
Appeon Performance Tuning Guide

Appeon® for PowerBuilder® 2016

FOR WINDOWS & UNIX & LINUX

DOCUMENT ID: ADC10089-01-0700-01

LAST REVISED: September 07, 2016

Copyright © 2000-2016 by Appeon Limited. All rights reserved.

This publication pertains to Appeon software and to any subsequent release until otherwise
indicated in new editions or technical notes. Information in this document is subject to
change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Appeon Limited.

Appeon, the Appeon logo, Appeon Developer, Appeon Enterprise Manager, AEM, Appeon
Server and Appeon Server Web Component are registered trademarks of Appeon Limited.

SAP, Sybase, Adaptive Server Anywhere, SQL Anywhere, Adaptive Server Enterprise,
iAnywhere, PowerBuilder, Sybase Central, and Sybase jConnect for JDBC are trademarks or
registered trademarks of SAP and SAP affiliate company.

Java and JDBC are trademarks or registered trademarks of Sun Microsystems, Inc.

All other company and product names used herein may be trademarks or registered
trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth
in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR
52.227-19(a)-(d) for civilian agencies.

Appeon Limited, 1/F, Shell Industrial Building, 12 Lee Chung Street, Chai Wan District,
Hong Kong.

Contents
1 About This Book .. 1

1.1 Audience .. 1
1.2 How to use this book .. 1
1.3 Related documents .. 1
1.4 If you need help .. 3

2 Appeon Performance ... 4
2.1 Impacts to Appeon performance ... 6

2.1.1 Impact of the Internet and slow networks .. 6
2.1.2 Impact of #heavy# client-side logic ... 7
2.1.3 Impact of large data transmission ... 8

2.2 Expected performance level .. 9
2.3 Automatic performance boosting ... 9

3 Performance-Related Settings ... 11
3.1 Overview .. 11
3.2 Appeon Developer performance settings .. 11
3.3 Appeon Enterprise Manager performance settings 12

3.3.1 Timeout settings .. 12
3.3.2 DataWindow data caching ... 13
3.3.3 Multi-thread download settings .. 13
3.3.4 Custom Libraries download settings .. 13
3.3.5 Log file settings ... 14

3.4 Internet Explorer performance settings .. 14
3.5 Web and application server performance settings 14

3.5.1 SAP EAServer ... 14
3.5.1.1 JVM startup option .. 14
3.5.1.2 Configuring data sources .. 14
3.5.1.3 HTTP properties .. 15

3.5.2 Microsoft IIS server ... 15
3.5.2.1 Recommendations for avoiding common errors on IIS 15
3.5.2.2 Advanced thread settings .. 16

3.6 Database performance settings ... 19
3.6.1 Recommended database driver ... 19
3.6.2 Recommended database setting ... 19

4 Identifying Performance Bottlenecks ... 21
4.1 Overview .. 21
4.2 Appeon Performance Analyzer .. 21

4.2.1 Getting Started .. 21
4.2.1.1 Enabling Appeon Performance Analyzer 21
4.2.1.2 Starting Appeon Performance Analyzer 22
4.2.1.3 Getting to know Appeon Performance Analyzer 24
4.2.1.4 Removing Appeon Performance Analyzer 25

4.2.2 Working with Appeon Performance Analyzer 26
4.2.2.1 System Configuration .. 26
4.2.2.2 Calls Analysis .. 28
4.2.2.3 Download Analysis .. 32
4.2.2.4 View Detail .. 33

4.2.2.5 Additional Functions .. 41
4.3 Analyzing log files .. 52

4.3.1 Analyzing Windows application log files .. 52
4.3.2 Analyzing Appeon Server log files ... 53
4.3.3 Analyzing active transaction log .. 54

4.4 Identifying Performance Bottlenecks of Web Server and Application
Server ... 55
4.5 Identifying Performance Bottlenecks of DB Server 55

4.5.1 Deadlock analysis .. 55
4.6 Identifying Performance Bottlenecks of PB application 55

4.6.1 Analyzing performance bottlenecks of PB application 55
5 Tuning: DB Server ... 57

5.1 Database .. 57
6 Tuning: Excessive Server Calls ... 58

6.1 Overview .. 58
6.2 Technique #1: partitioning transactions via stored procedures 58
6.3 Technique #2: partitioning non-visual logic via NVOs 60
6.4 Technique #3: eliminating recursive Embedded SQL 62
6.5 Technique #4: grouping multiple server calls with Appeon Labels 63

7 Tuning: Heavy Client ... 69
7.1 Overview .. 69
7.2 Technique #1: thin-out #heavy# Windows ... 69
7.3 Technique #2: thin-out #heavy# UI logic ... 69

7.3.1 Manipulating the UI in loops .. 69
7.3.2 Triggering events repeatedly ... 70
7.3.3 Performing single repetitive tasks .. 70
7.3.4 Initializing #heavy# tabs .. 71
7.3.5 Using ShareData or RowsCopy/RowsMove for data
synchronization ... 71
7.3.6 Using computed fields ... 71
7.3.7 Using DataWindow expressions .. 71
7.3.8 Using complex filters ... 72
7.3.9 Using RowsFocusChanging/RowsFocusChanged events 72

7.4 Technique #3: offload #heavy# non-visual logic .. 72
8 Tuning: Large Data Transmissions .. 73

8.1 Overview .. 73
8.2 Technique #1: retrieving data incrementally .. 73

8.2.1 For Oracle database server ... 73
8.2.2 For all other database servers .. 74

8.3 Technique #2: minimizing excessive number of columns 74
9 Conclusion .. 75
Index .. 76

About This Book Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 1

1 About This Book

1.1 Audience
This book is intended to help PowerBuilder developers plan what steps they will take, and
how much time they will invest in improving the performance of a PowerBuilder application
deployed to the Web/Mobile with Appeon for PowerBuiler. It is also intended to guide
PowerBuilder architects and developers on how to build new PowerBuilder applications that
perform well when deployed to the Web, a WAN or the Mobile.

1.2 How to use this book
There are eight chapters in this book.

Chapter 1: About This Book

A general description of this book.

Chapter 2: Appeon Performance

Describes current runtime performance levels of Appeon for PowerBuilder and primary
reasons for performance issues (if any).

Chapter 3: Identifying Performance Bottlenecks

Describes approach for identifying areas in the Web application that may suffer from runtime
performance issues. Also, describes the Appeon Developer performance reporting tool - the
Appeon Performance Analyzer tool.

Chapter 4: Performance-Related Settings

Documents key Appeon, Web browser, application server, and database settings that should
be configured from default values to ensure optimal performance of your Web/Mobile
system.

Chapter 5: Tuning: Excessive Server Calls

Introduces the performance tuning concept "Excessive Server Calls" with several techniques
to optimize your PowerBuilder code to achieve good performance.

Chapter 6: Tuning: Heavy Client

Introduces the performance tuning concept "Heavy Client" with several techniques to
optimize your PowerBuilder code to achieve good performance.

Chapter 7: Tuning: Large Data Transmissions

Introduces the performance tuning concept "Large Data Transmissions" with several
techniques to optimize your PowerBuilder code to achieve good performance.

Chapter 8: Conclusion

Final thoughts and recommendations on performance tuning of your PowerBuilder
applications for the Web/Mobile.

1.3 Related documents
Appeon provides the following user documents to assist you in understanding Appeon for
PowerBuilder and its capabilities:

About This Book Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 2

• Introduction to Appeon:

Gives general introduction to Appeon for PowerBuilder and its editions.

• Getting Started (for Appeon Mobile):

Guides you though installing PowerBuilder and Appeon for PowerBuilder, and developing
and deploying a mobile application.

• New Features Guide:

Introduces new features and changes in Appeon for PowerBuilder.

• Appeon Mobile Tutorials:

Gives instructions on deploying, running, and debugging the mobile application,
distributing native mobile apps, and configuring the Appeon Server cluster.

• Appeon Mobile (Offline) Tutorials:

Gives instructions on setting up the Appeon Mobile (Offline) environment, and
configuring, deploying, running, updating, and debugging the offline application.

• Appeon Installation Guide:

Provides instructions on how to install Appeon for PowerBuilder successfully.

• Mobile UI Design & Development Guide:

Introduces general guidelines on designing and developing the mobile app and UI.

• Migration Guidelines for Appeon Web:

A process-oriented guide that illustrates the complete diagram of the Appeon Web
migration procedure and various topics related to steps in the procedure, and includes
a tutorial that walks you through the entire process of deploying a small PowerBuilder
application to the Web.

• Supported PB Features:

Provides a detailed list of supported PowerBuilder features which can be converted to the
Web/Mobile with Appeon as well as which features are unsupported.

• Appeon Developer User Guide:

Provides instructions on how to use the Appeon Developer toolbar in Appeon for
PowerBuilder.

• Workarounds & API Guide:

Provides resolutions for unsupported features and various APIs to facilitate you to
implement the features (including Web and mobile) that are not easy or impossible to
implement in the PowerBuilder IDE.

• Appeon Workspace User Guide:

Gives a general introduction on Appeon Workspace and provides detailed instructions on
how to use it.

About This Book Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 3

• Appeon Server Configuration Guide:

Provides instructions on how to configure Appeon Server Monitor, establish connections
between Appeon Servers and database servers, and configure AEM for maintaining
Appeon Server and the deployed applications.

• Web Server Configuration Guide:

Describes configuration instructions for different types of Web servers to work with the
Appeon Server.

• Troubleshooting Guide:

Provides information on troubleshooting issues; covering topics, such as product
installation, application deployment, AEM, and Appeon application runtime issues.

• Appeon Performance Tuning Guide:

Provides instructions on how to modify a PowerBuilder application to achieve better
performance from its corresponding Web/mobile application.

• Testing Appeon Web Applications with QTP:

Provides instructions on how to test Appeon Web applications with QTP.

1.4 If you need help
If you have any questions about this product or need assistance during the installation
process, access the Technical Support Web site at http://www.appeon.com/support.

http://www.appeon.com/support

Appeon Performance Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 4

2 Appeon Performance
Before we officially introduce the methods to analyze and optimize the performance, we
spare a few minutes to look at the possible impacts that cause performance problems to
Appeon-converted applications. This helps to learn optimization solutions better, or even
helps to work out individual optimization solutions for each application.

Traditional PowerBuilder application architecture

The traditional PowerBuilder application is based on the client/server architecture, in which
applications run on the client side and interact with the database with native drivers. The
connection between the client and the database (marked as "A" in the following figure) is
usually the local area network or high-speed enterprise network, therefore the connection can
hardly impact the performance. In this architecture, the main performance impacts are the
application and the database.

Figure 2.1: Traditional PB application architecture

Thus, the performance of C/S PB applications = PB client performance + A + database
processing performance.

Since the connection impact can be negligible, the performance of C/S PB applications = PB
client performance + database processing performance.

Appeon (Web/Mobile) application architecture

Compared with the traditional C/S architecture, the Appeon application architecture has a
server (that holds the core business logic and the data service) between the client and the
database. The client does not directly interact with the database anymore, but sends all the
requests and data to the server, and interacts with the database through the server.

Figure 2.2: Appeon application architecture

In the architecture, the Appeon application performance = Web/Mobile client performance +
A1 + server performance + A2 + database processing performance.

Appeon Performance Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 5

A1 is the network connection between the client and the server, and is usually the wide area
networks/internet. Therefore, this is a very large performance expense, especially when the
client frequently interacts with the server.

A2 is the network connection between the server and the database, and is usually the local
area networks or high-speed enterprise networks. The same as that in the C/S architecture, it
can hardly impact the performance.

Therefore, the Appeon application performance = Web/Mobile client performance + A1 +
server performance + database processing performance.

PowerBuilder application impacts vs. Appeon application impacts

According to the PowerBuilder application architecture and the Appeon Web/Mobile
application architecture described above, we know that:

• PB application performance = PB client performance + database processing performance

• Appeon application performance = Web/Mobile client performance + A1 + server
performance + database processing performance

Appeon applications are converted from PB applications and are consisted of two parts
after migration: the Web/Mobile client and the server. Therefore, the Appeon application
performance is dependant on the PB application performance.

Two hypotheses as follows:

1. The PB application does not have performance problems; but the converted Appeon
application has.

In this case, the PB client and the database performance expense are negligible. Since the
performance of Appeon Web/Mobile client and the server are dependent on the PB client
performance, the performance problem may be caused by A1, the connection network.

And the possible reasons are:

• The networks connection is slow or unstable;

• The data package is too large or the SQL syntaxes are not efficient that result in long
communication time in a single communication;

• The same functionality frequently communicates with the server that results in repeated
connection performance (A1) expense, etc.

In the case, developers should: 1) first consider to reduce the communication times
between the client and the server so to reduce the connection performance expense; 2)
secondly, consider to optimize the efficiency of each communication, for example, by
retrieving only the necessary data and using the optimal relational calculus in the SQL
syntaxes, etc.

Usually, if the PB application does not have performance problems, the Appeon
application converted from it will not have problems either. But under certain
circumstances, there still can be performance problems in the converted Appeon
application. This is because the PB application will finally run using the machine code or
the quasi machine code, which is very efficient at code levels; but the converted Appeon

Appeon Performance Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 6

application executes the JavaScript, an interpreted code, and will interpret at runtime.
Therefore, the efficiency is lower compared with the machine code, especially when there
is

• Functionalities that use multiple character string manipulation;

• Lots of loops;

• Frequently-distributing memories or large memories, for example, large objects, lots of
tabpages in the tab control, etc.

2. Both the PB application and the converted Appeon application have performance
problems:

If the PB application has performance problems, the converted Appeon applications will
definitely have performance problems as well.

In this case, developers should:

1) first consider to optimize the performance of the PB application and the database by
using all kinds of available system tools. For example, developers can use the transaction
track analyser provided by the database provider to analyze and optimize the database
performance. Usually, popular database providers provide performance analysis and
optimization tools with their databases, developers can use these provided tools to
optimize the databases.

2) secondly, after you make sure that the PB application does not have performance
problems, use the hypothesis 1 to analyze and the converted Appeon application.

In details, the impacts to the converted Appeon application are as follows:

• Impact of the Internet and slow networks;

• Impact of "heavy" client-side logic;

• Impact of large data transmission.

Refer to the Impacts to Appeon performance for more information.

2.1 Impacts to Appeon performance

2.1.1 Impact of the Internet and slow networks

Although Appeon pushes the envelope to deliver unparalleled performance from standard
Web technologies (e.g. XML, JavaScript, HTML, Java or C#), which are typically
significantly slower than PowerBuilder, slow and latent network connections rob
performance from even the best applications!

Network chatter and network-intensive code really highlight the weakness of a poor network
connection. Any code that results in a HTTP request (i.e. server call) when executed multiple
times sequentially has potential to create network chatter. There are mainly two categories of
code that result in server calls - data access related and remote method invocations. Here are
several common examples so you can familiarize yourself:

Appeon Performance Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 7

• Embedded SQL (Select, Insert, Delete, Update, Cursor) including Dynamic SQL;

• Invoking stored procedures or database functions;

• DataWindow/DataStore Functions (Retrieve, Update, ReselectRow, GetFullState,
SetFullState, GetChanges, SetChanges);

• DataWindow/DataStore Events (SQLPreview);

• Invoking a method of a server-side object, such as a PowerBuilder NVO, Java EJB,
or .NET Component; or

• Invoking a Web Service.

Each of the above statements will generate one call to the server utilizing HTTP, with
exception of SQLPreview event that will generate one call for each line of code handled by
the event. If any of the above statements are contained in a loop or recursive function, well
depending on the number of loops, even though its just one statement it would be executed
multiple times generating multiple server calls. Needless to say, loops and recursive functions
are some of the most dangerous from a performance perspective.

The reason it is important to minimize server calls is because it can take 100 or even 1,000
times longer to transmit one packet of data over the Internet compared to a LAN. Imagine
an event handler is triggered, for example handling an "onClick" event, whose execution
will result in 80 synchronous server calls over a LAN with latency of 2 milliseconds (ms).
In such scenario the slow-down attributed to network latency would be 0.16 seconds (80 x 2
ms). Now imagine this same event handler running over a WAN with latency of 300 ms. The
slow-down attributed to the network latency would be a whopping 24 seconds (80 x 300 ms)!
And depending on the amount of data transmitted there could be additional slow-down due
the bandwidth bottlenecks.

It is imperative for the developer to be conscious that PowerBuilder applications deployed to
the Web may not be running in a LAN environment, and as such there will be some degree of
performance degradation. How much depends on how the code is written, but in most cases
the performance degradation still falls within acceptable limits without much performance
optimization.

Should you find that certain operations in your application are unacceptably slow, the good
news is there are numerous things that you can do as PowerBuilder developers to ensure your
PowerBuilder applications perform well in a WAN environment (e.g. Internet) or on slower
networks. At a high-level, your code needs to be written such that the server calls and other
performance intensive code is minimized or relocated to the middle-tier or back-end. This
will be covered in more detail in the following chapters. Some changes are actually quite
simple while others may require increased effort. Nonetheless, in all cases optimizing the
performance of your applications in PowerBuilder is just a fraction of the effort to work with
typical low-productivity Web tools such as VisualStudio.NET and Eclipse.

2.1.2 Impact of #heavy# client-side logic

Most PowerBuilder applications are developed utilizing a 2-tier architecture. In other words,
all the PowerScript and embedded SQLs are coded in the Visual objects, for example
Window, CommandButton, etc. In contrast, a 3-tier architecture would encapsulate all

Appeon Performance Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 8

non-visual logic in PowerBuilder NVOs (Non-Visual Objects). The reality is even if your
application utilizes NVOs, chances are it is not a pure 3-tier application if PowerBuilder
NVOs are not exclusively utilized to encapsulate all non-visual logic. But don't rush to
partition your application just yet!

Most applications developed as a 2-tier architecture perform great in Appeon. In fact, there
are many situations that a 2-tier application when deployed by Appeon will actually perform
faster than a 3-tier application. The reason is if a PowerBuilder NVO is deployed to the
middle-tier or application server, time must be spent to call the server and get the results back
to the client. Of course, your non-visual logic running on an application server will run faster
than at the Web browser. The key question is how much performance do you gain by running
a particular block of code on the application server vs. how much performance do you lose
due to the server calls.

As a rule of thumb, it is recommended to partition your non-visual logic to the middle-
tier only when the particular block of code runs unacceptably slow at the Web browser.
In such cases, it is likely that the application performance will benefit, and as such, it is
worthwhile to invest the time to partition such logic. However, if the non-visual logic is only
slightly sluggish, it may be possible to optimize the code without having to partition it to the
application server.

2.1.3 Impact of large data transmission

When you first open a Window there are two types of files downloaded. The first type
is the HTML and JavaScript files ("Web files") that contain the UI and UI logic of the
application Window. The second type is data files that contain the result set, for example for
a DataWindow retrieve. The time to download these files is affected by two factors: 1) the
network connection and 2) the size of the files to be downloaded.

The Web files do not impact performance because of their small size and the enhanced
ability of the browser to "cache" them. The Web files for a given PowerBuilder Window
are typically between 25-75 KB. Because these Web files are static in nature, once a given
application Window has been opened, the Web files will be cached on the Client computer.
As such, once these Web files are cached, their impact on performance is essentially non-
existent.

Under most circumstances, these Web files are not re-downloaded when the Window
is reopened. The only exceptions are if 1) the temporary Internet files folder has been
emptied or 2) the application has been updated and redeployed to the server. If the latter has
happened, Web files for only those Windows that have been modified will be automatically
downloaded from the Web server.

Only the data files containing the result sets may or may not be cached (depending on
whether you have enabled DataWindow caching). A result set of 50 records would typically
result in a 12 KB data file. Every 5 records would typically add another 1.2 KB to the data
file size. So, for example, a 500-record result set would typically correspond to a 120 KB
data file. If DataWindow caching is not enabled, the data files corresponding with such
DataWindows will be downloaded from the server each time a DataWindow retrieve is
invoked.

The good news is that Appeon has built-in 10X data compression for DataWindow result set
to essentially eliminate the time spent downloading these data files. The same 500-record

Appeon Performance Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 9

result set that would normally correspond to a 120 KB data file would only result in the
download of a 12 KB data file from the server. This compression feature makes even the
largest of result sets quick to transfer.

In conclusion, due to Web file caching feature of the Web browser, Appeon's built-in
DataWindow caching technology and 10X data compression technology, generally speaking
neither the Web files nor data files should have any noticeable impact on the performance of
your Web application.

2.2 Expected performance level

When comparing a PowerBuilder application to the performance of a Web application
deployed by Appeon to a LAN environment, generally speaking the performance of the two
will be quite similar. In some cases (for certain operations) Appeon may actually be even
faster than PowerBuilder.

The reason is that Appeon has been tuned for nearly a decade to offer the best performance
possible for real-life PowerBuilder applications:

• Large PowerBuilder applications up to 600MB (of PBLs) including several thousand
DataWindows and thousands of Windows.

• Complex screens containing as much as 80 DataWindows in a single Window

• Dynamically created objects (DataWindows, UserObjects, etc.)

• PFC and other high-overhead frameworks similar to PFC.

2.3 Automatic performance boosting

Appeon has a number of features built into its infrastructure/framework to instantly or
automatically boost the performance of PowerBuilder applications when deployed to the
Web. Many of these features are always on and transparently working in the background to
boost performance. Other features are user-selectable and must be configured. The following
table is a list of these features and the configuration of these features is covered in Chapter 3,
Performance-Related Settings.

Table 2.1: Appeon Performance Boosting Features

Performance
Feature

Description Location

Just-in-Time
Downloading

As the application is run and various windows are
opened, only the Web files required for that particular
window are downloaded at that point in time. Once
the Web files are downloaded, they are cached in the
Internet Explorer temporary files folder and are not
downloaded again.

Appeon
Infrastructure

10X Web File
Compression

All JavaScript files are compressed by as much
as 10X, then the compressed version of the file is
downloaded over HTTP to the Web browser.

Appeon
Developer

Appeon Performance Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 10

Performance
Feature

Description Location

10X Data File
Compression

For each DataWindow or DataStore retrieval, the
result set is first retrieved by the application server,
automatically compressed by 10 times in most cases,
and then downloaded over HTTP to the Web browser.
Utilizing AJAX technology, only the DataWindow
or DataStore is refreshed and the rest of the screen
remains intact.

Appeon
Infrastructure

DataWindow
Data Caching

For each DataWindow or DataStore, the developer
has the option of enabling caching of the result set.
Appeon enables caching at the application server, Web
server, and Web browser so every tier of the Web
architecture is benefiting from the best performance
and scalability possible.

Appeon
Enterprise
Manager

Merge files Merges multiple JavaScript files into a single
file to reduce the number of HTTP requests and
corresponding overhead.

Appeon
Developer

Multi-thread
Downloading

Downloads are multi-threaded to boost the application
runtime performance.

Appeon
Enterprise
Manager

Custom Libraries
Downloading

Any custom libraries can be automatically downloaded
and installed with your Web application, or if the
libraries are very large in size, you can disable this
feature and distribute the libraries some other fashion.

Appeon
Enterprise
Manager

Database
Connection
Pooling

By deploying to a true n-tier Web environment
with Appeon, you can take advantage of Database
Connection Pooling, a feature of most application
servers. Connection Pooling does exactly that, it
establishes a pool of connections to your database,
which is shared among your clients. So rather than
each client having its own dedicated connection to
the database, a fewer number of connections can be
rotated among all the users. For large deployments
with thousands of clients this can boost database
scalability noticeably.

Appeon
Infrastructure

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 11

3 Performance-Related Settings

3.1 Overview

Performance settings need to be configured in Appeon Developer, Appeon Enterprise
Manager, Web browser and your application server to ensure good performance in a
production environment. If you identify any performance bottlenecks, it is strongly
recommended that you first ensure all performance-related settings are correctly configured.
Only if the performance issues still persist after the performance settings are configured
correctly, then it is recommended to consider optimizing your PowerBuilder code.

3.2 Appeon Developer performance settings

The following table lists the Appeon performance settings that the developer can configure
(in the application profile) of Appeon Developer to boost performance. To make a
performance setting effective for an application, enable the option in the application profile
and then perform a "Full Deployment" of the application.

Table 3.1: Performance settings in Appeon Developer

Performance
Feature

Description User-Selectable

10X Web File
Compression

Compresses files when they are transferred over the
network.

User must enable
this feature for
it to become
effective.

Merge files Merges the small files during the application
deployment. The small files will be downloaded to the
client in one file package at one call, instead of being
downloaded one by one at separate calls.

User must enable
this feature for
it to become
effective.

Performance
Analyzer
compliance

Enables the application to be deployed in a method
compliant with the Performance Analyzer tool.

The application deployed with this option can run
with the Performance Analyzer tool at runtime to
diagnose the performance issues. For more about the
Performance Analyzer tool, see Appeon Performance
Analyzer.

Note: as the data is not encrypted during transmission
at runtime, therefore, this option is recommended to
use only at the test or development stage.

User must enable
this feature for
it to become
effective.

Download
ActiveX files in
a single thread

Downloads the two ActiveX files in the same thread at
runtime.

Using the same thread to download the two ActiveX
files can speed up the download under particular
network conditions.

User must enable
this feature for
it to become
effective.

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 12

3.3 Appeon Enterprise Manager performance settings

3.3.1 Timeout settings

By setting proper values for Timeout Detection Interval and Timeout Settings in AEM,
Appeon Server can release the timeout and invalid database connections in time, thus can
avoid database deadlock or malfunctions, so that the concurrent processing ability and the
running stability of Appeon Server for .NET can be greatly enhanced.

3.3.1.1 Session Timeout Detection Interval

The Session Timeout Detection Interval setting is to specify the interval (in seconds) to check
whether sessions have timed out.

It is recommended that the value is smaller than the Session Timeout value. The default value
is 30 seconds. The value recommended by the system is based on your Session Timeout
values, if the Session Timeout values are different from applications, the system will multiply
the smallest value with 0.15 to get the recommended value.

3.3.1.2 Transaction Timeout Detection Interval

The Transaction Timeout Detection Interval setting is to specify the interval (in seconds) to
check whether transactions have timed out.

It is recommended that the value is smaller than the Transaction Timeout value. The default
value is 30 seconds. The value recommended by the system is based on your Transaction
Timeout values, if the Transaction Timeout values are different from applications, the system
will multiply the smallest value with 0.15 to get the recommended value.

3.3.1.3 Session timeout

Session timeout ends the user session and rolls back all database updates since the last
commit for a user session. The default value is 3600 seconds. Session Timeout should be
larger than the Transaction Timeout setting. Generally speaking, Session Timeout should not
be smaller than 3600 seconds.

3.3.1.4 Transaction timeout

Transaction timeout rolls back all database updates since the last commit in a transaction. The
default value is 120 seconds. Transaction Timeout should be less than Session Timeout.

If transaction timeout in the application database is set to 1800 seconds, then Transaction
Timeout in AEM should be set to 1810 or larger.

If transaction timeout in the application database is not set, then Transaction Timeout in
AEM should be set to a number greater than the maximum time needed to execute regular
database operations for the Web application, suppose the most time-consuming table query
operation takes 3600 seconds to complete, then Transaction Timeout should be set to 3610 or
larger.

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 13

3.3.1.5 Rollback Completion time

Specifies the maximum time (in seconds) to complete a rollback of a transaction. If the
time to roll back transaction exceeds the specified value, the transaction rollback will be
terminated. The default value is 3 seconds.

It is recommended that it is set to a number between 3 seconds and Transaction Timeout *0.1.

3.3.1.6 Maximum Rollback Retries

The maximum times to retry a rollback of a transaction. Appeon Server executes a rollback
if a transaction times out. If the rollback fails, Appeon Server will keep retrying until this
maximum value is reached. Setting this value to 0 will disable this feature. The default value
is 3.

It is recommended that it is set to a number smaller than 10.

3.3.2 DataWindow data caching

Appeon Enterprise Manager (AEM) provides a DataWindow data cache mechanism for
caching the frequently used DataWindow data. It is recommended that you enable the cache
for the DataWindow objects whose data is relatively static. Any DataWindow objects whose
data is fairly dynamic should remain unchecked, otherwise you will experience overhead
from the caching mechanism without the true benefits of the caching.

NOTE: DataWindow Data Cache will not be effective until you fulfill all the configuration
requirements that are detailed in Section 5.4.8.3, “DataWindow Data Cache” in Appeon
Server Configuration Guide for .NET or in Appeon Server Configuration Guide for J2EE.
Also, this feature is only supported on Windows servers.

3.3.3 Multi-thread download settings

Multi-thread downloads boost the application runtime performance. However, if there are
many threads competing for the processing power of Web server, it may slow down the
performance of Web server. Therefore, you should not specify an unnecessarily large number
of threads in AEM. It may take some trial and error to fine-tune the performance.

3.3.4 Custom Libraries download settings

If your application utilizes a customer library (e.g. DLL, OCX, etc.), you can specify in AEM
how the custom library should be downloaded to the client:

• In most situations you should set the install mode to "Install automatically without asking
user" or "Confirm with user, then install automatically". With these options, the custom
libraries will be automatically downloaded and seamlessly installed to the Web browser.

• However, if the file size of the custom libraries is extremely large (e.g. tens of megabytes),
you should set the install mode to "Install manually (no automatic installation)".With this
option, Appeon does not automatically download and install the custom libraries. As such,
you must distribute the custom libraries to users and your users need to install it manually.

For more details about the custom libraries download settings, refer to Section 5.4.4.3,
“DLL/OCX Files” in Appeon Server Configuration Guide for .NET or in Appeon Server
Configuration Guide for J2EE.

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 14

3.3.5 Log file settings

Once your application is fully tested and ready to move to a production environment, it is
recommended to disable the AEM log functionality. Writing log files incurs disk activity,
which can impact performance. Generally, the impact is small but nonetheless it will not hurt
to disable this.

3.4 Internet Explorer performance settings

For optimal performance, it is recommended that the Web file caching functionality of
Internet Explorer be fully utilized. This will significantly reduce the time required to load and
start an application following the initial load. The configuration outlined below will ensure
that you realize the best performance while safeguarding your application from becoming
"stale".

Step 1: Open Internet Explorer and select Tools > Internet Options. Verify that the Empty
Temporary Internet Files folder when browser is closed option is not checked under the
Security section of the Advanced tab of Internet Options.

Step 2: Click the Settings button under the General tab to configure the Temporary Internet
Files settings.

Step 3: Select the Automatically radio button and verify that the Amount of disk space to use
scroll box is set to a reasonable number, such as 200 MB or more.

Now the browser is set to automatically check for newer versions of the Web application.

3.5 Web and application server performance settings

3.5.1 SAP EAServer

The core processing of your Web application happens on the application server. As such,
the better EAServer performs the better your Web application will perform. This section
highlights several key performance settings you should definitely consider. You may refer
to the EAServer Performance and Tuning Guide for details on how to extensively tune
EAServer.

3.5.1.1 JVM startup option

When starting EAServer, the -jvmtype switch specifies whether the client, server, or classic
Java VM be used. It is recommended that you set the switch to the J2EE server VM.

3.5.1.2 Configuring data sources

3.5.1.2.1 JDBC driver used by EAServer data source

You should avoid using any JDBC-ODBC driver. Instead, use the Native-protocol/all-Java
driver. The only exception is SAP SQL Anywhere, which provides the iAnywhere JDBC
driver that actually performs remarkably well. For detailed information on configuring JDBC
drivers refer to Section 4.2.4, “JDBC driver preparation” in Appeon Server Configuration
Guide for J2EE.

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 15

3.5.1.2.2 Configuring the cache size

By default, EAServer is configured to establish 10 database connections. For applications
with many several hundred or several thousands of users, this number is often too small. If
not increased, it will hurt the performance of your application since your users will be waiting
in a queue for an available database connection. On the other hand, if your Web deployment
is few hundred users or less, you should not specify an unnecessarily large number as it will
consume more server resources and possibly negatively affect performance.

The maximum pool size property, "com.sybase.jaguar.conncache.poolsize.max", defines
the maximum number of connections to be held in the connection pool. The size property
is generally set to 10%-20% of the maximum number of concurrent users. However, it is
possible to use the FORCE option when connecting to obtain additional connections outside
of the pool if none are available. Refer to the EAServer Performance and Tuning Guide for
details on tuning the cache size.

3.5.1.3 HTTP properties

You should configure the EAServer http.maxthreads and server.maxconnections properties
such that it can handle the expected concurrent user load for the Web Server. If these
properties are improperly configured, it may result in poor performance and possibly result in
failed HTTP requests. The httpstat.dat file keeps track of cumulative hits on http objects.

Set the http.maxthreads property to the estimated average number of concurrent HTTP
requests (including Servlets and any other server pages). For example, if it is expected that
there will be 100 concurrent requests, set the http.maxthreads slightly higher (for example,
120). This will give you a margin of safety. Similarly, set the server.maxconnections to
accommodate the average number of concurrent IIOP requests that are expected.

Another property you should pay attention to is server.maxthreads. Set this property to equal
the combined value of http.maxthreads and server.maxconnections, and add 50 as a margin
of safety (http.maxthreads + server.maxthreads + 50). However, if you are using an older
version of PowerBuilder components with a bind thread set, you should increase this number
as outlined in the EAServer Performance Tuning Techniques document.

Since each application and environment is unique, these are starting points that need to be
monitored and adjusted for optimal results. Load and stress testing your application will help
you to identify any issues prior to moving your Web application to a production environment.

3.5.2 Microsoft IIS server

Tune the IIS server will help you to avoid some common errors and gain a better performance
of Web applications. This section highlights the key performance settings of IIS. You can
refer to the IIS Operation Guide for details on how to extensively tune IIS server.

3.5.2.1 Recommendations for avoiding common errors on IIS

IIS should be tuned to avoid the contention, poor performance, and deadlocks for the Web
applications. Following are some samples of commons error that you may find in Application
log, System log or even log in the Web browser.

• Event Type: Error

Event Source: ASP.NET

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 16

Event ID: 1003

Description: aspnet_wp.exe (PID: <xxx>) was recycled because it was suspected to be
in a deadlocked state. It did not send any responses for pending requests in the last 180
seconds.

• Event Type: Warning

Event Source: W3SVC-WP

Event ID: 2262

Description: ISAPI 'C:\Windows\Microsoft.net\Framework\v.2.0.50727\aspnet_isapi.dll'
reported itself as unhealthy for the following reason: 'Deadlock detected'.

• Event Type: Warning

Event Source: W3SVC

Event ID: 1013

Description: A process serving application pool 'DefaultAppPool' exceeded time limits
during shut down. The process id was '<xxxx>'.

• You may receive the exception error message: "System.InvalidOperationException: There
were not enough free threads in the ThreadPool object to complete the operation."

• In the browser, you may also receive the exception error message: "Request timed out".

To avoid such problems, you can configure ASP.NET according to the suggestions below
so to best fit your situation and make the Web application perform better. Details on how to
configure the ASP.NET can be found at Advanced thread settings.

1. Limit the number of .NET requests that can execute at the same time to approximately 12
per CPU.

2. Permit Web service callbacks to freely use threads in the ThreadPool.

3. Select an appropriate value for the maxconnections parameter. Base your selection on the
number of IP addresses and AppDomains that are used.

3.5.2.2 Advanced thread settings

The following settings are the most-Appeon-related settings in ASP.NET.

When you call an Appeon web application from IIS, you may experience contention, poor
performance, and deadlocks. Clients may report that requests stop responding (or "hang") or
take a very long time to execute.

This problem might occur because ASP.NET limits the number of worker threads and
completion port threads that a call can use to execute requests. If there are not sufficient
threads available, the request is queued until sufficient threads are free to make the request.
Therefore, .Net will not execute more than following number of requests at the same time:

(maxWorkerThreads*number of CPUs)-minFreeThreads

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 17

Note: The minFreeThreads parameter and the minLocalRequestFreeThreads parameter are
not implicitly multiplied by the number of CPUs.

3.5.2.2.1 maxWorkerThreads and maxIoThreads

.NET uses the following two configuration settings to limit the maximum number of worker
threads and completion threads that are used:

<processModel maxWorkerThreads="20" maxIoThreads="20" />

The maxWorkerThreads parameter and the maxIoThreads parameter are implicitly multiplied
by the number of CPUs, the default value of these two parameters are both 20. If for some
reason your application is slow, perhaps waiting for external resources, you could try to
increase the number of threads to a value less than 100. For example, if you have two
processors, the maximum number of worker threads is the following: 2*maxWorkerThreads

3.5.2.2.2 minWorkerThreads

The setting determines how many worker threads may be made available immediately to
service a remote request. By default, the minWorkerThreads parameter is not present in either
the Web.config file or the Machine.config file at C:\WINDOWS\Microsoft.NET\Framework
\v2.0.50727\CONFIG. You need to manually add the following line to make the setting work.

<processModel minWorkerThreads="1" />

Threads that are controlled by this setting can be created at a much faster rate than worker
threads that are created in other ways. The default value for the minWorkerThreads parameter
is 1. The setting is recommended to set in the following way.

minWorkerThreads = maxWorkerThreads / 2

Note: This setting is implicitly multiplied by the number of CPUs.

3.5.2.2.3 minFreeThreads and minLocalRequestFreeThreads

The two settings determine how many worker threads and completion port threads must be
available to start a remote request or a local request:

<httpRuntime minFreeThreads="8" minLocalRequestFreeThreads="8" />

The default value is 8. If there are not sufficient threads available, the request is queued until
sufficient threads are free to make the request. Therefore, .NET will not execute more than
the following number of requests at the same time:

(maxWorkerThreads*number of CPUs)-minFreeThreads

Note: The minFreeThreads parameter and the minLocalRequestFreeThreads parameter are
not implicitly multiplied by the number of CPUs.

3.5.2.2.4 maxconnection

The maxconnection parameter determines how many connections can be made to a specific
IP address. The parameter appears as follows:

<connectionManagement>
 <add address="*" maxconnection="2" />
 <add address="65.53.32.230" maxconnection="12" />

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 18

</connectionManagement>

The maxconnection parameter setting applies to the AppDomain level. By default, because
this setting applies to the AppDomain level, you can create a maximum of two connections to
a specific IP address from each AppDomain in your process.

3.5.2.2.5 execution Timeout

The setting limits the request execution time:

<httpRuntime executionTimeout="90" />

The default is 110 seconds.

Note: If you increase the value of the executionTimeout parameter, you may also have to
modify the processModel responseDeadlockInterval parameter setting.

3.5.2.2.6 Recommended thread settings

For most applications, you can use and apply the recommended changes in the
Machine.config file as below, which can be found at C:\WINDOWS\Microsoft.NET
\Framework\v2.0.********\CONFIG:

1. Set the values of the maxWorkerThreads parameter and the maxIoThreads parameter to
100.

2. Set the value of the maxconnection parameter to 12*N (N is the number of CPUs that you
have).

3. Set the values of the minFreeThreads parameter to 22*N and the
minLocalRequestFreeThreads parameter to 19*N.

4. Set the value of minWorkerThreads to 50. Remember, minWorkerThreads is not in the
configuration file by default. You must add it.

If you have hyperthreading enabled, you must use the number of logical CPUs instead of the
number of physical CPUs.

Note: If you have a server with one processor, when you use this configuration, you can
execute a maximum of 78 .NET requests at the same time because 100-22=78. Therefore,
at least 22*N worker threads and 22*N completion port threads are available for other uses
(such as for the Web service callbacks).

For example, if you have a server with four processors and hyperthreading enabled, then n=8
(=2*4). Based on these formulas, you would use the following values for the configuration
settings that are mentioned in this section.

<system.web>
......
<processModel maxWorkerThreads="100" maxIoThreads="100" minWorkerThreads="50" />
<httpRuntime minFreeThreads="176" minLocalRequestFreeThreads="152" />
......
</system.web>
......
<system.net>
......

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 19

<connectionManagement>
 <add address="[ProvideIPHere]" maxconnection="96" />
</connectionManagement>
......
</system.net>

Also, if you use this configuration, 12 connections are available per CPU per IP address for
each AppDomain, and you can execute a maximum of 624 .NET requests at the same time
because 8* 100 - 176= 624.

3.6 Database performance settings

3.6.1 Recommended database driver

The following database drivers are recommended for Appeon .NET:

Table 3.2: Recommended database drivers

Database Type Recommended Driver

SAP ASA/SQL Anywhere 8.0.2, 9.0, or
10.0.1

ODBC driver

SAP ASA/SQL Anywhere 11.0, 12.0 or 16.0 Native driver

SAP HANA ODBC driver

SAP ASE Native driver

MS SQL Server Native driver

Oracle Native driver

Informix Native driver

Teradata Native driver

IBM DB2 Native driver

MySQL Native driver

PostgreSQL Native driver

3.6.2 Recommended database setting

Setting appropriate values for the database parameters based on the actual needs can reduce
the occurrence of database deadlock and block hence can improve the concurrency and
stability of the Web application.

3.6.2.1 Command Timeout

Specify the timeout period for the commands. In the following table, it shows how to set
Command Timeout to 120 seconds in different databases.

Table 3.3: Command timeout settings in different databases

Database Type Parameter Remark

SAP ASA/SQL
Anywhere

BLOCKING_TIMEOUT Execute the following command:

Performance-Related Settings Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 20

Database Type Parameter Remark
SET OPTION
Public.BLOCKING_TIMEOUT =
120000

ASE lock wait period Execute the following command:

sp_configure "lock wait period", 120

SQL Server - Modify the Command Timeout
parameter in Edit Data Source page of
AEM.

Command Timeout = 120

Oracle IDLE_TIME Execute the following command:

ALTER PROFILE default LIMIT
IDLE_TIME 2;

Informix DEADLOCK_TIMEOUT Modify the DEADLOCK_TIMEOUT
parameter in ONCONFIG.std file.

DEADLOCK_TIMEOUT = 120

Teradata - Modify the Command Timeout
parameter in Edit Data Source page of
AEM.

Command Timeout = 120

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 21

4 Identifying Performance Bottlenecks

4.1 Overview

There are several methods to identify performance bottlenecks in your application. You
can manually test your application or utilize Appeon's built-in performance reporting tool.
Manually testing is the most time-consuming but also the most comprehensive and accurate.
Nonetheless, the performance reporting tool, can help to identify most problematic Windows
without a lot of work.

4.2 Appeon Performance Analyzer

Appeon Performance Analyzer is a tool in Appeon Server Web Component to help diagnose
application performance by analyzing script calls, application RPC calls, application errors
and application downloads, and thereby calculate the time used by function calls or object
calls.

4.2.1 Getting Started

Before we start to work with Appeon Performance Analyzer, let's learn how to start it and
what it looks like first.

• Enabling Appeon Performance Analyzer

• Starting Appeon Performance Analyzer

• Getting to Know Appeon Performance Analyzer

• Removing Appeon Performance Analyzer

4.2.1.1 Enabling Appeon Performance Analyzer

Appeon Performance Analyzer is turned on or off at application level. If you want to analyze
an application by using Appeon Performance Analyzer, you need to deploy the application in
a mode compliant with Performance Analyzer. To do this:

Step 1: Select the Performance Analyze compliance option in the Application Profile
Configuration tool in Appeon Developer. It is not selected by default.

Step 2: Deploy the application using the Appeon Deployment Wizard in Appeon Developer.

The application files are deployed and generated in a mode compliant with the Performance
Analyzer tool.

Note: as the data is not encrypted during transmission at runtime, therefore, the Performance
Analyze compliance option is recommended to use only at the test or development stage.
When the application is ready to go live in a production environment, turn off this option and
then re-deploy the application, to ensure data is encrypted during transmission.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 22

Figure 4.1: Performance Analyze compliance option

4.2.1.2 Starting Appeon Performance Analyzer

Performance Analyzer is a Web tool that can only be launched side by side with the Web
application you want to analyze.

Notes:

1. Appeon Performance Analyzer can only run on a 32-bit operating system.

2. Appeon Performance Analyzer can only run in Internet Explorer, and cannot run in the
other Web browser such as Edge, FireFox, Chrome, Opera, etc.

3. For the first time to run it, users should log into Windows as an administrator and turn
off UAC (if using Windows Vista, Windows 7 etc.). To turn off UAC, go to Windows
Control Panel > User Accounts, click Turn User Account Control on or off, then
uncheck the check box of Use User Account Control (UAC) to help protect your
computer.

You can start Appeon Performance Analyzer by the following steps:

Step 1: In Internet Explorer, run the Web application you want to analyze. The URL of the
Web application should look like this: http://hostname:port/applicationname/x32_index.htm.

Note: Hostname indicates the IP address or machine name of the Web Server, and port
indicates the HTTP port number of the Web Server. Port is optional and specifies the port
number that your Web Server accepts for HTTP connections. If it is not specified, the default
port is 80. If several Web Servers are running on the same machine, make sure that the port
specified is a port of the Appeon Web Server.

Step 2: When the application has started up, append "?performance=1" to the application
URL in the IE address bar and press Enter to refresh the application.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 23

So the complete URL should look like http://hostname:port/applicationname/x32_index.htm?
performance=1 or http://hostname:port/applicationname/x32_application.htm?
performance=1.

If the Performance Analyzer is run for the first time, you will be prompted to install the
Appeon Performance Analyzer add-on. Click Install.

Figure 4.2: Performance analyze installation prompt

Figure 4.3: Performance analyze installation prompt

Appeon Performance Analyzer will start up side by side with the Web application. The main
window of Appeon Performance Analyzer looks like this.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 24

Figure 4.4: Performance analyzer main window

Appeon Performance Analyzer will automatically open when the Web application runs by
URL http://hostname:port/applicationname/x32_index.htm?performance=1, unless you
deselect the Show window when started option in the Appeon Performance Analyzer
Configuration dialog (from menu System > Config). See System Configuration for details.

4.2.1.3 Getting to know Appeon Performance Analyzer

Appeon Performance Analyzer window includes three parts:

1 - The menu bar

The menu bar includes all the settings for Performance Analyzer. You can get detailed
information from the sections below.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 25

Figure 4.5: Menu bar

2 - Analyzing panel

The Analyzing panel displays the data analyzed by the Performance Analyzer in a treeview.
Each node of the tree represents a JS call, AX call, RPC call or Download.

Figure 4.6: Analyzing panel

3 - Detail view panel

Figure 4.7: Detail view panel

The Detail view panel shows the detailed information of the selected tree node, and also
shows the statistics and search results.

4.2.1.4 Removing Appeon Performance Analyzer

In order to remove Appeon Performance Analyzer completely, you can follow the steps
below:

Step 1: Make sure that the user has administrator permission, and then turn off UAC and IE.

Step 2: Open the command window and enter the following commands one by one:

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 26

regsvr32 -u "%systemroot%\downloaded program files\APBPanalysis.dll"

del "%systemroot%\downloaded program files\APBPanalysis.dll"

del "%systemroot%\downloaded program files\APBPanalysis.inf"

del "c:\performance\EonTracer.ini"

del "c:\performance\EonTracer.log"

rd "c:\performance"

After all the commands above are run, the Appeon Performance Analyzer is removed
completely.

4.2.2 Working with Appeon Performance Analyzer

This section will talk about the following topics:

• System Configuration

• Calls Analysis

• Download Analysis

• View Detail

• Additional functions

4.2.2.1 System Configuration

In order to make Appeon Performance Analyzer more convenient for future use, you can
make some configurations in the System menu.

Click menu System | Config. The Appeon Performance Analyzer Configuration dialog
opens:

Figure 4.8: Appeon Performance Analyzer Configuration dialog

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 27

Enable Tracing

This option controls if Appeon Performance Analyzer works or not. If you want to work
with Appeon Performance Analyzer to analyze an application program, the option must be
selected. By default it is selected.

Instant update

By selecting Instant update, the analysis data in the analyzing panel can be updated instantly
when operation changes. When Instant update is not selected, Performance Analyzer will
work faster; but users will need to manually click menu View | Update to see the latest data.

Restore to default location

By selecting this option, the main window of Appeon Performance Analyzer always opens
at the default position. By unselecting this option, Appeon Performance Analyzer will
remember its last position on the screen when it exits, and will open at the last location on the
screen when it starts next time. By default, this option is selected.

Show window when started

By selecting this option, Appeon Performance Analyzer will automatically start when
the Web application runs. You can deselect this option to disable the automatic starting
of Appeon Performance Analyzer, and manually start Appeon Performance Analyzer by
pressing Ctrl + Shift + F12. By default it is selected.

Child items limited

This option controls the maximum number of child items displayed in the treeview.

Enable log file

If you want to save the analyzing log in the local machine, select Enable log file. And the log
file will be created after the Web application is closed.

Figure 4.9: Enable log file option

As shown above, the default destination is in C:\ disk. You can specify a different location by
clicking Browse to select an existing folder on your computer.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 28

Clear previous log files when tracer started

This option becomes selectable when Enable log file is selected. If you want to clear the
analyzing log files saved in the last starting of Appeon Performance Analyzer, select this
option.

After you finish the configuration, click OK to close the dialog.

4.2.2.2 Calls Analysis

Appeon Performance Analyzer enables you to perform the following analysis easily:

• JavaScript Calls Analysis

• ActiveX Calls Analysis

• Remote Procedure Calls Analysis

No matter what operation you execute on the Web application, e.g. a click on a button to
open a dialog in the Web application, a root item Root will show in the first line of the
analyzing panel to show the total executing time consumed by the operation.

By expanding Root, you can view the time consumed by different callings.

By default, the JS Calls, Ax Calls, RPC, Download, Detail View buttons are selected, which
means, information related with them will be automatically displayed in the analyzing panel
and the detail view panel.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 29

Figure 4.10: View menu

4.2.2.2.1 JavaScript Calls Analysis

By default, the View | View JS Calls menu item is selected, so the JavaScript calls are
automatically listed in the analyzing panel. If you do not want to view the JavaScript calls
in the analyzing panel, you can click View JS Calls menu item to deselect it. If you want
to view the JavaScript calls only, you can click the other menu items in the View menu to
deselect them, as shown in the figure below.

You can expand the sub-nodes in the JavaScript calls list to further find out the time
consumed by each JavaScript function calls.

You can see more details of JavaScript calls in the detail view panel.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 30

Figure 4.11: View JS Calls menu

4.2.2.2.2 ActiveX Calls Analysis

By default, View AX Calls menu item in the View menu is selected, so the ActiveX calls are
automatically listed in the analyzing panel. If you do not want to view the ActiveX calls in
the analyzing panel, you can click View AX Calls menu item to deselect it. If you want to
view the ActiveX calls only, you can click the other optional menu items in the View menu
to deselect them, as shown in the figure below.

You can see more details of the ActiveX calls in the Detail View panel.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 31

Figure 4.12: View AX Calls menu

4.2.2.2.3 Remote Procedure Calls Analysis

By default, View RPC in the View menu is selected, so the RPC calls are automatically
listed in the analyzing panel. If you do not want to view the RPC calls in the analyzing panel,
you can click View RPC menu item to deselect it. If you want to view the RPC calls only,
you can click the other optional menu items in the View menu to deselect them, as shown in
the figure below.

You can see more details of the RPC calls in the Detail View panel.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 32

Figure 4.13: View RPC menu

4.2.2.3 Download Analysis

By default, View Download in the View menu is selected, so the downloads are
automatically listed in the analyzing panel. If you do not want to view the downloads in the
analyzing panel, you can click the View Download menu item to deselect it. If you want to
view the downloads only, you can click the other optional menu items in the View menu to
deselect them, as shown in the figure below.

You can see more details of downloads in the Detail View panel.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 33

Figure 4.14: View Download menu

4.2.2.4 View Detail

By default, the View | View Detail menu item is selected, so the detail view panel is
automatically displayed beneath the analyzing panel. If you do not want to see the detail view
panel, you can click the View Detail menu item to deselect it.

The detail view panel enables you to view the details and statistics of calls.

View details of JavaScript calls in the detail view panel:

Display the detail view panel by selecting the View Detail menu item in the View menu.

Select the View JS Calls menu item in the View menu to display the JavaScript calls in the
analyzing panel, then select a JavaScript call, the statistics of the selected call are displayed in
the Statistics tab of the detail view panel.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 34

Figure 4.15: View statistics of JavaScript calls

View details of ActiveX calls in the detail view panel by selecting the Details tab:

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 35

Figure 4.16: View details of ActiveX calls

View statistics of ActiveX calls in the detail view panel by selecting the Statistics tab:

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 36

Figure 4.17: View statistics of ActiveX calls

View details of RPC calls in the detail view panel by selecting the Details tab:

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 37

Figure 4.18: View details of RPC calls

View statistics of RPC calls in the detail view panel by selecting the Statistics tab:

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 38

Figure 4.19: View statistics of RPC calls

View details of downloads in the detail view panel by selecting the Details tab:

The Details tab shows the download URL on the Web server and the storage location of the
downloaded file.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 39

Figure 4.20: View details of downloads

View statistics of downloads in the detail view panel by selecting the Statistics tab:

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 40

Figure 4.21: View statistics of downloads

View statistics of root items in the detail view panel:

When you click the item of Root, the Statistics tab shows the statistics for all the calls.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 41

Figure 4.22: View statistics of root items

Apart from the above, the detail view panel can also show the search results. Refer to the
Find function for details.

4.2.2.5 Additional Functions

Appeon Performance Analyzer also provides the following additional functions:

• Filter function

• Find function

• Save As XML function

• New Root Item function

4.2.2.5.1 Filter function

Appeon Performance Analyzer enables you to filter the functions or objects which you do
not want to focus on temporarily. Here, in Appeon Performance Analyzer, to filter means to
remove.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 42

The filter function is only applicable to ActiveX calling analysis.

Click System | Filter menu item and the Filter Configuration dialog opens. Select Enable
Filter.

Note: To enable the Filter function, you must make sure Enable Tracing is selected in
System Configuration dialog.

If you want to analyze all the functions or objects in the application, make sure that Enable
Filter is not selected.

Figure 4.23: Filter Configuration dialog

Filter function for ActiveX calls analysis

Go through the steps below to learn how to filter objects and functions for ActiveX calls
analysis.

Step 1: Make sure View AX Calls under the View menu is selected, so all the ActiveX
functions and objects called in the operation are listed.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 43

Figure 4.24: View ActiveX calls

Step 2: Click menu System | Filter. In the Filter Configuration dialog, select Enable Filter.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 44

Figure 4.25: Filter Configuration dialog

Step 3: In the Filter group box, click the Function button. The Function Picker dialog
opens.

Figure 4.26: Function Picker dialog

Step 4: Select the functions and/or objects in the Unselected list. Click the arrow button

() to move the selected items to the Selected list. Click OK to close the dialog.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 45

The double-arrow buttons and are used to move all items from one list to the
other.

Figure 4.27: Selected functions and objects

Now, the selected items are displayed in the Filter group box.

Note that they are in Group 1. You can have different groups for storing different selected
items. The different groups can be all functions, all objects, or mixed with functions and
objects.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 46

Figure 4.28: Filter Configuration dialog

Step 5: In the Option group box, select Filter Unselected. This will display the selected
items only, and hide the unselected items. If you select Filter Selected, it will hide the
selected items, and display the unselected items.

Step 6: Click OK to close the dialog.

If Filter Unselected is selected, the analyzing panel is refreshed to show the selected items
only (and hide the unselected items).

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 47

Figure 4.29: Result from Filter Unselected

If Filter Selected is selected, the analyzing panel is refreshed to show the unselected items
only (and hind the selected items).

Figure 4.30: Result from Filter selected

4.2.2.5.2 Find function

You can find functions or objects by typing part of or complete name of the function or
object.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 48

If you click menu System | Find, a dialog box will pop up as below:

Figure 4.31: Find dialog

For example, type "applica" in the Find field, then click OK.

Figure 4.32: Find dialog

The detail View panel shows all the results related to "applica" in the Find in Tree tab.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 49

Figure 4.33: Find results

4.2.2.5.3 Save As XML function

The Performance Analyzer allows you to save the analysis contents in the analyzing panel as
XML files.

If you click menu System | Save As XML, a dialog box will pop up as below:

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 50

Figure 4.34: Save As dialog

Input the file name and select the path, and then click the Save button to save the XML file.

4.2.2.5.4 New Root Item function

To obverse analysis data easily, you can click menu View | Clear All to clear the original
analysis data, or create new root items.

If you click menu System | New Root Item, a dialog box will pop up as below:

Figure 4.35: New Root Item dialog

Input a root item name (eg. new) and click the OK button. A new root item named "new" is
added in the analysis panel.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 51

Figure 4.36: New root item is added

After this, the root item "new" will be used to display the analysis data in a way similar to the
default Root item.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 52

Figure 4.37: Data in the new root item

4.3 Analyzing log files

4.3.1 Analyzing Windows application log files

Check whether there are log files about the application server in the Event Viewer, then go to
the application server web site to get the detailed solution to solve those Errors.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 53

Figure 4.38: Event Viewer

4.3.2 Analyzing Appeon Server log files

Step 1: Select Debug Mode as the Log Mode.

Figure 4.39: Log mode

Step 2: View the AppeonServer and AppeonError.log.

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 54

Figure 4.40: Viewing logs

Read AppeonServer.log and find out operations which are time consuming and redundant.

4.3.3 Analyzing active transaction log

Step 1: Go to Active Transactions screen and select the intended Transaction ID.

Figure 4.41: Active Transactions

Step 2: Go to Active Transaction Log, you can view more details about what this transaction
acted on the database recently.

Figure 4.42: Active Transaction Log

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 55

Check to view the detailed information of the transaction, maybe you can figure out which
SQL statements is blocked and then optimize you PB code for Appeon.

4.4 Identifying Performance Bottlenecks of Web Server and
Application Server
You can use tools like Load Runner to identify the performance bottlenecks of your web
server and application server. Usually you should consider checking these places: server
runtime environment, network connectivity conditions, and performance relevant parameter
settings (such as timeout settings and cache settings).

Or you can refer to the information provided by your web server and application server
vendor, it will help you more accurately locate the performance bottlenecks and make
appropriate settings according to your actual workload.

4.5 Identifying Performance Bottlenecks of DB Server

4.5.1 Deadlock analysis

If you are doing the stress test and you find some problems during the test, you should check
if there are deadlock of the database before you quite the stress test mode. By the way, if you
find the performance problem when doing the database related operation, you should also
check the deadlock in database.

Take SQL Server database as an example, if you want to check whether there are deadlocks
or not, you can use the following way:

• Execute sp_lock in SQL query analyzer. If you find there are ‘X’ or ‘IX’ of the Mode field,
then it means there are deadlocks. You can find out the deadlocks occurred in which tables
by the information in Resource field.

• Execute sp_who spid in SQL query analyzer, then you can find out the host name of spid
and commands being executed.

4.6 Identifying Performance Bottlenecks of PB application
If your PB application includes poorly written SQL and extensive use of non-datawindow
based (direct SQL statements) SELECTs, UPDATEs, DELETEs and INSERTs, of course
your application runs slow. Tune the performance of PB application is the last but the most
important step. Usually the performance can be obviously improved after modifying the
codes of the PB application.

4.6.1 Analyzing performance bottlenecks of PB application

Output time log for the code and find out time-consuming ones during execution. Please refer
to the following Scripts and load it into PowerBuilder Application. A log with time interval
regarding code will be generated while the object of_log(string arg) is called.

Please check the start time and end time of the code and find out time-consuming ones.

string is_LogFile="C:\debug\logservice.log"
string is_workdir="C:\debug\"

Identifying Performance Bottlenecks Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 56

long il_LogFileHandle
IF NOT directoryexists(is_workdir) THEN
 createdirectory(is_workdir)
END IF
il_LogFileHandle = FileOpen(is_LogFile,StreamMode!,write!,shared!,append!)
FileWrite(il_LogFileHandle,"~r~n~r~n")
of_log("==========Log service initialized=========")

public function integer of_log (string as_message);
IF FileExists(is_LogFile) THEN
 IF FileLength(is_LogFile) > 2097152 THEN//2M
 FileClose(il_logfilehandle)
 FileCopy(is_LogFile,is_LogFile+".bak",true)
 FileDelete(is_LogFile)
 il_LogFileHandle = FileOpen(is_LogFile,StreamMode!,write!,shared!,append!)
 END IF
END IF
as_message = "~r~n"+string(now(),"yyyy-mm-dd hh:mm:ss.fff") +as_message
FileWrite(il_logfilehandle,as_message)
return 1
end function

Tuning: DB Server Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 57

5 Tuning: DB Server

5.1 Database
The database performance will be improved from the following aspects:

• Choose proper database driver. Refer to Recommended database driver in Database
performance settings for details.

• Set reasonable timeout settings. Refer to Command Timeout in Recommended database
setting for details.

• Optimize the table structure.

• Use proper index.

• Optimize SQL statements.

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 58

6 Tuning: Excessive Server Calls

6.1 Overview
Excessive server calls in a given operation can create performance issues for that operation
on slow and high-latency networks. If you are not familiar with the concept of "server calls",
please refer to Impact of the Internet and slow networks and then proceed with this section.

This section will provide four different techniques including code examples to minimize
server calls and thereby optimize the performance of your PowerBuilder application for a
WAN or the Internet.

1. Partition transactions utilizing stored procedures

2. Partition non-visual logic utilizing server-side non-visual objects (NVOs)

3. Eliminating Recursive Embedded SQL

4. Group multiple server calls into one "group" call with Appeon Labels

6.2 Technique #1: partitioning transactions via stored procedures
Imagine your PowerBuilder client contains the following code:

long ll_rows, i
decimal ldec_price, ldec_qty, ldec_amount

ll_rows = dw_1.retrieve(arg_orderid)
for i = 1 to ll_rows
 dw_1.SetItem(i, "price", dw_1.GetItemDecimal(i, "price")*1.2)
next

if dw_1.update() < 0 then
 rollback;
 return
end if

for i = 1 to ll_rows
 ldec_price = dw_1.GetItemDecimal(i, "price")
 ldec_qty = dw_1.GetItemDecimal(i, "qty")

 if ldec_price >= 100 then
 ldec_amount = ldec_amount + ldec_price*ldec_qty
 end if
Next

ll_rows = dw_2.Retrieve(arg_orderid)
dw_2.SetItem(dw_2.GetRow(), "amount", ldec_amount)

If dw_2.update() = 1 then
 Commit;
else
 rollback;
end if

This is not only problematic from a runtime performance perspective since there would be
numerous server calls over the WAN, but also it could result in a "long transaction" that
would tie up the database resulting in poor database scalability.

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 59

The business logic and the data access logic (for saving data) are intermingled. When the
first "Update()" is submitted to the database, the related table in the database will be locked
until the entire transaction is ended by the "Commit()". The longer a transaction is the longer
other clients must wait, resulting in fewer transactions per unit of time.

To improve the performance and scalability of the application, the above code can be
partitioned in two steps:

1. First, move the business logic (or as much possible) outside of the transaction. In other
words, the business logic should appear either before all Updates of the transaction or after
Commit of the transaction. This way the transaction is not tied up while the business logic
is executing.

2. Second, partition the transaction whereby all the Updates are moved into a stored
procedure. The stored procedure will be executed on the database side and only return the
final result. This would eliminate the multiple server calls from the multiple updates to
just one server call over the WAN for saving all the data in one shot.

It is generally best to actually divide the original transaction into three segments or
procedures: "Retrieve Data", "Calculate" (time-consuming logic), and "Save Data". The
"Retrieve Data" procedure retrieves all required data for the calculation. This data usually
would be cached in a DataWindow(s) or a DataStore(s). In the "Calculate" procedure, the
data cached in DataStore will be used to perform the calculation instead of retrieving data
directly from the database. The calculation result would be cached back to a DataStore and
then saved to the database by the "Save Data" procedure.

Example of the new PB client code partitioned into three segments and invoking a stored
procedure to perform the Updates:

long ll_rows, i
decimal ldec_price, ldec_qty, ldec_amount
//Retrieve data
dw_2.Retrieve(arg_orderid)
ll_rows = dw_1.retrieve(arg_orderid)
//Calculate (time-consuming logic)
for i = 1 to ll_rows
 dw_1.SetItem(i, "price", dw_1.GetItemDecimal(i, "price")*1.2)
next

for i = 1 to ll_rows
 ldec_price = dw_1.GetItemDecimal(i, "price")
 ldec_qty = dw_1.GetItemDecimal(i, "qty")

 if ldec_price >= 100 then
 ldec_amount = ldec_amount + ldec_price*ldec_qty
 end if
Next

dw_2.SetItem(dw_2.GetRow(), "amount", ldec_amount)
//Save data
declare UpdateOrder procedure for up_UpdateOrder @OrderID = :arg_orderid,
@amount = :ldec_amount;
execute UpdateOrder;

Example of code for the stored procedure to Update the database:

create procedure up_UpdateOrder(

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 60

@orderid integer,
@amount decimal(18, 2)
)
as
begin
update order_detail set price = price*1.2
where ordered = @orderid

if @@error <> 0
begin
 rollback
 return dba.uf_raiseerror()
end

update orders set amount = @amount
where ordered = @orderid

if @@error <> 0
begin
 rollback
 return dba.uf_raiseerror()
end

commit
end

In summary, with the above performance optimization technique, the performance and
scalability is improved since the transaction is shorter. The server call-inducing Updates are
all implemented on the server-side rather than the client-side, improving the response time.
Secondly, moving the business logic out of the transaction further shortens the transaction.
If the business logic cannot be moved out of the transaction, one may want to consider
implementing the business logic together with the transaction as a stored procedure. In
summary, shorter transactions equals better scalability and faster performance.

6.3 Technique #2: partitioning non-visual logic via NVOs

Partitioning non-visual logic and encapsulating it within PowerBuilder NVOs has been a
long-time best practice among PowerBuilder developers. What's relatively new, however,
is utilizing middleware or application server, such as SAP EAServer, Microsoft IIS, IBM
WebSphere*, Oracle WebLogic*, TmaxSoft JEUS*, or JBoss* to deploy these NVOs to the
server (i.e. server-side NVOs) and invoke them from the client over IIOP or HTTP.

* Requires an SAP Sybase plug-in that is purchased separately from SAP or authorized
resellers.

To give you a better idea of what this looks like, the following diagram shows a very high-
level architecture of PowerBuilder applications utilizing server-side NVOs when deployed as
a Windows Client/Server application as well as an n-tier Web (.NET* or J2EE) application
with Appeon for PowerBuilder.

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 61

Figure 6.1: Architecture with server-side NVOs

Deploying your non-visual logic as server-side NVOs is an excellent way to boost the
performance of your application over a WAN; however, some thought must be given as what
to partition. On one hand, consolidating your business logic within NVOs will significantly
thin out client-side processing and move all those server call-inducing statements to the
server-side running in a low-latency LAN environment. On the other hand, each invocation
of the server-side NVO is a server call in itself.

If the non-visual logic you are partitioning contains multiple statements that result in server
calls, then this would be a good candidate. However, if your non-visual logic does not contain
any statements that would result in server calls, then by partitioning this you have not only
created more work for yourself but actually added an additional server call that didn't exist
before. So unfortunately it's not as simple as moving all non-visual logic to the server-side.

Imagine your PowerBuilder client contains the following code:

long ll_id

dw_1.Retrieve()
dw_1.SetSort("#1 A, #2 D")
dw_1.Sort()

declare order_detail cursor for
select id from order_detail where orderid = :arg_orderid;
open order_detail;
fetch order_detail into :ll_id;

do while sqlca.sqlcode = 0
 update order_detail set price = price*1.2
 where orderid = :arg_orderid and id = :ll_id;

 if sqlca.sqlcode < 0 then
 rollback;
 return
 end if

 fetch order_detail into :ll_id;
loop
close order_detail;
commit;

dw_2.Retrieve()
dw_2.SetFilter("price >= 100")
dw_2.Filter()

The code in bold above would be good candidate for partitioning as server-side NVOs while
the rest of the code should remain at the PB client. After partitioning this logic, the new PB
client code, which would invoke the server-side NVO, would be as follows:

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 62

n_order ln_order
long ll_rc

dw_1.Retrieve()
dw_1.SetSort("#1 A, #2 D")
dw_1.Sort()

ll_rc = myconnect.CreateInstance(ln_order, "PB_pkg_1/n_order")
if ll_rc = 0 then
 ln_order.of_UpdateOrderPrice(arg_orderid)
end if

dw_2.Retrieve()
dw_2.SetFilter("price >= 100")
dw_2.Filter()

With this technique we have reduced those numerous server calls of the database transaction
to just one single call to the NVO, and at the same time created a re-usable component
that can be shared by other modules in our PowerBuilder application or shared by other
applications.

6.4 Technique #3: eliminating recursive Embedded SQL
It's actually quite common to find Embedded SQL in a loop, especially Select and Insert
statements. As explained previously, server calls that are recursive in nature are quite
dangerous, potentially generating tremendous number of server calls. If your application
requires loops or recursive functions, it would be best to replace any code resulting in server
calls with code that does not.

For this technique, we will assume we have Select and Insert SQL statements in a loop.
The general idea is to first create a DataWindow/DataStore using the SQL. Then replace
the SQL statements contained in the loop with PowerScript modifying the DataWindow/
DataStore, which does not result in server calls. If the SQL statement contained in the loop
is an Insert statement, we would want to replace that with PowerScript that would insert
data into the DataWindow/DataStore. Once all the data has been inserted, then in one shot
we would update the DataWindow/DataStore to the database (outside the loop), resulting
in only one server call. If the SQL statement contained in the loop is a Select statement, we
would retrieve data into a DataWindow/DataStore before executing the loop, and then write
PowerScript in the loop to select the desired data from the DataWindow/DataStore.

The following is a code example that increases the price of a specific order by 20%, where
Embedded SQL is used to update the change row-by-row (hence the loop), and then save
those changes to the database:

long ll_id

declare order_detail cursor for
select id from order_detail where orderid = :arg_orderid;
open order_detail;
fetch order_detail into :ll_id;

do while sqlca.sqlcode = 0
 update order_detail set price = price*1.2
 where orderid = :arg_orderid and id = :ll_id;

 if sqlca.sqlcode < 0 then
 rollback;
 return

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 63

 end if

 fetch order_detail into :ll_id;
loop
close order_detail;
commit;

Now we will replace the Embedded SQL with a DataWindow. Specifically, we will cache the
data in a DataWindow and update the database with a single DataWindow Update, resulting
in just once server call:

long ll_rows, i

ll_rows = dw_1.retrieve(arg_orderid)
for i = 1 to ll_rows
 dw_1.SetItem(i, "price", dw_1.GetItemDecimal(i, "price")*1.2)
next

if dw_1.update() = 1 then
commit;
else
rollback;
end if

With this technique we have just eliminated server calls from inside the loop, reduced the
number of server calls to just one, and created a data caching mechanism at the client-side
that can be used to feed data to other controls of the PowerBuilder client.

6.5 Technique #4: grouping multiple server calls with Appeon
Labels

Part of this section, mainly including introduction to Appeon Labels and the two examples,
are quoted from an article titled Appeon Performance Tuning published in ISUG Journal -
October 2011 Edition written by Yakov Werde.

Appeon deployment is a multiphase process. In the first phase PowerScript code is analyzed
and converted into two categories of code (1) HTML and JavaScript that interact with the
Browser and (2) JavaScript that interacts with the Appeon ActiveX component. During
this phase the deployment tool converts embedded SQL and DataWindow database centric
code (retrieves and updates) into RPCs (remote procedure calls) that interact with Appeon
components in the Application Server. The important fact to understand is that both the
Appeon deployment and runtime engines distinguish between the different categories of
code. Additionally, Appeon engineers, recognizing the importance of performance tuning
RPC code, provided language constructs that allow an application developer to demarcate
and group RPC code in ways that will allow the runtime engine to performance enhance
browser/server communication. These performance enhancing language extensions are called
Appeon Labels.1

Appeon for PowerBuilder provides seven "Appeon Label" functions, which can be found
in the appeon_nvo_db_update object in appeon_workaround.pbl (Although the PBL is
named workarounds, it also contains many useful utility classes and methods). When you
examine the code of these functions, you will find the code either looks like the same nested

1Quoted from an article titled Appeon Performance Tuning published in ISUG Journal -
October 2011 Edition written by Yakov Werde.

http://my.isug.com/p/cm/ld/fid=450
http://my.isug.com/p/cm/ld/fid=455
http://my.isug.com/p/cm/ld/fid=455
http://YakovWerde.sys-con.com
http://my.isug.com/p/cm/ld/fid=450
http://my.isug.com/p/cm/ld/fid=455
http://my.isug.com/p/cm/ld/fid=455
http://YakovWerde.sys-con.com

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 64

PowerScript you have already written (such as of_update()), or has no implementation
(such as of_startqueue()). The fact is: Appeon Label functions serve as markers (hence,
the name Label) to the deployment tool; and during the deployment process, Appeon
generates efficient JavaScript ActiveX component call code that implements bandwidth
saving functionality in the Web tier client. Therefore, Appeon Labels do not execute any
code or modify how your PowerBuilder application works in a Client/Server environment.
Rather, when used on the Web it will notify Appeon's runtime Web libraries to handle certain
database operations differently than PowerBuilder with the aim of reducing the number of
server calls.

Below are descriptions of the seven "Label" functions about how they handle the database
operation. For details about the syntax and return values of these functions, please refer to
Section 2.3.6, “Appeon Labels” in Workarounds & API Guide.

Table 6.1: Appeon Label functions

Label Function Description

Commit/
Rollback Label

of_autocommitrollback Notifies the Appeon Web application to
automatically commit or roll back the first
database operation statement after the label.

Commit Label of_autocommit Notifies the Appeon Web application to
automatically commit the first database
operation.

Rollback Label of_autorollback Notifies the Appeon Web application to
automatically roll back the first database
operation statement if the operation fails.

Queue Labels
(Consists of Start
Queue Label and
Commit Queue
Label)

of_startqueue

of_commitqueue

These two labels must be used in pairs. They
notify the Appeon Web application not to
commit database operations after the Start
Queue Label until the Commit Queue Label is
called (and unless an Appeon Immediate Call
Label is called).

Immediate Call of_imdcall Notifies the Appeon Web application to
immediately commit a database operation.

Update Label of_update It is used to reduce the number of interactions
with the server caused by "interrelated updates".
"Interrelated updates" usually occurs when the
update result of one DataWindow determines
whether another DataWindow should be
updated.

Appeon Commit/Rollback Label

The Appeon Commit/Rollback Label (of_autocommitrollback) notifies Appeon to
automatically commit or roll back operations to the database after updating or inserting.

For example:

gnv_appeonDbLabel.of_AutoCommitRollback()
update tab_a
if sqlca.sqlcode=0 then

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 65

 //code independent of database opertaions
 commit;

else

 rollback;

endif

Appeon Commit Label

The Appeon Commit Label (of_autocommit) notifies Appeon to commit operations to
database after updating and inserting.

For example:

gnv_appeonDbLabel.of_AutoCommit()
update tab_a

Appeon Queue Labels

There are two Appeon Queue Labels, the Start Queue Label (of_startqueue) and the Commit
Queue Label (of_commitqueue). These two labels must be used in pairs. They notify Appeon
not to commit database operations after the Start Queue Label until the Commit Queue Label
is called (and unless an Appeon Immediate Call Label is called).

For example:

gnv_appeonDbLabel.of_StartQueue()
dw_1.retrieve(arg1,arg2)
dw_2.retrieve(arg3,arg2)
......
dw_3.retrieve(arg4)
gnv_appeonDbLabel.of_CommitQueue()

Appeon Immediate Call Label

The Appeon Immediate Call Label (of_imdcall) is used between the Appeon Start Queue
Label and Appeon Commit Queue Label, when the return value of an operation that is called
after the Appeon Start Queue Label determines the subsequent business logic, for example,
the return value is used in a CASE or IF...THEN expression.

For example:

gnv_appeonDbLabel.of_StartQueue()
dw_1.retrieve()
gnv_appeonDbLabel.of_ImdCall()
select ... into :var_1,:var_2

if var_1>0 then
 para = "ok"
else
 para = "false"
end if
dw_2.retrieve(para)
gnv_appeonDbLabel.of_CommitQueue()

Appeon Update Label

The Appeon Update Label (of_update) is used to reduce the number of interactions with
the server caused by "interrelated updates". "Interrelated updates" usually occurs when
the update result of one DataWindow determines whether another DataWindow should be
updated.

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 66

The following example shows how Appeon uses the Update Label to reduce client-server
interactions:

Example of interrelated updates:

if dw_1.Update()=1 then
 if dw_2.Update()=1 then
 commit;
 Messagebox("Success","Update success!")
 else
 rollback;
 Messagebox("Failure","Update all failure!")
 end if
else
 rollback;
 Messagebox("Failure","Update dw_1 failure!")
End if

Use the Appeon Update Label to rewrite the example:

l_rtn = gnv_appeonDb.of_Update(dw_1,dw_2)
if l_rtn=1 then
 Messagebox("Success","Update success!")
elseif l_rtn= -102 then
 Messagebox("Failure","Update all failure!")
Else
 Messagebox("Failure","Update dw_1 failure!")
End if

Script defined in the Update Label associated function, of_Update(dw_1,dw_2):

if dw_1.Update()=1 then
 if dw_2.Update()=1 then
 commit;
 return 1
 else
 rollback;
 return -102
 end if
else
rollback;
return -101
end if

The more database operations utilize Appeon Labels, the faster the performance will be. For
PowerBuilder applications deployed to the Web with Appeon for PowerBuilder, in many
cases you will achieve acceptable runtime performance simply by utilizing this technique.
The reason is that there are a number of features built into Appeon's infrastructure framework
that automatically boost the performance of PowerBuilder applications over the Web. The
performance boosting features are discussed in Automatic performance boosting.

Two Examples1

Now, let's see two situations where Appeon Labels reduce network traffic.

The first example illustrates performance enhancements when chaining DataWindow
updates. Oftentimes, data contained in multiple data controls (datawindow, datastore or
childdatawindow) must be grouped into a logical unit of work (LUW).

The following figure shows the pseudocode update algorithm. This code necessitates three
browser to server round trips, one for each data control.

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 67

Figure 6.2: Nested Update Algorithm

(Appeon groups all changed data into a single transmission). As you can see from the
following figure, refactoring the code to use the Appeon Label of_update() method, reduces
three round trips one. In the event of a failed update the method returns a result code
indicating which update failed.

Figure 6.3: Call Appeon of_update method()

Sometimes a script has multiple embedded SQL statements grouped into a single LUW. Each
SQL statement causes a browser to server round trip. The following figure illustrates one
such (simplified) scenario.

Figure 6.4: Five Round Trips

Tuning: Excessive Server Calls Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 68

In this case you can use the Appeon Labels of_startqueue() and of_endqueue() to demarcate
logical statement groupings thereby reducing the number of server round trips. The code
shown in the following figure reduces the number of server round trips by over 50% by
dividing the SQL into two logical groups; the first group of statements acquires values
necessary for statements in the second group.

Figure 6.5: Reduced to 2 Round Trips

Tuning: Heavy Client Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 69

7 Tuning: Heavy Client

7.1 Overview
If you find your Appeon Web application performs poorly even when run in a local
environment, then chances are the JavaScript interpreter of the Web browser is slowing you
down. Generally, a newer or more high-power computer will clear up many situations. But
if it is not an option to utilize a late model computer or if the performance issue still persists,
then you would want to consider optimizing your PowerBuilder code to make it more
efficient when running in the Web browser. This section provides several different techniques
for dealing with several specific types of inefficient PowerBuilder coding practices.

7.2 Technique #1: thin-out #heavy# Windows
Redesign the navigation strategy to present a lighter-weight Client user interface.
Specifically, you would want to focus on reduce the number of DataWindows and
DropDownDatawindows in a particular window or tab page. In many situations,
the DataWindows in a Window can be spread out across multiple Windows or tabs,
thereby reducing the "weight" of the Window. It may be possible to rework your
DropDownDataWindows as DropDownListBoxes. By thinning out the UI, it will not only
make the Window run faster but your users will not be overwhelmed by so much data.

7.3 Technique #2: thin-out #heavy# UI logic
This section is broken down into several subsections, utilizing the same technique to deal
with various types of "heavy" UI logic.

7.3.1 Manipulating the UI in loops

Excessive and unnecessary loops have a negative impact on performance. Some
PowerBuilder code will trigger your Appeon Web application to redraw visual objects, such
as DataWindows, controls, etc. If such functions are put into a loop, it will redraw the visual
objects numerous times and therefore negatively affecting performance.

Appeon recommends the following:

• Do not put functions that operate on DataWindow rows into a loop.

• Avoid placing functions that result in the repaint of visual control(s) into a loop; otherwise,
the visual control(s) will be repainted many times while the loop is executed.

• Use the Find function for DataWindow search instead of using the loop statement.

The following is an example:

Long ll_row
String ls_expression
String ls_Name
ls_Name = "Mike"
For ll_row = 1 To dw_1.RowCount()
 ls_expression =
 dw_1.GetItemString(ll_row,"name")
 If ls_expression = ls_Name Then

Tuning: Heavy Client Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 70

 Exit
 End If
Next

Long ll_row
Long ll_rowcount
String ls_expression
String ls_Name
ls_Name = "Mike"
ll_rowcount = dw_1.RowCount()
For ll_row = 1 To ll_rowcount
 ls_expression = +
 dw_1.GetItemString(ll_row,"name")
 If ls_expression = ls_Name Then
 ...
 Exit
End If
Next

Long ll_row
Long ll_rowcount
String ls_expression
String ls_Name
ls_Name = "Mike"
ll_rowcount = dw_1.RowCount()
ls_expression = "name = '" + ls_Name + "'"
ll_row = dw_1.Find(ls_expression,1,ll_rowcount)
...

7.3.2 Triggering events repeatedly

Frequent triggering of events such as Timer, MouseMove, and SelectionChanging slows
down performance. For example, once a Timer event is triggered, it occurs repeatedly at
a specified interval that can be set to even milliseconds (1/1000 of a second). Minimize
the usage of events with high repetition such as Timer, MouseMove, SelectionChanging,
GetFocus, LoseFocus, Activate, and Deactivate.

7.3.3 Performing single repetitive tasks

Use batch operations instead of performing a single operation many times. For example, the
execution of the following "batch" code is two to three times faster than the original code.

For I = 1 To 100
 dw_1.SetItem(ll_i,+
 "name",+
 dw_2.GetItemString(ll_i,"name"))
 ...
Next

dw_1.RowsCopy(1,100,Primary!,dw_2,1,100,Primary!)

Tuning: Heavy Client Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 71

7.3.4 Initializing #heavy# tabs

For windows containing Tab controls, if the Tab control contains more than five tab
pages or the initialization of each tab page is complex, Appeon recommends you use the
CreateOnDemand method of Tab control to improve the runtime performance of these
windows.

When CreateOnDemand is enabled, only the current tab page that is created will be initiated.
The initialization of the hidden tab pages takes place only when they are selected. Therefore
the window will operate more efficiently.

Please keep in mind that as you make this change you may also need to modify other code of
the Tab control. For example, if the current tab page uses data from another page, you need
to:

1. Move the script that is used for obtaining data, to the SelectionChanged event.

2. Add a condition to validate whether the tab page carrying the data has been initiated.
If initiated, the current tab page will successfully obtain the data; if not initiated, the
user must select the tab page for initialization purposes, and the current tab page will
successfully obtain the data.

7.3.5 Using ShareData or RowsCopy/RowsMove for data synchronization

The following PowerBuilder functions can synchronize data between DataWindows:
ShareData, RowsCopy/RowsMove, Object.Data, and SetItem. ShareData is the fastest and
it is recommended to use it whenever you need to synchronize data between DataWindows.
SetItem is the slowest and should be avoided as much as possible. If ShareData cannot be or
should not be used for some reason, then consider using RowsCopy/RowsMove followed by
Object.Data.

7.3.6 Using computed fields

Computed fields involve a lot of recalculation in many situations; for example, when a
column is deleted, added, or renamed. This recalculation is a process-intensive task, which
negatively impacts performance and can be worked around. Therefore, Appeon recommends
the following:

• Avoid using computed fields in detail bands. Instead, add expressions in the SQL
statements for getting specific data.

• Avoid embedding a computed field in an existing computed field.

• If a computed field is "Text: Sum or Expression", it is recommended that you divide the
column into two columns: an edit style column with the "Text", and a computed field with
"Sum or Expression".

7.3.7 Using DataWindow expressions

Generally speaking, DataWindow expressions will slow-down the initial display or
subsequent refresh of DataWindows. As such, Appeon recommend you reduce the usage of
DataWindow expressions if possible, especially in the following situations:

Tuning: Heavy Client Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 72

• Avoid using DataWindow expressions for computing and setting column properties.

• Avoid setting sort and filter criteria directly for a DataWindow object. Instead, write
the sort and filter criteria in the SQL statement of the DataWindow object. As noted
previously, it is faster to use SQL statements than DataWindow functionality.

7.3.8 Using complex filters

Filters are considered "complex" if the filter criteria contain one or more expressions that
call to one or more functions. It is recommended that you not use complex filtering on a
DataWindow, especially on a DataWindow that has large amounts of data.

7.3.9 Using RowsFocusChanging/RowsFocusChanged events

The DataWindow RowsFocusChanging and RowsFocusChanged events can be triggered
under many situations, especially when a DataWindow retrieves data. Since data is usually
automatically retrieved into DataWindows when a Window is opened, if a lot of code is
written into the RowsFocusChanging and RowsFocusChanged events, it will significantly
prolong the time it takes to open the Window and display the DataWindow. Appeon
recommends that you do not write code into RowsFocusChanging and RowsFocusChanged
events unless it is necessary.

7.4 Technique #3: offload #heavy# non-visual logic
Instead of trying to write "heavy" logic more efficiently or avoiding use of "heavy" logic,
the simplest way is just to offload all that "heavy" logic to the application server, which is
designed to handle the most daunting tasks. The only catch is that only non-visual logic can
be run at the application server.

The following types of non-visual logic can be encapsulated in PowerBuilder NVOs and
deployed to the application server to eliminate "heavy" logic from the Web browser:

• Complex non-visual events and functions, especially non-visual events and functions
that contain dynamic SQL, Cursor statements, Stored Procedure calls, and other SQL
statements.

• Validation of updated data.

• A series of data computations or a complex data computation.

Tuning: Large Data Transmissions Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 73

8 Tuning: Large Data Transmissions
This section introduces two common-used techniques to reduce the size of data transmission:

8.1 Overview
Suppose you have worked hard to make an application Web-ready using Appeon, and, using
your test data, it seemed to perform acceptably. Then, when your users provide "live" test
data in realistic volumes, you discover that the application takes a long time to load, and
worse, a long time to respond to your user's input. What to do?

Well first you should confirm that your issue is not being caused by excessive server calls
(see Tuning: Excessive Server Calls). The reason is that majority of the time, PowerBuilder
applications are coded such that as additional rows of data are retrieved logic is executed to
validate, manipulate, or otherwise handle the data, which can result in server calls. As such,
the more rows of data are retrieved the more server calls are made.

Once you are certain the slow-down is not caused by excessive server calls then you can
consider reducing the size of data transmission. So what can do practically?Well at a high-
level there are several techniques you can employ:

• The first and most popular is staging the data retrieval into manageable increments. For
example, you can expose a Next button, and have the application respond to this button
click by getting the next logical segment of the result set just like typical Websites or Web
applications. Technique #1: retrieving data incrementally gives you instructions on how to
achieve this.

• Another technique is to create multiple smaller "specific" views rather than one larger
"general" view. Consider adding SQL WHERE clauses based on more search criteria,
thus retrieving only the amount of data that is absolutely necessary for a particular view of
interest.

• If you have a choice between reducing the number of rows retrieved, and reducing the
number of columns, note that a small reduction in columns (described below in Technique
#2: minimizing excessive number of columns) can improve performance to an even greater
extent than a reduction in rows. This is because most of the time, loops, whether in the
application code or in the virtual machine, visit columns first and then rows.

Anything you do to reduce the size of the result set in one way or another can only improve
performance and possibly improve usability of your application as well.

8.2 Technique #1: retrieving data incrementally

8.2.1 For Oracle database server

Oracle includes a pseudo-column called ROWNUM which allows you to generate a list of
sequential numbers based on ordinal row. If your application uses Oracle database, apply
your Oracle skills and ROWNUM to limit the number of returned rows. For example, this
query selects the TOP 10 rows from a table:

SELECT *

Tuning: Large Data Transmissions Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 74

FROM (SELECT * FROM my_table ORDER BY col_name_1)
WHERE ROWNUM BETWEEN 1 AND 10;

You can impose a NEXT button to the DataWindow. In the Clicked event of the NEXT
button, the query changes with ROWNUM increments by 10. Therefore, when the NEXT
button is clicked, the DataWindow displays next 10 rows.

8.2.2 For all other database servers

If your application uses a non-Oracle database (for example, Microsoft SQL server) you can
use the following SQL syntax to limit the number of returned rows to the DataWindow:

SELECT TOP 10 *
FROM my_table
WHERE Table.primary_key > = bottom
ORDER BY Table.primary_key;

"bottom" is a variable that contains the row number of the first row you want to retrieve,
where rows are ordered by the primary key for the table. Before retrieving the first page of
data, "bottom" should be set to a value smaller than any primary key value in the table.

Based on this SQL statement, you can implement Next and Previous buttons for the
DataWindow. Their Clicked events increment or decrement the bottom variable so that its
value matches the primary key value in the first row you want to retrieve then execute the
above SQL statement.

8.3 Technique #2: minimizing excessive number of columns
As the number of rows in the result set increased, the number of columns will cause greater
degradation on performance, especially for nested loops in your application which process
rows in the outer loop, and columns in the inner loop. Sometimes the excessive number of
columns is intentional and other times it is unintentional.

A sign of unintentionally excessive columns would be the SQL syntax Select * From:
consider modifying this syntax to Select fieldList From, where fieldList is the comma-
separated list of all, and only, those fields your application will actually need. The
performance of the SQL syntax using asterisk will be automatically degraded any time your
database administrator modifies the database design by adding columns.

A sign of intentionally excessive columns is simply a long list of columns in your SQL Select
statement. Consider analyzing your actual needs to make certain all columns are necessary.
It may be possible to request certain columns (needed only in exceptional circumstances) in
a separate SQL operation. Please keep in mind if the Visible property of a column is set to
zero (the control is not visible), even though the Column cannot be seen, it is still impacting
performance.

Conclusion Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 75

9 Conclusion
PowerBuilder applications that perform well today in your local network may not perform
well in a distributed architecture tomorrow. Likewise, typical PowerBuilder development
practices may not be suitable for a distributed architecture. The several techniques outlined
in this guide are intended to steer you in general directions. It is recommended to extrapolate
from these examples and apply to your particular situation. Please keep in mind that
excessive server calls is the single biggest culprit of performance issues over the Internet,
which is a relatively high latency connection.

Purchasing expensive network connectivity and faster hardware can make up for suboptimal
code. Sometimes the cost of doing this is less than the cost of optimizing the code. If you
do take this route, keep in mind that a low-latency network connection is generally the key
rather than a high-bandwidth connection. Reason being, for most PowerBuilder applications
and deployments, it is the network latency that kills the runtime performance not bandwidth
limitations.

Index Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 76

Index

A
additional functions, 41
advanced thread settings

execution Timeout, 18
maxconnection, 17
maxWorkerThreads and maxIoThreads, 17
minFreeThreads and
minLocalRequestFreeThreads, 17
minWorkerThreads, 17
recommended thread settings, 18

AEM performance settings
Custom Libraries download settings, 13
DataWindow data caching, 13
Log file settings, 14
Multi-thread download settings, 13
Timeout settings, 12

Analyzing log files
Analyzing log files, 52

Appeon Developer performance settings, 11
Appeon Enterprise Manager performance
settings, 12
Appeon performance

automatic performance boosting, 9
expected performance level, 9
impact of heavy client-side logic, 7
impact of large data transmission, 8
impact of the Internet and slow networks,
6

Appeon performance analyzer
additional functions, 41
calls analysis, 28
download analysis, 32
enable, 21
get to know, 24
remove, 25
start, 22
system configuration, 26
view detail, 33

automatic performance boosting, 9

C
cache size, 15
calls analysis, 28
configure data sources

cache size, 15
JDBC driver, 14

Custom Libraries download settings, 13

D
DataWindow data caching, 13
download analysis, 32

E
eliminate recursive Embedded SQL, 62
enable Appeon performance analyzer, 21
excessive server calls

eliminate recursive Embedded SQL, 62
group multiple server calls with Appeon
Labels, 63
partition non-visual logic via NVOs, 60
partition transactions via stored
procedures, 58

execution Timeout, 18
expected performance level, 9

F
Filter function, 41
Find function, 47

G
get to know Appeon performance analyzer,
24
group multiple server calls with Appeon
Labels, 63

H
Heavy Client

offload heavy non-visual logic, 72
thin-out heavy UI logic, 69
thin-out heavy windows, 69

I
identify performance bottlenecks

Identifying Performance Bottlenecks of
PB application, 55

identifying performance bottlenecks
Analyzing performance bottlenecks of PB
application, 55
Appeon performance analyzer, 21
Deadlock analysis, 55
identifying Performance Bottlenecks of
DB Server, 55
Identifying Performance Bottlenecks of
Web Server and Application Server, 55

If you need help, 3

Index Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 77

IIS server performance settings
advanced thread settings, 16
recommendations for avoiding common
errors, 15

impact of heavy client-side logic, 7
impact of large data transmission, 8
impact of the Internet and slow networks, 6
Impacts to Appeon performance, 6

Impacts to Appeon performance, 6
initialize heavy tabs, 71
Internet Explorer performance settings, 14

J
JDBC driver, 14
JVM startup option, 14

L
large data transmissions

minimize excessive number of columns,
74
retrieve data incrementally, 73

Log file settings, 14

M
manipulate the UI in loops, 69
maxconnection, 17
Maximum Rollback Retries, 13
maxIoThreads, 17
maxWorkerThreads, 17
minFreeThreads, 17
minimize excessive number of columns, 74
minLocalRequestFreeThreads, 17
minWorkerThreads, 17
Multi-thread download settings, 13

N
New Root Item function, 50

O
offload heavy non-visual logic, 72
Oracle database server, 73
other database servers, 74

P
partition non-visual logic via NVOs, 60
partition transactions via stored procedures,
58
perform single repetitive tasks, 70
performance settings

AEM, 12
Appeon Developer, 11
Internet Explorer, 14
Web and application server, 14

R
recommendations for avoiding common
errors on IIS, 15
recommended thread settings, 18
Related documents, 1
remove Appeon performance analyzer, 25
retrieve data incrementally

Oracle database server, 73
other database servers, 74

Rollback Completion time, 13

S
SAP EAServer performance settings

configure data sources, 14
JVM startup option, 14

Save As XML function, 49
Session timeout, 12
Session Timeout Detection Interval, 12
start Appeon performance analyzer, 22
system configuration, 26

T
thin-out "heavy" UI logic

perform single repetitive tasks, 70
thin-out heavy UI logic, 69

initialize heavy tabs, 71
manipulate the UI in loops, 69
trigger events repeatedly, 70
use complex filters, 72
use computed fields, 71
use DataWindow expressions, 71
use RowsFocusChanging/
RowsFocusChanged events, 72
use ShareData or RowsCopy/RowsMove
for data synchronization, 71

thin-out heavy windows, 69
Timeout settings

Maximum Rollback Retries, 13
Rollback Completion time, 13
Session timeout, 12
Session Timeout Detection Interval, 12
Transaction timeout, 12
Transaction Timeout Detection Interval,
12

Index Appeon® for PowerBuilder® 2016

Appeon Performance Tuning Guide Page 78

Transaction timeout, 12
Transaction Timeout Detection Interval, 12
trigger events repeatedly, 70
Tuning: DB server

Database, 57

U
use complex filters, 72
use computed fields, 71
use DataWindow expressions, 71
use RowsFocusChanging/
RowsFocusChanged events, 72
use ShareData or RowsCopy/RowsMove for
data synchronization, 71

V
view detail, 33

W
Web and application server performance
settings

Microsoft IIS server, 15
SAP EAServer, 14

	Appeon Performance Tuning Guide
	Contents
	1 About This Book
	1.1 Audience
	1.2 How to use this book
	1.3 Related documents
	1.4 If you need help

	2 Appeon Performance
	2.1 Impacts to Appeon performance
	2.1.1 Impact of the Internet and slow networks
	2.1.2 Impact of �heavy� client-side logic
	2.1.3 Impact of large data transmission

	2.2 Expected performance level
	2.3 Automatic performance boosting

	3 Performance-Related Settings
	3.1 Overview
	3.2 Appeon Developer performance settings
	3.3 Appeon Enterprise Manager performance settings
	3.3.1 Timeout settings
	3.3.2 DataWindow data caching
	3.3.3 Multi-thread download settings
	3.3.4 Custom Libraries download settings
	3.3.5 Log file settings

	3.4 Internet Explorer performance settings
	3.5 Web and application server performance settings
	3.5.1 SAP EAServer
	3.5.1.1 JVM startup option
	3.5.1.2 Configuring data sources
	3.5.1.3 HTTP properties

	3.5.2 Microsoft IIS server
	3.5.2.1 Recommendations for avoiding common errors on IIS
	3.5.2.2 Advanced thread settings

	3.6 Database performance settings
	3.6.1 Recommended database driver
	3.6.2 Recommended database setting

	4 Identifying Performance Bottlenecks
	4.1 Overview
	4.2 Appeon Performance Analyzer
	4.2.1 Getting Started
	4.2.1.1 Enabling Appeon Performance Analyzer
	4.2.1.2 Starting Appeon Performance Analyzer
	4.2.1.3 Getting to know Appeon Performance Analyzer
	4.2.1.4 Removing Appeon Performance Analyzer

	4.2.2 Working with Appeon Performance Analyzer
	4.2.2.1 System Configuration
	4.2.2.2 Calls Analysis
	4.2.2.3 Download Analysis
	4.2.2.4 View Detail
	4.2.2.5 Additional Functions

	4.3 Analyzing log files
	4.3.1 Analyzing Windows application log files
	4.3.2 Analyzing Appeon Server log files
	4.3.3 Analyzing active transaction log

	4.4 Identifying Performance Bottlenecks of Web Server and Application Server
	4.5 Identifying Performance Bottlenecks of DB Server
	4.5.1 Deadlock analysis

	4.6 Identifying Performance Bottlenecks of PB application
	4.6.1 Analyzing performance bottlenecks of PB application

	5 Tuning: DB Server
	5.1 Database

	6 Tuning: Excessive Server Calls
	6.1 Overview
	6.2 Technique #1: partitioning transactions via stored procedures
	6.3 Technique #2: partitioning non-visual logic via NVOs
	6.4 Technique #3: eliminating recursive Embedded SQL
	6.5 Technique #4: grouping multiple server calls with Appeon Labels

	7 Tuning: Heavy Client
	7.1 Overview
	7.2 Technique #1: thin-out �heavy� Windows
	7.3 Technique #2: thin-out �heavy� UI logic
	7.3.1 Manipulating the UI in loops
	7.3.2 Triggering events repeatedly
	7.3.3 Performing single repetitive tasks
	7.3.4 Initializing �heavy� tabs
	7.3.5 Using ShareData or RowsCopy/RowsMove for data synchronization
	7.3.6 Using computed fields
	7.3.7 Using DataWindow expressions
	7.3.8 Using complex filters
	7.3.9 Using RowsFocusChanging/RowsFocusChanged events

	7.4 Technique #3: offload �heavy� non-visual logic

	8 Tuning: Large Data Transmissions
	8.1 Overview
	8.2 Technique #1: retrieving data incrementally
	8.2.1 For Oracle database server
	8.2.2 For all other database servers

	8.3 Technique #2: minimizing excessive number of columns

	9 Conclusion
	Index

