are stored
in dynamic link libraries (DLLs).

You can use external functions written in any language that supports the
standard calling sequence for 32-bit platforms.

If you are calling functions in libraries that you have written yourself,
remember that you need to export the functions. Depending on your
compiler, you can do this in the function prototype or in a linker definition
(DEF) file.

Use _stdcall convention C and C++ compilers typically support several calling conventions,
including _cdecl (the default calling convention for C programs), _stdcall
(the standard convention for Windows API calls), _fastcall, and thiscall.
PowerBuilder, like many other Windows development tools, requires
external functions to be exported using the WINAPI (_stdcall) format.
Attempting to use a different calling convention can cause an application
crash.

Topic Page

Using external functions 385

Using utility functions to manage information 391

Sending Windows messages 393

The Message object 394

Context information 397

Using external functions

386 PowerBuilder

When you create your own C or C++ DLLs containing functions to be used in
PowerBuilder, make sure that they use the standard convention for Windows
API calls. For example, if you are using a DEF file to export function
definitions, you can declare the function like this:

LONG WINAPI myFunc()
{
...
};

Using PBNI

You can also call external functions in PowerBuilder extensions. PowerBuilder
extensions are built using the PowerBuilder Native Interface (PBNI). For more
information about building PowerBuilder extensions, see the PowerBuilder
Native Interface Programmers Guide and Reference. For more information
about using PowerBuilder extensions, see the PowerBuilder Extension
Reference.

Declaring external functions
Before you can use an external function in a script, you must declare it.

Two types You can declare two types of external functions:

• Global external functions, which are available anywhere in the
application

• Local external functions, which are defined for a particular type of
window, menu, or user object

These functions are part of the object’s definition and can always be used
in scripts for the object itself. You can also choose to make these functions
accessible to other scripts as well.

Datatypes for external
function arguments

When you declare an external function, the datatypes of the arguments must
correspond with the datatypes as declared in the function’s source definition.

For a comparison of datatypes in external functions and datatypes in
PowerBuilder, see the section on declaring and calling external functions in the
PowerScript Reference.

CHAPTER 21 Using External Functions and Other Processing Extensions

Application Techniques 387

 To declare an external function:

1 If you are declaring a local external function, open the object for which
you want to declare it.

2 In the Script view, select Declare in the first drop-down list and either
Global External Functions or Local External Functions from the second
list.

3 Enter the function declaration in the Script view.

For the syntax to use, see the PowerScript Reference or the examples
below.

4 Save the object.

PowerBuilder compiles the declaration. If there are syntax errors, an error
window opens, and you must correct the errors before PowerBuilder can
save the declaration.

Modifying existing functions

You can also modify existing external function declarations in the Script view.

Sample declarations
Suppose you have created a C dynamic library, SIMPLE.DLL, that contains a
function called SimpleFunc that accepts two parameters: a character string and
a structure. The following statement declares the function in PowerBuilder,
passing the arguments by reference:

FUNCTION int SimpleFunc(REF string lastname, &
REF my_str pbstr) LIBRARY "simple.dll"

By default, PowerBuilder handles string arguments and return values as if they
have Unicode encoding. If SimpleFunc passes ANSI strings as arguments, you
must use this syntax to declare it:

FUNCTION int SimpleFunc(REF string lastname, &
REF my_str pbstr) LIBRARY "simple.dll" &
ALIAS FOR "SimpleFunc;ansi"

Declaring Windows
API functions

The Windows API includes over a thousand functions that you can call from
PowerBuilder. The following examples show sample declarations for functions
in the 32-bit Windows API libraries KERNEL32.DLL, GDI32.DLL, and
USER32.DLL.

Using external functions

388 PowerBuilder

Windows API calls

Some 32-bit function names end with A (for ANSI) or W (for wide). Use wide
function names in PowerBuilder.

For a complete list of Windows API functions, see the Microsoft Windows
SDK documentation.

The following statements declare a function that gets the handle of any window
that is called by name, and a function that releases the open object handle:

FUNCTION ulong FindWindowW(ulong classname, &
string windowname) LIBRARY "User32.dll"

FUNCTION boolean CloseHandle(ulong w_handle) &
LIBRARY "Kernel32.dll"

The following statement declares a function that draws a pie chart based on the
coordinates received:

FUNCTION boolean Pie(ulong hwnd,long x1,long y1, &
long x2,long y2,long x3,long y3,long x4, &
long y4) LIBRARY "Gdi32.dll"

The following statement declares an external C function named IsZoomed:

FUNCTION boolean IsZoomed(Ulong handle) &
LIBRARY "User32.DLL"

A script that uses IsZoomed is included as an example in Using utility functions
to manage information on page 391.

For more information about these functions, see the Microsoft documentation
in the MSDN Library at http://msdn.microsoft.com/en-
us/library/ms674884(VS.85).aspx.

Passing arguments
In PowerBuilder, you can define external functions that expect arguments to be
passed by reference or by value. When you pass an argument by reference, the
external function receives a pointer to the argument and can change the
contents of the argument and return the changed contents to PowerBuilder.
When you pass the argument by value, the external function receives a copy of
the argument and can change the contents of the copy of the argument. The
changes affect only the local copy; the contents of the original argument are
unchanged.

CHAPTER 21 Using External Functions and Other Processing Extensions

Application Techniques 389

The syntax for an argument that is passed by reference is:

REF datatype arg

The syntax for an argument that is passed by value is:

datatype arg

Passing numeric datatypes

The following statement declares the external function TEMP in PowerBuilder.
This function returns an integer and expects an integer argument to be passed
by reference:

FUNCTION int TEMP(ref int degree) LIBRARY
"LibName.DLL"

The same statement in C would be:

int _stdcall TEMP(int * degree)

Since the argument is passed by reference, the function can change the contents
of the argument, and changes made to the argument within the function will
directly affect the value of the original variable in PowerBuilder. For example,
the C statement *degree = 75 would change the argument named degree to
75 and return 75 to PowerBuilder.

The following statement declares the external function TEMP2 in
PowerBuilder. This function returns an Integer and expects an Integer argument
to be passed by value:

FUNCTION int TEMP2(int degree) LIBRARY "LibName.DLL"

The same statement in C would be:

int _stdcall TEMP2(int degree)

Since the argument is passed by value, the function can change the contents of
the argument. All changes are made to the local copy of the argument; the
variable in PowerBuilder is not affected.

Passing strings

PowerBuilder assumes all string arguments and returned values use Unicode
encoding. If a function uses strings with ANSI encoding, you need to add an
ALIAS FOR clause to the function declaration and add a semicolon followed
by the ansi keyword. For example:

FUNCTION string NAME(string CODE) LIBRARY
"LibName.DLL" ALIAS FOR "NAME;ansi"

Using external functions

390 PowerBuilder

Passing by value The following statement declares the external C function
NAME in PowerBuilder. This function expects a String argument with Unicode
encoding to be passed by value:

FUNCTION string NAME(string CODE) LIBRARY
"LibName.DLL"

The same statement in C would point to a buffer containing the String:

char * _stdcall NAME(char * CODE)

Since the String is passed by value, the C function can change the contents of
its local copy of CODE, but the original variable in PowerBuilder is not
affected.

Passing by reference PowerBuilder has access only to its own memory.
Therefore, an external function cannot return to PowerBuilder a pointer to a
string. (It cannot return a memory address.)

When you pass a string to an external function, either by value or by reference,
PowerBuilder passes a pointer to the string. If you pass by value, any changes
the function makes to the string are not accessible to PowerBuilder. If you pass
by reference, they are.

The following statement declares the external C function NAME2 in
PowerBuilder. This function returns a String and expects a String argument to
be passed by reference:

FUNCTION string NAME2(ref string CODE) &
LIBRARY "LibName.DLL"

In C, the statement would be the same as when the argument is passed by value,
shown above:

char * _stdcall NAME2(char * CODE)

The String argument is passed by reference, and the C function can change the
contents of the argument and the original variable in PowerBuilder. For
example, Strcpy(CODE,STUMP) would change the contents of CODE to
STUMP and change the variable in the calling PowerBuilder script to the
contents of variable STUMP.

If the function NAME2 in the preceding example takes a user ID and replaces it
with the user’s name, the PowerScript string variable CODE must be long
enough to hold the returned value. To ensure that this is true, declare the String
and then use the Space function to fill the String with blanks equal to the
maximum number of characters you expect the function to return.

CHAPTER 21 Using External Functions and Other Processing Extensions

Application Techniques 391

If the maximum number of characters allowed for a user’s name is 40 and the
ID is always five characters, you would fill the String CODE with 35 blanks
before calling the external function:

String CODE
CODE = ID + Space(35)
. . .
NAME2(CODE)

For information about the Space function, see the PowerScript Reference.

Passing characters

Passing chars to WinAPI WinApi characters can have ANSI or Unicode
values, while PowerBuilder characters have only Unicode values. ANSI Char
values passed to and from WinAPI calls are automatically converted by
PowerBuilder. Therefore, when defining character array length, you must
always use the PowerBuilder character length (two bytes per character).

Passing chars to C functions Char variables passed to external C functions
are converted to the C char type before passing. Arrays of Char variables are
converted to the equivalent C array of char variables.

An array of Char variables embedded in a structure produces an embedded
array in the C structure. This is different from an embedded String, which
results in an embedded pointer to a string in the C structure.

Recommendation

Whenever possible, pass String variables back to PowerBuilder as a return
value from the function.

Using utility functions to manage information
The utility functions provide a way to obtain and pass Windows information to
external functions and can be used as arguments in the PowerScript Send
function. Table 21-1 describes the PowerScript utility functions.

Using utility functions to manage information

392 PowerBuilder

Five utility functions Table 21-1: Utility functions

Examples This script uses the external function IsZoomed to test whether the current
window is maximized. It uses the Handle function to pass a window handle to
IsZoomed. It then displays the result in a SingleLineEdit named sle_output:

boolean Maxed
Maxed = IsZoomed(Handle(parent))
if Maxed then sle_output.Text = "Is maxed"
if not Maxed then sle_output.Text = "Is normal"

This script passes the handle of a window object to the external function
FlashWindow to change the title bar of a window to inactive and then active:

// Declare loop counter and handle to window object
int nLoop
uint hWnd
// Get the handle to the PowerBuilder window.
hWnd = handle(This)
// Make the title bar inactive.
FlashWindow (hWnd, TRUE)
//Wait ...
For nLoop = 1 to 300
Next
// Return the title bar to its active color.
FlashWindow (hWnd, FALSE)

Function Return value Purpose

Handle UnsignedInt Returns the handle to a specified object.

IntHigh UnsignedInt Returns the high word of the specified Long value.

IntHigh is used to decode Windows values returned by
external functions or the LongParm attribute of the
Message object.

IntLow UnsignedInt Returns the low word of the specified Long value.

IntLow is used to decode Windows values returned by
external functions or the LongParm attribute of the
Message object.

Long Long Combines the low word and high word into a Long.

The Long function is used to pass values to external
functions.

LongLong LongLong Combines the low word and high word into a
LongLong.

The LongLong function is used to pass values to
external functions.

CHAPTER 21 Using External Functions and Other Processing Extensions

Application Techniques 393

Sending Windows messages
To send Windows messages to a window that you created in PowerBuilder or
to an external window (such as a window you created using an external
function), use the Post or Send function. To trigger a PowerBuilder event, use
the EVENT syntax or the TriggerEvent or PostEvent function.

Using Post and Send You usually use the Post and Send functions to trigger Windows events that are
not PowerBuilder-defined events. You can include these functions in a script
for the window in which the event will be triggered or in any script in the
application.

Post is asynchronous: the message is posted to the message queue for the
window or control. Send is synchronous: the window or control receives the
message immediately.

As of PowerBuilder 6.0, all events posted by PowerBuilder are processed by a
separate queue from the Windows system queue. PowerBuilder posted
messages are processed before Windows posted messages.

Obtaining the window’s handle

To obtain the handle of the window, use the Handle function. To combine two
integers to form the Long value of the message, use the Long function. Handle
and Long are utility functions, which are discussed later in this chapter.

Triggering
PowerBuilder events

To trigger a PowerBuilder event, you can use the techniques listed in Table 21-
2.

Table 21-2: Triggering PowerBuilder events

All three methods bypass the messaging queue and are easier to code than the
Send and Post functions.

Example All three statements shown below click the CommandButton
cb_OK and are in scripts for the window that contains cb_OK.

Technique Description

TriggerEvent function A synchronous function that triggers the event
immediately in the window or control

PostEvent function An asynchronous function: the event is posted to the
event queue for the window or control

Event call syntax A method of calling events directly for a control using dot
notation

The Message object

394 PowerBuilder

The Send function uses the Handle utility function to obtain the handle of the
window that contains cb_OK, then uses the Long function to combine the
handle of cb_OK with 0 (BN_CLICK) to form a Long that identifies the object
and the event:

Send(Handle(Parent),273,0,Long(Handle(cb_OK),0))
cb_OK.TriggerEvent(Clicked!)
cb_OK.EVENT Clicked()

The TriggerEvent function identifies the object in which the event will be
triggered and then uses the enumerated datatype Clicked! to specify the clicked
event.

The dot notation uses the EVENT keyword to trigger the Clicked event.
TRIGGER is the default when you call an event. If you were posting the clicked
event, you would use the POST keyword:

Cb_OK.EVENT POST Clicked()

The Message object
The Message object is a predefined PowerBuilder global object (like the
default Transaction object SQLCA and the Error object) that is used in scripts
to process Microsoft Windows events that are not PowerBuilder-defined
events.

When a Microsoft Windows event occurs that is not a PowerBuilder-defined
event, PowerBuilder populates the Message object with information about the
event.

Other uses of the
Message object

The Message object is also used:

• To communicate parameters between windows when you open and close
them

For more information, see the descriptions of OpenWithParm,
OpenSheetWithParm, and CloseWithReturn in the PowerScript Reference.

• To pass information to an event if optional parameters were used in
TriggerEvent or PostEvent

For more information, see the PowerScript Reference.

CHAPTER 21 Using External Functions and Other Processing Extensions

Application Techniques 395

Customizing the
Message object

You can customize the global Message object used in your application by
defining a standard class user object inherited from the built-in Message object.
In the user object, you can add additional properties (instance variables) and
functions. You then populate the user-defined properties and call the functions
as needed in your application.

For more information about defining standard class user objects, see the
PowerBuilder Users Guide.

Message object properties
The first four properties of the Message object correspond to the first four
properties of the Microsoft Windows message structure.

The Message object

396 PowerBuilder

Table 21-3: Message object properties

Use the values in the Message object in the event script that caused the
Message object to be populated. For example, suppose the FileExists event
contains the following script. OpenWithParm displays a response window that
asks the user if it is OK to overwrite the file. The return value from FileExists
determines whether the file is saved:

OpenWithParm(w_question, &
"The specified file already exists. " + &
"Do you want to overwrite it?")

IF Message.StringParm = "Yes" THEN
RETURN 0 // File is saved

ELSE
RETURN -1 // Saving is canceled

END IF

Property Datatype Use

Handle Integer The handle of the window or control.

Number Integer The number that identifies the event (this
number comes from Windows).

WordParm UnsignedInt The word parameter for the event (this
parameter comes from Windows). The
parameter’s value and meaning are determined
by the event.

LongParm Long The long parameter for the event (this number
comes from Windows). The parameter’s value
and meaning are determined by the event.

DoubleParm Double A numeric or numeric variable.

StringParm String A string or string variable.

PowerObjectParm PowerObject Any PowerBuilder object type including
structures.

Processed Boolean A boolean value set in the script for the
user-defined event:

• TRUE—The script processed the event. Do
not call the default window Proc
(DefWindowProc) after the event has been
processed.

• FALSE—(Default) Call DefWindowProc
after the event has been processed.

ReturnValue Long The value you want returned to Windows when
Message.Processed is TRUE.

When Message.Processed is FALSE, this
attribute is ignored.

CHAPTER 21 Using External Functions and Other Processing Extensions

Application Techniques 397

For information on Microsoft message numbers and parameters, see the
Microsoft Software Developer’s Kit (SDK) documentation.

Context information
The PowerBuilder context feature allows applications to access certain host
(non-PowerBuilder) services. This is a PowerBuilder implementation of
functionality similar to the COM QueryInterface. PowerBuilder provides
access to the following host services:

• Context information service

• Context keyword service

• CORBACurrent service (obsolete)

• Error logging service

• Internet service

• Transaction server service

PowerBuilder creates service objects appropriate for the current execution
context (native PowerBuilder or transaction server). This allows your
application to take full advantage of the execution environment.

The context feature uses seven PowerBuilder service objects:
ContextInformation, ContextKeyword, CORBACurrent, ErrorLogging, Inet,
SSLServiceProvider, and TransactionServer; it also uses the InternetResult
object. (The context feature is sometimes called the Context object, but it is not
a PowerBuilder system object.)

For more information about these objects, see Objects and Controls or the
PowerBuilder Browser.

Enabling a service Before you use a service, you instantiate it by calling the GetContextService
function. When you call this function, PowerBuilder returns a reference to the
instantiated service. Use this reference in dot notation when calling the
service’s functions.

 To enable a service:

1 Establish an instance variable of the appropriate type:

ContextInformation icxinfo_base
ContextKeyword icxk_base

Context information

398 PowerBuilder

CORBACurrent corbcurr_base
ErrorLogging erl_base
Inet iinet_base
SSLServiceProvider sslsp_base
TransactionServer ts_base

2 Instantiate the instance variable by calling the GetContextService function:

this.GetContextService("ContextInformation", &
icxinfo_base)

this.GetContextService("ContextKeyword", icxk_base)
// Use Keyword instead of ContextKeyword
this.GetContextService("Keyword", icxk_base)
this.GetContextService("CORBACurrent", &

corbcurr_base)
this.GetContextService("ErrorLogging", erl_base)
this.GetContextService("Internet", iinet_base)
this.GetContextService("SSLServiceProvider", &

sslsp_base)
this.GetContextService("TransactionServer",ts_base)

Using a CREATE
statement

You can instantiate a service object with a PowerScript CREATE statement.
However, this always creates an object for the default context (native
PowerBuilder execution environment), regardless of where the application is
running.

Context information service
You use the context information service to obtain information about an
application’s execution context. The service provides current version
information, as well as whether the application is running in the PowerBuilder
execution environment.

Accessing context
information

Using the context information service, you can access the information in Table
21-4.

CHAPTER 21 Using External Functions and Other Processing Extensions

Application Techniques 399

Table 21-4: Context information

Using the ClassName function for context information

You can also use the ClassName function to determine the context of the object.

You can use this information to verify that the context supports the current
version. For example, if your application requires features or fixes from
Version 2017.0.1, you can use the context information service to check the
version in the current execution context.

 To access context information:

1 Declare an instance or global variable of type ContextInformation:

ContextInformation icxinfo_base

2 Create the context information service by calling the GetContextService
function:

this.GetContextService("ContextInformation", &
icxinfo_base)

3 Call context information service functions as necessary.

This example calls the GetShortName function to determine the current
context and the GetVersionName function to determine the current version:

String ls_name
String ls_version
Constant String ls_currver = "12.5.0.1"
icxinfo_base.GetShortName(ls_name)

Item Use this function Comment

Full context
name

GetName Value returned depends on the context:

• Default: PowerBuilder Runtime

Abbreviated
context name

GetShortName Value returned depends on the context:

• Default: PBRUN

Company name GetCompanyName Returns Appeon.

Version GetVersionName Returns the full version number (for
example, 2017.0.1)

Major version GetMajorVersion Returns the major version number (for
example, 2017)

Minor version GetMinorVersion Returns the minor version number (for
example, 0)

Fix version GetFixesVersion Returns the fix version number (for
example, 1)

Context information

400 PowerBuilder

IF ls_name <> "PBRun" THEN
 cb_close.visible = FALSE
END IF
icxinfo_base.GetVersionName(ls_version)
IF ls_version <> ls_currver THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
END IF

Context keyword service
Use the context keyword service to access environment information for the
current context. In the default environment, this service returns host
workstation environment variables.

Accessing
environment variables

When running in the PowerBuilder execution environment (the default
context), you use this service to return environment variables.

 To access environment variables:

1 Declare an instance or global variable of type ContextKeyword. Also
declare an unbounded array of type String to contain returned values:

ContextKeyword icxk_base
String is_values[]

2 Create the context information service by calling the GetContextService
function:

this.GetContextService("Keyword", icxk_base)

3 Call the GetContextKeywords function to access the environment variable
you want. This example calls the GetContextKeywords function to
determine the current application Path:

icxk_base.GetContextKeywords("Path", is_values)

4 Extract values from the returned array as necessary. When accessing
environment variables, the array should always have a single element:

MessageBox("Path", "Path is: " + is_values[1])

CHAPTER 21 Using External Functions and Other Processing Extensions

Application Techniques 401

CORBACurrent service (obsolete)

Obsolete service
CORBACurrent service is obsolete because EAServer is no longer supported
since PowerBuilder 2017.

Client applications and EAServer components marked as OTS style can create,
control, and obtain information about EAServer transactions using functions of
the CORBACurrent context service object. The CORBACurrent object
provides most of the methods defined for the CORBA Current interface.

Error logging service
To record errors generated by PowerBuilder objects running in a transaction
server to a log file, create an instance of the ErrorLogging service object and
invoke its log method. For example:

ErrorLogging erlinfo_base
this.GetContextService("ErrorLogging", &

erlinfo_base)
erlinfo_base.log("Write this string to log")

The errors are recorded in the Windows system application log if the
component is running in COM+.

Internet service
Use the Internet service to:

• Display a Web page in the default browser (HyperLinkToURL function,
which starts the default browser with the specified URL)

• Access the HTML for a specified page (GetURL function, which performs
an HTTP Get)

• Send data to a CGI, ISAPI, or NSAPI program (PostURL function, which
performs an HTTP Post)

Hyperlinking to a URL You call the Internet service’s HyperLinkToURL function to start the default
browser with a specified URL.

Context information

402 PowerBuilder

 To hyperlink to a URL:

1 Declare an instance or global variable of type Inet:

Inet iinet_base

2 Create the Internet service by calling the GetContextService function:

THIS.GetContextService("Inet", iinet_base)

3 Call the HyperLinkToURL function, passing the URL of the page to display
when the browser starts:

iinet_base.HyperlinkToURL &
("http://www. .com")

Getting a URL You call the Internet service’s GetURL function to perform an HTTP Get,
returning raw HTML for a specified URL. This function returns the raw HTML
using the InternetResult object.

 To perform an HTTP Get:

1 Declare an instance or global variable of type Inet. Also declare an
instance or global variable using the descendent InternetResult object as
the datatype (n_ir_msgbox in this example):

Inet iinet_base
n_ir_msgbox iir_msgbox

2 Create the Internet service by calling the GetContextService function:

THIS.GetContextService("Internet", iinet_base)

3 Create an instance of the descendent InternetResult object:

iir_msgbox = CREATE n_ir_msgbox

4 Call the GetURL function, passing the URL of the page to be returned and
a reference to the instance of the descendent InternetResult object:

iinet_base.GetURL &
("http://www. .com", iir_msgbox)

When the GetURL function completes, it calls the InternetData function
defined in the descendent InternetResult object, passing the HTML for the
specified URL.

Posting to a URL You call the Internet service’s PostURL function to perform an HTTP Post,
sending data to a CGI, ISAPI, or NSAPI program. This function returns the raw
HTML using the InternetResult object.

CHAPTER 21 Using External Functions and Other Processing Extensions

Application Techniques 403

 To perform an HTTP Post:

1 Declare an instance or global variable of type Inet. Also declare an
instance or global variable using the descendent InternetResult object as
the datatype (n_ir_msgbox in this example):

Inet iinet_base
n_ir_msgbox iir_msgbox

2 Create the Internet service by calling the GetContextService function:

THIS.GetContextService("Internet", iinet_base)

3 Create an instance of the descendent InternetResult object:

iir_msgbox = CREATE n_ir_msgbox

4 Establish the arguments to the PostURL function:

Blob lblb_args
String ls_headers
String ls_url
Long ll_length
ls_url = "http://coltrane. .com/"
ls_url += "cgi-bin/pbcgi80.exe/"
ls_url += "myapp/n_cst_html/f_test?"
lblb_args = Blob("")
ll_length = Len(lblb_args)
ls_headers = "Content-Length: " &

+ String(ll_length) + "~n~n"

5 Call the PostURL function, passing the URL of the routine to be executed,
the arguments, the header, an optional server port specification, and a
reference to the instance of the descendent InternetResult object:

iinet_base.PostURL &
(ls_url, lblb_args, ls_headers, 8080, iir_msgbox)

When the PostURL function completes, it calls the InternetData function
defined in the descendent InternetResult object, passing the HTML
returned by the specified routine.

Using the
InternetResult object

The GetURL and PostURL functions both receive data in an InternetResult
object. This object acts as a buffer, receiving and caching the asynchronous
data as it is returned by means of the Internet. When all data is received, the
InternetResult object calls its InternetData function, which you override to
process the data as appropriate.

Context information

404 PowerBuilder

Implement in descendants of InternetResult

You implement this feature by creating standard class user objects of type
InternetResult. In each of these descendent user objects, define an InternetData
function to process the passed HTML as appropriate.

 To implement a descendent InternetResult object:

1 Create a standard class user object of type InternetResult.

2 Declare a new user object function as follows:

• Name InternetData

• Access Public

• Returns Integer

• Argument name Data, passed by value

• Argument datatype Blob

3 Add code to the InternetData function that processes the returned HTML
as appropriate. This example simply displays the HTML in a
MessageBox:

MessageBox("Returned HTML", &
String(data, EncodingANSI!))

Return 1

Transaction server service
Use the transaction server service to access information about the context of an
object running in a transaction server. You can use the TransactionServer object
to influence transaction behavior programmatically, and to access the methods
of another component on the transaction server.

P A R T 6 Developing Distributed
Applications

This part describes tools and techniques for building
distributed applications with PowerBuilder.

Application Techniques 407

C H A P T E R 2 2 Distributed Application
Development with PowerBuilder

About this chapter This chapter gives an overview of distributed application development
with PowerBuilder.

Contents

Distributed application architecture
Distributed application development, also called multitier development,
offers a natural way to separate the user interface components of an
application from the business logic that the application requires. By
centralizing business logic on a middle-tier server, you can reduce the
workload on the client and control access to sensitive information.

In a distributed application, the client and server work together to perform
tasks for the business user. The client handles all interactions with the user
while the middle-tier server provides background services to the client.
Typically, the middle-tier server performs most of the processing and
database access. To invoke the services of the server, the client calls a
method (or function) associated with a component (or object) that resides
on the server.

Partitioned applications Client-side logic for enterprise applications must be as small and efficient
as possible to conserve network bandwidth. To accomplish this goal,
applications are partitioned into three parts: presentation, business logic,
and database access. The database resides on the bottom tier of the
enterprise system to maintain and secure the organization's information
assets. The business logic resides in the middle tier or server. The
presentation is on the user's desktop, or top tier, or is dynamically
downloaded to the user's desktop.

Topic Page

Distributed application architecture 407

Server support 408

Server support

408 PowerBuilder

The server is then responsible for executing and securing the vast majority of
a corporation's business logic. This makes it a critical component in the
network-centric architecture. The client communicates with the server, calling
middle-tier components that perform business logic.

Web application
architecture

A Web application is a variation of the distributed architecture where the client
is hosted in a Web browser. PowerBuilder provides a couple of technologies for
building Web applications. The architecture of your application varies
depending on which technologies you decide to use.

For more information, see Chapter 25, Web Application Development with
PowerBuilder.

Server support
PowerBuilder developers can build clients that invoke the services of COM+
and third-party application servers, and build components (or objects) that
execute business logic inside each of these servers.

J2EE servers J2EE, the Java 2 Platform, Enterprise Edition, is the official Java framework
for enterprise application development. A J2EE application is composed of
separate components that are installed on different computers in a multitiered
system. Figure 22-1 shows three tiers in this system: the client tier, middle tier,
and Enterprise Information Systems (EIS) tier. The middle tier is sometimes
considered to be made up of two separate tiers: the Web tier and the business
tier.

CHAPTER 22 Distributed Application Development with PowerBuilder

Application Techniques 409

Figure 22-1: J2EE client, middle, and EIS tiers

Client components, such as application clients and applets, run on computers
in the client tier. Web components, such as Java servlets and JavaServer Pages
(JSP) components, run on J2EE servers in the Web tier. The EIS tier is made
up of servers running relational database management systems, enterprise
resource planning applications, mainframe transaction processing, and other
legacy information systems.

COM+ A PowerBuilder application can act as a client to a COM server. The server can
be built using any COM-compliant application development tool and it can run
locally, on a remote computer as an in-process server, or in COM+.

For more information, see Chapter 23, Building a COM or COM+ Client.

Server support

410 PowerBuilder

Application Techniques 411

C H A P T E R 2 3 Building a COM or COM+ Client

About this chapter This chapter explains how to build a PowerBuilder client that accesses a
COM or COM+ server component.

Contents

About building a COM or COM+ client
A PowerBuilder application can act as a client to a COM server. The
server can be built using any COM-compliant application development
tool and it can run locally, on a remote computer as an in-process server,
or in COM+.

Configuring a client
computer to access a
remote component

When a COM component is running on a remote computer, the client
computer needs to be able to access its methods transparently. To do this,
the client needs a local proxy DLL for the server and it needs registry
entries that identify the remote server.

If the component is installed in COM+, the COM+ Component Services
tool can create a Microsoft Windows Installer (MSI) file that installs an
application proxy on the client computer.

If the server is not installed in COM+, the client and proxy files must be
copied to the client and the server must be configured to run in a surrogate
process.

Remote server name written to registry

If the COM server is moved to a different computer, the registry entries on
the client must be updated.

Topic Page

About building a COM or COM+ client 411

Connecting to a COM server 412

Interacting with the COM component 412

Controlling transactions from a client 413

Connecting to a COM server

412 PowerBuilder

Connecting to a COM server
To access a method associated with a component in the COM server, the
PowerBuilder client connects to the component using its programmatic
identifier (ProgID) or its class identifier (CLSID).

You can use a tool such as OLEVIEW or the OLE tab in the PowerBuilder
Browser to view the Program ID or CLSID and methods of registered COM
objects.

To establish a connection to the COM server, you need to execute the
PowerScript statements required to perform these operations:

1 Declare a variable of type OLEObject and use the Create statement to
instantiate it.

2 Connect to the object using its Program ID or CLSID.

3 Check that the connection was established.

Example The following script instantiates the EmpObj OLEObject object,
connects to the COM object PBcom.Employee, and checks for errors:

OLEObject EmpObj
Integer li_rc
EmpObj = CREATE OLEObject
li_rc = EmpObj.ConnectToNewObject("PBcom.employee")
IF li_rc < 0 THEN

DESTROY EmpObj
MessageBox("Connecting to COM Object Failed", &

"Error: " + String(li_rc))
Return
END IF

Interacting with the COM component
Invoking component
methods

Once a connection to a COM component has been established, the client
application can begin using the component methods.

Use the REF keyword for output parameters

You must use the REF keyword when you call a method on a COM object that
has an output parameter. For example: of_add(arg1, arg2, REF sum)

CHAPTER 23 Building a COM or COM+ Client

Application Techniques 413

Example Using the EmpObj object created in the previous example, this
example calls two methods on the component, then disconnects and destroys
the instance:

Long units, time
Double avg, ld_retn
String ls_retn

ld_retn = EmpObj.f_calcdayavg(units, time, REF avg)
ls_retn = EmpObj.f_teststring()

EmpObj.DisconnectObject()
DESTROY EmpObj

Passing result sets PowerBuilder provides three system objects to handle getting result sets from
components running in transaction server environments and returning result
sets from PowerBuilder user objects running as transaction server components.
These system objects (ResultSet, ResultSets, and ADOResultSet) are designed
to simplify the conversion of transaction server result sets to and from
DataStore objects and do not contain any state information.

Handling runtime
errors

Runtime error information from custom class user objects executing as OLE
automation objects, COM objects, or COM+ components is reported to the
container holding the object as exceptions (or, for automation objects, as
exceptions or facility errors). Calls to the PowerBuilder SignalError function
are also reported to the container. To handle runtime errors generated by
PowerBuilder objects, code the ExternalException event of the OLE client.

For more information about handling runtime errors in OLE or COM objects,
see Handling errors on page 354.

Controlling transactions from a client
PowerBuilder clients can exercise explicit control of a transaction on a COM+
server by using a variable of type OleTxnObject instead of OLEObject to
connect to the COM object.

Requires COM+ installation

The ConnectToNewObject call on an OleTxnObject fails if COM+ is not
installed on the client computer.

Controlling transactions from a client

414 PowerBuilder

The OleTxnObject object, derived from the OLEObject object, provides two
additional functions (SetComplete and SetAbort) that enable the client to
participate in transaction control. When the client calls SetComplete, the
transaction is committed if no other participant in the transaction has called
SetAbort or otherwise failed. If the client calls SetAbort, the transaction is
always aborted.

Example In this example, the clicked event on a button creates a variable of
type OleTxnObject, connects to a COM object on a server, and calls some
methods on the object. When all the methods have returned, the client calls
SetComplete and disconnects from the object.

integer li_rc
OleTxnObject lotxn_obj

lotxn_obj = CREATE OleTxnObject
li_rc = lotxn_obj.ConnectToNewObject("pbcom.n_test")
IF li_rc <> 0 THEN

Messagebox("Connect Error", string(li_rc))
HALT

END IF

lotxn_obj.f_dowork()
lotxn_obj.f_domorework()

lotxn_obj.SetComplete()
lotxn_obj.DisconnectObject()

This f_dowork function on the COM object on the server creates an instance of
the transaction context service and calls its DisableCommit method to prevent
the transaction from committing prematurely between method calls. After
completing some work, the function calls SetAbort if the work was not
successfully completed and SetComplete if it was.

TransactionServer txninfo_one
integer li_rc

li_rc = GetContextService("TransactionServer", &
txninfo_one)

txninfo_one.DisableCommit()

// do some work and return a return code
IF li_rc <> 0 THEN

txninfo_one.SetAbort()
return -1

ELSE
txninfo_one.SetComplete()

CHAPTER 23 Building a COM or COM+ Client

Application Techniques 415

return 1
END IF

The SetComplete call on the client commits the transaction if all of the methods
in the transaction called SetComplete or EnableCommit.

Controlling transactions from a client

416 PowerBuilder

Application Techniques 417

C H A P T E R 2 4 Building an EJB client (obsolete)

About this chapter Enterprise JavaBeans components are obsolete technology, and will
be removed in a future release, although the components operate as
usual in this release.

This chapter describes how to build a PowerBuilder client for an
Enterprise JavaBeans component running on a J2EE-compliant
application server. Reference information for the objects described in this
chapter is in the PowerBuilder Extension Reference and in the online
Help.

Contents

About building an EJB client
A PowerBuilder application can act as a client to an EJB 1.1 or 2.0
component running on an application server that is J2EE compliant. This
capability relies on some PowerBuilder extension files.

PowerBuilder extension files are developed using the PowerBuilder
Native Interface (PBNI). You do not need to know anything about PBNI
to create EJB clients, but you can read more about PowerBuilder
extensions in the PowerBuilder Extension Reference, and about PBNI in
the PowerBuilder Native Interface Programmers Guide and Reference.

Topic Page

About building an EJB client 417

Adding pbejbclient170.pbx to your application 418

Generating EJB proxy objects 419

Creating a Java VM 426

Connecting to the server 429

Invoking component methods 430

Exception handling 435

Client-managed transactions 436

Debugging the client 437

Adding pbejbclient170.pbx to your application

418 PowerBuilder

pbejbclient170.pbx
and
pbejbclient170.pbd

To connect to the server and communicate with the EJB component, clients use
a set of classes implemented in a DLL file with the suffix PBX,
pbejbclient170.pbx. To use the classes in this PBX file, you must import the
definitions in it into a library in the client application. You can also add the
pbejbclient170.pbd file, which acts as a wrapper for the PBX file, to the target’s
library search path.

About EJB proxy
objects

The PowerBuilder client uses local proxy objects for the EJB component to
delegate calls to methods on the remote EJB component. At a minimum, each
EJB component is represented in the client application by a proxy for the home
interface and a proxy for the remote interface. For example, an EJB component
named Cart has two proxies, CartHome and Cart, each containing only the
signatures of the public methods of those interfaces.

Additional proxies are also generated for exceptions and ancillary classes used
by the home and remote interfaces. For more information, see Generating EJB
proxy objects on page 419.

Overview of the
process

To build an EJB client, you need to complete the following steps:

1 Create a workspace and a PowerScript target.

2 Add pbejbclient170.pbx to the application.

3 Create a project for building proxy objects.

4 Build the project to generate the proxy objects.

5 Create the windows required to implement the user interface of the client
application.

6 Instantiate a Java VM.

7 Establish a connection to the server and look up the EJB.

8 Create an instance of the EJB component and call component methods
from the client.

9 Test and debug the client.

Adding pbejbclient170.pbx to your application
The simplest way to add the PBEJBClient classes to a PowerBuilder target is
to import the object descriptions in the pbejbclient170.pbx PBX file into a
library in the PowerBuilder System Tree

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 419

The pbejbclient170.pbx and pbejbclient170.pbd files are installed in the
Shared/PowerBuilder directory when you install PowerBuilder. When you
create an EJB client application, you do not need to copy pbejbclient170.pbx
to another location, but you do need to deploy it with the client executable in a
directory in the application’s search path.

 To import the descriptions in an extension into a library:

1 In the System Tree, expand the target in which you want to use the
extension, right-click a library, and select Import PB Extension from the
pop-up menu.

2 Navigate to the location of the PBX file and click Open.

Each class in the PBX displays in the System Tree so that you can expand
it, view its properties, events, and methods, and drag and drop to add them
to your scripts.

After you import pbejbclient170.pbx, the following objects display in the
System Tree:

Generating EJB proxy objects
To generate EJB proxy objects, you need to create an EJB Client Proxy project.
You can do this in the Project painter or with a wizard.

Using an EJB Proxy project
To create a new EJB Client Proxy project, select either of the following from
the Projects page of the New dialog box:

• EJB Client Proxy icon

• EJB Client Proxy Wizard icon

Object Description

EJBConnection Used to connect to an EJB server and locate an EJB.

EJBTransaction Maps to the javax.transaction.UserTransaction interface.
Used to control transactions from the EJB client.

JavaVM Used to create an instance of the Java VM.

Generating EJB proxy objects

420 PowerBuilder

EJB Client Proxy icon The EJB Client Proxy icon opens the Project painter for EJB proxies so you can
create a project, specify options, and build the proxy library.

 To create an EJB Client Proxy project in the Project painter:

1 Double-click the EJB Client Proxy icon on the Projects page of the New
dialog box.

2 To specify the EJB, select Edit>Select Objects and enter the fully qualified
name of the component’s remote interface in the text box, for example
com.sybase.jaguar.sample.svu.SVULogin or portfolio.MarketMaker.

3 Enter the path of the directory or JAR file that contains the EJB’s stubs in
the Classpath box and click OK.

If the stub files are in a directory and the fully qualified name of the EJB
is packagename.beanname, enter the directory that contains
packagename.

4 To specify the PBL where the proxy objects should be stored, select
Edit>Properties and browse to the location of a library in the target’s
library list.

You can specify an optional prefix that is added to the beginning of each
generated proxy name. Adding a prefix makes it easier to identify the
proxies associated with a specific EJB and can be used to avoid conflicts
between class names and PowerBuilder reserved words. The prefix is not
added to the name of proxies that are not specific to this EJB, such as the
proxies for exceptions, stream objects, and ejbhome, ejbobject,
ejbmetadata, handle, and homehandle.

5 Close the dialog box and select File>Save to save the project.

The new project lists the EJB component for which a proxy will be generated
and specifies the name of the output library that will contain the generated
proxy objects.

EJB Client Proxy
Wizard icon

The EJB Client Proxy Wizard helps you create the project.

 To create an EJB Client Proxy project using the wizard:

1 Double-click the EJB Client Proxy Wizard icon on the Projects page of the
New dialog box and click Next on the first page of the wizard.

2 Select a library in which to store the project object and click Next.

3 Specify a name and optional description for the project and click Next.

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 421

4 As shown, enter the fully qualified name of the component’s remote
interface in the text box, for example cocoPortfolio.Portfolio:

The component’s home interface name is entered automatically using the
standard naming convention, although the wizard lets you modify this
name if necessary.

5 Browse to select the JAR file that contains the EJB’s stubs or the directory
that contains the stub package.

If the stub files are in a directory and the fully qualified name of the EJB
is packagename.beanname, enter the directory that contains
packagename.

6 Specify an optional prefix that is added to the beginning of each generated
proxy name and click Next.

Adding a prefix makes it easier to identify the proxies associated with a
specific EJB and can be used to avoid conflicts between class names and
PowerBuilder reserved words. The prefix is not added to the name of
proxies that are not specific to this EJB, such as the proxies for exceptions,
supporting classes, and EJBHome, EJBObject, EJBMetaData, Handle,
and HomeHandle.

7 Browse to select an existing library and click Next and Finish.

Generating EJB proxy objects

422 PowerBuilder

The proxy objects are generated and stored in this library, which must be
added to the target’s library list.

After the wizard has created the project, you can use the Project painter to
modify your project settings.

Building proxies Whether you create the EJB Proxy project using the wizard or the painter, the
final step is to build the proxy objects. To do so, click the Build icon on the
painter bar or select Design>Deploy Project from the menu bar.

Proxy generation requires javap.exe

PowerBuilder uses the javap.exe utility to generate proxy objects. This
executable must be in your system path. By default, EJB client development
uses the Oracle JDK 1.4 installed with PowerBuilder. The path and classpath
required by the Java VM are added to the path and classpath used in the current
session automatically.

If you want to use a different JDK installation, select Tools>System Options,
then click Set JDK Location on the Java page of the System Options dialog
box. For WebSphere, the path to the IBM JDK installation can be used instead.

In addition to the proxies for the home and remote interfaces of the EJB,
proxies are also generated for any Java classes referenced by the EJB, for
ancestor classes, for any exceptions that can be thrown by the EJB and its
supporting classes, and for the following interfaces:

For more information about these interfaces, see the documentation for the
javax.ejb package at http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html.

Object Description

EJBHome Proxy for the javax.ejb.EJBHome interface, the base class for
all EJB home interfaces.

EJBMetaData Proxy for the javax.ejb.EJBMetaData interface. Allows a client
to obtain the EJB’s home interface and the class objects for its
home and remote interfaces and primary key class (for entity
beans), and to determine whether the bean is a session or
stateless session object.

EJBObject Proxy for the javax.ejb.EJBObject interface, the base class for
all EJB remote interfaces.

Handle Proxy for the javax.ejb.Handle interface. Used to provide a
robust persistent reference to an EJB.

HomeHandle Proxy for the javax.ejb.HomeHandle interface. Used to provide
a robust persistent reference to a home object.

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 423

The project also generates a structure that stores the mapping of Java classes to
proxy names. This structure is used internally and should not be modified.

Using the ejb2pb170 tool
You can also use the ejb2pb170 command-line tool to generate proxies. The
tool generates:

• Proxies (.srx files) for the home and remote interfaces of the EJB you
specify and for the classes on which the EJB depends.

• A PowerBuilder structure object named ejbname_ejb_pb_mapping.srs,
where ejbname is the name of the EJB. This structure hosts the mapping
table between the Java class name and the PowerBuilder proxy name.

• A text file called ejbproxies.txt or, if errors occur, ejbproxies.err.

These files are generated in the directory in which you invoke the command.
The syntax is:

ejb2pb170 [-classpath pathlist] EJBName [EJBHomeName][prefix]

If the pathlist argument contains spaces, for example D:\Program Files, the
pathlist must be enclosed in quotes. EJBName is the fully qualified remote
interface class name. If you use the standard naming convention for the home
interface, then including an argument for the fully qualified home interface
name, EJBHomeName, is optional. If you specify the optional prefix, it is
added to the beginning of the generated proxy name.

For example, the following statements generate proxies for the mytest.Calc
class in the package Calc on WebLogic. The proxies for the home and remote
interfaces of the Calc class have the prefix pf_, and the generated files are
written to the directory D:\work\proxies:

cd D:\work\proxies
ejb2pb170 -classpath "D:\Program
Files\weblogic\Calc.jar" mytest.Calc pf_

The home and remote classes for the EJB and any dependent classes must be
in the class path that you specify.

After generating the proxies, you import them into your target by selecting the
library that contains the client, selecting Import from its pop-up menu, and
selecting the .srx files from the dialog box that displays. The order in which you
import .srx files is significant—you cannot import proxies that depend on other
classes until you have imported the proxies for the dependent classes.

Generating EJB proxy objects

424 PowerBuilder

Viewing the generated proxies
The generated proxies display in the System Tree. You can expand the proxy
nodes to display the signatures of the methods on the home and remote
interfaces for the EJB component, as well as on all the other objects for which
proxies were generated.

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 425

Conflicts with
reserved words

If the name of a component method conflicts with a PowerBuilder reserved
word, the string _j is appended to the method name in the proxy so that the
methods can be imported into PowerBuilder. For example, the Java Iterator
class has a Next method, which conflicts with the PowerBuilder reserved word
NEXT. In the proxy, the method is named next_j.

Datatype mappings
The EJB Proxy generator maps datatypes between Java and PowerBuilder as
shown in the following table:

Different precision for
double

A PowerBuilder double has 15 digits of precision (1.79769313486231E+308)
and a Java double has 17 digits (1.7976931348623157e+308). For EJB client
applications, the precision of a double is limited to the PowerBuilder range
(2.2250738585073E-308 to 1.79769313486231E+308).

Arrays of arrays Unlike Java, PowerBuilder does not support unbounded multidimensional
arrays. If a Java method takes an array of arrays as a parameter, the
corresponding PowerBuilder proxy method takes a parameter of type Any. To
call the method in PowerBuilder, declare a PowerBuilder array with the same
dimensions as the Java array, and pass the array as the parameter.

Java type PowerBuilder type

short Integer

int Long

long LongLong

float Real

double Double

byte Int

char (16-bit unsigned) Char

java.lang.String String

boolean Boolean

java.util.Date Datetime

Array of primitive type Parameters: Array of primitive type
Return values: Any

Array of java.lang.String or
java.util.Date objects

Parameters: Array of String or DateTime
Return values: Any

Array of arrays Any

Java class arguments or return
values

PowerBuilder proxies of Java classes

Other Any

Creating a Java VM

426 PowerBuilder

Creating a Java VM
Before calling an EJB component, you need to create a Java VM using the
CreateJavaVM method of the JavaVM class. The first argument is a string that
specifies a classpath to be added to the beginning of the classpath used by the
Java VM.

A Java VM might already be loaded

The classpath argument is ignored if the Java VM is already running.

Supported Java VM

PowerBuilder 2017 is compatible with Java VM 1.6 only (not 1.7 or 1.8).

The second argument to createJavaVM is a boolean that specifies whether
debug information is written to a text file. See Debugging the client on page
437.

The JavaVM class has other methods that you can use when you create a Java
VM:

• The CreateJavaInstance method creates an instance of the Java object from
a proxy name.

• The IsJavaVMLoaded method determines whether the Java VM is already
loaded. Use this method before calling CreateJavaVM if you want to
enable or disable some features of your application depending on whether
the Java VM has already been loaded. This will ensure that the classpath
argument passed to CreateJavaVM is ignored.

• The GetJavaVMVersion method determines which version of the Java VM
is running.

• The GetJavaClasspath method determines the runtime classpath of the
Java VM.

The JavaVM that you create using CreateJavaVM should be a global or instance
variable for the client application and should not be destroyed explicitly.

The Java VM
classpath in the
development
environment

When PowerBuilder starts a Java VM, the Java VM uses internal path and
classpath information to ensure that required Java classes are always available.

In the development environment, you can check whether the JVM is running
and, if so, which classpath it is using, on the Java page of the System Options
dialog box. The classpath is constructed by concatenating these paths:

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 427

• A classpath added programmatically when the Java VM is started. For
example, the classpath you pass to the CreateJavaVM method.

• The PowerBuilder runtime static registry classpath. This path is built into
the pbjvm170.dll and contains classes required at runtime for EJB clients
and other PowerBuilder features that use a Java VM.

• The PowerBuilder system classpath. This path resides in a Windows
registry key installed when you install PowerBuilder. It contains classes
required at design time for Java-related PowerBuilder features such as
JDBC connectivity.

• The PowerBuilder user classpath. This is the path that you specify on the
Java page of the System Options dialog box.

• The system CLASSPATH environment variable.

• The current directory.

The runtime Java VM
classpath

At runtime, you can use the GetJavaClasspath method to determine what
classpath the Java VM is using. The Java VM uses the following classpath at
runtime:

• A classpath added programmatically when the Java VM is started

• The PowerBuilder runtime static registry classpath

• The system CLASSPATH environment variable

• The current directory

For more information about the Java classpath at runtime, see Java support on
page 554.

Classes required by
servers

The classpath contains the classes required by EJB clients for the J2EE
application server, you need to add the classes required by the application
server to the system CLASSPATH. For example:

• For WebLogic, weblogic.jar. This file is installed in wlserver6.1\lib or
weblogic700\server\lib on the server.

• For WebSphere, JAR files installed on the server in
websphere\appserver\lib.

For detailed information about the files required on the client by each
application server, see the documentation for the server.

Examples This example demonstrates the creation of an instance of the Java VM that
specifies the wlfullclient.jar file in a WebLogic installation as a class path:

// global variables javavm g_jvm,

Creating a Java VM

428 PowerBuilder

// boolean gb_jvm_started
boolean isdebug
string classpath

if NOT gb_jvm_started then
//create JAVAVM
g_jvm = create javavm

// The Java package for the EJB
// wlfullclient.jar

classpath = &
"D:\Program Files\weblogic\wlfullclient.jar;"

isdebug = true
choose case g_jvm.createJavaVM(classpath, isdebug)
case 0,1

gb_jvm_started = true
case -1

MessageBox("Error", "Failed to load JavaVM")
case -2

MessageBox("Error", "Failed to load EJBLocator")
end choose

end if

This additional code can be added to the previous example to create a record of
the Java VM version and classpath used:

integer li_FileNum
string ls_classpath, ls_version, ls_string

li_FileNum = FileOpen("C:\temp\PBJavaVM.log", &
LineMode!, Write!, LockWrite!, Append!)

ls_classpath = i_jvm.getjavaclasspath()
ls_version = i_jvm.getjavavmversion()
ls_string = String(Today()) + " " + String(Now())
ls_string += " Java VM Version: " + ls_version
ls_string += " ~r~n" + ls_classpath + "~r~n"

FileWrite(li_FileNum, ls_string)
FileClose(li_filenum)

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 429

Connecting to the server
The EJBConnection class is used to connect to an EJB server and locate an
EJB. It has four methods: ConnectToServer, DisconnectServer, Lookup, and
GetEJBTransaction.

To establish a connection to the server, you need to execute the PowerScript
statements required to perform these operations:

1 Declare an instance of the EJBConnection class.

2 Set properties for the EJBConnection object.

3 Use the CREATE statement to instantiate the EJBConnection object.

4 Invoke the ConnectToServer method to establish a connection to the server.

5 Check for errors.

Class path
requirements

To connect to the application server and create an EJB object, the system
CLASSPATH environment variable or the classpath argument of
createJavaVM must contain the location of the EJB stub files, either a directory
or a JAR file. The application server you are using might also require that some
classes or JAR files be available on the client computer and added to the class
path. For more information, see The Java VM classpath in the development
environment on page 426.

Setting the initial
context

The string used to establish the initial context depends on the EJB server. The
following table shows sample string values. See the documentation for your
server for more information.

Example The following script shows a connection to WebLogic. It sets connection
properties to create an initial context, to identify the host name and port number
of the server, and to identify the user ID and password.

Then, the script creates an instance of the EJBConnection object, invokes the
ConnectToServer method to establish a connection to the server, and checks for
errors:

ejbconnection conn
string properties[]

properties[1]="javax.naming.Context.INITIAL_CONTEXT_FACTORY=
weblogic.jndi.WLInitialContextFactory"

Server INITIAL_CONTEXT_FACTORY value

WebLogic weblogic.jndi.WLInitialContextFactory

WebSphere com.ibm.websphere.naming.WsnInitialContextFactory

Invoking component methods

430 PowerBuilder

properties[2]="javax.naming.Context.PROVIDER_URL=t3://svr1:7001"
properties[3]="javax.naming.Context.SECURITY_PRINCIPAL=myid"
properties[4]="javax.naming.Context.SECURITY_CREDENTIALS=mypass"

conn = CREATE ejbconnection
TRY
conn.connectToServer(properties)

CATCH (exception e)
MessageBox("exception", e.getmessage())

END TRY

Disconnecting from
the server

When your application has finished using the EJB server, it should disconnect
from the server:

conn.disconnectserver()

Invoking component methods
After a connection to the server has been established and a proxy object or
objects created, the client application can begin using the EJB components. To
invoke an EJB component method, you need to execute the PowerScript
statements required to perform these operations:

1 Use the lookup method of EJBConnection to access the component’s home
interface.

2 Invoke the create or findByPrimaryKey method on the home interface to
create or find an instance of the component and get a reference to the
component’s remote interface.

3 Invoke the business methods on the remote interface.

This procedure relies on the pbejbclient170.jar file, which is included in the
Java VM classpath automatically at design time and runtime by the
pbjvm170.dll.

Using the lookup
method

The lookup method takes three string arguments: the name of the proxy for the
home interface, the JNDI name of the EJB component, and the fully qualified
home interface name of the EJB component.

The home interface name is the fully qualified class name of the EJB home
interface. For example, if the class’s location relative to the Java naming
context is ejbsample, the home interface name is ejbsample.HelloEJBHome.

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 431

The following example shows the invocation of the lookup method for
HelloEJB on WebLogic.

HelloEJBHome homeobj

homeobj = conn.lookup("HelloEJBHome",
"ejbsample.HelloEJB", "ejbsample.HelloEJBHome")

Lookup is case sensitive

Lookup in EJB servers is case sensitive. Make sure that the case in the string
you specify for the arguments to the lookup method matches the case on the
server.

Creating or finding an
instance of an EJB

A session bean is created in response to a client request. A client usually has
exclusive use of the session bean for the duration of that client session. An
entity bean represents persistent information stored in a database. A client uses
an entity bean concurrently with other clients. Since an entity bean persists
beyond the lifetime of the client, you must use a primary key class name to find
an instance of the entity bean if one exists or create a new instance if it does not.

For a session bean, you use the proxy object’s create method to create the
instance of the EJB. The create method can throw CreateException and
RemoteException. Assuming that you have obtained a reference to the home
interface in homeobj, create is used in the same way on all EJB servers:

HelloEJB beanobj
try

beanobj = homeobj.create()
catch (remoteexception re)

MessageBox("Remote exception", re.getmessage())
catch (createexception ce)

MessageBox("Create exception", ce.getmessage())
end try

For an entity bean, you provide a primary key. The FindByPrimaryKey method
can throw FinderException and RemoteException. In this example, the key is the
ID of a specific customer that is passed as an argument to the function:

try
beanobj = homeobj.findByPrimaryKey(customerID)

catch (remoteexception re)
MessageBox("Remote exception", re.getmessage())

catch (finderexception fe)
MessageBox("Finder exception", fe.getmessage())

end try

Invoking component methods

432 PowerBuilder

Invoking EJB
component methods

When the bean instance has been created or found, you can invoke its methods.
For example:

string msg
msg = beanobj.displaymessage()

Creating an instance
of a Java class

If the bean has a method that accepts a Java class as an argument, you use the
CreateJavaInstance method of the JavaVM object to create it. For example, if
the primary key in a call to the findByPrimaryKey method is a Java class, you
would use the CreateJavaInstance method to create that class, and then use a
PowerBuilder proxy to communicate with it.

In this example, the create method accepts a Java Integer class argument.
PowerBuilder creates a proxy called java_integer (the prefix java_ is required
to prevent a conflict with the PowerBuilder integer type). The call to
CreateJavaInstance sets the value of that variable so you can call the EJB create
method:

CustomerRemoteHome homeobj
CustomerRemote beanobj
java_integer jint_a

try
homeobj = conn.lookup("CustomerRemoteHome", &
"custpkg/Customer", "custpkg.CustomerRemoteHome")

catch (Exception e)
MessageBox("Exception in Lookup", e.getMessage())
return

end try

try
g_jvm.createJavaInstance(jint_a, "java_integer")
jint_a.java_integer("8")
beanobj = homeobj.create(jint_a, sle_name.text)

catch (RemoteException re)
MessageBox("Remote Exception", re.getMessage())
return

catch (CreateException ce)
MessageBox("Create Exception", ce.getMessage())
return

catch (Throwable t)
MessageBox(" Other Exception", t.getMessage())

end try

MessageBox("Info", &

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 433

"This record has been successfully saved " &
+ "~r~ninto the database")

Downcasting return
values

When Java code returns a common Java object that needs to be downcast for
use in Java programming, the Java method always sets the return value as
Java.lang.Object. In a PowerBuilder EJB client proxy, java.lang.Object is
mapped to the any datatype. At runtime, PowerBuilder gets the correct Java
object and indexes the generated mapping structure to get the PowerBuilder
proxy name. The any value is set as this proxy object. If the returned Java
object can map to a PowerBuilder standard datatype, the any value is set as the
PowerBuilder standard datatype.

Suppose the remote interface includes the method:

 java.lang.Object account::getPrimaryKey()

and the home interface includes the method:

account accounthome::findByPrimaryKey(java.lang.String)

The return value java.lang.Object is really a java.lang.String at runtime.
PowerBuilder automatically downcasts the return value to the PowerBuilder
string datatype:

any nid
try

account beanobj
homeobj = conn.lookup("AccountHome", &

ejb20-containerManaged-AccountHome, &
examples.ejb20.basic.containerManaged.AccountHome)

beanobj = homeobj.create("101", 0, "savings")
nid = beanobj.getPrimaryKey()
accounts = homeobj.findByPrimaryKey(string(nid))

catch (exception e)
messagebox("exception", e.getmessage())

end try

Dynamic casting There are two scenarios in which a Java object returned from a call to an EJB
method can be represented by a proxy that does not provide the methods you
need:

• If the class of a Java object returned from an EJB method call is
dynamically generated, PowerBuilder uses a proxy for the first interface
implemented by the Java class.

Invoking component methods

434 PowerBuilder

• The prototype of an EJB method that actually returns someclass can be
defined to return a class that someclass extends or implements. For
example, a method that actually returns an object of type java.util.ArrayList
can be defined to return java.util.Collection.java.util.ArrayList, which
inherits from java.util.AbstractList, which inherits from
java.util.AbstractCollection, which implements java.util.Collection. In this
case, PowerBuilder uses a proxy for java.util.Collection.

The DynamicCast method allows you to cast the returned proxy object to a
proxy for the interface you require, or for the actual class of the object returned
at runtime so that the methods of that object can be used.

You can obtain the actual class of the object using the GetActualClass method.
You can also use the DynamicCast method with the GetSuperClass method,
which returns the immediate parent of the Java class, and the GetInterfaces
method, which writes a list of interfaces implemented by the class to an array
of strings.

For example, given the following class:

public class java.util.LinkedList extends java.util.AbstractSequentialList
implements java.util.List, java.lang.Cloneable, java.io.Serializable

GetActualClass returns java.util.LinkedList, GetSuperClass returns
java.util.AbstractSequentialList, and GetInterfaces returns 3 and writes three
strings to the referenced string array: java.util.List, java.lang.Cloneable, and
java.io.Serializable.

Java collection
classes

EJB proxy generation generates Java common collection classes such as
Enumeration, Iterator, Vector, and so forth. PowerBuilder can manipulate these
collection classes in the same way as a Java client.

For example, suppose the home interface includes the following method with
the return value java.util.Enumeration:

Enumeration accounthome:: findNullAccounts ()

The following code shows how a PowerBuilder EJB client can manipulate the
enumeration class through the PowerBuilder proxy:

Enumeration enum
try

enum = homeobj.findNullAccounts()
if (not enum.hasMoreElements()) then
msg = "No accounts found with a null account type"
end if

catch (exception e)
messagebox("exception", e.getmessage())

end try

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 435

Exception handling
Errors that occur in the execution of a method of an EJB component are
mapped to exception proxies and thrown to the calling script. The methods of
all the classes in pbejbclient170.pbx can also throw exceptions when, for
example, connection to the server fails or the component cannot be located or
created.

Building EJB proxy projects generates the proxies for the home and remote
interfaces, proxies for any Java classes referenced by the EJB, proxies for
ancestor classes, and proxies for any exceptions that can be thrown by the EJB
and its supporting classes. The following exception proxies are among those
that may display in the System Tree:

Catching exceptions A client application can handle communications errors in a number of ways.
For example, if a client connects to a server and tries to invoke a method for an
object that does not exist, the client can disconnect from the server, connect to
a different server, or retry the operation. Alternatively, the client can display a
message to the user and give the user the opportunity to control what happens
next.

When an error occurs, if the client connects to a new server to retry the
operation, it must instantiate the remote object on the new server before
invoking a method of the remote object.

In the following example, the script simply displays a message box when a
specific exception occurs:

// function char getChar() throws RemoteException
try

conn.connectToServer(properties)
mappinghome = conn.lookup("pbEjbMappingHome",
"pbEjbTest/pbEjbMappingBeanSL",
"pbejb.pbEjbMappingHome")
mapping = mappinghome.create()
ret = mapping.getChar()
messagebox("char from EJB", ret)

catch (remoteexception re)

Proxy name Java object name

createexception javax.ejb.CreateException

ejbexception javax.ejb.EJBException

finderexception javax.ejb.FinderException

remoteexception java.rmi.RemoteException

removeexception javax.ejb.RemoveException

Client-managed transactions

436 PowerBuilder

messagebox("remoteexception", re.GetMessage())
catch (createexception ce)

messagebox("createexception", ce.GetMessage())
end try

Unhandled exceptions If no exception handler exists, or if the existing exception handlers do not
handle the exception, the SystemError event on the Application object is
executed. If the SystemError event has no script, an application error occurs
and the application is terminated.

Client-managed transactions
EJB client applications can control transactions on the server using the
EJBTransaction object. This object has methods that enable the client to begin,
commit, or roll back a transaction. The client can also get the status of a
transaction, change its timeout value, or modify the transaction so that it cannot
be committed.

The EJBTransaction methods map directly to the methods of the
javax.transaction.UserTransaction interface, which is documented in the JTA
Specification on the Sun Java Web site at http://java.sun.com/products/jta.

Beginning and ending
transactions

Clients can obtain access to the methods of the EJBTransaction class by calling
the getEJBTransaction method of the EJBConnection class:

ejbconnection conn
ejbtransaction trans
string properties[]

conn = create ejbconnection
TRY

conn.connectToServer(properties)
trans = conn.getEJBTransaction()

CATCH (exception e)
messagebox("exception", e.getmessage())

END TRY

If an EJBTransaction instance is obtained successfully, you use its begin
method to start the transaction and its commit or rollback methods to end it:

TRY
// Start the transaction
trans.begin()
// Create a component and call methods to be executed

CHAPTER 24 Building an EJB client (obsolete)

Application Techniques 437

// within the transaction
...
// Commit the transaction
trans.commit();

CATCH (exception e)
messagebox("exception", e1.getmessage())
trans.rollback()

END TRY

Getting information
about the transaction

GetStatus returns an integer that indicates whether the transaction is active, has
been marked for rollback, is in the prepare phase or commit phase, or has been
committed or rolled back.

Setting a timeout
period for transactions

A calling thread can specify a timeout period after which a transaction will be
rolled back. This example sets the timeout period to 3 minutes (180 seconds):

trans.SetTimeout(180)
trans.Begin()

Debugging the client
The createJavaVM method of the JavaVM class takes a boolean value as a
second argument. If this second argument is "true", execution information,
including class loads, are logged to the file vm.out in the directory where the
application resides:

// global variable: JavaVM g_jvm
string classpath
boolean isdebug

classpath = "d:\tests\ejbsample;"
isdebug = true
g_jvm.createJavaVM(classpath, isdebug)

Debugging the client

438 PowerBuilder

P A R T 7 Developing Web
Applications

This part presents tools and techniques for developing
Web applications with PowerBuilder.

For information about developing .NET Web Service
components, see the Deploying Components as .NET
Assemblies or Web Services book.

Application Techniques 441

C H A P T E R 2 5 Web Application Development
with PowerBuilder

About this chapter This chapter provides an overview of the techniques you can use to
develop Web applications with PowerBuilder.

Contents

Building Web applications
PowerBuilder provides several tools that you can use to build Web
applications. This section provides a brief overview of these tools and
points to where you can find more information.

Appeon for PowerBuilder

Appeon for PowerBuilder is a product that deploys existing PowerBuilder
client/server applications to the Web. For more information, see the
Appeon Web site at https://www.appeon.com.

.NET Web components
PowerBuilder includes targets for creating .NET assemblies and .NET
Web service applications from PowerBuilder nonvisual objects.

For more information, see Deploying Components as .NET Assemblies or
Web Services.

Topic Page

Building Web applications 441

.NET Web components 441

Web services 442

Web services

442 PowerBuilder

Web services
Web services are loosely defined as the use of Internet technologies to make
distributed software components talk to each other without human
intervention. The software components might perform such business logic as
getting a stock quote, searching the inventory of a catalog on the Internet, or
integrating the reservation services for an airline and a car rental agency. You
can reach across the Internet and use preexisting components, instead of having
to write them for your application.

A PowerBuilder application can act as a client consuming a Web service that
is accessed through the Internet. Through use of SOAP and WSDL, a
collection of functions published remotely as a single entity can become part
of your PowerBuilder application. A Web service accepts and responds to
requests sent by applications or other Web services.

For more information about Web services, see Chapter 26, Building a Web
Services Client.

Web DataWindow (obsolete)

Obsolete technique
Web DataWindow is not recommended and is considered to be obsolete. The
ability to use this technique has been retained for backward compatibility.

The Web DataWindow is a thin-client DataWindow implementation for Web
applications. It provides most of the data manipulation, presentation, and
scripting capabilities of the PowerBuilder DataWindow without requiring any
PowerBuilder DLLs on the client.

The Web DataWindow uses the services of several software components that
can run on separate computers:

• Web DataWindow server component running in an application or
transaction server

• Dynamic page server

• Web server

• Web browser

• Database

CHAPTER 25 Web Application Development with PowerBuilder

Application Techniques 443

The server component is a nonvisual user object that uses a DataStore to handle
retrieval and updates and generate HTML. You can use the generic component
provided with PowerBuilder or a custom component.

You can take advantage of the capabilities of the Web DataWindow by:

• Hand coding against the Web DataWindow component You can
write server-side scripts that access the Web DataWindow component
directly.

• Writing your own HTML generator Using a sample PBL provided with
PowerBuilder as a starting point, you can create your own HTML
generator that provides the methods you need for your application.

DataWindow Web control for ActiveX (obsolete)

Obsolete technique
DataWindow Web Control for ActiveX is not recommended and is considered
to be obsolete. The ability to use this technique has been retained for backward
compatibility.

The DataWindow Web control for ActiveX is a fully interactive DataWindow
control for use with Internet Explorer. It implements all the features of the
PowerBuilder DataWindow except rich text.

The DataWindow Web control for ActiveX supports data retrieval with
retrieval arguments and data update. You can use edit styles, display formats,
and validation rules. Most of the PowerBuilder methods for manipulating the
DataWindow are available. Several functions that involve file system
interactions are not supported, allowing the Web ActiveX to be in the safely
scriptable category of ActiveX controls.

Included with the DataWindow Web control is the DataWindow Transaction
Object control for making database connections that can be shared by several
DataWindow Web controls.

The Web ActiveX is provided as a CAB file, which allows the client browser
to install and register the control. When the user downloads a Web page that
refers to the CAB file, the browser also downloads the CAB file if necessary,
unpacks it, and registers the control.

DataWindow Web control for ActiveX (obsolete)

444 PowerBuilder

Application Techniques 445

C H A P T E R 2 6 Building a Web Services Client

About this chapter This chapter describes how to use Web services in a PowerBuilder
application. Reference information for the objects described in this
chapter is in the PowerBuilder Extension Reference and in the online
Help.

Contents

About Web services
Web services allow you to use preexisting components (available on the
Internet or on a local network) instead of writing new business logic to
perform common tasks invoked by the applications that you develop. Web
services originated when the Simple Object Access Protocol (SOAP) was
introduced. SOAP leverages Extensible Markup Language (XML) and
usually employs Hypertext Transfer Protocol (HTTP) as the transport.
Invoking Web services through SOAP requires serialization and
deserialization of datatypes, and the building and parsing of SOAP
messages.

Topic Page

About Web services 445

Importing objects from an extension file 449

Generating Web service proxy objects 451

Connecting to a SOAP server 456

Invoking the Web service method 458

Using .NET Web services with custom headers 458

Using cookies with the Web service client 459

Exception handling 460

Using the UDDI Inquiry API 461

About Web services

446 PowerBuilder

Part of the value of Web services comes from the Web Services Description
Language (WSDL), which enables a service to be self-describing. WSDL
defines an XML grammar for describing Web services as collections of
communication endpoints capable of exchanging messages. WSDL service
definitions provide documentation for distributed systems and serve as a recipe
for automating the details involved in applications communication.

With SOAP and WSDL, using third-party components is easier because
interfaces between applications become standardized across disparate
platforms.

PowerBuilder supports the following Web services standards:

• SOAP 1.1 or later

• WSDL 1.1 or later

• HTTP or HTTPS

• XSD (XML Schema Document) 1.0

About building a Web services client
A PowerBuilder application can act as a client consuming a Web service that
is accessed through the Internet. Using SOAP and WSDL, a collection of
functions published remotely as a single entity can become part of your
PowerBuilder application. A Web service accepts and responds to requests sent
by applications or other Web services.

Invoking Web services through SOAP requires serialization and
deserialization of data types, and the building and parsing of XML-based
SOAP messages. Using objects from an extension file or dynamic library that
installs with PowerBuilder, the Web services client proxy performs these tasks
for you—thereby eliminating the need to have extensive knowledge of the
SOAP specification and schema, the XML Schema specification, or the WSDL
specification and schema.

Choosing a Web service engine
PowerBuilder lets you choose between the .NET Web service engine and the
EasySoap Web service engine to construct SOAP requests and parse the SOAP
messages returned from a Web service.

CHAPTER 26 Building a Web Services Client

Application Techniques 447

Using the .NET Web service engine

Generating a .NET
assembly

The .NET Web service engine supports the latest Web service standards. To use
this engine, you must have the wsdl.exe Web service tool on the development
machine. This tool is required to parse WSDL files and generate C# code for a
.NET assembly. The wsdl.exe file installs with the .NET SDK. It is not required
on deployment machines, although deployment machines must have the .NET
Framework to consume a Web service that depends on the .NET Web service
engine.

If you select the .NET Web service engine in the Web Service Proxy wizard,
the wizard generates a .NET assembly (DLL) in addition to a proxy object. To
use the Web service at runtime, you must deploy the wizard-generated DLL
along with your application.

You can also select the .NET Web service engine in the Project painter for a
new Web service proxy. If you select the .NET Web service engine on the Web
Service tab of the Properties dialog box for the Web Service Proxy Generator,
PowerBuilder attempts to generate an assembly DLL after you click Apply or
OK. You cannot use the Properties dialog box to change the Web service engine
for a proxy that you already generated with the Web Service Proxy wizard.

Naming the DLL You can name the DLL generated by the Web Service Proxy wizard or by the
Project painter in the Proxy Assembly Name text box. You do not need to
include the DLL extension. The name of the wizard-generated assembly is
Web_service.DLL, where Web_service is the name you provide in the Proxy
Assembly Name field. If you do not provide a name, the assembly takes the
name of the Web service to be consumed by the DLL. The assembly is
generated in the current target directory.

Deploying the DLL You must deploy the DLL created for your Web service project to the directory
where you deploy the client executable. You must also copy the
Sybase.PowerBuilder.WebService.Runtime.dll and the
Sybase.PowerBuilder.WebService.RuntimeRemoteLoader.dll system
assemblies to this directory.

Extension objects Although you use the same SOAP connection and exception-handling objects
for the .NET Web service engine as for the EasySoap Web service engine, the
objects that reference the .NET Web service engine require a different
extension file or library.

The methods available on the SoapConnection object depend on which
extension file or library you are using and on which Web service engine you
are using. The methods for a .NET Web service engine allows you to include
security information in the SOAP client header.

For more information, see Importing objects from an extension file.

About Web services

448 PowerBuilder

Temporary directory
access requirement

The .NET Web service engine requires client applications to access the system
defined temporary directory on the client computer. The client must have
read/write permission for the temporary directory or a "Cannot invoke the web
service" error occurs. The temporary directory is set by the TEMP user
environment variable.

Using the EasySoap Web service engine

If you decide not to use the .NET SOAP engine, PowerBuilder uses the
EasySoap Web service engine. Earlier releases of PowerBuilder supported the
EasySoap Web service engine only. Unlike the .NET Web service engine, the
EasySoap engine does not support the XML-type array datatype or header
sections in SOAP message envelopes. The EasySoap Web service engine is
retained for backward compatibility and for use with targets deployed to UNIX
machines.

You set the Web service engine that you want to use on the first page of the Web
Service Proxy Wizard or on the Web Service tab of the Property sheet for a Web
service project. The Use .NET Engine check box is selected by default for new
Web service projects. You must clear the check box if you are developing a
Web service application that you intend to deploy to UNIX machines.

Assigning firewall settings to access a Web service
When you add a Web service at design time and your development machine is
behind a firewall, you must assign proxy server settings to connect to the
Internet.

Table 26-1 displays the design-time proxy server settings that you can enter on
the Firewall Settings page of the PowerBuilder System Options dialog box. To
enter runtime proxy server settings, you must use the SoapConnection
SetProxyServer or the SetProxyServerOptions methods.

For information about the SetProxyServer or the SetProxyServerOptions
methods, see the PowerBuilder Extension Reference in the online Help.

CHAPTER 26 Building a Web Services Client

Application Techniques 449

Table 26-1: Design-time firewall settings

PowerBuilder uses the values you enter for the proxy server settings only if you
also select the Use Above Values as System Defaults check box on the Firewall
Setting page. The type of engine you select for consuming a Web service can
also affect the settings that PowerBuilder uses to connect to the Internet at
design time.

.NET Web service engine If the development machine is located behind a
firewall but you do not select the Use Above Values as System Defaults check
box, PowerBuilder attempts to connect to the Internet using settings entered in
the Internet Options dialog box of the Internet Explorer browser. The selections
you make on the Firewall Setting page have no effect if the development
machine is not located behind a firewall.

EasySoap Web service engine If you do not select the Use Above Values as
System Defaults check box, PowerBuilder assumes that the development
machine is not behind a firewall and makes no attempt to use settings from the
Internet Options dialog box of the Internet Explorer browser. If you select the
Use Above Values as System Defaults check box, but the development
machine is not located behind a firewall, the Web service invocation can fail.

Importing objects from an extension file
Invoking Web services through SOAP requires serialization and
deserialization of datatypes, and the building and parsing of XML-based SOAP
messages.

The pbwsclient170.pbx file contains objects for the .NET Web service engine
that enable you to perform these tasks without extensive knowledge of the
SOAP specification and schema, the XML Schema specification, or the WSDL
specification and schema. You can use these objects after you import the
extension file into a PowerBuilder Web service application.

Firewall setting Description

Proxy host Name of the proxy server that you use to access Web
pages

Port The port used for connecting to the proxy server

User name User name for accessing the proxy server

Password Password for the user accessing the proxy server

Importing objects from an extension file

450 PowerBuilder

If you use the EasySoap Web service engine, you can import the
pbsoapclient170.pbx file or the pbwsclient170.pbx file into your PowerBuilder
applications. However, the pbwsclient170.pbx file requires the .NET 2.0
Framework on design-time and runtime machines, even if you are not using the
.NET Web service engine. Both extension files contain the same objects, and
you use these objects and their methods in similar ways.

Using a PBD file

In earlier releases of PowerBuilder, instead of importing an extension file, you
needed to add a PBD file to the application library list. Although this is no
longer necessary, the setup program installs PBD files (containing the same
SoapConnection and SoapException objects as the extension files) in the
Appeon\Shared\PowerBuilder directory. You can use the pbwsclient170.pbd or
the pbsoapclient170.pbd instead of importing object definitions from the
pbwsclient170.pbx or pbsoapclient170.pbx file.

To add definitions from a PowerBuilder extension file to an application library,
right-click the library in the System Tree and select Import PB Extensions from
the pop-up menu. Browse to the Appeon\Shared\PowerBuilder directory and
select the extension file that you want to use.

After you import the PBWSClient170.pbx or the PBSoapClient170.pbx file to
your application, the following objects display in the System Tree:

When you create a Web service client application, you must deploy the
extension file that you use along with the client executable to a directory in the
application’s search path. You can use the Runtime Packager tool to
automatically include the extension files required by your Web service
applications.

Object Description

soapconnection Used to connect to a SOAP server

soapexception Used to catch exceptions thrown from soapconnection

CHAPTER 26 Building a Web Services Client

Application Techniques 451

Generating Web service proxy objects
Creating a Web
service proxy object

To create a new Web service proxy, select the Web Service Proxy Wizard icon
from the Projects page in the New dialog box. The Web Service Proxy Wizard
helps you create the proxy so you can use the Web service in PowerScript. If
you select the EasySoap Web service engine, one proxy is created for each port.

In the wizard you specify:

• Which Web service engine you want to use

• Which WSDL file you want to access

• Which service within the WSDL file you want to select

• Which port or ports you want to use (EasySoap engine only)

• What prefix you want to append to a port name (EasySoap) and include in
the proxy name (EasySoap and .NET engines)

• Which PowerBuilder library you want to deploy the proxy to

When PowerBuilder encounters a problem while parsing the wsdl file it will
report the error

You can also select the Web Service Proxy icon from the Projects page in the
New dialog box. The Web Service Proxy icon opens the Project painter for
Web services so that you can create a project, specify options, and build the
proxy library. The new project lists the Web service (and, for the EasySoap
engine, the ports for which proxies will be generated) and specifies the name
of the output library that will contain the generated proxy objects.

Whether you create the Web service project through the wizard or in the
painter, the final step is to build the proxy objects by clicking the Build icon on
the painter bar or selecting Design>Deploy project from the menu bar.

The WSDL file for you specify in the wizard or painter must have:

• Services/Binding entries

• The Targetnamespace attribute defined in its Schema element

• No circular references (an example of a “circular reference” is a structure
that includes itself as a child class member)

If PowerBuilder encounters a problem parsing the WSDL file, it reports the
error in an error message box.

Generating Web service proxy objects

452 PowerBuilder

Generated proxies The generated proxies display in the System Tree. You can expand the proxy
nodes to display the signatures of the methods.

Aliases for XML
methods

PowerBuilder is not case sensitive, whereas XML, SOAP, C#, and .NET are.
To ensure that PowerScript code can call XML methods correctly, each method
in the proxy uses an alias. The string that follows alias for contains the name
and the signature of the corresponding XML or SOAP method in case-sensitive
mode.

For example:

function real getquote(string ticker) alias for
getQuote(xsd:string symbol)#
return xsd:float StockPrice@urn:xmethods-delayed-
quotes@SoapAction

PowerBuilder system
types cannot be used
as variable names in
proxies

In PowerBuilder 10.5 and later versions, system types cannot be used as
variable names in Web service proxies. If a PowerBuilder system type is used
as a variable name, the Web Service Proxy wizard renames the variable by
applying the prefix ws_. If you are migrating Web service applications from
PowerBuilder 10.2 or earlier and regenerating the Web service proxies in
PowerBuilder 10.5 or later, your code may need to be modified to reflect the
change in variable names.

CHAPTER 26 Building a Web Services Client

Application Techniques 453

PowerBuilder system types include not only the objects and controls listed on
the System tab page in the PowerBuilder Browser, but also the enumerated
types listed on the Enumerated page in the Browser, such as band, button,
encoding, location, and weekday. For example, if you build a Web service from
a PowerBuilder custom class user object, and one of its functions has a string
argument named location, in the proxy generated for that Web service, the
argument is changed to string ws_location.

Web services across
time zones

When an application consumes a Web service that uses the date, time, or
datetime datatypes, it is possible that the service implementation processes and
returns different data for application users who access the service from
different time zones. This is typically the result of design considerations of the
Web service and not the result of precision differences or translation errors
between the Web service and the application that calls it.

Datatype mappings
for EasySoap Web
service engine

The Web service proxy generator maps datatypes between XML and
PowerBuilder if you use the EasySoap Web engine, and between XML, C#,
.NET, and PowerBuilder if you use the .NET Web service engine. All XML
data types are based on schemas from the World Wide Web Consortium at
http://www.w3.org/2001/XMLSchema.

Table 26-2 shows the datatype mappings between XML and PowerScript. If
you use the .NET Web service engine, datatypes are converted to C#, then to
.NET datatypes. (Table 26-3 and Table 26-4 show datatype mappings used
with the .NET Web service engine.)

Generating Web service proxy objects

454 PowerBuilder

Table 26-2: Datatype mappings between XML and PowerBuilder

Datatype mappings
for .NET Web service
engine

When you use the .NET Web Service engine, PowerBuilder converts the XML
from WSDL files to C# code and compiles it in a .NET assembly.

Note Web services that use unmapped Microsoft .NET specific datatypes,
such as DataSet or System.Xml.XmlElement, are not supported.

Table 26-3 displays datatype mappings for these conversions.

XML Type
PowerScript
Type

boolean boolean

byte (-128 to 127) or short int

unsignedByte (0 to 255) or unsignedShort uint

int long

unsignedInt ulong

long (-9223372036854775808 to 9223372036854775807),
unsignedLong (0 to 9223372036854775807),
integer (-9223372036854775808 to 9223372036854775807),
nonNegativeInteger (0 to 9223372036854775807),
negativeInteger (-1 to -9223372036854775808),
nonPositiveInteger (0 to -9223372036854775808), or
positiveInteger (1 to 9223372036854775807)

longlong

decimal (-999999999999999999 to 999999999999999999) decimal

float real

double double

gYear, gYearMonth, gMonthDay, gDay, anyURI, QName,
NOTATION, string, normalizedSting, token, or datatypes derived
from token

About normalizedString, token, and derived datatypes
A normalized string does not contain carriage return, line feed, or
tab characters. A token is similar to similar to a normalizedString,
but does not contain leading or trailing spaces or an internal
sequence of two or more spaces. Datatypes that derive from token
include language, Name, NCName, NMTOKEN, NMTOKENS,
ID, IDREF, IDREFS, ENTITY, ENTITIES.

string

date date

time time

dateTime datetime

base64, base64Binary, or hexBinary blob

CHAPTER 26 Building a Web Services Client

Application Techniques 455

Table 26-3: Datatype mappings for the .NET Web service engine

Table 26-4 displays the datatype mapping between C# datatypes and
PowerBuilder.

XML type C# type .NET type

int int System.Int32

unsignedInt uint System.UInt32

boolean bool System.Boolean

unsignedByte Byte System.Byte

short short System.Int16

unsignedShort ushort System.UInt16

long long System.Int64

unsignedLong ulong System.UInt64

Decimal Decimal System.Decimal

Float Float System.Float

Double Double System.Double

Datetime, Date, and Time System.DateTime System.DateTime

hexBinary and hex64Binary Byte [] System.Byte []

nonNegativeInteger,
negativeInteger,
nonPositiveInteger,
positiveInteger, gYear, gMonth,
gMonthDay, gDay, duration,
anyURI, QName, NOTATION,
normalizedString, token,
language, NMTOKEN,
NMTOKENS, Name,
NCName,ID, IDREF, IDREFS,
ENTITY, ENTITIES, and String

String System.String

AnyType Object System.Object

Connecting to a SOAP server

456 PowerBuilder

Table 26-4: Datatype mappings between C# and PowerBuilder

Arrays of arrays Unlike XML, PowerBuilder can support only unbounded one-dimensional
arrays. If an array in a WSDL file is bounded and one-dimensional,
PowerBuilder automatically converts it to an unbounded array. If an array in a
WSDL file is multidimensional, the return type is invalid and cannot be used.

In function prototypes, PowerBuilder displays an array type as a PowerBuilder
any type. You must declare an array of the appropriate type to hold the return
value.

Connecting to a SOAP server
You use the SoapConnection object to connect to the SOAP server that hosts
the Web service that you want to access. The SetOptions method on a
SoapConnection object lets you set options such as the user ID and password
for an HTTPS connection. For .NET Web services, you can also use
authentication methods such as SetBasicAuthentication, SetCertificateFile and
UseWindowsAuthentication.

C# type PowerScript type

byte byte

sbyte int

short int

int long

long longlong

ushort uint

uint ulong

ulong longlong

float real

double double

object any

char uint

string string

decimal decimal

bool boolean

System.DateTime datetime

CHAPTER 26 Building a Web Services Client

Application Techniques 457

Using multiple Web services in the same application

If you connect to multiple Web services that have different authentication
requirements, you must instantiate multiple SoapConnection objects and set
the appropriate values in the SetOptions method or in the other authentication
methods of each connection object.

You use the CreateInstance method to create the client proxy instance to access
the Web service.

For more information on SoapConnection object methods, see the
PowerBuilder Extension Reference in the online Help.

Example The following script creates a connection to a Web service on a SOAP server
using the EasySoap Web service engine. It sets the connection properties using
an endpoint defined in the CreateInstance method. If the endpoint is not
defined in the CreateInstance method, a default URL stored in the proxy would
be used. The script uses the SetSoapLogFile method to specify a log file. It
displays a return value in a message box.

SoapConnection conn // Define SoapConnection
syb_currencyexchangeport proxy_obj // Declare proxy
long rVal, lLog
real amount

//Define endpoint. You can omit it, if you want to use
//the default endpoint inside proxy
string str_endpoint

str_endpoint = "http://services.xmethods.net:80/soap"
conn = create SoapConnection //Instantiated connection

lLog = conn.SetSoapLogFile ("C:\mySoapLog.log")
// Set trace file to record soap interchange data,
// if string is "", disables the feature

rVal = Conn.CreateInstance(proxy_obj, &
"syb_currencyexchangeport", str_endpoint)

// Create proxy object
try

amount = proxy_obj.getrate("us","japan")
// Invoke service
messagebox("Current Exchange Rate", "One US Dollar"&
+ " is equal to " + string(amount) + " Japanese Yen")

catch (SoapException e)

Invoking the Web service method

458 PowerBuilder

messagebox ("Error", "Cannot invoke Web service")
// error handling

end try
destroy conn

Invoking the Web service method
SoapConnection is used to create the Soap_proxy object with connection
options that you set using SoapConnection object methods. Once a proxy
object for a Web service is created, the client application can begin accessing
the Web service. To invoke a Web service method, the proxy object must
contain the following information:

• End point of service, obtained from a WSDL file

• Namespace definition used in the SOAP method call

• Any structure definition, when applicable

• An instance variable for each returned structure array, since all returned
arrays are any

• One or more SOAP methods and corresponding alias strings

Using .NET Web services with custom headers
PowerBuilder provides support for custom SOAP headers in .NET Web
services. The PowerBuilder .NET Web Service proxy generator creates a
structure for methods of the Web service that require authentication
information transmitted in the SOAP header. The number of fields in the
generated structure, and their datatypes, depend on information contained in
the Web service's SOAP header class.

The name of the generated structure consists of the prefix, if any, that you
assign to the Web service proxy, and the name of the SOAP header class for the
Web service. For example, if you assign “ws_” as the proxy prefix and the
SOAP header class name is “Authentication”, then the generated structure
name will be “ws_Authentication”.

CHAPTER 26 Building a Web Services Client

Application Techniques 459

The proxy generator also creates at least one function for passing
authentication values in or to the generated structure. The type of function or
functions created is determined by the direction parameter in the Web service
SOAP header class. The direction can be “in”, “out”, or “inout”.

If the direction is “in”, the PowerBuilder .NET Web Service proxy generator
creates a function you can use to pass the generated structure to the Web service
after populating the structure with authentication values. The name of this
function consists of the name of the Web Service SOAP header class with a
“set” prefix and a “value” suffix.

For the example with the SOAP header class named “Authentication”, the
syntax for the function is:

boolean setAuthenticationValue (ws_Authentication
AuthenticationValue)

The return value is true for success, and false for failure. In this example,
AuthenticationValue is a variable for the generated structure that you submit to
the Web service in a custom header.

If the value of the SOAP header direction parameter is “out”, the PowerBuilder
.NET Web Service proxy generator creates a function you can use to get
information back from the SOAP header in a Web service call. The name for
this function consists of the name of the SOAP header class with a “get” prefix
and a “value” suffix.

For the example with the SOAP header class named “Authentication”, the
syntax for this function is:

ws_Authentication getAuthenticationValue ()

For the same example when the SOAP header direction parameter is “inout”,
both the setAuthenticationValue and getAuthenticationValue functions are
created. You can call these functions in PowerScript to set and return
authentication values in a custom SOAP header.

Using cookies with the Web service client
PowerBuilder provides support for adding and getting cookies when you use
.NET Web services.

Exception handling

460 PowerBuilder

When you build a Web service proxy object, PowerBuilder adds PBAddCookie
and PBGetCookies to the list of proxy object functions. You use the
PBAddCookie function to add a cookie to the Web service proxy object. The
cookies that you add must first be defined with methods of the SoapPBCookie
class that is included in the pbwsclient170.pbx extension.

After you connect to the Web service and add a cookie to the instantiated Web
service proxy object, the cookie will be sent to the server each time you invoke
a Web service method. If there is already a cookie with the same name and URI
as the cookie that you define, you will replace the existing cookie with the new
one.

The PBGetCookies function returns an array of cookies from a URI that you
specify in a function argument.

For information on SoapPBCookie methods for getting and setting cookie
properties, see the PowerBuilder Extension Reference. For descriptions of the
PBAddCookie and PBGetCookies functions, see the PowerScript Reference.

Exception handling
Errors that occur in the execution of a method of a Web service are converted
to SoapException objects and thrown to the calling script. The methods of the
SoapConnection object in PBWSClient170.pbx and PBSoapClient170.pbx can
also throw SoapException objects when, for example, connection to the server
fails, or the Web service cannot be located or created.

Catching exceptions A client application can handle communications errors in a number of ways.
For example, if a client connects to a server and tries to invoke a method for an
object that does not exist, the client can disconnect from the server, connect to
a different server, or retry the operation. Alternatively, the client can display a
message to the user and give the user the opportunity to control what happens
next.

When an error occurs, if the client connects to a new server to retry the
operation, it must instantiate the remote object on the new server before
invoking a method of the remote object.

Unhandled exceptions If no exception handler exists, or if the existing exception handlers do not
handle the exception, the SystemError event on the Application object is
executed. If the SystemError event has no script, an application error occurs
and the application is terminated.

CHAPTER 26 Building a Web Services Client

Application Techniques 461

Using the UDDI Inquiry API

Deprecated technology

UDDI is a deprecated technology and might not be supported in future releases
of PowerBuilder.

The UDDIProxy PowerBuilder extension class enables you to search UDDI
registries for a Web service that you want to access. For a description of this
extension class and its methods, see the PowerBuilder Extension Reference or
the online Help.

Example code The following is example code using all the methods in the UDDIProxy class.
It searches an IBM UDDI registry by service name (Weather) and business
name (IBM), using the same search options (case sensitivity and a maximum
of 5 rows returned):

uddiproxy proxy
int ret
proxy = create uddiproxy
ret = proxy.setinquiryurl

(“http:/www-3.ibm.com/services/uddi/inquiryapi”)
ret = proxy.setoption (false, true, 0, 5)
int count, count2
string businessName[], businessDescription[]
string businessKey []
string servicename[], servicedescription[]
string servicekey [], wsdl []
ret = proxy.findService(“Weather”,count,serviceName, &

serviceDescription, serviceKey, businessName, wsdl)
int i, j
FOR i = 1 TO count

messagebox(servicename[i], &
servicedescription[i]+servicekey[i]+wsdl[i])

NEXT

proxy.findbusiness(“IBM”, count, businessName, &
businessDescription, businessKey)

FOR i = 1 TO count
messagebox(businessName[i], &

businessDescription[i] + businessKey[i])
proxy.getbusinessdetail (businessKey [i], count2, &

servicename, servicedescription, servicekey, wsdl)
FOR j = 1 TO count2
messagebox(servicename[j], &

Using the UDDI Inquiry API

462 PowerBuilder

servicedescription[j]+servicekey[j]+wsdl[j])
NEXT

NEXT
destroy proxy

Troubleshooting UDDI
API calls

You can turn on logging to track down any failures on method calls to the
UDDIProxy object. The PowerBuilder Java service class path must include the
log4j.properties configuration file to turn on logging. The following is an
example of a log configuration file for a UDDI search:

#log4j.debug=true
#log all level
#log4j.rootCategory=DEBUG, lf5
#only log com.sybase.powerbuilder.uddi
log4j.category.com.sybase.powerbuilder.uddi=DEBUG,

dest2, lf5
#dest1
#log4j.appender.dest1=org.apache.log4j.ConsoleAppender
#log4j.appender.dest1.layout=

org.apache.log4j.PatternLayout
#log4j.appender.dest1.layout.ConversionPattern=

%-5p: %-5r: %-5c: %l: %m%n
#dest2
log4j.appender.dest2=org.apache.log4j.FileAppender
log4j.appender.dest2.layout=

org.apache.log4j.PatternLayout
log4j.appender.dest2.layout.ConversionPattern=

%-5p: %l: %m%n
log4j.appender.dest2.File=c:/mylog.txt
#lf5
log4j.appender.lf5=

org.apache.log4j.RollingFileAppender
log4j.appender.lf5.File=c:/mylog.lf5
log4j.appender.lf5.layout=

org.apache.log4j.PatternLayout
log4j.appender.lf5.layout.ConversionPattern=

[slf5s.start]%d{DATE}[slf5s.DATE]%n\
%p[slf5s.PRIORITY]%n%x[slf5s.NDC]
%n%t[slf5s.THREAD]%n\%c[slf5s.CATEGORY]
%n%l[slf5s.LOCATION]%n%m[slf5s.MESSAGE]%n%n

log4j.appender.lf5.MaxFileSize=500KB

P A R T 8 General Techniques

This part describes techniques for handling
internationalization, printing, accessibility requirements,
and the Windows registry. It explains how to build styles
and actions for use in InfoMaker.

Application Techniques 465

C H A P T E R 2 7 Internationalizing an Application

About this chapter This chapter describes some of the issues that arise when you develop and
deploy applications for multiple languages.

Contents

Developing international applications
When you develop an application for deployment in multiple languages,
you can take advantage of the Unicode support built into PowerBuilder.
You also need to focus on two phases of the development process:

• The first is the internationalization phase, when you deal with
design issues before you begin coding the application.

• The second is the localization phase, which starts once the
development phase of an internationalized application is complete,
when you deal with the translation and deployment of your
application you enter the.

Using Unicode
Unicode is a character encoding scheme that enables text display for most
of the world’s languages. Support for Unicode characters is built into
PowerBuilder. This means that you can display characters from multiple
languages on the same page of your application, create a flexible user
interface suitable for deployment to different countries, and process data
in multiple languages.

Topic Page

Developing international applications 465

Using Unicode 465

Internationalizing the user interface 471

Localizing the product 471

Using Unicode

466 PowerBuilder

About Unicode
Before Unicode was developed, there were many different encoding systems,
many of which conflicted with each other. For example, the same number
could represent different characters in different encoding systems. Unicode
provides a unique number for each character in all supported written
languages. For languages that can be written in several scripts, Unicode
provides a unique number for each character in each supported script.

For more information about the supported languages and scripts, see the
Unicode Web site at http://www.unicode.org/onlinedat/languages-scripts.html.

Encoding forms There are three Unicode encoding forms: UTF-8, UTF-16, and UTF-32.
Originally UTF stood for Unicode Transformation Format. The acronym is
used now in the names of these encoding forms, which map from a character
set definition to the actual code units that represent the data, and to the
encoding schemes, which are encoding forms with a specific byte serialization.

• UTF-8 uses an unsigned byte sequence of one to four bytes to represent
each Unicode character.

• UTF-16 uses one or two unsigned 16-bit code units, depending on the
range of the scalar value of the character, to represent each Unicode
character.

• UTF-32 uses a single unsigned 32-bit code unit to represent each Unicode
character.

Encoding schemes An encoding scheme specifies how the bytes in an encoding form are
serialized. When you manipulate files, convert blobs and strings, and save
DataWindow data in PowerBuilder, you can choose to use ANSI encoding, or
one of three Unicode encoding schemes:

• UTF-8 serializes a UTF-8 code unit sequence in exactly the same order as
the code unit sequence itself.

• UTF-16BE serializes a UTF-16 code unit sequence as a byte sequence in
big-endian format.

• UTF-16LE serializes a UTF-16 code unit sequence as a byte sequence in
little-endian format.

UTF-8 is frequently used in Web requests and responses. The big-endian
format, where the most significant value in the byte sequence is stored at the
lowest storage address, is typically used on UNIX systems. The little-endian
format, where the least significant value in the sequence is stored first, is used
on Windows.

CHAPTER 27 Internationalizing an Application

Application Techniques 467

Unicode support in PowerBuilder
PowerBuilder uses UTF-16LE encoding internally. The source code in PBLs is
encoded in UTF-16LE, any text entered in an application is automatically
converted to Unicode, and the string and character PowerScript datatypes hold
Unicode data only. Any ANSI or DBCS characters assigned to these datatypes
are converted internally to Unicode encoding.

Support for Unicode
databases

Most PowerBuilder database interfaces support both ANSI and Unicode
databases.

A Unicode database is a database whose character set is set to a Unicode
format, such as UTF-8 or UTF-16. All data in the database is in Unicode
format, and any data saved to the database must be converted to Unicode data
implicitly or explicitly.

A database that uses ANSI (or DBCS) as its character set can use special
datatypes to store Unicode data. These datatypes are NChar, NVarChar, and
NVarChar2. Columns with one of these datatypes can store Unicode data, but
data saved to such a column must be converted to Unicode explicitly.

For more specific information about each interface, see Connecting to Your
Database.

String functions PowerBuilder string functions, such as Fill, Len, Mid, and Pos, take characters
instead of bytes as parameters or return values and return the same results in all
environments. These functions have a “wide” version (such as FillW) that is
obsolete and will be removed in a future version of PowerBuilder because it
produces the same results as the standard version of the function. Some of these
functions also have an ANSI version (such as FillA). This version is provided
for backwards compatibility for users in DBCS environments who used the
standard version of the string function in previous versions of PowerBuilder to
return bytes instead of characters.

You can use the GetEnvironment function to determine the character set used in
the environment:

environment env
getenvironment(env)

choose case env.charset
case charsetdbcs!

// DBCS processing
...

case charsetunicode!
// Unicode processing
...

Using Unicode

468 PowerBuilder

case charsetansi!
// ANSI processing
...

case else
// Other processing
...

end choose

Encoding enumeration Several functions, including Blob, BlobEdit, FileEncoding, FileOpen, SaveAs,
and String, have an optional encoding parameter. These functions let you work
with blobs and files with ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding.
If you do not specify this parameter, the default encoding used for SaveAs and
FileOpen is ANSI. For other functions, the default is UTF-16LE.

The following examples illustrate how to open different kinds of files using
FileOpen:

// Read an ANSI File
Integer li_FileNum
String s_rec
li_FileNum = FileOpen("Employee.txt")
// or:
// li_FileNum = FileOpen("Emplyee.txt", &
// LineMode!, Read!)
FileRead(li_FileNum, s_rec)

// Read a Unicode File
Integer li_FileNum
String s_rec
li_FileNum = FileOpen("EmployeeU.txt", LineMode!, &

Read!, EncodingUTF16LE!)
FileRead(li_FileNum, s_rec)

// Read a Binary File
Integer li_FileNum
blob bal_rec
li_FileNum = FileOpen("Employee.imp", Stream Mode!, &

Read!)
FileRead(li_FileNum, bal_rec)

Initialization files The SetProfileString function can write to initialization files with ANSI or
UTF16-LE encoding on Windows systems, and ANSI or UTF16-BE encoding
on UNIX systems. The ProfileInt and ProfileString PowerScript functions and
DataWindow expression functions can read files with these encoding schemes.

CHAPTER 27 Internationalizing an Application

Application Techniques 469

Exporting and
importing source

The Export Library Entry dialog box lets you select the type of encoding for an
exported file. The choices are ANSI/DBCS, which lets you import the file into
PowerBuilder 9 or earlier, HEXASCII, UTF8, or Unicode LE.

The HEXASCII export format is used for source-controlled files. Unicode
strings are represented by hexadecimal/ASCII strings in the exported file,
which has the letters HA at the beginning of the header to identify it as a file
that might contain such strings. You cannot import HEXASCII files into
PowerBuilder 9 or earlier.

If you import an exported file from PowerBuilder 9 or earlier, the source code
in the file is converted to Unicode before the object is added to the PBL.

External functions When you call an external function that returns an ANSI string or has an ANSI
string argument, you must use an ALIAS clause in the external function
declaration and add ;ansi to the function name. For example:

FUNCTION int MessageBox(int handle, string content,
string title, int showtype)
LIBRARY "user32.dll" ALIAS FOR "MessageBoxA;ansi"

The following declaration is for the “wide” version of the function, which uses
Unicode strings:

FUNCTION int MessageBox(int handle, string content,
string title, int showtype)
LIBRARY "user32.dll" ALIAS FOR "MessageBoxW"

If you are migrating an application from PowerBuilder 9 or earlier,
PowerBuilder replaces function declarations that use ANSI strings with the
correct syntax automatically.

Setting fonts for
multiple language
support

The default font in the System Options and Design Options dialog boxes is
Tahoma.

Setting the font in the System Options dialog box to Tahoma ensures that
multiple languages display correctly in the Layout and Properties views in the
Window, User Object, and Menu painters and in the wizards.

If the font on the Editor Font page in the Design Options dialog box is not set
to Tahoma, multiple languages cannot be displayed in Script views, the File
and Source editors, the ISQL view in the DataBase painter, and the Debug
window.

Using Unicode

470 PowerBuilder

You can select a different font for printing on the Printer Font tab page of the
Design Options dialog box for Script views, the File and Source editors, and
the ISQL view in the DataBase painter. If the printer font is set to Tahoma and
the Tahoma font is not installed on the printer, PowerBuilder downloads the
entire font set to the printer when it encounters a multilanguage character. If
you need to print multilanguage characters, specify a printer font that is
installed on your printer.

To support multiple languages in DataWindow objects, set the font in every
column and text control to Tahoma.

The default font for print functions is the system font. Use the PrintDefineFont
and PrintSetFont functions to specify a font that is available on users’ printers
and supports multiple languages.

PBNI The PowerBuilder Native Interface is Unicode based. PBNI extensions must be
compiled using the _UNICODE preprocessor directive in your C++
development environment.

Your extension’s code must use TCHAR, LPTSTR, or LPCTSTR instead of char,
char*, and const char* to ensure that it works correctly in a Unicode
environment. Alternatively, you can use the MultiByteToWideChar function to
map character strings to Unicode strings. For more information about enabling
Unicode in your application, see the documentation for your C++ development
environment.

Unicode enabling for
Web services

In a PowerScript target, the PBNI extension classes instantiated by Web service
client applications use Unicode for all internal processing. However, calls to
component methods are converted to ANSI for processing by EasySoap, and
data returned from these calls is converted to Unicode.

XML string encoding The XML parser cannot parse a string that uses an eight-bit character code such
as windows-1253. For example, a string with the following declaration cannot
be parsed:

string ls_xml
ls_xml += '<?xml version="1.0" encoding="windows-
1253"?>'

You must use a Unicode encoding value such as UTF16-LE.

CHAPTER 27 Internationalizing an Application

Application Techniques 471

Internationalizing the user interface
When you build an application for international deployment, there are two user
interface design issues you should consider:

• The physical design of the user interface

• The cultural standards of your application’s audience

Physical design The physical design of the user interface should include:

• Windows and objects with the flexibility to accommodate expanded string
lengths required when the text in menu items, lists, and labels is translated

For example, you could inherit a window from an English language
ancestor window, and change the language for a localized deployment.
Generally, you can accommodate the text for most languages if you allow
for a menu item, list, or label size that is 1.3 times the length of an English
text string.

• Windows that can be easily used in RightToLeft versions of Windows

Cultural awareness The cultural design of your user interface requires you to be cognizant of what
is and is not acceptable or meaningful to your audience.

For example, an icon of a hand displaying an open palm might mean stop in
one culture but indicate an unacceptable gesture in another. Similarly, although
the color yellow signifies caution in some cultures, in other cultures it signifies
happiness and prosperity.

Localizing the product
PowerBuilder provides resources for international developers that include
localized runtime files and the Translation Toolkit. The localized files become
available after the general release of a new version of PowerBuilder.

Localized runtime files Localized runtime files are provided for French, German, Italian, Spanish,
Dutch, Danish, Norwegian, and Swedish. You can install localized runtime
files in the development environment or on the user’s machine. If you install
them on the development machine, you can use them for testing purposes.

The localized PowerBuilder runtime files handle language-specific data at
runtime. They are required to display standard dialog boxes and user interface
elements, such as day and month names in spin controls, in the local language.
They also provide the following features:

Localizing the product

472 PowerBuilder

• DayName function manipulation The DayName function returns a
name in the language of the runtime files available on the machine where
the application is run.

• DateTime manipulation When you use the String function to format a
date and the month is displayed as text (for example, the display format
includes “mmm”), the month is in the language of the runtime files
available when the application is run.

• Error messages PowerBuilder error messages are translated into the
language of the runtime files.

Localized PFC
libraries

The PFC is now available on the PowerBuilder Code Samples web site at
https://www.appeon.com/developers/library/code-samples-for-pb.

In order to convert an English language PFC-based application to another
language such as Spanish, you need multiple components. You need to test the
application on a computer running the localized version of the operating
system with appropriate regional settings. You must also obtain or build
localized PFC libraries and install the localized PowerBuilder runtime files.
When you deploy the application, you must deploy it to a computer running a
localized version of the operating system, and you must deploy the localized
runtime files.

You can translate the PFC libraries with the Translation Toolkit. Localized PFC
libraries are the same as the original PFC libraries except that strings that occur
in windows, menus, DataWindow objects, dialog boxes, and other user
interface elements, and in runtime error messages, are translated into the local
language. These include, for example, day and month names in the Calendar
service. All services remain otherwise the same. In a Spanish PFC application,
error messages displayed by the PFC are in Spanish, month names in the
Calendar service are in Spanish, column headers in DataWindow objects and
Menu items are in Spanish, and so on.

The Translation Toolkit adds a string in the format %LANGUAGE% to the
comment associated with every object that contains a translated string. For
example, if you look at a PFC library that has been translated into Spanish in
the List view in the Library painter, you will notice the string %SPANISH% at the
beginning of the comment for many objects.

The dictionaries used to translate the PFC libraries into each language are
provided with the Translation Toolkit. You can use the dictionaries to translate
the rest of your application into a local language using the Translation Toolkit,
and you can view the dictionary in a text editor to see which strings have been
translated.

CHAPTER 27 Internationalizing an Application

Application Techniques 473

The localized PFC libraries work in coordination with the localized runtime
files, regional settings, and the localized operating system.

Regional settings PowerBuilder always uses the system's regional settings, set in the Windows
Control Panel, to determine formats for the Date and Year functions, as well as
date formats to be used by the SaveAs function. The use of these regional
settings is independent of the use of PowerBuilder localized runtime files or
PFC libraries.

The regional settings are also used to determine behavior when using Format
and Edit masks. For more information, see the section on defining display
formats in the Users Guide.

Localized operating
system

The localized operating system is required for references to System objects,
such as icons and buttons, that are referenced using enumerated types in
PowerBuilder, such as OKCancel!, YesNo!, Information!, and Error!. These
enumerated types rely on API calls to the local operating system, which passes
back the appropriate button, icon or symbol for the local language. For
example, if you use the OKCancel! argument in a MessageBox function, the
buttons that display on the message box are labeled OK and Cancel if the
application is not running on a localized operating system.

About the Translation Toolkit
The Translation Toolkit is a set of tools designed to help you translate
PowerBuilder applications into other languages. It includes a standalone
translator tool that is used by the person or group translating the text of the
application.

When you use the Toolkit to create a project, a copy of each of your
application's source libraries is created for each project. The application's
original source libraries are not changed.

How the Toolkit works You work with the phrases (one or more words of text) in an application. These
phrases are in the application’s object properties, controls, and scripts.

You use the tools to:

• Extract phrases from the project libraries

• Present the phrases for translation

• Substitute translated phrases for the original phrases in the project libraries

Localizing the product

474 PowerBuilder

Using the translated project libraries, you use PowerBuilder to build the
translated application.

For more information, see the online Help for the Translation Toolkit.

Application Techniques 475

C H A P T E R 2 8 Building Accessible Applications

About this chapter This chapter provides information about guidelines and requirements for
making applications accessible to users with disabilities. It explains what
features PowerBuilder offers to support the creation of accessible
applications, and it includes pointers to additional sources of information.

Contents

Understanding accessibility challenges
When designing and developing software applications and Web pages that
you want to make accessible to people with disabilities, there are four
general types of impairments you need to consider:

• Visual

• Hearing

• Mobility

• Cognitive or learning

Visual impairments Application users who are blind require text equivalents for all graphic
images and videos available to the sighted user. The text needs to convey
content that is conceptually equivalent to the information provided in
graphical form, so that assistive technologies such as screen and braille
readers can make the information fully accessible. All user interface (UI)
elements must have text or menu equivalents, and blind users need
keyboard equivalents for entering input that a sighted user would enter
with a mouse.

Topic Page

Understanding accessibility challenges 475

Accessibility requirements for software and Web applications 477

Creating accessible software applications with PowerBuilder 479

About VPATs 483

Testing product accessibility 483

Understanding accessibility challenges

476 PowerBuilder

To accommodate users who are color blind, you should avoid using color as the
sole means of conveying information. Using fill patterns in addition to colors
in graphs and other images is one strategy for supplementing information
conveyed by color. Auditory cues can serve as an alternative way of presenting
warnings or other content signaled by color only.

By enabling high contrast support, you can allow color-blind users and users
with low vision to adjust default system colors and fonts to make areas of a
window or Web page easier to distinguish. Users with low vision also use
hardware or software magnifiers to enlarge the pixels on a display, and they
depend on alternate text to get some of the information presented in images.

Hearing impairments Users who are deaf or hard of hearing require visual representations of auditory
information. You might need to provide alternate visual cues in your
application for audible warnings, for example. Blinking text is one alternative,
though the blink rate must be within a certain range to avoid causing problems
for users with seizure disorders. Audio tracks require transcripts, and videos
might require closed captioning.

Technology to assist with hearing impairments includes voice recognition
products that can convert auditory information to text or sign language.
Important also are TTY/TDD modems that connect computers with telephones
and convert typed ASCII text output to Baudot code, which is what deaf
individuals commonly use to communicate over the telephone.

Limited mobility Users with limited mobility often have difficulty handling hardware and media,
but input is typically their biggest challenge. Depending on the disability,
mobility-impaired users might need to use voice recognition or an on-screen
keyboard with an electronic switch, tracking ball, or joy stick. They might enter
input at a slower pace, which means that timers and response times should be
adjustable. Systems with built-in intelligence can provide cues to cut down the
amount of input required. For Windows applications, the FilterKeys feature is
available to slow the keyboard repeat rate, and the Windows StickyKeys
feature allows users to enter multiple keystrokes such as Ctrl/Alt/Delete as key
sequences.

CHAPTER 28 Building Accessible Applications

Application Techniques 477

Cognitive impairments Reading difficulties, an inability to process visual or auditory information,
problems with text input, and short-term memory problems can all affect a
user’s access to the content of software and Web applications. Use of clear,
simple language, enforcement of consistent design, and presentation of the
same information in redundant format, such as both audio and video, can all
help users with cognitive impairments to access information. Providing
adjustable response times is important to those whose comprehension is slower
than normal. Making content available to screen readers to reinforce visual
representation is another strategy for aiding comprehension of people with
cognitive impairments.

General suggestions For Web display, it is important to use elements for all markup instead of
manipulating text features such as font size directly. Visual appearance should
not be the only indicator of function for text elements. Element markup allows
assistive technologies such as screen readers to announce text elements such as
headings by their function.

Good design for accessibility benefits not only those with disabilities, but users
in general. By enforcing a consistent interface design, using simple language,
ensuring ease of navigation, and providing the same information in a variety of
ways, you can make your applications more usable for everyone.

For more information For general information about making Web sites accessible, see the World Wide
Web Consortium Web site at http://www.w3.org/ and the Utah State University
WebAim Web site at http://www.webaim.org.

For information on how your users can adjust various browsers for better
legibility, and for ways to accommodate vision impairments in general, see the
Lighthouse International Web site at http://www.lighthouse.org/.

Accessibility requirements for software and Web
applications

Organizations that want to make their applications accessible to the disabled
might have to comply with several sets of slightly different regulations and
guidelines, depending on the countries in which their products will be sold or
used.

Accessibility requirements for software and Web applications

478 PowerBuilder

Section 508 Section 508, enacted in 1998, is an extension of the U.S. Government’s
Rehabilitation Act. Section 508 requires that all electronic and information
technology that U.S. Government agencies develop, procure, maintain, and use
must be accessible to members of the general public who have disabilities.
Many individual states in the U.S. have adopted these requirements as well.
Organizations that offer software applications for sale to the U.S. Federal
government and many state governments, as well as companies that use or sell
accessibility aids, must comply with these regulations to ensure that their
products qualify for purchase.

WCAG 1.0 The Section 508 guidelines are based on the accessibility guidelines published
in May 1999 by the World Wide Web Consortium. These are known as the Web
Content Accessibility Guidelines (WCAG) version 1.0. The WCAG 1.0 is the
common basis for most accessibility guidelines and the standard for
government enforcement of regulations in many countries today. These
guidelines have three priority levels. Priority 1 deals with features essential for
access to Web content; Priority 2 defines practices that make Web sites more
usable and comprehensible in general, and especially to those using
accessibility tools; Priority 3 describes enhanced usability features that make
use of the newest technology.

Section 508 includes most of the Priority 1 WCAG recommendations, several
from Priorities 2 and 3, and also a few other requirements that are not in the
WCAG. The WCAG recommends that organizations strive to meet the Priority
1 and 2 guidelines.

French legislation The French government has also enacted legislation requiring Web
accessibility for those with disabilities and published criteria for conformance
called AccessiWeb. AccessiWeb includes three levels, Bronze, Silver, and
Gold, that correspond roughly to the three priority levels of the WCAG, but
AccessiWeb promotes many level 2 and 3 requirements to higher levels and
includes more detail than some of the WCAG recommendations.

U.K. legislation The United Kingdom has passed legislation called the Disability
Discrimination Act that requires Web sites targeting British residents to be
accessible to those with disabilities. Enforcement of the U.K. law currently is
based on the WCAG 1.0 Priority 1 and 2 guidelines.

Other countries Many other countries have enacted legislation requiring government or
general-use Web sites to be accessible to the disabled. Several of these
countries explicitly require compliance with Priorities 1 and 2 of the WCAG
1.0, but a few require only Priority 1 compliance. Many other countries without
legislated requirements use the WCAG standards in practice.

CHAPTER 28 Building Accessible Applications

Application Techniques 479

WCAG 2.0 The WCAG standards are currently being updated with the intention that they
will become a universally accepted set of international guidelines for Web
accessibility. WCAG 2.0 will focus on general principles that set out the
characteristics Web sites must have to be accessible to users with disabilities.
Separate documents will spell out the technical requirements so that these can
be updated easily as technology changes without requiring updates to the
general principles.

For more information For information about the accessibility requirements of the U.S. Federal
Government for software applications and Web sites, see the Guide to the
Section 508 Standards for Electronic and Information Technology Accessibility
Standards at http://www.access-board.gov/sec508/guide/ and the standard at
http://www.access-board.gov/sec508/standards.htm.

For the generally accepted international recommendations for Web
accessibility, see the WCAG guidelines at http://www.w3.org/TR/WCAG10/. For
the new guidelines under development, see the WCAG 2.0 guidelines at
http://www.w3.org/TR/WCAG20/.

For the Web accessibility criteria adopted by the French government, see the
AccessiWeb criteria at http://www.accessiweb.org.

Creating accessible software applications with
PowerBuilder
MSAA standard PowerBuilder provides the infrastructure and properties needed to build

accessibility features into your Windows and Web applications. Its features
allow applications to conform generally to Microsoft Active Accessibility
(MSAA) Version 2. MSAA is a Windows standard that defines the way
accessibility aids obtain information about user interface elements and the way
programs expose information to the aids.

PowerBuilder standard controls support all required Microsoft Active
Accessibility properties as listed in the following table:

Creating accessible software applications with PowerBuilder

480 PowerBuilder

Table 28-1: MSAA properties and PowerBuilder support

Visual controls For PowerBuilder visual controls that inherit from DragObject, you can
manipulate the IAccessible Name, Role, and Description properties of each
control by using PowerBuilder dot notation or the Other page in the Properties
view of the painters. You can also manipulate the IAccessible property
KeyboardShortcut using PowerBuilder properties wherever the ampersand in
text property and accelerator property are supported. Other IAccessible
properties are set automatically using Active Accessibility default support.

Microsoft Active
Accessibility property PowerBuilder property support

Name objectname.AccessibleName

Some controls support the Name setting through the
Text or Title property. For all controls, Name is
customizable through the AccessibleName property.

Role objectname.AccessibleRole

Customizable through the AccessibleRole property.

State Default Active Accessibility support

Location Default Active Accessibility support

Parent Default Active Accessibility support

ChildCount Default Active Accessibility support

Keyboard Shortcut Default Active Accessibility support for “&” access
key of the Text property

Also, PowerBuilder Accelerator property setting if
applicable to the control.

DefaultAction Default Active Accessibility support

(For example, a selected check box has a default action
of uncheck.)

Value Default Active Accessibility support

(For example, a selected check box has the value
checked.)

Children Default Active Accessibility support

(For example, items in a list box.)

Focus Default Active Accessibility support

Selection Default Active Accessibility support

Description objectname.AccessibleDescription

Customizable through the AccessibleDescription
property.

Help Not supported

HelpTopic Not supported

CHAPTER 28 Building Accessible Applications

Application Techniques 481

(For example, location is automatically updated with absolute screen
coordinates for Windows controls at runtime.)

The following table lists PowerBuilder visual controls that inherit from
DragObject and their default accessible roles:

Table 28-2: PowerBuilder visual controls and their default roles

The OLEControl control is set to pushbuttonrole! by default. You need to set
this role depending on content.

PowerBuilder visual controls AccessibleRole enumerated value

Animation animationrole!

CheckBox checkbuttonrole!

CommandButton pushbuttonrole!

DataWindow clientrole!

DropDownListBox comboboxrole!

DropDownPictureListBox comboboxrole!

EditMask textrole!

Graph diagramrole!

GroupBox groupingrole!

HProgressBar, VProgressBar progressbarrole!

HScrollBar, VScrollBar scrollbarrole!

HTrackBar, VTrackBar sliderrole!

ListBox listrole!

ListView listrole!

MonthCalendar clientrole!

MultiLineEdit textrole!

Picture graphicrole!

PictureButton pushbuttonrole!

PictureHyperLink linkrole!

PictureListBox listrole!

RadioButton radiobuttonrole!

RichTextEdit clientrole!

SingleLineEdit textrole!

StaticHyperLink linkrole!

StaticText statictextrole!

Tab control clientrole!

Tab page clientrole!

TreeView outlinerole!

Creating accessible software applications with PowerBuilder

482 PowerBuilder

DataWindow control PowerBuilder implements the MSAA standard for the DataWindow custom
control and its children.

The AccessibleName and AccessibleDescription properties take string values.
The AccessibleRole property takes the value of the AccessibleRole
enumerated variable.

There are some limitations regarding accessibility support in the DataWindow:

• For the navigation function accNavigate, spatial navigation (navigation by
keyboard based on screen location) is not supported. Logical navigation,
where keyboard navigation follows a logical tab sequence, is supported
only for columns in the detail band. Columns that have a tab value set to 0
so that users cannot update them cannot be accessed from the keyboard.

• The Composite, Label, N-Up, OLE 2.0, and RichText DataWindow styles
are not supported.

• Support for OLE objects, OLE database columns, and nested reports in
DataWindows is limited.

PowerBuilder cannot provide accessibility for control content. This must be
provided by the control vendor.

Examples The following statements set the IAccessible properties for a command button
in a Window:

cb_1.accessiblename = "Delete"
cb_1.accessibledescription = "Deletes selected text"
cb_1.accessiblerole = pushbuttonrole!

The following statement sets the AccessibleName property of a button in a
DataWindow object:

dw_1.Object.b_1.accessiblename = "Update"

The following statements set the AccessibleRole property for a button in a
DataWindow object to 43 (the number associated with PushButtonRole!) and
return the property to a string variable:

string ls_data

dw_1.Object.b_1.AccessibleRole = 43
ls_data = dw_1.Describe("b_1.AccessibleRole")

Deployment When you deploy an accessible application, you must deploy the pbacc170.dll
file.

CHAPTER 28 Building Accessible Applications

Application Techniques 483

For more information For more information, see the Microsoft general accessibility Web site at
http://www.microsoft.com/enable. Also helpful is the WebAim Web site at
http://www.webaim.org.

About VPATs
A Voluntary Product Accessibility Template (VPAT) is a table designed to help
U.S. Federal officials make preliminary assessments of accessibility
compliance for products offered to the government for sale. A VPAT lists the
criteria for compliance with accessibility requirements for various types of
products and provides columns where you can indicate and comment on how
your product meets them.

VPATs are available for software applications and operating systems,
Web-based Internet information and applications, and other types of products.
Even if you do not need to fill out a VPAT, reviewing the template for your type
of product can give you a clearer understanding of the requirements of Section
508 for software and Web applications.

To view the various VPATs, see the Information Technology Industry Council
Web site at http://www.itic.org.

Testing product accessibility
The MSAA 2.0 Software Development Kit (SDK) includes several tools for
verifying the MSAA compliance of your application. They include
AccExplorer, Accessible Event Watcher, and Object Inspector. These tools are
available on the Microsoft Web site at http://www.microsoft.com/en-
us/download/default.aspx

To test the user experience of your application for those with disabilities
directly, you can use various methods. For example, try using a text-only
browser; enter input using only the keyboard; use the application with a screen
reader such as JAWS, Window-Eyes, Hal, or Supernova.

Several commercial applications are also available for testing Web sites for
compliance with Section 508 and the WCAG 1.0.

Testing product accessibility

484 PowerBuilder

For more information For a checklist for testing WCAG 1.0 compliance, see the appendix to the
WCAG 1.0 on the W3C Web site at http://www.w3.org/TR/1999/WAI-
WEBCONTENT-19990505/full-checklist. The W3C Web site also lists and
evaluates tools for testing accessibility.

Application Techniques 485

C H A P T E R 2 9 Printing from an Application

About this chapter This chapter describes how to use predefined functions to create printed
lists and reports.

Contents

Printing functions
PowerScript provides predefined functions that you can use to generate
simple and complex lists and reports. Using only three functions, you can
create a tabular report in your printer’s default font. Using additional
functions, you can create a report with multiple text fonts, character sizes,
and styles, as well as lines and pictures.

Table 29-1 lists the functions for printing.

Topic Page

Printing functions 485

Printing basics 487

Printing a job 487

Using tabs 488

Stopping a print job 489

Advanced printing techniques 490

Printing functions

486 PowerBuilder

Table 29-1: PowerScript printing functions

Function Description

Print There are five Print function formats. You can specify
a tab in all but two formats, and in one you can specify
two tabs.

PrintBitMap Prints the specified bitmap.

PrintCancel Cancels the specified print job.

PrintClose Sends the current page of a print job to the printer (or
spooler) and closes the print job.

PrintDataWindow Prints the specified DataWindow as a print job.

PrintDefineFont Defines one of the eight fonts available for a print job.

PrintGetPrinter Gets the current printer name.

PrintGetPrinters Gets the list of available printers.

PrintLine Prints a line of a specified thickness at a specified
location.

PrintOpen Starts the print job and assigns it a print job number.

PrintOval Prints an oval (or circle) of a specified size at a
specified location.

PrintPage Causes the current page to print and sets up a new
blank page.

PrintRect Prints a rectangle of a specified size at a specified
location.

PrintRoundRect Prints a round rectangle of a specified size at a
specified location.

PrintScreen Prints the screen image as part of a print job.

PrintSend Sends a specified string directly to the printer.

PrintSetFont Sets the current font to one of the defined fonts for the
current job.

PrintSetPrinter Sets the printer to use for the next print function call.
This function does not affect open jobs.

PrintSetSpacing Sets a spacing factor to determine the space between
lines.

PrintSetup Calls the printer Setup dialog box and stores the user’s
responses in the print driver.

PrintSetupPrinter Displays the printer setup dialog box.

PrintText Prints the specified text string at a specified location.

PrintWidth Returns the width (in thousandths of an inch) of the
specified string in the current font of the current print
job.

PrintX Returns the x value of the print cursor.

CHAPTER 29 Printing from an Application

Application Techniques 487

For more information about printing functions, see the PowerScript Reference.

Printing basics
All printing is defined in terms of the print area. The print area is the physical
page size less any margins. For example, if the page size is 8.5 inches by 11
inches, and the top, bottom, and side margins are all a half-inch, the print area
is 7.5 inches by 10 inches.

Measurements All measurements in the print area are in thousandths of an inch. For example,
if the print area is 7.5 inches by 10 inches, then:

The upper-left corner is 0,0
The upper-right corner is 7500,0
The lower-left corner is 0,10000
The lower-right corner is 7500,10000

Print cursor When printing, PowerBuilder uses a print cursor to keep track of the print
location. The print cursor stores the coordinates of the upper-left corner of the
location at which printing begins. PowerBuilder updates the print cursor
(including tab position if required) after each print operation except
PrintBitmap, PrintLine, PrintRectangle, or PrintRoundRect. To position text,
objects, lines, and pictures when you are creating complex reports, specify the
cursor position as part of each print function call.

Printing a job
PrintOpen must be the first function call in every print job. The PrintOpen
function defines a new blank page in memory, specifies that all printing be
done in the printer’s default font, and returns an integer. The integer is the print
job number that is used to identify the job in all other function calls.

PrintY Returns the y value of the print cursor.

Function Description

Using tabs

488 PowerBuilder

PrintOpen is followed by calls to one or more other printing functions, and then
the job is ended with a PrintClose (or PrintCancel) call. The functions you call
between the PrintOpen call and the PrintClose call can be simple print functions
that print a string with or without tabs, or more complex functions that add lines
and objects to the report or even include a picture in the report.

Printing titles

To print a title at the top of each page, keep count of the number of lines printed,
and when the count reaches a certain number (such as 50), call the PrintPage
function, reset the counter, and print the title.

Here is a simple print request:

Int PrintJobNumber
// Start the print job and set PrintJobNumber to
// the integer returned by PrintOpen.
PrintJobNumber = PrintOpen()
// Print the string Atlanta.
Print(PrintJobNumber,"Atlanta")
// Close the job.
PrintClose(PrintJobNumber)

Using tabs
The Print function has several formats. The format shown in the previous
example prints a string starting at the left edge of the print area and then prints
a new line. In other formats of the Print function, you can use tabbing to specify
the print cursor position before or after printing, or both.

Specifying tab values Tab values are specified in thousandths of an inch and are relative to the left
edge of the print area. If a tab value precedes the string in the Print call and no
tab value follows the string, PowerBuilder tabs, prints, then starts a new line.
If a tab value follows the string, PowerBuilder tabs after printing and does not
start a new line; it waits for the next statement.

In these examples, Job is the integer print job number.

This statement tabs one inch from the left edge of the print area, prints Atlanta,
and starts a new line:

Print(Job,1000,"Atlanta")

CHAPTER 29 Printing from an Application

Application Techniques 489

This statement prints Boston at the current print position, tabs three inches
from the left edge of the print area, and waits for the next statement:

Print(Job,"Boston",3000)

This statement tabs one inch from the edge of the print area, prints Boston, tabs
three inches from the left edge of the print area, and waits for the next
statement:

Print(Job,1000,"Boston",3000)

Tabbing and the print
cursor

When PowerBuilder tabs, it sets the x coordinate of the print cursor to a larger
print cursor value (a specified value or the current cursor position). Therefore,
if the specified value is less than the current x coordinate of the print cursor, the
cursor does not move.

The first Print statement shown below tabs one inch from the left edge of the
print area and prints , but it does not move to the next tab. (0.5 inches
from the left edge of the print area is less than the current cursor position.)
Since a tab was specified as the last argument, the first Print statement does not
start a new line even though the tab was ignored. The next Print statement prints

 immediately after the e in () and then starts a
new line:

Print(Job,1000," ",500)
Print(Job," Inc.")

Stopping a print job
There are two ways to stop a print job. The normal way is to close the job by
calling the PrintClose function at the end of the print job. The other way is to
cancel the job by calling PrintCancel.

Using PrintClose PrintClose sends the current page to the printer or spooler, closes the print job,
and activates the window from which the printing started. After you execute a
PrintClose function call, any function calls that refer to the job number fail.

Using PrintCancel PrintCancel ends the print job and deletes any output that has not been printed.
The PrintCancel function provides a way for the user to cancel printing before
the process is complete. A common way to use PrintCancel is to define a global
variable and then check the variable periodically while processing the print job.

Advanced printing techniques

490 PowerBuilder

Assume StopPrint is a boolean global variable. The following statements check
the StopPrint global variable and cancel the job when the value of StopPrint is
TRUE:

IntJobNbr
JobNbr = PrintOpen()
//Set the initial value of the global variable.
StopPrint = FALSE
//Perform some print processing.
Do While ...
.
.
.
// Test the global variable.
// Cancel the print job if the variable is TRUE.
// Stop executing the script.

If StopPrint then
PrintCancel(JobNbr)
Return
End If

Loop

Advanced printing techniques
Creating complex reports in PowerBuilder requires the use of additional
functions but is relatively easy. You can use PowerScript functions to define
fonts for a job, specify fonts and line spacing, place objects on a page, and
specify exactly where you want the text or object to be placed.

Defining and setting
fonts

The examples so far have used the default font for the printer. However, you
can define as many as eight fonts for each print job and then switch among
them during the job.

In addition, you can redefine the fonts as often as you want during the print job.
This allows you to use as many fonts as you have available on your printer
during a print job. Since there is a slight performance penalty for redefining
fonts, you should define the fonts after the PrintOpen call and leave them
unchanged for the duration of the print job.

To define a font, set an integer variable to the value returned by a call to the
PrintDefineFont function and then use the PrintSetFont function to change the
font in the job.

CHAPTER 29 Printing from an Application

Application Techniques 491

Example Assume that JobNum is the integer print job number and that the
current printer has a font named Helv. The following statements define
Helv18BU as the Helv font, 18 point bold and underlined. The definition is
stored as font 2 for JobNum. The company name is printed in font 2:

IntJob, Helv18BU
JobNum = PrintOpen()
Helv18BU = PrintDefineFont(JobNum,2,"Helv",250,700, &

Variable!,Swiss!,FALSE,TRUE)
PrintSetFont(JobNum,2)
Print(JobNum,"Appeon, Inc.")

For more information about PrintDefineFont and PrintSetFont, see the
PowerScript Reference.

Setting line spacing PowerBuilder takes care of line spacing automatically when you use the Print
function. For example, after you print in an 18-point font and start a new line,
PowerBuilder adds 1.2 times the character height to the Y coordinate of the
print cursor.

The spacing factor 1.2 is not fixed. You can use the PrintSetSpacing function to
control the amount of space between lines.

Examples This statement results in tight single-line spacing. (Depending on
the font and the printer, the bottoms of the lowest characters may touch the tops
of the tallest characters):

PrintSetSpacing(JobNum,1)

This statement causes one-and-a-half-line spacing:

PrintSetSpacing(JobNum,1.5)

This statement causes double spacing:

PrintSetSpacing(JobNum,2)

Printing drawing
objects

You can use the following drawing objects in a print job.

• Lines

• Rectangles

• Round rectangles

• Ovals

• Pictures

Advanced printing techniques

492 PowerBuilder

When you place drawing objects in a print job, place the objects first and then
add the text. For example, you should draw a rectangle inside the print area and
then add lines and text inside the rectangle. Although the objects appear as
outlines, they are actually filled (contain white space); if you place an object
over text or another object, it hides the text or object.

Be careful: PowerBuilder does not check to make sure that you have placed all
the text and objects within the print area. PowerBuilder simply does not print
anything that is outside the print area.

Example These statements draw a 1-inch by 3-inch rectangle and then print
the company address in the rectangle. The rectangle is at the top of the page
and centered:

IntJob
JobNum = PrintOpen()
PrintRect(JobNum,2500,0,3000,1000,40)
Print(JobNum,2525,"")

Print(JobNum,2525,"25 Mountain Road")
Print(JobNum,2525,"Milton, MA 02186")
PrintClose(JobNum)

Application Techniques 493

C H A P T E R 3 0 Managing Initialization Files and
the Windows Registry

About this chapter This chapter describes how to manage preferences and default settings for
PowerBuilder applications.

Contents

About preferences and default settings
Many PowerBuilder applications store user preferences and default
settings across sessions. For example, many applications keep track of
settings that control the appearance and behavior of the application, or
store default parameters for connecting to the database. PowerBuilder
applications can manage this kind of information in initialization files or
in the Windows registry.

Database connection
parameters

Often you need to set the values of the Transaction object from an external
file. For example, you might want to retrieve values from your
PowerBuilder initialization file when you are developing the application
or from an application-specific initialization file when you distribute the
application.

For information about database connection parameters in an initialization
file, see Reading values from an external file on page 163.

For an example of how to save and restore database connection
parameters in the Windows registry, see Managing information in the
Windows registry on page 495.

Topic Page

About preferences and default settings 493

Managing information in initialization files 494

Managing information in the Windows registry 495

Managing information in initialization files

494 PowerBuilder

Toolbar settings PowerBuilder provides some functions you can use to retrieve information
about your toolbar settings and also modify these settings. By using these
functions, you can save and restore the current toolbar settings.

For more information, see Saving and restoring toolbar settings on page 70.

Other settings you
may want to save

In addition to the database connection parameters and toolbar settings, you
may want to store a variety of other application-specific settings. For example,
you might want to keep track of user preferences for colors, fonts, and other
display settings.

Managing information in initialization files
Functions for
accessing initialization
files

PowerBuilder provides several functions you can use to manage application
settings in initialization files.

Table 30-1: PowerBuilder initialization file functions

For complete information about these functions, see the PowerScript
Reference.

For how to use the ProfileString functions with the registry, see Managing
information in the Windows registry on page 495.

The format of APP.INI The examples below manage application information in a profile file called
APP.INI. This file keeps track of user preferences that control the appearance
of the application. It has a Preferences section that stores four color settings:

[Preferences]
WindowColor=Silver
BorderColor=Red
BackColor=Black
TextColor=White

Reading values The following script retrieves color settings from the APP.INI file:

wincolor = ProfileString("app.ini", "Preferences", "WindowColor", "")
brdcolor = ProfileString("app.ini", "Preferences", "BorderColor", "")
bckcolor = ProfileString("app.ini", "Preferences", "BackColor", "")
txtcolor = ProfileString("app.ini", "Preferences", "TextColor", "")

Function Description

ProfileInt Obtains the integer value of a setting in a profile file

ProfileString Obtains the string value of a setting in a profile file

SetProfileString Writes a value in a profile file

CHAPTER 30 Managing Initialization Files and the Windows Registry

Application Techniques 495

Setting values The following script stores color settings in the APP.INI file:

SetProfileString("app.ini", "Preferences", "WindowColor", wincolor)
SetProfileString("app.ini", "Preferences", "BorderColor", brdcolor)
SetProfileString("app.ini", "Preferences", "BackColor", bckcolor)
SetProfileString("app.ini", "Preferences", "TextColor", txtcolor)

Managing information in the Windows registry
Functions for
accessing the
Registry

PowerBuilder provides several functions you can use to manage application
settings in the Windows registry.

Table 30-2: PowerBuilder registry setting functions

For the complete information for these functions, see the PowerScript
Reference.

Overriding
initialization files

You can use the ProfileString functions to obtain information from the registry
instead of from an initialization file. Create a new key called
INIFILEMAPPING at the following location:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion

To override the WIN.INI file, create a subkey in INIFILEMAPPING called
WIN.INI with the following value:

#usr:software\microsoft\windows\currentversion\extensions

The examples that follow use the registry to keep track of database connection
parameters. The connection parameters are maintained in the registry in the
MyCo\MyApp\database branch under HKEY_CURRENT_USER\Software.

Reading values from
the registry

The following script retrieves values for the default Transaction object from
the registry.

Function Description

RegistryDelete Deletes a key or a value in a key in the Windows registry.

RegistryGet Gets a value from the Windows registry.

RegistryKeys Obtains a list of the keys that are child items (subkeys) one level
below a key in the Windows registry.

RegistrySet Sets the value for a key and value name in the Windows registry.
If the key or value name does not exist, RegistrySet creates a new
key or value name.

RegistryValues Obtains a list of named values associated with a key.

Managing information in the Windows registry

496 PowerBuilder

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbms", sqlca.DBMS)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"database", sqlca.database)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"userid", sqlca.userid)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbpass", sqlca.dbpass)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logid", sqlca.logid)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logpass", sqlca.logpass)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
“servername", sqlca.servername)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbparm", sqlca.dbparm)

Setting values in the
registry

The following script stores the values for the Transaction object in the registry:

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbms", sqlca.DBMS)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"database", sqlca.database)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"userid", sqlca.userid)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbpass", sqlca.dbpass)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logid", sqlca.logid)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logpass", sqlca.logpass)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"servername", sqlca.servername)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbparm", sqlca.dbparm)

Application Techniques 497

C H A P T E R 3 1 Building InfoMaker Styles and
Actions

About this chapter This chapter explains how to build styles in PowerBuilder and provide
them to InfoMaker users.

Contents

About form styles
InfoMaker comes with built-in form styles with which users can build
sophisticated forms. You can create your own form styles in PowerBuilder
and provide them to InfoMaker users. With these custom form styles, you
can enforce certain standards in your forms and provide extra
functionality to your InfoMaker users. For example, you might want to:

• Include your organization’s logo in each form

You can do this by creating custom form styles that have the logo in
place.

• Reconfigure the toolbar that is provided with the built-in form styles

You can do this by modifying a built-in form style and saving it as a
custom form style.

• Use drag and drop in forms

• Include picture buttons, edit controls, and other controls in forms

Topic Page

About form styles 497

Naming the DataWindow controls in a form style 500

Building and using a form style 501

Modifying an existing style 502

Building a style from scratch 504

Completing the style 504

Using the style 508

About form styles

498 PowerBuilder

Almost anything you can do in a PowerBuilder window you can do in a custom
form style.

What a form style is InfoMaker users use forms to maintain data. Users can view, add, delete, and
update data in a form. Each form is based on a form style, which specifies:

• The way the data is presented (for example, in a freeform, grid, or
master/detail presentation)

• The menu and toolbar that are available when users run a form

• Actions that users can attach to command buttons in the form

How form styles are
constructed

You build form styles in PowerBuilder. A form style consists of:

• A window

• A menu

Figure 31-1: PowerBuilder form style

About the window The window serves as the foundation of the form. It
contains one or more DataWindow controls with special names. It is these
DataWindow controls that are the heart of the form style. The user views and
changes data in the form through the special DataWindow controls.

This chapter refers to the special DataWindow controls as the central
DataWindow controls. You must name the central DataWindow controls
using one of a set of supported names.

In addition to the central DataWindow controls, the window can contain any
other controls that you can place in a window in PowerBuilder (such as
CommandButtons, RadioButtons, user objects, and pictures).

About the menu When users run forms, they can pick items off a menu. You
build the menu in the Menu painter and associate it with the window that the
form style is based on.

When building the menu, you can specify which menu items should display in
a toolbar when a form is run. The toolbar works like all PowerBuilder toolbars.

About actions Form styles contain actions that users can attach to command
buttons in the form and that you can call in scripts.

Each public window function you define in the window for the form style is
available as an action to users of the form style.

CHAPTER 31 Building InfoMaker Styles and Actions

Application Techniques 499

Looking at an
example

For example, the built-in form style Freeform consists of:

• A window named w_pbstyle_freeform

• A menu named m_pbstyle_freeform

About w_pbstyle_freeform The window w_pbstyle_freeform contains a
DataWindow control named dw_freeform and contains no other controls.

The PowerBuilder window defines many window-level functions:

Each of these window functions is available as an action in InfoMaker to users
of the Freeform form style:

About m_pbstyle_freeform The menu named m_pbstyle_freeform provides
the menu items and toolbar items available to users when they run forms based
on the Freeform style.

Naming the DataWindow controls in a form style

500 PowerBuilder

For example, m_pbstyle_freeform contains the item Specify Criteria on the
Rows menu; the item also displays on the toolbar:

When InfoMaker users run the form, they can select Specify Criteria to enter
selection criteria that are used in retrieving rows in the form.

Naming the DataWindow controls in a form style
Each form style you define contains one or more central DataWindow controls
that are based on DataWindow controls in one of the built-in InfoMaker form
styles.

The best way to understand the behavior of these DataWindow controls is to
build forms in InfoMaker using each of the built-in styles. Then, when you
want to build a form style, choose the DataWindow controls from the built-in
style that matches the type of presentation you want in your form style.

For example, to create a basic freeform data entry form, base it on dw_freeform,
the DataWindow control found in w_pbstyle_freeform.

When building your form style, you must assign one of the following names to
the central DataWindow controls:

• dw_freeform

• dw_grid

• dw_master_12many

CHAPTER 31 Building InfoMaker Styles and Actions

Application Techniques 501

• dw_detail_12many

• dw_master_many21

• dw_detail_many21

Valid combinations You must use one of the four combinations of
DataWindow controls in Table 31-1 in a form style.

Table 31-1: PowerBuilder DataWindow controls

Building and using a form style

 To build and use a form style:

1 Do one of the following:

• Copy the window and menu from an existing form style to act as your
starting point

• Begin from scratch by creating a new window and placing in it one or
two DataWindow controls that have the supported names

2 Save the window with a special comment that indicates that the window
serves as the basis for a form style.

3 Enhance the form style by adding controls to the window, modifying the
menu, defining window functions to serve as actions, and so on.

4 Copy all objects used in the form style (such as windows, user objects, and
menus) to a library that will be defined as a style library for InfoMaker
users.

Use these DataWindow
control names To base your form style on this built-in style

dw_freeform only Freeform.

dw_grid and dw_freeform Grid.

dw_grid is the central DataWindow control;
dw_freeform shares the result set and serves as the
background, allowing users to place computed
fields anywhere in the form.

dw_master_12many and
dw_detail_12many

Master Detail/One-To-Many.

dw_master_many21 and
dw_detail_many21

Master Detail/Many-To-One.

Modifying an existing style

502 PowerBuilder

5 Add the style library to the search path for InfoMaker users.

When InfoMaker users create a new form, the form style you defined
displays in the New Form dialog box. Users can select the style to build a
form based on the style you built.

The rest of this chapter describes these steps.

Modifying an existing style
The easiest way to get started building form styles is to copy an existing form
style and work with it. By examining its structure and making small changes,
you can quickly understand how form styles work.

 To begin by modifying an existing form style:

1 Open the Library painter in PowerBuilder.

2 Copy the window and menu that serve as the foundation for a form style
to a library that is on your application’s library search path.

Starting from a built-in form style

The windows and menus that serve as the basis for the built-in form styles
are in IMSTYLE170.PBL, which is shipped with InfoMaker and installed
in the InfoMaker 2017 directory. You can make a copy of this PBL and use
it as the basis of your own form styles.

3 Open the window in the Window painter and select File>Save As from the
menu bar to save it with a new name.

4 Give the window a new name.

You can use any name you want, except that names of windows that define
form styles must be unique across all style libraries that are used by an
InfoMaker user.

5 Define a special comment for the window (for instructions, see Identifying
the window as the basis of a style on page 503).

6 Click OK to save the window.

7 Open the menu in the Menu painter and select File>Save As from the
menu bar to save it with a new name.

CHAPTER 31 Building InfoMaker Styles and Actions

Application Techniques 503

8 Provide a new name and an optional comment, then click OK to save the
menu.

You do not need to provide a comment for the menu, but it is a good idea
to identify it as being used in the form style you are building.

9 Enhance the form style (for instructions, see Completing the style on page
504).

Identifying the window as the basis of a style
In order for InfoMaker to recognize that a window in a library serves as the
basis for a form style, you must specify a comment for the window that starts
with the text Style:

Style: text that describes the style

The text that follows Style: is the text that displays below the icon for the form
style in the New Form dialog box in InfoMaker.

For example, if you save a w_pbstyle_freeform window with the comment
Style: Maintain corporate data in a style library, InfoMaker users see
this when they create a new form:

You can specify the comment either when first saving the window or in the
Library painter.

For more information about designing windows, see the PowerBuilder Users
Guide.

Building a style from scratch

504 PowerBuilder

Building a style from scratch
Once you understand how form styles work, you can build one from scratch.

 To build a form style from scratch:

1 Create a new window.

2 Place a DataWindow control in the window.

3 In the Properties view for the control, name the control using one of the
special names.

For the list of special names, see Naming the DataWindow controls in a
form style on page 500.

4 Change properties for the control as desired.

For example, you can add vertical and horizontal scroll bars.

Do not associate the control with a DataWindow object

InfoMaker users specify the data for the control when they create a new
form.

5 If the form style you are building uses two DataWindow controls, place
another DataWindow control in the window and name it to conform with
the valid combinations.

For the list of valid combinations, see Naming the DataWindow controls
in a form style on page 500.

6 Save the window and specify a comment for it.

For instructions, see Identifying the window as the basis of a style on page
503.

Completing the style
To complete your form style, enhance the window and menu to provide the
processing you want. For example, you can:

• Work with the central DataWindow control

• Add controls to the window

CHAPTER 31 Building InfoMaker Styles and Actions

Application Techniques 505

• Define actions (functions that appear as actions in your form style)

• Modify the menu and its associated toolbar

• Write scripts for the window, its controls, and menu items

• Add other capabilities, such as drag and drop, to the window

Working with the central DataWindow controls
The DataWindow controls with special names are the heart of a form. It is in
these controls that users manipulate the data in the form.

You need to understand:

• How the freeform DataWindow is sized in the form

• How to retrieve data into the control in the form

How the freeform
DataWindow is sized

All form styles you build contain a freeform DataWindow (as do all the built-in
styles). Regardless of what size you specify for the freeform DataWindow
control in the Window painter in PowerBuilder, the freeform DataWindow fills
the entire form in the Form painter in InfoMaker. InfoMaker enlarges the
freeform DataWindow so that users can place data (such as computed fields)
anywhere in the form.

This means that a window background color that you specify in PowerBuilder
is ignored in the form.

Retrieving rows into
the central
DataWindow control

When an InfoMaker user runs a form, InfoMaker automatically populates the
SQLCA Transaction object with the correct values, so you do not have to do
that in a script. To retrieve rows into the central DataWindow control, all you
have to do is set the Transaction object for the control and then retrieve rows.

For example, to retrieve data into the control named dw_freeform, code:

dw_freeform.SetTransObject(SQLCA)
dw_freeform.Retrieve()

You would code this in the window’s Open event to present the data to the user
when the form opens.

For more information about Transaction objects, see Chapter 12, Using
Transaction Objects.

Completing the style

506 PowerBuilder

Adding controls
All windows serving as the basis for a form style have at least one DataWindow
control. In addition, you can add any other controls that you can add to standard
PowerBuilder windows, such as command buttons, user objects, text, edit
boxes, pictures, and drawing objects.

Users of the form can move the controls you place in the window, but they
cannot delete them.

Users can also add controls to the form in the Form painter. They make
CommandButtons and PictureButtons work by associating actions with them.
Actions are described next.

Defining actions
Often users want to add buttons (CommandButtons or PictureButtons) to a
form created using a custom form style. When you create the form style, you
specify what the added buttons can do by defining actions for the form style.
When users place a button, they select the desired action from a list:

Actions are implemented as public window-level functions.

 To define an action:

1 In the Script view in the Window painter, select Insert>Function from the
menu bar.

2 Define the window-level function (for how, see the PowerBuilder User’s
Guide).

If you want the window function to be available to a form user as an action,
be sure to define the function as public. Function arguments you define are
used as parameters of the action. Each public window function you define
is listed as an action in the Select Action dialog box in the Form painter.

CHAPTER 31 Building InfoMaker Styles and Actions

Application Techniques 507

Defining functions not available as actions

If you want to define and use window functions that are not available as
actions in forms, define them as private.

Using menus
You specify the menu and toolbar that display when users run a form by
defining a menu in the Menu painter and associating it with the window that
serves as the basis for your form style.

Each menu item in the menu you define displays when a form is run. In
addition, InfoMaker adds Window and Help menus to allow users to
manipulate windows and get online Help when running a form in the
InfoMaker environment.

Providing online Help

You can define a Help item in the menu bar, then define menu items that
display in the Help drop-down menu. The Help items do not display when
users run a form within InfoMaker, but they do display when a form is run from
an executable. For more information about InfoMaker executable files, see the
InfoMaker Users Guide.

Item in a toolbar As with MDI applications, you can specify that a menu item should display as
an item in a toolbar when the form is run.

Scripting You use the same scripting techniques for menus used in forms as you do for
menus used in standard windows. Typically you communicate between a
window and its menu by defining user events for the window, then triggering
them from the menu using the menu object’s ParentWindow property to refer
to the form window; this technique is used in the built-in form styles.

For more information For more information about using menus and user events, see the
PowerBuilder Users Guide.

For more information about associating toolbars with menus, see Chapter 5,
Building an MDI Application.

Using the style

508 PowerBuilder

Writing scripts
You write scripts for the window, its controls, and Menu objects the same way
you write them for standard windows and menus. When working with
DataWindow controls, remember that you do not have to set the properties of
the SQLCA Transaction object—InfoMaker does that automatically when
users run a form.

You can define global user-defined functions and structures to support the
scripts you code, but note that since InfoMaker does not have an application
object, form styles cannot use global variables or global external function
declarations.

Adding other capabilities
You can make forms as sophisticated as you want. For example, you can
implement drag and drop features, and mail-enable your form.

For complete information about the features you can build into a window, see
the PowerBuilder Users Guide.

Using the style
Once you complete a form style (or at least have a version that you want to
test), you can put it to use.

 To make a style available to InfoMaker users:

1 Make sure the window and menu that define the form style are in a library
that is accessible to InfoMaker users (the style library).

2 Add any other PowerBuilder objects that you use in the form style (such
as windows, user objects, global user-defined functions, and global
structures) to the same library.

3 Add the style library to the path for an InfoMaker user.

For more information, see the InfoMaker Users Guide.

CHAPTER 31 Building InfoMaker Styles and Actions

Application Techniques 509

Building a form with the custom form style
When an InfoMaker user using the style library creates a new form, all custom
form styles display in the Form Style box in the New Form dialog box:

Custom styles display with a generic icon.

InfoMaker users simply select a data source and a custom style to start building
a form based on your form style. You should provide documentation to users
of your form styles.

Understanding
inheritance

When users build a form, they are working with a window that is a descendant
of the window that you built for the form style. That is, the form style window
you built in PowerBuilder is the ancestor, and the form window used in
InfoMaker is the descendant. This means that if you change the form style, the
changes are picked up the next time users work with a form using that style.

For example, you can add controls to the form style and have the controls
display automatically when users later open existing forms using the style.

Caution

Be careful: do not make changes that invalidate forms already built using the
style.

Using the style

510 PowerBuilder

Managing the use of form styles
You can store style libraries on the network to make them readily available to
all InfoMaker users. You do this with a shared initialization file on a network:
you place an InfoMaker initialization file that references the shared style
libraries out on the network, then set up InfoMaker users so that they can access
the initialization file.

 To make style libraries available throughout your organization:

1 Place the style libraries on the network in a directory accessible to
InfoMaker users.

2 Open InfoMaker, go to the Library painter, and make sure all style libraries
are listed in the search path.

3 Close InfoMaker.

4 Copy your InfoMaker initialization file to a directory on the network that
is accessible to all InfoMaker users.

This is the shared initialization file. It records all the style libraries in the
StyleLib variable in the [Application] section.

5 Set up InfoMaker users so that they can access the shared initialization
file.

Each InfoMaker user needs to specify the location of the shared
initialization file in InfoMaker.

For more information, see "Specifying the location of the shared
InfoMaker initialization file in InfoMaker" next.

Specifying the location
of the shared
InfoMaker initialization
file in InfoMaker

Once the shared initialization file has been defined in a user’s InfoMaker
initialization file, the user’s style library search path consists of the style
libraries defined in the user’s local InfoMaker initialization file plus all style
libraries defined in the shared initialization file. When the user creates a new
form, the form styles defined in all the style libraries display in the New Form
dialog box.

Each InfoMaker user needs to tell InfoMaker where to find the shared
initialization file.

 To specify the location of a shared InfoMaker initialization file:

1 Select Tools>System Options from the InfoMaker menu bar.

2 On the General property page, enter the path for the shared InfoMaker
initialization file.

CHAPTER 31 Building InfoMaker Styles and Actions

Application Techniques 511

3 Click OK.

InfoMaker saves the path for InfoMaker initialization in the registry.

Preventing the use of
built-in styles

You might not want the built-in form styles to be available to InfoMaker users.
That is, you might want all forms to be based on one of your organization’s
user-defined styles. You can ensure this by suppressing the display of the
built-in styles in the New Form dialog box.

 To suppress the display of built-in styles:

1 Set up a shared initialization file on the network as described in the
preceding section.

2 Add this line to the [Window] section of the shared initialization file:

ShowStandardStyles = 0

With this line specified in the shared initialization file, users can choose only
from user-defined form styles when creating a new form. (Note that a
ShowStandardStyles line in a user’s local InfoMaker initialization file is
ignored by InfoMaker.)

Using the style

512 PowerBuilder

P A R T 9 Deployment Techniques

This part explains how to package your application for
deployment and what files you need to deploy.

Application Techniques 515

C H A P T E R 3 2 Packaging an Application for
Deployment

About this chapter This chapter tells you how to prepare a completed executable application
for deployment to users.

Contents

About deploying applications
PowerBuilder lets you develop and deploy applications for many
application architectures.

Traditional client/server
applications

The primary focus of this chapter is on building an executable file and
packaging a single- or two-tier application for deployment. The chapter
helps you decide whether to use compiled code or pseudocode, whether to
use dynamic libraries (PBDs or DLLs) and how to organize them, and
whether to deploy resources such as bitmaps and icons separately or use a
PowerBuilder Resource file (PBR).

Internet and distributed
applications

When you build a client in a multitier application, you need to make many
of the same choices as you do for a traditional client/server application.

For more information For detailed information about the files you need to deploy with
client/server, multitier, and Web applications, see Chapter 33, Deploying
Applications and Components.

Topic Page

About deploying applications 515

Creating an executable version of your application 516

Delivering your application to end users 529

Creating an executable version of your application

516 PowerBuilder

Creating an executable version of your application
The next few sections tell you more about the packaging process and provide
information to help you make choices about the resulting application. They
cover:

• Compiler basics

• What can go in the package

• How to choose a packaging model

• How to implement your packaging model

• How to test the executable application you create

Compiler basics
When you plan an application, one of the fundamental topics to think about is
the compiler format in which you want that application generated.
PowerBuilder offers two alternatives: Pcode and machine code.

Pcode Pcode (short for pseudocode) is an interpreted language that is supported on all
PowerBuilder platforms. This is the same format that PowerBuilder uses in
libraries (PBL files) to store individual objects in an executable state.
Advantages of Pcode include its size, reliability, and portability.

Machine code PowerBuilder generates and compiles code to create a machine code
executable or dynamic library. The key advantage of machine code is speed of
execution.

PowerBuilder DLLs cannot be called

PowerBuilder machine code DLLs cannot be called from other applications.

Deciding which one to
use

Here are some guidelines to help you decide whether Pcode or machine code
is right for your project:

• Speed If your application does intensive script processing, you might
want to consider using machine code. It will perform better than Pcode if
your code makes heavy use of looping constructs, floating point or integer
arithmetic, or function calls. If your application does not have these
characteristics, machine code does not perform noticeably better than
Pcode. If you think your application might benefit from the use of machine
code, perform some benchmark testing to find out.

CHAPTER 32 Packaging an Application for Deployment

Application Techniques 517

Pcode is faster to generate than machine code. Even if you plan to
distribute your application using machine code, you might want to use
Pcode when you want to quickly create an executable version of an
application for testing.

• Size The files generated for Pcode are smaller than those generated for
machine code. If your application is to be deployed on computers where
file size is a major issue, or if you deploy it using a Web download or file
transfer, then you might decide to give up the speed of machine code and
choose Pcode instead.

Learning what can go in the package
No matter which compiler format you pick, an application that you create in
PowerBuilder can consist of one or more of the following pieces:

• An executable file

• Dynamic libraries

• Resources

To decide which of these pieces are required for your particular project, you
need to know something about them.

About the executable
file

If you are building a single- or two-tier application that you will distribute to
users as an executable file, rather than as a Web application, you always create
an executable (EXE) file.

At minimum, the executable file contains code that enables your application to
run as a native application on its target platform. That means, for example, that
when users want to start your application, they can double-click the executable
file’s icon on their desktop.

What else can go in the executable file Depending on the packaging
model you choose for your application, the executable file also contains one or
more of the following:

• Compiled versions of objects from your application’s libraries

You can choose to put all of your objects in the executable file so that you
have only one file to deliver, or you can choose to split your application
into one executable file and one or more dynamic libraries. For more
information, see About dynamic libraries on page 518.

Creating an executable version of your application

518 PowerBuilder

• An execution library list that the PowerBuilder execution system uses to
find objects and resources in any dynamic libraries you have packaged for
the application

• Resources that your application uses (such as bitmaps)

Figure 32-1: Executable file contents

About dynamic
libraries

As an alternative to putting your entire application in one large executable file,
you can deliver some (or even all) of its objects in one or more dynamic
libraries. The way PowerBuilder implements dynamic libraries depends on the
compiler format you choose.

Table 32-1: PowerBuilder dynamic libraries

As with an executable file, only compiled versions of objects (and not their
sources) go into dynamic libraries.

If you are generating Your dynamic libraries will be

Machine code DLL files (dynamic link libraries).

Machine-code dynamic libraries are given the extension
.dll. These dynamic libraries are like any other standard
shared libraries in your operating environment. The only
caveat is that they are not intended to be called from
external programs.

Pcode PBD files (PowerBuilder dynamic libraries).

These dynamic libraries are similar to DLLs in that they
are linked to your application at runtime. They are not
interchangeable with DLLs, however, because they have
a different internal format.

You cannot mix the two different kinds of dynamic
libraries (DLLs and PBDs) in one application.

CHAPTER 32 Packaging an Application for Deployment

Application Techniques 519

Figure 32-2: Compiled objects in dynamic libraries

What else can go in dynamic libraries Unlike your executable file,
dynamic libraries do not include any start-up code. They cannot be executed
independently. Instead, they are accessed as an application executes when it
cannot find the objects it requires in the executable file.

Dynamic libraries can include resources such as bitmaps. You might want to
put any resources needed by a dynamic library’s objects in its DLL or PBD file.
This makes the dynamic library a self-contained unit that can easily be reused.
If performance is your main concern, however, be aware that resources are
loaded faster at runtime when they are in the executable file.

Figure 32-3: Resources in dynamic libraries

Why use them Table 32-2 lists several reasons why you might want to use
dynamic libraries.

Creating an executable version of your application

520 PowerBuilder

Table 32-2: Reasons to use dynamic libraries

Organizing them Once you decide to use a dynamic library, you need to tell
PowerBuilder which library (PBL file) to create it from. PowerBuilder then
places compiled versions of all objects from that PBL file into the DLL or PBD
file.

If your application uses only some of those objects, you might not want the
dynamic library to include the superfluous ones, which only make the file
larger. The solution is to:

1 Create a new PBL file and copy only the objects you want into it.

2 Use this new PBL file as the source of your dynamic library.

About resources In addition to PowerBuilder objects such as windows and menus, applications
also use various resources. Examples of resources include:

• Bitmaps that you might display in Picture or PictureButton controls

• Custom pointers that you might assign to windows

When you use resources, you need to deliver them as part of the application
along with your PowerBuilder objects.

Reason Details

Modularity They let you break up your application into smaller, more modular
files that are easier to manage.

Maintainability They enable you to deliver application components separately. To
provide users with a bug fix, you can often give them the particular
dynamic library that was affected.

Reusability They make it possible for multiple applications to reuse the same
components because dynamic libraries can be shared among
applications as well as among users.

Flexibility They enable you to provide your application with objects that it
references only dynamically at runtime (such as a window object
referenced only through a string variable).

You cannot put such objects in your executable file (unless they are
DataWindow objects).

Efficiency They can help a large application use memory efficiently because:

• PowerBuilder does not load an entire dynamic library into
memory at once. Instead, it loads individual objects from the
dynamic library only when needed.

• Your executable file can remain small, making it faster to load
and less obtrusive.

CHAPTER 32 Packaging an Application for Deployment

Application Techniques 521

What kinds there are A PowerBuilder application can employ several
different kinds of resources. Table 32-3 lists resources according to the specific
objects in which they might be needed.

Table 32-3: PowerBuilder objects and resources

Delivering them When deciding how to package the resources that need to
accompany your application, you can choose from the following approaches:

• Include them in the executable file.

Whenever you create an executable file, PowerBuilder automatically
examines the objects it places in that file to see if they explicitly reference
any resources (icons, pictures, pointers). It then copies all such resources
right into the executable file.

PowerBuilder does not automatically copy in resources that are
dynamically referenced (through string variables). To get such resources
into the executable file, you must use a resource (PBR) file. This is simply
a text file in which you list existing ICO, BMP, GIF, JPEG, PNG, RLE,
WMF, and CUR files.

Once you have a PBR file, you can tell PowerBuilder to read from it when
creating the executable file to determine which additional resources to
copy in. (This might even include resources used by the objects in your
dynamic libraries, if you decide to put most or all resources in the
executable file for performance reasons.)

• Include them in dynamic libraries.

You might often need to include resources directly in one or more dynamic
libraries, but PowerBuilder does not automatically copy any resources into
a dynamic library that you create even if they are explicitly referenced by
objects in that file. You need to produce a PBR file that tells PowerBuilder
which resources you want in this particular DLL or PBD file.

These objects Can use these kinds of resources

Window objects and user
objects

Icons (ICO files)

Pictures (BMP, GIF, JPEG, PNG, RLE, and WMF
files)

Pointers (CUR files)

DataWindow objects Pictures (BMP, GIF, JPEG, PNG, RLE, and WMF
files)

Menu objects (when in an
MDI application)

Pictures (BMP, GIF, JPEG, PNG, RLE, and WMF
files)

Creating an executable version of your application

522 PowerBuilder

Use a different PBR file for each dynamic library in which you want to
include resources. (When appropriate, you can even use this approach to
generate a dynamic library that contains only resources and no objects.
Simply start with an empty PBL file as the source.)

• Deliver them as separate files.

This means that when you deploy the application, you give users various
image files in addition to the application’s executable file and any dynamic
libraries. As long as you do not mind delivering a lot of files, this can be
useful if you expect to revise some of them in the future.

Keep in mind that this is not the fastest approach at runtime, because it
requires more searching. Whenever your application needs a resource, it
searches the executable file and then the dynamic libraries. If the resource
is not found, the application searches for a separate file.

Make sure that your application can find where these separate files are
stored, otherwise it cannot display the corresponding resources.

You can use one of these approaches or any combination of them when
packaging a particular application.

Using a PBR file to include a dynamically referenced DataWindow object

You might occasionally want to include a dynamically referenced
DataWindow object (one that your application knows about only through a
string variable) in the executable file you are creating. To do that, you must list
its name in a PBR file along with the names of the resources you want
PowerBuilder to copy into that executable file.

You do not need to do this when creating a dynamic library, because
PowerBuilder automatically includes every DataWindow object from the
source library (PBL file) in your new DLL or PBD file.

Creating a PowerBuilder resource file
A PBR file is an ASCII text file in which you list resource names (such as BMP,
CUR, ICO, and so on) and DataWindow objects. To create a PBR file, use a
text editor. List the name of each resource, one resource on each line, then save
the list as a file with the extension PBR. Here is a sample PBR file:

ct_graph.ico
document.ico

CHAPTER 32 Packaging an Application for Deployment

Application Techniques 523

codes.ico
button.bmp
next1.bmp
prior1.bmp

 To create and use a PowerBuilder resource file:

1 Using a text editor, create a text file that lists all resource files referenced
dynamically in your application (see below for information about creating
the file).

When creating a resource file for a dynamic library, list all resources used
by the dynamic library, not just those assigned dynamically in a script.

2 Specify the resource files in the Project painter. The executable file can
have a resource file attached to it, as can each of the dynamic libraries.

When PowerBuilder builds the project, it includes all resources specified
in the PBR file in the executable file or dynamic library. You no longer
have to distribute your dynamically assigned resources separately; they
are in the application.

Naming resources If the resource file is in the current directory, you can simply list the file, such
as:

FROWN.BMP

If the resource file is in a different directory, include the path to the file, such as:

C:\BITMAPS\FROWN.BMP

Paths in PBR files and scripts must match exactly

The file name specified in the PBR file must exactly match the way the
resource is referenced in scripts.

If the reference in a script uses a path, you must specify the same path in the
PBR file. If the resource file is not qualified with a path in the script, it must
not be qualified in the PBR file.

For example, if the script reads:

p_logo.PictureName = "FROWN.BMP"

then the PBR file must read:

FROWN.BMP

If the PBR file says something like:

C:\MYAPP\FROWN.BMP

Creating an executable version of your application

524 PowerBuilder

and the script does not specify the path, PowerBuilder cannot find the resource
at runtime. That is because PowerBuilder does a simple string comparison at
runtime. In the preceding example, when PowerBuilder executes the script, it
looks for the object identified by the string FROWN.BMP in the executable file.
It cannot find it, because the resource is identified in the executable file as
C:\MYAPP\FROWN.BMP.

In this case, the picture does not display at runtime; the control is empty in the
window.

Including
DataWindows objects
in a PBR file

To include a DataWindow object in the list, enter the name of the library (with
extension PBL) followed by the DataWindow object name enclosed in
parentheses. For example:

sales.pbl(d_emplist)

If the DataWindow library is not in the directory that is current when the
executable is built, fully qualify the reference in the PBR file. For example:

c:\myapp\sales.pbl(d_emplist)

Choosing a packaging model
As indicated in the previous section, you have many options for packaging an
executable version of an application. Here are several of the most common
packaging models you might consider.

A standalone
executable file

In this model, you include everything (all objects and resources) in the
executable file, so that there is just one file to deliver.

Illustration Figure 32-4 shows a sample of what this model can look like.

Figure 32-4: Standalone executable model

Use This model is good for small, simple applications—especially those that
are likely not to need a lot of maintenance. For such projects, this model
ensures the best performance and the easiest delivery.

CHAPTER 32 Packaging an Application for Deployment

Application Techniques 525

An executable file and
external resources

In this model, you include all objects and most resources in the executable file,
but you deliver separate files for particular resources.

Illustration Figure 32-5 shows a sample of what this model can look like.

Figure 32-5: Executable with external resources model

Use This model is also for small, simple applications, but it differs from the
preceding model in that it facilitates maintenance of resources that are subject
to change. In other words, it lets you give users revised copies of specific
resources without forcing you to deliver a revised copy of the executable file.

You can also use this model to deal with resources that must be shared by other
applications or that are large and infrequently needed.

An executable file and
dynamic libraries

In this model, you split up your application into an executable file and one or
more dynamic library files (DLLs or PBDs). When doing so, you can organize
your objects and resources in various ways. Table 32-4 shows some of these
techniques.

Table 32-4: Object and resource organization with dynamic libraries

Illustration Figure 32-6 shows a sample of what this model can look like.

To organize You can

Objects Place them all in dynamic libraries so that there are none in the
executable file, which facilitates maintenance, or

Place a few of the most frequently accessed ones in the executable
file to optimize access to them and place all the rest in dynamic
libraries.

Resources Place most or all of them in dynamic libraries along with the objects
that use them, which facilitates reuse, or

Place most or all of them in the executable file to optimize access to
them.

Creating an executable version of your application

526 PowerBuilder

Figure 32-6: Executable with dynamic libraries model

Use This model is good for most substantial projects because it gives you
flexibility in organizing and maintaining your applications. For instance, it
enables you to make revisions to a particular part of an application in one
dynamic library.

Note Whenever you revise an application, Appeon recommends that you
always perform a full rebuild and distribute the executable file and all the
application’s dynamic libraries. For example, changes to any of the following
objects might affect other objects:

• Property names and types

• Function names

• Function arguments and return values

• The sequence of functions or properties in objects or groups

• Anything that might affect inherited objects in other PBLs

An executable file,
dynamic libraries, and
external resources

This model is just like the preceding one except that you deliver separate files
for particular resources (instead of including all of them in your executable file
and dynamic libraries).

Illustration Figure 32-7 shows a sample of what this model can look like.

CHAPTER 32 Packaging an Application for Deployment

Application Techniques 527

Figure 32-7: Executable with dynamic libraries and external resources
model

Use This model is good for substantial applications, particularly those that
call for flexibility in handling certain resources. Such flexibility may be needed
if a resource:

• Might have to be revised

• Must be shared by other applications

• Is large and infrequently used

Implementing your packaging model
When you have decided which is the appropriate packaging model for your
application, you can use the packaging facilities in PowerBuilder to implement
it. For the most part, this involves working in the Project painter. You can use
the Project painter to build components, proxy libraries, and HTML files as
well as executable applications.

Using the Project
painter for executable
applications

The Project painter for executable applications orchestrates all aspects of the
packaging job by enabling you to:

• Specify the executable file to create

• Specify any dynamic libraries (DLL or PBD files) to create

Creating an executable version of your application

528 PowerBuilder

• Specify the resources you want included in the executable file or in each
particular dynamic library (by using appropriate PBR files that indicate
where to get those resources)

• Choose machine code or Pcode as the compiler format to generate

With machine code, you can also specify a variety of code generation
options (such as optimization, trace information, and error context
information).

• Choose build options, including whether you want the Project painter to
do a full or incremental rebuild of your application’s objects when
generating the executable application

• Save all of these specifications as a project object that you can use
whenever necessary to rebuild the whole package

For more information on using the Project painter, see the PowerBuilder Users
Guide.

Building individual
dynamic libraries

When you make revisions to an existing application, your changes might not
affect all its dynamic libraries. You can rebuild individual dynamic libraries
from the pop-up menu in the System Tree or the Library painter.

If changes are isolated and do not affect inherited objects in other PBLs, you
might be able to distribute individual PBDs to your users to provide an upgrade
or bug fix. However, Appeon recommends that you always perform a full
rebuild and distribute the executable file and all the application’s dynamic
libraries whenever you revise an application.

Testing the executable application
Once you create the executable version of your application, test how it runs
before proceeding with delivery. You may have already executed the
application many times within the PowerBuilder development environment,
but it is still very important to run the executable version as an independent
application—just the way end users will.

To do this, you:

1 Leave PowerBuilder and go to your operating system environment.

2 Make sure that the PowerBuilder runtime libraries are accessible to the
application.

CHAPTER 32 Packaging an Application for Deployment

Application Techniques 529

You can do this by verifying that the location of the PowerBuilder virtual
machine and other runtime files is in your PATH environment variable, or
you can create a registry entry for the application that specifies the path.

3 Run the application’s executable file as you run any native application.

Tracing the
application’s
execution

To help you track down problems, PowerBuilder provides tracing and
profiling facilities that you can use in the development environment and when
running the executable version of an application. Even if your application’s
executable is problem free, you might consider using this facility to generate
an audit trail of its operation. For more information on tracing execution, see
the PowerBuilder Users Guide.

Delivering your application to end users
When you deliver the executable version of your application to users, you need
to install all of the various files and programs in the right places, such as on
their computers or on the network.

Automating the
deployment process

If you want to automate the deployment process, you might want to use a
software distribution application such as InstallShield. Such applications
typically install all the executables, resource files, data sources, and
configuration files your users need to run your application. They also update
the users’ initialization files and registry.

Installation checklist
You can use the following checklist to make sure you install everything that is
needed. For easy reading, the checklist is divided into:

• Installing environmental pieces

• Installing application pieces

Delivering your application to end users

530 PowerBuilder

Installing
environmental pieces Checklist item Details

Install the PowerBuilder
runtime DLLs.

You should install all of these DLL files (which
contain the PowerBuilder execution system) locally
on each user computer. They are needed to run
PowerBuilder applications independently (outside the
development environment). This applies to
applications generated in machine code as well as
those generated in Pcode.

For details on installing the runtime DLLs, see
PowerBuilder runtime files on page 543.

Handling maintenance releases If you are using a
maintenance release of PowerBuilder in your
development environment, make sure you provide
users with the runtime DLLs from that maintenance
release.

Install the database
interface(s).

You should install on each user computer any database
interfaces required by the application, such as the
ODBC interface and other native database interfaces.

For details on installing any database interfaces you
need, see Chapter 33, Deploying Applications and
Components. For more information about database
interfaces, see Connecting to Your Database.

Configure any ODBC
drivers you install.

If you install the ODBC interface (and one or more
ODBC drivers) on user computers, you must also
configure the ODBC drivers. This involves defining
the specific data sources to be accessed through each
driver.

For details on configuring ODBC drivers, see
Connecting to Your Database.

Set up network access if
needed.

If the application needs to access any server databases
or any other network services, make sure each user
computer is properly connected.

Configure the operating
(windowing) system.

A particular application might require some special
adjustments to the operating or windowing system for
performance or other reasons. If that is the case with
your application, be sure to make those adjustments to
each user computer.

CHAPTER 32 Packaging an Application for Deployment

Application Techniques 531

Installing application
pieces Checklist item Details

Copy the executable
application.

Make copies of the files that make up your executable
application and install them on each user computer.
These files can include:

• The executable (EXE) file

• Any dynamic libraries (DLL or PBD files)

• Any files for resources you are delivering
separately (such as ICO, BMP, GIF, JPEG, PNG,
RLE, WMF, or CUR files)

Handling maintenance releases If you plan to revise
these files on a regular basis, you might want to
automate the process of copying the latest versions of
them from a server on your network to each user
computer.

You might consider building this logic right into your
application. You might also make it copy updates of
the PowerBuilder runtime DLLs to a user’s computer.

Copy any additional files. Make copies of any additional files that the
application uses and install them on each user
computer. These files often include:

• Initialization (INI) files

• Help (CHM) files

• Possibly various others such as text or sound files

 In some cases, you might want to install particular
files on a server instead of locally, depending on their
use.

Copy any local databases to
be accessed.

If the application needs to access a local database,
copy the files that comprise that database and install
them on each user computer.

Make sure that you also install the appropriate
database interface and configure it properly if you
have not already done so.

Install any other programs
to be accessed.

If the application needs to access any external
programs, install each one in an appropriate
location—either on every user computer or on a
server.

Also, perform any configuration required to make
those programs work properly. For example, you
might need to register ActiveX controls. For more
information, see Deploying ActiveX controls on page
536.

Delivering your application to end users

532 PowerBuilder

Starting the deployed application
Users can run your application just as they run other Windows applications. For
example, they can double-click the executable file in Explorer or create an
application shortcut on the desktop and double-click the shortcut.

If users create a shortcut, the Target text box on the Shortcut properties page
should specify the path to the executable, and the Start In text box should
specify the location of the runtime DLLs.

Ensure that the application
can find the files it needs.

Make sure you install the various files that your
application uses on paths where it can find them:

• If the application refers to a file by a specific path,
then install the file on that path.

• If the application refers to a file by name only, then
install the file on some path that the application is
able to search—typically the current one.

Update the system registry
with values for the
application.

If you rely on the Windows registry to manage certain
information needed by the application, such as the
application path, be sure to update the registry with
such values.

Set up the application’s
icon.

To enable users to start the application, use the
windowing system on each user computer to display
the executable file’s icon where you want.

Alternatively, users can also start the application in
any other manner provided for native applications
under their windowing system.

Checklist item Details

Application Techniques 533

C H A P T E R 3 3 Deploying Applications and
Components

About this chapter This chapter provides the information required to deploy applications and
components to users’ computers and servers. It describes a tool you can
use to package PowerBuilder runtime files, and lists the files you need to
deploy with various kinds of targets.

These lists of files sometimes need to be updated, as, for example, when
new database interfaces become available. For information about such
changes, see the Release Bulletin for the version of PowerBuilder you are
using.

Contents

Deploying applications, components, and supporting
files

Regardless of the type of application you are deploying, you must include
any supporting files such as dynamic libraries, resources like BMP and
ICO files, online Help files, and initialization files. Each application type
requires a different set of supporting files. The PowerBuilder runtime
files, such as pbvm170.dll and pbdwe170.dll, and PowerBuilder database
interfaces such as pbsnc170.dll and pbo10170.dll, can be freely
distributed with your application with no licensing fee.

Topic Page

Deploying applications, components, and supporting files 533

PowerBuilder Runtime Packager 536

Third-party components and deployment 540

PowerBuilder runtime files 543

Database connections 545

Java support 554

PowerBuilder extensions 556

PDF and XSL-FO export 556

Deploying applications, components, and supporting files

534 PowerBuilder

Planning for
deployment

Chapter 32, Packaging an Application for Deployment, helps you make
decisions about deploying a PowerBuilder executable application, such as
whether to use dynamic libraries, Pcode or machine code, and resource files. It
also provides a checklist to make sure you install all the required pieces.

If you are deploying a Web application or a transaction server component, you
will find the information about PowerBuilder dynamic libraries (PBDs) and
PowerBuilder resource files (PBRs) in that chapter helpful. You should also
read the documentation for specific types of applications, components, or
plug-ins.

Finding information in
this chapter

This chapter is intended to help you write installation programs using a
third-party software package that creates installation configurations. It tells
you which files each computer needs, where you can find the files, where they
should be installed, and what registry settings need to be made. PowerBuilder
also provides a tool, described in PowerBuilder Runtime Packager on page
536, to help you package the files your application needs.

Use Table 33-1 to locate information about the specific files you need to deploy
with your application.

Table 33-1: PowerBuilder files required for deployment

Installed and
deployment paths

The Installed path listed after some of the tables in this chapter is the location
where files are installed when you install PowerBuilder and select the default
installation location. When you build an installation program for your
application, you can copy files from this location to your staging area.

The Deployment path tells you where these files can be installed on the
computer on which you install your application or component.

Scenario See these sections

All PowerBuilder client
applications

PowerBuilder runtime files on page 543

PowerBuilder client application
accessing data on a database
server

 Database connections on page 545

PowerBuilder clients for EJBs,
SOAP Web services, and XML
services

PowerBuilder extensions on page 556

PowerBuilder clients that save
data in PDF or XSL-FO format

PDF and XSL-FO export on page 556

CHAPTER 33 Deploying Applications and Components

Application Techniques 535

App Path registry key Some tables are followed by a list of the Registry entries your installation
program needs to make so that your application or component can find the files
it needs. When an application runs on Windows, it looks for supporting files in
these locations and in this order:

1 The directory where the executable file is installed.

2 The Windows system and Windows directories (for example, in
C:\WINDOWS\system32, C:\WINDOWS\system, and C:\WINDOWS).

3 In an application path that can be specified in the registry.

4 In the system path.

You do not need to specify an application path, but it is recommended.

Specifying an
application path

To specify the path the application uses to locate supporting files, your
installation program should create an App Path key for your application in this
registry location:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\App Paths

Set the data value of the (Default) string value to the directory where the
application is installed and create a new string value called Path that specifies
the location of shared files. The following example shows a typical registry
entry for an application called myapp.exe that uses SQL Anywhere. The
registry key is enclosed in square brackets and is followed by string values for
the key in the format "Name"="Value":

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\App Paths\myapp.exe]

"Default"="C:\Program Files\myapps\myapp.exe"
"Path"="C:\Program Files\myapps;C:\Program Files\

\shared\PowerBuilder;c:\program files\
SQL Anywhere 12\win32\;"

About REG files

Registry update files that have a .REG extension can be used to import
information into the registry. The format used in registry key examples in this
chapter is similar to the format used in registry update files, but these examples
are not intended to be used as update files. The path names in data value strings
in registry update files typically use a pair of backslashes instead of a single
backslash, and the “Default” string value is represented by the at sign (@).

Use the examples to help determine which registry keys your installation
program should add or update.

PowerBuilder Runtime Packager

536 PowerBuilder

Deploying ActiveX
controls

If your application uses ActiveX controls, OLE controls, or OCX controls, you
must:

• Deploy the control files with your application

• Make sure each control is registered

• Make sure required files are in the target computer’s system directory

If your application uses a control that is not self registering, your setup program
needs to register it manually on each user’s computer. To find out whether a
control is self registering, see the documentation provided with the control.
Depending on the development and deployment platforms and the controls you
are deploying, you might need to copy additional DLLs or license files to the
Windows system directories on the target computer.

PowerBuilder Runtime Packager
The PowerBuilder Runtime Packager is a tool that packages the PowerBuilder
files an application needs at runtime into a Microsoft Windows Installer (MSI)
package file or a Microsoft merge module (MSM). Windows Installer is an
installation and configuration service that is installed with recent Microsoft
Windows operating systems. The MSM file must be incorporated into an
application MSI file using a merge tool before the components it contains can
be installed on a client computer.

You can use the MSM or MSI file generated by the Runtime Packager as part
of an installation package that includes the other files that your application
needs.

You must have Microsoft Windows Installer on your system in order to run the
Runtime Packager successfully. The Installer is always available on Windows
XP and later.

To get more information about Windows Installer, see the Microsoft
documentation at http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx.

The Runtime Packager can be used with client applications installed on
Windows systems and applications deployed to the .NET Framework. It does
not install most third-party components. See Third-party components and
deployment on page 540 for more information.

CHAPTER 33 Deploying Applications and Components

Application Techniques 537

Make sure that you read the sections referenced in Table 33-1 on page 534 that
apply to your application for more information about where files that are not
installed by the Runtime Packager should be installed.

 To use the PowerBuilder Runtime Packager:

1 Select Programs>Appeon>PowerBuilder 2017>PowerBuilder Runtime
Packager from the Windows Start menu or launch the pbpack170
executable file in your Shared\PowerBuilder directory.

2 Select whether to generate the PowerBuilder runtime files in a standalone
MSI file or in an MSM merge module.

3 Select a location for the generated MSI or MSM file.

4 Select the PowerBuilder Base Components.

5 Select the database interfaces your application requires.

The DLLs for the database interfaces you select are added to the package.
For ODBC and OLE DB, the pbodb170.ini file is also added. For JDBC,
the pbjdbc12170.jar and pbjvm170.dll files are also added. The Java
Runtime Environment (JRE) is not added. See Third-party components
and deployment on page 540.

PowerBuilder Runtime Packager

538 PowerBuilder

Other ODBC or OLE DB files your application may require are not added.
For information about deploying these files, see ODBC database drivers
and supporting files on page 547 and OLE DB database providers on page
551.

6 If your application uses DataWindow XML export or import or XML Web
DataWindows, check the XML support check box.

The Runtime Packager adds PBXerces170.dll, xerces-c_2_8.dll, and
xerces-depdom_2_8.dll.

7 If your application uses the XML services provided by the PowerBuilder
Document Object Model or if it is an EJB client, select the PB DOM or
EJB client check boxes.

The Runtime Packager adds the DLLs, PBXs, and JAR files required by
the selected component.

8 If your application is a SOAP Web services client, select the SOAP Client
for Web Service check box.

The Runtime Packager adds required files for both the EasySoap and .NET
Web service engines when you select the SOAP Client for Web Service
check box. For more information about required files for these services,
see PowerBuilder extensions on page 556.

Web service DataWindows

You can also check the SOAP Client for Web Service box if your
application uses Web service DataWindows. Two of the files added when
you check this box, Sybase.PowerBuilder.WebService.Runtime.dll and
Sybase.PowerBuilder.WebService.Runtime.RemoteLoader.dll, are also
required for Web service DataWindows.

9 If your application saves DataWindow or graph data in Microsoft Excel
2007 format, select the MS Excel12 Support check box.

The Runtime Packager adds the PBDWExcel12Interop170.dll and
Sybase.PowerBuilder.DataWindow.Excel12.dll files to the MSM or MSI
package that you generate. It does not add the .NET Framework that is also
required for Microsoft Excel 2007 support.

10 If your application uses the built-in editor for a RichTextEdit control or
RichText DataWindow, select the Rich Text Support check box.

The Runtime Packager adds the files listed for Rich Text support in
Table 33-4 on page 544.

CHAPTER 33 Deploying Applications and Components

Application Techniques 539

If your application uses the old editor (TX Text Control) for a
RichTextEdit control or RichText DataWindow, you should follow the
vendor’s documentation to package the files required for running this
editor.

To know more about the built-in editor and the old editor, see Selecting a
rich text editor on page 262.

11 Click Create.

The Runtime Packager creates an MSI or MSM file that includes the files
required by the components you selected, as well as the runtime DLLs for
standard PowerBuilder applications listed in Table 33-2.

Table 33-2: Base components

The MSI file is a compressed file that can be executed directly on any Windows
platform. It registers any self-registering DLLs, adds the installation
destination path to the Windows Registry, sets the system PATH environment
variable, and adds information to the Registry for the Install/Uninstall page in
the Windows Control Panel. It can also be used in some third-party installation
software packages.

The MSM file is similar to an MSI file, but the MSM file must first be merged
into an installation package before its components can be installed on a client
computer. A merge tool is required to merge the MSM file into an MSI
installation package.

Base components selected Files

PowerBuilder components
(Default file name for runtime
package is PBCLTRT170.msi)

libjcc.dll
libjutils.dll
libjtml.dll
nlwnsck.dll
pbacc170.dll
pbcomrt170.dll
pbdpl170.dll
pbdwe170.dll
pbdwr170.dll
pbdwr170.pbd
pbjag170.dll
pbjvm170.dll
pbshr170.dll
pbtra170.dll
pbtrs170.dll
pbvm170.dll

Third-party components and deployment

540 PowerBuilder

Third-party components and deployment
PowerBuilder applications have some dependencies on third-party
components that are installed with PowerBuilder. Most of these components
are not installed with the PowerBuilder Runtime Packager. You may
redistribute some of these components with your application, but others must
be obtained from the vendor.

For information about components that can be freely downloaded, see the free
download terms document. A copy of this document is located on the Appeon
Web site at
https://www.appeon.com/policies/Appeon_PowerBuilder_FreeDownloadTerms.p
df.

Apache files
You may redistribute Apache files included with PowerBuilder to your users.
Any use or distribution of the Apache code included with PowerBuilder 2017
must comply with the terms of the Apache License which is located in the free
download terms document for PowerBuilder 2017.

Version 0.20.4 of the Apache Formatting Objects Processor (FOP) is required
if your application uses XSL-FO to save files as PDF. For more information
about FOP, see the Apache FOP Web site at http://xmlgraphics.apache.org/fop/.

The Apache Xerces files xerces-c_2_6.dll and xerces-depdom_2_6.dll are
required for XML Web DataWindow support, XML support for DataWindows
and DataStores, PBDOM, and SOAP clients for Web services. For more
information about Xerces, see the Xerces C++ Parser Web site at
http://xml.apache.org/xerces-c/.

CHAPTER 33 Deploying Applications and Components

Application Techniques 541

Microsoft files
Visual C++ runtime,
Active Template, and
GDI+ libraries

When you deploy the core PowerBuilder runtime files, you must ensure that
the msvcr71.dll, msvcp71.dll, msvcr100.dll, and msvcp100.dll Microsoft
Visual C++ runtime libraries and the Microsoft .NET Active Template Library
(ATL) module, atl71.dll, are present on the user’s computer or server. The
PowerBuilder runtime files have a runtime dependency on these files and they
are required for all applications and components that require the PowerBuilder
runtime. You can obtain these DLL files from the DLL archive Web site at
http://dlldump.com. They are also available from the DLL archive Web site at
http://driverskit.com.

The PowerBuilder runtime files also have a runtime dependency on Microsoft
Windows GDI+ (gdiplus.dll). The GDI+ graphics design interface is included
by default in the system paths of all Windows platforms currently supported by
PowerBuilder.

Files must be installed before running MSI or MSM file

Some files installed by the MSI or MSM file generated by the PowerBuilder
Runtime Packager have dependencies on these files. For example, atl71.dll and
gdiplus.dll must be installed on the user’s computer before the pbjvm170.dll
file can be registered. Make sure these files are on the target computer before
you run the installation module generated by the Runtime Packager.

Ink picture libraries Microsoft.Ink, Microsoft.Ink.dll, and Microsoft.Resources.dll are required if
your application uses InkEdit and InkPicture controls. These files are part of
the Microsoft Windows XP Tablet PC Edition Software Development Kit 1.7,
which is available on the Microsoft Web site at http://www.microsoft.com/en-
us/download/details.aspx?id=20039.

Microsoft has discovered some incompatibility issues between these DLLs and
the .NET Framework 2.0. You can obtain an update to address these issues
from the Microsoft Web site at http://www.microsoft.com/en-
us/download/details.aspx?id=22557.

DirectX runtime PowerBuilder applications can use DirectX 3D rendering to display 3D graphs
(Pie3D, Bar3D, Column3D, Line3D, and Area3D) with a more sophisticated
look. You can use data item or series transparency with the DirectX graph
styles to improve the presentation of data.

Third-party components and deployment

542 PowerBuilder

The DirectX 3D rendering depends on the DirectX runtime. The first time you
select the Render3D check box on the General tab of the Properties view for a
3D graph, PowerBuilder launches the DirectX installer. If you opt out of the
installation, the Render3D property is ignored. End users of PowerBuilder
applications must also have the DirectX runtime installed on their computers
to view the DirectX graph styles. You can download a redistributable package
containing the DirectX runtime from the Microsoft Web site at
http://www.microsoft.com/en-us/download/details.aspx?id=9894

For computers with older graphics drivers, you can check whether DirectX is
supported by running dxdiag.exe. This file is typically installed in the
Windows\System32 directory. The Display tab of the DirectX Diagnostic Tool
that opens when you run dxdiag.exe indicates whether Direct3D is enabled.

Oracle files
The Java Runtime Environment (JRE) is required for EJB clients, JDBC
connections, and saving as PDF using XSL-FO. For a copy of third-party terms
and conditions for the JRE, see the free download terms document.The JRE
can be downloaded from the Oracle Technology Network at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Software used for SOAP clients for Web services
PowerBuilder includes the EasySoap++ library in executable form in
EasySoap170.dll, which is dynamically linked to PBSoapClient170.pbx. The
EasySoap++ library and its use are covered by the GNU Lesser General Public
License (LGPL). For a copy of this license, see the free download terms
document.

You may distribute the EasySoap++ library to third parties subject to the terms
and conditions of the LGPL. Please read the LGPL prior to any such
distribution.

The complete machine-readable source code for the EasySoap++ library is
provided in the EasySoap.zip file in the Support\WSExtn folder on the DVD. In
addition, the object code and Microsoft Visual C++ project file for the
PBSoapClient170.pbx are provided in the soapclient.zip file in the same
directory.

CHAPTER 33 Deploying Applications and Components

Application Techniques 543

These files are provided under the terms of the LGPL so that you can modify
the EasySoap++ library and then relink to produce a modified
EasySoap170.dll. You can also relink PBSoapClient170.pbx with the modified
EasySoap++ import library. According to the terms of the LPGL, it is
understood that you will not necessarily be able to recompile
PBSoapClient170.pbx to use the definitions you have modified in the
EasySoap++ library.

Follow the instructions in the Readme.txt file in the soapclient.zip file to build
PBSoapClient170.pbx.

PowerBuilder runtime files

Database connectivity

Files required for database connectivity are listed separately in Database
connections on page 545.

Core runtime files Table 33-3 lists the core PowerBuilder runtime files.

Table 33-3: Core PowerBuilder runtime files

Microsoft files When you deploy the core PowerBuilder runtime files, you must also deploy
the msvcr71.dll, and msvcp71.dll, msvcr100.dll, and msvcp100.dll Microsoft
Visual C++ runtime libraries and the Microsoft .NET Active Template Library
(ATL) module, atl71.dll, if they are not present on the user’s computer. The
PowerBuilder runtime files have a runtime dependency on these files. See
Third-party components and deployment on page 540 for more information.

Name Required for

pbvm170.dll All.

pbshr170.dll All. pbvm170.dll has dependencies on this file.

libjcc.dll All. pbvm170.dll has dependencies on this file.

libjutils.dll All. libjcc.dll has dependencies on this file.

libjtml.dll All. libjcc.dll has dependencies on this file.

nlwnsck.dll All. libjcc.dll has dependencies on this file.

pbdwe170.dll DataWindows and DataStores.

pbpdf170.dll Saving DataWindows as PDF files using the PDFLib
method.

PowerBuilder runtime files

544 PowerBuilder

Additional runtime
files

Table 33-4 lists additional runtime files that your application might not require.
For example, pbvm170.dll is required for all deployed applications, but
pbrtc170.dll and its associated runtime files are required only if your
application uses Rich Text controls or RichText DataWindow objects.

For more information about deploying applications that use the pbjvm170.dll
for Java support, see Java support on page 554.

Table 33-4: Additional PowerBuilder runtime files

Installed path \Program Files\Appeon\Shared\PowerBuilder or, for most of
the required rich text files, \Program
Files\Appeon\Shared\PowerBuilder\RTC.

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See App Path registry key on page 535.

Name Required for

pbacc170.dll Accessibility support (Section
508)

pbdpl170.dll Data pipeline support

PBDWExcel12Interop170.dll,
Sybase.PowerBuilder.DataWindow.Excel12.dll

Excel 2007 support

PBXerces170.dll, xerces-c_2_6.dll,
xerces-depdom_2_6.dll

XML Web DataWindow support
and XML support for
DataWindows and DataStores

Sybase.PowerBuilder.WebService.Runtime.dll,
Sybase.PowerBuilder.WebService.RuntimeRemot
eLoader.dll

Web service DataWindows

pbjvm170.dll Java support

pbrth170.dll ADO.NET

pbrtc170.dll, tp15.dll, tp15_bmp.flt, tp15_css.dll,
tp15_doc.dll, tp15_gif.flt, tp15_htm.dll,
tp15_ic.dll, tp15_ic.ini, tp15_jpg.flt, tp15_obj.dll,
tp15_pdf.dll, tp15_png.flt, tp15_rtf.dll,
tp15_tif.flt, tp15_tls.dll, tp15_wmf.flt,
tp15_wnd.dll, tp4ole15.ocx

Rich Text support

pblab170.ini Label DataWindow
presentation-style predefined
formats

pbtra170.dll, pbtrs170.dll Database connection tracing

CHAPTER 33 Deploying Applications and Components

Application Techniques 545

Localized runtime files Localized runtime files are provided for French, German, Italian, Spanish,
Dutch, Danish, Norwegian, and Swedish. These files are usually available
shortly after the general release of a new version of PowerBuilder. The
localized runtime files let you deploy PowerBuilder applications with standard
runtime dialog boxes in the local language. They handle language-specific data
when the application runs.

For more information, see Localizing the product on page 471.

Database connections
If you are deploying an executable or component that accesses a database, your
users need access to the DBMS and to the database your application uses.

Where to install database connectivity files

You do not need to deploy database connectivity files with a client application
that relies on a middle-tier component on another computer to perform
database transactions. Database connectivity files must be deployed on the
computer that interacts with the database server.

You need to:

• If necessary, install the DBMS runtime (client) files in the application
directory or in a directory on the system path

If your application uses a standalone SQL Anywhere database, you can
install the SQL Anywhere Runtime Edition files on the user’s computer.
For more information, see SQL Anywhere files on page 548. Otherwise
follow the instructions and licensing rules specified by the vendor.

• Make sure each user has access to the database the application uses

If your application uses a local database, install the database and any
associated files, such as a log file, on the user’s computer.

If your application uses a server database, make sure the user’s computer
is set up to access the database. This may be the task of a database
administrator.

• Install any database interfaces your application uses on the user’s
computer

Database connections

546 PowerBuilder

• If your application uses the ODBC interface, configure the ODBC
database drivers and data sources, as described in Configuring ODBC data
sources and drivers on page 550

For more information about database drivers and interfaces, see:

• "Native database drivers" next

• ODBC database drivers and supporting files on page 547

• OLE DB database providers on page 551

• ADO.NET database interface on page 552

• JDBC database interface on page 553

Native database drivers
Table 33-5 lists the native database drivers supplied with PowerBuilder. If an
application or component uses the database specified, the file is required on the
computer. The first two characters of the native database file name are PB, the
next three characters identify the database, and the last two identify the version
of PowerBuilder.

Table 33-5: PowerBuilder native database drivers

Installed path \Program Files\Appeon\Shared\PowerBuilder

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See App Path registry key on page 535.

Name Required for

pbin9170.dll INFORMIX I-Net 9

pbo90170.dll Oracle9i

pbo10170.dll Oracle 10g

pbora170.dll Oracle 11g

pbsnc170.dll SQL Native Client for Microsoft SQL Server

pbdir170.dll DirectConnect

pbase170.dll Adaptive Server Enterprise CT-LIB for Adaptive Server 15
only

pbsyc170.dll Adaptive Server Enterprise CT-LIB

CHAPTER 33 Deploying Applications and Components

Application Techniques 547

ODBC database drivers and supporting files
This section lists files that are required for all ODBC database connections
from PowerBuilder or InfoMaker applications, as well as files required for a
specific database interface or DBMS.

PowerBuilder ODBC
interface files

The following PowerBuilder ODBC interface files are required if your
application uses ODBC:

Table 33-6: PowerBuilder ODBC interface files

Installed path \Program Files\ \Shared\PowerBuilder

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See App Path registry key on page 535.

Notes The PBODB170.INI file must be in a directory defined by the
HKEY_CURRENT_USER\Software\sybase\PowerBuilder\17.0\InitPath
registry setting or, in the absence of that key, in the same directory as the DLL
file. In most cases, the target deployment machine will not have the registry
setting and, therefore, the INI file should be in the same directory as the DLL.

Microsoft ODBC files Table 33-7 lists the Microsoft ODBC files that are required if your application
uses ODBC.

Table 33-7: Microsoft ODBC files

Installed path Windows system directory.

Deployment path Windows system directory.

Name Description

pbodb170.dll PowerBuilder ODBC interface

pbodb170.ini PowerBuilder ODBC initialization file

Name Description

DS16GT.dll
DS32GT.dll
ODBC32.dll
ODBC32GT.dll
ODBCAD32.exe
ODBCCP32.cpl
ODBCCP32.dll
ODBCCR32.dll
ODBCINST.cnt
ODBCINST.hlp
ODBCINT.dll
ODBCTRAC.dll

Microsoft ODBC driver manager, DLLs, and Help files

Database connections

548 PowerBuilder

Registry entries None.

Notes The Microsoft ODBC Driver Manager (ODBC32.dll) and supporting
files are usually already installed in the user’s Windows system directory.

SQL Anywhere files If your PowerBuilder application uses a SQL Anywhere database, you need to
deploy the SQL Anywhere DBMS as well as SQL Anywhere’s ODBC
database drivers.

Restrictions

PowerBuilder includes SQL Anywhere for use during the development
process. However, this product cannot be deployed royalty-free to your users.

If your application requires the data definition language (DDL), a transaction
log, stored procedures, or triggers, see your sales representative.

If your application uses a standalone database, you can deploy the SQL
Anywhere Desktop Runtime System to users’ computers without incurring
additional license fees. The runtime system allows the user to retrieve and
modify data in the database, but does not allow modifications to the database
schema. It does not support transaction logs, stored procedures, or triggers.

A full installation for the SQL Anywhere driver, runtime engine, and
supporting files is available in the PowerBuilder setup program.
Table 33-8 lists some of the files that are installed. For more information see
the RuntimeEdition.html file in the installed SQL Anywhere directory. It
contains a list of all the SQL Anywhere files that can be freely deployed with
PowerBuilder applications to end users' computers.

CHAPTER 33 Deploying Applications and Components

Application Techniques 549

Table 33-8: SQL Anywhere files

Installed path \Program Files\SAP\SQL Anywhere 12\bin32 or \bin64

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See App Path registry key on page 535 and "Configuring
ODBC data sources and drivers" next.

Privilege requirements on Windows 7 When running under User Account
Control, the SQL Anywhere restricted runtime engine (rteng11.exe) and other
SQL Anywhere executables require elevated privileges. For Windows 7 and
later versions of Windows, you can use the SQL Anywhere elevated operations
agent (dbelevate11.exe) to elevate the privileges of users running these
executables and allow non-elevated client processes to autostart elevated
servers or database engines. The following DLLs also require elevated
privileges when they are registered and unregistered: dbcon11.dll, dbctrs11.dll,
dbodbc11.dll, dboledb11.dll, and dboledba11.dll.

Notes Supporting files should be installed in the same directory as
dbodbc11.dll. If you are not using the English string library, make sure you
deploy the appropriate version of the language-specific string library.

Name Description

dbodbc11.dll SQL Anywhere ODBC driver

dbbackup.exe SQL Anywhere backup utility

dbcon11.dll Connection dialog box, required if you do not provide
your own dialog box and your end users are to create
their own data sources, if they need to enter user IDs and
passwords when connecting to the database, or if they
need to display the Connection dialog box for any other
purpose

dbisqlc.exe Interactive SQL utility

dblgen11.dll Language-specific string library (EN indicates the
English version)

dblib11.dll Interface library

dbtool11.dll SQL Anywhere database tools

dbunlspt.exe SQL Anywhere unload utility

dbvalid.exe SQL Anywhere validation utility

rteng11.exe Restricted runtime engine

rteng11.lic License file for restricted runtime engine

dbctrs11.dll Performance utility

dbserv11.dll Server utility

Database connections

550 PowerBuilder

Configuring ODBC
data sources and
drivers

ODBC.INI To allow the user to connect to a particular data source, your
installation program must provide a definition for that data source in the
ODBC.INI key in the registry on the computer that accesses the data source, in
HKEY_CURRENT_USER for a user DSN or in HKEY_LOCAL_MACHINE for
a system DSN. The data source definition specifies the name and location of
the database driver as well as the command required to start the database
engine. The data source in the ODBC Data Sources key must also be listed in
ODBC.INI.

The following shows typical registry entries for a data source called MyApp
DB that uses SQL Anywhere. Registry keys are enclosed in square brackets
and are followed by string values for that key in the format "Name"="Value":

[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI\MyApp DB]
"Driver"="C:\Program Files\SAP\SQL Anywhere 12\

bin32\dbodbc11.dll"
"Start"="c:\program files\SAP\SQL Anywhere 12\bin32\

rteng11.exe -c9m"
"UID"="dba"
"PWD"="sql"
"Description"="Database for my application"
"DatabaseFile"="C:\Program Files\myapps\myapp.db"
"AutoStop"="Yes"

[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI\
ODBC Data Sources]

"MyApp DB"="SQL Anywhere 12.0"

ODBCINST.INI Your installation program needs to make two types of entry in
the ODBCINST.INI key in HKEY_LOCAL_MACHINE\SOFTWARE\ODBC
for each driver that your deployed application uses:

• Add a string value with the name of the driver and the data value
“Installed” to the ODBC DRIVERS key in ODBCINST.INI

• Add a new key for each driver to the ODBCINST.INI key with string
values for Driver and Setup

Some drivers require additional string values in ODBCINST.INI.

If the ODBC database driver files are not located in a directory on the system
path, you also need to add their location to the App Paths key for the executable
file.

If you are using ODBC drivers obtained from a vendor, you can use the driver’s
setup program to install the driver and create registry entries.

CHAPTER 33 Deploying Applications and Components

Application Techniques 551

The following shows a typical registry entry for SQL Anywhere. A registry key
is enclosed in square brackets and is followed by string values for the key in
the format "Name"="Value":

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\
SQL Anywhere 12.0]

"Driver"="c:\program files\SAP\SQL Anywhere 12\
bin32\dbodbc11.dll"

"Setup"="c:\program files\SAP\SQL Anywhere 12\
bin32\dbodbc11.dll"

For more information about the contents of the registry entries for ODBC
drivers and data sources, see Connecting to Your Database.

OLE DB database providers
If your application uses OLE DB to access data, you must install Microsoft’s
Data Access Components software on each user’s computer if it is not installed
already.

The PowerBuilder OLE DB interface requires the functionality of the
Microsoft Data Access Components (MDAC) version 2.8 or later software.
Version 2.8 is distributed with Windows XP Service Pack 2 and Windows
Server 2003.

To check the version of MDAC on a computer, users can download and run the
MDAC Component Checker utility from the MDAC Downloads page at
http://msdn2.microsoft.com/en-us/data/aa937730.aspx.

On the Windows 7/8.1/10 operating systems, the Windows Data Access
Components (DAC) version 6.0 replaces MDAC, and implements the
functionality requirements of the PowerBuilder OLE DB interface.

OLE DB data providers

Several Microsoft OLE DB data providers are automatically installed with
MDAC and DAC, including the providers for SQL Server (SQLOLEDB) and
ODBC (MSDASQL).

PowerBuilder OLE DB
interface files

The PowerBuilder OLE DB interface file is required if your application uses
OLE DB. The ODBC initialization file is required if you have used it to
customize OLE DB settings:

Database connections

552 PowerBuilder

Table 33-9: PowerBuilder OLE DB interface files

Installed path \Program Files\Appeon\Shared\PowerBuilder

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See App Path registry key on page 535.

Notes The INI and DLL files must be in the same directory. If you have
modified the pbodb170 initialization file, make sure you deploy the modified
version.

ADO.NET database interface
The PowerBuilder ADO.NET interface supports the OLE DB, Microsoft SQL
Server .NET, Oracle ODP.NET, and SAP ASE data providers. If you use
ADO.NET, you must deploy pbado170.dll, pbrth170.dll,
sybase.PowerBuilder.Db.dll, sybase.PowerBuilder.DbExt.dll, and, for OLE
DB, the OLE DB data provider.

The files pbado170.dll and pbrth170.dll are standard DLL files, and you can
deploy them in the same way as other PowerBuilder DLLs. However,
sybase.PowerBuilder.Db.dll and sybase.PowerBuilder.DbExt.dll are .NET
assemblies. You can use one of three techniques to deploy the files:

• Deploy sybase.PowerBuilder.Db.dll and sybase.PowerBuilder.DbExt.dll
in the same directory as the executable file that calls the ADO.NET driver.

• Use a .NET application configuration file to assign the path of
sybase.PowerBuilder.Db.dll and sybase.PowerBuilder.DbExt.dll. The file
contains configuration settings that the common language runtime (CLR)
reads as well as settings that the application reads. For an executable file,
the configuration file has the same name as the executable file with the
extension .config. The pb170.exe.config file in your PowerBuilder 2017
directory is an example.

For more information about configuration files, see the Microsoft Visual
Studio SDK documentation.

Name Description

pbole170.dll PowerBuilder OLE DB interface

pbodb170.ini PowerBuilder ODBC initialization file

CHAPTER 33 Deploying Applications and Components

Application Techniques 553

• Add the sybase.PowerBuilder.Db.dll and sybase.PowerBuilder.DbExt.dll
assemblies to the Global Assembly Cache (GAC). For more information
about the GAC, see the section on the Global Assembly Cache in the
Microsoft Visual Studio SDK documentation. If you use the Runtime
Packager, the assemblies are installed in the GAC.

JDBC database interface
The PowerBuilder JDB interface supports the Java Runtime Environment
(JRE) versions 1.2 and later.

If your application or component uses JDBC connections, you must deploy the
JDB driver as well as the appropriate Java package for the Java VM you are
using. The Java virtual machine and a vendor-supplied JDBC-compliant driver,
such as SAP Sybase jConnect® for JDBC, must also be installed and
configured on the computer that accesses the data source.

For more information about the Java VM, see "Java support" next.

Table 33-10: PowerBuilder JDB files

Installed path \Program Files\Appeon\Shared\PowerBuilder

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries Make sure the CLASSPATH environment variable includes
the PowerBuilder pbjdbc12170.jar file. For example:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control
\Session Manager\Environment]

"CLASSPATH"="C:\Program Files\Appeon\shared\
PowerBuilder\pbjdbc12170.jar;...

Name Description

pbjdb1 .dll PowerBuilder JDBC Driver (JDB) for JRE 1.2 or later

pbjdbc12170.jar Java package for PowerBuilder JDB driver and JRE 1.2 or
later

Java support

554 PowerBuilder

Java support
You must deploy the PowerBuilder pbjvm1 .dll file with any applications or
components that use the Java Runtime Environment (JRE), and there must be
a JRE installed on the target computer. The JRE is required for EJB clients,
JDBC connections, and saving as PDF using XSL-FO. You can copy the JRE
installed with PowerBuilder to the same directory as the PowerBuilder runtime
files on the target computer, or use an existing JRE whose location is defined
in the user’s system PATH environment variable.

Locating the Java VM When a PowerBuilder application requires a Java VM, the PowerBuilder
runtime searches for the jvm.dll file in a subdirectory of the directory where
pbjvm170.dll is installed on the user’s computer. The jvm.dll file is installed in
the JRE\bin\client directory of JDK 1.4 and later installations, and in the
JRE\bin\classic directory in JDK 1.2 and 1.3 installations.

PowerBuilder adds the location of jvm.dll to the beginning of the path currently
being used by the PowerBuilder application. This path is a copy of the path
defined in the user’s PATH system environment variable. PowerBuilder does
not modify the environment variable maintained in the Windows registry.

To locate the jvm.dll, PowerBuilder first determines where pbjvm170.dll is
installed. Suppose pbjvm170.dll is installed in
C:\Appeon\Shared\PowerBuilder. Then PowerBuilder uses this search
procedure to add the location of the jvm.dll to the path currently in use:

1 Search for the directory structure JRE\bin\client (for JDK 1.4 or later) in
C:\Appeon\Shared\PowerBuilder\ and, if found, add it to the beginning of
the path.

2 If not found, search for a JDK directory structure that contains
JRE\bin\client in C:\Appeon\Shared\PowerBuilder\ and, if found, add it to
the beginning of the path.

3 If not found, search for the directory structure JRE\bin\classic (for JDK
1.2 or 1.3) in C:\Appeon\Shared\PowerBuilder\ and, if found, add it to the
beginning of the path.

If none of these directory structures is found, PowerBuilder uses the first
jvm.dll whose location is defined in the user’s PATH environment variable. If
no jvm.dll is found, the Java VM does not start.

The runtime Java VM
classpath

When PowerBuilder starts a Java VM, the Java VM uses internal path and class
path information to ensure that required Java classes are always available. At
runtime, the Java VM uses a class path constructed by concatenating these
paths:

CHAPTER 33 Deploying Applications and Components

Application Techniques 555

• The system JAVA_HOME environment variable.

• A class path added programmatically when the Java VM is started. For
example, EJB client applications can pass a class path to the
CreateJavaVM method.

• The PowerBuilder runtime static registry class path. This is a path built
into the pbjvm170.dll file that corresponds to the path in the Windows
Registry that is used when you are developing an application in
PowerBuilder. It contains classes required at runtime for features that use
a Java VM.

• The system CLASSPATH environment variable.

• The current directory.

Overriding the runtime
static registry
classpath

If necessary, you can override the JVM settings and properties defined for
runtime use in the static registry. PowerBuilder uses the following algorithm to
locate configuration information:

1 When the first request is made for a JVM, PowerBuilder looks for registry
entries for the configuration information and properties to be passed to the
function that creates the JVM.

2 If PowerBuilder finds a registry entry for the configuration information, it
uses it instead of the static registry. If it does not find a registry entry, it
uses the static registry.

3 If PowerBuilder finds a registry entry for custom properties to be passed
to the JVM, it uses those instead of the static registry. If it does not find a
registry entry, it uses the static registry entries.

To override the default settings, create a new key named PBRTConfig in the
HKEY_LOCAL_MACHINE\Software\Sybase\PowerBuilder\2017\Java key,
then add either or both of the following subkeys: PBJVMconfig and
PBJVMprops.

To duplicate the static registry entries, add the same string values to these
subkeys that you see in the PBIDEConfig key, that is:

Subkey String value name String value data

PBJVMconfig Count 1

0 -verbose:jni,class

PBJVMprops java.compiler NONE

PowerBuilder extensions

556 PowerBuilder

You can override either the configuration or properties entries or both. If you
make incorrect entries, PowerBuilder attempts to recover by defaulting to the
static registry. However, you should be cautious about making any changes
since you can cause incorrect behavior in the JVM if you do not configure it
correctly.

PowerBuilder extensions
Several PowerBuilder extension files are provided with PowerBuilder 2017. If
your application uses one of these extensions, you must deploy the files listed
in Table 33-11.

Table 33-11: Files required for PowerBuilder built-in extensions

In addition to the files listed in the table for EJB client, a Java Runtime
Environment (JRE) compatible with the JDK on the EJB server must be
available on the client and listed in the CLASSPATH.

For more information, see Java support on page 554.

PDF and XSL-FO export
PowerBuilder can save the DataWindow’s data and presentation as a Portable
Document Format (PDF) file using three techniques. By default, PowerBuilder
saves as PDF using a distiller. PowerBuilder can also save to PDF using
PDFlib, or save to PDF or XSL Formatting Objects (XSL-FO) format using the
Apache XML Formatting Objects processor.

Extension Files

PowerBuilder
Document Object
Model

pbdom170.pbx, PBXerces170.dll, xerces-c_2_6.dll,
xerces-depdom_2_6.dll

EJB client pbejbclient170.pbx, pbejbclient170.jar

SOAP client for
Web services

ExPat170.dll, libeay32.dll, ssleay32.dll,
xerces-c_2_6.dll, xerces-depdom_2_6.dll,
EasySoap170.dll, pbnetwsruntime170.dll,
pbsoapclient1 .pbx, pbwsclient170.pbx,
Sybase.PowerBuilder.WebService.Runtime.dll,
Sybase.PowerBuilder.WebService.RuntimeRemoteLoader.dll

CHAPTER 33 Deploying Applications and Components

Application Techniques 557

Using the Ghostscript distiller
In order for users to use the SaveAs method to save data as PDF with the
distiller, they must first download and install Ghostscript on their computers as
described in the procedure that follows.

The use of GPL Ghostscript is subject to the terms and conditions of the GNU
General Public License (GPL). Users should be asked to read the GPL before
installing GPL Ghostscript on their computers. A copy of the GPL is available
on the GNU Project Web server at http://www.gnu.org/licenses/gpl.html.

The use of AFPL Ghostscript is subject to the terms and conditions of the
Aladdin Free Public License (AFPL). Commercial distribution of AFPL
Ghostscript generally requires a written commercial license. For more
information, see the Ghostscript Web site at http://www.ghostscript.com.

 To install Ghostscript:

1 Into a temporary directory on your computer, download the self-extracting
executable file for the version of Ghostscript you want from one of the
sites listed on the Ghostscript Web site at http://pages.cs.wisc.edu/~ghost/.

See the Release Bulletin for the version of Ghostscript that was used for
testing.

2 Run the executable file to install Ghostscript on your system.

The default installation directory is C:\Program Files\gs. You can select a
different directory and/or choose to install shortcuts to the Ghostscript
console and readme file.

After installing Ghostscript, you should read the readme.htm file in the doc
subdirectory in the Ghostscript installation directory to find out more about
using Ghostscript and distributing it with your application.

Save Rows As fails

To save as PDF in the DataWindow painter, select File>Save Rows As and
select PDF as the Save As type. If you do not install Ghostscript and use the
default export properties, PowerBuilder displays a pop-up window notifying
you that Save Rows As failed. If you install Ghostscript and then change the
name of the directory where Ghostscript is installed, Save Rows As PDF fails
silently.

Location of files When you save a DataWindow object as PDF using the distill method,
PowerBuilder searches in the following locations for an installation of GPL or
AFPL Ghostscript:

PDF and XSL-FO export

558 PowerBuilder

• The Windows registry

• The relative path of the pbdwe170.dll file (typically
Appeon\Shared\PowerBuilder)

• The system PATH environment variable

If GPL or AFPL Ghostscript is installed using the Ghostscript executable file,
the path is added to the Windows registry.

If the Ghostscript files are in the relative path of the pbdwe170.dll file, they
must be installed in this directory structure:

dirname\pbdwe1 .dll
dirname\gs\gsN.NN
dirname\gs\fonts

where dirname is the directory that contains the runtime DLLs and N.NN
represents the release version number for Ghostscript.

You might not need to distribute all the fonts provided in the distribution. For
information about fonts, see Fonts and font facilities supplied with Ghostscript at
http://www.ghostscript.com/doc/current/Fonts.htm.

PostScript printer
drivers

If your users have installed a PostScript printer on their computers, the
PostScript driver files required to create PDF files, PSCRIPT5.DLL,
PS5UI.DLL, and pscript.ntf, are already installed, typically in
C:\Windows\System32\DriverStore\FileRepository\ntprint.inf_1a216484\Amd
64 on a 64-bit Windows 7 system. Your users must use the version of these files
that is appropriate to the operating system where the PDF file is created. They
should copy the files to the dirname\drivers directory.

You must also deploy the related files that are installed in
Appeon\Shared\PowerBuilder\drivers. These files can be copied to or installed
on users’ computers. They must be located in this directory structure:

dirname\pbdwe170.dll
dirname\drivers

PostScript printer
profile

Each user’s computer must have a PostScript printer profile called Appeon
DataWindow PS. This profile is added to your development computer
automatically when you save a DataWindow’s rows to a PDF file in the
DataWindow painter. You can use this method to add an Appeon DataWindow
PS printer on any computer where PowerBuilder is installed.

Users can also add the profile manually using the Windows Add Printer wizard
in one of the following ways:

CHAPTER 33 Deploying Applications and Components

Application Techniques 559

• By clicking the Have Disk button on the Install Printer Software page of
the wizard, browsing to the Adist5.inf file (installed with PowerBuilder in
the Shared\Appeon\drivers directory) or to another PostScript driver file,
and on the Name Your Printer page, changing the printer name to “Appeon
DataWindow PS”.

• By selecting a printer with PS in its name (such as “Apple Color LW
12/660 PS”) from the list of printers on the Install Printer Software page
of the wizard, and changing the printer name to “Appeon DataWindow
PS” on the Name Your Printer page.

See the chapter on the Print Manager in the Deploying Components as .NET
Assemblies or Web Services book if your applications print to PDF or XSL files
from an IIS server.

Using the PDFlib generator
No additional files need to be deployed in order to use the PDFlib generator to
save DataWindow data as a PDF file.

PDFlib is automatically packaged into the PowerBuilder application
executable without requiring the developer to make any configuration or
selection during the building process.

By using the PDFlib generator, the DataWindow is first saved to EMF.
Depending on the size of the DataWindow and also the specified page size,
there may be multiple EMFs. For example, if a DataWindow has 8 columns
that cannot fit in a page, maybe the first 3 columns are in page #1, and the other
5 columns in page #2; if the DataWindow has more data, and the data will go
to page #3 (and page #4), page #5 (and page #6), and so on. The EMF files will
then be converted and combined into one PDF.

Packaging custom
fonts

If your DataWindow objects uses many custom fonts, and these custom fonts
are not supported well by the operating system and Adobe Reader, you can
consider packaging these custom fonts with your application. Note that using
custom fonts will increase the generated PDF file size.

By default, these custom fonts are not packaged with the application. To
package custom fonts for PDF generation with the application:

• In the PowerBuilder IDE, add the following to the [DataWindow] section
of your pb.ini that PowerBuilder uses for initialization.

[DataWindow]

NativePDF_IncludeCustomFont=1

PDF and XSL-FO export

560 PowerBuilder

The default location of pb.ini for PowerBuilder 2017 on Windows
7/8.1/10 is C:\Users\<username>\AppData\Local\Appeon\PowerBuilder
17.0.

• For a deployed application, create a text file named pb.ini with the text
above and deploy it with your application executable.

Setting PDFLib as the
default PDF method

In order to help PowerBuilder developers conveniently switch to use the
PDFLib generation method (NativePDF!), you can set the method in this way:

• In the PowerBuilder IDE, add the following to the [DataWindow] section
of your pb.ini that PowerBuilder uses for initialization.

[DataWindow]

NativePDF_Valid=1

The default value is 0, which means the method selected in the
DataWindow Properties window is used. When set to 0, the NativePDF!
method is used for all DataWindows, this reduces the workload of
manually changing the scripts or setting the PDF method in the Properties
window for the DataWindows one by one.

• For a deployed application, create a text file named pb.ini with the text
above and deploy it with your application executable.

Using the Apache FO processor
If your application uses the Apache processor to save as PDF or XSL-FO, you
must deploy the fop-0.20.4 directory and the Java Runtime Environment (JRE)
with your application.

They must be deployed in the same directory as the PowerBuilder runtime
files. For example, if you deploy your application and pbvm170.dll and the
other PowerBuilder runtime files in a directory called MyApplication, the
Apache processor must be deployed in MyApplication/fop-0.20.4, and the JRE
in MyApplication/jre. However, you do not need to place a copy of the JRE in
this location if the full JDK is installed on the target computer and is in the
classpath.

The following JAR files must be in the user’s classpath:

fop-0.20.4\build\fop.jar
fop-0.20.4\lib\batik.jar
fop-0.20.4\lib\xalan-2.3.1.jar
fop-0.20.4\lib\xercesImpl-2.1.0.jar
fop-0.20.4\lib\xml-apis.jar

CHAPTER 33 Deploying Applications and Components

Application Techniques 561

fop-0.20.4\lib\avalon-framework-cvs-20020315.jar

For more information about the JRE, see Java support on page 554.

On Windows DBCS platforms, you also need to deploy a file that supports
DBCS characters to the Windows font directory on the target computer, for
example, C:\WINDOWS\fonts. For more information about configuring fonts,
see the Apache Web site at http://xmlgraphics.apache.org/fop/1.1/fonts.html.

PDF and XSL-FO export

562 PowerBuilder

Application Techniques 563

C H A P T E R 3 4 Deploying 64-Bit Windows
Applications

About this chapter This chapter provides information for deploying 64-bit native
applications.

Contents

Deploying 64-Bit Windows Applications
Create 64-bit native applications in PowerBuilder.

Usage There is no special target for 64-bit native applications. To build a 64-bit
application, select the platform in the Project painter General tab. If you
need to deliver both 32-bit and 64-bit versions of your application, you
should use separate projects and separate folders for the deployed output.

There is no IDE for 64-bit development. Design time uses the same 32-bit
interface and 64-bit features display at runtime when you deploy the
application. When you click the running man button, the project runs as a
32-bit application.

32-bit remains the default for new and migrated applications.

During the deploy process, PowerBuilder checks and reports unsupported
features used in the application.

New Property for
Environment Object

The new ProcessBitness property identifies whether the application is a
32-bit or 64-bit process.

• Datatype – integer

• Values – 32 stands for 32-bit, and 64 stands for 64-bit

See Objects and Controls for more about the Environment object. See the
PowerScript Reference to read about the GetEnvironment function.

Topic Page

Deploying 64-Bit Windows Applications 563

Deploying 64-Bit Windows Applications

564 PowerBuilder

New Datatype The longptr datatype is 4 bytes in the 32-bit platform and 8 bytes in the 64-bit
platform. In the 32-bit platform, longptr is the same as long; you can continue
using long wherever longptr is required in 32-bit applications. In 64-bit
applications, however, using long to hold longptr variables will lead to data
truncation from 8 bytes to 4 bytes, or memory corruption if you pass a long ref
variable when a longptr ref is required. If you want to move to 64-bit, use
longptr wherever required. It does no harm to 32-bit.

Since PowerBuilder does not have a datatype corresponding to the C++ pointer
type, and there are no pointer operations in PowerBuilder, longptr is not a full-
fledged PowerBuilder datatype. You can use it to hold/pass window handles,
database handles, and other objects that are essentially memory addresses.
Doing complex operations on longptr type might not work. If you want to
represent/compute 8-byte long integers, use longlong.

System Requirements The design time environment requires:

• Windows SDK for Windows 7 or later

• .NET Framework 4.0 or later

• 64-bit Windows OS to test (development requires only 32-bit)

The runtime environment requires:

• 64-bit Windows OS

• PowerBuilder 12.6 64-bit system files

• 64-bit third-party libraries, such as database drivers and external DLLs

• Greater than 4 GB physical memory to avoid performance issues

Limitations There are limitations to this feature:

• To consume Web services, you must use the .NET engine. EasySOAP is
not supported.

• You can use OLE and ActiveX components in your applications, but you
must use the 32-bit versions in the PowerBuilder Classic IDE. At runtime
you must have the correct 64-bit ActveX components installed.

• The RichText DataWindow header does not display when the
HeaderFooter property is true until you call ShowHeaderFooter(true). If
you do not:

• selecttext (long l1, long c1, long l2, long c2, band b Header!) returns
0 and selected text is '' (string with 0 length)

CHAPTER 34 Deploying 64-Bit Windows Applications

Application Techniques 565

• selecttext (long l1, long c1, long l2, long c2, band b Footer!) returns 0
and selected text is '' (string with 0 length)

• Regardless, autofocus does not work.

• Scrolling in a RichText DataWindow loses focus.

• CopyRTF(false,header!) works only when you call
ShowHeaderFooter(true) when Header/Footer is true

• InsertDocument("*.htm",true) returns -1

• InsertDocument("*.doc",true) returns -1

• Position returns the header when the footer is in focus

• SaveDocument (string f,
{FileTypeDoc!|FileTypeHTML!|FileTypePDF!}) retuns -1 and FileExists
event is triggered

Unsupported Features These features are not supported:

• COM+ runtime

• Machine code generation

• TabletPC

• PBNI SDK for developing 64-bit PowerBuilder extensions

• DataWindow RichText style column

• Status bar

• Grid table

• ClearAll() function

• Clear(true) function

• Change Pointer does not work on RichTextEdit controls

• Mouse wheel does not scroll a RichTextEdit page

• Application server support

Also, if you select Properties in the RichTextEdit Object Dialog popup menu,
the application crashes if you select the Print Spec tabpage and click OK.

Behavior Differences Some things are not problematic, simply different:

• The RichText preview mode behaves differently; in 64-bit, it is more like
a print preview

Deploying 64-Bit Windows Applications

566 PowerBuilder

PowerBuilder Native
Interface (PBNI)

You can only use 32-bit PowerBuilder extensions in the PowerBuilder Classic
IDE. For runtime, package and distribute 64-bit extension libraries with your
64-bit applications. The file names of your 64-bit extension should match the
32-bit file names, since the application references it by file name.

OrcaScript To build 64-bit native applications with OrcaScript, use the new X64 option to
build executable commands. For example:

build executable <exeName> <iconName> <pbrName> <pbdflags>
<machinecode> <newvstylecontrols> x64

Application Techniques 567

Symbols
.NET targets, files required for deployment 539
.NET Web service engine 447

A
accessibility

DataWindow support 482
DLL required for 544
features 475
testing 483

AccessibleRole enumerated values 481
AccessiWeb accessibility criteria 478
Activate function 326, 328
ActiveX control

about 317, 318
active 334
appearance 333
automation 346
behavior 333
combined event list 335
deploying 536
events 335
native properties, events, and functions 333
Object property 346
programming 334
properties 333, 334
property sheet 333

Adaptive Server Anywhere See SQL Anywhere
Adaptive Server Enterprise database interfaces,

Transaction object properties for 158
AddColumn function 140
AddData function 251
adding items

to a list box 128, 133
to a ListView 135, 136

adding pictures
to a list box 129, 130, 134

to a ListView 137
AddItem function 128, 133, 136
AddLargePicture function 138
AddPicture function 130, 134
AddSeries function 251
AddSmallPicture function 138
AddStatePicture function 137, 139
ADO.NET, deployment requirements 552
aggregate relationships 19
ALIAS FOR keywords

about 173
coding 174

alias, for XML methods 452
ambient properties 333
ancestor objects

about 31
calling functions and events 28
windows 83

AncestorReturnValue variable 28
Any datatype 352
Appeon 489
Application painter

Application property sheet, using Variable Types
property page 176

changing default global variable types in 175
application preferences, storing 493
applications

calling database stored procedures 171
coding to use stored procedure user objects 177
deploying 515
localizing 465, 471
MDI 63
multilingual 465
pooling database transactions 170
reading Transaction object values from external files

163
running 528
tracing execution of 529

applications, client
building 411

Index

Index

568 PowerBuilder

architecture, J2EE 408
arguments

OLE 348
passing method 30

array management for tab pages 98
arrays

of arrays 456
of window instances 81

associative relationships 19
AutoCommit Transaction object property

about 156
issuing COMMIT and ROLLBACK 161
listed by database interface 158

automation language 359

B
binary files, reading and writing 45
blobs

in OLE control 331
BMP files

delivering as resources 521
naming in resource files 523

Browser, OLE categories 363
business logic, about 407

C
Cancel function 292, 303
chars, passing to C functions 391
class user objects, OLE 368
classes, PBDOM overview 219
ClassName function 352
Clicked events, and graphs 258
client applications

building COM/COM+ 411
synchronization 186

client areas
in MDI applications 65
sizing 74

client computers, configuring for deployment 530
clipboard, using in an application 330
cognitive impairments 477
colons (scope operator) 27

COM clients
building 411
configuring 411
connecting to server 412
controlling transactions from 413

COM+
clients, building 411

COMMIT statement
about 160
and AutoCommit setting 161
automatically issued on disconnect 161, 166
error handling 169
for nondefault Transaction objects 167

committing for data pipelines 289, 304
compiling

long scripts 45
OLE syntax not checked 346
options for 516

CONNECT statement
about 160
coding 164
error handling 169
for nondefault Transaction objects 167
USING TransactionObject clause 164

connecting
and Transaction object 164
to EJB server 429
to OLE objects 337
using multiple databases 166

consolidated databases 184
constants 25
context information 397
Context information service 397
controls

drag and drop 143
DropDownListBox 133
DropDownPictureListBox 130, 133, 134
ListBox 128
ListView 135, 137, 139
on tab pages 91
PictureListBox 128, 129, 130
providing MicroHelp for 68
TreeView 103
type of 331

conventions xvii
cookies, adding for Web service clients 459

Index

Application Techniques 569

create method 430
CreateInstance method, for Web service proxy 456
CreateJavaVM method 426
creating nondefault Transaction objects 166
CUR files

delivering as resources 521
naming in resource files 523

custom class user objects
typical uses 12

custom frames
in MDI applications 65
sizing 74

custom headers, in .NET Web services 458

D
data

adding in graph in windows 251
associating with graphs in windows 250
piping between data sources 287
saving in graphs 257
synchronizing 183

Data Pipeline painter
defining data pipelines in 288, 289
using interactively 287

data pipelines
about 287
canceling execution of 303
characteristics you specify for 289
committing updates 304
DataWindow control for handling errors 293,

299, 305
displaying row statistics for 300
error rows, abandoning 307
examples of 287
final housekeeping when executing 308
handling row errors 304
initial housekeeping when executing 295
monitoring execution of 300
providing a window to control 293
repairing error rows 306
specifying one to execute 296
starting execution of 298
supporting user object for 292, 296, 301, 309
suppressing SQLSTATE error numbers 305

using in applications 288
using in the PowerBuilder development environment

287
data source

deploying 548
SQL Anywhere 548

database interfaces
configuring 530
installing 530
Transaction object properties for 158

database stored procedures, source for data pipelines
289

Database Transaction object property
about 156
listed by database interface 158

databases
calling stored procedures in applications 171
configuring 530
connecting to 164
connecting to multiple 166
destination for data pipelines 296, 309
disconnecting from 165
interfaces, Transaction object properties for 158
migrating tables between 287
pooling transactions 170
profiles, connection properties in 156
rich text 262
saving OLE data 331
source for data pipelines 296, 309

DataObject property for data pipelines 292, 296
DataStore objects

populating a TreeView 124
standard class user objects 20

datatypes
and window definitions 79
Any 352
window 82
XML 453

DataWindow controls
for handling data pipeline errors 293, 299, 305
rich text and functions 265
sharing data 279

DataWindow expressions, optimizing 33
DataWindow objects

about 261
dot notation 24

Index

570 PowerBuilder

including in resource files 524
using dynamic references 519, 522

DataWindow, OLE
automation 360, 361
functions for OLE object 361

dbmlsync
about 186
process 187

DBMS features supported when calling stored procedures
178

DBMS Transaction object property
about 156
listed by database interface 158

DBParm MsgTerse parameter 305
DBParm Transaction object property

about 156
listed by database interface 158

DBPass Transaction object property
about 156
listed by database interface 158

DDE
about 313
client events and functions 315
client functions 315
server events and functions 315

debugging
an executable 528
tracing execution 529

declarations
constants 25
external functions 386
Transaction objects 166

default global variable types 175
default Transaction object (SQLCA) 156, 162
delegation as object-oriented concept 18
DeleteLargePicture function 139
DeleteLargePictures function 139
DeletePicture function 130
DeleteSmallPictures function 139
DeleteStatePicture function 139
DeleteStatePictures function 139
deleting

list box pictures 130
ListView pictures 139

deploying
about 515

with Runtime Packager 536
deployment DLLs, PowerBuilder 530
descendent objects

about 31
defining 171
referencing entities in 84

design, user interface 471
destination table for data pipelines 289
Disability Discrimination Act 478
DISCONNECT statement

about 160
coding 165
error handling 169
for nondefault Transaction objects 167
USING TransactionObject clause 165
when pooling database transactions 170

disconnecting from databases 165
distributed applications

architecture 407
DLL files

about 518
compared to PBD files 518
creating 527
examples of 524
executing functions from 385
including resources in 521
PowerBuilder deployment 530
testing 528

dot notation
about 21
PowerScript, using to call stored procedures 177

drag and drop
automatic drag mode 143
functions 145
identifying drag controls 146
properties 144
specifying icons 145
using 143

drawing objects, printing 491
DropDownListBox controls

about 133
adding items 133
example 131

DropDownPictureListBox controls
about 133
adding items 133

Index

Application Techniques 571

adding pictures 134
deleting pictures 130
example 131

dynamic function calls 32
dynamic libraries

about 518
dynamic lookup 17
dynamic SQL, handling errors in 169
dynamically referenced

objects 519, 522
resources 521

E
EasySoap Web service engine 448
EJB clients

building 417
downcasting return values 433
dynamic casting 433
exception handling 435
Java collection classes 434

EJB components, invoking methods of 430
EJB proxy objects

about 418
generating 418

EJBConnection object 419
EJBTransaction object 419
electronic mail system, accessing 381
embedded SQL, handling errors in 169
embedding OLE objects 331
encapsulation 14, 26
environment variables

PB_HEAP_LOGFILE_OVERWRITE 45
PB_HEAP_LOGFILENAME 44
PB_POOL_THRESHOLD 44

Error event, scripting
for OLE servers 354

error handling
after SQL statements 169
OLE 354

error logging service
about 397

errors
exception handling 34, 435
when executing data pipelines 289, 304

writing to log 397
events

calling 393
calling ancestor 28
data pipeline 292
DDE 314
drag and drop 145
of graph controls 250
passing arguments 30
return value from ancestor 28
triggering 393

examples, code 3
exceptions, handling 34

in EJB clients 435
in Web service methods 460

executable files
about 517
creating 527
examples of 524
including resources in 521
standalone 524
testing 528

executable version of an application
choosing a packaging model for 524
compile options for 516
implementing a packaging model for 527
testing 528
tracing 529
what goes in it 517

execution
accessing graphs 253
library list 517
of data pipelines 298
starting an application 528
trace facility 529

extended attributes, about 289
extension file

importing objects from 449
pbsoapclient125.pbx 450
pbwsclient125.pbx 449

extensions
using in PowerBuilder 235

external files, reading Transaction object values from
163

external functions
declaring 386

Index

572 PowerBuilder

using 385
using to call database stored procedures 173

ExternalException event 354

F
file pointer 46
FileEncoding function 46
FileLength64 function 46
FileOpen function 46
FileReadEx function 47
files

DLL 518
executable 517
external, reading Transaction object values from 163
PBD 518
PBR 521
resource 520
rich text 268
runtime 543

FileSeek64 function 46
FileWriteEx function 47
FindSeries function 252
firewall settings 448
fonts, defining 490
FOR...NEXT statements, opening and closing window

instances 82
forms, creating styles 498
FUNCTION declaration

about 173
coding 174

function overloading 16
functions

calling ancestor 28
dynamic 32
graph 250
overriding 30
passing arguments 30

functions, external
about 386
declaring 386
passing arguments 388
using to call database stored procedures 173

functions, PowerScript
AddColumn 140

AddItem 128, 133, 136
AddLargePicture 138
AddPicture 130, 134
AddSmallPicture 138
AddStatePicture 137, 139
data pipeline 292
DDE 314
DeleteLargePicture 139
DeleteLargePictures 139
DeletePicture 130
DeleteSmallPicture 139
DeleteSmallPictures 139
DeleteStatePicture 139
DeleteStatePictures 139
drag and drop 145
file manipulation 45
InsertItem 107, 128, 133, 136
InsertItemFirst 107
InsertItemLast 107
InsertItemSort 107
MAPI 382
SetColumn 141
SetItem 141
SetOverlayPicture 138
utility 391

functions, user-defined
creating context-sensitive Help for 151
overloading 16
overriding 16

G
garbage collection 42
generic coding techniques 95
GetFocus event, providing MicroHelp 68
GetJavaClasspath method 426
GetJavaVMVersion method 426
GetParent function 24, 95
global external functions 386
global variable types, default 175
global variables

and windows 79
name conflicts 27

graph functions
data access 255

Index

Application Techniques 573

getting information about data 256, 259
modifying display of data 258
saving data 257

graphs
creating data points in windows 251
creating series in windows 251
data properties 255
getting information about 256, 259
internal representation 254
modifying display of data 258
modifying during execution 253
populating with data in windows 250
PowerScript functions 250
properties of 254
Render3D property 250
saving data 257

grAxis subobject of graphs 254
grDispAttr subobject of graphs 254

H
handling errors after SQL statements 169
hearing impairments 476
Help

changing default prefix 151
creating for user-defined functions 151
renaming PBUSR120.HLP 151
specifying a new user Help file name 151
UserHelpFile 151
UserHelpPrefix 151

HotLinkAlarm DDE event 315

I
IAccessible properties 480
ICO files

delivering as resources 521
naming in resource files 523
specifying drag icons 145

icons, deploying 521
imstyle.pbl 498
inclusional polymorphism 16
indexes, in window arrays 81
InfoMaker styles, creating 498

INFORMIX database interfaces
features supported when calling stored procedures

179
Transaction object properties for 158

inheritance
hierarchy 83
service objects 13
virtual functions in ancestor 14

initialization files
accessing 493
reading Transaction object values from 163

input fields
about 277
editing 285
inserting in text 262
scripts 278

Insert Object dialog box 319
insertable OLE object 318
inserting OLE objects 328
InsertItem function 107, 128, 133, 136
InsertItemFirst function 107
InsertItemLast function 107
InsertItemSort function 107
installing international applications 471, 545
instance variables

access 26
name conflicts 27

instances, window
and reference variables 80
with arrays 81

instantiating Transaction objects 166
international applications

designing 465
installing 545

Internet service 397
IsJavaVMLoaded method 426

J
J2EE architecture 408
J2EE server, connecting to 429
Java collection classes, and EJB client 434
Java VM, starting at runtime 554
JavaVM object 419

Index

574 PowerBuilder

JDBC database interfaces, Transaction object properties for
158

jobs, print 487
JRE, required for deployment 554
JVM, starting at runtime 554

K
keyboard support in MDI applications 77
Keyword service 397

L
languages, and OLE automation 359
learning disabilities 477
libraries, dynamic 518
library search path, use in executable application 517
line mode 45
line spacing, setting 491
linking OLE objects 328, 331
ListBox controls

about 128
adding items 128
example 131

ListView controls
about 135
adding columns 140
adding items 135
adding pictures 137
deleting pictures 139
image list 136
items 135
populating columns 141
report view 140
setting columns 141

ListView items
index 135
label 135
overlay picture index 135
picture index 135
state picture index 135

local external functions 386
localization 465
localized deployment files 471, 545

Lock Transaction object property
about 156
listed by database interface 158

logical unit of work 160
LogID Transaction object property

about 156
listed by database interface 158

LogPass Transaction object property
about 156
listed by database interface 158

LUW (logical unit of work) 160

M
machine code 516
mail merge, rich text example 279
mail system, accessing 381
mail-related objects and structures 382
MailSession object 382
maintenance of an application

delivering updated PowerBuilder runtime DLLs
530

packaging resources to simplify 521
using dynamic libraries to simplify 519

MAPI
about 381
accessing from an application 381

MDI applications
building 63
keyboard support 77
providing MicroHelp 68
shortcut keys 77
using menus 66
using sheets 66

MDI frames
arranging sheets 67
opening sheets 66
providing MicroHelp for 68
sizing custom 74

MDI sheets
about 65
arranging 67
closing 68
listing open 67
maximizing 68

Index

Application Techniques 575

opening 66
providing MicroHelp for 68
using menus with 66

MDI_1 controls 65
memory management 42
menu items, providing MicroHelp for 68
Menu painter, providing MicroHelp 68
menus

in MDI applications 64, 66
merging 326
OLE 326

Message object
about 394
properties 395

MicroHelp, providing in MDI applications 68
MicroHelpHeight attribute 77
Microsoft Active Accessibility 479
Microsoft Active Accessibility properties 479
Microsoft Excel, OLE 347, 351
Microsoft SQL Server

calling stored procedures 180
Transaction object properties for 158

Microsoft Windows Installer, required for Runtime
Packager 536

Microsoft Word
form letters example 341
OLE 339, 349, 352

migrating tables within or between databases 287
MobiLink synchronization

about 183
articles 186, 210
clients 186
connection events 201
consolidated 184
consolidated databases 200
dbmlsync 186, 187
handling deletes 214
hierarchy 185
PowerBuilder objects for 189
publications 186, 208
remote 184
remote databases 207
required files for remote machines 197
scripts 185, 205
scripts, default 202
server 184

subscriptions 186, 212
table events 202
techniques 213
users 186, 210
wizard 189

mobility impairments 476
models for packaging applications

about 524
implementing 527
testing 528

MSAA 479
MSAA properties 479
MsgTerse parameter 305
MSI files (Microsoft Windows Installer) 536
multiple databases, accessing 166

N
networks, setting up user access to 530
nondefault Transaction objects

about 166
assigning values to 166
creating 166
destroying 168
specifying in SQL statements 167

O
Object property

about 33
dot notation 24

ObjectAtPointer function 259
object-oriented programming, terminology 11
objects

calling ancestor functions and events 28
delivering dynamically referenced ones 519, 522
in an executable file 517
in DLL files 518
in PBD files 518
instantiating descendants 31
name conflicts 27
pronouns for 22
referencing descendants of 84
selecting type during execution 31

Index

576 PowerBuilder

objects, proxy
generating for EJB 418

OCX See ActiveX control
ocx_error event 355
ODBC interface

configuring 530
features supported when calling stored procedures 179
installing 530
Transaction object properties for 158

OLE
activating object 328
ambient properties 333
arguments by reference 348
automation 336
browser 363
columns in DataWindows 362
compiler checking 346
container applications 317
data files 331
embedding 324
error handling 354
form letters example 341
functions for DataWindow object 361
hot links 357
in-place activation 325
insertable object 318
language for automation 359
link maintenance 324
linking 324
linking and embedding compared 324
low-level pointers 360
menus for in-place activation 326
named parameters 349
object 319
objects and assignment 339
offsite activation 326
parentheses 348
performance 353
property change notifications 357
server applications 317, 319, 363
server command qualifiers 337, 351
server memory allocation 350
server methods and properties 346
streams 375
untyped variable 352
verbs 328, 362

OLE automation
and Object property 360, 361
and OLEObject 336
example 341
scenario 340
syntax 346

OLE control
about 317
activating 328
activating object 321, 322
appearance 321
automation 346
behavior 321, 323
blobs 331
changing object 323, 328
Contents property 330
defining 319
deleting object 323
display of object 321
embedding 322, 328
empty 319, 326
events 332
icon for object 321
inserting object 328
link broken 326
linking 322, 328, 331
menus 326
Object property 346
ObjectData property 331
off-site and in-place activation compared 325
property sheet 321
saving embedded data 331
server application 331
updating link 322
user interaction 323

OLE custom control, see also ActiveX control 317
OLE DB database interfaces, Transaction object

properties for 158
OLE objects, dot notation 24
OLEActivate function 362
OLEObject object

about 336
connecting 337
creating 337
disconnecting and destroying 339

OLEStorage object 368

Index

Application Techniques 577

OLEStream object 368
OleTxnObject object 413
Open function 83
Open function, OLE 329
opening multiple instances of windows 79
OpenSheet function 66
operating system, configuring 530
operational polymorphism 15
ORACLE database interfaces

features supported when calling stored procedures
179

Transaction object properties for 158
using stored procedures 172, 178

overloading user-defined functions
about 16

overriding user-defined functions 16, 30

P
packaging an application

choosing a model for 524
compile options for 516
for testing 528
implementing a model for 527
what goes in the executable version 517

page margins, RichTextEdit controls 282
parent objects 21
Parent pronoun 23
parentheses and OLE automation 348
passing arguments

about 30
OLE 348

pasting OLE objects 330
PB_HEAP_LOGFILE_OVERWRITE environment

variable 45
PB_HEAP_LOGFILENAME environment variable

44
PB_POOL_THRESHOLD environment variable 44
PB.INI file

reading Transaction object values from 163
UserHelpPrefix 151

PBD files
about 518
compared to DLL files 518
creating 527

examples of 524
including resources in 521
testing 528

PBDOM classes, overview 219
pbejbclient125.pbd 418
pbejbclient125.pbx 418
pbjvm125.dll, location of 554
PBR files 521
pbsoapclient125.pbx 450
PBUSR0nn.HPJ file 148
pbwsclient125.pbx 450
PBX, importing 235, 449
Pcode, for an executable application 516
performance

about 25, 33, 353
faster compiling 45
how resource delivery model affects 519, 521
variable scope 45

PFC
localizing 472
open source project 472

picture height 129, 134, 137
picture mask 129, 134, 137
picture width 129, 134, 137
PictureListBox controls

about 128
adding items 128, 129
deleting pictures 130
example 131

pictures, delivering as resources 521
PipeEnd event 292
pipeline objects

defining in the Data Pipeline painter 289
deploying 298
specifying one to execute 296

pipeline system object 292
pipeline-error DataWindow 305
PipeMeter event 292
PipeStart event 292
piping data between data sources 287
point and click, in graphs 258
pointers, delivering as resources 521
polymorphism 15
pooling database transactions 170
position pointer 46
position, of windows 81

Index

578 PowerBuilder

Post function 393
PostEvent function 393
PowerBuilder

execution system 517
pipeline-error DataWindow 305
runtime DLLs 530

PowerBuilder events, triggering 393
PowerBuilder initialization file, reading Transaction object

values from 163
PowerBuilder Runtime Packager 536
PowerBuilder secure window plug-in 441
PowerBuilder standard window plug-in 441
PowerBuilder units (PBUs) and extended control properties

319
PowerBuilder window ActiveX 441
PowerScript dot notation, using to call stored procedures

177
Powersoft database interfaces

features supported when calling stored procedures 178
installing 530

print area 487
print cursor 487
PrintCancel function 489
PrintClose function 489
printing

about 485
advanced 490
drawing objects 491
functions 485
jobs 487
line spacing 491
measurements 487
print area 487
print cursor 487, 489
stopping 489
tabbing 488

PRIVATE access 26
profiles, database 156
ProfileString function

about 163, 494
coding 163

project objects, creating 527
Project painter

using to package applications for delivery 527
pronouns 22
properties

data pipeline 292
drag and drop 144

properties, Transaction object
about 156
assigning values to 163, 166
calling stored procedures 177
descriptions of 156
listed by database interface 158
reading values from external files 163

property change notifications 357
PropertyChanged event 358
PropertyRequestEdit event 357
PROTECTED access 26
proxy objects

generating for Web services 451
proxy server 448
PUBLIC access 26
publication 186, 208

Q
qualifying names 21

R
read-only, passing arguments 30
Recommended ODBC Drivers for MobiLink at https

//archive.sap.com/documents/docs/DOC-67711
200

REF keyword 348
reference

passing arguments by 30, 348
referencing

objects dynamically 519, 522
resources dynamically 521

RegEdit utility, obtaining supported verbs 362
registry

class information 364
storing information in 493

RegistryGet function 495
RegistrySet function 496
remote databases 184
remote procedure call technique

about 171

Index

Application Techniques 579

and stored procedure result sets 171, 179
coding your application 177
declaring the stored procedure as an external

function 173
defining the standard class user object 172
saving the user object 175
specifying the default global variable type for

SQLCA 175
supported DBMS features 178

Remote Stored Procedures dialog box 174
RemoteHotLinkStart DDE event 316
RemoteHotLinkStop DDE event 316
RemoteRequest DDE event 316
RemoteSend DDE event 316
Repair function 292, 306
resource files, creating 523
resources

about 520
delivering as separate files 522
dynamically referenced 521
examples of 524
in an executable file 517, 521
in DLL files 519, 521
in PBD files 519, 521
naming in resource files 523
steps for packaging 527
testing 528

result sets
how PowerBuilder handles for stored procedures

171, 179
return values from ancestor scripts 28
reusability, use of dynamic libraries to facilitate 519
rich text

about 261
database 268
date fields 278
implementing 261
input fields 262
mail merge example 279
objects and formatting 285
page numbers 278
preparing 262
selection 280
stored in database 262
toolbars 267
user interaction 283

uses 261
validation 264
word wrap 267

rich text editor
selection 262

RichText presentation style
editing keys 286
new rows 264
scripts 265
scrolling 264
user interaction 264
validation errors 264

RichTextEdit controls
about 266
data source 279
date fields 278
editing keys 286
FileExists event 271
files 268, 270
focus 281
formatting 277
input fields 277
inserting text 268
insertion point 280
LoseFocus event 270, 281
mail merge example 279
Modified property and event 271
objects 277, 285
opening files, example 272
page margins 282
page numbers 278
preview 281
printing 283
saving 270
saving, example 272
scrolling 280
selection 280
settings 266
spell-checking 276
tab order 281
text in database example 269
toolbars 267
undoing changes 267
word wrap 267

RLE files
delivering as resources 521

Index

580 PowerBuilder

naming in resource files 523
ROLLBACK statement

about 160
and AutoCommit setting 161
for nondefault Transaction objects 167

rows, piping between tables 287
RowsInError property for data pipelines 292, 300
RowsRead property for data pipelines 292, 300
RowsWritten property for data pipelines 292, 300
RPCFUNC keyword

about 173
coding 174

RTF 261
Runtime Packager 536

S
SAP Adaptive Server Enterprise database interface

calling stored procedures 180
Transaction object properties for 163

Save function, OLE 369
Save User Object dialog box 175
SaveAs function, OLE 331, 369
saving data in graphs 257
scope operator 27
scripts

activating OLE columns 362
adding list box items 128, 133
adding list box pictures 130, 134
adding listbox items 133
adding ListView columns 140
adding ListView items 136
adding ListView pictures 138
deleting ListView items 139
deleting ListView pictures 139
manipulating OLE objects 345
modifying graphs in 253
OLE automation 360
OLE information from browser 365
populating ListView columns 141
synchronization 186

search path for resources in resource files 524
Section 508 478
Secure Sockets Layer provider service 397
Select Standard Class Type dialog box 173

semicolons, as SQL statement terminators 162, 164
Send function 393
series, graph

adding data points in windows 251
creating in window 251
identifying in windows 252

server applications, OLE 317
server computers, configuring 530
server databases, configuring 530
server, MobiLink synchronization 184
ServerName Transaction object property

about 156
listed by database interface 158

service objects 397
SetAutomationLocale function 359
SetColumn function 141
SetItem function 141
SetMicroHelp function 68
SetOptions method, for Web service proxy 456
SetOverLayPicture function 138
SetProfileString function 495
SetTransPool function 170
sharing data, with RichTextEdit controls 279
shortcut keys, in MDI applications 77
SOAP

case sensitivity 452
connecting to a server 456
exception handling 460

SOAPConnection object 450
SoapException object 450
source tables for data pipelines 289
spell-checking, RichTextEdit controls 276
SQL Anywhere

and MobiLink synchronization 184
data source 548
features supported when calling stored procedures

180
SQL Server, calling stored procedures 180
SQL statements

error handling 169
for transaction processing 160
specifying Transaction object in 167
terminating with semicolons 162, 164

SQLCA
about 156, 162
calling stored procedure as property of 177

Index

Application Techniques 581

creating and destroying prohibited 166
customizing to call stored procedures 171
error handling 169
properties, assigning values to 163
properties, descriptions of 156
properties, listed by database interface 158
setting in Application painter property sheet 176
specifying default global variable type for 175
user object inherited from 171, 176

SQLCode Transaction object property
about 156, 169
coding 169
listed by database interface 158

SQLDBCode Transaction object property
about 156, 169
coding 169
listed by database interface 158

SQLErrText Transaction object property
about 156, 169
coding 169
listed by database interface 158

SQLNRows Transaction object property
about 156
listed by database interface 158

SQLReturnData Transaction object property
about 156
listed by database interface 158

SQLSTATE error numbers, suppressing 305
SSL

provider service 397
standalone executable files 524
standard frames in MDI applications 64
Start function 292, 299
statements in WordBasic (OLE) 349
static lookup 18
storages, OLE

about 366
building file 371
documenting structure 379
efficiency 368
example 371
members 370
saving 369
structure 367

stored procedures, calling in applications
about 171

basic steps 171
coding your application 177
declaring as external functions 173
defining the standard class user object 172
ORACLE example 178
ORACLE7 example 172
result sets, how PowerBuilder handles 171, 179
saving the user object 175
specifying the default global variable type for

SQLCA 175
supported DBMS features 178

stream mode 46
streams, OLE

about 366, 375
length 376
opening 375
read/write pointer 376
reading and writing 376

structure objects, using user objects as structures 20
SUBROUTINE declaration

about 173
coding 174

subroutines, using to call database stored procedures
173

subscriptions
about 186
synchronization with multiple servers 212

Super pronoun 28
Sybase DirectConnect database interfaces, Transaction

object properties for 158
Sybase SQL Anywhere, features supported when calling

stored procedures 180
synchronization See MobiLink synchronization
synchronization server 184
Syntax property for data pipelines 292

T
Tab controls

about 87
appearance 91
Control property array 98
CreateOnDemand property 99
defined 87
dot notation 94

Index

582 PowerBuilder

events 100
managing tab pages 89
parent 94
property sheet 91
tab labels 93
tab positions 92
types of tab pages 88

tab pages
closing in script 97
controls in scripts 96
defined 87
deleting 89
embedded 88
events 100
independent user objects 88
object references 98
opening in script 97
parent 94
property sheet 91
reordering 89

tables
destination for data pipelines 289
migrating within or between databases 287
source for data pipelines 289

Tag attribute, providing MicroHelp 68
target controls, drag and drop 143
testing an application

executable version 528
tracing execution 529

text files
functions 45
reading and writing 45

This pronoun 23
toolbars, in MDI applications 65
tracing executable application 529
Transaction object

about 155
as built-in system type 173
assigning values to 163
default 156, 162
error handling 169
for multiple database connections 166
nondefault, assigning values to 166
nondefault, creating 166
nondefault, destroying 168
nondefault, specifying in SQL statements 167

reading values from external files 163
remote procedure call technique 171
specifying 167
SQLCA 156, 162
using to call stored procedures 171

Transaction object properties
about 156
assigning values to 163, 166
calling stored procedures 177
descriptions of 156
listed by database interface 158
reading values from external files 163

transaction pooling 170
transaction processing

about 160
controlling from COM clients 413
error handling 169
pooling database transactions 170
SQL statements for 160

TreeView controls
about 103
example 124

TriggerEvent function 393
triggering events 393
typographical conventions xvii

U
unbounded arrays, window 81
user interface, design for international deployment 471
User Object painter

defining supporting user object for data pipelines
301

using to define custom Transaction objects 172
user objects

about 87
Control property array 98
selecting type during execution 32
using as structures 20
using to call database stored procedures 172
using to support data pipelines 296, 301, 309

user, MobiLink 186, 210
UserID Transaction object property

about 156
listed by database interface 158

Index

Application Techniques 583

users of an application, configuring computers for
530

USING TransactionObject clause
about 167
in CONNECT statement 164
in DISCONNECT statement 165

utility functions 391

V
validation techniques, rich text 264
value, passing arguments by 30
Variable Types property page in Application painter

property sheet 176
variables

declaring for Transaction objects 166
declaring, of window's type 80
default global 175
of type window 83
performance impact 45
untyped 352

visual impairments 475
Voluntary Product Accessibility Template See VPAT
VPAT 483

W
WCAG (Web Content Accessibility Guidelines) 478
Web Content Accessibility Guidelines See WCAG
Web services

.NET engine 447
about 442
custom headers 458
EasySoap engine 448
exception handling 460
invoking methods 458
PowerScript client 445
proxy objects 451

Window painter, specifying drag mode for a control
144

windows
and MDI applications 64, 65, 67
defined as datatypes 79
displaying 79

for controlling data pipelines 293
selecting type during execution 32

Windows events
processing 394
triggering 393

Windows messages, sending 391
wizards

EJB proxy objects 420
WMF files

delivering as resources 521
naming in resource files 523

Word 97 automation 350
word processor for rich text 262
WordBasic statements 349
WSDL

about 446
selecting for Web service proxy 451

Index

584 PowerBuilder

Index

Application Techniques 585

Index

586 PowerBuilder

	Application Techniques
	PART 1 Sample Applications
	CHAPTER 1 Using Sample Applications
	About the sample applications
	Installing the sample applications
	Opening the sample applications
	Using the Code Examples application
	Browsing the examples
	Finding examples
	Running and examining examples

	PART 2 Language Techniques
	CHAPTER 2 Selected Object-Oriented Programming Topics
	Terminology review
	PowerBuilder techniques
	Other techniques

	CHAPTER 3 Selected PowerScript Topics
	Dot notation
	Constant declarations
	Controlling access for instance variables
	Resolving naming conflicts
	Return values from ancestor scripts
	Types of arguments for functions and events
	Ancestor and descendent variables
	Optimizing expressions for DataWindow and external objects
	Exception handling in PowerBuilder
	Basics of exception handling
	Objects for exception handling support
	Handling exceptions
	Creating user-defined exception types
	Adding flexibility and facilitating object reuse
	Using the SystemError and Error events

	Garbage collection and memory management
	Configuring memory management

	Efficient compiling and performance
	Reading and writing text or binary files

	CHAPTER 4 Getting Information About PowerBuilder Class Definitions
	Overview of class definition information
	Terminology
	Who uses PowerBuilder class definitions

	Examining a class definition
	Getting a class definition object
	Getting detailed information about the class
	Getting information about a class's scripts
	Getting information about variables

	PART 3 User Interface Techniques
	CHAPTER 5 Building an MDI Application
	About MDI
	Building an MDI frame window
	Using sheets
	Providing MicroHelp
	Using toolbars in MDI applications
	Customizing toolbar behavior
	Saving and restoring toolbar settings

	Sizing the client area
	About keyboard support in MDI applications

	CHAPTER 6 Managing Window Instances
	About window instances
	Declaring instances of windows
	Using window arrays
	Referencing entities in descendants

	CHAPTER 7 Using Tab Controls in a Window
	About Tab controls
	Defining and managing tab pages
	Customizing the Tab control
	Using Tab controls in scripts
	Referring to tab pages in scripts
	Referring to controls on tab pages
	Opening, closing, and hiding tab pages
	Keeping track of tab pages
	Creating tab pages only when needed
	Events for the parts of the Tab control

	CHAPTER 8 Using TreeView Controls
	About TreeView controls
	Populating TreeViews
	Functions for inserting items
	Inserting items at the root level
	Inserting items below the root level

	Managing TreeView items
	Deleting items
	Renaming items
	Moving items using drag and drop
	Sorting items

	Managing TreeView pictures
	Pictures for items
	Setting up picture lists
	Using overlay pictures

	Using DataWindow information to populate a TreeView

	CHAPTER 9 Using Lists in a Window
	About presenting lists
	Using lists
	Using drop-down lists
	Using ListView controls
	Using report view

	CHAPTER 10 Using Drag and Drop in a Window
	About drag and drop
	Drag-and-drop properties, events, and functions
	Identifying the dragged control

	CHAPTER 11 Providing Online Help for an Application
	Creating help files
	Providing online help for developers
	Providing online help for users

	PART 4 Data Access Techniques
	CHAPTER 12 Using Transaction Objects
	About Transaction objects
	Description of Transaction object properties
	Transaction object properties and supported PowerBuilder database interfaces

	Working with Transaction objects
	Transaction basics
	The default Transaction object
	Assigning values to the Transaction object
	Reading values from an external file
	Connecting to the database
	Using the Preview tab to connect in a PowerBuilder application
	Disconnecting from the database
	Defining Transaction objects for multiple database connections
	Error handling after a SQL statement
	Pooling database transactions

	Using Transaction objects to call stored procedures
	Step 1: define the standard class user object
	Step 2: declare the stored procedure as an external function
	Step 3: save the user object
	Step 4: specify the default global variable type for SQLCA
	Step 5: code your application to use the user object

	Supported DBMS features when calling stored procedures

	CHAPTER 13 Using MobiLink Synchronization
	About MobiLink synchronization
	How the synchronization works
	Working with PowerBuilder synchronization objects
	Preparing to use the wizard
	What gets generated
	Creating an instance of MLSync
	Auxiliary objects for MobiLink synchronization
	Using the synchronization objects in your application
	Runtime requirements for synchronization on remote machines

	Preparing consolidated databases
	Connection events
	Table events
	Working with scripts and users in SQL Central

	Creating remote databases
	Creating and modifying publications
	Creating MobiLink users
	Adding subscriptions

	Synchronization techniques

	CHAPTER 14 Using PowerBuilder XML Services
	About XML and PowerBuilder
	About PBDOM
	PBDOM object hierarchy
	PBDOM node objects
	PBDOM_OBJECT
	PBDOM_DOCUMENT
	PBDOM_DOCTYPE
	PBDOM_ELEMENT
	PBDOM_ATTRIBUTE
	PBDOM_ENTITYREFERENCE
	PBDOM_CHARACTERDATA
	PBDOM_TEXT
	PBDOM_CDATA
	PBDOM_COMMENT
	PBDOM_PROCESSINGINSTRUCTION

	Adding pbdom170.pbx to your application
	Using PBDOM
	Validating the XML
	Creating an XML document from XML
	Creating an XML document from scratch
	Accessing node data
	Manipulating the node-tree hierarchy

	Handling PBDOM exceptions
	XML namespaces
	Setting the name and namespace of a PBDOM_ATTRIBUTE

	CHAPTER 15 Manipulating Graphs
	Using graphs
	Working with graph controls in code

	Populating a graph with data
	Modifying graph properties
	How parts of a graph are represented
	Referencing parts of a graph

	Accessing data properties
	Getting information about the data
	Saving graph data
	Modifying colors, fill patterns, and other data

	Using point and click

	CHAPTER 16 Implementing Rich Text
	Using rich text in an application
	Sources of rich text
	Selecting a rich text editor
	Deploying a rich text application

	Using a RichText DataWindow object
	Using a RichTextEdit control
	Giving the user control
	Text for the control
	Opening and saving files: an example

	Using an ActiveX spell checking control
	Formatting of rich text
	Input fields
	Using database data
	Cursor position in the RichTextEdit control
	Preview and printing

	Rich text and the end user

	CHAPTER 17 Piping Data Between Data Sources
	About data pipelines
	Building the objects you need
	Building a Pipeline object
	Building a supporting user object
	Building a window

	Performing some initial housekeeping
	Starting the pipeline
	Monitoring pipeline progress
	Canceling pipeline execution
	Committing updates to the database

	Handling row errors
	Repairing error rows
	Abandoning error rows

	Performing some final housekeeping

	PART 5 Program Access Techniques
	CHAPTER 18 Using DDE in an Application
	About DDE
	DDE functions and events

	CHAPTER 19 Using OLE in an Application
	OLE support in PowerBuilder
	OLE controls in a window
	OLE controls and insertable objects
	Setting up the OLE control
	Activating the object in the painter
	Changing the object in the control
	How the user interacts with the control

	Linking versus embedding
	Offsite or in-place activation
	Menus for in-place activation
	Modifying an object in an OLE control
	Activating the OLE object
	Changing the object in an OLE control
	Events for the OLE control

	OLE custom controls
	Setting up the custom control
	Programming the ActiveX control

	Programmable OLE Objects
	OLEObject object type
	Assignments among OLEControl, OLECustomControl, and OLEObject datatypes
	Automation scenario
	Example: generating form letters using OLE

	OLE objects in scripts
	The automation interface
	Setting properties
	Calling functions
	Qualifying server commands

	Automation and the Any datatype
	OLEObjects for efficiency
	Handling errors
	Creating hot links
	Setting the language for OLE objects and controls
	Low-level access to the OLE object
	OLE objects in DataWindow objects
	OLE columns in an application

	OLE information in the Browser
	Advanced ways to manipulate OLE objects
	Structure of an OLE storage
	Object types for storages and streams
	Opening and saving storages
	Getting information about storage members
	Example: building a storage

	Opening streams
	Strategies for using storages

	CHAPTER 20 Building a Mail-Enabled Application
	About MAPI
	Using MAPI

	CHAPTER 21 Using External Functions and Other Processing Extensions
	Using external functions
	Declaring external functions
	Sample declarations
	Passing arguments
	Passing numeric datatypes
	Passing strings
	Passing characters

	Using utility functions to manage information
	Sending Windows messages
	The Message object
	Message object properties

	Context information
	Context information service
	Context keyword service
	CORBACurrent service (obsolete)
	Error logging service
	Internet service
	Transaction server service

	PART 6 Developing Distributed Applications
	CHAPTER 22 Distributed Application Development with PowerBuilder
	Distributed application architecture
	Server support

	CHAPTER 23 Building a COM or COM+ Client
	About building a COM or COM+ client
	Connecting to a COM server
	Interacting with the COM component
	Controlling transactions from a client

	CHAPTER 24 Building an EJB client (obsolete)
	About building an EJB client
	Adding pbejbclient170.pbx to your application
	Generating EJB proxy objects
	Using an EJB Proxy project
	Using the ejb2pb170 tool
	Viewing the generated proxies
	Datatype mappings

	Creating a Java VM
	Connecting to the server
	Invoking component methods
	Exception handling
	Client-managed transactions
	Debugging the client

	PART 7 Developing Web Applications
	CHAPTER 25 Web Application Development with PowerBuilder
	Building Web applications
	.NET Web components
	Web services
	Web DataWindow (obsolete)
	DataWindow Web control for ActiveX (obsolete)

	CHAPTER 26 Building a Web Services Client
	About Web services
	About building a Web services client
	Choosing a Web service engine
	Using the .NET Web service engine
	Using the EasySoap Web service engine

	Assigning firewall settings to access a Web service

	Importing objects from an extension file
	Generating Web service proxy objects
	Connecting to a SOAP server
	Invoking the Web service method
	Using .NET Web services with custom headers
	Using cookies with the Web service client
	Exception handling
	Using the UDDI Inquiry API

	PART 8 General Techniques
	CHAPTER 27 Internationalizing an Application
	Developing international applications
	Using Unicode
	About Unicode
	Unicode support in PowerBuilder

	Internationalizing the user interface
	Localizing the product
	About the Translation Toolkit

	CHAPTER 28 Building Accessible Applications
	Understanding accessibility challenges
	Accessibility requirements for software and Web applications
	Creating accessible software applications with PowerBuilder
	About VPATs
	Testing product accessibility

	CHAPTER 29 Printing from an Application
	Printing functions
	Printing basics
	Printing a job
	Using tabs
	Stopping a print job
	Advanced printing techniques

	CHAPTER 30 Managing Initialization Files and the Windows Registry
	About preferences and default settings
	Managing information in initialization files
	Managing information in the Windows registry

	CHAPTER 31 Building InfoMaker Styles and Actions
	About form styles
	Naming the DataWindow controls in a form style
	Building and using a form style
	Modifying an existing style
	Identifying the window as the basis of a style

	Building a style from scratch
	Completing the style
	Working with the central DataWindow controls
	Adding controls
	Defining actions
	Using menus
	Writing scripts
	Adding other capabilities

	Using the style
	Building a form with the custom form style
	Managing the use of form styles

	PART 9 Deployment Techniques
	CHAPTER 32 Packaging an Application for Deployment
	About deploying applications
	Creating an executable version of your application
	Compiler basics
	Learning what can go in the package
	Creating a PowerBuilder resource file
	Choosing a packaging model
	Implementing your packaging model
	Testing the executable application

	Delivering your application to end users
	Installation checklist
	Starting the deployed application

	CHAPTER 33 Deploying Applications and Components
	Deploying applications, components, and supporting files
	PowerBuilder Runtime Packager
	Third-party components and deployment
	Apache files
	Microsoft files
	Oracle files
	Software used for SOAP clients for Web services

	PowerBuilder runtime files
	Database connections
	Native database drivers
	ODBC database drivers and supporting files
	OLE DB database providers
	ADO.NET database interface
	JDBC database interface

	Java support
	PowerBuilder extensions
	PDF and XSL-FO export
	Using the Ghostscript distiller
	Using the PDFlib generator
	Using the Apache FO processor

	CHAPTER 34 Deploying 64-Bit Windows Applications
	Deploying 64-Bit Windows Applications

	Index

